互斥事件,独立事件ppt课件

合集下载

人教A版10.2事件的相互独立性课件(共16张)

人教A版10.2事件的相互独立性课件(共16张)
P(A)=,P(B)=,P(C)= P(AC)=P(“正正”)=0.25=P(A)P(C) P(BC)=P(“正正”)=0.25=P(B)P(C)
巩固:事件相互独立性的判断
【2021年·新高考Ⅰ卷】有6个相同的球,分别标有数字1,2,3,4,5,6,从中有
放回的随机取两次,每次取1个球. 甲表示事件“第一次取出的球的数字是1”,
P(丁) 1 6
C.乙与丙相互独立
P(乙丙) 1 36
P(丙丁) 0
巩固:相互独立事件的概率计算
P248-例2.甲、乙两名射击运动员进行射击比赛,甲的中靶概率为0.8, 乙的中靶概率为0.9,求下列事件的概率:
(1)两人都中靶;
(2)恰好有一人中靶;
(3)两人都脱靶;
(4)至少有一人中靶.
析:设A=“甲中靶”,B=“乙中靶”,则A=“甲脱靶”,B=“乙脱靶”. 由于两个人射击的结果互不影响,∴A与B相互独立, 且A与B,A与B,A与B都相互独立.
= P(J1)P(Y2)+P(J2)P(Y1)
巩固:互斥与相互独立的区分
判断下列各对事件哪些是互斥事件,哪些是相互独立事件.
(1)掷一枚骰子一次,事件M: “出现的点数为奇数”;事件N: “出现的点数为偶数”.
M={1,3,5},N={2,4,6},MN=ϕ P(MN)≠P(M)P(N)
M、N 互斥但不相互独立
--
(3)至少一个地方降雨的概率. (对立事件)P(M)=1-P(AB) =1-0.
事件M
(拆分事件)P(M)=________________________ =
(并事件)P(M)=P(A∪B)=P(A)+P(B)-P(AB) =-
[变式1]甲、乙两人同时报考某一所大学,甲被录取的概率为,乙被录取的概率为,两 人是否被录取互不影响,则其中至少有一人被录取的概率为________

北师大版高中数学必修第一册 第七章 4-《事件的独立性》课件PPT

北师大版高中数学必修第一册 第七章 4-《事件的独立性》课件PPT
3
2
3
5
甲、乙、丙三人都回答错误的概率为P( · · )=P()·P()·P()=(1− 4)×(1− 3)×(1− 8)= 96.
因为事件“甲、乙、丙三人都回答错误”与事件“甲、乙、丙三人中,至少有一人答对这道题”是对
5
91
立事件,所以,所求事件概率为() =1− 96 = 96.
反思感悟
与相互独立事件有关的概率问题求解策略
明确事件中的“至少有一个发生”“至多有一个发生”“恰好有一个发生”“都发生”“都不发
生”“不都发生”等词语的意义.
四、方程思想在概率中的应用
例4
甲、乙、丙三台机床各自独立地加工同一种零件,已知甲机床加工的零件是一等品而乙机床加工
1
1
的零件不是一等品的概率为4,乙机床加工的零件是一等品而丙机床加工的零件不是一等品的概率为12,
不可能同时发生,即事件A与B是互斥的,所以所求概率为 = (A)+(B)= (A)P()+()()
=0.8×(1−0.8)+(1−0.8)×0.8=0.32.
3.袋中装有红、黄、蓝3种颜色的球各1个,从中每次任取1个,有放回地抽取3次,则3次全是红球的概率为( D )
A.
1
回答问题正确与否是相互独立的.
(1)求乙答对这道题的概率;
(2)求甲、乙、丙三人中,至少有一人答对这道题的概率.
解 (1)记甲、乙、丙3人独自答对这道题分别为事件, , ,
设乙答对这道题的概率() = ,
由于每人回答问题正确与否是相互独立的,因此, , 是相互独立事件.
由题意,并根据相互独立事件同时发生的概率公式,
1
9
, , .由题设得 () = 12 ,即 ()(1−()) = 12 ,②由①③,得() =1− 8 (),

相互独立事件同时发生概率-PPT精选文档

相互独立事件同时发生概率-PPT精选文档


②袋中有三个红球,两个白球,采取不放回的取球. 事件A:第一次从中任取一个球是白球. 不是 事件B:第二次从中任取一个球是白球. ③袋中有三个红球,两个白球,采取有放回的取球 . 事件A:第一次从中任取一个球是白球. 事件B:第二次从中任取一个球是白球. 是
好运动者健,好思考者智,好助人 者乐好读书者博,好旅游者悦,好 7
(2) 若事件A与B相互独立, 则以下三对事件 也相互独立. ①
A 与 B; ② A 与 B;
③ A 与 B.
注 称此为二事件的独立性 关于逆运算封闭.
证① A A A ( B B ) AB A B
P ( A ) P ( AB ) P ( A B ) P ( A B ) P ( A ) P ( AB )
A 与 B; ② A 与 B;
③ A 与 B.

引例:盒中有5个球其中有3个绿的2个红的, 每次取一个有放回的取两次,设
事件A={第一次取到绿球}
事件B={第二次取到红球}
事件A对事件B是否有影响? 事件A对事件B是否有影响? 事件A对事件B是否有影响?
好运动者健,好思考者智,好助人者乐 好读书者博,好旅游者悦,好追求者成 持续更新●▂●请收藏 10
2º 独立与互斥的关系 这是两个不同的概念.
独立是事 互斥是事 件间的概 件间本身 率属性 的关系
两事件相互独立 P ( AB ) P ( A ) P ( B ) 二者之间没 有必然联系 两事件互斥 AB 例如
B
AB
1
1 1 若 P ( A ) , P ( B ) , 2 2
则 P ( AB ) P ( A ) P ( B ).
结论:事件A(或B)是否发生对事件B(或A)发 生的概率没有影响好运动者健,好思考者智,好助人者乐

2.2.2事件的相互独立性【公开课教学PPT课件】

2.2.2事件的相互独立性【公开课教学PPT课件】

皮匠中至少有一人解出的概率与诸
葛亮解出的概率比较,谁大?
分析:1 P(ABC) 1 0.9握 不能大过诸葛亮!
这种情况下至少有 几个臭皮匠才能顶
个诸葛亮呢?
小结反思
互斥事件
相互独立事件

