农田水肥一体化自动滴灌系统

合集下载

水肥一体化自动控制系统介绍

水肥一体化自动控制系统介绍

水肥一体化自动控制系统介绍水肥一体化自动控制系统是一种农业生产技术,通过自动化设备和控制系统对农田灌溉和施肥进行集成管理,以实现农作物的高产高效安全种植。

该系统通过智能化、自动化的方式,有效节约了水资源、提高了施肥效率,降低了生产成本,同时减少了环境污染。

该系统的主要组成部分包括感应器、数据采集系统、控制单元和执行机构。

感应器用于感知环境中的温度、湿度、土壤水分、养分含量等参数,将这些数据通过数据采集系统传输到控制单元。

控制单元根据接收到的数据进行分析与判断,并制定水肥管理方案,将指令传输给执行机构。

执行机构根据控制单元的指令,调节灌溉和施肥设备的工作状态,实现对农田灌溉和施肥的自动控制。

水肥一体化自动控制系统的工作流程如下:首先,感应器感知农田的环境参数,并将数据传输给数据采集系统。

数据采集系统将数据发送给控制单元。

控制单元根据事先设定的农作物需水需肥特性,结合接收到的实时环境数据,通过内置的算法和模型进行计算与分析。

控制单元判断出当前的灌溉和施肥状态,并制定相应的管理方案。

控制单元将指令发送给执行机构,执行机构根据指令控制灌溉和施肥设备的工作状态,完成相应的操作。

整个过程中,控制单元根据实时数据进行调整,实现农田灌溉和施肥的智能化、自动化控制。

首先,该系统能够根据农作物需水需肥特性和环境参数进行自动化管理,有效减少了人力投入和经验依赖,减轻了农民的工作负担,提高了工作效率。

其次,该系统能够根据实时数据进行动态调整,灵活性强。

可以根据农作物的生长阶段、天气条件等情况进行灌溉和施肥方案的调整,确保农作物得到适当的水量和养分供应。

再次,该系统具有高度智能化的特点,能够通过算法和模型对数据进行分析与计算,准确预测农田的需水需肥情况,优化农田管理方案,达到节约资源、提高农作物产量和质量的目的。

此外,水肥一体化自动控制系统可以准确控制灌溉和施肥设备的工作状态,避免了过量的水肥使用,减少了浪费,降低了对土壤和水源的污染,保护了生态环境。

水肥一体化浇灌系统解决方案

水肥一体化浇灌系统解决方案

水肥一体化浇灌系统解决方案水肥一体化浇灌系统是一种综合利用水资源和肥料资源的现代化农业生产技术。

它通过优化农田灌溉方式,将水肥合理配比,控制灌溉水量和施肥量,实现高效利用水和肥料资源,提高农作物产量和质量,减少土地和水资源的污染,具有重要的经济、环境和社会效益。

1.基于精准农业技术的信息化管理系统。

利用现代信息技术,通过传感器、遥感、无人机等手段对农田土壤水分、肥料需要量和作物生长情况进行实时监测和数据分析,为农民提供精确的灌溉和施肥建议。

2.灌溉系统的优化设计。

通过合理布置农田的渠系、管线和喷灌设备,实现精确的灌溉水量控制和均匀的水分分布。

采用滴灌、微喷、喷灌等节水灌溉技术,减少水分蒸发和淋失,提高农作物的用水效率。

3.肥料施用系统的改进。

采用肥料配方施肥技术,根据不同作物的养分需要量和土壤养分含量,科学合理地选择和调整肥料种类和施肥量,降低肥料的使用量和损失,减少农田养分的排放。

4.智能控制系统的引入。

利用自动化控制技术和智能传感器,实现对灌溉和施肥过程的自动监测和控制。

根据农田的实际需求,调整灌溉和施肥的节奏和剂量,实现精确施肥和灌溉,提高水肥利用效率。

5.农民培训和技术支持。

开展水肥一体化浇灌系统的培训和技术推广活动,加强对农民的宣传和教育,提高他们的水肥一体化浇灌技术水平,增强他们的动力和能力来推广和应用水肥一体化浇灌技术。

1.提高农作物的产量和质量。

通过精确控制灌溉和施肥的时间、剂量和方式,满足作物对水分和营养的需求,促进作物的生长和发育,提高产量和品质。

2.节约水资源。

通过合理的灌溉方式和节水灌溉技术,减少水分的损失和浪费。

根据农田的需求和土壤的水分状况,精确控制灌溉的水量和频率,提高用水效率。

3.减少肥料的使用量和污染。

通过精确配比和控制施肥的剂量,避免过量的肥料投入和养分的浪费。

减少农田肥料的排放,降低水体和土壤的养分污染。

4.保护土壤和水环境。

通过精确施肥和灌溉的管理,减少农田的养分流失和土壤侵蚀,保持土壤的肥力和结构稳定。

水肥一体化(滴灌)详细全解!

水肥一体化(滴灌)详细全解!

