水中六价铬检测的研究进展

合集下载

水中六价铬测定实验报告

水中六价铬测定实验报告

水中六价铬测定实验报告一、实验目的本次实验旨在准确测定水样中六价铬的含量,了解其在水环境中的污染状况,为环境保护和水质监测提供可靠的数据支持。

二、实验原理在酸性溶液中,六价铬与二苯碳酰二肼反应生成紫红色络合物,其颜色的深浅与六价铬的含量成正比。

通过分光光度计在特定波长下测量溶液的吸光度,从而确定六价铬的浓度。

三、实验仪器与试剂1、仪器分光光度计比色皿移液管(1mL、5mL、10mL)容量瓶(50mL、100mL)刻度吸管烧杯(50mL、100mL)玻璃棒电子天平漏斗2、试剂六价铬标准储备液(1000g/L)二苯碳酰二肼溶液(2g/L):称取 02g 二苯碳酰二肼,溶于 50mL丙酮中,加水稀释至100mL,摇匀,贮于棕色瓶中,置于冰箱中保存。

硫酸溶液(1+1)磷酸溶液(1+1)四、实验步骤1、标准曲线的绘制准确吸取 000mL、020mL、050mL、100mL、200mL、400mL、600mL、800mL 和 1000mL 六价铬标准储备液于 50mL 容量瓶中,加水至标线。

向各容量瓶中加入 05mL 硫酸溶液(1+1)和 05mL 磷酸溶液(1+1),摇匀。

再加入 2mL 二苯碳酰二肼溶液,摇匀。

5 分钟后,在 540nm 波长处,用 1cm 比色皿,以水作参比,测定吸光度。

以六价铬的质量(μg)为横坐标,吸光度为纵坐标,绘制标准曲线。

2、水样的预处理若水样清澈无色,可直接进行测定。

若水样浑浊或有色,需进行预处理。

取适量水样于烧杯中,加入硫酸和磷酸,加热消解,直至溶液澄清。

冷却后,转移至容量瓶中,定容。

3、水样的测定吸取适量预处理后的水样于 50mL 容量瓶中,按照标准曲线绘制的步骤进行操作,测定吸光度。

五、实验数据及处理1、标准曲线数据|六价铬质量(μg)| 000 | 200 | 500 | 1000 | 2000 |4000 | 6000 | 8000 | 10000 |||||||||||||吸光度| 0000 | 0042 | 0105 | 0210 | 0420 | 0840 |1260 | 1680 | 2100 |根据以上数据,绘制标准曲线,得到回归方程:y = 0021x + 0002,相关系数 R²= 0999。

水中六价铬测定方法的实验研究

水中六价铬测定方法的实验研究
表 1 两 种显 色剂 校准 曲线数 据记 录
C r 含 量 ( g )
0. 0 o O. 0o

显 色剂 (I ) A

显 色剂 ( Ⅱ)
A 0

0. 0 o 5 0. 0 O 4
A — A 0
0. 0 o3 0. 0 o4
l 2 . 5
实验 中采 取 对 显 色 剂 (I) 与 显 色 剂
2 . 1 试 验 药品 试 剂 与仪 器
( Ⅱ) 进行对 比研究 的方法 。 目前 的《 水质六
价铬 的 测定 二 苯 碳 酰 二 肼 分光 光 度 法 》 ( G B 7 4 6 7 - 8 7 ) 标 准方 法 中 , 在药 品试 剂 部分 提到 了显色剂 ( Ⅱ) 的配制 , 但 整个 标准 中未
仪器 : 5 0 m l 具塞 比色管 ; 上海 光谱 S P 7 2 3
型可 见 光分 光 光 度计 、 1 0 m m 比色 皿 、 3 0 a r m
提及显 色剂 ( Ⅱ) 的使 用 ; 而在 《 水 和 废水 监 测分析 方法》 ( 第 四版 增补 版 ) 铬 的测定 中,
比色皿 。 注意事项要求 “ 铬标 准溶液有两种浓度 , 其中 2 . 2 分析步骤及 实验结果 每毫升含 5 . 0 0 g 六 价铬 的标 准溶 液适 用 于 2 . 2 . 1 显 色剂 (I) 与 显色剂 ( Ⅱ) 对 六 价铬 测 定 的
高含量水样 的测定 , 测定 时使 用显 色剂 ( 1 1 )
S 6
影 晌
2 0 1 4 年
第3 9 卷
第3 期
攀枝花科技与信息
( 总第 1 1 8 期)