不可能同时发生的
如果事件A(或B)是否发生对事 件B(或A)发生的概率没有影响,
B发生与否不影响A发生的概率
想一想 判断下列各对事件的关系
(1)运动员甲射击一次,射中9环与射中8环;互斥
(2)甲乙两运动员各射击一次,甲射中9环与
乙射中8环;
相互独立
(3)已知P( A) 0.6, P(B) 0.6, P( AB) 0.24
则事件A与B
相互独立
(4)在一次地理会考中,“甲的成绩合
高二数学 选修2-3
2.2.2事件的相互 独立性(一)
俗话说:“三个臭皮 匠抵个诸葛亮”。
那我们从数学中 概率的角度来看,如 何理解这句话呢?
明确问题: 已知诸葛亮解出问题的概率为0.8,
臭皮匠老大解出问题的概率为0.5,老 二为0.45,老三为0.4,且每个人必须独 立解题,问三个臭皮匠能抵一个诸葛
设事件A和事件B,且P(A)>0,在已知事件A发 生的条件下事件B发生的概率,叫做条件概率。 记作P(B |A).
(5).条件概率计算公式:
P(B | A) n( AB) P( AB) n( A) P( A)
P(AB) P(A)P(B | A)
思考与探究
思考1:三张奖券有一张可以中奖。现由三
不可能同时发生的两个事件叫做互斥事件;如果两个互斥 事件有一个发生时另一个必不发生,这样的两个互斥事件 叫对立事件.

两个相互独立事件同时发生的概率PPT教学课件

两个相互独立事件同时发生的概率PPT教学课件

在上面5 X 4种结果中,同时摸出白 球的结果有3 X 2种.因此,从两个坛子 里分别摸出1个球,都是白球的概率 P(A﹒B)= __________________
另一方面,从甲坛子里摸出1个球,得 到白球的概率P(A)= ________
从乙坛子里摸出1个球,得到白球的 概率P(B)= _________ 由 ______________ = ____ × ____ 我们看到P(A﹒B)=P(A)﹒P(B)
(2)海—气相互作用与热交换的过程 (3)海—气相互作用与水平衡
(4)海—气相互作用与热量平衡
(2009·北京西城模拟)“云气西行,云云
然,冬夏不辍;水泉东流,日夜不休,上不竭,下
不满……”(《吕氏春秋·圜道》)这段文字主要涉及
A.静态水资源的更新过程
(B )
B.水循环的水汽输送和径流输送环节
合理规划, 综合开发
3.潮汐能和波浪能的开发利用
类型 形式 分布 原因 建站条件 发电特点 发电流程
潮 汐 能
势能
狭窄的 海峡、 海湾、 河口区 域
势能带 口窄肚大、
动水轮 适宜的海


密度高
潮汐涨落→ 大坝蓄水→ 势能→水轮 机发电
物体在
波 浪 能
动能 和势 能
平均潮 差小、 近岸水 较深
波浪作 用下震 动和摆 动、波 浪压力 变化转 换为势
为事件A,“从乙坛子里摸出1个球,得到 白球”为事件B,则事件A是否发生对事 件B的发生没有影响,这样的两个事件叫 做相互独立事件
在上面的问题里,事件 A 是指 “从甲坛子里摸出1个球,得到黑球”,
事件 B 是指“从乙坛子里摸出1个 球,得到黑球”.很明显事件A与B ,

随机事件的互斥事件和独立事件

随机事件的互斥事件和独立事件

随机事件的互斥事件和独立事件1. 互斥事件1.1 定义互斥事件(Mutually Exclusive Events)指的是两个事件不可能同时发生。

用数学符号表示为:A ∩ B = ∅,即事件A和事件B的交集为空集。

1.2 性质(1)完备性:对于任意事件A,有P(A) = P(A ∩ B’) + P(A ∩ B),其中B’为事件B的补集。

(2)互斥事件的概率公式:若A1, A2, …, An为互斥事件,则P(A1 ∪ A2 ∪ … ∪ An) = P(A1) + P(A2) + … + P(An)。

1.3 应用互斥事件在实际生活中有很多应用,如在抽奖活动中,中奖和不中奖这两个事件就是互斥的。

在统计分析中,也可以利用互斥事件来计算概率。

2. 独立事件2.1 定义独立事件(Independent Events)指的是两个事件的发生与否互不影响。

用数学符号表示为:P(A ∩ B) = P(A)P(B)。

2.2 性质(1)组合性:对于任意事件A和B,有P(A ∪ B) = P(A) + P(B) - P(A ∩ B)。

(2)独立事件的乘法公式:若A1, A2, …, An和B1, B2, …, Bm为独立事件,则P(A1 ∩ B1 ∩ … ∩ An ∩ Bm) = P(A1)P(B1) … P(An)P(Bm)。