⽔肥⼀体化(滴灌)详细全解!⽔肥⼀体化(滴灌)详细全解!1、什么是⽔肥⼀体化技术?答:狭义来讲,就是通过灌溉系统施肥,作物在吸收⽔分的同时吸收养分。

通常与灌溉同时进⾏的施肥,是在压⼒作⽤下,将肥料溶液注⼊灌溉输⽔管道⽽实现的。

溶有肥料的灌溉⽔,通过灌⽔器(喷头、微喷头和滴头等),将肥液喷洒到作物上或滴⼊根区。

⼴义讲,就是把肥料溶解后施⽤,包含淋施、浇施、喷施、管道施⽤等。

2、⽔肥⼀体化技术的理论基础是什么?答:植物有两张"嘴巴",根系是它的⼤嘴巴,叶⽚是⼩嘴巴。

⼤量的营养元素是通过根系吸收的。

叶⾯喷肥只能起补充作⽤。

我们施到⼟壤的肥料怎样才能到达植物的嘴边呢?通常有两个过程。

⼀个叫扩散过程。

肥料溶解后进⼊⼟壤溶液,靠近根表的养分被吸收,浓度降低,远离根表的⼟壤溶液浓度相对较⾼,结果产⽣扩散,养分向低浓度的根表移动,最后被吸收。

另⼀个过程叫质流。

植物在有阳光的情况下叶⽚⽓孔张开,进⾏蒸腾作⽤(这是植物的⽣理现象),导致⽔分损失。

根系必须源源不断地吸收⽔分供叶⽚蒸腾耗⽔。

靠近根系的⽔分被吸收了,远处的⽔就会流向根表,溶解于⽔中的养分也跟着到达根表,从⽽被根系吸收。

因此,肥料⼀定要溶解才能被吸收,不溶解的肥料植物"吃不到",是⽆效的。

在实践中就要求灌溉和施肥同时进⾏(或叫⽔肥⼀体化管理),这样施⼊⼟壤的肥料被充分吸收,肥料利⽤率⼤幅度提⾼。

3、常⽤的⽔肥⼀体化措施有哪些?答:⽔肥⼀体化的前提条件就是把肥料先溶解。

然后通过多种⽅式施⽤。

如叶⾯喷施、挑担淋施和浇施、拖管淋施、喷灌施⽤、微喷灌施⽤(南⽅最普及⽔带喷施)、滴灌施⽤、树⼲注射施⽤等。

其中滴灌施⽤由于延长了施肥时间,效果最好,最节省肥料。

4.滴灌施肥有哪些优点?答:滴灌施肥是⼀种精确施肥法,只施在根部,显著提⾼肥料利⽤率,与常规施肥相⽐,可节省肥料⽤量30—50%以上;⼤量节省施肥劳⼒,⽐传统施肥⽅法节省90%以上。

水肥一体自动化种植解决方案

水肥一体自动化种植解决方案

水肥一体自动化种植解决方案第1章绪论 (3)1.1 水肥一体自动化种植概述 (3)1.2 水肥一体化技术的发展现状与趋势 (4)1.3 水肥一体自动化种植解决方案的意义 (4)第2章水肥一体自动化种植技术原理 (4)2.1 水肥一体化技术原理 (4)2.1.1 肥料选择与配比 (5)2.1.2 溶肥设备 (5)2.1.3 灌溉系统 (5)2.1.4 控制系统 (5)2.2 自动化控制技术原理 (5)2.2.1 传感器监测 (5)2.2.2 控制策略 (5)2.2.3 执行机构 (5)2.2.4 控制系统 (5)2.3 水肥一体自动化种植系统设计 (5)2.3.1 系统总体布局 (6)2.3.2 传感器布局 (6)2.3.3 控制系统设计 (6)2.3.4 执行机构选型与布局 (6)2.3.5 系统集成与调试 (6)第3章水肥一体自动化种植系统硬件设计 (6)3.1 系统硬件架构 (6)3.2 水肥控制器设计 (6)3.3 传感器及其接口设计 (7)3.4 执行器及其接口设计 (7)第4章水肥一体自动化种植系统软件设计 (7)4.1 系统软件架构 (7)4.1.1 整体架构 (7)4.1.2 数据采集层 (7)4.1.3 数据处理层 (7)4.1.4 控制策略层 (8)4.1.5 用户界面层 (8)4.2 数据处理与分析 (8)4.2.1 数据预处理 (8)4.2.2 数据存储与管理 (8)4.2.3 数据分析 (8)4.3 控制策略与算法 (8)4.3.1 水肥一体化控制策略 (8)4.3.2 智能优化算法 (8)4.3.3 参数自适应调整 (8)4.4.1 实时数据显示 (8)4.4.2 历史数据查询 (8)4.4.3 参数设置 (9)4.4.4 异常报警 (9)4.4.5 系统日志 (9)第5章水肥一体自动化种植关键技术研究 (9)5.1 水肥配比技术 (9)5.1.1 配比原则与依据 (9)5.1.2 配比算法与优化 (9)5.1.3 配比设备与调控 (9)5.2 灌溉控制技术 (9)5.2.1 灌溉模式选择 (9)5.2.2 灌溉制度制定 (9)5.2.3 灌溉控制系统设计 (9)5.3 肥料溶解与输送技术 (10)5.3.1 肥料溶解原理 (10)5.3.2 肥料输送与分配 (10)5.3.3 肥料溶解与输送设备的优化 (10)5.4 数据采集与传输技术 (10)5.4.1 数据采集 (10)5.4.2 数据传输 (10)5.4.3 数据处理与分析 (10)5.4.4 数据安全与隐私保护 (10)第6章水肥一体自动化种植系统应用实例 (10)6.1 系统在蔬菜种植中的应用 (10)6.1.1 系统配置 (10)6.1.2 应用效果 (11)6.2 系统在果树种植中的应用 (11)6.2.1 系统配置 (11)6.2.2 应用效果 (11)6.3 系统在粮食作物种植中的应用 (12)6.3.1 系统配置 (12)6.3.2 应用效果 (12)6.4 系统在其他作物种植中的应用 (12)6.4.1 系统配置 (12)6.4.2 应用效果 (12)第7章水肥一体自动化种植系统的安装与调试 (13)7.1 系统安装要求与步骤 (13)7.1.1 安装要求 (13)7.1.2 安装步骤 (13)7.2 系统调试与优化 (13)7.2.1 调试方法 (13)7.2.2 优化措施 (13)7.3.1 定期检查 (14)7.3.2 保养措施 (14)7.4 系统故障排除与解决方案 (14)7.4.1 常见故障及原因 (14)7.4.2 解决方案 (14)第8章水肥一体自动化种植效益分析 (14)8.1 产量与品质提升 (14)8.2 水肥资源利用效率 (14)8.3 经济效益分析 (15)8.4 社会与生态效益 (15)第9章水肥一体自动化种植技术的发展前景与挑战 (15)9.1 技术发展趋势 (15)9.1.1 智能化与精准化 (15)9.1.2 集成化与模块化 (15)9.1.3 绿色环保与可持续发展 (16)9.2 政策与产业环境分析 (16)9.2.1 政策支持 (16)9.2.2 产业环境 (16)9.3 技术推广与应用挑战 (16)9.3.1 技术成熟度 (16)9.3.2 成本与投资回报 (16)9.3.3 技术培训与人才储备 (16)9.4 未来研究方向与建议 (16)9.4.1 技术研发 (16)9.4.2 产业应用 (16)9.4.3 政策支持 (17)第10章结论与展望 (17)10.1 研究成果总结 (17)10.2 水肥一体自动化种植技术在我国的推广与应用 (17)10.3 水肥一体自动化种植技术在国际市场的竞争力分析 (17)10.4 水肥一体自动化种植技术的未来发展展望 (17)第1章绪论1.1 水肥一体自动化种植概述水肥一体自动化种植技术是将灌溉与施肥有机结合的一种现代农业技术。