研究饮用水中六价铬测定方法进展

研究饮用水中六价铬测定方法进展

b = 0 . 4 5 9
b = 0 . 4 6 2 b = 0 . 4 5 7 b = 0 . 4 6 3
r = 0 . 9 9 9
b = 0 . 4 6 l
酸 性 显 色剂 : 称取 0 . 2 G的标 准二苯碳 酰二肼 . 然后与 丙 酮相 混合 . 丙 酮量 为 5 0 m l 。 在加入 水混合 , 摇 晃均 匀 , 先 配 置 的 显 色剂 为 标 准 显 色剂 . 随后 再 配 置 出测 试 水 质 的 显 色剂 , 在 对 水 中六 价 铬 进 行 测 量 时 .需 要 把 标 准 显 色剂 的 线性 数 据 与
也 就 越 高。
2 . 0 O
4 . o 0 8 . o o
1 0. 0 O
0 , 0 8 9
O . 1 7 8 0 . 3 6 5
0. 45 3
0 . 0 8 8
0 . 1 7 6 0 . 3 6 3
0. 4 61
0 . 0 8 4
0 . 1 7 4 0 . 3 6 9
测量饮用水中六价铬的测定方法, 并 对 测定 方 法 的进 展 做 出 了分 析 。
【 关键词 】 二苯碳酰二肼分光光度 法 ; 六价铬 ; 测定 ; 进展 【 中图分 类号 】 R 1 2 3 , 1 【 文献标识码 】 A 【 文章编号 】 2 0 9 5 — 2 0 6 6 ( 2 0 1 5 ) 2 2 — 0 0 0 7 — 0 2
分析 , 比 色 时 以 蒸 馏 水 为参 比 , 选择 5 4 0 n m 的波长 , 测 定 试 剂 中的 吸 光度 。测 试 结 果 如 表 1 所示。
表 1 不 同 的 酸 性 显 色 剂 情 况 下 的 显 色 数 值 六 价铬 的 硫 、 磷 酸 显 硫 酸 显 色 盐 酸 显 色 硝 酸 显 色 高氯 酸 显 醋 酸 显 色 含 量 色剂 的 显 荆 显 色数 剂 显 色数 荆 显 色 数 色剂 显 色 剂 显 色数 色数 值 值 值 值 数 值 值

水中铬的测定实验报告

水中铬的测定实验报告

水中六价铬的测定摘要:本实验通过二苯碳酰二肼分光光度法对东湖水中六价铬进行测定。

在酸性溶液中,六价铬离子与二苯碳酰二肼(DPC)反应,生成紫红色化合物,其最大吸收波长为540nm,吸光度与浓度符合比尔定律。

关键字:铬;分光光度法;二苯碳酰二肼Analysis of chromium(VI)in East Lake water Abstract: In this study, spectrophotometry by Diphenylcarbazide hydrazine hexavalent chromium in water on Lake measured. In acidic solution, hexavalent chromium ions and Diphenylcarbazide hydrazine (DPC) reacts purple compound.The maximum absorption wavelength of 540nm. Absorbance and the concentration conforms to the law of bill.Key words:Chrome; spectrophotometry; Diphenylcarbazide hydrazine1 前言铬是生物体所必需的微量元素之一。

六价铬为吞入性毒物/吸入性极毒物,皮肤接触可能导致过敏;更可能造成遗传性基因缺陷,吸入可能致癌,对环境有持久危险性。

六价铬很容易被人体吸收,它可通过消化、呼吸道、皮肤及粘膜侵入人体。

危害最大的是长期或短期接触或吸入时有致癌危险。

通常认为六价铬的毒性比三价铬大100倍,当水中六价铬质量浓度达1mg/L时,水呈黄色并有涩味。

目前六价铬的测定方法有二苯碳酰二肼(DPC)分光光度法、乙酰偶氮胂法、3,3’,5,5’-四甲基联苯胺法等,其中DPC分光光度法测定六价铬具有灵敏度高、特异性好的优点,是目前最常用的方法。

吸附法去除水中六价铬的研究进展

吸附法去除水中六价铬的研究进展

本次演示旨在探讨玉米秸秆的改性及其对六价铬离子吸附性能的影响。近年 来,随着环境污染问题的日益严重,寻找高效、环保的污染治理材料已成为研究 热点。玉米秸秆作为一种丰富的生物资源,具有很好的应用前景。本次演示将介 绍玉米秸秆的改性方法及其对六价铬离子吸附性能的影响,为环境保护和污染治 理提供新的思路。
三、研究进展
近年来,研究人员针对皮革中六价铬的测定方法进行了大量研究。在样品处 理技术方面,研究者们探索了各种样品预处理方法,如超声波辅助萃取、加速溶 剂萃取、微波辅助萃取等,以提高样品的提取效率和测定准确性。在测定方法与 标准方面,分光光度法、电化学法、色谱法、原子吸收光谱法等都有应用报道, 但各方法之间的准确性和重复性存在差异。
综上所述,玉米秸秆的改性及其对六价铬离子吸附性能的研究具有重要的理 论和实践意义。通过改性处理,可以提高玉米秸秆对六价铬离子的吸附能力,从 而有效治理环境污染。然而,仍需进一步研究以完善改性条件和评估其在实际环 境中的应用效果。
一、引言
随着工业和农业的快速发展,水体中重金属离子污染的问题日益严重。这些 重金属离子,如铅、汞、镉等,对环境和人类健康构成严重威胁。因此,开发有 效的重金属离子去除技术成为当前研究的热点。海藻酸钠基吸附材料由于其独特 的物理化学性质,如高吸附容量、快速吸附等,在水体重金属离子去除领域具有 广阔的应用前景。本次演示将综述海藻酸钠基吸附材料去除水中重金属离子的最 新研究进展。
最后,在实际应用中,如何实现高效、环保的六价铬去除仍需考虑许多实际 问题。例如,如何实现大批量生产高品质的吸附剂;如何在保证去除效果的同时 降低运行成本;如何合理规划设计水处理流程等问题都需要在实际应用中进行深 入研究和探讨。
总结:
本次演示介绍了吸附法去除水中六价铬的基本原理和影响因素,并展望了未 来的研究方向。尽管该领域已经取得了一定的进展,但仍有许多问题需要进一步 研究和探讨。希望通过不断的研究和实践探索,进一步推动该领域的发展并提高 实际应用中的处理效果和效率。

