高考数学新版一轮复习教程学案:第十六章选修4 第16课 常见曲线的参数方程
《高考直通车》高考数学一轮复习课件选修第16课曲线的参数方程

1、理解直线的参数方程及其应用; 2、理解圆和椭圆(椭圆的中心在原点) 的参数方程及其简单应用. 3、会进行曲线的参数方程与普通方程 的互化.
诊断练习
题1.
方程
x
t
表示的曲线是
;
y
3t 3
问:参数的范围是什么?
题2.下列方程中,与方程 y2 x 表示同一曲线
(4) 的是___________.
x t
(1)
y
t
2
x sin2 t (2)
y sin t
(3)
x
1 t
y t
(4)
x
1 1
cos cos
2t 2t
y tan t
【点评】参数方程化 与 普通方程互化
既要“形”似,也要“神”似。
两种方程中变量 范围完全一致
等价性
题3.参数方程
方法一:化出直线的普通方程x y 3 5,画出圆的直角坐标方程
x2 y 5 2 5,用求圆弦长的一般方法求解;
方法二:直接将直线的参数方程代入圆的直角坐标方程,得到关于 t的一元二次方程,利用t的几何意义,PA PB t1 t2 t1 t2.
请同学们比较两种方法的过程。
解题反思
范例导析
例1:已知曲线
C:x 2 4
y2 9
1,直线
x 2 t
l
:
y
2
2t
(t为
参数),(1)写出曲线C的参数方程;(2)写 出直线的普通方程。
分析: 1、曲线C如何确立参数,参数有什么几何意义? 2、直线的参数如何消去?参数有何范围?
例2
:
在曲线C1
2021版高考数学一轮复习选修4_4坐标系与参数方程第2讲参数方程教案文新人教A版

第2讲 参数方程一、知识梳理1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地,可以通过消去参数,从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.2.直线、圆和圆锥曲线的参数方程 名称普通方程参数方程直线 y -y 0=k (x -x 0)⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α (t 为参数)圆 (x -x 0)2+(y -y 0)2=r2⎩⎪⎨⎪⎧x =x 0+r cos θy =y 0+r sin θ (θ为参数且0≤θ<2π)椭圆x 2a 2+y2b 2=1(a >b >0) ⎩⎪⎨⎪⎧x =a cos t y =b sin t (t 为参数且0≤t <2π)抛物线y 2=2px (p >0)⎩⎪⎨⎪⎧x =2pt 2y =2pt (t 为参数)常用结论经过点P (x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).若A ,B 为直线l 上的两点,其对应的参数分别为t 1,t 2,线段AB 的中点为M ,点M 所对应的参数为t 0,则以下结论在解题中经常用到:(1)t 0=t 1+t 22;(2)|PM |=|t 0|=⎪⎪⎪⎪⎪⎪t 1+t 22;(3)|AB |=|t 2-t 1|; (4)|PA |·|PB |=|t 1·t 2|. 二、习题改编1.(选修44P22例1改编)已知曲线C 的参数方程为⎩⎪⎨⎪⎧x =3t ,y =2t 2+1(t 为参数),点M (-6,a )在曲线C 上,则a = .解析:由题意得⎩⎪⎨⎪⎧-6=3t ,a =2t 2+1,所以⎩⎪⎨⎪⎧t =-2,a =9. 答案:92.(选修44P36例1改编)在直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =2+22t ,y =22t (t 为参数),与圆C :(x -3)2+(y -3)2=4交于A ,B 两点,求|AB |.解:将直线l 的参数方式代入圆C 的直角坐标方程,得⎝ ⎛⎭⎪⎫22t -12+⎝ ⎛⎭⎪⎫22t -32=4,即t 2-42t +6=0,设两交点A ,B 所对应的参数分别为t 1,t 2,从而t 1+t 2=42,t 1t 2=6,则|AB |=|t 1-t 2|=(t 1+t 2)2-4t 1t 2=2 2.一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M →的数量.( )(3)已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t (t 为参数),点M 在椭圆上,对应参数t =π3,点O 为原点,则直线OM 的斜率为 3.( )答案:(1)√ (2)√ (3)× 二、易错纠偏常见误区(1)不注意互化的等价性致误; (2)直线参数方程中参数t 的几何意义不清致误.1.在平面直角坐标系中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数),求曲线C 的普通方程. 解:由x =2+sin 2θ,0≤sin 2θ≤1 ⇒2≤2+sin 2θ≤3⇒2≤x ≤3,⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ⇒⎩⎪⎨⎪⎧x -2=sin 2θ,y =-1+1-2sin 2θ⇒⎩⎪⎨⎪⎧x -2=sin 2θy =-2sin 2θ⇒2x +y -4=0(2≤x ≤3). 2.在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎨⎧x =2+t ,y =1+3t(t 为参数),曲线C 的普通方程为(x -4)2+(y -3)2=4,设点M (2,1),直线l 与曲线C 相交于A ,B 两点,求|MA |·|MB |的值.解:设点A ,B 对应的参数分别为t 1,t 2,将⎩⎨⎧x =2+t ,y =1+3t(t 为参数)代入(x -4)2+(y -3)2=4, 得t 2-(3+1)t +1=0, 所以t 1t 2=1,直线l :⎩⎨⎧x =2+ty =1+3t (t 为参数),可化为⎩⎪⎨⎪⎧x =2+12(2t )y =1+32(2t ),所以|MA |·|MB |=|2t 1||2t 2|=4|t 1t 2|=4.参数方程与普通方程的互化(师生共研)已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线.【解】 曲线C 1:(x +4)2+(y -3)2=1, 曲线C 2:x 264+y 29=1,曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是中心为坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.将参数方程化为普通方程的方法(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等.对于含三角函数的参数方程,常利用同角三角函数关系式消参,如sin 2θ+cos 2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解.1.求直线⎩⎪⎨⎪⎧x =2+t ,y =-1-t (t 为参数)与曲线⎩⎪⎨⎪⎧x =3cos α,y =3sin α(α为参数)的交点个数. 解:将⎩⎪⎨⎪⎧x =2+t ,y =-1-t 消去参数t 得直线x +y -1=0;将⎩⎪⎨⎪⎧x =3cos α,y =3sin α消去参数α得圆x 2+y 2=9. 又圆心(0,0)到直线x +y -1=0的距离d=22<3.因此直线与圆相交,故直线与曲线有2个交点.2.如图,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.解:圆的半径为12,记圆心为C ⎝ ⎛⎭⎪⎫12,0,连接CP ,则∠PCx =2θ,故x P =12+12cos 2θ=cos 2θ,y P =12sin 2θ=sin θcos θ(θ为参数).所以圆的参数方程为⎩⎪⎨⎪⎧x =cos 2θ,y =sin θcos θ(θ为参数).参数方程的应用(师生共研)(2019·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1-t 21+t2,y =4t 1+t2(t为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcos θ+3ρsin θ+11=0.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值.【解】 (1)因为-1<1-t 21+t 2≤1,且x 2+⎝ ⎛⎭⎪⎫y 22=⎝ ⎛⎭⎪⎫1-t 21+t 22+4t 2(1+t 2)2=1,所以C 的直角坐标方程为x 2+y 24=1(x ≠-1).l 的直角坐标方程为2x +3y +11=0.(2)由(1)可设C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =2sin α(α为参数,-π<α<π).C 上的点到l 的距离为|2cos α+23sin α+11|7=4cos ⎝⎛⎭⎪⎫α-π3+117.当α=-2π3时,4cos(α-π3)+11取得最小值7,故C 上的点到l 距离的最小值为7.(1)解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上和动点有关的问题,如最值、范围等.(2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2,①弦长l =|t 1-t 2|;②M 0为弦M 1M 2的中点⇒t 1+t 2=0;③|M 0M 1|·|M 0M 2|=|t 1t 2|.1.已知曲线C 的普通方程为x 212+y 24=1,求曲线C 的内接矩形周长的最大值.解:由曲线C 的直角坐标方程为x 212+y 24=1,可设曲线C 上的动点A (23cos α,2sin α),0<α<π2,则以A 为顶点的内接矩形的周长为4(23cos α+2sin α)=16sin(α+π3),0<α<π2.因此该内接矩形周长的最大值为16,当且仅当α=π6时取得最大值.2.(2020·成都第一次诊断性检测)在平面直角坐标系xOy 中,已知直线l 的参数方程为⎩⎪⎨⎪⎧x =12t ,y =32t -1(t 为参数).在以坐标原点O 为极点,x 轴的正半轴为极轴,且与直角坐标系长度单位相同的极坐标系中,曲线C 的极坐标方程是ρ=22sin ⎝⎛⎭⎪⎫π4+θ.(1)求直线l 的普通方程与曲线C 的直角坐标方程;(2)设点P (0,-1),若直线l 与曲线C 相交于A ,B 两点,求|PA |+|PB |的值. 解:(1)将直线l 的参数方程消去参数t 并化简, 得直线l 的普通方程为3x -y -1=0. 曲线C 的极坐标方程可化为ρ2=22ρ⎝⎛⎭⎪⎫22sin θ+22cos θ,即ρ2=2ρsin θ+2ρcos θ,所以x 2+y 2=2y +2x , 故曲线C 的直角坐标方程为(x -1)2+(y -1)2=2.(2)将直线l 的参数方程代入(x -1)2+(y -1)2=2中, 得⎝ ⎛⎭⎪⎫12t -12+⎝ ⎛⎭⎪⎫32t -22=2,化简,得t 2-(1+23)t +3=0.可得Δ>0,所以此方程的两根为直线l 与曲线C 的交点A ,B 对应的参数t 1,t 2. 由根与系数的关系,得t 1+t 2=23+1,t 1t 2=3,故t 1,t 2同正.由直线的参数方程中参数的几何意义,知|PA |+|PB |=|t 1|+|t 2|=t 1+t 2=23+1.极坐标与参数方程的综合问题(师生共研)(一题多解)(2020·贵州省适应性考试)曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2+2cos α,y =2sin α(α为参数),在以原点O 为极点,x 轴的非负半轴为极轴的极坐标系中,曲线C 2的极坐标方程为ρcos 2θ=sin θ.(1)求曲线C 1的极坐标方程和曲线C 2的直角坐标方程;(2)过原点且倾斜角为α(π6<α≤π4)的射线l 与曲线C 1,C 2分别相交于A ,B 两点(A ,B 异于原点),求|OA |·|OB |的取值范围.【解】 (1)曲线C 1的普通方程为(x -2)2+y 2=4, 即x 2+y 2-4x =0,故曲线C 1的极坐标方程为ρ2=4ρcos θ,即ρ=4cos θ.由曲线C 2的极坐标方程为ρcos 2θ=sin θ,两边同乘以ρ,得ρ2cos 2θ=ρsin θ, 故曲线C 2的直角坐标方程为x 2=y .(2)法一:射线l 的极坐标方程为θ=α,π6<α≤π4,把射线l 的极坐标方程代入曲线C 1的极坐标方程得|OA |=ρ=4cos α, 把射线l 的极坐标方程代入曲线C 2的极坐标方程得|OB |=ρ=sin αcos 2α, 所以|OA |·|OB |=4cos α·sin αcos 2α=4tan α, 因为π6<α≤π4,所以|OA |·|OB |的取值范围是⎝⎛⎦⎥⎤433,4.法二:射线l 的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,π6<α≤π4).把射线l 的参数方程代入曲线C 1的普通方程得t 2-4t cos α=0. 解得t 1=0,t 2=4cos α.故|OA |=|t 2|=4cos α. 同理可得|OB |=sin αcos 2α, 所以|OA |·|OB |=4cos α·sin αcos 2α=4tan α, 因为π6<α≤π4,所以|OA |·|OB |的取值范围是⎝⎛⎦⎥⎤433,4.处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标的综合问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.(一题多解)(2020·济南市模拟考试)在平面直角坐标系xOy 中,曲线C的参数方程为⎩⎨⎧x =3cos α,y =1+3sin α(α为参数),以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为ρsin ⎝⎛⎭⎪⎫θ+π6=2 3.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)射线OP 的极坐标方程为θ=π6(ρ≥0),若射线OP 与曲线C 的交点为A ,与直线l的交点为B ,求线段AB 的长.解:(1)由⎩⎨⎧x =3cos α,y =1+3sin α,可得⎩⎨⎧x =3cos α,y -1=3sin α,所以x 2+(y -1)2=3cos 2α+3sin 2α=3, 所以曲线C 的普通方程为x 2+(y -1)2=3.由ρsin ⎝ ⎛⎭⎪⎫θ+π6=23,可得ρ⎝ ⎛⎭⎪⎫32sin θ+12cos θ=23,所以32ρsin θ+12ρcos θ-23=0, 所以直线l 的直角坐标方程为x +3y -43=0. (2)法一:曲线C 的方程可化为x 2+y 2-2y -2=0, 所以曲线C 的极坐标方程为ρ2-2ρsin θ-2=0. 由题意设A ⎝⎛⎭⎪⎫ρ1,π6,B ⎝ ⎛⎭⎪⎫ρ2,π6,将θ=π6代入ρ2-2ρsin θ-2=0,可得ρ2-ρ-2=0,所以ρ=2或ρ=-1(舍去),即ρ1=2, 将θ=π6代入ρsin ⎝ ⎛⎭⎪⎫θ+π6=23, 可得ρ=4,即ρ2=4, 所以|AB |=|ρ1-ρ2|=2.法二:因为射线OP 的极坐标方程为θ=π6(ρ≥0),所以射线OP 的直角坐标方程为y =33x (x ≥0), 由⎩⎪⎨⎪⎧x 2+(y -1)2=3,y =33x (x ≥0),解得A (3,1), 由⎩⎪⎨⎪⎧x +3y -43=0y =33x (x ≥0),解得B (23,2), 所以|AB |=(23-3)2+(2-1)2=2.[基础题组练]1.在平面直角坐标系中,以原点为极点,x 轴正半轴为极轴建立极坐标系,并在两坐标系中取相同的长度单位.已知曲线C 的极坐标方程为ρ=2cos θ,直线l 的参数方程为⎩⎪⎨⎪⎧x =-1+t cos α,y =t sin α(t 为参数,α为直线的倾斜角). (1)写出直线l 的普通方程和曲线C 的直角坐标方程; (2)若直线l 与曲线C 有唯一的公共点,求角α的大小.解:(1)当α=π2时,直线l 的普通方程为x =-1;当α≠π2时,直线l 的普通方程为y =(x +1)tan α.由ρ=2cos θ,得ρ2=2ρcos θ, 所以x 2+y 2=2x ,即为曲线C 的直角坐标方程.(2)把x =-1+t cos α,y =t sin α代入x 2+y 2=2x ,整理得t 2-4t cos α+3=0. 由Δ=16cos 2α-12=0,得cos 2α=34,所以cos α=32或cos α=-32, 故直线l 的倾斜角α为π6或5π6.2.以极点为原点,以极轴为x 轴正半轴建立平面直角坐标系,已知曲线C 的极坐标方程为ρ=10,曲线C ′的参数方程为⎩⎪⎨⎪⎧x =3+5cos α,y =-4+5sin α,(α为参数).(1)判断两曲线C 和C ′的位置关系;(2)若直线l 与曲线C 和C ′均相切,求直线l 的极坐标方程. 解:(1)由ρ=10得曲线C 的直角坐标方程为x 2+y 2=100,由⎩⎪⎨⎪⎧x =3+5cos α,y =-4+5sin α得曲线C ′的普通方程为(x -3)2+(y +4)2=25. 曲线C 表示以(0,0)为圆心,10为半径的圆; 曲线C ′表示以(3,-4)为圆心,5为半径的圆.因为两圆心间的距离5等于两圆半径的差,所以圆C 和圆C ′的位置关系是内切.(2)由(1)建立方程组⎩⎪⎨⎪⎧x 2+y 2=100,(x -3)2+(y +4)2=25, 解得⎩⎪⎨⎪⎧x =6,y =-8,可知两圆的切点坐标为(6,-8),且公切线的斜率为34,所以直线l 的直角坐标方程为y +8=34(x -6),即3x -4y -50=0,所以极坐标方程为3ρcos θ-4ρsin θ-50=0.3.(2020·成都市第二次诊断性检测)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,α为倾斜角),曲线C的参数方程为⎩⎪⎨⎪⎧x =4+2cos β,y =2sin β(β为参数,β∈[0,π]).以坐标原点O 为极点,x 轴正半轴为极轴建立极坐标系.(1)写出曲线C 的普通方程和直线l 的极坐标方程; (2)若直线l 与曲线C 恰有一个公共点P ,求点P 的极坐标.解:(1)由曲线C 的参数方程⎩⎪⎨⎪⎧x =4+2cos βy =2sin β,得(x -4)2+y 2=4.因为β∈[0,π],所以曲线C 的普通方程为(x -4)2+y 2=4(y ≥0).因为直线l 的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =t sin α(t 为参数,α为倾斜角),所以直线l 的倾斜角为α,且过原点O (极点). 所以直线l 的极坐标方程为θ=α,ρ∈R . (2)由(1)可知,曲线C 为半圆弧.若直线l 与曲线C 恰有一个公共点P ,则直线l 与半圆弧相切. 设P (ρ,θ)(ρ>0).由题意,得sin θ=24=12,故θ=π6.而ρ2+22=42,所以ρ=2 3. 所以点P 的极坐标为⎝⎛⎭⎪⎫23,π6.4.(2020·福建省质量检查)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =1+35t ,y =1+45t(t 为参数).以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ2=21+sin 2θ,点P 的极坐标为⎝⎛⎭⎪⎫2,π4. (1)求曲线C 的直角坐标方程和点P 的直角坐标;(2)设l 与C 交于A ,B 两点,线段AB 的中点为M ,求|PM |. 解:(1)由ρ2=21+sin 2θ得ρ2+ρ2sin 2θ=2,① 将ρ2=x 2+y 2,y =ρsin θ代入①并整理得,曲线C 的直角坐标方程为x 22+y 2=1.设点P 的直角坐标为(x ,y ),因为点P 的极坐标为⎝⎛⎭⎪⎫2,π4,所以x =ρcos θ=2cos π4=1,y =ρsin θ=2sin π4=1.所以点P 的直角坐标为(1,1).(2)将⎩⎪⎨⎪⎧x =1+35t ,y =1+45t 代入x22+y 2=1,并整理得41t 2+110t +25=0,Δ=1102-4×41×25=8 000>0,故可设方程的两根分别为t 1,t 2,则t 1,t 2为A ,B 对应的参数,且t 1+t 2=-11041.依题意,点M 对应的参数为t 1+t 22,所以|PM |=⎪⎪⎪⎪⎪⎪t 1+t 22=5541.5.(2020·湖南省湘东六校联考)在平面直角坐标系xOy 中,直线l 的参数方程为⎩⎪⎨⎪⎧x =7-t ,y =-2+t(t 为参数).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C :ρ=42sin ⎝⎛⎭⎪⎫θ+π4.(1)求直线l 的普通方程和曲线C 的直角坐标方程;(2)设曲线C 与直线l 的交点为A ,B ,Q 是曲线C 上的动点,求△ABQ 面积的最大值. 解:(1)由⎩⎪⎨⎪⎧x =7-t ,y =-2+t消去t 得x +y -5=0,所以直线l 的普通方程为x +y -5=0.由ρ=42sin ⎝ ⎛⎭⎪⎫θ+π4=4sin θ+4cos θ,得ρ2=4ρsin θ+4ρcos θ,化为直角坐标方程为x 2+y 2=4x +4y ,所以曲线C 的直角坐标方程为(x -2)2+(y -2)2=8.(2)由(1)知,曲线C 是以(2,2)为圆心,22为半径的圆,直线l 过点P (3,2),可知点P 在圆内.将直线l 的参数方程化为⎩⎪⎨⎪⎧x =7-22t y =-2+22t ,代入圆的直角坐标方程,得t 2-92t +33=0.设A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=92,t 1t 2=33,所以|AB |=|t 2-t 1|=(t 1+t 2)2-4t 1t 2=30. 又圆心(2,2)到直线l 的距离d =|2+2-5|2=22,所以△ABQ 面积的最大值为12×30×⎝ ⎛⎭⎪⎫22+22=5152. 6.(2020·吉林第三次调研测试)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =1+22t (t 为参数),以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρsin 2θ=4cos θ.(1)求曲线C 1的普通方程与曲线C 2的直角坐标方程;(2)若C 1与C 2交于A ,B 两点,点P 的极坐标为⎝ ⎛⎭⎪⎫2,π4,求1|PA |+1|PB |的值.解:(1)曲线C 1的参数方程为⎩⎪⎨⎪⎧x =1-22t ,y =1+22t ,(t 为参数),两式相加消去t 可得普通方程为x +y -2=0.由ρcos θ=x ,ρsin θ=y ,曲线C 2的极坐标方程为ρsin 2θ=4cos θ,可得曲线C 2的直角坐标方程为y 2=4x .(2)把曲线C 1的参数方程⎩⎪⎨⎪⎧x =1-22t ,y =1+22t (t 为参数)代入y 2=4x ,得t 2+62t -6=0,设t 1,t 2是A ,B 对应的参数,则t 1+t 1=-62,t 1·t 2=-6,所以1|PA |+1|PB |=|PA |+|PB ||PA |·|PB |=|t 1-t 2||t 1·t 2|=(t 1+t 2)2-4t 1·t 2|t 1·t 2|=966=263.[综合题组练]1.(2020·辽宁大连第一次(3月)双基测试)在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =t cos α,y =t sin α⎝ ⎛⎭⎪⎫t 为参数且t >0,α∈⎝ ⎛⎭⎪⎫0,π2,曲线C 2的参数方程为⎩⎪⎨⎪⎧x =cos β,y =1+sin β⎝ ⎛⎭⎪⎫β为参数,且β∈⎝ ⎛⎭⎪⎫-π2,π2,以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C3的极坐标方程为ρ=1+cos θ⎝ ⎛⎭⎪⎫θ∈⎝⎛⎭⎪⎫0,π2,曲线C 4的极坐标方程为ρcos θ=1.(1)求C 3与C 4的交点到极点的距离;(2)设C 1与C 2交于P 点,C 1与C 3交于Q 点,当α在⎝⎛⎭⎪⎫0,π2上变化时,求|OP |+|OQ |的最大值.解:(1)联立⎩⎪⎨⎪⎧ρ=1+cos θ⎝ ⎛⎭⎪⎫θ∈⎝ ⎛⎭⎪⎫0,π2,ρcos θ=1得ρ2-ρ-1=0,解得ρ=1+52,即交点到极点的距离为1+52.(2)曲线C 1的极坐标方程为θ=α⎝ ⎛⎭⎪⎫α∈⎝ ⎛⎭⎪⎫0,π2,ρ>0,曲线C 2的极坐标方程为ρ=2sin θ,θ∈⎝ ⎛⎭⎪⎫0,π2,联立C 1,C 2的极坐标方程得ρ=2sin α,α∈⎝⎛⎭⎪⎫0,π2,即|OP |=2sin α,α∈⎝⎛⎭⎪⎫0,π2,曲线C 1与曲线C 3的极坐标方程联立得ρ=1+cos α,α∈⎝ ⎛⎭⎪⎫0,π2,即|OQ |=1+cos α,α∈⎝⎛⎭⎪⎫0,π2,所以|OP |+|OQ |=1+2sin α+cos α=1+5sin(α+φ),其中φ的终边经过点(2,1),当α+φ=π2+2k π,k ∈Z 时,|OP |+|OQ |取得最大值,为1+ 5.2.(2020·原创冲刺卷二)在直角坐标系xOy 中,直线C 1:x +y =4,曲线C 2:⎩⎨⎧x =2cos αy =3sin α(α为参数).在同一平面直角坐标系中,曲线C 2上的点经过坐标变换⎩⎪⎨⎪⎧x ′=12x +1,y ′=33y ,得到曲线C 3,以原点为极点,x 轴的正半轴为极轴建立极坐标系.(1)求直线C 1的极坐标方程和曲线C 3的极坐标方程;(2)若射线l :θ=α(ρ>0)分别交C 1与C 3于A ,B 两点,求|OB ||OA |的取值范围.解:(1)由C 1:x +y =4,得直线C 1的极坐标方程为ρcos θ+ρsin θ=4,由曲线C 2的参数方程得其普通方程为x 24+y 23=1,由⎩⎪⎨⎪⎧x ′=12x +1,y ′=33y可得⎩⎨⎧x =2(x ′-1),y =3y ′,将其代入x 24+y 23=1,可得(x ′-1)2+y ′2=1,所以曲线C 3的极坐标方程为ρ=2cos θ. (2)设A (ρ1,α),B (ρ2,α),则-π4<α<π2,由题可得ρ1=4cos α+sin α,ρ2=2cos α,所以|OB ||OA |=ρ2ρ1=14×2cos α(cos α+sin α)=14(cos 2α+sin 2α+1)=14⎣⎢⎡⎦⎥⎤2cos ⎝ ⎛⎭⎪⎫2α-π4+1,因为-π4<α<π2,所以-22<cos ⎝⎛⎭⎪⎫2α-π4≤1,所以0<14⎣⎢⎡⎦⎥⎤2cos ⎝ ⎛⎭⎪⎫2α-π4+1≤14(2+1). 所以|OB ||OA |的取值范围是⎝ ⎛⎦⎥⎤0,14(2+1).。
高三数学一轮复习课件之选修4-4(2)参数方程