智能农业之水肥一体化智能灌溉系统

智能农业之水肥一体化智能灌溉系统

智能农业灌溉系统组成要素及功能特点一、智能农业水肥一体化应用技术:智能农业灌溉系统可以帮助生产者很方便的实现自动的水肥一体化管理。

系统由上位机软件系统、区域控制柜、分路控制器、变送器、数据采集终端组成。

通过与供水系统有机结合,实现智能化控制。

可实现智能化监测、控制灌溉中的供水时间、施肥浓度以及供水量。

变送器(土壤水分变送器、流量变送器等)将实时监测的灌溉状况,当灌区土壤湿度达到预先设定的下限值时,电磁阀可以自动开启,当监测的土壤含水量及液位达到预设的灌水定额后,可以自动关闭电磁阀系统。

可根据时间段调度整个灌区电磁阀的轮流工作,并手动控制灌溉和采集墒情。

整个系统可协调工作实施轮灌,充分提高灌溉用水效率,实现节水、节电,减少劳动强度,降低人力投入成本。

用户通过操作触摸屏进行管控,控制器会按照用户设定的配方、灌溉过程参数自动控制灌溉量、吸肥量、肥液浓度、酸碱度等水肥过程中的重要参数,实现对灌溉、施肥的定时、定量控制,节水节肥、省力省时、提高产量,专用于连栋温室、日光温室、温室大棚和大田种植灌溉作业。

托普云农智能农业水肥一体化技术以自动化精确灌溉、施肥,节省用工和提高效益为核心,在现代农业生产中应用显示出明显的优势。

本文就该技术作相关阐述。

二、智能农业水肥一体化系统组成以及适用范围:托普云农智能农业水肥一体化微滴灌系统主要是由阀门、水表、水泵、自动反冲洗过滤系统、智肥化施肥机、pH/EC控制器、施肥罐、安全阀、电磁阀、田间管道系统等组成。

该系统适合在已建成设施农业基地或符合建设微灌设施要求的地方应用,要有固定水源且水质良好,如水库、蓄水池、地下水、河渠水等。

比较适合用于经济价值较高的蔬菜和果树等作物上。

三、智能农业水肥一体化微灌、施肥制度制定:1、微灌制度拟定智能农业水肥一体化灌溉系统根据作物全生育期需水量与降水量的差值确定灌溉定额、灌水次数、灌水间隔时间、每次灌水延续时间和灌水定额等。

还需考虑土壤墒情、温度、设施条件和农业技术措施等。

水肥一体化灌溉系统标准

水肥一体化灌溉系统标准

水肥一体化灌溉系统标准水肥一体化灌溉系统是一种综合利用水资源和优化肥料施用的灌溉技术,旨在提高农田水肥利用效率,降低农业生产的环境负担。

本文将深入研究水肥一体化灌溉系统标准的制定,并探讨其在可持续农业发展中的重要性与应用前景。

一、水肥一体化灌溉系统的基本原理水资源利用:通过灌溉系统合理利用地下水、地表水等水资源,确保作物得到充足的灌溉水。

肥料施用:通过灌溉系统将肥料溶液均匀喷洒到农田,实现对植物的精准施肥,提高养分利用率。

智能控制:利用现代化技术,实现对灌溉水量和肥料施用量的智能控制,根据作物需求进行精确调控。

二、水肥一体化灌溉系统标准的制定水资源管理标准:规定水肥一体化灌溉系统中的水资源管理要求,包括水质标准、用水计划等。

肥料施用标准:确定肥料种类、浓度,规范施用的时间和方式,以确保植物获得适量的养分。

智能控制技术标准:制定对于智能控制技术的标准,确保系统具备实时监测和响应的能力,提高灌溉系统的智能化水平。

环境友好标准:考虑水肥一体化灌溉系统对环境的影响,制定相应的环保标准,降低农业生产对环境的负面影响。

三、水肥一体化灌溉系统标准的应用与重要性提高水肥利用效率:标准的制定能够推动水肥一体化灌溉系统的科学应用,提高水肥利用效率,减少资源浪费。

减少环境污染:通过合理的施肥和智能的灌溉控制,减少农业面源污染,对水体和土壤产生的负面影响减小。

节约能源:标准有助于优化系统的能源利用,减少灌溉过程中的能耗,降低农业生产对能源的依赖。

农产品质量提升:精准的灌溉和施肥有助于提高农产品的品质,增加农产品的市场竞争力。

四、水肥一体化灌溉系统标准的未来发展趋势智能化技术应用:未来水肥一体化灌溉系统标准可能更加注重智能化技术的应用,包括物联网、大数据等,实现对系统的远程监控和精准控制。

生态农业发展:随着对生态环境保护意识的提高,水肥一体化灌溉系统标准可能更加关注生态农业的发展,促进农业可持续经营。

五、面临的挑战与对策农民接受度:农民对新技术的接受度可能是一个挑战,需要通过培训和宣传提高农民对水肥一体化灌溉系统的认识和接受度。

水肥一体化滴灌技术助力黑土地保护

水肥一体化滴灌技术助力黑土地保护

在常规的农田灌溉和施肥过程中,可能出现大量的水资源浪费和化学肥料使用效率不高的情况。

研究表明,采用水肥一体化方法可以显著提高水肥的利用效率,同时也能够提升农作物的产量和品质。

水肥一体化滴灌技术,是一种融合了浇灌与施肥的革命性的农业技术。

这种技术依赖于压力系统(或者地形自然差异),能够把可溶解的固态或者液态肥料,按照土壤的营养元素和植物对肥料的需要程度与特点,通过滴灌管进行精确的灌溉,从而使得植物的根部生长区的土壤能够一直维持一个舒适并适当的水分浓度。

此项技术既能最大程度地减少排水流失,还可以向植物提供丰富的水分与营养。

此项技术拥有极高的水资源使用效率、肥料利用率高、灌溉均匀性好等优点,在保护黑土地肥力、提高粮食产量和增加农业生态效益方面起着关键的影响技术优势节约用水,减少水资源消耗。

相较于传统的灌溉技术,水肥一体化农田滴灌技术在灌溉效果和节水方面表现出色。

这主要归因于传统灌溉技术通常使用喷灌和大水漫灌等方法,这种方式在灌溉过程中经常导致水资源的大量浪费,对水资源的节约产生了负面影响。

然而,采用水肥一体化农田滴灌技术可以有效地解决这个问题。

根据农田的特性和土壤状况,按照一定的比例将水和肥料有效地混合,同时,使用可控制的管道,我们可以严格按照种植需求来管理水和肥料的使用,以防止大量的水资源浪费,从而提升水肥一体化农田滴灌技术的效果。