2.3 应用独立事件在实际生活中也有很多应用,如在投掷两个骰子的情况下,第一个骰子出现1点,第二个骰子出现2点的概率就是独立事件。

在统计分析中,独立事件可以用来计算联合概率。

3. 互斥事件与独立事件的区别与联系3.1 区别(1)定义不同:互斥事件指的是两个事件不可能同时发生,而独立事件指的是两个事件的发生与否互不影响。

(2)概率公式不同:互斥事件的概率公式为P(A ∩ B’) + P(A ∩ B),独立事件的概率公式为P(A)P(B)。

3.2 联系(1)互补事件:互斥事件和独立事件都可以看作是互补事件。

独立事件PPT课件

独立事件PPT课件

这就是说,事件 A(或 B )是否发生对事
件 B(或 A)发生的概率没有影响,这样的两 个事件叫做相互独立事件.
2021/4/8
2
1.独立事件的定义
“互斥”与“相互独立”辨析
事件间的“互斥”与“相互独立”是两个 不同的概念.
两个事件互斥是指这两个事件不可能同时 发生;两个事件相互独立是指其中一个事件的 发生与否对另一个事件发生的概率没有影响.
(1)一个坛子里有6个白球,3个黑球,l个红球,
设摸到一个球是白球的事件为 A ,摸到一个球是黑球
的事件为B ,问 A 与 B 是互斥事件呢,还是对立事件?
(2)甲坛子里有3个白球,2个黑球;乙坛子里有2 个白球,2个黑球.设从甲坛子里摸出一个球,得到白
球叫做事件 A ,从乙坛子里摸出一个球,得到白球叫 做事件 B .问 A 与 B 是互斥事件呢?还是对立事件?
一般地,如果事件A与 B相互独立,那么A
与 B,A与B,A与B也都是相互独立的.
2021/4/8
3
2.独立事件同时发生的概率的 计算公式
“从两个坛子里分别摸出1个球,都是
白球”是一个事件,它的发生,就是事A件B 、
同时发生,记作 A B .这样我们需要研究,
上面两个相互独立事件 A ,B 同时发生的概
2021/4/8
5
从甲坛子里摸出1个球,有5种等可能的 结果;从乙坛子里摸出1个球,有4种等可能 的结果,于是从两个坛子里各摸出1个球, 共有5×4种等可能的结果,表示如下:
(白,白) (白,白) (白,黑) (白,黑) (白,白) (白,白) (白,黑) (白,黑) (白,白) (白,白) (白,黑) (白,黑) (黑,白) (黑,白) (黑,黑) (黑,黑) (黑,白) (黑,白) (黑,黑) (黑,黑)

概率与统计中的独立与互斥事件

概率与统计中的独立与互斥事件
互斥事件的概率计算注意事项:互斥事件不能同时发生,因此它们的概率之和不能超过1。 互斥事件的概率计算实例:投掷一枚骰子,出现1和2两个互斥事件的概率分别为1/6和 1/6,因此它们同时发生的概率为1/6+1/6=1/3。
互斥事件的性质
互斥事件的定 义:两个事件 A和B是互斥的, 如果它们不能
同时发生。
概率与统计中的互斥事件:在决策分析中,互斥事件是指两个或多个事件不能同时发生,即一个事件的发生会阻止另一个 事件的发生。例如,在体育比赛中,每个参赛选手只能获得一个名次,一个选手获得第一名就会阻止其他选手获得该名次。
独立与互斥事件的实例分析:在决策分析中,独立与互斥事件的应用非常广泛。例如,在金融投资中,投资者可以根据不 同投资品种之间的独立性来分散投资风险;在生产管理中,企业可以根据不同生产环节之间的互斥性来优化生产流程。
独立与互斥事件的实例分析
第五章
生活中的独立与互斥事件实例
独立事件实例:抛掷一枚骰子,出现偶数点与出现点数大于3的事件是 独立事件,因为一个事件的发生不影响另一个事件的发生。
互斥事件实例:抽奖活动中,中奖与不中奖是互斥事件,因为两个事件 不能同时发生。
独立事件实例:投篮命中与投篮未命中是独立事件,因为一个事件的发 生不影响另一个事件的发生。
互斥事件实例:在掷骰子游戏中,出现1、2、3和出现4、5、6是互斥 事件,因为两个事件不能同时发生。
概率论中的经典独立与互斥事件问题解析
蒙提霍尔问题:一个著名的概率论问题,涉及到独立事件和概率计算。
生日悖论:一个经典的独立事件与互斥事件问题,通过实例分析理解概率 论在实际中的应用。
投掷硬币实验:通过投掷硬币的实验,分析独立事件和互斥事件的概率, 理解概率论的基本概念。

事件的相互独立性课件

事件的相互独立性课件

【思路启迪】 如果A、B是,所以利用独立事件的概率公 式来解题即可.
【解】 设“甲能破译”为事件A,“乙能破译”为事件 B,则A、B相互独立,从而A与 B 、 A 与B、 A 与 B 均相互独 立.
(1)“两个都能破译”为事件AB,则 P(AB)=P(A)·P(B)=13×14=112.
要点二 求相互独立事件的概率
1.求相互独立事件同时发生的概率的步骤是 (1)首先确定各事件之间是相互独立的; (2)确定这些事件可以同时发生; (3)求出每个事件的概率,再求积. 2.使用相互独立事件同时发生的概率计算公式时,要掌 握公式的适用条件,即各个事件是相互独立的,而且它们同 时发生.
一个袋子中有3个白球,2个红球,每次从中 任取2个球,取出后再放回,求:
(1)一个家庭中有若干个小孩,假定生男孩和 生女孩是等可能的,令A={一个家庭中既有男孩又有女孩}, B={一个家庭中最多有一个女孩}.已知家庭中有三个小孩, 判断A与B的独立性;
(2)判断下列各对事件是否是相互独立事件: 甲组3名男生,2名女生;乙组2名男生,3名女生,现从 甲、乙两组中各选1名同学参加演讲比赛,“从甲组中选出1 名男生”与“从乙组中选出1名女生”.
2.熟记部分符号语言含义:如A,B至少有一个发生的 事件记为A∪B;都发生记为AB;恰有一个发生的事件记为 (A B )∪( A B);至多有一个发生的事件记为(A B )∪( A B)∪( A B ).
甲、乙两人破译一密码,他们能破译的概率 分别为13和14.
求(1)两人都能破译的概率; (2)两人都不能破译的概率; (3)恰有一人能破译的概率; (4)至多有一人能破译的概率.
(1)P(AB)=P(A)P(B)=CC2325·CC2225=130·110=1300. 故第1次取出的2个球都是白球,第2次取出的2个球都是 红球的概率是1300.