解析答案
14
课堂 题型全突破
15
参数方程与普通方程的互化
1.将下列参数方程化为普通方程.
x=1t , (1)y=1t t2-1
(t 为参数);
x=2+sin2θ, (2)y=-1+cos 2θ (θ 为参数).
答案
6
2.常见曲线的参数方程和普通方程
点的轨迹
普通方程
参数方程
直线
y-y0=tan α(x-x0)
xy= =xy00+ +ttcsions
α, α
(t 为参数)
圆
x2+y2=r2
x=_r_c_o_s_θ___, y=__rs_i_n_θ___
(θ 为参数)
椭圆
ax22+by22=1(a>b>0)
x=_a_c_o_s_φ__, y=_b_s_i_n_φ__
由|AB|=
10得
cos2α=38,tan
α=±
15 3.
所以 l 的斜率为
315或-
15 3.
35
[规律方法] 处理极坐标、参数方程综合问题的方法 1涉及参数方程和极坐标方程的综合题,求解的一般方法是分 别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特 点,确定选择何种方程. 2数形结合的应用,即充分利用参数方程中参数的几何意义, 或者利用 ρ 和 θ 的几何意义,直接求解,能达到化繁为简的解题目的.
对应参数 t=π3,点 O 为原点,则直线 OM 的斜率为 3. ( )
[答案] (1)√ (2)√ (3)√ (4)×
10
x=-1+cos θ,
高考数学一轮复习教案选修第16课曲线的参数方程

一、教学目标1.理解直线的参数方程及其应用;2.理解圆和椭圆(椭圆的中心在原点)的参数方程及其简单应用.3.会进行曲线的参数方程与普通方程的互化.二、基础知识回顾与梳理阅读教材第42页至第47页.写出几种常见的参数方程.1:直线的参数方程:___________教材第46页直线参数方程中参数几何意义的理解__________________2:圆的参数方程:______________ 教材第47页圆参数方程中参数几何意义的理解__________________3:椭圆的参数方程:____________ 教材第44页椭圆参数的理解_______________.4:完成第43页例题1;第45页至第46页的例题1,2,3.三【要点解析】三、诊断练习1、教学处理:课前由学生自主完成4道小题,并要求将解题过程扼要地写在学习笔记栏。
课前抽查批阅部分同学的解答,了解学生的思路及主要错误。
将知识问题化,通过问题驱动,使教学言而有物,帮助学生内化知识,初步形成能力。
点评时要简洁,要点击要害.2、诊断练习点评题1:方程3x y ⎧=⎪⎨=⎪⎩表示的曲线是 ;【分析与点评】注意参数的范围。
题2.下列方程中,与方程2y x =表示同一曲线的是___________.221cos2sin (1)(2)(3)(4)1cos2sin tan tx tx x t x t y t y t y ty t-⎧=⎧⎧⎧===⎪⎪+⎨⎨⎨⎨===⎪⎩⎩⎩⎪=⎩ 【分析与点评】基本方法是将上述参数方程化为普通方程,既要“形”似,也要“神”似。
这里的“形”似指:化为普通方程后的变量,x y 之间的关系必须是2y x =;这里的“神”似指:参数方程中的变量,x y 的范围要与普通方程中的变量,x y 的范围完全一致. 答案:(4) 题3.参数方程sin cos2x y θθ=⎧⎨=⎩(θ为参数)的普通方程是________________.【分析与点评】消参后得221x y +=,这里究竟是限定变量x 的范围还是限定变量y 的范围?当然同时限定两个变量的范围最保险。
2020江苏高考数学一轮复习学案:第十六章选修4 第16课 常见曲线的参数方程 含解析.docx

____第16课__常见曲线的参数方程____1. 理解参数方程的概念,了解某些常用参数方程中参数的几何意义.1. 阅读:选修44第42~47页.基础诊断1. 方程⎩⎨⎧x =t ,y =3t 3(t为参数)表示的曲线是________________________________________________________________________.2. 直线⎩⎨⎧x =2t ,y =t (t 为参数)与曲线⎩⎨⎧x =2+cos θ,y =sin θ(θ为参数)的公共点的个数为________.3. 参数方程⎩⎨⎧x =3t 2+2,y =t 2-1(t 为参数),且0≤t ≤5表示的曲线是________.(填序号)①线段;②双曲线;③圆弧;④射线. 4. 直线⎩⎪⎨⎪⎧x =1+12t ,y =-33+32t(t 为参数)和圆2+y 2=16交于A 、B 两点,则AB 的中点坐标为________.范例导航考向参数方程与普通方程的互化例1 (1) 将参数方程⎩⎪⎨⎪⎧x =2⎝ ⎛⎭⎪⎫t +t ,y =4⎝ ⎛⎭⎪⎫t -1t (t 为参数)化为普通方程;(2) 将参数方程⎩⎨⎧x =2sin θ,y =1+2cos 2θ(θ为参数)化为普通方程.在曲线C 1:⎩⎨⎧x =1+cos θ,y =sin θ(θ为参数)上求一点,使它到直线C 2:⎩⎪⎨⎪⎧x =-22+12t ,y =1-12t(t 为参数)的距离最小,并求出该点的坐标和最小距离.考向.例2已知直线l经过点P(1,1),倾斜角α=6(1) 写出直线l的参数方程;(2) 设直线l与圆2+y2=4相交于A、B两点,求点P到A、B两点的距离之积.点P(,y)是椭圆22+3y2=12上的一个动点,求+2y的最大值.考向例3(1) 求2+y 的取值范围;(2) 若+y +a ≥0恒成立,求实数a 的取值范围.自测反馈1. P(,y)是曲线⎩⎨⎧x =2+cos θ,y =sin θ(θ为参数)上任意一点,则(-5)2+(y +4)2的最大值为________.2. 直线⎩⎨⎧x =2t -1,y =t +1(t 为参数)被圆2+y 2=9截得的弦长等于________.3. 若P 为曲线⎩⎨⎧x =1+cos θ,y =1+sin θ(θ为参数)上一点,则点P 与坐标原点的最短距离为________.4. 曲线C; ⎩⎨⎧x =cos θ,y =-1+sin θ(θ为参数)的普通方程是________________________,如果曲线C 与直线+y +a =0 有公共点,那么实数a 的取值范围是________.1. 参数方程化为普通方程的关键是消参数:一要熟练掌握常用技巧(如整体代换);二要注意变量取值范围的一致性,这一点最易被忽视.2. 解答参数方程的有关问题时,首先要弄清参数是谁?代表的几何意义是什么?其次要认真观察方程的表现形式,以便于寻找最佳化简途径.3. 写出直线,圆,椭圆的参数方程:________________________________________________________________________.第16课 常见曲线的参数方程基础诊断1. 一条射线解析:由⎩⎨⎧x =t ,y =3t 3(t 为参数),得y =33,≥0,故该参数方程对应的曲线为一条射线.2. 2 解析:直线的普通方程为y =12,曲线的普通方程为(-2)2+y 2=1,则该曲线是以点(2,0)为圆心,1为半径的圆.因为圆心到直线的距离d =|1|⎝ ⎛⎭⎪⎫122+12=255<1,所以直线与曲线的公共点的个数为2.3. ①解析:由题可得⎩⎨⎧t 2=x -23,t 2=y +1(t 为参数),则x -23=y +1,即-3y -5=0,又0≤t ≤5,所以该曲线为线段,故选①.4. (3,-3) 解析:由⎝ ⎛⎭⎪⎫1+12t 2+⎝ ⎛⎭⎪⎫-33+32t 2=16,得t 2-8t +12=0,t 1+t 22=--81×12=4,所以AB 中点为⎩⎪⎨⎪⎧x =1+12×4,y =-33+32×4,即⎩⎨⎧x =3,y =-3,故AB 的中点坐标为(3,-3).范例导航例1 解析:(1) 方法一:因为⎝ ⎛⎭⎪⎫t +1t 2-⎝ ⎛⎭⎪⎫t -1t 2=4,所以⎝ ⎛⎭⎪⎫x 22-⎝ ⎛⎭⎪⎫y 42=4,化简得普通方程为x 216-y 264=1.方法二:因为⎩⎪⎨⎪⎧x =2⎝ ⎛⎭⎪⎫t +1t ,y =4⎝ ⎛⎭⎪⎫t -1t (t 为参数),所以t =2x +y 8,1t =2x -y8,相乘得()2x +y ()2x -y 64=1,化简得普通方程为x 216-y 264=1.(2) 由⎩⎨⎧x =2sin θ,y =1+2cos 2θ(θ为参数),①②因为θ∈R ,所以-1≤sin θ≤1,则-2≤≤ 2. 由①两边平方得2=2sin 2θ,③ 由②得y -1=2cos 2θ,④由③+④得2+y -1=2,即y =-2+3(-2≤≤2), 故普通方程为y =-2+3(-2≤≤2).注:将参数方程化为普通方程,就是将其中的参数消掉,可以借助于三角函数的平方关系,因此想到把①两边平方,然后和②相加即可,同时求出的取值范围.【教学处理】1. 参数方程的教学要求不要拔高.参数方程与普通方程互相转化时特别要注意等价性,本题是直线与圆的位置关系.2. 本题也可通过画图;解.解析:直线C 2化成普通方程是+y +22-1=0,设所求的点为P (1+cos θ,sin θ),则点P 到直线C 2的距离d =|1+cos θ+sin θ+22-1|2= |sin ⎝ ⎛⎭⎪⎫θ+π4+2|.当θ+π4=3π2+2π,∈,即θ=5π4+2π,∈时,d 取最小值1,此时,点P 的坐标是⎝ ⎛⎭⎪⎫1-22,-22. 例2 【教学处理】要给学生尝试解题的时间,再指名学生回答,教师点评并板书. 解析:(1) 直线的参数方程为⎩⎪⎨⎪⎧x =1+t cos π6,y =1+t sin π6(t 为参数),即⎩⎪⎨⎪⎧x =1+32t ,y =1+12t(t 为参数).(2) 将直线⎩⎪⎨⎪⎧x =1+32t ,y =1+12t (t 为参数)代入2+y 2=4,得⎝⎛⎭⎪⎫1+32t 2+⎝ ⎛⎭⎪⎫1+12t 2=4,化简得t 2+(3+1)t-2=0,故t 1t 2=-2,则点P 到A 、B 两点的距离之积为2.解析:将椭圆22+3y 2=12化为x 26+y 24=1,设=6cos θ,y =2sin θ, +2y =6cos θ+4sin θ=22(622cos θ+422sin θ)=22sin ()θ+α≤22,其中tan α=64, 故+2y 的最大值为22.例3 解析:(1) 由题意得圆的参数方程为⎩⎨⎧x =cos θ,y =1+sin θ(θ为参数),所以2+y =2cos θ+sin θ+1=5sin (θ+φ)+1,其中tan φ=2, 所以-5+1≤2+y ≤5+1. (2) +y +a =cos θ+sin θ+1+a ≥0,所以a ≥-cos θ-sin θ-1=-2sin ⎝ ⎛⎭⎪⎫θ+π4-1,所以a ≥2-1.自测反馈1. 36 解析:因为曲线的参数方程为⎩⎨⎧x =2+cos θ,y =sin θ(θ为参数),所以(-5)2+(y +4)2=(cos θ-3)2+(sinθ+4)2=1+9+16-6cos θ+8sin θ=26-10sin (α-θ),故(-5)2+(y +4)2的最大值为36.2. 1255 解析:把直线⎩⎨⎧x =2t -1,y =t +1(t 为参数)代入圆2+y 2=9,得(2t -1)2+(t +1)2=9,化简得5t 2-2t -7=0,故t 1+t 2=25,t 1t 2=-75,所以(t 1-t 2)2=(t 1+t 2)2-4t 1t 2=14425,所以直线被圆截得的弦长为5(t 1-t 2)2=1255.3.2-1 解析:将题目中参数方程化为普通方程为(-1)2+(y -1)2=1,即该曲线表示以(1,1)为圆心,1为半径的圆,所以点P 到原点最短距离为(0-1)2+(0-1)2-1=2-1.4. 2+(y +1)2=1 [1-2,1+2] 解析:由题意得⎩⎨⎧cos θ=x ,sin θ=y +1(θ为参数),所以2+(y +1)2=1.曲线C 是以(0,-1)为圆心,1为半径的圆,圆心到直线+y +a =0的距离为|-1+a|2,又因为曲线与直线有公共点,则0≤|-1+a|2≤1,即1-2≤a ≤1+ 2.。
高考数学(理)一轮复习教案选修4-4坐标系与参数方程第2讲参数方程