根据相关资料,这项技术的灌溉均匀度能达到80%~90%,因此可以提高水分率至95%,通常比地面浇灌节约30%~50%的水,比喷灌节约10%~20%的水。

提高化肥使用率,保障粮食安全。

采用水肥一体化滴灌技术在黑土地区的应用,可以有效降低氮肥的损耗,提升养分利用率,提高农作物养分吸收效率,减少非点源污染发生。

根据宁夏农垦中心的实验数据显示,在风沙土环境下,水肥一体化的情况下,玉米对氮磷钾肥料的利用率可达53.94%、44.85%及63.75%,这一数值远超过传统33.8%、15.4.%、48.79%的氮玉米增产20%的条件,肥料的总投入将减少30%或更多,其中核心地带的减少幅度可能在15%—30%之间。

农作物智能水肥一体化管理系统的设计与实现

农作物智能水肥一体化管理系统的设计与实现

农作物智能水肥一体化管理系统的设计与实现随着农业科技的发展,农作物水肥一体化管理已成为现代农业的重要组成部分。

为了提高农作物的产量和质量,减少对环境的污染,智能化水肥一体化管理系统应运而生。

本文将介绍农作物智能水肥一体化管理系统的设计与实现。

一、系统需求分析农作物智能水肥一体化管理系统的设计与实现,首先需要进行系统需求分析。

系统的目标是提供农作物的水肥管理方案,通过智能化手段实现准确的水肥供应,将农作物的水肥需求与实际供应进行匹配。

基于此,系统需具备以下功能:1. 传感器数据采集:系统需要能够实时采集农田的土壤湿度、气候条件、植物生长状况等数据。

2. 数据分析与处理:系统需要能够对采集到的数据进行分析与处理,根据植物的生长状况判断其对水肥的需求,并给出相应的水肥供应方案。

3. 智能控制:系统需要能够实现对农田的灌溉和施肥过程的自动化控制,根据水肥需求给出精确的控制指令。

4. 用户界面:系统需要提供用户界面,方便用户监控农田的水肥管理情况、查看数据分析结果,并对系统进行设置和控制。

二、系统设计与实现1. 硬件设备选择:为了实现系统的功能,需要选择合适的硬件设备。

可以选择先进的传感器,如土壤湿度传感器、温湿度传感器、光照传感器等,用于实时采集土壤和气候条件数据。

此外,还需要选择自动化控制设备,如灌溉系统和施肥系统,用于实现智能化的水肥供应。

2. 数据采集与处理:采集到的土壤湿度、气候条件等数据需要进行处理,以便做出相应的水肥供应决策。

可以通过数据处理算法,将数据与水肥需求模型进行匹配,给出相应的水肥供应方案。

3. 智能控制:基于数据分析的结果,系统需要能够给出具体的控制指令。

可以设计控制算法,根据植物的水肥需求和实际供应情况,精确地控制灌溉和施肥过程。

4. 用户界面:系统需要具备友好的用户界面,方便用户监控农田的水肥管理情况、查看数据分析结果。

用户界面还应具备设置和控制系统的功能,方便用户对系统进行调整和控制。

发展水肥一体化智能灌溉系统的作用

发展水肥一体化智能灌溉系统的作用

发展水肥一体化智能灌溉系统的作用水肥一体化智能灌溉系统是现代农业生产中的一种重要技术。

该系统通过监测土壤水分、土壤肥力和作物生长状态等信息,智能化地进行水肥调控,实现精准灌溉和施肥,以提高农作物产量和品质。

下面将从水资源利用效率、生产成本减少、环境保护和农业可持续性发展等方面,详细说明发展水肥一体化智能灌溉系统的作用。

首先,发展水肥一体化智能灌溉系统能够提高水资源利用效率。

传统的农业灌溉方式通常采用的是定量灌溉或者时间灌溉,无法做到根据土壤水分情况进行精确调控。

而水肥一体化智能灌溉系统通过实时监测土壤水分和作物需水量,并结合气象数据等因素进行精确灌溉控制。

通过夜间灌溉、滴灌等高效节水技术,能够减少灌水量的浪费,提高水资源利用率。

其次,水肥一体化智能灌溉系统可以降低农业生产成本。

传统的灌溉方式往往依赖人工调控,难以精确把握土壤水分情况,容易导致浪费和过量施肥等情况,增加了农业生产的成本。

而水肥一体化智能灌溉系统能够自动控制灌溉和施肥,根据实时监测数据进行精确调控,能够减少水肥的浪费,提高施肥效果,降低农业生产成本。

再者,发展水肥一体化智能灌溉系统有助于环境保护。

传统的农业灌溉方式往往采用大量的水资源和化肥,而这些资源的过度利用和过量施用,不仅浪费资源,还会对土壤和水体环境造成污染。

而水肥一体化智能灌溉系统可以根据实时监测数据进行精确的水肥调控,减少了过量施用的情况,可有效减少对土壤和水体环境的污染,做到绿色无污染的农业生产。

最后,发展水肥一体化智能灌溉系统有助于实现农业的可持续发展。

水是农业生产中不可或缺的资源,合理利用水资源是农业可持续发展的重要保障。

水肥一体化智能灌溉系统通过提高水资源利用效率、降低生产成本和保护环境等方面的作用,为农业生产提供了可持续发展的技术手段。

它能够帮助农民提高农作物产量和品质,增加农民的收入,促进农村经济发展。

总而言之,发展水肥一体化智能灌溉系统在提高水资源利用效率、降低生产成本、保护环境和推动农业可持续发展等方面起到了重要的作用。

水肥一体化控制系统的使用及适用介绍

水肥一体化控制系统的使用及适用介绍

水肥一体化控制系统的使用及适用介绍简介水肥一体化控制系统是一种集水肥控制与智能化技术于一体的新型水肥一体化管理系统。

水肥一体化控制系统在农业生产中非常重要,具有节约资源、提高效率并且可靠的优点。

现在我们就来了解一下水肥一体化控制系统的使用及适用介绍。

系统介绍水肥一体化控制系统由土壤监测系统、水肥供应系统和智能化控制系统三部分组成,旨在减少肥料和水的浪费,保证农作物的产量和品质。

其中,水肥供应系统负责水和肥料的供应,智能化控制系统则通过土壤监测系统测量土壤的关键参数,以进行精确的配肥和灌溉,保障农作物的有效生长。

系统使用安装过程安装水肥一体化控制系统需要遵循以下步骤:1.选择合适的水肥一体化控制系统,并将其安装在合适的位置。

2.将土壤监测系统与连接到控制系统的无线传感器网络连接。

3.确保有足够的水和肥料供应。

4.根据养殖环境设置智能化控制系统参数。

5.等待系统自动启动,开始自动监测土壤状况,并且自动供水、配肥、灌溉等操作。

操作方法水肥一体化控制系统的主要操作包括设置神经网络参数、控制水和肥料的供应、监测水和肥料的浓度、监测土壤的湿度、温度、PH值等,其中主要的操作有以下几个:1.设置神经网络参数。