饮用水中六价铬测定方法进展

饮用水中六价铬测定方法进展

1 2 显 色剂 的影 响 .
由于 显 色 剂 二 苯 碳 酰 二肼 为 白色 结 晶 性 粉 末 ,具 有 微 溶 于 水 ,溶 于 乙 醇 、丙 酮 ,在 空 气 中 渐 变 红 色 ,须 避 光 贮 存 等 特 点 。 如 果 显 色 剂 二苯 碳 酰二 肼 颜 色 为 淡 红 色 ,或 者 溶 质 试 剂 乙 醇 或 丙 酮 含 有 氧 化性 物质 ,配 制 出来 的 显 色 溶 液 都 会 因 变 色 导 致 测试 结 果 偏 低 。 针 对 溶 质 是 采 用 是 乙 醇 还 是 丙 酮 这 个 问 题 , 文 献 提 出 :根 据 显 色 剂 二 苯 碳 酰二 肼 性 质 ,用 乙 醇 代 替 丙 酮 溶 解 二 苯碳 酰 二肼 作 显 色 剂 对 人 危 害 较 小 ,其 灵 敏 度 可 增 加 约 1% ,而且 比色管易清洗 ,不挂壁 等优点 ,和 国标 法相 比 ,少 8 步加硫酸溶液 ( + )的步骤 ,值得推广 。 1 7
Ab ta t T ec aa trs c fsv rl to so eemiaino e a ae t h o u i r kn ae s e t — sr c : h h rce t so e ea h d f tr n t fh x v ln rmim di igw tr( p cr i i me d o c n n o

品溶液浓集 流速 为 7 2m / i,洗脱流速为 3 6mL m n . L mn . / i ,浓集 时 间 为 5 ,洗 脱 时 间 为 1 。 0s 0s ( ) 采 用 经 过 醇 洗 、酸洗 、碱 洗 ,再 酸 洗 、纯 水 洗 至 中 性 2 等过程处理 的 H 一 3 72阳离 子交换树脂对水 中三价铬 和六价铬 进 行 分 离 。水 样 经 过 树 脂 后 将 三 价 铬 保 留 在 柱 子 上 ,在 IP — C MS直 接 测 定 流 出液 六 价 铬 的 含 量 ,该 分 离 法 可 直 接 消 除 三 价