第2讲 参数方程【20XX 年高考会这样考】考查直线、圆和圆锥曲线的参数方程以及简单的应用问题. 【复习指导】复习本讲时,应紧紧抓住直线的参数方程、圆的参数方程、圆锥曲线的参数方程的建立以及各参数方程中参数的几何意义,同时要熟练掌握参数方程与普通方程互化的一些方法.基础梳理1.参数方程的意义在平面直角坐标系中,如果曲线上的任意一点的坐标x ,y 都是某个变量的函数⎩⎨⎧x =f (t ),y =f (t ),并且对于t 的每个允许值,由方程组所确定的点M (x ,y )都在这条曲线上,则该方程叫曲线的参数方程,联系变数x ,y 的变数t 是参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程. 2.常见曲线的参数方程的一般形式(1)经过点P 0(x 0,y 0),倾斜角为α的直线的参数方程为⎩⎨⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).设P 是直线上的任一点,则t 表示有向线段P 0P →的数量. (2)圆的参数方程⎩⎨⎧x =r cos θ,y =r sin θ(θ为参数).(3)圆锥曲线的参数方程椭圆x 2a 2+y 2b 2=1的参数方程为⎩⎨⎧x =a cos θ,y =b sin θ(θ为参数).双曲线x 2a 2-y 2b 2=1的参数方程为⎩⎨⎧x =a sec φ,y =tan φ(φ为参数).抛物线y 2=2px 的参数方程为⎩⎨⎧x =2pt 2,y =2pt(t 为参数). 双基自测1.极坐标方程ρ=cos θ和参数方程⎩⎨⎧x =-1-t ,y =2+t (t 为参数)所表示的图形分别是( ).A .直线、直线B .直线、圆C .圆、圆D .圆、直线解析 ∵ρcos θ=x ,∴cos θ=x ρ代入到ρ=cos θ,得ρ=xρ,∴ρ2=x ,∴x 2+y 2=x 表示圆.又∵⎩⎪⎨⎪⎧x =-1-t ,y =2+t ,相加得x +y =1,表示直线.答案 D2.若直线⎩⎨⎧x =1-2t ,y =2+3t (t 为实数)与直线4x +ky =1垂直,则常数k =________.解析 参数方程⎩⎪⎨⎪⎧x =1-2t ,y =2+3t ,所表示的直线方程为3x +2y =7,由此直线与直线4x +ky =1垂直可得-32×⎝ ⎛⎭⎪⎫-4k =-1,解得k =-6.答案 -63.二次曲线⎩⎨⎧x =5cos θ,y =3sin θ(θ是参数)的左焦点的坐标是________.解析 题中二次曲线的普通方程为x 225+y 29=1左焦点为(-4,0). 答案 (-4,0)4.(2011·广州调研)已知直线l 的参数方程为:⎩⎨⎧x =2t ,y =1+4t (t 为参数),圆C 的极坐标方程为ρ=22sin θ,则直线l 与圆C 的位置关系为________.解析 将直线l 的参数方程:⎩⎪⎨⎪⎧x =2t ,y =1+4t 化为普通方程得,y =1+2x ,圆ρ=22sin θ的直角坐标方程为x 2+(y -2)2=2,圆心(0,2)到直线y =1+2x 的距离为2-11+4,因为该距离小于圆的半径,所以直线l 与圆C 相交.答案 相交5.(2011·广东)已知两曲线参数方程分别为⎩⎨⎧x =5cos θ,y =sin θ(0≤θ<π)和⎩⎪⎨⎪⎧x =54t 2,y =t(t ∈R ),它们的交点坐标为________. 解析 由⎩⎪⎨⎪⎧x =5cos θ,y =sin θ(0≤θ<π)得,x 25+y 2=1(y ≥0)由⎩⎨⎧x =54t 2,y =t(t ∈R )得,x =54y 2,∴5y 4+16y 2-16=0. 解得:y 2=45或y 2=-4(舍去).则x =54y 2=1又θ≥0,得交点坐标为⎝ ⎛⎭⎪⎫1,255. 答案 ⎝⎛⎭⎪⎫1,255考向一 参数方程与普通方程的互化【例1】►把下列参数方程化为普通方程: (1)⎩⎨⎧x =3+cos θ,y =2-sin θ;(2)⎩⎪⎨⎪⎧x =1+12t ,y =5+32t .[审题视点] (1)利用平方关系消参数θ; (2)代入消元法消去t .解 (1)由已知⎩⎨⎧cos θ=x -3,sin θ=2-y ,由三角恒等式cos 2θ+sin 2θ=1,可知(x -3)2+(y -2)2=1,这就是它的普通方程. (2)由已知t =2x -2,代入y =5+32t 中,得y =5+32(2x -2),即3x -y +5-3=0就是它的普通方程.参数方程化为普通方程:化参数方程为普通方程的基本思路是消去参数,常用的消参方法有代入消去法、加减消去法、恒等式(三角的或代数的)消去法,参数方程通过代入消元或加减消元消去参数化为普通方程,不要忘了参数的范围.【训练1】(2010·陕西)参数方程⎩⎨⎧x =cos α,y =1+sin α(α为参数)化成普通方程为________.解析 由⎩⎪⎨⎪⎧ x =cos α,y =1+sin α,得⎩⎪⎨⎪⎧x =cos α, ①y -1=sin α, ②①2+②2得:x 2+(y -1)2=1. 答案 x 2+(y -1)2=1考向二 直线与圆的参数方程的应用【例2】►已知圆C :⎩⎨⎧ x =1+cos θ,y =sin θ(θ为参数)和直线l :⎩⎨⎧x =2+t cos α,y =3+t sin α(其中t 为参数,α为直线l 的倾斜角).(1)当α=2π3时,求圆上的点到直线l 距离的最小值; (2)当直线l 与圆C 有公共点时,求α的取值范围.[审题视点] (1)求圆心到直线l 的距离,这个距离减去圆的半径即为所求;(2)把圆的参数方程化为直角坐标方程,将直线的参数方程代入得关于参数t 的一元二次方程,这个方程的Δ≥0.解 (1)当α=2π3时,直线l 的直角坐标方程为3x +y -33=0,圆C 的圆心坐标为(1,0),圆心到直线的距离d =232=3,圆的半径为1,故圆上的点到直线l 距离的最小值为3-1.(2)圆C 的直角坐标方程为(x -1)2+y 2=1,将直线l 的参数方程代入圆C 的直角坐标方程,得t 2+2(cos α+3sin α)t +3=0,这个关于t 的一元二次方程有解,故Δ=4(cos α+3sin α)2-12≥0,则sin 2⎝ ⎛⎭⎪⎫α+π6≥34,即sin ⎝ ⎛⎭⎪⎫α+π6≥32或sin⎝ ⎛⎭⎪⎫α+π6≤-32.又0≤α<π,故只能sin ⎝ ⎛⎭⎪⎫α+π6≥32,即π3≤α+π6≤2π3,即π6≤α≤π2.如果问题中的方程都是参数方程,那就要至少把其中的一个化为直角坐标方程.【训练2】 已知直线l 的参数方程为⎩⎨⎧x =1+t ,y =4-2t (参数t ∈R ),圆C 的参数方程为⎩⎨⎧x =2cos θ+2,y =2sin θ(参数θ∈[0,2π]),求直线l 被圆C 所截得的弦长. 解 由⎩⎨⎧ x =1+t ,y =4-2t 消参数后得普通方程为2x +y -6=0,由⎩⎨⎧x =2cos θ+2,y =2sin θ消参数后得普通方程为(x -2)2+y 2=4,显然圆心坐标为(2,0),半径为2.由于圆心到直线2x +y -6=0的距离为d =|2×2+0-6|22+1=255,所以所求弦长为222-⎝⎛⎭⎪⎫2552=855. 考向三 圆锥曲线的参数方程的应用【例3】►求经过点(1,1),倾斜角为135°的直线截椭圆x 24+y 2=1所得的弦长.[审题视点] 把直线方程用参数表示,直接与椭圆联立,利用根与系数的关系及弦长公式可解决.解由条件可知直线的参数方程是⎩⎪⎨⎪⎧x =1-22t ,y =1+22t(t 为参数),代入椭圆方程可得⎝ ⎛⎭⎪⎫1-22t 24+⎝⎛⎭⎪⎫1+22t 2=1, 即52t 2+32t +1=0.设方程的两实根分别为t 1、t 2,则由二次方程的根与系数的关系可得⎩⎪⎨⎪⎧t 1+t 2=-625,t 1t 2=25,则直线截椭圆的弦长是|t 1-t 2|=(t 1+t 2)2-4t 1t 2=⎝ ⎛⎭⎪⎫-6252-4×25=425.普通方程化为参数方程:化普通方程为参数方程的基本思路是引入参数,即选定合适的参数t ,先确定一个关系x =f (t )(或y =φ(t )),再代入普通方程F (x ,y )=0,求得另一关系y =φ(t )(或x =f (t )).一般地,常选择的参数有角、有向线段的数量、斜率,某一点的横坐标(或纵坐标).普通方程化为参数方程需要引入参数,选择的参数不同,所得的参数方程也不一样.【训练3】(2011·南京模拟)过点P (-3,0)且倾斜角为30°的直线和曲线⎩⎪⎨⎪⎧x =t +1t ,y =t -1t(t 为参数)相交于A 、B 两点,求线段AB 的长.解直线的参数方程为⎩⎪⎨⎪⎧x =-3+32s ,y =12s(s 为参数),又曲线⎩⎪⎨⎪⎧x =t +1t ,y =t -1t(t 为参数)可以化为x 2-y 2=4,将直线的参数方程代入上式,得s 2-63s +10=0,设A 、B 对应的参数分别为s 1,s 2.∴s 1+s 2=63,s 1s 2=10.∴|AB |=|s 1-s 2|=(s 1+s 2)2-4s 1s 2=217.如何解决极坐标方程与参数方程的综合问题从近两年的新课标高考试题可以看出,对参数方程的考查重点是直线的参数方程、圆的参数方程和圆锥曲线的参数方程的简单应用,特别是利用参数方程解决弦长和最值等问题,题型为填空题和解答题.【示例】►(本题满分10分)(2011·新课标全国)在直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =2cos α,y =2+2sin α(α为参数).M 是C 1上的动点,P 点满足OP →=2OM →,P 点的轨迹为曲线C 2.(1)求C 2的方程;(2)在以O 为极点,x 轴的正半轴为极轴的极坐标系中,射线θ=π3与C 1的异于极点的交点为A ,与C 2的异于极点的交点为B ,求|AB |.第(1)问:利用代入法;第(2)问把曲线C 1、曲线C 2均用极坐标表示,再求射线θ=π3与曲线C 1、C 2的交点A 、B 的极径即可. [解答示范] (1)设P (x ,y ),则由条件知M ⎝ ⎛⎭⎪⎫x 2,y 2.由于M 点在C 1上,所以⎩⎪⎨⎪⎧x 2=2cos α,y2=2+2sin α,即⎩⎨⎧x =4cos α,y =4+4sin α. 从而C 2的参数方程为⎩⎨⎧x =4cos α,y =4+4sin α(α为参数).(5分)(2)曲线C 1的极坐标方程为ρ=4sin θ,曲线C 2的极坐标方程为ρ=8sin θ. 射线θ=π3与C 1的交点A 的极径为ρ1=4sin π3, 射线θ=π3与C 2的交点B 的极径为ρ2=8sin π3. 所以|AB |=|ρ2-ρ1|=2 3.(10分)很多自主命题的省份在选考坐标系与参数方程中的命题多以综合题的形式命题,而且通常将极坐标方程、参数方程相结合,以考查考生的转化与化归的能力.【试一试】(2011·江苏)在平面直角坐标系xOy 中,求过椭圆⎩⎨⎧x =5cos φ,y =3sin φ(φ为参数)的右焦点,且与直线⎩⎨⎧x =4-2t ,y =3-t (t 为参数)平行的直线的普通方程.[尝试解答] 由题设知,椭圆的长半轴长a =5,短半轴长b =3,从 而c =a 2-b 2=4,所以右焦点为(4,0).将已知直线的参数方程化为普通方程:x -2y +2=0.故所求直线的斜率为12,因此其方程为y =12(x -4),即x -2y -4=0..精品资料。
高考数学一轮复习选修44坐标系与参数方程课件新人教A版理

3
cos +sin
(2)C3 是一条过原点且斜率为正值的直线,
C3 的极坐标方程为 θ=α,α∈ 0,
π
2
,
= 2cos,
联立 C1 与 C3 的极坐标方程
= ,
得 ρ=2cos α,即|OA|=2cos α.
3
= cos +sin ,
联立 C1 与 C2 的极坐标方程
= ,
-11知识梳理
1
双基自测
2
3
4
5
2.若原点与极点重合,x 轴正半轴与极轴重合,则点(-5,-5√3)的极
坐标是(
)
π
A. 10, 3
2π
C. -10,- 3
4π
B. 10, 3
2π
D. 10, 3
关闭
设点(-5,-5√3)的极坐标为(ρ,θ),
-5 √3
则 tan θ=
-5
= √3.
4π
因为 x<0,所以最小正角 θ= ,
由圆 C1 与圆 C2 的方程相减可得公共弦所在的直线方程为
4x-2y+1=0.
圆心(1,1)到直线 4x-2y+1=0 的距离 d=
故弦长|AB|=2 1-
3 2
√20
=
√55
5
.
|4-2+1|
42 +(-2)2
=
3
,
√20
-24考点1
考点2
考点3
考点4
考点5
(2)解 ①圆 O:ρ=cos θ+sin θ,即 ρ2=ρcos θ+ρsin θ,
3
3
得 ρ=cos +sin ,即|OB|=cos +sin ,
人教课标版高中数学选修4-4:《曲线的参数方程》教案-新版