10.2 事件的相互独立性课件ppt

10.2 事件的相互独立性课件ppt

=0.8×0.3×0.1+0.2×0.7×0.1+0.2×0.3×0.9
=0.092.
变式训练3某机械厂制造一种汽车零件,已知甲机床的正品率是0.96,乙机
床的次品率是0.05,现从它们制造的产品中各任意抽取一件,试求:
(1)两件产品都是正品的概率;
(2)恰有一件是正品的概率;
(3)至少有一件是正品的概率.
(2)求甲、乙、丙三人的租车费用和为10元的概率.
解 (1)由题意可得,甲、乙、丙 30 分钟以上且不超过 40 分钟还车的概率分
1 1 1
别为 , , ,
4 2 4
1 1 1 1 1 1 1
甲、乙、丙三人的租车费用完全相同的概率为 P=2 × 4 × 4 + 4 × 4 × 2 + 4 ×
1 1
生,不会受任何事件是否发生的影响,不可能事件⌀总不会发生,也不受任何
事件是否发生的影响.当然,它们也不影响其他事件是否发生.(3)对于n个事
件A1,A2,…,An,如果其中任意一个事件发生的概率不受其他事件是否发生
的影响,则称n个事件A1,A2,…,An相互独立.
微思考
分别抛掷两枚质地均匀的硬币,事件A=“第一枚硬币正面朝上”,事件B=“第
单的相关概率计算问题.(数学运算)
4.培养学生分析问题、解决问题的能力,提高学生数学转化与
化归的能力.(逻辑推理)
思维脉络
课前篇 自主预习
激趣诱思
常言道:“三个臭皮匠顶个诸葛亮.”怎样从数学上来解释呢?将问题具体化:
假如对某事件诸葛亮想出计谋的概率为0.88,三个臭皮匠甲、乙、丙想出
计谋的概率各为0.6,0.5,0.5.问这三个臭皮匠能胜过诸葛亮吗?

互斥事件和独立事件课件高一下学期数学

互斥事件和独立事件课件高一下学期数学
3
题”的概率为
10
=
3
+
10
3
,故“甲、乙两人中有一个抽到选择题,另一个抽到判断
10
=
3
.
5
2
(2)“甲、乙两人都抽到判断题”的概率为
20
到选择题”的概率为
=
3
,“甲抽到判断题,乙抽到选
10
1
110
=
9
.
10
=
1
,故“甲、乙两人至少有一人抽
10
方法点睛 在求解复杂的事件的概率时,通常有两种方法,一是将所求事件
件,A∩B为不可能事件时,A与B才互为对立事件.
微练习
如果事件A,B互斥,那么(
)
A.A∪B 是必然事件 B.A ∪ B是必然事件
C.A与B一定互斥
答案 B
D.A与B一定不互斥
解析
A,B 互斥,不一定是对立事件,故 A 不正确;当 A,B 不是对立事件时,A与B不互
斥,故 C 不正确;当 A,B 是对立事件时,A与B也是对立事件,当然也是互斥事件,
的概率转化成彼此互斥的概率之和.二是先求此事件的对立事件的概率,再
利用P(A)=1-P( A )来得出原问题的解,特别是在涉及“至多”或“至少”问题
时,常常用此思维模式.这种处理问题的方法称为逆向思维,有时能起到事
半功倍的效果.
当堂检测
1.口袋内装有一些大小相同的红球、白球和黑球,从中摸出1个球,摸出红
(2)不是互斥事件.理由是“至少有1名男生”包含“有1名男生2名女生”“有2名男
生1名女生”“有3名男生”三种结果;“至少有1名女生”则包含“1名女生2名男
生”“2名女生1名男生”,显然两个事件可以同时发生,所以不是互斥事件,更不

事件的相互独立性(课件)高一数学(人教A版2019必修第二册)

事件的相互独立性(课件)高一数学(人教A版2019必修第二册)

巩固训练
1.袋内有3个白球和2个黑球,从中不放回地摸球,用 表示“第一次摸得白球”,用 表示“第二次摸得白球”,则 与 是( ).
A.互斥事件 B.相互独立事件 C.对立事件 D.不相互独立事件
D
[解析] 事件 的结果对事件 发生的概率有影响.根据互斥事件、对立事件和相互独立事件的定义可知, 与 不是相互独立事件.
3.从应届高中生中选飞行员,已知这批学生体形合格的概率为 ,视力合格的概率为 ,其他综合标准合格的概率为 ,从中任选一名学生,三项均合格的概率为( ).(假设三项标准互不影响)
A. B. C. D.
B
[解析] 由题意知三项标准互不影响, .
4.已知 , 是相互独立事件,且 , ,则 __; __.
(1)两人都能破译的概率;
(2)恰有一人能破译的概率;
(3)至多有一人能破译的概率.
巩固训练
[解析] 记事件 为“甲独立破译出密码”,事件 为“乙独立破译出密码”.
(1)两个人都破译出密码的概率为 .
(2)恰有一人破译出密码分为两类:甲破译出乙破译不出,乙破译出甲破译不出,即 , .
(3)“至多有一人破译出密码”的对立事件是“两人都破译出密码”,∴其概率为 .
方法总结
三个元件 , , 正常工作的概率分别为 , , ,将它们中的某两个元件并联后再和第三个元件串联接入电路,且它们是否正常工作相互独立.在如图所示的电路中,电路不发生故障的概率是多少?
[解析] 记“ 正常工作”为事件 ,“ 正常工作”为事件 ,“ 正常工作”为事件 ,则 , ,电路不发生故障,即 正常工作且 , 至少有一个正常工作,因为 , 至少有一个正常工作的概率 ,所以整个电路不发生故障的概率为 .
[答案] 有放回地抽取奖券时,最后一人也是从原来的三张奖券中任抽一张,因此第一人抽的结果对最后一人的抽奖结果没有影响,即事件 的发生不会影响事件 发生的概率.

新教材高中数学第15章概率15.3互斥事件和独立事件第1课时互斥事件课件苏教版必修第二册

新教材高中数学第15章概率15.3互斥事件和独立事件第1课时互斥事件课件苏教版必修第二册
(1)“恰有 1 名男生”与“恰有 2 名男生”; (2)“至少有 1 名男生”与“全是男生”; (3)“至少有 1 名男生”与“全是女生”; (4)“至少有 1 名男生”与“至少有 1 名女生”.
[思路点拨] 判断两个事件是否互斥,就是要判断它们能不能同 时发生.判断两个互斥事件是否对立,就是要判断它们是否必有一个 发生.
[解] (1)是互斥事件,不是对立事件. 理由是:从 40 张扑克牌中任意抽取 1 张,“抽出红桃”和“抽 出黑桃”是不可能同时发生的,所以是互斥事件.同时,不能保证其 中必有一个发生,这是由于还可能抽出“方块”或者“梅花”,因此, 二者不是对立事件.
只有 A 与 B 为对立事件时,才有 P(A)=1-P(B),∴⑤错.]
2.抽查 10 件产品,设 A={至少有两件次品},则 A 为________.
至多有一件次品 [“至少有两件次品”的对立事件是“至多有 一件次品”.]
3.甲、乙两人下棋,甲获胜的概率是 40%,甲不输的概率为 90%, 则甲、乙两人下成和棋的概率为________.
[解] (1)因为“恰有 1 名男生”与“恰有 2 名男生”不可能同时 发生,所以它们是互斥事件.当恰有 2 名女生时它们都不发生,所以 它们不是对立事件.
(2)因为恰有 2 名男生时“至少有 1 名男生”与“全是男生”同 时发生,所以它们不是互斥事件.
(3)因为“至少有 1 名男生”与“全是女生”不可能同时发生, 所以它们是互斥事件.由于它们必有一个发生,所以它们是对立事件.
50% [甲不输棋包含甲获胜或甲、乙两人下成和棋,则甲、乙 两人下成和棋的概率为 90%-40%=50%.]
4.在 10 张卡片上分别写上 0,1,2,3,4,5,6,7,8,9 后,任意叠放在一 起,从中任取一张,设“抽到大于 3 的奇数”为事件 A,“抽到小于 7 的奇数”为事件 B,则 P(A+B)=________.

