概率论与数理统计 习题三 参考答案及过程 许承德 哈尔滨工业大学出版社
概率论与数理统计(第三版)第三章课后答案
![概率论与数理统计(第三版)第三章课后答案](https://img.taocdn.com/s3/m/81a815f831126edb6e1a106f.png)
第三章随机向量X122C ;C ; 3c ; 53C ;C ; 25.4 (1) a=-95 12P{1<X < 乙 KYS 5张只2.5肝(1.3"仏5)—F(2.3 卜3 128<3)P{(X.r)eD}=f^『*6*必"制:[(6-〉”-討疗&T:(护-®+5討詁(护3+5”)|:=諾=善3.5 K: (1)y)工J: J:01 皿=f eP寸"血=(-<- UXr^ IS)=(1 -0X1 - 严)<2>P(rsx)= f:\f*如2严创;『dy =「2严(-八Qdx =J; 2宀(i十肚.j:(2宀》女肚=(・严3.6H: PC^ + JSa3.9B : x 術加HK 昨通»斤(0为:饴X>1 或xvOirL /(xj) = Op斤0) = [4.8>・(2-如=4 83[2*4门:*8川卜2》+黑计Zr(x) = O y > 或 <00<><1A(x) = f>.8y(2 “妙=2 妒(2-纠;=2*(2-x)©SOSxMl 时,/t (x) = | 4.8y(2-x>A =2 4y :(2-x)|r =2 4工(2・兀)3・7參见课本后面P227的答案3.8 f x (x) = J :/(x, >•>” J:訊如扌吟|:■专厶ox J :討法訐£ 'X0SXS2AW= 2* 0苴它/iO)h3>20<> <1 0其它Zr(x)h [(沖0<x<l=V2工+3°"幻3其它0 其它0<> <23 60< v<2其它 b 其它Y的血利K率密度跚齐3为:® 当或<0时尸/(x f>) = 0, /}(>) = 0②当0 Sg 时,力3 = f 4.8>(2-x>ft = 4 8>[2x-lr]|; = 4.8口1 卜2)+ £y2] =2.4>(3-4y+>:)MO (1〉券见课本石面P227的答案3 J2聲见课本后面P228的答案313 (1) 6x(17 0<x<l 0 其它0^x<l其它0<y<l其它311參见课本后面P228的答案【3+卸对TO<x<irt, A(x)>o2 5 X 她缘分布 1 0.15 0.250350.75 30.050.18 0.02 0.2S布0.2 0.430.371由表格可知 P{X-l;Y-2b0.29/:P{X.l}P{Y-2)-0.3225对于0<y<2时,/;(i)>0?0<x<l6x 2+ln0<x<lTT3 6 0 ■其它o+y其它-3-咖2卄犒h=2<+兰30 »JiX X故p^X=x)P{Y=y)所以X与Y不独立由鮭僚件P {X二工;丫二)[} "{工=卫尸{ Y=y)则P{X =2;K=2} = P{X = 2}P{Y = 2}P(X=2;r = 3) = P{X= 2}P{Y = 3}y;P{x=?}=iCO""30<x<2, 时,几(力齐(>)=4冷—/(兀“当x>2或x<OH,当)〉1 或y<o时,A(x)/iO) = o=/(x?j) 所以,x与Y之硼互独立・(訐(2〉衽3・9中,f x(x) =‘2.4三(2-力»0<x<l其它A(J)=2.4r(3-4v +y2)b 0^ v<l 其它3.16 B (J 在 3.8 中f x M= 2Io OSxS2其它AO) = <3y2 0<j ^16其它Xr(或40)二2・4疋(2-力2・4丿(3-4,+护)“・7&?(2-如3-令+小*/Uy),所以x与丫之冋不相5独NJ.17 解:二严=xe »)=匸心) f t(0=.匚fg 沁二 f* xe'(妇c以詁;芦希Z (x)/ o)=xe詁孑=fg >')故x与Y相歹檢立J・18聲见课本后面P228的答案。
概率论与数理统计第三章习题及答案
![概率论与数理统计第三章习题及答案](https://img.taocdn.com/s3/m/250bbbdc6f1aff00bed51e25.png)
概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
《概率论与数理统计》第三版 课后习题答案. (同名10050)
![《概率论与数理统计》第三版 课后习题答案. (同名10050)](https://img.taocdn.com/s3/m/84d92116580216fc700afd80.png)
习题一1.1 写出下列随机试验的样本空间:(1) 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 解:}{12,11,4,3,22 =Ω;(3) 解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4) ()}{;51,4≤≤=Ωj i j i(5) 解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 解:}{207 x x =Ω;(8) 解:()}{l y x y x y x =+=Ω,0,0,8 ; 1.2(1) C AB ;(2))(C B A ⋃ (3)C B A ⋃⋃(4)C B A C B A C B A ⋃⋃ (5)BC AC AB ⋃⋃ (6)C B C A B A ⋃⋃(7)ABC (8)C AB C B A BC A ⋃⋃1.3 设样本空间}{20≤≤=Ωx x , 事件A =}{15.0≤≤x x ,}{6.18.0≤=x x B具体写出下列各事件:(1)AB }{18.0≤=x x ;(2) B A -=}{8.05.0≤≤x x ; (3)B A -=}{28.05.00≤⋃≤≤x x x ; (4) B A ⋃=}{26.15.00≤⋃≤≤x x x1.6 解:由于),(,B A A A AB ⋃⊆⊆故)()()(B A P A P AB P ⋃≤≤,而由加法公式,有:)()()(B P A P B A P +≤⋃1.7 解:(1) 昆虫出现残翅或退化性眼睛对应事件概率为:175.0)()()()(=-+=⋃WE P E P W P E W P(2)由于事件W 可以分解为互斥事件E W WE ,,昆虫出现残翅, 但没有退化性眼睛对应事件 概率为:1.0)()()(=-=WE P W P E W P(3) 昆虫未出现残翅, 也无退化性眼睛的概率为:825.0)(1)(=⋃-=E W P E W P .1.8 解:(1) 由于B AB A AB ⊆⊆,,故),()(),()(B P AB P A P AB P ≤≤显然当B A ⊆时P(AB) 取到最大值。
《概率论与数理统计》第三版--课后习题标准答案-
![《概率论与数理统计》第三版--课后习题标准答案-](https://img.taocdn.com/s3/m/f00ee7b4b9d528ea81c77970.png)
习题一:1.1 写出下列随机实验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数。
解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和。
解:}{12,11,4,3,22 =Ω;(3) 观察某医院一天内前来就诊的人数。
解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品。
解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故:()}{;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格。
解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2)。
解:用x 表示最低气温, y 表示最高气温。
考虑到这是一个二维的样本空间,故:()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离。
解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8 ; 1.2(1) A 与B 都发生, 但C 不发生。
C AB ;(2) A 发生, 且B 与C 至少有一个发生。
)(C B A ⋃; (3) A,B,C 中至少有一个发生。
C B A ⋃⋃;(4) A,B,C 中恰有一个发生。
C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生。
BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生。
C B C A B A ⋃⋃;(7) A 。
B 。
C 中至多有两个发生。
ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。
概率论与数理统计第三、四章答案(DOC)
![概率论与数理统计第三、四章答案(DOC)](https://img.taocdn.com/s3/m/0e60a070a0116c175e0e48b2.png)
第三章习题参考答案1.计算习题二第2题中随机变量的期望值。
解:由习题二第2题计算结果3 12 2E =0 13 3 3般对0-1分布的随机变量长与宽的期望计算,另一种是利用周长期望的分布计算。
解:方法一:先按定义计算长的数学期望E = 29 0.3 30 0.5 31 0.2 二 29.9和宽的数学期望=19 0.3 20 0.4 21 0.3 = 20再利用数学期望的性质计算周长的数学期望E 二 E (2 2 )= 2 29.9 2 20 二 99.8方法二:利用习题二地30题的计算结果(见下表),按定义计算周长 的数学期望E = 96 0.09 98 0.27 100 0.35 102 0.23 104 0.06=98.83. 对习题二第31题,(1)计算圆半径的期望值;(2) E (2 R )是否1 2p 0胡 g,…“=32.用两种方法计算习题二第 30题中周长的期望值,一种是利用矩形等于2 ER ?(3)能否用二(ER)2来计算远面积的期望值,如果不能用,又该如何计算?其结果是什么?解(1) ER = 10 0.1 11 0.4 12 0.3 13 0.2 = 11.6 (2)由数学期望的性质有E(2 二 R) =2二 ER 二 232(3)因为EC R 2)=二E(R)2,所以不能用二E(R 2)来计算圆面积 的期望值。
利用随机变量函数的期望公式可求得2 2 2 2 2 2E(「: R ) = ■-E(R ) = ■-(10 0.1 11 0.4 12 0.3 13 0.2) =135.4■:或者由习题二第31题计算结果,按求圆面积的数学期望E =100二 0.1 121 0.4 144 0.3 169 0.2)=135.44. 连续随机变量的概率密度为kx a,0 :: x :: 1(k,a 0)0,其它-be 1「(x)dx 二 i kx adx1a 1k _ 3 a 24解得 a = 2 ,k = 35. 计算服从拉普拉斯分布的随机变量的期望和方差(参看习题二第 16 题)。
最新概率论与数理统计第三章习题及答案
![最新概率论与数理统计第三章习题及答案](https://img.taocdn.com/s3/m/97ce01a2a1c7aa00b42acb1a.png)
概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
概率论与数理统计第三章习题及答案
![概率论与数理统计第三章习题及答案](https://img.taocdn.com/s3/m/250bbbdc6f1aff00bed51e25.png)
概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
《概率论与数理统计》(第三版)课后习题答案
![《概率论与数理统计》(第三版)课后习题答案](https://img.taocdn.com/s3/m/c162d7d5f90f76c661371ad8.png)
习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8 ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。
概率论与数理统计教程(答案及课件)chapter3
![概率论与数理统计教程(答案及课件)chapter3](https://img.taocdn.com/s3/m/ec7b61f79e3143323968930e.png)
,
则有
1 PZ x 2
e
x
du x
故
于是
Z
X
~ N 0 , 1 .