第二讲 参数方程 2.1 曲线的参数方程一、教学目标 (一)核心素养通过这节课学习,了解参数方程的概念、体会参数的意义,会进行参数方程和普通方程的互化,在直观想象、数学抽象中感受不同参数方程的特点. (二)学习目标1.通过实例,了解参数方程的含义,体会参数的意义.2.能求解圆的参数方程并用圆的参数解决有关问题,了解圆的参数方程中参数的意义. 3.掌握基本的参数方程与普通方程的互化,,感受集合语言的意义和作用. (三)学习重点 1.参数方程的概念. 2.圆的参数方程及其应用. 3.参数方程与普通方程的互化. (四)学习难点1.参数方程与普通方程的互化的等价转化.2.根据几何性质选取恰当的参数,建立曲线的参数方程. 二、教学设计 (一)课前设计 1.预习任务(1)读一读:阅读教材第21页至第26页,填空:一般的,在平面直角坐标系中,如果曲线上的任意一点的坐标y x ,都是某个变数t 的函数:⎩⎨⎧==)()(t g y t f x ①且对于t 的每一个允许值,由方程组①确定的点)(y x M ,都在这条曲线上,那么方程组①叫做这条曲线的参数方程,联系变数y x ,的变数t 叫参变数,简称参数.相对于参数方程而言,直接给出点坐标y x ,之间关系的方程0)(=y x f ,叫普通方程.(2)想一想:参数方程与普通方程如何转化?一般地,可以通过消去参数而从参数方程得到普通方程.反之,如果知道变数y x ,中的一个与参数t 的关系,例如)(t f x =,把它代入普通方程,求出另一个变数与参数的关系)(x g y =,那么就是曲线的参数方程.(3)写一写:圆的一般参数方程是什么?①圆心在原点,半径为r 的圆的参数方程为(θ为参数);②圆心在),(b a ,半径为r 的圆的参数方程为(θ为参数).2.预习自测(1)方程⎩⎨⎧x =1+sin θy =sin 2θ(θ是参数)所表示曲线经过下列点中的( )A.(1,1)B.)21,23( C.)23,23(D.)21,232(-+ 【知识点】参数方程的定义【解题过程】将选项中的点一一代入曲线的参数方程中,显然选项C 满足题意 【思路点拨】根据参数方程的定义求解 【答案】C .(2)下列方程:①⎩⎨⎧ x =m ,y =m .(m 为参数) ②⎩⎨⎧ x =m ,y =n .(m ,n 为参数) ③⎩⎨⎧x =1,y =2.④x +y =0中,参数方程的个数为( )A .1B .2C .3D .4 【知识点】参数方程的定义【解题过程】根据参数方程的定义,只有①是参数方程 【思路点拨】由参数方程的定义求解 【答案】A(3)参数方程⎩⎨⎧x =cos α,y =1+sin α(α为参数)化成普通方程为_______________.【知识点】参数方程与普通方程互化【解题过程】由⎩⎨⎧x =cos α,y =1+sin α变形整理得1sin ,cos -==y x αα,两式分别平方相加得1)1(22=-+y x【思路点拨】利用三角恒等变换消去参数 【答案】1)1(22=-+y x .(4)P (x ,y )是曲线⎩⎨⎧x =2+cos αy =sin α(α为参数)上任意一点,则P 到直线x -y +4=0的距离的最小值是________.【知识点】参数方程的应用【解题过程】由P 在曲线⎩⎨⎧x =2+cos αy =sin α上可得P 的坐标为(2+cos α,sin α),由点到直线的距离公式得d =|cos α-sin α+6|2=⎪⎪⎪⎪⎪⎪2cos ⎝ ⎛⎭⎪⎫α+π4+62,当cos ⎝ ⎛⎭⎪⎫α+π4=-1时,d 最小,d min =-2+62=-1+3 2.【思路点拨】根据参数方程的应用得到点设置,再转化为三角函数的最值问题求解 【答案】-1+3 2 (二)课堂设计 1.问题探究探究一 结合实例,认识参数方程★ ●活动① 归纳提炼概念在过去的学习中,我们已经掌握了一些求曲线方程的方法,但在求某些曲线方程时,直接确定曲线上点的坐标y x ,的关系并不容易,我们先看下来的例子:一架救援飞机在离灾区底面500m 高处以100m/s 的速度作水平直线飞行.为使投放的救援物质准确落于灾区指定的地面飞行员应如何确定投放时机?(不计空气阻力,重力加速度2/8.9s m g =)设飞机在点A 将物质投出机舱,在过飞机航线且垂直于底面的平面上建立如右图的平面直角坐标系,其中x 轴为该平面与地面的交线,y 轴经过A 点.记物质从被投出到落地这段时间内的运动曲线为C ,)(y x M ,为C 上任意点,设t 时刻时,x 表示物质的水平位移,y 表示物质距地面的高度.由物理知识,物资投出机舱后,沿Ox 方向以s m /100的速度作匀速直线运动,沿Oy 反方向作自由落体运动,即:221500100gt y t x ⎪⎩⎪⎨⎧-== 令s t y 10.10,0≈=,代入t x 100=,解得m x 1010≈.所以,飞行员在离救援点的水平距离约为m 1010时投放物资,,可以使其准确落在指定地点.由上可知:在t 的取值范围内,给定t 的一个值,就可以惟一确定y x ,的值,反之也成立. 一般的,在平面直角坐标系中,如果曲线上的任意一点的坐标y x ,都是某个变数t 的函数:⎩⎨⎧==)()(t g y t f x ①且对于t 的每一个允许值,由方程组①确定的点)(y x M ,都在这条曲线上,那么方程组①叫做这条曲线的参数方程,联系变数y x ,的变数t 叫参变数,简称参数.相对于参数方程而言,直接给出点坐标y x ,之间关系的方程0)(=y x f ,叫普通方程.参数是联系变数y x ,的桥梁,可以是一个有物理意义或几何意义,也可以没有明显实际意义的变数.【设计意图】从生活实例到数学问题,从特殊到一般,体会概念的提炼、抽象过程. ●活动② 巩固基础,检查反馈例1 已知曲线C 的参数方程是⎩⎨⎧+==)(1232为参数t t y tx(1)判断点)4,5(),1,0(21M M 与曲线C 的位置关系; (2)已知点),6(a M 在曲线C 上,求a 的值. 【知识点】参数方程.【解题过程】(1)把点1M 的坐标)1,0(代入方程组,解得0=t ,所以1M 在曲线C .把点2M 的坐标)4,5(代入方程组,得⎩⎨⎧+==124352t t ,无解,所以2M 不在曲线C . (2)因为点),6(a M 在曲线C 上,所以⎩⎨⎧+==12362t a t,解得9,2==a t 【思路点拨】根据参数方程与曲线的关系来求解.【答案】(1) 1M 在曲线C ,2M 不在曲线C ; (2) 9=a .同类训练 已知某条曲线C 的参数方程为⎩⎨⎧∈=+=),(212R a t at y tx 为参数且点)4,3(-M 在该曲线上. (1)求常数a 的值;(2)判断点P (1,0),Q (3,-1)是否在曲线C 上?【知识点】参数方程.【解题过程】(1)将M (-3,4)的坐标代入曲线C 的参数方程⎩⎨⎧ x =1+2t ,y =at 2,得⎩⎨⎧-3=1+2t ,4=at 2,消去参数t ,得a =1.(2)由上述可得,曲线C 的参数方程是⎩⎨⎧x =1+2t ,y =t 2,把点P 的坐标(1,0)代入方程组,解得t =0,因此P 在曲线C 上,把点Q 的坐标(3,-1)代入方程组,得到⎩⎨⎧3=1+2t ,-1=t 2,这个方程组无解,因此点Q 不在曲线C 上. 【思路点拨】根据参数方程和曲线的关系来求解.【答案】(1)1=a ; (2) P 在曲线C 上,点Q 不在曲线C 上. 【设计意图】巩固基础,加深理解与应用. 探究二 探究圆的参数方程 ●活动① 互动交流、初步实践结合以上参数方程的定义,你能的得到圆的参数方程吗?先看下面例子当物体绕定轴作匀速转动时,物体中各个点都作匀速圆周运动(如右图).那么,怎样刻画运动中点的位置呢?如图1,设圆O 的半径是r ,点M 从初始位置M 0(t =0时的位置)出发,按逆时针方向在圆O 上作匀速圆周运动,点M 绕点O 转动的角速度为ω.以圆心O 为原点,OM 0所在的直线为x 轴,建立直角坐标系.显然,点M 的位置由时刻t 惟一确定,因此可以取t 为参数.【设计意图】通过现实问题的求解,加深对参数方程中参数的意义的理解.●活动② 建立模型,加深认识如果在时刻t ,点M 转过的角度是θ,坐标是M (x ,y ),那么θ=ωt .设|OM |=r ,如何用r 和θ表示x ,y 呢?由三角函数定义,有cos ωt =x r ,sin ωt =yr , 即⎩⎨⎧x =r cos ωt ,y =r sin ωt .(t 为参数) 考虑到θ=ωt ,也可以取θ为参数,于是有 ⎩⎨⎧x =r cos θ,y =r sin θ.(θ为参数) 这就得到了以原点为圆心,半径为r 的圆参数方程.其中θ的几何意义是OM 0绕点O 逆时针旋转到OM 的位置时,OM 0转过的角度.【设计意图】通过对问题的求解,得出圆的参数方程,同时为求圆的标准方程的参数方程作铺垫.●活动③ 归纳梳理、灵活应用若圆的圆心坐标为),(b a ,半径为r 的圆的参数方程是什么呢?此时圆的标准方程为:222)()(r b y a x =-+-,由1cos sin 22=+αα,故令θθsin ,cos =-=-rby r a x ,整理得:图2-1-2)(sin cos 为参数θθθ⎩⎨⎧+=+=r b y r a x 一般地,同一条曲线,可以选取不同的变数为参数,另外,要注明参数及参数的取值范围. 【设计意图】由特殊到一般,体会培养学生数学抽象、归类整理意识. 探究三 探究参数方程和普通方程的互化★▲ ●活动① 归纳梳理、体会内在联系我们除了用普通方程表示曲线外,还可以用参数方程表示曲线,它们是同一曲线的两种不同的表达形式.但由参数方程直接判断曲线的类型不太容易,例如⎩⎨⎧=+=θθsin 3cos y x 为何曲线?这就需要我们转化为普通再判断,那么两者如何转化?由⎩⎨⎧=+=θθsin 3cos y x 得⎩⎨⎧=-=yx θθsin 3cos , 所以1)3(22=+-y x ,表示以)0,3(为圆心,半径为1的圆. 一般地,可以通过消去参数而从参数方程得到普通方程.反之,如果知道变数y x ,中的一个与参数t 的关系,例如)(t f x =,把它代入普通方程,求出另一个变数与参数的关系)(x g y =,那么就是曲线的参数方程.在参数方程与普通方程的互化中,必须使y x ,的取值范围保持一致,即等价转化.【设计意图】通过实例体会参数方程与普通方程的互化,培养学生数学抽象意识. ●活动② 巩固基础,检查反馈例2 如图,已知点P 是圆x 2+y 2=16上的一个动点,定点A (12,0),当点P 在圆上运动时,求线段P A 的中点M 的轨迹.【知识点】圆的参数方程、点的轨迹方程. 【数学思想】数形结合 【解题过程】设动点M (x ,y ),∵圆x 2+y 2=16的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ,(θ为参数),∴设点P (4cos θ,4sin θ), 由线段的中点坐标公式,得x =4cos θ+122,且y =4sin θ2,∴点M 的轨迹方程为⎩⎨⎧x =2cos θ+6,y =2sin θ,转化为普通方程得4)6(22=--y x因此点M 的轨迹是以点(6,0)为圆心,以2为半径的圆.【思路点拨】借助于圆的参数方程来得到点的轨迹方程,即代入法. 【答案】点M 的轨迹是以点(6,0)为圆心,以2为半径的圆.同类训练 将例1中的定点A 的坐标改为)0,4(,其它条件不变,求线段P A 的中点M 的轨迹 【知识点】圆的参数方程、点的轨迹方程. 【解题过程】设动点M (x ,y ),∵圆x 2+y 2=16的参数方程为⎩⎨⎧x =4cos θ,y =4sin θ,(θ为参数),∴设点P (4cos θ,4sin θ), 由线段的中点坐标公式,得24cos 4+=θx ,且y =4sin θ2, ∴点M 的轨迹方程为2cos 22sin x y θθ=+⎧⎨=⎩,转化为普通方程得4)2(22=--y x因此点M 的轨迹是以点(6,0)为圆心,以2为半径的圆.【思路点拨】借助于圆的参数方程来得到点的轨迹方程,即代入法. 【答案】点M 的轨迹是以点(2,0)为圆心,以2为半径的圆. 【设计意图】巩固检查参数方程与曲线的关系.例3 把下列参数方程化为普通方程,并说明它们各表示什么曲线?(1)⎩⎨⎧-=+=)(211为参数t ty t x (2)⎩⎨⎧+=+=)(2sin 1cos sin 为参数θθθθy x 【知识点】参数方程化为普通方程.【解题过程】(1)由11≥+=t x ,有1-=x t ,代入t y 21-=,得到32+-=x y .又因为11≥+=t x ,所以与参数方程等价的普通方程是)1(32≥+-=x x y ,即以)1,1(为端点的一条射线(包括端点).(2)把θθcos sin +=x 平方后减去θ2sin 1+=y ,得到 y x =2,又因为)4sin(2cos sin πθθθ+=+=x ,所以]2,2[-∈x ,即与参数方程等价的普通方程是y x =2,]2,2[-∈x ,即开口向上的抛物线的一部分.【思路点拨】先由一个方程求出参数的表达式,再代入另一个方程,或者利用三角恒等变换消去参数.【答案】(1))1(32≥+-=x x y ;(2)y x =2,]2,2[-∈x . 同类训练 化下列曲线的参数方程为普通方程,并指出它是什么曲线. (1)⎩⎨⎧x =1+2t ,y =3-4t (t 为参数);(2)⎩⎨⎧x =cos θ+sin θ,y =sin θcos θ(θ为参数).【知识点】参数方程化为普通方程. 【解题过程】(1)∵x =1+2t ,∴2t =x -1. ∵-4t =-2x +2,∴y =3-4t =3-2x +2. 即y =-2x +5(x ≥1),它表示一条射线. (2)∵x =cos θ+sin θ=2sin ⎝ ⎛⎭⎪⎫θ+π4,∴x ∈[-2,2]. x 2=1+2sin θcos θ,将sin θcos θ=y 代入,得x 2=1+2y .∴普通方程为y =12x 2-12()-2≤x ≤2,它是抛物线的一部分.【思路点拨】先由一个方程求出参数的表达式,再代入另一个方程,或者利用三角恒等变换消去参数.【设计意图】巩固检查参数方程与普通方程的互化. ●活动③ 强化提升、灵活应用例4 若x ,y 满足(x -1)2+(y +2)2=4,求2x +y 的最值. 【知识点】参数方程的应用、三角函数.【数学思想】转化与化归思想.【解题过程】令x -1=2cos θ,y +2=2sin θ,则有x =2cos θ+1,y =2sin θ-2, 故2x +y =4cos θ+2+2sin θ-2=4cos θ+2sin θ=25sin(θ+φ). ∴-25≤2x +y ≤2 5.即2x +y 的最大值为25,最小值为-2 5.【思路点拨】考虑利用圆的参数方程将求2x +y 的最值转化为求三角函数最值问题. 【答案】2x +y 的最大值为25,最小值为-2 5.同类训练 已知点M (x ,y )是圆x 2+y 2+2x =0上的动点,若4x +3y -a ≤0恒成立,求实数a 的取值范围.【知识点】参数方程的应用、三角函数.. 【数学思想】转化化归思想.【解题过程】由x 2+y 2+2x =0,得(x +1)2+y 2=1,又点M 在圆上, ∴x =-1+cos θ,且y =sin θ, 因此4x +3y =4(-1+cos θ)+3sin θ=-4+5sin(θ+φ)≤-4+5=1.(φ由tan φ=43确定) ∴4x +3y 的最大值为1.若4x +3y -a ≤0恒成立,则a ≥(4x +3y )max , 故实数a 的取值范围是[1,+∞).【思路点拨】考虑利用圆的参数方程将恒成立问题转化为最值,在利用求三角函数最值问题. 【答案】[1,+∞).【设计意图】熟练利用参数方程求解某些最值问题. 3.课堂总结 知识梳理(1)一般的,在平面直角坐标系中,如果曲线上的任意一点的坐标y x ,都是某个变数t 的函数:⎩⎨⎧==)()(t g y t f x ①且对于t 的每一个允许值,由方程组①确定的点)(y x M ,都在这条曲线上,那么方程组①叫做这条曲线的参数方程,联系变数y x ,的变数t 叫参变数,简称参数.相对于参数方程而言,直接给出点坐标y x ,之间关系的方程0)(=y x f ,叫普通方程.(2)一般地,可以通过消去参数而从参数方程得到普通方程.反之,如果知道变数y x ,中的一个与参数t 的关系,例如)(t f x =,把它代入普通方程,求出另一个变数与参数的关系)(x g y =,那么就是曲线的参数方程.(3)①圆心在原点,半径为r 的圆的参数方程为⎩⎨⎧x =r cos θ,y =r sin θ.)(为参数θ; ②圆心在),(b a ,半径为r 的圆的参数方程为)(sin cos 为参数θθθ⎩⎨⎧+=+=r b y r a x . 重难点归纳(1)参数t (也可用其它小写字母表示)是联系变数y x ,的桥梁,它可以是有物理意义或几何意义的变数,也可以是没有明显实际意义的变数;参数方程和普通方程都是在直角坐标系之下同一曲线的两种不同表的形式.(2)参数方程和普通方程互化时,一定使y x ,的取值范围保持一致,即等价转化.(三)课后作业基础型 自主突破1.下列方程中能表示曲线参数方程的是( )A.032=-+t y xB.⎩⎨⎧+==t x y ty x 232C.⎩⎨⎧+=-=2342u y t xD.⎩⎨⎧+=+=ky k x 2335 【知识点】参数方程的含义.【解题过程】A 是含参数的方程,B 中的y x ,并不都由参数t 确定,C 中的y x ,不是由同一个参数确定,D 正确.【思路点拨】根据参数方程的含义进行判断.【答案】D2.曲线⎩⎨⎧x =1+t 2y =t -1)(为参数t 与x 轴交点的直角坐标是( ) A .(0,1) B .(1,2) C .(2,0) D .(±2,0)【知识点】曲线与参数方程.【解题过程】设与x 轴交点的直角坐标为(x ,y ),令y =0得t =1,代入x =1+t 2,得x =2, ∴曲线与x 轴的交点的直角坐标为(2,0).【思路点拨】根据曲线与参数方程的关系判断.【答案】C3.曲线⎩⎨⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( ) A.在直线y =2x 上 B.在直线y =-2x 上 C.在直线y =x -1上 D.在直线y =x +1上【知识点】圆的参数方程.【解题过程】由⎩⎨⎧x =-1+cos θ,y =2+sin θ,得⎩⎨⎧cos θ=x +1,sin θ=y -2.所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上.故选B .【思路点拨】将圆的参数方程化为圆的标准方程.【答案】B4.若x ,y 满足x 2+y 2=1,则x +3y 的最大值为( )A .1B .2C .3D .4【知识点】参数方程的应用.【解题过程】由于圆x 2+y 2=1的参数方程为⎩⎨⎧x =cos θ,y =sin θ(θ为参数),则x +3y =3sin θ+cos θ=2sin )6(πθ+,故x +3y 的最大值为2.故选B. 【思路点拨】利用三角代换求解.【答案】B .5.圆心在点(-1,2),半径为5的圆的参数方程为________.【知识点】普通方程化为参数方程.【解题过程】因为是圆心在点(-1,2),半径为5的圆,所以参数方程为)(sin 52cos 51为参数θθθ⎩⎨⎧+=+-=y x . 【思路点拨】根据三角代换公式来求解.【答案】)(sin 52cos 51为参数θθθ⎩⎨⎧+=+-=y x .6.设y =tx (t 为参数),则圆x 2+y 2-4y =0的参数方程是_________.【知识点】普通方程与参数方程互化.【解题过程】把y =tx 代入x 2+y 2-4y =0得x =4t 1+t 2,y =4t 21+t 2, ∴参数方程为⎩⎪⎨⎪⎧ x =4t 1+t 2,y =4t 21+t 2(t 为参数).【思路点拨】利用代入法求解.【答案】⎩⎪⎨⎪⎧ x =4t 1+t 2,y =4t 21+t 2(t 为参数) 能力型 师生共研7.将参数方程⎩⎨⎧x =2+sin 2θy =sin 2θ(θ为参数)化为普通方程为( ) A .y =x -2 B .y =x +2C .y =x -2(2≤x ≤3)D .y =x +2(0≤y ≤1)【知识点】参数方程化为普通方程.【解题过程】消去sin 2θ,得x =2+y ,又0≤sin 2θ≤1,∴2≤x ≤3.【思路点拨】注意三角函数的有界性,参数方程的等价转化.【答案】C8.已知曲线C 的参数方程为⎩⎨⎧x =2cos θy =3sin θ(θ为参数,0≤θ<2π). 判断点A (2,0),B )23,3(-是否在曲线C 上?若在曲线上,求出点对应的参数的值. 【知识点】曲线与参数方程.【解题过程】把点A (2,0)的坐标代入⎩⎨⎧x =2cos θ,y =3sin θ,得cos θ=1且sin θ=0,由于0≤θ<2π,解之得θ=0,因此点A (2,0)在曲线C 上,对应参数θ=0.同理,把B )23,3(-代入参数方程,得 ⎩⎪⎨⎪⎧ 3=2cos θ,32=3sin θ,∴⎩⎪⎨⎪⎧ cos θ=-32,sin θ=12.又0≤θ<2π,∴θ=56π,所以点B )23,3(-在曲线C 上,对应θ=56π. 【思路点拨】利用曲线与参数方程的关系求解.【答案】A ,B 是在曲线C 上,A ,B 对应的参数的值分别为θ=0、θ=56π.探究型 多维突破9.在平面直角坐标系xOy 中,动圆x 2+y 2-8x cos θ-6y sin θ+7cos 2θ+8=0(θ∈R )的圆心为P (x ,y ),求2x -y 的取值范围.【知识点】参数方程的应用.【解题过程】由题设得⎩⎨⎧ x =4cos θ,y =3sin θ,(θ为参数,θ∈R ). 于是2x -y =8cos θ-3sin θ=73sin(θ+φ),⎝ ⎛⎭⎪⎫φ由tan φ=-83确定所以-73≤2x -y ≤73. 所以2x -y 的取值范围是[-73,73].【思路点拨】利用参数方程,转化为三角函数的最值来求解.【答案】[-73,73].10.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎨⎧x =4cos θy =4sin θ(θ为参数,且0≤θ<2π),点M 是曲线C 1上的动点.(1)求线段OM 的中点P 的轨迹的直角坐标方程;(2)以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,若直线l 的极坐标方程为ρcos θ-ρsin θ+1=0(ρ>0),求点P 到直线l 距离的最大值.【知识点】参数方程、极坐标、点到直线的距离.【解题过程】(1)曲线C 1上的动点M 的坐标为(4cos θ,4sin θ),坐标原点O (0,0),设P 的坐标为(x ,y ),则由中点坐标公式得x =12(0+4cos θ)=2cos θ,y =12(0+4sin θ)=2sin θ,所以点P 的坐标为(2cos θ,2sin θ),因此点P 的轨迹的参数方程为⎩⎨⎧ x =2cos θy =2sin θ(θ为参数,且0≤θ<2π), 消去参数θ,得点P 轨迹的直角坐标方程为x 2+y 2=4.(2)由直角坐标与极坐标关系得直线l 的直角坐标方程为x -y +1=0.又由(1)知,点P 的轨迹为圆心在原点,半径为2的圆,因为原点(0,0)到直线x -y +1=0的距离为|0-0+1|12+(-1)2=12=22, 所以点P 到直线l 距离的最大值为2+22.【思路点拨】普通方程侧重于判断曲线的形状,参数方程侧重于表示曲线上的点.【答案】(1)P 轨迹的直角坐标方程为x 2+y 2=4;(2)2+22. 自助餐1.下列点在方程)(2cos sin 2为参数θθθ⎩⎨⎧==y x 所表示的曲线上的是( ) A.)7,2( B.)32,31( C.)21,21( D.)1,1(- 【知识点】曲线与参数方程.【解题过程】选D.由方程(θ为参数),令1sin 2==θx ,得Z k k ∈+=,2ππθ12cos -==θy .【思路点拨】利用曲线点的与参数方程的关系求解.【答案】D2.把方程xy =1化为以t 为参数的参数方程是( )A.⎩⎪⎨⎪⎧ x =t 12y =t -12B.⎩⎪⎨⎪⎧ x =sin t y =1sin tC.⎩⎪⎨⎪⎧ x =cos t ,y =1cos tD.⎩⎪⎨⎪⎧ x =tan t ,y =1tan t【知识点】普通方程与参数方程互化.【解题过程】A 显然代入不成立,B,C 选项中1≤x ,不成立,D 选项满足要求.【思路点拨】把选项的参数方程转化为普通方程,注意等价转化.【答案】D3.圆的参数方程为⎩⎨⎧x =2+4cos θ,y =-3+4sin θ(0≤θ<2π),若圆上一点P 对应参数θ=43π,则P 点的坐标是________.【知识点】曲线与参数方程.【解题过程】将θ=43π代入参数方程中,解得33,0-==y x ,所以)33,0(-P .【思路点拨】利用曲线上的点与参数方程的关系.【答案】(0,-33).4.点(x ,y )是曲线C :⎩⎨⎧ x =-2+cos θ,y =sin θ(θ为参数,0≤θ<2π)上任意一点,则y x 的取值范围是________.【知识点】圆的参数方程、直线斜率.【数学思想】数形结合思想【解题过程】曲线C :⎩⎨⎧x =-2+cos θ,y =sin θ是以(-2,0)为圆心,1为半径的圆,即(x +2)2+y 2=1.设y x =k ,∴y =kx .当直线y =kx 与圆相切时,k 取得最小值与最大值, ∴|-2k |k 2+1=1,k 2=13,∴y x 的范围为⎣⎢⎡⎦⎥⎤-33,33. 【思路点拨】利用数形结合的思想求解.【答案】 ⎣⎢⎡⎦⎥⎤-33,33. 5.根据所给条件,把曲线的普通方程化为参数方程:(1)012=---y x y ,设t t y ,1-=为参数;(2)14922=+y x ,设θθ,cos 3=x 为参数. 【知识点】普通方程与参数方程互化.【解题过程】(1)将,1-=t y 代入方程012=---y x y ,解得132+-=t t x ,所以参数方程为⎩⎨⎧-=+-=)(1132为参数t t y t t x (2)将,cos 3θ=x 代入方程14922=+y x θsin 2±=y ,由于参数θ的任意性,可取θsin 2=y ,所以参数方程为)(sin 2cos 3为参数θθθ⎩⎨⎧==y x .【思路点拨】普通方程化为参数方程,注意等价转化.【答案】(1)⎩⎨⎧-=+-=)(1132为参数t t y t t x ;(2))(sin 2cos 3为参数θθθ⎩⎨⎧==y x 6.在方程⎩⎨⎧ x =a +t cos θ,y =b +t sin θ(a ,b 为正常数)中, (1)当t 为参数,θ为常数时,方程表示何种曲线?(2)当t 为常数,θ为参数时,方程表示何种曲线?【知识点】参数方程的含义.【数学思想】分类讨论的思想.【解题过程】(1)方程⎩⎨⎧ x =a +t cos θ, ①y =b +t sin θ, ②(a ,b 是正常数), (1)①×sin θ-②×cos θ得 x sin θ-y cos θ-a sin θ+b cos θ=0.∵cos θ、sin θ不同时为零,∴方程表示一条直线.(2)(ⅰ)当t 为非零常数时,原方程组为⎩⎪⎨⎪⎧ x -a t =cos θ,③y -b t =sin θ. ④③2+④2得x -a 2t 2+y -b2t 2=1,即(x -a )2+(y -b )2=t 2,它表示一个圆.(ⅱ)当t =0时,表示点(a ,b ).【思路点拨】(1)运用加减消元法,消t ;(2)当t =0时,方程表示一个点,当t 为非零常数时,利用平方关系消参数θ,化成普通方程,进而判定曲线形状.【答案】(1)方程表示一条直线;(2)(ⅰ)当t为非零常数时,它表示一个圆,(ⅱ)当t=0时,表示点(a,b).。
2020版高考数学一轮复习教案 选修4-4_第2节_参数方程(含答案解析)