水中六价铬的测定实验报告

水中六价铬的测定实验报告

水中六价铬的测定实验报告水中六价铬的测定实验报告摘要:本实验旨在通过分光光度法测定水中六价铬的含量。

首先,通过制备标准曲线,确定了六价铬的吸光度与其浓度之间的关系。

然后,利用该标准曲线,测定了实际水样中六价铬的含量。

实验结果表明,该方法准确、可靠,适用于水中六价铬的测定。

引言:六价铬是一种常见的有害物质,在水体中的存在对环境和人体健康都具有潜在的危害。

因此,准确测定水中六价铬的含量对于环境保护和人体健康具有重要意义。

本实验利用分光光度法,通过测定六价铬溶液的吸光度来确定其浓度,以此方法来测定水中六价铬的含量。

实验方法:1. 实验仪器和试剂本实验使用的仪器有分光光度计、移液器等。

试剂包括六价铬标准溶液、硫酸、硫酸钠、硫酸铬钾等。

2. 标准曲线的制备首先,制备一系列不同浓度的六价铬标准溶液。

然后,分别取不同浓度的标准溶液,用硫酸稀释,并加入硫酸钠和硫酸铬钾反应生成三价铬。

测量各标准溶液的吸光度,并记录下来。

根据吸光度与浓度的关系,绘制出标准曲线。

3. 水样处理从实际水样中取一定量的样品,并加入硫酸稀释。

然后,按照相同的步骤进行硫酸钠和硫酸铬钾的反应,生成三价铬。

测量水样溶液的吸光度,并利用标准曲线计算出水样中六价铬的含量。

结果与讨论:通过实验得到的标准曲线如图1所示。

根据标准曲线,可以计算出实际水样中六价铬的含量。

实验结果表明,水样A中六价铬的含量为0.05 mg/L,水样B 中六价铬的含量为0.1 mg/L。

图1:六价铬标准曲线本实验采用的分光光度法测定水中六价铬的含量,具有准确、可靠的特点。

通过制备标准曲线,可以根据测得的吸光度值计算出六价铬的浓度。

然后,通过对实际水样的处理和测量,可以确定水中六价铬的含量。

实验结果表明,该方法可以有效地测定水中六价铬的含量。

结论:本实验通过分光光度法测定了水中六价铬的含量。

通过制备标准曲线,确定了六价铬的吸光度与浓度之间的关系,并利用该标准曲线测定了实际水样中六价铬的含量。

地下水中六价铬检测方法的研究

地下水中六价铬检测方法的研究

地下水中六价铬检测方法的研究摘要:针对地下水环境受六价铬严重污境的情况,本研究采用电感耦合等离子体质谱法,建立了地下水中六价铬的测定方法,试验结果表明,该方法准确可靠,能有效地对地下水体中的六价铬进行检测。

关键词:六价铬;地下水水质;分离效率;标准偏差计算;加标回收率地下水资源是人类赖于生存和发展的重要资源之一,随着工业的发展,水资源污染问题日渐突出。

从目前看来,六价铬是地下水污染的重要组分之一。

随着科技的高速发展,现代测试要求也需要快速准确,而六价铬的传统测试技术分光光度法步骤繁琐,干扰较多,因此使用先进的检测方法势在必行。

1.材料与方法1.1仪器与材料1.1.1仪器及工作参数电感耦合等离子体质谱(Xseriose2型,美国热电公司生产),功率1550W;载气流量1.0L/min;辅助气流量0.5L/min;采集时间0.5s;中质量数>500Mcps/10-6。

1.1.2主要材料、试剂和标准溶液处理至中性的h-732阳离子交换树脂;树脂吸附柱(直径10mm,长100mm);乙二胺四乙酸二钠(5mmol/L);磷酸二氢钾(2mmol/L);六价铬标准溶液;混标溶液系列:校准曲线:20ppm标准曲线法;调谐液:1ppm锂、钴、铟、铀混合标准溶液(2%硝酸介质);超纯水。

1.2方法(1)对于新购买的h-732型阳离子交换树脂(之后简称树脂),首先用5%氢氧化钠溶液浸泡24h,然后用超纯水将树脂洗至Ph 呈中性,再用5%盐酸溶液浸泡24h后,再用超纯水将树脂洗至ph 呈中性,完成树脂活化。

(2)将活化的树脂缓慢注入树脂吸附柱中并用超纯水清洗吸附柱直至流出液ph 呈中性,完成树脂吸附柱的制备。

(3)取200mL地下水样品缓慢注入吸附柱中,待吸附柱中无溶液流出后,弃去流出液,用中性洗脱液乙二胺四乙酸二钠(5mmol/L)进行洗脱,洗脱液定容于25mL比色管中,采用20×10-6标准曲线法在ICP-ms测定六价铬的含量。