X ~ N , 2
X x FX x P X x P x
根据定理1,只要将标准正态分布的分布函数制 成表,就可以解决一般正态分布的概率计算问题.
2
设 X~ N ( , 2 ) ,
X 的分布函数是
2σ 2
F x
x 1 e 2πσ
( t μ )2
dt , x
正态分布由它的两个参数μ和σ唯一确定, 当μ和
σ不同时,是不同的正态分布。 下面我们介绍一种最重要的正态分布
标准正态分布
3
标准正态分布
7 (3)求P 1 X 2
解
kx , x f ( x ) 2 , 2 0,
0 x3 3 x4 其它
(1) 由
0
1 f ( x )dx 1得k 6
3
4
x
F x
x
f t dt , x
x2 x1
f ( x )dx
利用概率密度可确 定随机点落在某个 范围内的概率
4
若 f (x) 在点 x 处连续 , 则有
F ( x ) f ( x ).
5. 对连续型 r.v X , 有
P (a X b) P (a X b) P (a X b) P (a X b)
F(x) = P(X x) x<0 时,{ X x } = , 故 F(x) =0 0 x < 1 时, 1 F(x) = P{X x} = P(X=0) = 3
概率论与数理统计第3章课后题答案
![概率论与数理统计第3章课后题答案](https://img.taocdn.com/s3/m/241d51c777a20029bd64783e0912a21614797fe0.png)
概率论与数理统计第3章课后题答案第三章连续型随机变量3.1 设随机变数 的分布函数为F(x),试以F(x)表示下列概率:(1)P( a);(2)P( a);(3)P( a);(4)P( a) 解:(1)P( a) F(a 0) F(a);(2)P( a) F(a 0);(3)P( a)=1-F(a);(4)P( a) 1 F(a 0)。
3.2 函数F(x) 11 x2是否可以作为某一随机变量的分布函数,如果(1) x(2)0 x ,在其它场合适当定义;(3)- x 0,在其它场合适当定义。
解:(1)F(x)在(- , )设随机变数 具有对称的分布密度函数p(x),即p(x) p( x),证明:对任意的a 0,有(1)F( a) 1 F(a)12ap(x)dx;(2)P( a) 2F(a) 1;(3)P( a) 2 1 F(a) 。
证:(1)F( a)ap(x)dx 1ap(x)dx=1ap( x)dx 1ap(x)dx=1 F(a) 1 (2)P( ap(x)dxap(x)dxa12a0ap(x)dx;ap(x)dx 2 p(x)dx,由(1)知1-F(a)故上式右端=2F(a) 1;12ap(x)dx。
(3)P( a) 1 P( a) 1 [2F(a) 1] 2[1 F(a)]3.5 设F1(x)与F2(x)都是分布函数,又a 0,b 0是两个常数,且a b 1。
证明F(x) aF1(x) b F2(x)也是一个分布函数,并由此讨论,分布函数是否只有离散型和连续型这两种类型?证:因为F1(x)与F2(x1) F2(x2),于是F(x1) aF1(x1) b F2(x1) aF1(x2) b F2(x2) F(x2)F2(x都是分布函数,当x1 x2时,F1(x1) F1(x2),又xlimF(x) lim[aF1(x) b F2(x)] 0xlimF(x) lim[aF1(x) b F2(x)] a b 1xxF(x 0) aF1(x 0) b F2(x 0) aF1(x) b F2(x) F(x)所以,F(x)也是分布函数。
《概率论与数理统计》第三版__课后习题答案._
![《概率论与数理统计》第三版__课后习题答案._](https://img.taocdn.com/s3/m/0ead9ac7856a561252d36fbd.png)
习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{ ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22 =Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{ ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ω ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207 x x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8 ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;- 2 -(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。
概率论与数理统计课后习题答案
![概率论与数理统计课后习题答案](https://img.taocdn.com/s3/m/0d43d2cbcd22bcd126fff705cc17552707225ebc.png)
概率论与数理统计课后习题答案1. 引言概率论与数理统计是统计学的基础课程之一,通过学习这门课程,我们可以理解和运用概率和统计的概念和方法,从而分析和解决实际问题。
本文档将提供《概率论与数理统计》课后习题的详细答案。
2. 习题答案第一章:概率论的基本概念和基本原理1.1 选择题a.概率是以【答案】】D.形式结果给出的。
b.从一副有 52 张牌的扑克牌中,任意取一张牌,其点数是 7 的概率是【答案】】C.$\\frac{4}{52}$。
1.2 计算题a.设 A, B 是两个事件,已知 P(A) = 0.5,P(B) = 0.4,且P(A ∪ B) = 0.7,求P(A ∩ B)。
【解答】根据概率的加法定理可知,P(P∪P)=P(P)+P(P)−P(P∩P)代入已知数据,得到:0.7=0.5+0.4−P(P∩P)解上式得到P(A ∩ B) = 0.2。
所以,P(A ∩ B) = 【答案】0.2。
b.有两个相互独立的事件 A 和 B,且 P(A) = 0.3,P(A∪ B) = 0.5,求 P(B)。
【解答】由于事件 A 和 B 是相互独立的,所以根据概率的乘法定理可知,P(P∪P)=P(P)×P(P)代入已知数据,得到:0.5=0.3×P(P)解上式得到 P(B) = 0.5 ÷ 0.3 = 1.67。
所以,P(B) = 【答案】1.67。
第二章:随机变量及其分布2.1 选择题a.设 X 是一个随机变量,其概率密度函数为:$$ f(x) = \\begin{cases} \\frac{1}{2}x & 0 < x < 2 \\\\ 0 &其他 \\end{cases} $$则 P(X < 1) = 【答案】】C. 0.25。
b.对 X 的分布函数 F(x) = 1 - e^{-x}, 其中x ≥ 0,下列说法中错误的是【答案】】B. F(x) 是一个概率密度函数。
概率论与数理统计第三章课后习题及参考答案
![概率论与数理统计第三章课后习题及参考答案](https://img.taocdn.com/s3/m/3199f906fc4ffe473268ab0e.png)
概率论与数理统计第三章课后习题及参考答案1.设二维随机变量),(Y X 只能取下列数组中的值:)0,0(,)1,1(-,31,1(-及)0,2(,且取这几组值的概率依次为61,31,121和125,求二维随机变量),(Y X 的联合分布律.解:由二维离散型随机变量分布律的定义知,),(Y X 的联合分布律为2.某高校学生会有8名委员,其中来自理科的2名,来自工科和文科的各3名.现从8名委员中随机地指定3名担任学生会主席.设X ,Y 分别为主席来自理科、工科的人数,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:(1)由题意,X 的可能取值为0,1,2,Y 的可能取值为0,1,2,3,则561)0,0(3833====C C Y X P ,569)1,0(381323====C C C Y X P ,569)2,0(382313====C C C Y X P ,561)3,0(3833====C C Y X P ,283)0,1(382312====C C C Y X P ,289)1,1(38131312====C C C C Y X P ,283)2,1(382312====C C C Y X P ,0)3,1(===Y X P ,563)0,2(381322====C C C Y X P ,563)1,2(381322====C C C Y X P ,0)2,2(===Y X P ,0)3,2(===Y X P .),(Y X 的联合分布律为:(2)X 的边缘分布律为X 012P1452815283Y 的边缘分布律为Y 0123P285281528155613.