第二节 参数方程[考纲传真] 1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆曲线的参数方程.1.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x ,y 都是某个变数t 的函数Error!并且对于t 的每一个允许值,由这个方程组所确定的点M (x ,y )都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x ,y 的变数t 叫做参变数,简称参数.2.常见曲线的参数方程和普通方程点的轨迹普通方程参数方程直线y -y 0=tan α(x -x 0)Error!(t 为参数)圆x 2+y 2=r 2Error!(θ为参数)椭圆+=1(a >b >0)x 2a 2y 2b 2Error!(φ为参数)[常用结论]根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2.(1)弦长l =|t 1-t 2|;(2)弦M 1M 2的中点⇒t 1+t 2=0;(3)|M 0M 1||M 0M 2|=|t 1t 2|.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)参数方程Error!中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α的直线l 的参数方程为Error!(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段的数量.M 0M →( )(3)方程Error!表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程Error!(t 为参数),点M 在椭圆上,对应参数t =,点O 为原π3点,则直线OM 的斜率为.( )3[答案] (1)√ (2)√ (3)√ (4)×2.(教材改编)曲线Error!(θ为参数)的对称中心( )A .在直线y =2x 上 B .在直线y =-2x 上C .在直线y =x -1上 D .在直线y =x +1上B [由Error!得Error!所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上.]3.直线l 的参数方程为Error!(t 为参数),则直线l 的斜率为________.-3 [将直线l 的参数方程化为普通方程为y -2=-3(x -1),因此直线l 的斜率为-3.]4.曲线C 的参数方程为Error!(θ为参数),则曲线C 的普通方程为________.y =2-2x 2(-1≤x ≤1) [由Error!(θ为参数)消去参数θ,得y =2-2x 2(-1≤x ≤1).]5.(教材改编)在平面直角坐标系xOy 中,若直线l :Error!(t 为参数)过椭圆C :Error!(φ为参数)的右顶点,则a =________.3 [直线l 的普通方程为x -y -a =0,椭圆C 的普通方程为+=1,∴椭圆C 的右顶x 29y 24点坐标为(3,0),若直线l 过(3,0),则3-a =0,∴a =3.]参数方程与普通方程的互化1.将下列参数方程化为普通方程.(1)Error!(t 为参数);(2)Error!(θ为参数).[解] (1)∵+=1,∴x 2+y 2=1.(1t ) 2 (1tt 2-1)2∵t 2-1≥0,∴t ≥1或t ≤-1.又x =,∴x ≠0.1t当t ≥1时,0<x ≤1;当t ≤-1时,-1≤x <0,∴所求普通方程为x 2+y 2=1,其中Error!或Error!(2)∵y =-1+cos 2θ=-1+1-2sin 2θ=-2sin 2θ,sin 2θ=x -2,∴y =-2x +4,∴2x +y -4=0.∵0≤sin 2θ≤1,∴0≤x -2≤1,∴2≤x ≤3,∴所求的普通方程为2x +y -4=0(2≤x ≤3).2.如图所示,以过原点的直线的倾斜角θ为参数,求圆x 2+y 2-x =0的参数方程.[解] 圆的半径为,12记圆心为C ,(12,0)连接CP ,则∠PCx =2θ,故x P =+cos 2θ=cos 2θ,1212y P =sin 2θ=sin θcos θ(θ为参数).12所以圆的参数方程为Error!(θ为参数).[规律方法] 消去参数的方法(1)利用解方程的技巧求出参数的表达式,然后代入消去参数.(2)利用三角恒等式消去参数.(3)根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.易错警示:将参数方程化为普通方程时,要注意两种方程的等价性,不要增解,如例1.参数方程的应用【例1】 (2019·石家庄质检)在平面直角坐标系xOy 中,圆C 的参数方程为Error!(θ为参数),直线l 经过点P (1,2),倾斜角α=.π6(1)写出圆C 的普通方程和直线l 的参数方程;(2)设直线l 与圆C 相交于A ,B 两点,求|PA |·|PB |的值.[解] (1)由Error!消去θ,得圆C 的普通方程为x 2+y 2=16.又直线l 过点P (1,2)且倾斜角α=,π6所以l 的参数方程为Error!即Error!(t 为参数).(2)把直线l 的参数方程Error!代入x 2+y 2=16,得2+2=16,t 2+(+2)t -11=0,(1+32t)(2+12t )3所以t 1t 2=-11,由参数方程的几何意义,|PA |·|PB |=|t 1t 2|=11.[规律方法] 1.解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决.2.对于形如(t 为参数),当a 2+b 2≠1时,应先化为标准形式后才能利用t 的几何意义解题.(2019·湖南五市十校联考)在直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为Error!(t 为参数),直线l 与曲线C :Error!(θ为参数)相交于不同的两点A ,B .(1)若α=,求线段AB 的中点的直角坐标;π3(2)若直线l 的斜率为2,且过已知点P (3,0),求|PA |·|PB |的值.[解] (1)由曲线C :Error!(θ为参数),可得曲线C 的普通方程是x 2-y 2=1.当α=时,直线l 的参数方程为Error!(t 为参数),π3代入曲线C 的普通方程,得t 2-6t -16=0,得t 1+t 2=6,所以线段AB 的中点对应的t ==3,t 1+t 22故线段AB 的中点的直角坐标为.(92,332)(2)将直线l 的参数方程代入曲线C 的普通方程,化简得(cos 2α-sin 2α)t 2+6cos αt +8=0,则|PA |·|PB |=|t 1t 2|=|8cos2α-sin2α|=,|8(1+tan2α)1-tan2α|由已知得tan α=2,故|PA |·|PB |=.403极坐标、参数方程的综合应用【例2】 在直角坐标系xOy 中,圆C 的方程为(x +6)2+y 2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是Error!(t 为参数),l 与C 交于A ,B 两点,|AB |=,求l 的斜10率.[解] (1)由x =ρcos θ,y =ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11=0.(2)法一:由直线l 的参数方程Error!(t 为参数),消去参数得y =x ·tan α.设直线l 的斜率为k ,则直线l 的方程为kx -y =0.由圆C 的方程(x +6)2+y 2=25知,圆心坐标为(-6,0),半径为5.又|AB |=,由垂径定理及点到直线的距离公式得=,即=10|-6k |1+k 225-(102)236k 21+k 2904,整理得k 2=,解得k =±,即l 的斜率为±.53153153法二:在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R ).设A ,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB |=|ρ1-ρ2|=(ρ1+ρ2)2-4ρ1ρ2=.144cos2α-44由|AB |=得cos 2α=,tan α=±.1038153所以l 的斜率为或-.153153[规律方法] 处理极坐标、参数方程综合问题的方法(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.(2017·全国卷Ⅲ)在直角坐标系xOy 中,直线l 1的参数方程为Error!(t 为参数),直线l 2的参数方程为Error!(m 为参数).设l 1与l 2的交点为P ,当k 变化时,P 的轨迹为曲线C .(1)写出C 的普通方程;(2)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,设l 3:ρ(cos θ+sin θ)-=0,2M 为l 3与C 的交点,求M 的极径.[解] (1)消去参数t 得l 1的普通方程l 1:y =k (x -2);消去参数m 得l 2的普通方程l 2:y =(x +2).1k 设P (x ,y ),由题设得Error!消去k 得x 2-y 2=4(y ≠0),所以C 的普通方程为x 2-y 2=4(y ≠0).(2)C 的极坐标方程为ρ2(cos 2θ-sin 2θ)=4(0<θ<2π,θ≠π),联立Error!得cos θ-sin θ=2(cos θ+sin θ).故tan θ=-,从而cos 2θ=,sin 2θ=.13910110代入ρ2(cos 2θ-sin 2θ)=4得ρ2=5,所以交点M 的极径为.51.(2018·全国卷Ⅱ)在直角坐标系xOy 中,曲线C 的参数方程为Error!(θ为参数),直线l 的参数方程为Error!(t 为参数).(1)求C 和l 的直角坐标方程;(2)若曲线C 截直线l 所得线段的中点坐标为(1,2),求l 的斜率.[解] (1)曲线C 的直角坐标方程为+=1.x 24y 216当cos α≠0时,l 的直角坐标方程为y =tan α·x +2-tan α,当cos α=0时,l 的直角坐标方程为x =1.(2)将l 的参数方程代入C 的直角坐标方程,整理得关于t 的方程(1+3cos 2α)t 2+4(2cos α+sin α)t -8=0.①因为曲线C 截直线l 所得线段的中点(1,2)在C 内,所以①有两个解,设为t 1,t 2,则t 1+t 2=0.又由①得t 1+t 2=-,故2cos α+sin α=0,于是直线l 的斜率k =tan α=4(2cos α+sin α)1+3cos2α-2.2.(2018·全国卷Ⅲ)在平面直角坐标系xOy 中,⊙O 的参数方程为Error!(θ为参数),过点(0,-)且倾斜角为α的直线l 与⊙O 交2于A ,B 两点.(1)求α的取值范围;(2)求AB 中点P 的轨迹的参数方程.[解] (1)⊙O 的直角坐标方程为x 2+y 2=1.当α=时,l 与⊙O 交于两点.π2当α≠时,记tan α=k ,则l 的方程为y =kx -.l 与⊙O 交于两点当且仅当<π22|21+k 2|1,解得k <-1或k >1,即α∈或α∈.(π4,π2)(π2,3π4)综上,α的取值范围是.(π4,3π4)(2)l 的参数方程为Error!(t 为参数,<α<).π43π4设A ,B ,P 对应的参数分别为t A ,t B ,t P ,则t P =,且t A ,t B 满足t 2-2t sin α+1tA +tB 22=0.于是t A +t B =2sin α,t P =sin α.22又点P 的坐标(x ,y )满足Error!所以点P 的轨迹的参数方程是Error!.(α为参数,π4<α<3π4)。
2020版高考数学一轮复习教案- 选修4-4 第2节 参数方程

第二节参数方程[考纲传真] 1.了解参数方程,了解参数的意义.2.能选择适当的参数写出直线、圆和椭圆曲线的参数方程.1.曲线的参数方程一般地,在平面直角坐标系中,如果曲线上任意一点的坐标x,y 都是某个变数t 的函数Error!并且对于t 的每一个允许值,由这个方程组所确定的点M(x,y)都在这条曲线上,那么这个方程组就叫做这条曲线的参数方程,联系变数x,y 的变数t 叫做参变数,简称参数.2.常见曲线的参数方程和普通方程点的轨迹普通方程参数方程直线y-y0=tan α(x-x0) Error!(t 为参数)圆x2+y2=r2 Error!(θ为参数)x2 y2E rror!(φ为参数)椭圆+=1(a>b>0)a2 b2[常用结论]根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:过定点M0 的直线与圆锥曲线相交,交点为M1,M2,所对应的参数分别为t1,t2.(1)弦长l=|t1-t2|;(2)弦M1M2 的中点⇒t1+t2=0;(3)|M0M1||M0M2|=|t1t2|.[基础自测]1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)参数方程Error!中的x,y 都是参数t 的函数.()(2)过M0(x0,y0),倾斜角为α的直线l 的参数方程为Error!(t 为参数).参数t的几何意义表示:直线l上以定点M0 为起点,任一点M(x,y)为终点的有向线段→M0M的数量.()(3)方程Error!表示以点(0,1)为圆心,以2 为半径的圆.()π(4)已知椭圆的参数方程Error!(t为参数),点M在椭圆上,对应参数t=,3点O为原点,则直线OM的斜率为 3. ()[答案](1)√(2)√(3)√(4)×2.(教材改编)曲线Error!(θ为参数)的对称中心()A.在直线y=2x上B.在直线y=-2x上C.在直线y=x-1 上D.在直线y=x+1 上B[由Error!得Error!所以(x+1)2+(y-2)2=1.曲线是以(-1,2)为圆心,1 为半径的圆,所以对称中心为(-1,2),在直线y=-2x上.]3.直线l的参数方程为Error!(t为参数),则直线l的斜率为________.-3[将直线l的参数方程化为普通方程为y-2=-3(x-1),因此直线l的斜率为-3.]4.曲线C的参数方程为Error!(θ为参数),则曲线C的普通方程为________.y=2-2x2(-1≤x≤1)[由Error!(θ为参数)消去参数θ,得y=2-2x2(-1≤x≤1).]5.(教材改编)在平面直角坐标系xOy中,若直线l:Error!(t为参数)过椭圆C:Error!(φ为参数)的右顶点,则a=________.x2 y2 3[直线l的普通方程为x-y-a=0,椭圆C的普通方程为+=1,∴椭9 4圆C的右顶点坐标为(3,0),若直线l过(3,0),则3-a=0,∴a=3.]参数方程与普通方程的互化1.将下列参数方程化为普通方程.(1)Error!(t 为参数);(2)Error!(θ为参数).1 12 2[解](1)∵( +t2-1) =1,∴x2+y2=1.t ) (t∵t2-1≥0,∴t≥1 或t≤-1.1又x=,∴x≠0.t当t≥1 时,0<x≤1;当t≤-1 时,-1≤x<0,∴所求普通方程为x2+y2=1,其中Error!或Error!(2)∵y=-1+cos 2θ=-1+1-2sin2θ=-2sin2θ,sin2θ=x-2,∴y=-2x+4,∴2x+y-4=0.∵0≤sin2θ≤1,∴0≤x-2≤1,∴2≤x≤3,∴所求的普通方程为2x+y-4=0(2≤x≤3).2.如图所示,以过原点的直线的倾斜角θ为参数,求圆x2+y2-x=0 的参数方程.1[解]圆的半径为,21记圆心为C(,0),2连接CP,则∠PCx=2θ,1 1故x P=+cos 2θ=cos2θ,2 21y P=sin 2θ=sin θcos θ(θ为参数).2所以圆的参数方程为Error!(θ为参数).[规律方法]消去参数的方法1利用解方程的技巧求出参数的表达式,然后代入消去参数.2利用三角恒等式消去参数.3根据参数方程本身的结构特征,灵活的选用一些方法从整体上消去参数.易错警示:将参数方程化为普通方程时,要注意两种方程的等价性,不要增解,如例1.参数方程的应用【例1】(2019·石家庄质检)在平面直角坐标系xOy 中,圆C 的参数方程为πError!(θ为参数),直线l 经过点P(1,2),倾斜角α=.6(1)写出圆C 的普通方程和直线l 的参数方程;(2)设直线l 与圆C 相交于A,B 两点,求|PA|·|PB|的值.[解](1)由Error!消去θ,得圆C 的普通方程为x2+y2=16.π又直线l 过点P(1,2)且倾斜角α=,6所以l 的参数方程为Error!即Error!(t 为参数).(2)把直线l的参数方程Error!代入x2+y2=16,3 1得( t)2+( t)2=16,t2+( +2)t-11=0,1+2+ 32 2所以t1t2=-11,由参数方程的几何意义,|PA|·|PB|=|t1t2|=11.[规律方法] 1.解决直线与圆的参数方程的应用问题时,一般是先化为普通方程,再根据直线与圆的位置关系来解决.2.对于形如t为参数,当a2+b2≠1 时,应先化为标准形式后才能利用t的几何意义解题.(2019·湖南五市十校联考)在直角坐标系xOy中,设倾斜角为α的直线l的参数方程为Error!(t为参数),直线l与曲线C:Error!(θ为参数)相交于不同的两点A,B.π(1)若α=,求线段AB的中点的直角坐标;3(2)若直线l的斜率为2,且过已知点P(3,0),求|PA|·|PB|的值.[解](1)由曲线C:Error!(θ为参数),可得曲线C的普通方程是x2-y2=1.π当α=时,直线l的参数方程为Error!(t为参数),3代入曲线C的普通方程,得t2-6t-16=0,t1+t2得t1+t2=6,所以线段AB的中点对应的t==3,29 3 3故线段AB的中点的直角坐标为( .2 ),2(2)将直线l的参数方程代入曲线C的普通方程,化简得(cos2α-sin2α)t2+6cos αt+8=0,8 则|PA|·|PB|=|t1t2|=|cos2α-sin2α|Earlybird81+tan2α=| ,1-tan2α|40由已知得tan α=2,故|PA|·|PB|=.3极坐标、参数方程的综合应用【例2】在直角坐标系xOy 中,圆C 的方程为(x+6)2+y2=25.(1)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程;(2)直线l 的参数方程是Error!(t 为参数),l 与C 交于A,B 两点,|AB|=10,求l 的斜率.[解](1)由x=ρcos θ,y=ρsin θ可得圆C 的极坐标方程为ρ2+12ρcos θ+11 =0.(2)法一:由直线l 的参数方程Error!(t 为参数),消去参数得y=x·tanα.设直线l 的斜率为k,则直线l 的方程为kx-y=0.由圆C 的方程(x+6)2+y2=25 知,圆心坐标为(-6,0),半径为5.|-6k| 10 又|AB|=10,由垂径定理及点到直线的距离公式得=,25-( 22 )1+k236k2 90即=,1+k2 45 15 15整理得k2=,解得k=±,即l 的斜率为±.3 3 3法二:在(1)中建立的极坐标系中,直线l 的极坐标方程为θ=α(ρ∈R).设A,B 所对应的极径分别为ρ1,ρ2,将l 的极坐标方程代入C 的极坐标方程得ρ2+12ρcos α+11=0,于是ρ1+ρ2=-12cos α,ρ1ρ2=11.|AB|=|ρ1-ρ2|=ρ1+ρ22-4ρ1ρ2=144cos2α-44.3 15由|AB|=10得cos2α=,tan α=±.8 3Earlybird15 15所以l的斜率为或-.3 3[规律方法]处理极坐标、参数方程综合问题的方法1涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.2数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.(2017·全国卷Ⅲ)在直角坐标系xOy中,直线l1 的参数方程为Error!(t为参数),直线l2 的参数方程为Error!(m为参数).设l1 与l2 的交点为P,当k变化时,P的轨迹为曲线C.(1)写出C的普通方程;(2)以坐标原点为极点,x轴正半轴为极轴建立极坐标系,设l3:ρ(cos θ+sin θ)-2=0,M为l3 与C的交点,求M的极径.[解](1)消去参数t得l1 的普通方程l1:y=k(x-2);1消去参数m得l2 的普通方程l2:y=(x+2).k设P(x,y),由题设得Error!消去k得x2-y2=4(y≠0),所以C的普通方程为x2-y2=4(y≠0).(2)C的极坐标方程为ρ2(cos2θ-sin2θ)=4(0<θ<2π,θ≠π),联立Error!得cos θ-sin θ=2(cos θ+sin θ).1 9 1故tan θ=-,从而cos2θ=,sin2θ=.3 10 10代入ρ2(cos2θ-sin2θ)=4 得ρ2=5,所以交点M的极径为 5.1.(2018·全国卷Ⅱ)在直角坐标系xOy中,曲线C的参数方程为EarlybirdError!(θ为参数),直线l的参数方程为Error!(t为参数).(1)求C和l的直角坐标方程;(2)若曲线C截直线l所得线段的中点坐标为(1,2),求l的斜率.x2 y2[解](1)曲线C的直角坐标方程为+=1.4 16当cos α≠0 时,l的直角坐标方程为y=tan α·x+2-tan α,当cos α=0 时,l的直角坐标方程为x=1.(2)将l的参数方程代入C的直角坐标方程,整理得关于t的方程(1+3cos2α)t2+4(2cos α+sin α)t-8=0.①因为曲线C截直线l所得线段的中点(1,2)在C内,所以①有两个解,设为t1,t2,则t1+t2=0.42cos α+sin α又由①得t1+t2=-,故2cos α+sin α=0,于是直线l的斜1+3cos2α率k=tan α=-2.2.(2018·全国卷Ⅲ)在平面直角坐标系xOy中,⊙O的参数方程为Error!(θ为参数),过点(0,-2)且倾斜角为α的直线l与⊙O交于A,B两点.(1)求α的取值范围;(2)求AB中点P的轨迹的参数方程.[解](1)⊙O的直角坐标方程为x2+y2=1.π当α=时,l与⊙O交于两点.2π当α≠时,记tan α=k,则l的方程为y=kx- 2.l与⊙O交于两点当且仅22 πππ3π当| <1,解得k<-1 或k>1,即α∈或α∈.,,1+k2| ( 2) ( 4 )4 2π3π综上,α的取值范围是(,.4 )4π3π(2)l的参数方程为Error!(t为参数,<α<).4 4t A+t B设A,B,P对应的参数分别为t A,t B,t P,则t P=,且t A,t B满足t2-22Earlybird2t sin α+1=0.于是t A+t B=2 2sin α,t P=2sin α.又点P的坐标(x,y)满足Error!所以点P的轨迹的参数方程是π3πError!( .4 )α为参数,<α<4。
高考理科数学一轮复习(教学指导)选修4-4参数方程