该系统通过神经网络来处理和分析土壤、水和气体等各种环境数据,以便更好地控制农作物的生长。

为此,用户需要设置神经网络参数,如输入数据、输出数据、中间节点、激活函数等等。

2.控制水和肥料的供应。

系统能够自动供应水和肥料,用户也可以手动操作,进行灌溉和肥料的配给。

3.监测水和肥料的浓度。

系统可以对水和肥料的浓度进行实时监测,以便及时调整配比,保证农作物所需的水和肥料的比例。

4.监测土壤的湿度、温度、PH值等。

系统通过连接到控制系统的无线传感器网络监测土壤的各种情况,并将结果反馈给用户。

系统优势水肥一体化控制系统有以下优势:1.能够自动化管理水和肥料供应,减少人工干预,降低劳动力成本。

2.通过监测土壤状态的各种参数,系统可以自动配合每个作物的特性进行控制,提高农作物的生产效率和品质。

水肥一体化系统

水肥一体化系统

水肥一体化系统简介水肥一体化系统是一种农业技术,通过结合水文、土壤学和肥料学等相关知识,综合利用水资源和肥料,最大限度地提高农作物生长的效益。

该系统主要由水源、供水设备、肥料供应系统、灌溉系统和监控系统等组成,通过精确计量、调控和管理,实现对农作物生长环境的优化调控,提高农作物的产量和品质。

优点资源节约水肥一体化系统能够精确计量并控制灌溉和施肥的比例,减少水肥的浪费。

通过准确的水肥投放,最大限度地满足农作物对水肥的需求,避免了水肥的过量供应,节约了资源。

作物效益提高水肥一体化系统通过精确测量土壤水分含量和肥料含量,并根据作物的需求进行调节,使农作物得到适量的水肥供应。

这可以提高作物的养分吸收效率,增加产量,改善品质。

自动化管理水肥一体化系统采用了先进的监控技术和自动化设备,能够实时监测土壤水分含量和肥料含量。

利用自动化控制系统,可以对水肥的投放进行精确控制和调整,提高管理效率,减少人力成本。

环境友好水肥一体化系统能够减少农业产生的水污染和土壤污染。

通过精确的施肥,可以减少养分的流失和土壤中的残留物。

同时,减少了过量浇水所导致的水源污染。

这对保护环境具有积极的作用。

实施步骤1.设计水肥一体化系统的布局和设备安装位置。

根据农田的大小和形状,合理规划灌溉系统、肥料供应系统和监控系统等设备的位置。

2.安装供水设备。

根据实际情况选择合适的供水设备,如水泵和水管等。

将供水设备连接到主要水源,并确保供水设备的正常运行。

3.安装肥料供应系统。

选择适用的肥料供应设备,并按照农作物的需求进行配置。

将肥料供应设备与灌溉系统相连,确保肥料供应的精确控制。

4.安装灌溉系统。

根据农田的实际情况,选择适当的灌溉设备,如喷灌或滴灌系统。

将灌溉设备与供水设备和肥料供应系统连接起来,确保灌溉的精确调控。

5.安装监控系统。

选择合适的监控设备,如土壤水分传感器和肥料浓度测定仪等。

将监控设备安装在农田中,实时监测土壤的水分含量和肥料的浓度。

水肥一体化自动控制系统介绍

水肥一体化自动控制系统介绍

托普云农水肥一体化自动控制系统可以帮助生产者很方便的实现自动的水肥一体化管理。

系统由系统云平台、墒情数据采集终端、视频监控、施肥机、过滤系统、阀门控制器、电磁阀、田间管路等组成。

一、水肥一体化自动控制系统概述水肥一体化自动控制系统整个系统可根据监测的土壤水分、作物种类的需肥规律,设置周期性水肥计划实施轮灌。

施肥机会按照用户设定的配方、灌溉过程参数自动控制灌溉量、吸肥量、肥液浓度、酸碱度等水肥过程的重要参数,实现对灌溉、施肥的定时、定量控制,充分提高水肥利用率,实现节水、节肥,改善土壤环境,提高作物品质的目的。

该系统广泛应用于大田、旱田、温室、果园等种植灌溉作业。

二、水肥一体化自动控制系统介绍:1、云平台:随时随地查看园区数据园区三维图综合管理,所有监控点直观显示,监测数据一目了然。

土壤数据:土壤温度、土壤水分、土壤盐分,土壤PH值等;气象数据:空气温度、空气湿度、光照强度、降雨量、风速、风向、二氧化碳浓度等;植物本体数据:果实膨大、茎秆微变化、叶片温度等;设备状态:施肥机、水泵压力、阀门状态,水表流量,灯光状态,卷帘状态等。

三、水肥一体化自动控制系统介绍:1.托普云农水肥一体化自动控制系统云平台:1、随时随地查看园区数据园区三维图综合管理,所有监控点直观显示,监测数据一目了然。

土壤数据:土壤温度、土壤水分、土壤盐分,土壤PH值等;气象数据:空气温度、空气湿度、光照强度、降雨量、风速、风向、二氧化碳浓度等;植物本体数据:果实膨大、茎秆微变化、叶片温度等;设备状态:施肥机、水泵压力、阀门状态,水表流量,灯光状态,卷帘状态等。

托普云农水肥一体化自动控制系统可选择种植地块、作物、传感器、图表展示、数字列表展示,还可选择时间段(最近一天、一周、一个月);2、托普云农水肥一体化自动控制系统视频监控管理区域内放置360°全方位红外球形摄像机,可清晰直观的实时查看种植区域作物生长情况、设备远程控制执行情况等。

水肥一体化系统 智能灌溉系统(含配置清单)

水肥一体化系统 智能灌溉系统(含配置清单)

智能水肥一体化灌溉系统一、系统概述随着农业物联网技术的发展与应用,推动了水肥一体化的进步,基于农业物联网技术的农田水肥一体化智能灌溉系统可以对不同作物的需水、需肥规律以及土壤环境和养分含量状况,自动对水、肥进行检测、调配和供给,在提高灌溉用水效率同时又实现了对灌溉、施肥的定时、定量控制,不仅仅能够节水节肥节电,并且还能够减少劳动力的投入,降低人工成本。