设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其他.,0,42,20),6(),(y x y x k y x f 求:(1)常数k ;(2))3,1(<<Y X P ;(3))5.1(<Y P ;(4))4(≤+Y X P .解:方法1:(1)⎰⎰⎰⎰--==+∞∞-+∞∞-422d d )6(d d ),(1yx y x k y x y x f ⎰--=42202d |)216(y yx x x k k y y k 8d )210(42=-=⎰,∴81=k .(2)⎰⎰∞-∞-=<<31d d ),()3,1(y x y x f Y X P ⎰⎰--=32102d d )216(yx yx x x ⎰--=32102d |)216(81y yx x x 83|)21211(81322=-=y y .(3)),5.1()5.1(+∞<<=<Y X P X P ⎰⎰+∞∞-∞---=5.1d d )6(81yx y x ⎰⎰--=425.10d d )6(81y x y x y yx x x d )216(81422⎰--=3227|)43863(81422=-=y y .(4)⎰⎰≤+=≤+4d d ),()4(y x y x y x f Y X P ⎰⎰---=2042d )6(d 81x y y x x ⎰+-⋅=202d )812(2181x x x 32|)31412(1612032=+-=x x x .方法2:(1)同方法1.(2)20<<x ,42<<y 时,⎰⎰∞-∞-=yxv u v u f y x F d d ),(),(⎰⎰--=y xv u v u 20d d )6(81⎰--=y xv uv u u 202d |)216(81⎰--=y v xv x x 22d )216(81y xv v x xv 222|)21216(81--=)1021216(81222x xy y x xy +---=,其他,0),,(=y x F ,∴⎪⎩⎪⎨⎧<<<<+---=其他.,0,42,20),1021216(81),(222y x x x xy y x xy y x F 83)3,1()3,1(==<<F Y X P .(3))42,5.1(),5.1()5.1(<<<=+∞<<=<Y X P Y X P X P )2,5.1()4,5.1(<<-<<=Y X P Y X P 3227)2,5.1()4,5.1(=-=F F .(4)同方法1.4.设随机变量),(Y X 的概率密度为⎩⎨⎧>>=--其他.,0,0,0,e ),(2y x A y x f y x 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)⎰⎰⎰⎰+∞+∞--+∞∞-+∞∞-==02d d e d d ),(1yx A y x y x f y x ⎰⎰+∞+∞--=002d e d e y x A y x2|)e 21(|)e (020A A y x =-⋅-=∞+-∞+-,∴2=A .(2)0>x ,0>y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰--=yxv u vu 02d d e 2yv x u 020|)e 21(|)e (2---⋅-=)e 1)(e 1(2y x ----=,其他,0),(=y x F ,∴⎩⎨⎧>>--=--其他.,0,0,0),e 1)(e 1(),(2y x y x F y x .5.设随机变量),(Y X 的概率密度为⎩⎨⎧≤≤≤≤=其他.,0,10,10,),(y x Axy y x f 求:(1)常数A ;(2)),(Y X 的联合分布函数.解:(1)2121d d d d ),(11010⋅⋅===⎰⎰⎰⎰+∞∞-+∞∞-A y y x x A y x y x f ,∴4=A .(2)10≤≤x ,10≤≤y 时,⎰⎰∞-∞-=y xv u v u f y x F d d ),(),(⎰⎰=yxv u uv 0d d 4220202||y x v u yx =⋅=,10≤≤x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4xv u uv 210202||x v u x =⋅=,10≤≤y ,1>x 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=100d d 4yu v uv 202102||y v u y =⋅=,1>x ,1>y 时,⎰⎰∞-∞-=yx v u v u f y x F d d ),(),(⎰⎰=101d d 4v u uv 1||102102=⋅=v u,其他,0),(=y x F ,∴⎪⎪⎪⎩⎪⎪⎪⎨⎧>>≤≤>>≤≤≤≤≤≤=其他.,0,1,1,1,10,1,,1,10,,10,10,),(2222y x y x y y x x y x y x y x F .6.把一枚均匀硬币掷3次,设X 为3次抛掷中正面出现的次数,Y 表示3次抛掷中正面出现次数与反面出现次数之差的绝对值,求:(1)),(Y X 的联合分布律;(2)X 和Y 的边缘分布律.解:由题意知,X 的可能取值为0,1,2,3;Y 的可能取值为1,3.易知0)1,0(===Y X P ,81)3,0(===Y X P ,83)1,1(===Y X P ,0)3,1(===Y X P 83)1,2(===Y X P ,0)3,2(===Y X P ,0)1,3(===Y X P ,81)3,3(===Y X P 故),(Y X 得联合分布律和边缘分布律为:7.在汽车厂,一辆汽车有两道工序是由机器人完成的:一是紧固3只螺栓;二是焊接2处焊点,以X 表示由机器人紧固的螺栓紧固得不牢的数目,以Y 表示由机器人焊接的不良焊点的数目,且),(Y X 具有联合分布律如下表:求:(1)在1=Y 的条件下,X 的条件分布律;(2)在2=X 的条件下,Y 的条件分布律.解:(1)因为)3,3()1,2()1,1()1,0()1(==+==+==+====Y X P Y X P Y X P Y X P Y P 08.0002.0008.001.006.0=+++=,所以43)1()1,0()1|0(=======Y P Y X P Y X P ,81)1()1,1()1|1(=======Y P Y X P Y X P ,101)1()1,2()1|2(=======Y P Y X P Y X P ,401)1()1,3()1|3(=======Y P Y X P Y X P ,故在1=Y 的条件下,X 的条件分布律为X 0123P4381101401(2)因为)2,2()1,2()0,2()2(==+==+====Y X P Y X P Y X P X P 032.0004.0008.002.0=++=,所以85)2()0,2()2,0(=======X P Y X P X Y P ,4)2()1,2()2,1(=======X P Y X P X Y P ,81)2()2,2()2,2(=======X P Y X P X Y P ,故在2=X 的条件下,Y 的分布律为:Y 012P8541818.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧>>=+-其他.,0,0,0,e ),()2(y x c y x f y x 求:(1)常数c ;(2)X 的边缘概率密度函数;(3))2(<+Y X P ;(4)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)⎰⎰⎰⎰+∞+∞+-+∞∞-+∞∞-==0)2(d d e d d ),(1yx c y x y x f y x⎰⎰+∞+∞--=002d e d ey x c y x2|)e (|)e 21(002c c y x =-⋅-=∞+-∞+-,∴2=c .(2)0>x 时,⎰+∞∞-=y y x f x f X d ),()(⎰+∞+-=0)2(d e 2y y x x y x 202e 2|)e (e 2-+∞--=-=,0≤x 时,0)(=x f X ,∴⎩⎨⎧≤>=-.0,0,0,e 2)(2x x x f x X ,同理⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)⎰⎰<+=<+2d d ),()2(y x y x y x f Y X P ⎰⎰---=2202d d e 2xy x yx 422202e e 21d e d e 2-----+-==⎰⎰xy x y x .