第2讲 参数方程一、知识梳理1.参数方程和普通方程的互化(1)曲线的参数方程和普通方程是曲线方程的不同形式,一般地,可以通过消去参数,从参数方程得到普通方程.(2)如果知道变数x ,y 中的一个与参数t 的关系,例如x =f (t ),把它代入普通方程,求出另一个变数与参数的关系y =g (t ),那么⎩⎪⎨⎪⎧x =f (t ),y =g (t )就是曲线的参数方程,在参数方程与普通方程的互化中,必须使x ,y 的取值范围保持一致.2.直线、圆和圆锥曲线的参数方程名称普通方程参数方程直线 y -y 0=k (x -x 0)⎩⎪⎨⎪⎧x =x 0+t cos αy =y 0+t sin α (t 为参数)圆 (x -x 0)2+(y -y 0)2=R 2⎩⎪⎨⎪⎧x =x 0+R cos θy =y 0+R sin θ (θ为参数且0≤θ<2π)椭圆x 2a 2+y 2b 2=1(a >b >0)⎩⎪⎨⎪⎧x =a cos t y =b sin t (t 为参数且0≤t <2π)抛物线 y 2=2px (p >0)⎩⎪⎨⎪⎧x =2pt2y =2pt(t 为参数) 1.直线参数方程的三个应用及一个易错点 (1)三个应用:已知直线l 经过点M 0(x 0,y 0),倾斜角为α,点M (x ,y )为l 上任意一点,则直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).①若M 1,M 2是直线l 上的两个点,对应的参数分别为t 1,t 2,则|M 0M 1→| |M 0M 2→|=|t 1t 2|,|M 1M 2→|=|t 2-t 1|=(t 2+t 1)2-4t 1t 2;②若线段M 1M 2的中点为M 3,点M 1,M 2,M 3对应的参数分别为t 1,t 2,t 3,则t 3=t 1+t 22;③若直线l 上的线段M 1M 2的中点为M 0(x 0,y 0),则t 1+t 2=0,t 1t 2<0.(2)一个易错点:在使用直线参数方程的几何意义时,要注意参数前面的系数应该是该直线倾斜角的正余弦值.否则参数不具备该几何含义.2.掌握圆的参数方程的两种应用(1)解决与圆上的动点有关的距离取值范围以及最大值和最小值问题,通常可以转化为点与圆、直线与圆的位置关系.(2)求距离的问题,通过设圆的参数方程,就转化为求三角函数的值域问题. 二、教材衍化1.曲线⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ(θ为参数)的对称中心( )A .在直线y =2x 上B .在直线y =-2x 上C .在直线y =x -1上D .在直线y =x +1上解析:选B.由⎩⎪⎨⎪⎧x =-1+cos θ,y =2+sin θ,得⎩⎪⎨⎪⎧cos θ=x +1,sin θ=y -2.所以(x +1)2+(y -2)2=1.曲线是以(-1,2)为圆心,1为半径的圆,所以对称中心为(-1,2),在直线y =-2x 上.2.在平面直角坐标系xOy 中,若直线l :⎩⎪⎨⎪⎧x =t ,y =t -a (t 为参数)过椭圆C :⎩⎪⎨⎪⎧x =3cos φ,y =2sin φ(φ为参数)的右顶点,则常数a 的值为________.解析:直线l 的普通方程为x -y -a =0, 椭圆C 的普通方程为x 29+y 24=1,所以椭圆C 的右顶点坐标为(3,0),若直线l 过点(3,0),则3-a =0, 所以a =3. 答案:3一、思考辨析判断正误(正确的打“√”,错误的打“×”)(1)参数方程⎩⎪⎨⎪⎧x =f (t ),y =g (t )中的x ,y 都是参数t 的函数.( )(2)过M 0(x 0,y 0),倾斜角为α⎝⎛⎭⎫α≠π2的直线l 的参数方程为⎩⎪⎨⎪⎧x =x 0+t cos α,y =y 0+t sin α(t 为参数).参数t 的几何意义表示:直线l 上以定点M 0为起点,任一点M (x ,y )为终点的有向线段M 0M 的数量.( )(3)方程⎩⎪⎨⎪⎧x =2cos θ,y =1+2sin θ(θ为参数)表示以点(0,1)为圆心,以2为半径的圆.( )(4)已知椭圆的参数方程⎩⎪⎨⎪⎧x =2cos t ,y =4sin t(t 为参数),点M 在椭圆上,对应参数t =π3,点O为原点,则直线OM 的斜率为 3.( )答案:(1)√ (2)√ (3)√ (4)× 二、易错纠偏常见误区|K(1)不注意互化的等价性致误; (2)直线参数方程中参数t 的几何意义不清致误; (3)交点坐标计算出错致错.1.若曲线C 的参数方程为⎩⎪⎨⎪⎧x =1+cos 2θ,y =sin 2θ(θ为参数),则曲线C 上的点的轨迹是( ) A .直线x +2y -2=0 B .以(2,0)为端点的射线 C .圆(x -1)2+y 2=1D .以(2,0)和(0,1)为端点的线段解析:选D.将曲线C 的参数方程化为普通方程得x +2y -2=0(0≤x ≤2,0≤y ≤1).故选D.2.已知直线⎩⎪⎨⎪⎧x =x 0+at ,y =y 0+bt (t 为参数)上两点A ,B 对应的参数值是t 1,t 2,则|AB |=( )A .|t 1+t 2|B .|t 1-t 2|C.a 2+b 2|t 1-t 2| D .|t 1-t 2|a 2+b 2解析:选 C.依题意,A (x 0+at 1,y 0+bt 1),B (x 0+at 2,y 0+bt 2),则|AB |=[x 0+at 1-(x 0+at 2)]2+[y 0+bt 1-(y 0+bt 2)]2=a 2+b 2|t 1-t 2|.故选C.3.在平面直角坐标系xOy 中,以原点O 为极点,x 轴的正半轴为极轴建立极坐标系.曲线C 1的极坐标方程为ρ(cos θ+sin θ)=-2,曲线C 2的参数方程为⎩⎨⎧x =t 2,y =22t(t 为参数),则C 1与C 2交点的直角坐标为________.解析:由ρ(cos θ+sin θ)=-2,得x +y =-2 ①.又⎩⎪⎨⎪⎧x =t 2,y =22t ,消去t ,得y 2=8x ②. 联立①②得⎩⎪⎨⎪⎧x =2,y =-4,即交点坐标为(2,-4).答案:(2,-4)参数方程与普通方程的互化(自主练透) 1.将下列参数方程化为普通方程.(1)⎩⎨⎧x =1t,y =1tt 2-1(t 为参数);(2)⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ(θ为参数). 解:(1)由t 2-1≥0⇒t ≥1或t ≤-1⇒0<x ≤1或-1≤x <0.由⎩⎨⎧x =1t①,y =1tt 2-1②,①式代入②式得x 2+y 2=1.其中⎩⎪⎨⎪⎧0<x ≤1,0≤y <1或⎩⎪⎨⎪⎧-1≤x <0,-1<y ≤0.(2)由x =2+sin 2θ,0≤sin 2θ≤1 ⇒2≤2+sin 2θ≤3⇒2≤x ≤3,⎩⎪⎨⎪⎧x =2+sin 2θ,y =-1+cos 2θ⇒⎩⎪⎨⎪⎧x -2=sin 2θ,y =-1+1-2sin 2θ⇒ ⎩⎪⎨⎪⎧x -2=sin 2θ,y =-2sin 2θ⇒2x +y -4=0(2≤x ≤3). 2.已知曲线C 1:⎩⎪⎨⎪⎧x =-4+cos t ,y =3+sin t (t 为参数),曲线C 2:⎩⎪⎨⎪⎧x =8cos θ,y =3sin θ(θ为参数).化C 1,C 2的方程为普通方程,并说明它们分别表示什么曲线.解:曲线C 1:(x +4)2+(y -3)2=1,曲线C 2:x 264+y 29=1,所以曲线C 1是以(-4,3)为圆心,1为半径的圆;曲线C 2是中心为坐标原点,焦点在x 轴上,长半轴长是8,短半轴长是3的椭圆.将参数方程化为普通方程的方法(1)将参数方程化为普通方程,需要根据参数方程的结构特征,选取适当的消参方法.常见的消参方法有:代入消参法、加减消参法、平方消参法等.对于含三角函数的参数方程,常利用同角三角函数关系式消参,如sin 2θ+cos 2θ=1等.(2)将参数方程化为普通方程时,要注意两种方程的等价性,不要增解.参数方程的应用(师生共研)(2020·安徽宣城模拟)在直角坐标系xOy 中,圆O 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =2+t ,y =4+t (t 为参数).(1)若直线l 与圆O 相交于A ,B 两点,求弦长|AB |,若点P (2,4),求|P A |·|PB |的值; (2)以该直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,圆C 的极坐标方程为ρ=2cos θ+23sin θ,圆O 和圆C 的交点为P ,Q ,求弦PQ 所在直线的直角坐标方程.【解】 (1)由直线l 的参数方程⎩⎪⎨⎪⎧x =2+t ,y =4+t (t 为参数),消去参数t 可得x -y +2=0,即直线l 的普通方程为x -y +2=0.圆O 的参数方程为⎩⎪⎨⎪⎧x =2cos θ,y =2sin θ(θ为参数),根据sin 2θ+cos 2θ=1消去参数θ,可得x 2+y 2=4,所以圆心O 到直线l 的距离d =22=2,故弦长|AB |=2r 2-d 2=2 2.把直线l 的参数方程标准化可得⎩⎨⎧x =2+22t ,y =4+22t ,将其代入圆O 的方程x 2+y 2=4得t 2+62t +16=0,设A ,B 两点对应的参数分别为t 1,t 2, 所以|P A |·|PB |=|t 1t 2|=16.(2)圆C 的极坐标方程为ρ=2cos θ+23sin θ,利用ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y ,可得圆C 的普通方程为x 2+y 2=2x +23y .因为圆O 的直角坐标方程为x 2+y 2=4,所以弦PQ 所在直线的直角坐标方程为4=2x +23y ,即x +3y -2=0.(1)解决与圆、圆锥曲线的参数方程有关的综合问题时,要注意普通方程与参数方程的互化公式,主要是通过互化解决与圆、圆锥曲线上与动点有关的问题,如最值、范围等.(2)根据直线的参数方程的标准式中t 的几何意义,有如下常用结论:过定点M 0的直线与圆锥曲线相交,交点为M 1,M 2,所对应的参数分别为t 1,t 2. ①弦长l =|t 1-t 2|;②弦M 1M 2的中点⇒t 1+t 2=0; ③|M 0M 1||M 0M 2|=|t 1t 2|.1.(2020·日照模拟)在平面直角坐标系xOy 中,以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系.已知曲线C 的极坐标方程为ρ=4cos ⎝⎛⎭⎫θ-π3,直线l 过点P (0,-3)且倾斜角为π3.(1)求曲线C 的直角坐标方程和直线l 的参数方程;(2)设直线l 与曲线C 交于A ,B 两点,求|P A |+|PB |的值. 解:(1)曲线C :ρ=4cos ⎝⎛⎭⎫θ-π3⇒ρ=4cos θcos π3+4sin θsin π3, 所以ρ2=2ρcos θ+23ρsin θ, 即x 2+y 2=2x +23y ,得曲线C 的直角坐标方程为(x -1)2+(y -3)2=4.直线l 的参数方程为⎩⎨⎧x =12t ,y =-3+32t(t 为参数).(2)将⎩⎨⎧x =12t ,y =-3+32t(t 为参数)代入曲线C 的直角坐标方程,得⎝⎛⎭⎫12t -12+⎝⎛⎭⎫32t -232=4,整理得t 2-7t +9=0,设点A ,B 对应的参数分别为t 1,t 2,则t 1+t 2=7,t 1t 2=9,所以t 1>0,t 2>0,所以|P A |+|PB |=t 1+t 2=7.2.在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos θ,y =sin θ(θ为参数),直线l 的参数方程为⎩⎪⎨⎪⎧x =a +4t ,y =1-t (t 为参数).(1)若a =-1,求C 与l 的交点坐标; (2)若C 上的点到l 距离的最大值为17,求a . 解:(1)曲线C 的普通方程为x 29+y 2=1.当a =-1时,直线l 的普通方程为x +4y -3=0.由⎩⎪⎨⎪⎧x +4y -3=0,x 29+y 2=1,解得⎩⎪⎨⎪⎧x =3,y =0或⎩⎨⎧x =-2125,y =2425.从而C 与l 的交点坐标为(3,0),⎝⎛⎭⎫-2125,2425. (2)直线l 的普通方程为x +4y -a -4=0,故C 上的点(3cos θ,sin θ)到l 的距离为d =|3cos θ+4sin θ-a -4|17=|5sin (θ+φ)-a -4|17,φ满足tan φ=34.当-a -4≤0,即a ≥-4时,d 的最大值为a +917 .由题设得a +917=17,所以a =8;当-a -4>0,即a <-4时,d 的最大值为-a +117,由题设得-a +117=17,所以a =-16.综上,a =8或a =-16.参数方程与极坐标方程的综合应用(师生共研)(2020·淄博模拟)在平面直角坐标系xOy 中,设倾斜角为α的直线l 的参数方程为⎩⎨⎧x =3+t cos α,y =2+t sin α(α为参数).在以坐标原点O 为极点,以x 轴正半轴为极轴建立的极坐标系中,曲线C 的极坐标方程为ρ=21+3cos 2θ,直线l 与曲线C 相交于不同的两点A ,B .(1)若α=π6,求直线l 的普通方程和曲线C 的直角坐标方程;(2)若|OP |为|P A |与|PB |的等比中项,其中P (3,2),求直线l 的斜率. 【解】 (1)因为α=π6,所以直线l 的参数方程为⎩⎨⎧x =3+32t ,y =2+12t (t 为参数).消t 可得直线l 的普通方程为x -3y +3=0. 因为曲线C 的极坐标方程ρ=21+3cos 2θ可化为ρ2(1+3cos 2θ)=4,所以曲线C 的直角坐标方程为4x 2+y 2=4. (2)设直线l 上两点A ,B 对应的参数分别为t 1,t 2,将⎩⎪⎨⎪⎧x =3+t cos α,y =2+t sin α代入曲线C 的直角坐标方程4x 2+y 2=4可得4(3+t cos α)2+(2+t sin α)2=4,化简得(4cos 2α+sin 2α)t 2+(83cos α+4sin α)t +12=0, 因为|P A |·|PB |=|t 1t 2|=124cos 2α+sin 2α,|OP |2=7, 所以124cos 2α+sin 2α=7,解得tan 2α=165. 因为Δ=(83cos α+4sin α)2-48(4cos 2α+sin 2α)>0 即2sin α(23cos α-sin α)>0,可知tan α>0, 解得tan α=455,所以直线l 的斜率为455.(1)涉及参数方程和极坐标方程的综合题,求解的一般方法是分别化为普通方程和直角坐标方程后求解.当然,还要结合题目本身特点,确定选择何种方程.(2)数形结合的应用,即充分利用参数方程中参数的几何意义,或者利用ρ和θ的几何意义,直接求解,能达到化繁为简的解题目的.1.(2020·河南省第五次测评)在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =5cos α,y =2+5sin α(α为参数).以原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2:ρ2=4ρcos θ-3.(1)求C 1的普通方程和C 2的直角坐标方程;(2)若曲线C 1与C 2交于A ,B 两点,A ,B 的中点为M ,点P (0,-1),求|PM |·|AB |的值. 解:(1)曲线C 1的普通方程为x 2+(y -2)2=5.由ρ2=x 2+y 2,ρcos θ=x ,得曲线C 2的直角坐标方程为x 2+y 2-4x +3=0.(2)将两圆的方程x 2+(y -2)2=5与x 2+y 2-4x +3=0作差得直线AB 的方程为x -y -1=0.点P (0,-1)在直线AB 上,设直线AB 的参数方程为⎩⎨⎧x =22t ,y =-1+22t (t 为参数),代入x 2+y 2-4x +3=0化简得t 2-32t +4=0,所以t 1+t 2=32,t 1t 2=4. 因为点M 对应的参数为t 1+t 22=322,所以|PM |·|AB |=⎪⎪⎪⎪⎪⎪t 1+t 22·|t 1-t 2|=322×(t 1+t 2)2-4t 1t 2=322×18-4×4=3. 2.(2019·高考全国卷Ⅰ)在直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =1-t 21+t 2,y =4t 1+t 2(t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,直线l 的极坐标方程为2ρcosθ+3ρsin θ+11=0.(1)求C 和l 的直角坐标方程; (2)求C 上的点到l 距离的最小值. 解:(1)因为-1<1-t 21+t 2≤1,且x 2+⎝⎛⎭⎫y 22=⎝ ⎛⎭⎪⎫1-t 21+t 22+4t 2(1+t 2)2=1, 所以C 的直角坐标方程为x 2+y 24=1(x ≠-1). l 的直角坐标方程为2x +3y +11=0.(2)由(1)可设C 的参数方程为⎩⎪⎨⎪⎧x =cos α,y =2sin α(α为参数,-π<α<π).C 上的点到l 的距离为|2cos α+23sin α+11|7=4cos ⎝⎛⎭⎫α-π3+117.当α=-2π3时,4cos ⎝⎛⎭⎫α-π3+11取得最小值7,故C 上的点到l 距离的最小值为7.[基础题组练]1.(2020·安徽巢湖模拟)在平面直角坐标系xOy 中,已知直线l :⎩⎨⎧x =-12t ,y =3+32t (t 为参数).以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为ρ=4sin(θ+π3). (1)求曲线C 的直角坐标方程.(2)设点M 的直角坐标为(0,3),直线l 与曲线C 的交点为A ,B ,求|MA |+|MB |的值. 解:(1)把ρ=4sin ⎝⎛⎭⎫θ+π3,展开得ρ=2sin θ+2 3 cos θ,两边同乘ρ得ρ2=2ρsin θ+23ρcos θ ①.将ρ2=x 2+y 2,ρcos θ=x ,ρsin θ=y 代入①, 即得曲线C 的直角坐标方程为x 2+y 2-23x -2y =0 ②.(2)将⎩⎨⎧x =-12t ,y =3+32t代入②式,得t 2+33t +3=0,点M 的直角坐标为(0,3).设这个方程的两个实数根分别为t 1,t 2, 则t 1+t 2=-33,t 1·t 2=3, 所以t 1<0,t 2<0.则由参数t 的几何意义即得|MA |+|MB |=|t 1+t 2|=3 3.2.(2020·太原模拟)在直角坐标系中,圆C 的参数方程为:⎩⎨⎧x =1+2cos α,y =3+2sin α(α为参数),以坐标原点为极点,以x 轴的正半轴为极轴建立极坐标系,且长度单位相同.(1)求圆C 的极坐标方程;(2)若直线l :⎩⎪⎨⎪⎧x =t cos φ,y =t sin φ(t 为参数)被圆C 截得的弦长为23,求直线l 的倾斜角.解:(1)圆C :⎩⎪⎨⎪⎧x =1+2cos α,y =3+2sin α,消去参数α得(x -1)2+(y -3)2=4,即x 2+y 2-2x -23y =0,因为ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ.所以ρ2-2ρcos θ-23ρsin θ=0,ρ=4cos ⎝⎛⎭⎫θ-π3. (2)因为直线l :⎩⎪⎨⎪⎧x =t cos φ,y =t sin φ的极坐标方程为θ=φ,当θ=φ时ρ=4cos ⎝⎛⎭⎫φ-π3=2 3. 即cos ⎝⎛⎭⎫φ-π3=32, 所以φ-π3=π6或φ-π3=-π6.所以φ=π2或φ=π6,所以直线l 的倾斜角为π6或π2.3.在平面直角坐标系xOy 中,曲线C 1的参数方程为⎩⎪⎨⎪⎧x =2t -1,y =-4t -2(t 为参数),以坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=21-cos θ.(1)求曲线C 2的直角坐标方程;(2)设M 1是曲线C 1上的点,M 2是曲线C 2上的点,求|M 1M 2|的最小值. 解:(1)因为ρ=21-cos θ,所以ρ-ρcos θ=2, 即ρ=ρcos θ+2.因为x =ρcos θ,ρ2=x 2+y 2,所以x 2+y 2=(x +2)2,化简得y 2-4x -4=0. 所以曲线C 2的直角坐标方程为y 2-4x -4=0.(2)因为⎩⎪⎨⎪⎧x =2t -1,y =-4t -2,所以2x +y +4=0.所以曲线C 1的普通方程为2x +y +4=0.因为M 1是曲线C 1上的点,M 2是曲线C 2上的点,所以|M 1M 2|的最小值等于点M 2到直线2x +y +4=0的距离的最小值. 不妨设M 2(r 2-1,2r ),点M 2到直线2x +y +4=0的距离为d ,则d =2|r 2+r +1|5=2⎣⎡⎦⎤⎝⎛⎭⎫r +122+345≥325=3510, 当且仅当r =-12时取等号.所以|M 1M 2|的最小值为3510.4.在直角坐标系中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =3cos α,y =2sin α(α为参数),以原点为极点,x轴的正半轴为极轴,建立极坐标系,曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6. (1)写出曲线C 的极坐标方程以及曲线D 的直角坐标方程;(2)若过点A ⎝⎛⎭⎫22,π4(极坐标)且倾斜角为π3的直线l 与曲线C 交于M ,N 两点,弦MN 的中点为P ,求|AP ||AM |·|AN |的值.解:(1)由题意可得曲线C 的普通方程为x 29+y 24=1,将⎩⎪⎨⎪⎧x =ρcos θ,y =ρsin θ代入曲线C 的普通方程可得,曲线C 的极坐标方程为ρ2cos 2θ9+ρ2sin 2θ4=1.因为曲线D 的极坐标方程为ρ=4sin ⎝⎛⎭⎫θ-π6, 所以ρ2=4ρsin ⎝⎛⎭⎫θ-π6=4ρ⎝⎛⎭⎫32sin θ-12cos θ, 又ρ2=x 2+y 2,x =ρcos θ,y =ρsin θ, 所以x 2+y 2=23y -2x ,所以曲线C 的极坐标方程为ρ2cos 2θ9+ρ2sin 2θ4=1;曲线D 的直角坐标方程为x 2+y 2+2x-23y =0.(2)点A ⎝⎛⎭⎫22,π4,则⎩⎨⎧x =22cos π4=2,y =22sin π4=2,所以A (2,2).因为直线l 过点A (2,2)且倾斜角为π3,所以直线l 的参数方程为⎩⎨⎧x =2+t cos π3,y =2+t sinπ3(t 为参数),代入x 29+y 24=1中可得,314t 2+(8+183)t +16=0,设M ,N 对应的参数分别为t 1,t 2,由一元二次方程根与系数的关系得,t 1+t 2=-32+72331,t 1t 2=6431,所以|AP ||AM |·|AN |=⎪⎪⎪⎪⎪⎪t 1+t 22|t 1t 2|=4+9316.[综合题组练]1.(2020·广州模拟)在直角坐标系xOy 中,曲线C 1:⎩⎨⎧x =2+7cos α,y =7sin α(α为参数).以O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 2的极坐标方程为ρ=8cos θ,直线l 的极坐标方程为θ=π3(ρ∈R ).(1)求曲线C 1的极坐标方程与直线l 的直角坐标方程;(2)若直线l 与曲线C 1,C 2在第一象限分别交于A ,B 两点,P 为曲线C 2上的动点,求△P AB 面积的最大值.解:(1)依题意得,曲线C 1的普通方程为(x -2)2+y 2=7,曲线C 1的极坐标方程为ρ2-4ρcos θ-3=0.直线l 的直角坐标方程为y =3x .(2)曲线C 2的直角坐标方程为(x -4)2+y 2=16, 设A ⎝⎛⎭⎫ρ1,π3,B ⎝⎛⎭⎫ρ2,π3, 则ρ21-4ρ1cos π3-3=0,即ρ21-2ρ1-3=0, 得ρ1=3或ρ1=-1(舍),又ρ2=8cos π3=4,则|AB |=|ρ2-ρ1|=1.C 2(4,0)到l 的距离d =|43|4=23,以AB 为底边的△P AB 的高的最大值为4+23,则△P AB 的面积的最大值为12×1×(4+23)=2+ 3.2.(2020·南昌模拟)在直角坐标系xOy 中,以原点为极点,x 轴的正半轴为极轴建立极坐标系.已知直线l 的极坐标方程为ρcos θ-ρsin θ=2,曲线C 的极坐标方程为ρsin 2θ=2P cos θ(P >0).(1)求直线l 过点(-2,-4)的参数方程;(2)已知直线l 与曲线C 交于N ,Q 两点,M (-2,-4),且|NQ |2=|MN |·|MQ |,求实数P 的值.解:(1)将x =ρcos θ,y =ρsin θ代入直线l 的极坐标方程,得直线l 的直角坐标方程为x -y -2=0.所以直线l 过点(-2,-4)的参数方程为⎩⎨⎧x =-2+22t ,y =-4+22t (t 为参数).(2)由ρsin 2θ=2P cos θ(P >0), 得(ρsin θ)2=2Pρcos θ(P >0),将ρcos θ=x ,ρsin θ=y 代入,得y 2=2Px (P >0).将直线l 的参数方程与曲线C 的直角坐标方程联立,得t 2-22(4+P )t +8(4+P )=0,(*)Δ=8P (4+P )>0.设点N ,Q 分别对应参数t 1,t 2,恰好为上述方程的根, 则|MN |=t 1,|MQ |=t 2,|NQ |=|t 1-t 2|.由题设得(t 1-t 2)2=|t 1t 2|,即(t 1+t 2)2-4t 1t 2=|t 1t 2|. 由(*)得t 1+t 2=22(4+P ),t 1t 2=8(4+P )>0, 则有(4+P )2-5(4+P )=0,得P =1或P =-4.因为P >0,所以P =1.3.(2020·栖霞模拟)在平面直角坐标系xOy 中,曲线C 的参数方程为⎩⎪⎨⎪⎧x =a cos t ,y =2sin t (t 为参数,a >0),以坐标原点O 为极点,x 轴的非负半轴为极轴,建立极坐标系,直线l 的极坐标方程为ρcos ⎝⎛⎭⎫θ+π4=-4 2. (1)设P 是曲线C 上的一个动点,当a =23时,求点P 到直线l 的距离的最小值; (2)若曲线C 上所有的点都在直线l 的右下方,求实数a 的取值范围.解:(1)由ρcos ⎝⎛⎭⎫θ+π4=-42,得到ρ(cos θ-sin θ)=-8, 因为ρcos θ=x ,ρsin θ=y , 所以直线l 的普通方程为x -y +8=0.设P (23cos t ,2sin t ),则点P 到直线l 的距离d =|23cos t -2sin t +8|2=|4sin ⎝⎛⎭⎫t -π3-8|2=22|sin ⎝⎛⎭⎫t -π3-2|, 当sin ⎝⎛⎭⎫t -π3=1时,d min =22, 所以点P 到直线l 的距离的最小值为2 2.(2)设曲线C 上任意点P (a cos t ,2sin t ),由于曲线C 上所有的点都在直线l 的右下方, 所以a cos t -2sin t +8>0对任意t ∈R 恒成立. a 2+4sin(t -φ)<8,其中cos φ=2a 2+4,sin φ=a a 2+4.从而a 2+4<8.由于a >0,解得0<a <215. 即a ∈(0,215).4.在平面直角坐标系xOy 中,圆C 的参数方程为⎩⎨⎧x =-5+2cos t ,y =3+2sin t(t 为参数),在以原点O 为极点,x 轴的非负半轴为极轴建立的极坐标系中,直线l 的极坐标方程为ρcos(θ+π4)=- 2. (1)求圆C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴,y 轴分别交于A ,B 两点,点P 是圆C 上任意一点,求A ,B 两点的极坐标和△P AB 面积的最小值.解:(1)由⎩⎪⎨⎪⎧x =-5+2cos t ,y =3+2sin t ,消去参数t ,得(x +5)2+(y -3)2=2,所以圆C 的普通方程为(x +5)2+(y -3)2=2. 由ρcos (θ+π4)=-2,得ρcos θ-ρsin θ=-2,所以直线l 的直角坐标方程为x -y +2=0.(2)直线l 与x 轴,y 轴的交点分别为A (-2,0),B (0,2),化为极坐标为A (2,π),B ⎝⎛⎭⎫2,π2, 设点P 的坐标为(-5+2cos t ,3+2sin t ),则点P 到直线l 的距离为d =|-5+2cos t -3-2sin t +2|2=|-6+2cos ⎝⎛⎭⎫t +π4|2.所以d min =42=22,又|AB |=2 2. 所以△P AB 面积的最小值是S =12×22×22=4.。
高考数学一轮复习备课手册选修第16课曲线的参数方程