水中六价铬的测定方法研究进展

水中六价铬的测定方法研究进展
科 技创 新与 应用 I 2 0 1 5 年 第3 1 期
科 技 创 新
水 中六价铬 的测红 磊
( 濮 阳市 环境 监 测 站 ,河 南 濮 阳 4 5 7 0 0 0 )
摘 要: 综 述 了近 十 五年 间水 中六价 铬 测 定 方法 的研 究进 展 。 水中 六价铬 的 测 定方 法 主要 有二 苯碳 酰二 肼分 光 光度 法 、 流 动 注射 光度法、 催 化 动 力学 光度 法、 荧光 光 度 法 、 共 振散 射 光谱 法 、 离子 色谱 法 、 液 相 色谱 法 、 原 子 吸 收光 谱 法 、 全 自动 间断 化 学分 析 法 等, 文章对水中六价铬的测定方法进行 了展望。
关键 词 : 六价 铬 ; 水; 测 定方 法 ; 综述
六 价 铬 与 二 苯碳 酰 二 肼 作 用 , 生 成 紫 红 色 络 合 铬是维持动物和人体生命活动必不可少 的微量元素之一。 三价 通 过 在 酸性 溶 液 中 , 分别在 4 3 0 n m和 5 4 0 n m处 比色测 定 水 中六 价铬 , 建 立 了 双波 长 铬 是 重要 的血 糖 调 节剂 , 有 助 于生 长 发 育 , 并 对 血 液 中 的 胆 固 醇浓 物 , 检出限为 O . 0 0 4 1 .  ̄ g / m L , 平 均 回 度有控制作用 , 铬的缺乏会导致糖 、 脂肪等物质的代谢紊乱 , 引发糖 分 光 光 度 法测 定 水 中六 价 铬 的 方法 , 尿病和心脏疾病等, 但摄人过多对生物和人类有害f 】 1 。 六价铬具有强 收率 为 1 0 0 . 4 5 %。 1 . 2 流动 注射 光 度法 氧化性 , 且有致癌性。 因此 , 六价铬是水质评价的一个重要指标 。 国 流动注射分析技术是 2 0世 纪中期开发 出的一种 自动分析技 家 对水 中铬 的 排放 标 准有 着 严 格 的规 定 , 地 表 水 环 境 质 量标 准 ( G B 术 , 其 灵 敏度 高 、 重 现性 好 、 操 作 简便 、 分析 速 度 快 , 被 广泛 应 用 于 环 3 8 3 8 — 2 0 0 2 ) , 地下水质量标 准( G B 厂 r 1 4 8 4 8 — 9 ) , 海水水 质标准 ( G B 3 0 9 7 — 1 9 9 7 ) , 农 田灌溉 水 质标 准 ( G B 5 0 8 4 — 9 2 ) 将 六 价铬 作 为 主要 监 境 监 测 分 析 、 食 品分 析 和 冶金 分 析 等 行业 。何 燕 等 基 于磷 酸 三 丁 煤油/ 液体石蜡所构成的液膜萃取体 系,建立 了在线液膜萃取富 测 项 目之 一 。 因此 , 深 入研 究 六价 铬 的测 定 方法 , 对 化工 生 产 和环 境 酯, 方 法 的检 出限 为 保护有着重要 的意义 。目前六价铬的测定方法主要有光谱法 、 色谱 集流 动 注射 分 光光 度 法测 定 水 中六 价 铬 的新 方 法 , 法、 原 子 吸收 法 、 全 自动 间断 化 学分 析 法和 方 法联 用 等 。 文 章对 近 十 2 . 1 1 .  ̄ g / L 。杨 倩 等 【 - q 使 用 间 隔流 动 分 析 仪测 定 水 中 的六 价 铬 , 方 法 除 五 年 间六 价 铬的 测定 方 法进 行 了综 述 和展 望 。 去了繁琐的前处理离心工作 , 提高了检测效率 , 检 出限为 0 . 0 0 1 2 m g / L , 加标 回收率 为 9 5 . 0 %~ 1 0 0 %。 1光谱 法 1 . 3催 化动 力 学光 度法 1 . 1二苯 碳酰 二肼 分 光 光度 法 催 化 动力 学 光度 法具 有 灵 敏度 高 、 检 出 限低 、 选 择性 好 、 操 作 简 国 家标 准 方 法 ( G B 7 4 6 7 — 8 7 ) 二苯碳酰二肼分光光度法 , 是 测 定 地 面水 和 工业 废水 的标 准 检验 方 法 , 因 为方 法 灵 敏 , 选择 性 好 , 所 便 等特 点 。董文 丽 等 刷 用 六 价 铬在 磷 酸介 质 中对 溴 酸钾 氧 化 乙基 以一 直用 于 环境 监 测 中 。 虽然 是 经 典 的检验 方 法 , 但其 不 够 简便 、 试 紫褪 色 反应 有 灵 敏 的催 化 作用 ,建立 了测 定 痕量 六 价 铬 的新 方 法 , 方 法 的检 出 限为 1 x 1 0 - 9 g / m L , 加 标 回收 率 为 9 7 . O %~ 1 0 1 . 5 %。张爱 英 剂 不 稳定 , 分 析 工作 者一 直 在对 其 进 行完 善 和改 进 。 王 琪 等日 提 出在 A c — N a A c 缓 冲体 系 中催 化 过 氧 化 氢 氧 化 藏 配 制 二 苯 碳 酰 二肼 显 色 剂 时 , 加 入 适 量硫 酸 和磷 酸 , 配 成 含 混 合 酸 等 研 究 了 六 价 铬在 H 建 立 了双 指 示剂 、 双 波长 催 化 动 力 学 的显 色剂 , 分析时一次加入 , 以取 代 配 制 3 种溶液 , 分 析 时 依 次 加 红 T和亚 甲基 蓝褪 色 的反 应 , 入, 使 方 法简 便 快速 , 且 满 足 环境 监 测 分析 要 求 。赵 翔 H l 提 出 将二 苯 分 光 光度 法测 定 痕量 六 价 铬 的新方 法 , 方 法 的检 出限 5 . 9  ̄ 1 0 " ) g / m L 。 碳酰二肼溶于 9 5 %乙醇 , 加入少量酸配制显色剂 , 使用( 1 + 1 ) 硫酸和 1 . 4荧 光 光度 法 荧光 光度 法 是一 种 具 有 高 灵敏 度 、 高 选 择性 的分 析方 法 。马 红 ( i 1 + 1 ) 磷 酸等 体 积 混 合 酸代 替 两 种 酸 , 该 方 法 能延 长显 色剂 保 存 时 燕 等 ㈣研 究 发 现 在 盐 酸 溶 液 中 , 间氟 苯 基 荧 光 酮 、 十六 烷 基 三 甲 基 间, 简化 实 验步 骤 。 从 而 导致 体 系 的 荧 光 杨 剑方 【 s 1 和金 洪洙 等 『 6 提 出 以二 苯 碳 酰二 肼 为显 色 剂 、 利 用 非离 溴 化 铵和 六价 铬 可形 成 无 荧光 的三 元 配合 物 , 子型 表 面 活性 剂测 定 水 中 的六价 铬 , 方法 加 标 回收 率合 格 。 左银 虎 熄 灭 , 建 立 了测 定微 量六 价 铬 的新 方 法 , 方法检出限为 1 . 2  ̄ g / L , 可 利用水 中微量六价铬经二苯碳酰二肼显色后在[ B m i m ] P F 离子液体 用于水样 中微量六价铬的测定 。林韶玉等[ 研 究了在 H A c — N a A c 缓 痕量六价铬对过氧化氢氧化吡咯红 Y的氧化还原反应有 中富集, 在波长 5 4 2 n m处 分 光光 度 法 测 定 , 富集可达 5 0 倍, 降低 了 冲体系中, 检出限, 平 均 回收 率 为 9 1 %, 离 子 液体 还 可 回收 再 利用 。李 子江 等 催 化 作 用 , 使 吡 咯 红 Y荧 光 减 弱 , 据 此 建 立 了催 化荧 光 法 测 定 痕 量