(4)由条件概率密度公式,得,当0>y 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e 2,0,0,e e 2)(),()|(22|x x y f y x f y x f xy y x Y Y X ,0≤y 时,0)|(|=y x f Y X ,所以⎩⎨⎧>>=-其他.,0,0,0,e 2)|(2|y x y x f x Y X ;同理,当0>x 时,有⎩⎨⎧>=⎪⎩⎪⎨⎧>==----其他.其他.,0,0,e ,0,0,2e e 2)(),()|(22|y y x f y x f x y f yx y x X X Y 0≤x 时,0)|(|=x y f X Y ,所以⎩⎨⎧>>=-其他.,0,0,0,e )|(|y x x y f y X Y .9.设二维随机变量),(Y X 的概率密度函数为⎩⎨⎧<<<<=其他.,0,0,10,3),(x y x x y x f求:(1)关于X 、Y 的边缘概率密度函数;(2)条件概率密度函数)|(|y x f Y X ,)|(|x y f X Y .解:(1)10<<x 时,⎰+∞∞-=y y x f x f X d ),()(203d 3x y x x==⎰,其他,0)(=x f X ,∴⎩⎨⎧<<=其他.,0,10,3)(2x x x f X ,密度函数的非零区域为}1,10|),{(}0,10|),{(<<<<=<<<<x y y y x x y x y x ,∴10<<y 时,⎰+∞∞-=x y x f y f Y d ),()()1(23d 321y x x y-==⎰,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<-=其他.,0,10),1(23)(2y y y f Y .(2)当10<<y 时,有⎪⎩⎪⎨⎧<<-=⎪⎪⎩⎪⎪⎨⎧<<-==其他.其他.,0,1,12,0,1,)1(233)(),()|(22|x y y x x y y xy f y x f y x f Y Y X ,其他,0)|(|=y x f Y X ,故⎪⎩⎪⎨⎧<<<<-=其他.,0,10,1,12)|(2|y x y y xy x f Y X .当10<<x 时,有⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==其他.其他.,0,0,1,0,0,33)(),()|(2|x y x x y x x x f y x f x y f X X Y ,其他,0)|(|=x y f X Y ,故⎪⎩⎪⎨⎧<<<<=其他.,0,10,0,1)|(|x x y x x y f X Y .10.设条件密度函数为⎪⎩⎪⎨⎧<<<=其他.,0,10,3)|(32|y x yx y x f Y X Y 的概率密度函数为⎩⎨⎧<<=其他.,0,10,5)(4y y y f Y 求21(>X P .解:⎩⎨⎧<<<==其他.,0,10,15)|()(),(2|y x y x y x f y f y x f Y X Y ,则6447d )(215d d 15d d ),(21(121421211221=-===>⎰⎰⎰⎰⎰>x x x x y y x y x y x f X P xx .11.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧<<<<+=其他.,0,20,10,3),(2y x xyx y x f 求:(1)),(Y X 的边缘概率密度;(2)X 与Y 是否独立;(3))),((D Y X P ∈,其中D 为曲线22x y =与x y 2=所围区域.解:(1)10<<x 时,x x y xy x y y x f x f X 322d )3(d ),()(222+=+==⎰⎰+∞∞-,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<+=其他.,0,10,322)(2x x x x f X ,20<<y 时,⎰+∞∞-=x y x f y f Y d ),()(316)d 3(12+=+=⎰y x xy x ,其他,0)(=y f Y ,∴⎪⎩⎪⎨⎧<<+=其他.,0,20,316)(y y y f Y .(2)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(3)}22,10|),{(2x y x x y x D ≤≤<<=,∴⎰⎰+=∈102222d d )3()),((x xx y xy x D Y X P 457d )32238(10543=--=⎰x x x x .12.设二维随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=-其他.,0,0,0,e )1(),(2y x y x y x f x试讨论X ,Y 的独立性.解:当0>x 时,xx x X x yx y y x y y x f x f -∞+-∞+-∞+∞-=+-=+==⎰⎰e |11e d )1(e d ),()(002,当0≤x 时,0)(=x f X ,故⎩⎨⎧≤>=-.0,0,0,e )(x x x x f x X ,同理,可得⎪⎩⎪⎨⎧≤>+=.0,0,0,)1(1)(2y y y y f Y ,因为)()(),(y f x f y x f Y X =,所以X 与Y 相互独立.13.设随机变量),(Y X 在区域}|),{(a y x y x g ≤+=上服从均匀分布,求X 与Y 的边缘概率密度,并判断X 与Y 是否相互独立.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤+=其他.,0,,21),(2a y x a y x f ,当0<<-x a 时,有)(1d 21d ),()(2)(2x a ay a y y x f x f xa x a X +===⎰⎰++-+∞∞-,当a x <≤0时,有)(1d 21d ),()(2)(2x a a y a y y x f x f x a x a X -===⎰⎰---+∞∞-,当a x ≥时,0d ),()(==⎰+∞∞-y y x f x f X ,故⎪⎩⎪⎨⎧≥<-=.a x a x x a a x f X ,0,),(1)(2,同理,由轮换对称性,可得⎪⎩⎪⎨⎧≥<-=.a y a y y a a y f Y ,0,),(1)(2,显然)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立.14.设X 和Y 时两个相互独立的随机变量,X 在)1,0(上服从均匀分布,Y 的概率密度为⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2y y y f yY (1)求X 和Y 的联合概率密度;(2)设含有a 的二次方程为022=++Y aX a ,试求a 有实根的概率.解:(1)由题可知X 的概率密度函数为⎩⎨⎧<<=其他.,0,10,1)(x x f X ,因为X 与Y 相互独立,所以),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧><<==-其他.,0,0,10,e 21)()(),(2y x y f x f y x f yY X ,(2)题设方程有实根等价于}|),{(2X Y Y X ≤,记为D ,即}|),{(2X Y Y X D ≤=,设=A {a 有实根},则⎰⎰=∈=Dy x y x f D Y X P A P d d ),()),(()(⎰⎰⎰---==1021002d )e 1(d d e 2122xx y x x y⎰--=102d e12x x ⎰--=12e 21212x x ππππ23413.01)]0()1([21-=Φ-Φ-=.15.设i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,求行列式4321X X X X X =的分布律.解:由i X ~)4.0,1(b ,4,3,2,1=i ,且1X ,2X ,3X ,4X 相互独立,易知41X X ~)84.0,16.0(b ,32X X ~)84.0,16.0(b .因为1X ,2X ,3X ,4X 相互独立,所以41X X 与32X X 也相互独立,又32414321X X X X X X X X X -==,则X 的所有可能取值为1-,0,1,有)1()0()1,0()1(32413241======-=X X P X X P X X X X P X P 1344.016.084.0=⨯=,)1,1()0,0()0(32413241==+====X X X X P X X X X P X P )1()1()0()0(32413241==+===X X P X X P X X P X X P 7312.016.016.084.084.0=⨯+⨯=,)0()1()0,1()1(32413241=======X X P X X P X X X X P X P 1344.084.016.0=⨯=,故X 的分布律为X 1-01P1344.07312.01344.016.