第讲常见曲线的参数方程一、教学目标.理解直线的参数方程及其应用;.理解圆和椭圆(椭圆的中心在原点)的参数方程及其简单应用..会进行曲线的参数方程与普通方程的互化.二、基础知识回顾与梳理阅读教材第页至第页.写出几种常见的参数方程.:直线的参数方程教材第页直线参数方程中参数几何意义的理解:圆的参数方程教材第页圆参数方程中参数几何意义的理解:椭圆的参数方程教材第页椭圆参数的理解.:完成第页例题;第页至第页的例题.三【要点解析】.参数方程的概念一般地,在平面直角坐标系中,如果曲线上任意一点的坐标(,)都是某个变数的函数:并且对于的每一个允许值,由方程组所确定的点(,)都在这条曲线上,那么方程叫做这条曲线的参数方程,叫做参变数,简称参数,相对于参数方程而言,直接给出点的坐标间关系的方程叫做普通方程..直线的参数方程过定点(,)且倾斜角为α的直线的参数方程为(\\(=+α,=+α)) (为参数),则参数的几何意义是有向线段的数量.使用该式时直线上任意两点、对应的参数分别为、,则=-,的中点对应的参数为(+).对于形如(\\(=+,=+))(为参数),当+≠时,应先化为标准形式后才能利用的几何意义解题..圆的参数方程圆心为(,),半径为,以圆心为顶点且与轴同向的射线,按逆时针方向旋转到圆上一点所在半径成的角α为参数的圆的参数方程为(\\(=+α,=+α))α∈[π)..椭圆的参数方程以椭圆的离心角θ为参数,椭圆+=(>>)的参数方程为⑧(\\(=θ,=θ))θ∈[π)..解答参数方程的有关问题时,首先要弄清参数是谁,代表的几何意义是什么;其次要认真观察方程的表现形式,以便于寻找最佳化简途径.尤其直线方程的参数方程时.三、诊断练习、教学处理:课前由学生自主完成道小题,并要求将解题过程扼要地写在学习笔记栏。
课前抽查批阅部分同学的解答,了解学生的思路及主要错误。
将知识问题化,通过问题驱动,使教学言而有物,帮助学生内化知识,初步形成能力。
《参数方程》教案(新人教选修)

《参数方程》教案(新人教选修)第一章:参数方程的概念与基本形式1.1 参数方程的定义引入参数方程的概念,让学生理解参数方程是一种描述曲线运动的数学工具。
通过实际例子,让学生了解参数方程在现实中的应用。
1.2 参数方程的基本形式介绍参数方程的两种基本形式:圆锥曲线的参数方程和直线的参数方程。
通过图形和实例,让学生理解参数方程与普通方程之间的关系。
第二章:参数方程的图像与性质2.1 参数方程的图像利用图形软件,绘制常见参数方程的图像,让学生直观地了解参数方程的特点。
引导学生观察图像,探讨参数方程与坐标轴之间的关系。
2.2 参数方程的性质引导学生研究参数方程的单调性、周期性和奇偶性等性质。
通过实例,让学生了解参数方程的性质在实际问题中的应用。
第三章:参数方程的变换与化简3.1 参数方程的变换介绍参数方程的基本变换,如平移、旋转和缩放等。
通过实例,让学生学会如何对参数方程进行变换。
3.2 参数方程的化简引导学生利用数学方法对参数方程进行化简,使其形式更加简洁。
通过实例,让学生了解参数方程化简的意义和应用。
第四章:参数方程的应用4.1 参数方程在物理中的应用以机械运动为例,介绍参数方程在描述物体运动中的应用。
引导学生利用参数方程解决实际物理问题。
4.2 参数方程在工程中的应用以电子电路为例,介绍参数方程在描述系统动态行为中的应用。
引导学生利用参数方程解决实际工程问题。
第五章:参数方程的综合练习5.1 参数方程的解题技巧通过实例,让学生学会如何运用不同的技巧解决参数方程问题。
5.2 综合练习题提供一系列与参数方程相关的综合练习题,让学生巩固所学知识。
对练习题进行讲解和解析,帮助学生提高解题能力。
第六章:参数方程在圆锥曲线中的应用6.1 圆锥曲线的参数方程复习圆锥曲线的普通方程,并引入其参数方程。
通过图形和实例,让学生了解圆锥曲线的参数方程表示方法。
6.2 圆锥曲线的参数性质引导学生研究圆锥曲线的参数性质,如渐近线、焦点、顶点等。
高三数学总复习 参数方程教案选修4