第十章 §10.5 互斥事件与独立事件

第十章 §10.5 互斥事件与独立事件

§10.5互斥事件与独立事件知识梳理1.互斥事件(1)定义不能同时发生的两个事件称为互斥事件.(2)互斥事件的加法公式如果事件A,B互斥,那么事件A+B发生的概率,等于事件A,B分别发生的概率的和,即P(A+B)=P(A)+P(B).一般地,如果事件A1,A2,…,A n两两互斥,那么P(A1+A2+…+A n)=P(A1)+P(A2)+…+P(A n).2.对立事件如果两个互斥事件必有一个发生,那么称这两个事件为对立事件.事件A的对立事件记为A,对立事件概率公式P(A)=1-P(A).3.相互独立事件(1)概念:一般地,如果事件A是否发生不影响事件B发生的概率,那么称A,B为相互独立事件.(2)结论:A,B相互独立⇔P(AB)=P(A)P(B).(3)相互独立事件的性质如果事件A与B相互独立,那么A与B,A与B,A与B也都相互独立.4.随机事件的概率其他常用性质(1)当A⊆B时,P(A)≤P(B);(2)当A,B不互斥时,P(A+B)=P(A)+P(B)-P(AB).常用结论1.当事件A,B互斥时,不一定对立;当事件A,B对立时,一定互斥.即两事件互斥是对立的必要不充分条件.2.两事件互斥是指两个事件不可能同时发生,两事件相互独立是指一个事件发生与否对另一事件发生的概率没有影响,两事件相互独立不一定互斥.思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)对立事件一定是互斥事件.(√)(2)若P(A+B)=P(A)+P(B)=1,则事件A,B互斥且对立.(×)(3)对于任意两个事件,公式P(AB)=P(A)P(B)都成立.(×)(4)抛掷2枚质地均匀的硬币,“第一枚为正面”为事件A,“第2枚为正面”为事件B,则A,B相互独立.(√)教材改编题1.事件A与事件B的关系如图所示,则()A.A⊆BB.A⊇BC.A与B互斥D.A与B互为对立事件答案C解析由题图知,事件A与事件B不能同时发生,且A∪B≠Ω,因此A与B互斥不对立,故选C.2.某射手在一次射击中,射中10环,9环,8环的概率分别是0.2,0.3,0.1,则该射手在一次射击中不够8环的概率为()A.0.9B.0.3C.0.6D.0.4答案D解析设“该射手在一次射击中不够8环”为事件A,则P(A)=1-P(A)=1-0.6=0.4. 3.一个电路上装有甲、乙两根保险丝,甲熔断的概率为0.85,乙熔断的概率为0.74,甲、乙两根保险丝熔断与否相互独立,则两根保险丝都熔断的概率为()A.1B.0.629C.0D.0.74或0.85答案B解析由题意知甲、乙两根保险丝熔断与否相互独立,∴甲、乙两根保险丝都熔断的概率为0.85×0.74=0.629.题型一互斥事件与对立事件例1(1)(多选)某人打靶时连续射击两次,设事件A=“只有一次中靶”,B=“两次都中靶”,则下列结论正确的是()A.A⊆BB.A∩B=∅C.A∪B=“至少一次中靶”D.A与B互为对立事件答案BC解析事件A=“只有一次中靶”,B=“两次都中靶”,所以A,B是互斥但不是对立事件,所以AD选项错误,B选项正确.A∪B=“至少一次中靶”,C选项正确.(2)(多选)将颜色分别为红、绿、白、蓝的4个小球随机分给甲、乙、丙、丁4个人,每人一个,则()A.事件“甲分得红球”与事件“乙分得白球”是互斥不对立事件B.事件“甲分得红球”与事件“乙分得红球”是互斥不对立事件C.事件“甲分得绿球,乙分得蓝球”的对立事件是“丙分得白球,丁分得红球”D.当事件“甲分得红球”的对立事件发生时,事件“乙分得红球”发生的概率是13答案BD解析事件“甲分得红球”与事件“乙分得白球”可以同时发生,不是互斥事件,A错误;事件“甲分得红球”与事件“乙分得红球”不能同时发生,是互斥事件,除了甲分得红球或者乙分得红球以外,丙或者丁也可以分得红球,B正确;事件“甲分得绿球,乙分得蓝球”与事件“丙分得白球,丁分得红球”可以同时发生,不是对立事件,C错误;事件“甲分得红球”的对立事件是“甲没有分得红球”,因此乙、丙、丁三人中有一个人分得红球,事件“乙分得红球”发生的概率是13,D正确.教师备选1.抛掷一颗质地均匀的骰子,有如下随机事件:C i=“点数为i”,其中i=1,2,3,4,5,6;D1=“点数不大于2”,D2=“点数不小于2”,D3=“点数大于5”;E=“点数为奇数”,F=“点数为偶数”.下列结论正确的是()A.C1与C2对立B.D1与D2互斥C.D3⊆F D.E⊇(D1∩D2)答案C解析对于A,C1=“点数为1”,C2=“点数为2”,C1与C2互斥但不对立,故选项A不正确;对于B,D1=“点数不大于2”,D2=“点数不小于2”,当出现的点是2时,D1与D2同时发生,所以D1与D2不互斥,故选项B不正确;对于C,D3=“点数大于5”表示出现6点,F=“点数为偶数”,所以D3发生F一定发生,所以D3⊆F,故选项C正确;对于D,D1∩D2表示两个事件同时发生,即出现2点,E=“点数为奇数”,所以D1∩D2发生,事件E不发生,所以E⊇(D1∩D2)不正确,故选项D不正确.2.(多选)从1至9这9个自然数中任取两个,有如下随机事件:A=“恰有一个偶数”;B=“恰有一个奇数”;C=“至少有一个是奇数”;D=“两个数都是偶数”;E=“至多有一个奇数”.下列结论正确的有()A.A=B B.B⊆CC.D∩E=∅D.C∩D=∅,C∪D=Ω答案ABD解析事件A,B都指的是一奇一偶,故A正确;至少有一个奇数,指两个数是一奇一偶,或是两个奇数,所以B⊆C,故B正确;至多有一个奇数指一奇一偶,或是两偶,此时事件D,E有公共事件,故C错误;此时C,D是对立事件,所以C∩D=∅,C∪D=Ω.思维升华事件的关系运算策略(1)互斥事件是不可能同时发生的事件,但也可以同时不发生.(2)进行事件的运算时,一是要紧扣运算的定义,二是要全面考虑同一条件下的试验可能出现的全部结果,必要时可列出全部的试验结果进行分析.也可类比集合的关系和运用Venn图分析事件.跟踪训练1(1)(2022·长春模拟)口袋中装有3个红球和4个黑球,每个球编有不同的号码,现从中取出3个球,则互斥而不对立的事件是()A.至少有1个红球与至少有1个黑球B.至少有1个红球与都是黑球C.至少有1个红球与至多有1个黑球D.恰有1个红球与恰有2个红球答案D解析对于A,不互斥,如取出2个红球和1个黑球,与至少有1个黑球不是互斥事件,所以A不符合题意;对于B,至少有1个红球与都是黑球不能同时发生,且必有其中1个发生.所以为互斥事件,且为对立事件,所以B不符合题意;对于C,不互斥.如取出2个红球和1个黑球,与至多有1个黑球不是互斥事件,所以C不符合题意;对于D,恰有1个红球与恰有2个红球不能同时发生,所以为互斥事件,但不对立,如还有3个红球.(2)抛掷一枚质地均匀的骰子,有如下随机事件:A i=“向上的点数为i”,其中i=1,2,3,4,5,6,B=“向上的点数为偶数”,则下列说法正确的是()A.A1⊆B B.A2+B=ΩC.A3与B互斥D.A4与B对立答案C解析对于A,A1={2,3,4,5,6},B={2,4,6},∴B⊆A1,故A错误;对于B,A2+B={2}∪{2,4,6}={2,4,6}≠Ω,故B错误;对于C,A3与B不能同时发生,是互斥事件,故C正确;对于D,A4={4},B={1,3,5},A4与B是互斥但不对立事件,故D错误.题型二概率的基本性质例2某医院要派医生下乡义诊,派出医生的人数及其概率如下表所示.