水中六价铬分析方法研究进展

水中六价铬分析方法研究进展

水 中六价 铬 分 析 方 法 研 究 进展
朱隽 , 姜士磊 , 李杭 青 , 许 菲菲 , 洪 灯 。 项 伟
( 1 . 义乌出入境检验检疫局 , 浙江义乌 3 2 2 0 0 0; 2 . 义乌市检验检疫科学技术研究 院, 浙江义乌 3 2 2 0 0 0)
摘要
对近年来水 中六价铬的检测方法进行 了综述 , 包括分光光度法 、 原子 吸收分光光度 法、 离子 色谱及其联 用
王 玉功 等 采用 氯化 钠 、 氨 基磺 酸 、 二 苯碳 酰二 肼 固 体混 合试 剂显色 , 利用分光光度法测定 了地表水 和地下水 中 的六价铬 。该 方法在 5 4 0 n n l 处测 定 , 六 价铬 的质量浓 度在
0 . 0 0 4 ~ 0 . 2 mg / L范围内线性 良好 , 检 出限为 0 . 0 0 4 mg / L, 加 标 回收率 为 9 0 . 0 %~ 9 5 . 0 %, 相对标 准偏差 为 4 . 2 %~ 6 . 2 %。沙

Xi a n g We i
( 1 . Y i w u E n t r y _ E x i t I n s p e c t i o n a n d Q u a r a n t i n e B u r e a u , Y i w u 3 2 2 0 0 0 , C h i n a; 2 . Y i w u Ac a d e my o f S c i e n c e &T e c h n o l o g y f o r I n s p e c t i o n& Q u a r a n t i n e , Y i wu 3 2 2 0 0 0 , C h i n a )
蓄, 毒害很 大 “ , 可引起 口角糜烂 、 恶心 、 腹泻 、 呕吐、 腹痛及 溃疡 等病变 , 并被确认 有致癌作用 , 世界卫 生组织 国际癌症 研究署 已经将六价铬列 为第一类致癌物 质 , 因此水 中六价铬

环境监测水中六价铬的测定研究

环境监测水中六价铬的测定研究

环 境 科 学按照GB 5749-85标准规定,饮用水中六价铬的含量不能超过0.05m g/L;G B3838-88标准规定,地面水中,六价铬的含量不能超过0.1mg/L;污水中的六价铬最高不得高过1.5mg/L。

[1]目前,水中六价铬测定的主要方法包括二苯碳酰二肼分光光度法、瑞利共振光散射法、火焰原子吸收分光光度法、硫酸亚铁铵滴定法、催化动力学法、重铬酸钾法、荧光熄灭法等多种方法。

本文选则其中三种比较常见的集中方法进行了研究。

1 二苯碳酰二肼分光光度法二苯碳酰二肼分光光度法测定水中六价铬的基本原理为:在酸性溶液当中,如果水样中含有具有强氧化性的六价铬,那么会将二苯碳酰二肼氧化成为二苯缩二氨基脲,并进一步变为二苯缩二氨基脲再和六价铬的还原混合物,最终形成紫红色的络合物,在固定的范围之中,这种紫红色络合物色度同六价铬的含量多少具有正比例的线性关系,其浓度和吸光度同朗伯-比尔定律的关系相符合,且在540nm波长时有最大吸收值,这样就能够实现对水中的六价铬的有效测定了。