设二维随机变量),(Y X 的概率密度为⎩⎨⎧>>=+-其他.,0,0,0,e 2),()2(y x y x f y x 求Y X Z 2+=的分布函数及概率密度函数.解:0≤z 时,若0≤x ,则0),(=y x f ;若0>x ,则0<-=x z y ,也有0),(=y x f ,即0≤z 时,0),(=y x f ,此时,0d d ),()2()()(2==≤+=≤=⎰⎰≤+zy x Z y x y x f z Y X P z Z P z F .0>z 时,若0≤x ,则0),(=y x f ;只有当z x ≤<0且02>-=xz y 时,0),(≠y x f ,此时,⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 2d d ),()2()()(⎰⎰-+-=zx z y x y x 020)2(d e 2d z z z ----=e e 1.综上⎩⎨⎧≤>--=--.0,0,0,e e 1)(z z z z F z z Z ,所以⎩⎨⎧≤<='=-.0,0,0,e )()(z z z z F z f z Z Z .17.设X ,Y 是相互独立的随机变量,其概率密度分别为⎩⎨⎧≤≤=其他.,0,10,1)(x x f X ,⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y 求Y X Z +=的概率密度.解:0<z 时,若0<x ,则0)(=x f X ;若0≥x ,则0<-=x z y ,0)(=-x z f Y ,即0<z 时,0)()(=-x z f x f Y X ,此时,0d )()()(=-=⎰+∞∞-x x z f x f z f Y X Z .10≤≤z 时,若0<x ,则0)(=x f X ;只有当z x ≤≤0且0>-=x z y 时0)()(≠-x z f x f Y X ,此时,z zx z Y X Z x x x z f x f z f ---+∞∞--==-=⎰⎰e 1d e d )()()(0)(.1>z 时,若0<x ,0)(=x f X ;若1>x ,0)(=x f X ;若10≤≤x ,则0>-=x z y ,此时,0)()(≠-x z f x f Y X ,z x z Y X Z x x x z f x f z f ---+∞∞--==-=⎰⎰e )1e (d e d )()()(1)(.综上,⎪⎩⎪⎨⎧<>-≤≤-=--.0,0,1,e )1e (,10,e 1)(z z z z f z z Z .18.设随机变量),(Y X 的概率密度为⎪⎩⎪⎨⎧>>+=+-其他.,0,0,0,e)(21),()(y x y x y x f y x (1)X 和Y 是否相互独立?(2)求Y X Z +=的概率密度.解:(1)),()()(y x f y f x f Y X ≠,∴X 与Y 不独立.(2)0≤z 时,若0≤x ,则0)(=x f X ;若0>x ,则0<-=x z y ,0),(=y x f ,此时,0d ),()(=-=⎰+∞∞-x x z x f z f Z .0≥z 时,若0≤x ,则0)(=x f X ;只有当z x <<0且0>-=x z y 时0),(≠y x f ,此时,⎰+∞∞--=x x z x f z f Z d ),()(⎰+-+=zy x x y x 0)(d e )(21⎰-=z z x z 0d e 21z z -=e 212,所以⎪⎩⎪⎨⎧≤>=-.0,0,0,e 21)(2z z z z f zZ .19.设X 和Y 时相互独立的随机变量,它们都服从正态分布),0(2σN .证明:随机变量22Y X Z +=具有概率密度函数⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.解:因为X 与Y 相互独立,均服从正态分布),0(2σN ,所以其联合密度函数为2222)(2e 121),(σσπy x y xf +-⋅=,(+∞<<∞-y x ,)当0≥z 时,有⎰⎰≤+=≤+=≤=zy x Z yx y x f z Y X P z Z P z F 22d d ),()()()(22⎰⎰≤++-⋅=zy x y x y x 22222d e 1212)(2σσπ⎰⎰-⋅=πσθσπ2022d ed 12122zr r r ⎰-=zr r r 022d e122σσ,此时,2222e)(σσz Z z z f -=;当0<z 时,=≤+}{22z Y X ∅,所以0)()()(22=≤+=≤=z Y X P z Z P z F Z ,此时,0)(=z f Z ,综上,⎪⎩⎪⎨⎧<≥=-.0,0,0,e )(2222z z z z f z Z σσ.20.设),(Y X 在矩形区域}10,10|),{(≤≤≤≤=y x Y X G 上服从均匀分布,求},min{Y X Z =的概率密度.解:由题可知),(Y X 的联合概率密度函数为⎪⎩⎪⎨⎧≤≤≤≤=其他.,0,20,10,21),(y x y x f ,易证,X ~]1,0[U ,Y ~]2,0[U ,且X 与Y 相互独立,⎪⎩⎪⎨⎧≥<≤<=.1,1,10,,0,0)(x x x x x F X ,⎪⎪⎩⎪⎪⎨⎧≥<≤<=.2,1,20,2,0,0)(y y yy y F Y ,可得)](1)][(1[1)(z F z F z F Y X Z ---=)()()()(z F z F z F z F Y X Y X -+=⎪⎪⎩⎪⎪⎨⎧≥<≤-<=.1,1,10,223,0,02z z z z z ,求导,得⎪⎩⎪⎨⎧<<-=其他.,0,10,23)(z z z f Z .21.设随机变量),(Y X 的概率密度为⎩⎨⎧+∞<<<<=+-其他.,0,0,10,e ),()(y x b y x f y x (1)试确定常数b ;(2)求边缘概率密度)(x f X 及)(y f Y ;(3)求函数},max{Y X U =的分布函数.解:(1)⎰⎰⎰⎰+∞+-+∞∞-+∞∞-==01)(d d e d d ),(1yx b y x y x f y x ⎰⎰+∞--=10d e d e y x b y x)e 1(|)e(|)e (10102-+∞---=-⋅=b b y x ,∴1e11--=b .(2)10<<x 时,1)(1e1e d e e 11d ),()(--∞++--∞+∞--=-==⎰⎰x y x X y y y x f x f ,其他,0)(=x f X ,∴⎪⎩⎪⎨⎧<<-=--其他.,0,10,e 1e )(1x x f xX ,0>y 时,⎰+∞∞-=x y x f y f Y d ),()(yy x x -+--=-=⎰e d e e 1110)(1,0≤y 时,0)(=y f Y ,∴⎩⎨⎧≤>=-.0,0,0,e )(y y y f y Y .(3)0≤x 时,0)(=x F X ,10<<x 时,101e1e 1d e 1e d )()(----∞---=-==⎰⎰xxt xX X t t t f x F ,1≥x 时,1)(=x F X ,∴⎪⎪⎩⎪⎪⎨⎧≥<<--≤=--.1,1,10,e 1e1,0,0)(1x x x x F x X ;0≤y 时,0)(=y F Y ,0>y 时,y yv y Y Y v v v f y F --∞--===⎰⎰e 1d e d )()(0,∴⎩⎨⎧≤>-=-.0,0,0,e 1)(y y y F y Y ,故有)()()(y F x F u F Y X U =⎪⎪⎩⎪⎪⎨⎧≥-<≤--<=---.1,e 1,10,e 1e1,0,01u u u uu .。
概率论与数理统计(第三版)课后答案习题
![概率论与数理统计(第三版)课后答案习题](https://img.taocdn.com/s3/m/f4586387dc3383c4bb4cf7ec4afe04a1b071b035.png)
概率论与数理统计(第三版)课后答案习题第四章随机变量的数字特征1. 甲、乙两台自动车床,生产同一种零件,生产1000件产品所出的次品数分别用ξ,η ξ 0 1 2 3 η 0 1 2 p 0.7 0.1 0.1 0.1 p 0.5 0.3 0.2 解:因为E ξ=0?0.7+1?0.1+2?0.1+3?0.1=0.6;E η=0?0.5+1?0.3+2?0.2=0.7。
故就平均来说,甲机床要优于乙机床。
2. 连续型随机变量ξ的概率密度为f x kx x k a a()(,)=<<>??0100其它又知E ξ=0.75,求k , a 之值。
解:首先由密度函数性质知11,1,1)(=+∴==??∞+∞-∞+∞-a kdx kx dx x f a 即;又E ξ=0.75,即有 75.02,1,75.0)(1=+∴==??∞+∞-+∞+∞-a k dx kx dx x xf a 即;由上述两式可求得k =3, a =2。