人数01234大于等于5概率0.10.160.30.20.20.04(1)求派出医生至多2个的概率;(2)求派出医生至少2个的概率.解设“不派出医生”为事件A,“派出1名医生”为事件B,“派出2名医生”为事件C,“派出3名医生”为事件D,“派出4名医生”为事件E,“派出5名及5名以上医生”为事件F,事件A,B,C,D,E,F彼此互斥,且P(A)=0.1,P(B)=0.16,P(C)=0.3,P(D)=0.2,P(E)=0.2,P(F)=0.04.(1)“派出医生至多2个”的概率为P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.(2)方法一“派出医生至少2人”的概率为P(C+D+E+F)=P(C)+P(D)+P(E)+P(F)=0.3+0.2+0.2+0.04=0.74.方法二“派出医生至少2个”的概率为1-P(A+B)=1-0.1-0.16=0.74.教师备选1.抛掷一枚质地均匀的骰子,事件A表示“向上的点数是奇数”,事件B表示“向上的点数不超过3”,则P(A+B)等于()A.12B.23C.56D .1答案B 解析方法一A 包含向上点数是1,3,5的情况,B 包含向上的点数是1,2,3的情况,所以A +B 包含了向上点数是1,2,3,5的情况,故P (A +B )=46=23.方法二P (A +B )=P (A )+P (B )-P (AB )=12+12-26=1-13=23.2.甲、乙、丙、丁四名同学排成一排照相,则甲与乙相邻且甲与丙之间恰好有一名同学的概率为()A.18B.16C.14D.12答案C解析所有的排法有A 44=24(种),若甲、丙之间恰好为乙,则有A 22A 22种排法;若甲、丙之间恰好为丁,则有A 22种排法,故所求的概率为P =A 22A 22+A 22A 44=624=14.思维升华求复杂互斥事件的概率的两种方法(1)直接法(2)间接法(正难则反,特别是“至多”“至少”型题目,用间接法求解简单).跟踪训练2(1)(2022·东营模拟)五声音阶是中国古乐的基本音阶,故有成语“五音不全”,中国古乐中的五声音阶依次为宫、商、角、徵、羽.如果从这五个音阶中任取两个音阶,排成一个两个音阶的音序,则这个音序中宫和羽至少有一个的概率为()A.12B.710C.920D.1120答案B解析设从这五个音阶中任取两个音阶,排成一个两个音阶的音序,这个音序中宫和羽至少有一个为事件A ,则A 表示这个音序中不含宫和羽这两个音序,∴P (A )=1-P (A )=1-A 23A 25=1-3×25×4=710.(2)(多选)黄种人群中各种血型的人所占的比例见下表:血型A B AB O 该血型的人所占比例0.280.290.080.35已知同种血型的人可以输血,O 型血可以给任何一种血型的人输血,任何血型的人都可以给AB 血型的人输血,其他不同血型的人不能互相输血.下列结论正确的是()A .任找一个人,其血可以输给B 型血的人的概率是0.64B .任找一个人,B 型血的人能为其输血的概率是0.29C .任找一个人,其血可以输给O 型血的人的概率为1D .任找一个人,其血可以输给AB 型血的人的概率为1答案AD解析任找一个人,其血型为A ,B ,AB ,O 型血的事件分别为A ′,B ′,C ′,D ′,它们两两互斥.由已知,有P (A ′)=0.28,P (B ′)=0.29,P (C ′)=0.08,P (D ′)=0.35.因为B ,O 型血可以输给B 型血的人,所以“可以输给B 型血的人”为事件B ′∪D ′,根据概率的加法公式,得P (B ′+D ′)=P (B ′)+P (D ′)=0.29+0.35=0.64,故A 正确;B 型血的人能为B 型、AB 型的人输血,其概率为0.29+0.08=0.37,B 错误;由O 型血只能接受O 型血的人输血知,C 错误;由任何人的血都可以输给AB 型血的人,知D 正确.题型三相互独立事件的概率例3(1)(2021·新高考全国Ⅰ)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回地随机取两次,每次取1个球.甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则()A .甲与丙相互独立B .甲与丁相互独立C .乙与丙相互独立D .丙与丁相互独立答案B解析事件甲发生的概率P (甲)=16,事件乙发生的概率P (乙)=16,事件丙发生的概率P (丙)=56×6=536,事件丁发生的概率P (丁)=66×6=16.事件甲与事件丙同时发生的概率为0,P (甲丙)≠P (甲)P (丙),故A 错误;事件甲与事件丁同时发生的概率为16×6=136,P (甲丁)=P (甲)P (丁),故B 正确;事件乙与事件丙同时发生的概率为16×6=136,P (乙丙)≠P (乙)P (丙),故C 错误;事件丙与事件丁是互斥事件,不是相互独立事件,故D 错误.(2)(2022·福州模拟)投壶是从先秦延续至清末的中国传统礼仪和宴饮游戏.晋代在广泛开展投壶活动中,对投壶的壶也有所改进,即在壶口两旁增添两耳,因此在投壶的花式上就多了许多名目,如“贯耳(投入壶耳)”.每一局投壶,每一位参赛者各有四支箭,投入壶口一次得1分,投入壶耳一次得2分.现有甲、乙两人进行投壶比赛(两人投中壶口、壶耳是相互独立的),甲四支箭已投完,共得3分,乙投完2支箭,目前只得1分,乙投中壶口的概率为13,投中壶耳的概率为15.四支箭投完,以得分多者赢.请问乙赢得这局比赛的概率为()A.1375B.375C.815D.875答案A解析由题意,若乙要赢得这局比赛,按照乙第三支箭的情况可分为两类:(1)第三支箭投中壶口,第四支箭必须投入壶耳,其概率为P 1=13×15=115;(2)第三支箭投入壶耳,第四支箭投入壶口、壶耳均可,其概率为P 2=15×=875,所以乙赢得这局比赛的概率为P =P 1+P 2=115+875=1375.思维升华求相互独立事件同时发生的概率的方法(1)相互独立事件同时发生的概率等于他们各自发生的概率之积.(2)当正面计算较复杂或难以入手时,可从其对立事件入手计算.跟踪训练3溺水、触电等与学生安全有关的问题越来越受到社会的关注和重视,为了普及安全教育,某市组织了一次学生安全知识竞赛,规定每队3人,每人回答一个问题,答对得1分,答错得0分.在竞赛中,假设甲队每人回答问题的正确率均为23,乙队每人回答问题的正确率分别为12,23,34,且两队各人回答问题正确与否相互之间没有影响.(1)分别求甲队总得分为3分与1分的概率;(2)求甲队总得分为2分且乙队总得分为1分的概率.解(1)记“甲队总得分为3分”为事件A ,“甲队总得分为1分”为事件B .甲队得3分,即三人都回答正确,其概率P (A )=23×23×23=827,甲队得1分,即三人中只有1人回答正确,其余2人都回答错误,其概率P (B )=23××23××23=29.故甲队总得分为3分与1分的概率分别为827,29.(2)记“甲队总得分为2分”为事件C ,“乙队总得分为1分”为事件D .甲队得2分,即甲队三人中有2人回答正确,1人回答错误,则P (C )=23×23×+23××23+×23×23=49,乙队得1分,即乙队三人中只有1人回答正确,其余2人回答错误,则P (D )=12××23××34=14.由题意得事件C 与事件D 相互独立,则甲队总得分为2分且乙队总得分为1分的概率为P (CD )=P (C )P (D )=49×14=19.。