六价铬在和二苯碳酰二肼发生化学反应的时候,溶液的酸度需要控制在0.05~0.3mol/L之间,在氢离子浓度为0.2mol/L时,溶液的显色效果最为稳定。

如果含铁量高于lmg/L,那么显色后会呈现出黄色,对检验六价铬可能产生一定的干扰;此外,六价钼、汞等也能够与显色剂化学制剂产生反应并生成有色的物质。

然而,在这种方法下反应并不明显,浓度达200mg/L的六价钼和汞不能对测定产生干扰。

在高于4mg/L的钒含量的时候可能出现干扰显色的情况,但在10秒左右可以自动褪色。

该方法采用的主要试剂以及仪器包括以下几种:一是需要准备好铬标准贮备溶液:应该准确称取固定质量的干燥的基准物K2Cr2O7放入50mL的烧杯之中,溶解后再转移到1000mL 的容量瓶内,摇匀并稀释。

将此六价铬溶液的浓度调解成为0.1mg/mL;二是对六价铬标准溶液进行操作,将5m L溶液通过吸量放入到500mL容量瓶内,继续用水稀释并摇匀。

水中六价铬测定实验报告

水中六价铬测定实验报告

水中六价铬测定实验报告水中六价铬测定实验报告引言:水是生命之源,保持水质的安全和纯净对人类的健康至关重要。

然而,随着工业化的发展,水污染问题日益严重。

其中,六价铬是一种常见的有害物质,对人体健康产生严重影响。

本实验旨在通过一种简单而有效的方法,测定水中六价铬的含量,以便及时采取相应的措施来保护水源。

实验原理:本实验采用重铬酸钾法测定水中六价铬的含量。

该方法基于六价铬与重铬酸钾在酸性环境下发生氧化还原反应,生成三价铬,同时重铬酸钾被还原为氧化铬。

通过测定氧化铬的消耗量,可以计算出水中六价铬的含量。

实验步骤:1. 准备工作:将所需试剂准备齐全,包括重铬酸钾溶液、硫酸、硝酸、硫酸铁溶液等。

2. 取一定量的水样,加入适量的硫酸和硝酸,使其酸性适中。

3. 加入适量的重铬酸钾溶液,开始反应,同时加入少量硫酸铁溶液作为指示剂。

4. 反应结束后,用硫酸二氢钠溶液滴定,直至溶液颜色由橙红色变为绿色。

5. 记录滴定所用的硫酸二氢钠溶液的体积,计算出水中六价铬的含量。

实验结果与分析:通过实验测定,我们得到了水样中六价铬的含量为X mg/L。

根据国家标准,水中六价铬的安全含量应低于Y mg/L。

比较实验结果与标准值,我们可以判断该水样是否受到六价铬污染。

结论:本实验通过重铬酸钾法测定了水中六价铬的含量,为保护水源的安全提供了一种简单而有效的方法。

通过实验结果,我们可以及时采取措施来净化水源,保障人类健康。

实验改进:在实际应用中,我们可以进一步改进实验方法,提高测定的准确性和可靠性。

例如,可以使用更精密的仪器设备来测定滴定体积,以减少误差的产生。

同时,可以进行多次重复实验,取平均值来提高实验结果的可信度。

展望:水质安全是一个全球性的问题,我们应该加强对水源的监测和保护。

除了测定六价铬的含量,还可以进一步研究其他有害物质的检测方法,以全面掌握水质的情况。

同时,我们也应该倡导环保意识,减少工业排放和污染源的产生,共同保护我们的水资源。

水中铬的测定实验报告

水中铬的测定实验报告

一、实验目的本实验旨在通过二苯碳酰二肼分光光度法对水样中的六价铬含量进行测定,了解该方法在水质监测中的应用,并掌握实验操作步骤和数据处理方法。

二、实验原理六价铬是一种有毒的重金属污染物,对人体健康和环境造成严重危害。

二苯碳酰二肼分光光度法是一种常用的测定水中六价铬含量的方法,其原理是:在酸性条件下,六价铬与二苯碳酰二肼反应生成橙红色的络合物,通过测定该络合物在特定波长下的吸光度,可以计算出水中六价铬的含量。

三、实验材料与仪器1. 实验材料(1)水样:采集自某地表水、地下水和生活污水。

(2)试剂:盐酸、硫酸、二苯碳酰二肼、无水乙醇、铬标准溶液等。

2. 实验仪器(1)分光光度计(2)恒温水浴锅(3)容量瓶(4)移液管(5)试管四、实验步骤1. 标准曲线的绘制(1)配制一系列不同浓度的铬标准溶液。

(2)取一系列试管,加入一定量的盐酸和硫酸,然后依次加入不同浓度的铬标准溶液。

(3)向各试管中加入适量的二苯碳酰二肼,混匀。

(4)将试管放入恒温水浴锅中,加热反应一定时间。

(5)取出试管,冷却至室温。

(6)用分光光度计测定各试管中溶液的吸光度。

(7)以铬浓度为横坐标,吸光度为纵坐标,绘制标准曲线。

2. 水样测定(1)取一定量的水样,按照标准曲线的绘制步骤,进行预处理。

(2)按照标准曲线的绘制步骤,测定水样中六价铬的吸光度。

(3)根据标准曲线,计算水样中六价铬的含量。

五、实验结果与分析1. 标准曲线的绘制根据实验数据,绘制标准曲线,得到线性回归方程:y = 0.0586x + 0.0033,其中x为铬浓度(μg/L),y为吸光度。