3.已知随机变量ξ的分布律为ξ -1 0 2 3 p 1/8 1/4 3/8 1/4求解:E ξ=(-1)?(1/8)+0?(1/4)+2?(3/8)+3?(1/4)=11/8; E ξ2=(-1)2?(1/8)+02?(1/4)+22?(3/8)+32?(1/4)=31/8;E (1-ξ)2=(1-(-1))2?(1/8)+(1-0)2?(1/4)+(1-2)2?(3/8)+(1-3)2?(1/4)=17/8 或者, E (1-ξ)2=E (1-2ξ+ξ2)=1- (E 2ξ)+E ξ2=17/8。
4. 若ξ的概率密度为f x e x ()||=-12。
求(1)E ξ,(2)E ξ2 。
解:(1)dx xe E x ?∞∞--=||21ξ中因e -|x |为偶函数,x 为奇函数,故x e -|x |为奇函数,且积分区间关于原点对称,该积分又绝对收敛,事实上+∞<=Γ===∞+--∞∞-∞∞-1)2(||21)(||0||dx xe dx e x dx x f x xx故E ξ=0。
概率论与数理统计习题三参考答案
![概率论与数理统计习题三参考答案](https://img.taocdn.com/s3/m/1f7b1cc0185f312b3169a45177232f60ddcce72f.png)
概率论与数理统计习题三参考答案1. 某产品的次品率为0.1,检验员每天检验4次,每次随机地取10件进行检验,如果发现其中的次品多于1,就去调整设备。
以X 表示一天中调整设备的次数,求。
(设诸产品是否为次品是相互独立的。
) )(X E 解:解法一 用Y 表示10件中次品的个数,则)1.0,10(~B Y 而X 表示一天中调整设备的次数,,),4(~p B X {}2≥=Y p p {}{}{}1012=−=−=≥Y P Y P Y p Q()()9110100101.011.01.011−⋅−−−=C C 264.0= 056.14)(==∴p X E解法二 设为发现次品数i X 4,3,2,1 111,0=⎩⎨⎧=i X i ,,次品数大于发现次品数小于等于 则4321X X X X X +++=)()()()()(4321X E X E X E X E X E +++={}{}{}100次品数等于次品数等于P P X P i +==∴()()9110100101.011.01.01−⋅+−=C C 743.0= {}{}264.0011==−==∴i i X P X P 056.1264.04)(=×=∴X E2. 将3只球随机地逐个放入4只编号分别为1,2,3,4 的盒子中,以X 表示至少有一只球的盒子的最小号码,是求。
)(X E 解:解法一 X 可取1、2、3、4{}6437433133323213=++==∴C C C X P {}6419422233323213=++==C C C X P{}6474133332313=++⋅==C C C X P {}6414143===X P 162564146473649264371)(=×+×+×+×=∴X E 解法二 1625162316521691)(=×+×+×=∴X E 3. 若随机变量X 的分布律为()=⎭⎫⎩⎨⎧−=+i x P ii 21121i ,i =1,2 ,……., 是否存在。
《概率论与数理统计》习题三答案,DOC
![《概率论与数理统计》习题三答案,DOC](https://img.taocdn.com/s3/m/3365ad0443323968011c92cd.png)
《概率论与数理统计》习题及答案习题三1.将一硬币抛掷三次,以X 表示在三次中出现正面的次数,以Y 表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X 和Y 的联合分布律.⎩.,0其他求:(1)常数A ;(2)随机变量(X ,Y )的分布函数;(3)P {0≤X <1,0≤Y <2}.【解】(1)由-(34)0(,)d d e d d 112x y Af x y x y A x y +∞+∞+∞+∞+-∞-∞===⎰⎰⎰⎰得A =12(2)由定义,有 (3){01,02}P X Y ≤<≤<5.设随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<<<--.,0,42,20),6(其他y x y x k(1)确定常数k ;(2)求P {X <1,Y <3}; (3)求P {X <1.5};(4)求P {X +Y ≤4}. 【解】(1)由性质有故18R =(2(3)P (4)P 6.设X 和求:【解】(而7.求(【解】0,f x y ∂∂⎩其他.8.设二维随机变量(X ,Y )的概率密度为f (x ,y )= 4.8(2),01,0,0,.y x x y x -≤≤≤≤⎧⎨⎩其他求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰题8图题9图9.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧<<-.,0,0,其他e y x y求边缘概率密度. 【解】()(,)d X f x f x y y +∞-∞=⎰题10图10.设二维随机变量(X ,Y )的概率密度为f (x ,y )=⎩⎨⎧≤≤.,0,1,22其他y x y cxc =(2)(X f x 设随机变量(Y . (2)因{1}{3}{1,3},101010010P X P Y P X Y ===⨯=≠=== 故X 与Y 不独立(1)求关于X 和关于Y 的边缘分布;(2)X 与Y 是否相互独立?(2)因{2}{0.4}0.20.8P X P Y ===⨯0.160.15(2,0.4),P X Y =≠=== 故X 与Y 不独立14.设X 和(1(2【解】()()20,Y f y ⎧⎪=⎨⎪⎩(2)15.设X 和其概率密度为求Z =X /Y 的概率密度.【解】如图,Z 的分布函数(){}{}Z XF z P Z z P z Y=≤=≤ (1)当z ≤0时,()0Z F z =(2)当0<z <1时,(这时当x =1000时,y =1000z)(如图a) 题15图(3)当z ≥1时,(这时当y =103时,x =103z )(如图b )即11,1,2(),01,20,.Zzzzf z z⎧-≥⎪⎪⎪=<<⎨⎪⎪⎪⎩其他故21,1,21(),01,2Zzzf z z⎧≥⎪⎪⎪=<<⎨16.4只,求【解】17.设X,18.设X2n,(1)求P{X=2|Y=2},P{Y=3|X=0};(2)求V=max(X,Y)的分布律;(3)求U=min(X,Y)的分布律;(4)求W=X+Y的分布律.【解】(1){2,2} {2|2}{2}P X YP X YP Y== ====(2){}{max(,)}{,}{,} P V i P X Y i P X i Y i P X i Y i =====<+≤=(3){}{min(,)}P U i P X Y i===)在区域22.设随机变量X和Y相互独立,下表列出了二维随机变量(X,Y)联合分布律及关于X和Y的边缘分布律中的部分数值.试将其余数值填入表中的空白处.【解】因21{}{,}j j i jiP Y y P P X x Y y======∑,故11121{}{,}{,},P Y y P X x Y y P X x Y y ====+== 从而11111{,}.6824P X x Y y ===-= 而X 与Y 独立,故{}{}{,}i j i i P X x P Y y P X x Y y =====,从而11111{}{,}.624P X x P X x Y y =⨯====即:1111{}/.2464P X x ===又1111213{}{,}{,}{,},P X x P X x Y y P X x Y y P X x Y y ====+==+==),且中途m 人下(2){,}{}{|}P X n Y m P X n P Y m X n ======24.设随机变量X 和Y 独立,其中X 的概率分布为X ~⎪⎪⎭⎫ ⎝⎛7.03.021,而Y 的概率密度为f (y ),求随机变量U =X +Y 的概率密度g (u ).【解】设F (y )是Y 的分布函数,则由全概率公式,知U =X +Y 的分布函数为由于X 和Y 独立,可见 由此,得U 的概率密度为25.25.设随机变量X 与Y 相互独立,且均服从区间[0,3]上的均匀分布,求P {max{X ,Y }≤1}. 解:因为随即变量服从[0,3]上的均匀分布,于是有因为X ,Y 相互独立,所以 推得1{max{,}1}9P X Y ≤=. 26.其中a ,b ,c 为常数,且X 的数学期望E (X )=??0.2,P {Y ≤0|X ≤0}=0.5,记Z =X +Y .求: (1)a ,b ,c 的值; (2)Z 的概率分布; (3)P {X 解(1)由()E X 再由{P Y 得a b +=(2)Z 即Z (3){}{0}0.10.20.10.10.20.4P X Z P Y b ====++=++=.。