事件的相互独立性-PPT课件

事件的相互独立性-PPT课件
8
例2 甲、乙二人各进行1次射击比赛,如果2人
击中目标的概率都是0.6,计算:
(1)两人都击中目标的概率;
解(2:)(1其) 中记恰“由甲1射人击击1中次目,击标中的目概标率”为事件A.“乙射 击(31)次至,击少中有目一标人”击为中事目件标B的.且概A率与B相互独立, 又A与B各射击1次,都击中目标,就是事件A,B同
A
B
C
.在100件产品中有4件次品.
C42
①从中抽2件, 则2件都是次品概率为__C_1002
C41·C31 C1001·C991
②从中抽两次,每次1件则两次都抽出次品的概率是___
(不放回抽取)
③从中抽两次,每次1件则两次都抽出次品的概率是___
(放回抽取)
C41·C41 C1001·C102011
(A1·A2……An)=P(A1)·P(A2)……P(An) 6
试一试 判断事件A, B 是否为互斥, 互独事件?
1.篮球比赛 “罚球二次” . 事件A表示“ 第1球罚中”,
事件1罚球” . 事件A表示 “ 第1球罚中”,
事件B表示 “第2球罚中”.
P( A • B) P( A) • P(B)
96 • 97 582 100 100 625
答:抽到合格品的概率是 582
13
625
例3 在一段线路中并联着3个自动控制的常开开关,只
要其中有1个开关能够闭合,线路就能正常工作.假定在 某段时间内每个开关闭合的概率都是0.7,计算在这段时 间内线路正常工作的概率.
(1 0.7)(1 0.7)(1 0.7)
0.027
所以这段事件内线路正常工作的概率是
1 P(A • B • C) 1 0.027 0.973