3 x=3- x 轴的正半轴为极轴(长度单位与直角坐标
系 xOy 中相同)的极坐标系中,曲线 C 的方程为 ρ =2acosθ (a>0),l 与 C 相切于点 P. (1)求 C 的直角坐标方程; (2)求切点 P 的极坐标.
π 【变式 1】已知圆的极坐标方程为 ρ =4cosθ ,圆心为 C,点 P 的极坐标为(4, ), 3 则|CP|=________.
【题型 2】参数方程和普通方程的互化 【例 2】在直角坐标系 xoy 中,以坐标原点为极点,x 轴为极轴建立极坐标系,半圆 C 的坐标方程为ρ = 2cosθ,θ ∈ (0, 2 ) (1) 求 C 的参数方程 (2) 设 D 在 C 上,C 在 D 出的切线与直线 l:y = 3������ + 2垂直,根据(1)中你得 到的参数方程,确定 D 的坐标。
2 2 2 2
x=2pt , (5) 抛物线方程 y =2px(p>0)的参数方程是 (t 为参数). y=2pt
2
2
4. 在参数方程与普通方程的互化中注意变量的取值范围. 二、热点分类突破 题型 1 极坐标与直角坐标的转化 【例 1】(理)(2012·乌鲁木齐地区诊断)在直角坐标系 xOy 中,直线 l 的参数方程为
x=x0+lcosα , (1) 过点 P0(x0, y0), 且倾斜角是 α 的直线的参数方程为 (l 为参数). y=y0+lsinα
l 是有向线段 P0P 的数量.
x=a+rcosθ , 2 2 2 (2) 圆方程(x-a) +(y-b) =r 的参数方程是 (θ 为参数). y=b+rsinθ
【题型 3】参数方程及其应用 【例 3】已知在平面直角坐标系 xOy 内,点 M(x,y)在曲线 C:
高考数学统考一轮复习 选修4-4 第二节 参数方程(教师文档)教案 文 北师大版

学习资料第二节参数方程授课提示:对应学生用书第201页[基础梳理]1.曲线的参数方程在平面直角坐标系中,如果曲线上任意一点的坐标x,y都是某个变数t的函数错误!并且对于t的每一个允许值,由这个方程组所确定的点M(x,y)都在这条曲线上,那么这个方程组就叫作这条曲线的参数方程,联系变数x,y的变数t叫作参变数,简称参数.相对于参数方程而言,直接给出点的坐标间关系的方程F(x,y)=0叫普通方程.2.参数方程和普通方程的互化(1)参数方程化普通方程:利用两个方程相加、减、乘、除或者代入法消去参数.(2)普通方程化参数方程:如果x=f(t),把它代入普通方程,求出另一个变数与参数的关系y=g(t),则得曲线的参数方程错误!3.直线、圆与椭圆的普通方程和参数方程轨迹普通方程参数方程直线y-y0=tan α(x-x0)(α≠错误!,点斜式)错误!(t为参数)圆(x-a)2+(y-b)2=r2错误!(θ为参数)椭圆错误!+错误!=1(a>b>0)错误!(φ为参数)1.参数方程化普通方程(1)常用技巧:代入消元、加减消元、平方后加减消元等.(2)常用公式:cos2θ+sin2θ=1,1+tan2θ=1cos2θ.2.直线参数方程的标准形式的应用过点M0(x0,y0),倾斜角为α的直线l的参数方程是错误!若M1,M2是l上的两点,其对应参数分别为t1,t2,则(1)|M1M2|=|t1-t2|。
(2)若线段M1M2的中点M所对应的参数为t,则t=错误!,中点M到定点M0的距离|MM0|=|t|=错误!.(3)若M0为线段M1M2的中点,则t1+t2=0。
[四基自测]1.(基础点:直线与椭圆的参数方程)直线y=x与曲线错误!(α为参数)的交点个数为()A.0B.1C.2D.3答案:C2.(基础点:直线的参数方程)若直线的参数方程为错误!(t为参数),则直线的斜率为________.答案:-33.(易错点:消参的等价性)曲线C的参数方程为错误!(θ为参数),则曲线C的普通方程为________.答案:y=-2x2(-1≤x≤1)4.(基础点:椭圆的参数方程)椭圆错误!(θ为参数)的离心率为________.答案:错误!授课提示:对应学生用书第202页考点一参数方程与普通方程的互化[例]已知直线l的参数方程为错误!(t为参数),圆C的参数方程为错误!(θ为参数).(1)求直线l和圆C的普通方程;(2)若直线l与圆C有公共点,求实数a的取值范围.[解析](1)直线l的普通方程为2x-y-2a=0,圆C的普通方程为x2+y2=16。
高中数学 曲线的参数方程导学案 新人教版数学选修4-4

高二数学导学案主备人: 备课时间:备课组长:课题:曲线的参数方程一、三维目标:知识与技能:通过平抛曲线的参数方程的建立,使学生理解参数方程的概念,初步掌握求曲线的参数方程的思路。
过程与方法:通过平抛曲线的参数方程的建立及选取不同参数建立圆的参数方程,培养学生探索发现能力以及解决实际问题的能力。
情感态度价值观:从平抛曲线的方程的建立,对学生进行数学的返璞归真教育,使学生体会数学来源于实践的真谛,帮助学生树立空间和时间是运动物体的形式这一辩证唯物主义观点。
二、学习重、难点:重点:曲线参数方程的探求及其有关概念。
难点:平抛曲线参数方程的建立及对参数方程的理解。
三、学法指导:认真阅读教材P21—24,结合实例,理解平抛曲线及圆的参数方程的建立、进而理解曲线的参数方程的概念,类比求普通方程的方法,掌握求参数方程的一般思路。
四、知识链接:满足什么条件时,一个方程才能称作曲线的方程,而这条曲线才能够称作方程的曲线?五、学习过程(一)、引入:在生产实践、军事技术、工程建设中有许多通过间接的方法把某两个变量联系起来的例子.特别在两个变量之间的直接关系不易建立时,常用间接的方法将它们联系起来.如图,一架救援飞机在离灾区地面500m高处以100m/s的速度作水平直线飞行。
为使投放救援物资准确落于灾区指定的地面(不记空气阻力),飞行员应如何确定投放时机呢?提示:即求飞行员在离救援点的水平距离多远时,开始投放物资?问题1:物资投出机舱后,它的运动由哪两种运动合成?(1)在水平方向上做运动,其水平位移S=.(2)在竖直方向上做运动,其竖直下落高度H= 。
问题2:在上述运动中水平位移S和竖直下落高度H中是否有一个相同的变量,是什么?问题3:你能否建立适当的坐标系用含有t 的式子表示出物资的位置?问题4:通过对上述问题的分析,飞行员在离救援点的水平距离多远时投放物资,可以使其准确落在指定地点?(二)、参数方程的定义:在给定的坐标系中,如果曲线上任一点的坐标x 、y 都是某个变量t的函数()()x f t y t ϕ=⎧⎨=⎩(1),且对t 每一个允许值,由(1)所确定的点M (x,y )都在这条曲线上,则(1)就叫做这条曲线的参数方程,t 称作参变数,简称参数。
高考总数学(文)一轮总复习课件:选修4-4 第二节 参数方程

2.(2013·广西四校联考)极坐标方程ρ=cos x=-1-t,
θ和参数方程 y=2+3t (t为参数)所表示的图 形分别是________.
【解析】 ∵ρ=cos θ,∴ρ2=ρcos θ, ∴x2+y2=x,即x2-x+y2=0表示圆, ∵xy==2-+13-t,t,消t后,得3x+y+1=0,表示直线.
线段OP的中点,由代入法求曲线C2的参数方程;
(2)由于点A、B在射线θ=
π 3
上,分别求点A、B的
极径,进而确定|AB|的大小.
【尝试解答】 (1)由 O→P =2 O→M 知,点M是线段 OP的中点.
设点P(x,y),则M(x2,y2), ∵点M在曲线C1:xy==22+cos2sαin ,α,上,
方程判断曲线类型.
【尝试解答】
由xy==ba++ttcsions
θ, θ. ②
①
(1)当t为非零常数时,
原方程组为xy--tt ba==csions
θ, θ. ④
③
③2+④2得(x-t2 a)2+(y-t2 b)2=1,
即(x-a)2+(y-b)2=t2,它表示一个圆.
(2)当t=0时,表示点(a,b).
【思路点拨】 将直线的参数方程化为普通方程,根据 点到直线的距离公式得到关于θ的函数,转化为求函数的最 值.
π 【尝试解答】 当t= 2 时,P(-4,4);且Q(8cos θ,3sin θ),
故M(-2+4cos θ,2+32sin θ).
C3为直线x-2y-7=0,
M到C3的距离d=
5 5 |4cos
3.直线、圆、椭圆的参数方程
轨迹 直线
圆 椭圆
普通方程 y-y0=tan α(x-
2020版高考数学一轮复习教程学案第十六章选修4 第16课 常见曲线的参数方程 Word版含解析

第课常见曲线的参数方程
. 理解参数方程的概念,了解某些常用参数方程中参数的几何意义.
. 会进行曲线的参数方程与普通方程的互化.
. 理解圆和椭圆(椭圆的中心在原点)的参数方程及其简单应用.
. 阅读:选修第~页.
. 解悟:①直线的参数方程.选修第页直线参数方程中参数的几何意义的
理解;②圆的参数方程.选修第页圆参数方程中参数的几何意义的理解.
. 践习:在教材空白处,完成第页例,第~页例、、.
基础诊断
. 方程(为参数)表示的曲线是.
. 直线(为参数)与曲线(θ为参数)的公共点的个数为.
. 参数方程(为参数),且≤≤表示的曲线是.(填序号)
①线段;②双曲线;③圆弧;④射线.
. 直线(为参数)和圆+=交于、两点,则的中点坐标为.
范例导航
考向参数方程与普通方程的互化例() 将参数方程(为参数)化为普通方程;
() 将参数方程(θ为参数)化为普通方程.
在曲线:(θ为参数)上求一点,使它到直线:(为参数)的距离最小,并求出该点的坐标和最小距离.
考向求参数方程例已知直线经过点(,),倾斜角α=.
() 写出直线的参数方程;
() 设直线与圆+=相交于、两点,求点到、两点的距离之积.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高考数学新版一轮复习教程学案____第16课__常见曲线的参数方程____1. 理解参数方程的概念,了解某些常用参数方程中参数的几何意义.1. 阅读:选修44第42~47页.基础诊断1.方程⎩⎪⎨⎪⎧x =t ,y =3t 3(t为参数)表示的曲线是________________________________________________________________________.2. 直线⎩⎪⎨⎪⎧x =2t ,y =t (t 为参数)与曲线⎩⎪⎨⎪⎧x =2+cos θ,y =sin θ(θ为参数)的公共点的个数为________.3. 参数方程⎩⎪⎨⎪⎧x =3t 2+2,y =t 2-1(t 为参数),且0≤t ≤5表示的曲线是________.(填序号)①线段;②双曲线;③圆弧;④射线.4. 直线⎩⎨⎧x =1+12t ,y =-33+32t (t 为参数)和圆x 2+y 2=16交于A 、B 两点,则AB 的中点坐标为________.考向例1 (1) 将参数方程⎩⎨⎧x =2⎝⎛⎭⎫t +1t ,y =4⎝⎛⎭⎫t -1t (t 为参数)化为普通方程;(2) 将参数方程⎩⎨⎧x =2sin θ,y =1+2cos 2θ(θ为参数)化为普通方程.在曲线C 1:⎩⎪⎨⎪⎧x =1+cos θ,y =sin θ(θ为参数)上求一点,使它到直线C 2:⎩⎨⎧x =-22+12t ,y =1-12t (t为参数)的距离最小,并求出该点的坐标和最小距离.考向例2 已知直线l 经过点P(1,1),倾斜角α=π6.(1) 写出直线l 的参数方程;(2) 设直线l 与圆x 2+y 2=4相交于A 、B 两点,求点P 到A 、B 两点的距离之积.点P(x ,y)是椭圆2x 2+3y 2=12上的一个动点,求x +2y 的最大值.考向例3 已知P(x ,y)是圆x +y =2y 上的动点. (1) 求2x +y 的取值范围;(2) 若x +y +a ≥0恒成立,求实数a 的取值范围.自测反馈1. P(x ,y)是曲线⎩⎪⎨⎪⎧x =2+cos θ,y =sin θ(θ为参数)上任意一点,则(x -5)2+(y +4)2的最大值为________.2. 直线⎩⎪⎨⎪⎧x =2t -1,y =t +1(t 为参数)被圆x 2+y 2=9截得的弦长等于________.3. 若P 为曲线⎩⎪⎨⎪⎧x =1+cos θ,y =1+sin θ(θ为参数)上一点,则点P 与坐标原点的最短距离为________.4. 曲线C: ⎩⎪⎨⎪⎧x =cos θ,y =-1+sin θ(θ为参数)的普通方程是________________________,如果曲线C 与直线x +y +a =0 有公共点,那么实数a 的取值范围是________.1. 参数方程化为普通方程的关键是消参数:一要熟练掌握常用技巧(如整体代换);二要注意变量取值范围的一致性,这一点最易被忽视.2. 解答参数方程的有关问题时,首先要弄清参数是谁?代表的几何意义是什么?其次要认真观察方程的表现形式,以便于寻找最佳化简途径.3. 写出直线,圆,椭圆的参数方程:________________________________________________________________________.第16课 常见曲线的参数方程基础诊断1. 一条射线 解析:由⎩⎪⎨⎪⎧x =t ,y =3t 3(t 为参数),得y =33x ,x ≥0,故该参数方程对应的曲线为一条射线.2. 2 解析:直线的普通方程为y =12x ,曲线的普通方程为(x -2)2+y 2=1,则该曲线是以点(2,0)为圆心,1为半径的圆.因为圆心到直线的距离d =|1|⎝⎛⎭⎫122+12=255<1,所以直线与曲线的公共点的个数为2.3. ① 解析:由题可得⎩⎪⎨⎪⎧t 2=x -23,t 2=y +1(t 为参数),则x -23=y +1,即x -3y -5=0,又0≤t ≤5,所以该曲线为线段,故选①.4. (3,-3) 解析:由⎝⎛⎭⎫1+12t 2+⎝⎛⎭⎫-33+32t 2=16,得t 2-8t +12=0,t 1+t 22=--81×12=4,所以AB 中点为⎩⎨⎧x =1+12×4,y =-33+32×4,即⎩⎨⎧x =3,y =-3,故AB 的中点坐标为(3,-3).范例导航例1 解析:(1) 方法一:因为⎝⎛⎭⎫t +1t 2-⎝⎛⎭⎫t -1t 2=4,所以⎝⎛⎭⎫x 22-⎝⎛⎭⎫y42=4,化简得普通方程为x 216-y 264=1.方法二:因为⎩⎨⎧x =2⎝⎛⎭⎫t +1t ,y =4⎝⎛⎭⎫t -1t (t 为参数),所以t =2x +y 8,1t =2x -y8,相乘得()2x +y ()2x -y 64=1,化简得普通方程为x 216-y 264=1.(2) 由⎩⎨⎧x =2sin θ,y =1+2cos 2θ(θ为参数),①②因为θ∈R ,所以-1≤sin θ≤1,则-2≤x ≤ 2.由①两边平方得x 2=2sin 2θ,③ 由②得y -1=2cos 2θ,④由③+④得x 2+y -1=2,即y =-x 2+3(-2≤x ≤2), 故普通方程为y =-x 2+3(-2≤x ≤2).注:将参数方程化为普通方程,就是将其中的参数消掉,可以借助于三角函数的平方关系,因此想到把①两边平方,然后和②相加即可,同时求出x 的取值范围.【教学处理】1. 参数方程的教学要求不要拔高.参数方程与普通方程互相转化时特别要注意等价性,本题是直线与圆的位置关系.2. 本题也可通过画图来解.解析:直线C 2化成普通方程是x +y +22-1=0,设所求的点为P (1+cos θ,sin θ),则点P 到直线C 2的距离d =|1+cos θ+sin θ+22-1|2= |sin ⎝⎛⎭⎫θ+π4+2|. 当θ+π4=3π2+2k π,k ∈Z ,即θ=5π4+2k π,k ∈Z 时,d 取最小值1,此时,点P 的坐标是⎝⎛⎭⎫1-22,-22. 例2 【教学处理】要给学生尝试解题的时间,再指名学生回答,教师点评并板书. 解析:(1) 直线的参数方程为⎩⎨⎧x =1+t cos π6,y =1+t sin π6(t 为参数),即⎩⎨⎧x =1+32t ,y =1+12t(t 为参数).(2) 将直线⎩⎨⎧x =1+32t ,y =1+12t(t 为参数)代入x 2+y 2=4,得⎝⎛⎭⎫1+32t 2+⎝⎛⎭⎫1+12t 2=4,化简得t 2+(3+1)t -2=0,故t 1t 2=-2,则点P 到A 、B 两点的距离之积为2.解析:将椭圆2x 2+3y 2=12化为x 26+y 24=1,设x =6cos θ,y =2sin θ, x +2y =6cos θ+4sin θ=22(622cos θ+422sin θ)=22sin ()θ+α≤22,其中tan α=64, 故x +2y 的最大值为22.例3 解析:(1) 由题意得圆的参数方程为⎩⎪⎨⎪⎧x =cos θ,y =1+sin θ(θ为参数),所以2x +y =2cos θ+sin θ+1=5sin (θ+φ)+1,其中tan φ=2,所以-5+1≤2x +y ≤5+1.(2) x +y +a =cos θ+sin θ+1+a ≥0,所以a ≥-cos θ-sin θ-1=-2sin ⎝⎛⎭⎫θ+π4-1, 所以a ≥2-1.自测反馈1. 36 解析:因为曲线的参数方程为⎩⎪⎨⎪⎧x =2+cos θ,y =sin θ(θ为参数),所以(x -5)2+(y +4)2=(cos θ-3)2+(sin θ+4)2=1+9+16-6cos θ+8sin θ=26-10sin (α-θ),故(x -5)2+(y +4)2的最大值为36.2. 1255 解析:把直线⎩⎪⎨⎪⎧x =2t -1,y =t +1(t 为参数)代入圆x 2+y 2=9,得(2t -1)2+(t +1)2=9,化简得5t 2-2t -7=0,故t 1+t 2=25,t 1t 2=-75,所以(t 1-t 2)2=(t 1+t 2)2-4t 1t 2=14425,所以直线被圆截得的弦长为5(t 1-t 2)2=1255.3. 2-1 解析:将题目中参数方程化为普通方程为(x -1)2+(y -1)2=1,即该曲线表示以(1,1)为圆心,1为半径的圆,所以点P 到原点最短距离为(0-1)2+(0-1)2-1=2-1.4.x 2+(y +1)2=1[1-2,1+2] 解析:由题意得⎩⎪⎨⎪⎧cos θ=x ,sin θ=y +1(θ为参数),所以x 2+(y +1)2=1.曲线C 是以(0,-1)为圆心,1为半径的圆,圆心到直线x +y +a =0的距离为|-1+a|2,又因为曲线与直线有公共点,则0≤|-1+a|2≤1,即1-2≤a ≤1+ 2.。