该系统广泛应用于大田、旱田、温室、果园等种植灌溉作业。

二、水肥一体化系统原理图水肥一体化技术是将灌溉与施肥融为一体的农业新技术,借助压力系统(或地形自然落差),将肥料按土壤养分含量和作物种类的需肥规律和特点,配兑成的肥液与灌溉水一起,通过管道系统供水、供肥,使水肥相融后,通过管道、喷枪或喷头形成喷灌、均匀、定时、定量,喷洒在作物发育生长区域,使生长区域土壤始终保持疏松和适宜的含水量,同时根据不同的作物的需肥特点,土壤环境和养分含量状况,需肥规律情况进行不同生育期的需求设计,把水分、养分定时定量,按比例直接提供给作物。

三.、水肥一体化系统组成水肥一体化系统通常包括水源工程、首部枢纽、过滤系统、田间输配水管网系统和控制软件平台等部分,还会配套田间气象监测站、土壤墒情监测站。

在实际生产中由于供水条件和灌溉要求不同,水肥一体化自动施肥系统可能仅由部分设备组成。

1、水源工程江河、渠道、湖泊、井、水库均可作为水源,只要水质符合灌溉要求,均可作为灌溉的水源。

为了充分利用各种水源进行灌溉,往往需要修建引水、蓄水和提水工程,以及相应的输配电工程,这些统称为水源系统。

水源工程主要涉及的控制系统有水泵启停控制系统,蓄水池水位远程监测系统等。

根据泵房内的水泵、管路等,可灵活设计。

水泵变频控制系统2、首部枢纽系统其首部枢纽系统主要包括水泵、过滤器、压力和流量监测设备、压力保护装置、施肥设备(水肥一体机)和自动化控制设备。

首部枢纽担负着整个系统的驱动、检控和调控任务,是全系统的控制调度中心。

农田灌溉自动化系统设计

农田灌溉自动化系统设计

农田灌溉自动化系统设计农田灌溉自动化系统是一种集成了传感器、控制器和执行器的智能化系统,旨在提高农田灌溉的效率和精确度,减少人工操作的需求,降低水资源浪费。

本文将介绍农田灌溉自动化系统的设计原理、功能以及应用范围。

设计原理:农田灌溉自动化系统的设计原理基于监测土壤湿度和环境条件,通过自动控制灌溉设备来实现灌溉操作。

系统通过传感器监测土壤湿度和气温、湿度等环境条件,将这些数据传输给控制器进行分析和判断。

控制器根据预设的灌溉策略,调控执行器控制灌溉设备的工作状态,以实现自动化的灌溉操作。

功能:1. 实时监测土壤湿度:通过土壤湿度传感器,系统能够准确监测各个地点的土壤湿度情况。

通过这些数据分析和图表展示,农民可以及时了解农田的水分状况,预防干旱或过度浇水的情况发生。

2. 环境条件监测:系统还可以通过环境传感器监测气温、湿度等环境条件,根据不同的作物的需求,自动调整灌溉策略。

例如在高温、干燥季节,系统可以自动增加灌溉次数和时间,以保持适宜的土壤湿度。

3. 灌溉策略优化:系统可以根据不同的作物需求,自动优化灌溉策略。

通过数据分析和算法计算,系统能够确定最佳的灌溉时间、灌溉量和灌溉方式,从而最大程度地降低水资源浪费。

4. 远程监控与控制:农田灌溉自动化系统还可以与互联网连接,实现远程监控与控制。

农民可以通过手机或电脑远程监测农田的灌溉情况,随时调整灌溉策略,提高灌溉的效率和精确度。

应用范围:农田灌溉自动化系统已经在全球范围内广泛应用,特别是在干旱地区和大规模农田中具有重要作用。

该系统适用于各种作物的灌溉需求,包括小麦、水稻、玉米、葡萄等。

由于系统具有灵活性和可扩展性,可以根据具体情况进行定制,因此适用于不同地区和规模的农田。

总结:农田灌溉自动化系统通过将传感器、控制器和执行器集成为一体,实现了农田灌溉的智能化和自动化操作。

系统的设计原理基于土壤湿度和环境条件的监测,通过自动控制灌溉设备进行灌溉操作。

该系统具有实时监测土壤湿度、环境条件的功能,优化灌溉策略,实现远程监控与控制的特点。

水肥一体化智能灌溉系统原理

水肥一体化智能灌溉系统原理

水肥一体化智能灌溉系统原理
水肥一体化智能灌溉系统是一种新型的灌溉方式,它通过智能控制系统来动态调整土壤中的水分和肥料的含量,实现精准灌溉和肥料施用,提高农作物的产量和质量。

其原理主要包括以下三个方面:
一、智能控制系统
水肥一体化智能灌溉系统的核心是智能控制系统。

该系统通过传感器测量土壤中的水分含量、养分含量、温度等参数,将这些数据传输到控制器。

控制器根据这些数据计算出农作物生长所需的水分和养分,然后控制灌溉设备和施肥设备灌溉和施肥。

二、精准灌溉
水肥一体化智能灌溉系统可以根据土壤中的水分含量和农作物的需水量,精确计算出灌水量和灌溉时间。

一旦土壤中的水分含量过低,系统会立即启动灌溉设备进行灌溉。

通过定时灌溉和实时监测,系统可以保证土壤中的水分稳定,从而满足农作物的生长需要。

三、精准施肥
水肥一体化智能灌溉系统可以根据农作物的生长阶段和养分需求,精确计算出所需的肥料量和施肥时间。

系统会根据数据计算出肥料的含量和比例,然后将其通过施肥设备施入土壤中。

通过精准施肥,系统可以减少养分浪费,提高农作物的吸收效率和产量。

综上所述,水肥一体化智能灌溉系统可以实现精准灌溉和肥料施用,避免了传统灌溉和施肥方式中出现的过度灌溉和养分浪费等问题,提高了农作物的产量和品质,为农业生产带来了新的发展机遇。