高一数学苏教版复习课件:互斥事件和独立事件

高一数学苏教版复习课件:互斥事件和独立事件
件A1,A2,…,An相互独立,那么P(A1A2…An)=P(A1)P(A2)…P(An)。
重点探究
探究三
例3:判断下列事件是否为相互独立事件.
(1)甲组3名男生,2名女生;乙组2名男生,3名女生,现从甲、乙两组各选1名
同学参加演讲比赛,“从甲组中选出1名男生”与“从乙组中选出1名女生”.
(2)容器内盛有5个白乒乓球和3个黄乒乓球,“从8个球中任意取出1个,取出的
探究一
解:“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”是彼此互斥的,可运
用互斥事件的概率加法公式求解.
设“射中10环”“射中9环”“射中8环”“射中7环”“射中7环以下”的事件分别为事件A,B
,C,D,E,则
(1)P(A+B)=P(A)+P(B)=0.24+0.28=0.52,所以射中10环或9环的概率为0.52.
A与B,A与,与B,与都是相互独立事件,且P(A)=0.5,P(B)=0.6.
(1)记C表示事件“同时购买甲、乙两种保险”,
则C=AB,所以P(C)=P(AB)=P(A)·P(B)=0.5×0.6=0.3.
(2)记D表示事件“购买乙种保险但不购买甲种保险”,
则D=B,所以P(D)=P(B)=P()·P(B)=(1-0.5)×0.6=0.3。
方法二 (1)取出1球为红球或黑球的对立事件为取出1球为白球或绿球,即A1+A2的对立事件为A3+
A4,所以取出1球为红球或黑球的概率为




P(A1+A2)=1-P(A3+A4)=1-P(A3)-P(A4)=1- - = = 。








(2)A1+A2+A3的对立事件为A4,所以P(A1+A2+A3)=1-P(A4)=1- = 。

互斥事件,独立事件

互斥事件,独立事件
得 0.1+0.16+x=0.56,∴x=0.3.
(2)由派出医生最多 4 人的概率为 0.96,
得 0.96+z=1,∴z=0.04.
由派出医生最少 3 人的概率为 0.44,
得 y+0.2+0.04=0.44,∴y=0.2.
某学校在 2015 年春季田径运动会中,购进了 50 本文学
作品作为奖品.其中有 45 本是中国文学作品,有 5 本是外国文学作品,
−− − − − −
− −−
−−
− −−
(3)P=P(DEF+DEF+DEF+DEF)=P(DEF)+P(DEF)+P(DEF)+P(DEF)
1
3
2 4
1
2 4
3
1 4
3
2 5
=5×4×3+5×4×3+5×4×3+5×4×3=6.
电视台综艺频道组织的闯关游戏,游戏规定:前两关至
少过一关才有资格闯第三关,闯关者闯第一关成功得 3 分,闯第二关
55Leabharlann 64B.18
C.
1
16
D.
国家射击队的队员为了在世界射击锦标赛上取得优异
成绩,正在加紧备战.经过近期训练,某队员射击一次命中 7~10 环的
概率如下表所示:
命中环数 10 环 9 环 8 环 7 环
概率
0.32 0.28 0.18 0.12
若该射击队员射击一次,求:
(1)射中 9 环或 10 环的概率;
号箱中取出的是红球”.



4 2
1
3+1 4
3 1
P(B)=2+4=3,P(B)=1-P(B)=3,P(A|B)=8+1=9,P(A|B)=8+1=3,

互斥事件与相互独立事件(高三复习)(PPT)5-5

互斥事件与相互独立事件(高三复习)(PPT)5-5
发生.这种 不可能同时发生的两个事件叫做互 斥事件.
一般地,如果事件
中的任
何两个都是互斥的,那么就说事件
彼此互斥.
尝新吧。 【倘】见页[徜徉](倘佯)。 【常】①一般;普通;平常:~人|~识|~态。②不变的;固定的:~数|冬夏~青。③副时常;常常:~来~ 往|我们~见面。④指伦常:三纲五~。⑤()名姓。 【常备】动经常准备或防备:~车辆|~物|~不懈。 【常备军】名国家平时经常保持的正规军队。 【常常】副(事情的发生)不止一次,而且时间相隔不久:他工作积极,~受到表扬。 【常川】副经常地;连续不断地:~往来|~供给。也作长川。 【常 服】名日常穿的服装(区别于“礼服”):居家~。 【常规】ī①名沿袭下来经常实行的规矩;通常的做法:打破~。②形属型词。一般的;通常的:~武器。 ③名医学上称经常使用的处理方法,如“血常规”是指红细胞计数、血红蛋白测定、白细胞计数及分类计数等的检验。 【常规武器】ī通常使用的武器,如、 炮、飞机、坦克等,也包括冷兵器(区别于“核武器”)。 【常规战争】ī用常规武器进行的战争(区别于“核战争”)。 【常轨】名正常的、经常的方法 或途径:改变了生活~|这类事件,可以遵循~解;qq空间说说 / qq空间说说; 决。 【常衡】名英美质量制度,用于金银,物以外 的一般物品(区别于“金衡、衡”)。 【常会】名规定在一定期间举行的会议;例会。 【常客】名经常来的客人。 【常理】(~儿)名通常的道理:按~ 我应该去看望他。 【常例】名常规?;惯例:沿用~|情况特殊,不能按~行事。 【常量】名在某一过程中,数值固定不变的量,如等速运动中的速度就是 常量。也叫恒量。 【常年】①副终年;长期:山顶上~积雪|战士们~守卫着祖国的边防。②名平常的年份:这儿小麦~亩产五百斤。 【常情】名通常的心 情或情理:按照~,要他回来,他会回来的。 【常人】名普通的人;一般的人:他的型格与~不同|这种痛苦,非~所能忍受。 【常任】形属型词。长期担 任的:~理事。 【常设】动长期设立(组织、机构等):学校应~招生咨询点|全国人民代表大会常务委员会是全国人民代表大会的~机关。 【常识】名普 通知识:政治~|科学~|生活~。 【常事】名平常的事情;经常的事情:看书看到深夜,这对他来说是~。 【常数】名表示常量的数,如圆周率π的 值。…就是常数。 【常态】名正常的状态(跟“变态”相对):一反~|恢复~。 【常套】名常用的陈陈相因的办法或格式:摆脱才子佳人小说的~。 【常委】名①某些机构由常务委员组成的领导集体;常务委员会:人大~。②常务委员会的成员。 【常温】名一般指—℃的温度。 【常务】形属型词。主持
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档