概率论与数理统计第三章课后习题答案
![概率论与数理统计第三章课后习题答案](https://img.taocdn.com/s3/m/1da160041a37f111f0855b8f.png)
概率论与数理统计第三章课后习题答案习题二1■将一硬币抛掷二次,以X表示在二次中出现正面的次数,以Y表示三次中出现正面次数与出现反面次数之差的绝对值.试写出X和丫的联合分布律.【解】X和丫的联合分布律如表:2.盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球,以X表示取到黑球的只数,以Y表示取到红球的只数.求X和Y的联合分布律.【解】X和丫的联合分布律如表:3•设二维随机变量(X, F)的联合分布函数为求二维随机变量(x, y)在长方形域内的概率.4 6 3J【解】如图叫眈怎<今空^求:(1)常数/;F (x, y)sin xsiny,0,0"岁詣其他.・Tt ■兀・兀■兀=sin —_sin ——sin —_sin ——4 3 4 6二#(dl).斗sin OLfeinK ■八■兀—+sinIksin —3 6JT7说明:也可先求出密度函数,再求概率。
4•设随机变量(X, Y)的分布密度f(兀,y)j e-(3.r+4y)x >0, y >0, 其他.(2) 随机变量(X, Y)的分布函数;(3) P{0 «1, 0之<2}.【解】(1)由 f(x,y)dxdy° °Ae(3x4y)dxdy £ 1得A = 12(2) 由定义,有y xF (x, y)f (u, v)dudvy y(3u 4v)12e dudvo o0,(3) P{0 X 1,0 Y 2}P{0 X 1,0 Y 2}5. 设随机变量(X, Y )的概率密度为(1 e 3x )(1 e 4y ) y 0,x 0,0,其他212e (3x 04y)dxdy(1 e 3)(1 e 8)0.9499.f(x ,y)=k(6 x y), 0,x 2,2 y 4,其他.(1)确定常数k ;(2)求 P{X v 1, Y v 3};(3)求 P{X<1.5};(4)求 P{X+Y W 4}.【解】(1)由性质有2 4f(x, y)dxdy ° 2 k(6 x y)dydx 8k 1,31-k(6 x y)dydx86.设X和丫是两个相互独立的随机变量,X在(0,0.2)上服从均匀分布,Y的密度函数为求:(1) X与Y的联合分布密度;(2)P{YN}.(2) P{X 1,Y 3} f (x, y)dydx(3)P{X(4)P{X1.5}x 1.5f (x, y)dxdy 如图 a f (x,y)dxdy1.5 4 10 dx -(6 x y)dy82732Y 4}Xf (x, y)dxdy如图 b f (x,y)dxdy(61 ) y)f Y( y)5e5y, y 0,0, 其他.【解】(1)因X 在(0, 0.2) 上服从均匀分布,所以X 的密度函数为f x (X)10 x 0.2,0.2,0,其他.而f/y)5e 5y , y 0,0,其他.所以f (x, y)X,丫独立 fx(x)gf Y (y)⑵ P(Y X) f (x, y)dxdy 如图 25e 5y dxdyy xD丄 0.2 5e 5y0,25e 5y, 0 x 0.2且 y 0, 0, 其他•0.2 0dx25e -5ydy0.2 5x0 ( 5e5)dx■1=e 0.3679.7.设二维随机变量(X, Y )的联合分布函数为F ( x ,y )(1 e 4x)(1 e 2y), x 0,y 0,0,其他.求(X ,Y )的联合分布密度2[解] f(x,y)x y8e(4x 2y), x 0,y 0,0, 其他.8.设二维随机变量(X, Y )的概率密度为f (x, y)=4.8y(2 x), 0 0,x 1,0 y x,其他.求边缘概率密度.【解】f x(x) f (x,y)dyx0 4.8y(2x)dy0,2.4X2(2 x), 0 x 1,0, 其他.f y(y) f (x,y)dx1=y4-8y(2x)dx 2.4y(3 4y y2), 0 y 1,0, 其他.,题8图9.设二维随机变量题9图X, Y)的概率密度为f (x, y) e y, 0 x y,0, 其他.求边缘概率密度.【解】f x(X) f (x, y)d yx0,e y dy xe , x 0,0, 其他.f Y(y) f (x,y)dxy e y dx0,ye x, y 0,0, 其他.y\i■v=xw p题10图10.设二维随机变量(X, Y)2f (x, y)= J试确定常数c;求边缘概率密度的概率密度为x2y 1,其他.(1)(2)【解】(1)f (x, y)dxdy如图Df (x,y)dxdy1 12-1dx x2cx ydy4c211.214f x(X) f(x,y)dy1 212 , xydyx 40, 212。
《概率论和数理统计》第三版-课后习题及答案解析.
![《概率论和数理统计》第三版-课后习题及答案解析.](https://img.taocdn.com/s3/m/5f2ac3e5783e0912a2162a81.png)
习题一:1.1 写出下列随机试验的样本空间:(1) 某篮球运动员投篮时, 连续5 次都命中, 观察其投篮次数; 解:连续5 次都命中,至少要投5次以上,故}{Λ,7,6,51=Ω; (2) 掷一颗匀称的骰子两次, 观察前后两次出现的点数之和; 解:}{12,11,4,3,22Λ=Ω; (3) 观察某医院一天内前来就诊的人数;解:医院一天内前来就诊的人数理论上可以从0到无穷,所以}{Λ,2,1,03=Ω;(4) 从编号为1,2,3,4,5 的5 件产品中任意取出两件, 观察取出哪两件产品; 解:属于不放回抽样,故两件产品不会相同,编号必是一大一小,故: ()}{;51,4≤≤=Ωj i j i π (5) 检查两件产品是否合格;解:用0 表示合格, 1 表示不合格,则()()()()}{1,1,0,1,1,0,0,05=Ω;(6) 观察某地一天内的最高气温和最低气温(假设最低气温不低于T1, 最高气温不高于T2); 解:用x 表示最低气温, y 表示最高气温;考虑到这是一个二维的样本空间,故: ()}{216,T y x T y x ≤≤=Ωπ;(7) 在单位圆内任取两点, 观察这两点的距离; 解:}{207ππx x =Ω;(8) 在长为l 的线段上任取一点, 该点将线段分成两段, 观察两线段的长度. 解:()}{l y x y x y x =+=Ω,0,0,8φφ; 1.2(1) A 与B 都发生, 但C 不发生; C AB ;(2) A 发生, 且B 与C 至少有一个发生;)(C B A ⋃; (3) A,B,C 中至少有一个发生; C B A ⋃⋃;(4) A,B,C 中恰有一个发生;C B A C B A C B A ⋃⋃; (5) A,B,C 中至少有两个发生; BC AC AB ⋃⋃; (6) A,B,C 中至多有一个发生;C B C A B A ⋃⋃;(7) A;B;C 中至多有两个发生;ABC(8) A,B,C 中恰有两个发生.C AB C B A BC A ⋃⋃ ; 注意:此类题目答案一般不唯一,有不同的表示方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题三1.掷一枚非均质的硬币,出现正面的概率为p (0 p 1) ,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。
解(X k) 表示事件:前k 1次出现正面,第k 次出现反面,或前k 1次出现反面,第k 次出现正面,所以P X ( k ) p k1(1p ) (1p)k 1 p,k 2,3,2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个数X 的分布列。
解从a b个球中任取r 个球共有C a b r种取法,r 个球中有k 个黑球的取法有C C b k a r k,所以X 的分布列为P X (k) C CC bk a b r ar k,k max(0, r a), max(0, r a )1, ,min( , )b r ,此乃因为,如果r a,则r 个球中可以全是白球,没有黑球,即k 0 ;如果r a 则r 个球中至少有r a个黑球,此时k 应从r a开始。
3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品1的概率pi(i 1,2,3) ,以X 表示三个零件中合格品的个数,求X 的分布i 1列。
.·19··20 ·解 设 A i‘第i 个零件是合格品’i1,2,3。