水肥一体化智能灌溉解决方案

水肥一体化智能灌溉解决方案

水肥一体化智能灌溉解决方案第1章引言 (4)1.1 研究背景 (4)1.2 研究意义 (4)1.3 国内外研究现状 (4)第2章水肥一体化技术概述 (5)2.1 水肥一体化技术定义 (5)2.2 水肥一体化技术原理 (5)2.3 水肥一体化技术优势 (5)第3章智能灌溉系统设计 (6)3.1 系统总体设计 (6)3.1.1 设计原则 (6)3.1.2 系统架构 (6)3.1.3 系统功能 (6)3.2 灌溉设备选型 (6)3.2.1 灌溉方式 (6)3.2.2 灌溉设备 (6)3.3 智能控制系统设计 (6)3.3.1 控制策略 (6)3.3.2 控制模块 (7)3.3.3 控制系统软件 (7)3.3.4 系统集成 (7)第4章水肥一体化关键技术研究 (7)4.1 灌溉制度设计 (7)4.1.1 灌溉制度设计原则 (7)4.1.2 灌溉制度参数确定 (7)4.1.3 灌溉制度优化方法 (7)4.2 肥料选择与配比 (7)4.2.1 肥料种类及特性 (7)4.2.2 肥料配比原则 (7)4.2.3 肥料配比计算方法 (8)4.3 水肥耦合调控策略 (8)4.3.1 水肥耦合调控原理 (8)4.3.2 水肥耦合调控技术 (8)4.3.3 水肥耦合调控策略优化 (8)4.3.4 水肥耦合调控效果评价 (8)第5章数据采集与传输 (8)5.1 传感器选型与布置 (8)5.1.1 传感器选型 (8)5.1.2 传感器布置 (8)5.2 数据采集与处理 (9)5.2.1 数据采集 (9)5.3 数据传输与通信 (9)5.3.1 数据传输 (9)5.3.2 通信协议 (9)5.3.3 数据安全 (9)第6章智能控制策略 (9)6.1 控制算法概述 (9)6.2 模糊控制策略 (10)6.2.1 模糊控制原理 (10)6.2.2 模糊控制设计 (10)6.2.3 模糊控制应用实例 (10)6.3 优化算法在水肥一体化中的应用 (10)6.3.1 优化算法概述 (10)6.3.2 基于优化算法的智能控制策略 (10)6.3.3 优化算法应用实例 (10)第7章系统集成与实现 (10)7.1 系统集成技术 (10)7.1.1 系统集成概述 (10)7.1.2 集成框架设计 (11)7.1.3 集成关键技术 (11)7.2 系统软件设计 (11)7.2.1 软件架构设计 (11)7.2.2 数据处理与分析 (11)7.2.3 控制策略设计 (11)7.3 系统硬件设计 (11)7.3.1 硬件架构设计 (11)7.3.2 传感器选型与设计 (11)7.3.3 执行器选型与设计 (11)7.3.4 控制器设计 (11)7.3.5 通信设备设计 (11)第8章案例分析与实验验证 (12)8.1 案例一:设施蔬菜水肥一体化智能灌溉 (12)8.1.1 项目背景 (12)8.1.2 方案设计 (12)8.1.3 实施效果 (12)8.2 案例二:果园水肥一体化智能灌溉 (12)8.2.1 项目背景 (12)8.2.2 方案设计 (12)8.2.3 实施效果 (12)8.3 实验验证与分析 (12)8.3.1 实验方法 (12)8.3.2 实验结果 (12)8.3.3 分析讨论 (13)第9章经济效益与环境影响分析 (13)9.1.1 投资成本分析 (13)9.1.2 运营成本分析 (13)9.1.3 效益分析 (13)9.2 环境影响评估 (13)9.2.1 水资源利用 (13)9.2.2 肥料利用 (13)9.2.3 能源消耗 (13)9.2.4 生态环境保护 (13)9.3 水肥一体化在可持续发展中的作用 (14)9.3.1 提高农业生产效率 (14)9.3.2 促进农业产业结构调整 (14)9.3.3 满足水资源与环境保护需求 (14)9.3.4 推动农业科技创新 (14)第10章展望与挑战 (14)10.1 技术展望 (14)10.1.1 智能灌溉系统的持续优化 (14)10.1.2 肥料配方数据库的完善与拓展 (14)10.1.3 农业物联网技术的创新应用 (14)10.1.4 数据分析与决策支持系统的升级 (14)10.2 市场前景 (14)10.2.1 农业现代化对水肥一体化智能灌溉的需求 (14)10.2.2 政策扶持与市场驱动下的产业发展 (14)10.2.3 农业产业链的整合与拓展 (14)10.2.4 国际市场的发展趋势与我国的市场潜力 (14)10.3 面临的挑战与对策 (14)10.3.1 技术挑战与对策 (14)10.3.1.1 系统集成与兼容性问题 (14)10.3.1.2 灌溉设备精准控制与智能化程度提升 (15)10.3.1.3 农业大数据处理与分析能力的加强 (15)10.3.2 产业挑战与对策 (15)10.3.2.1 农业基础设施的不足与改进 (15)10.3.2.2 农业技术推广与培训机制的完善 (15)10.3.2.3 农户接受度与产业发展协同 (15)10.3.3 政策与经济挑战与对策 (15)10.3.3.1 政策支持与监管体系的完善 (15)10.3.3.2 投资回报周期与风险防控 (15)10.3.3.3 农业保险与金融支持的创新 (15)10.3.4 环境与社会挑战与对策 (15)10.3.4.1 节水减排与生态环境保护 (15)10.3.4.2 社会责任与可持续发展战略 (15)10.3.4.3 公众参与与科普宣传的加强 (15)第1章引言1.1 研究背景全球气候变化和人口增长的加剧,水资源短缺问题日益严重,农业生产用水效率低下,化肥过量使用导致的环境污染等问题亦日益突出。

滴灌水肥一体化介绍

滴灌水肥一体化介绍

滴灌水肥一体化2019年7月18日一、背景及意义水是生物生存之源,是农林业生产发展的必要条件,肥料是生物增产高产的重要保障。

长期以来缺水与肥料的大量使用是制约我国农林持续健康发展的重要因素。

我国水资源丰富,总量年约2.81万亿㎡,但人均占有量少。

近年来随着全球气候变暖,干旱加剧,干旱面积不断扩大,全国年均农业受旱面积已有20世纪50年代的1330万hm2上升到20世纪90年代以来的2670万hm2。

全国旱灾近年平均减产粮食250亿kg,经济损失达150-200亿元。

我国的传统灌溉方式仍然以渠道灌溉为主,渠道是我国农田灌溉的主要输水工程。

但传统的土渠输水渗漏损失太大,约占到输水量的50%-60%,一些土质较差的渠道输水损失高达70%以上。

据有关资料分析,全国各渠道渗漏损失量达1700亿m3 /年。

我国是肥料生产大国同时也是消费大国,根据国际肥料工业协会数据和我国统计数据分析,2007年我国化肥使用量已占全球用量的35%左右,且使用量仍以每年3.5%的速度增长。