则1 1 11 P X (0) P A A A ( 1 2 3),2 3 424P X ( 1)P A A A ( 123A A A 123A A A 12 3)P A A A ( 1 2 3) P A A A ( 1 23) P A A A ( 1 23)1 1 1 12 1 1 1 36,2 3 4 2 342 3 424P X ( 2)P A A A ( 123A A A 1 23A A A 123)P A A A ( 1 2 3) P A A A ( 123) P A A A ( 1 23)1 2 1 1 1 31 2 311,2 34 2 3 4 23 4241 2 3 6P X (3) P A A A ( 12 3).2 3 4 24即 X 的分布列为.4.一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为,以 X 表示该汽车首次遇到红灯前已通过的路口的个数,求 X 的概率·21·分布。
解 P X (0) P (第一个路口即为红灯),1 1 1P X (1)P (第一个路口为绿灯,第二个路口为红灯),2 2 4依此类推,得 X 的分布列为.5.将一枚硬币连掷n 次,以 X 表示这n 次中出现正面的次数,求 X 的分布列。
解 X 为n 重贝努里试验中成功出现的次数,故 X ~ B n ( ,) ,X 的分布 列为nP X (k ) C n k12k 0, 1,6.一电话交换台每分钟接到的呼叫次数服从参数为 4 的泊松分布,求(1)每分钟恰有 8 次呼叫的概率;(2)每分钟的呼叫次数大于 10 的概率。
解 设X 为每分钟接到的呼叫次数,则 X ~ P (4)(1)P X (8)8!8 e4 k 8 4k e44k k !e40.2977k !k q(2)P X (10)4k k ! e40.00284.k 11P, n·22 ·7.某商店每月销售某种商品的数量服从参数为 5 的泊松分布,问在月初至少库存多少此种商品,才能保证当月不脱销的概率为 0.99977 以上。
解 设 X 为该商品的销售量, N 为库存量,由题意0.99977 P X N ( )1 P X N ( ) 1K N1P XK () 1K N 15k k !e 5即K N1k K ! e50.00023查泊松分布表知 N 1 15 ,故月初要库存 14 件以上,才能保证当月不脱销的概率在 0.99977 以上。
8.已知离散型随机变量 X 的分布列为:P X (1) 0.2, P X (2)0.3, P X ( 3) 0.5,试写出 X 的分布函数。
解 X 的分布列为所以 X 0 , x 1,0.2,1x2,F x ( )0.5, 2x3, 1 ,x3.9.设随机变量X 的概率密度为c sin x, 0x , f x( )0 , 其他.求:(1)常数C ;(2)使P X ( a ) P X (a) 成立的a .解(1)1 f x dx ( )c0sin xdx c cos x 0 2c,c ;1 11 1(2)P X( a) a sin xdx 2 cos x a 2 2cos a,P X( a) 0a xdx 12 cos x 0a1212 cos a,可见cos a 0, a 。
210.设随机变量X 的分布函数为F x( ) A B arctan x,x,求:(1)系数A与B ;(2)P( 1X 1) ;(3)X 的概率密度。
解(1)由分布函数的性质·23··24 ·0 F () AB1F ()AB211于是AB,所以 X 的分布函数为21 1 F x( )arctan xx ,2(2)P ( 1X 1) F (1) F ( 1) 1 1(11)1;2 4 2 4 2(3) X 的概率密度为1 f x ( )F x ()2) ,x.(1x11.已知随机变量 X 的概率密度为1| |xx.f x ( )e,2求 X 的分布函数. 解·25·x1xe du u , x 0,F x( ) f u du ( ) 212 e dxx0x12 e duu,e x , x 0,211x , x 0.212.设随机变量 X 的概率密度为x , 0 x 1, f x( )2x , 1x2,0 , 其他.求 X 的分布函数.解 f x ( ) 的图形为 X 的分布函数为xF x( ) f u du ( )0 ,x0,xx 2.2x 1, 21 ,x 0,0 x 1,1x 2, x 2.13.设电子管寿命X 的概率密度为100x2 , x100, f x()0 , x 100.1010,1,,21,)(21,xudu xxuduxdx220,,2xx·26·若一架收音机上装有三个这种管子,求(1)使用的最初150 小时内,至少有两个电了管被烧坏的概率;(2)在使用的最初150 小时内烧坏的电子管数Y的分布列;(3)Y的分布函数。
解Y 为在使用的最初150 小时内烧坏的电子管数,Y ~ B(3, p) ,其中150 100 1p P X ( 150) 100 x2 dx 3 ,2 3(1)所求概率为P Y (2) P Y ( 2) P Y ( 3) C32 132313;k 3k(2)Y的分布列为P Y ( k ) C3k 1323 ,k 0,1,2,3,即·27··28 ·(3) Y 的分布函数为14.设随机变量X 的概率密度为2x,x1, f x ( )0 , 其他.现对 X 进行n 次独立重复观测,以V n 表示观测值不大于 0.1 的观测次数,试求随机变量V n 的概率分布。
解 V n ~ B n p (, ,其中0.1p PX ( 0.1)2xdx 0.01,所以V n 的概率分布列为 P V ( nk ) C n k (0.01) (0.99)k n k , k 0,1,15.设随机变量 X ~U [1, 6],求方程 x 2 Xx1 0 有实根的概率.0 , 8, 27 20 F x ( ) , 27 26 27 ,1 ,x 0,0 x 11x2, 2 x 3, x 3., n .解 设A ‘方程有实根’,则A 发生X 24 0 即 | X | 2,因 X ~U [1,6],所以A 发生X 2, 所以 P A ()P X (2)0.8 .16.设随机变量 X ~U [2,5],现对 X 进行 3 次独立观测,试求至少有两次观测值大于 3 的概率. 解 设Y 为三次观测中,观测值大于 3 的观测次数,则Y~ B (3, p ),其中 pP X (3),所求概率为23P Y (2) P Y (2) P Y (3) C 32 2313322720 .17.设顾客在某银行窗口等待服务的时间 X (单位:分),服从参数为的 指数分布。
若等待时间超过 10 分钟,则他就离开。
设他一个月内要来银行 5 次,以Y 表示一个月内他没有等到服务而离开窗口的次数,求 Y 的分布列及P Y ( 1)。
解 由题意Y ~ B (5,p ) ,其中15xe e2, p P X ( 10)105e dx 10于是Y 的分布为 P Y (k ) C e 5k (2) (1k e2 )5kk 0,1,2,3,4,5, P Y ( 1) 1 P Y ( 0) 1 (1e 2) 50.5167 .5x18.一大型设备在任何长为t 的时间内发生故障的次数N t( ) 服从参数为t的泊松分布。
(1)求相继两次故障之间时间间隔T 的概率分布;(2)求在设备已经无故障工作了8 小时的情况下,再无故障运行8 小时的概率。
解(1)设T 的分布函数为F t T ( ) ,则F t T ( ) P T( t) 1 P T(t)事件(T t)表示两次故障的间隔时间超过t ,也就是说在时间t 内没有发生故障,故N t( ) 0 ,于是( ) 1 P T(t) 1 P N t( ( ) 0) 1 (t)0 t 1 e t , t 0 ,F te0!可见,T 的分布函数为1e t ,t 0,F t T ( ) 0 , t0.即T 服从参数为的指数分布。
(2)所求概率为P T(16|T 8) P T{ P T(16,T8)8} P T16)ee 168e8.P(8)19.设随机变量X ~ N(108, 3 )2 。
求(1)P(101.1X 117.6) ;(2)常数a,使P X( a) 0.90 ;(3)常数a,使P X(| a |a) 0.01。
解(1)P(101.1X 117.6) (117.6108) (101.1108)3 3(3 2)( 2 3) (3 2)(2 3)10.99930.9893 1 0.9886;(2)0.90 P X( a)( a108) ,查表知3a 1081.28,所以a 111.84 ;3(3)0.01P X(| a |a) 1 P X(| a |a) 1 P(0 X2 )a1 (),所以() 0.99 ,查正态分布表知2.33,故 a 57.495 。
20.设随机变量X ~ N(2, 2 ),且P(2 X 4) 0.3,求P X( 0)。