由于施肥技术、肥料生产、产品不合理等多方面原因导致我国的肥料当季利用率低,氮肥为15%-35%,磷肥为10%-20%,钾肥为35%-50%,均低于日本、美国、英国、以色列等发达国家。

肥料的大量与不合理施用导致我国部分土壤结构改变,土壤肥力下降,土壤重金属污染加剧,土壤盐化碱化严重,同时也加剧了地表径流的水质污染导致水体富营养化、地下水污染、农产品品质下降等一系列危害。

减少化肥使用量,合理施肥,提高化肥利用率已成为我国农业可持续发展和保障我国粮食安全的重要问题。

自动化滴灌水肥一体化以其高节水节肥率得到了国家的大力支持,发展水肥一体化是现代农业发展的一种趋势。

二、滴灌水肥一体化简介滴灌是指按照作物需水要求,通过低压管道系统与安装在毛管上的灌水器,将水和作物需要的养分一滴一滴,均匀而又缓慢的滴入作物根区土壤中的灌水方法。

滴灌不破坏土壤结构,土壤内部水、肥、气、热经常保持适宜于作物生长的良好状况,蒸发损失小,不产生地面径流,几乎没有深层渗漏,是一种省水的灌水方式。

滴灌-微喷水肥药一体化系统在设施农业灌溉中的应用

滴灌-微喷水肥药一体化系统在设施农业灌溉中的应用

滴灌-微喷水肥药一体化系统在设施农业灌溉中的应用一、滴灌-微喷水肥药一体化系统的技术原理滴灌-微喷水肥药一体化系统是一种将滴灌、微灌、肥料施用和农药喷洒集成于一体的现代化灌溉系统。

其技术原理是通过管道将水、肥料和农药输送到作物生长区,并利用滴灌器和微喷头进行定量、定时、定点的水肥一体化灌溉。

这种系统不仅可以满足作物生长的水分需求,还能够在灌溉的同时为作物提供合理的营养和防治病虫害的措施。

二、滴灌-微喷水肥药一体化系统的特点1. 灌溉精准滴灌-微喷水肥药一体化系统通过滴灌器和微喷头可以将水、肥料和农药精准地输送到作物的生长区,实现了定量、定时、定点的灌溉,有效地减少了水肥的浪费,提高了水分利用率,降低了农药的使用量。

2. 灌溉一体化滴灌-微喷水肥药一体化系统集成了灌溉、肥料施用和农药喷洒功能于一体,可以实现多种农业生产要素的一体化应用,降低了管理成本,提高了生产效率。

3. 适用性强滴灌-微喷水肥药一体化系统适用于各种作物的灌溉需求,可以满足不同作物在不同生长阶段的水肥需求,具有广泛的适用性。

4. 环保节能滴灌-微喷水肥药一体化系统在灌溉过程中可以减少土壤的侵蚀和养分流失,降低了农药的使用量和环境污染,符合现代农业可持续发展的要求。

三、滴灌-微喷水肥药一体化系统在设施农业中的应用案例近年来,滴灌-微喷水肥药一体化系统在中国设施农业中得到了广泛的应用。

在南方温室蔬菜种植中,通过采用滴灌-微喷水肥药一体化系统,可以实现对蔬菜作物在不同生长阶段的水肥需求进行精准控制,提高蔬菜的品质和产量。

在北方大棚设施果蔬种植中,滴灌-微喷水肥药一体化系统可以帮助果蔬作物减少病虫害的发生,并且提高果实的产量和品质。

在花卉苗木生产中,通过滴灌-微喷水肥药一体化系统可以实现对花卉苗木的精准灌溉和养分供应,提高了花卉苗木的存活率和商品价值。

四、滴灌-微喷水肥药一体化系统的发展趋势随着设施农业的不断发展和应用,滴灌-微喷水肥药一体化系统将会迎来更加广泛的应用和发展。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

农田水肥一体化自动滴灌系统
一、模块化
农田滴灌自动系统主要由以下几个部分组成:
1、水源:水源井或渠水
2、过滤:砂滤、沉淀或精密过滤
3、计量:对浇灌用水量进行计量
4、轮灌控制:手动或自动进行轮灌控制
5、施肥:人工施肥或自动计量跟踪施肥
6、自动控制系统:自动控制系统时整个系统的控制中心,有
可编程控制器、触摸屏,计算机组成。

我们所做的整个系统力求用现代的自动化技术来替代人工的繁重劳动操作,做到科学化、自动化滴灌和精准化施肥。

我们的农田水肥一体化自动化滴灌系统将以上几个部分整合,做成以下几个模块,可在实际中组合和控制:
1)水源和过滤模块,根据不同的水源做不同的配置,用可编程控制器对水源泵进行自动控制,确保对滴灌带不发
生堵塞的现象,根据用户要求可实现恒压供水,保证供
水压力平稳。

2)轮灌控制模块,使用计算机软件或可编程控制器,对农田滴灌阀进行自动轮灌控制,操作人员只需将轮灌间隔
时间输入,系统则自动根据要求进行轮灌,轮灌完毕发
出信号,提醒操作人员。

整个轮灌过程无需人员干预。

3)自动施肥模块,自动施肥系统是一套科学的精准施肥控制,系统测量供水系统的流量,根据供水流量自动按照
加药比例进行加药,加药比例可根据每次不同的药剂进
行设定。

加药量始终跟随供水量的大小自动变化,无需
人员干预。

4)自动控制系统模块,将上述几个模块用通讯的方式级联,有可编程控制器或计算机统一控制,并可将控制信号通
过GPRS等方式远传到后台服务器,通过手机APP进行
远端查看或应急控制,实现智能化管理。

二、智能化
系统的智能化体现在:
1)前端控制系统智能化、自动化,操作人员只需将系统检查,启动后,设置好所需要的滴灌参数后,系统则自动
运行,做到了现场无人值守,系统出现故障,则自动发
出警示信号给操作人员;
2)后台智能化管理,前端控制器信号可通过GPRS或3G上网卡与后台服务器通讯,用户可使用手机APP平台随时
观察农田浇地的情况和相关的数据信息,并可做应急处
理;
3)通过APP管理平台,用户可随时了解科学种田以及农田管理的基本知识,并可实现用户之间的信息互动
三、一体化
一体化是我们这套系统的管理特点,我们将整套系统集成在一个撬装平台上,或将每个模块做一个小的撬装平台,根据需要进行拼装,最后进行功能化的集中控制,现场实现分散型自动控制,后台实现统一管理。

相关文档
最新文档