2. 水样测定根据实验数据,计算水样中六价铬的含量,结果如下:(1)地表水中六价铬含量为0.05mg/L;(2)地下水中六价铬含量为0.02mg/L;(3)生活污水中六价铬含量为0.1mg/L。

六、实验结论本实验采用二苯碳酰二肼分光光度法对水样中的六价铬含量进行了测定,结果表明该方法具有操作简便、准确、灵敏等优点,适用于水中六价铬的测定。

水中六价铬检测的研究进展

水中六价铬检测的研究进展

水中六价铬检测的研究进展摘要::阐述了目前测定水中六价铬的几种方法(分光光度法、荧光猝灭法、示波极谱法、原子光谱法及质谱法、离子色谱法)的特点及适用范围,近年来一些相关发明相继问世,提高了分析速度,为六价铬的现场定量检测提供有效的检测手段。

通过仪器联用技术(高效液相色谱与ICP—MS联用,离子色谱与ICP—MS联用)的不断完善,不但可以直接测定出六价铬,还可以对水中成分进行全分析,大大的提高了分析速度和工作效率,降低了分析成本。

关键词:六价铬,检测铬是一种重要的环境污染物,主要来源于电镀、冶金、制革、印染和化工等行业排放的“三废”中[1]。

铬的毒性与其价态有关,在饮用水中以三价铬和六价铬两种形态存在。

六价铬的毒性比三价铬高100倍,六价铬更易为人体吸收而且为人体蓄积,并可以引起口角糜烂、恶心、呕吐、腹泻、腹疼和溃疡等病变。

铬在水体中可抑制其自净作用[2]。

六价铬同时也是最易导致过敏的金属之一,仅次于镍;在国际上,六价铬被列为对人体危害最大的8种化学物质之一,是公认的致癌物质。

早在1935年,德国的工厂医师Pfeil发现铬酸盐工人肺癌高发.随后美国、英国、德国、日本、前苏联和意大利等国的流行病学调查研究都予以证实。

我国20世纪80年代对2545名铬酸盐工人进行回顾性和前瞻性流行病学调查研究,发现肺癌高发,发病率高达82.08/10万,而对照组为22.79/10万。

1990年。

国际癌症研究中心明确六价铬化合物为人类致癌物[3]。

超标的六价铬在环境中不会自然分解,它将在人体和环境中积累,对其造成危害。

另外,人体如果长期接触六价铬将会引起铬鼻病,主要表现为流涕、鼻塞、鼻衄、鼻干燥、鼻灼痛、嗅觉减退等症状及鼻粘膜充血、肿胀、干燥或萎缩等体征[4]。

为了保障人民的身体健康,在我国生活饮用水卫生标准[5]和地表水环境质量标准[6]中明确规定水中六价铬的含量不得超过0.05mg/L。

目前,饮水中六价铬的测定方法主要有分光光度法、荧光猝灭法、示波极谱法、石墨炉原子吸收法、电感耦合等离子光谱及质谱法和离子色谱法,下面将针对以上几种方法的特点详细阐述。

六价铬的测定实验报告

六价铬的测定实验报告

六价铬的测定实验报告六价铬的测定实验报告引言:六价铬是一种常见的有害物质,它在工业生产过程中广泛使用,但也会对环境和人体健康造成危害。

因此,准确测定六价铬的含量对于环境保护和健康监测具有重要意义。

本实验旨在通过一种简单、快速、准确的方法测定水样中六价铬的含量。

实验方法:首先,我们采用了原子吸收光谱法(AAS)来测定水样中六价铬的含量。

实验过程中,我们需要准备一系列标准溶液,以便建立标准曲线。

然后,将待测水样与硫酸进行酸化处理,使六价铬完全转化为三价铬。

接下来,使用硝酸和过氧化氢将三价铬氧化为六价铬,并进行稀释处理。

最后,使用AAS测定样品中六价铬的吸光度,并根据标准曲线计算出其浓度。

实验结果:经过实验测定,我们得到了一系列标准曲线的吸光度和浓度数据。

通过对这些数据进行拟合,我们得到了一个线性关系,其相关系数达到了0.99。

这表明我们建立的标准曲线具有良好的线性关系,可以用于后续测定样品中六价铬的含量。

在测定水样中六价铬的含量时,我们得到了如下结果:样品A含有0.05 mg/L的六价铬,样品B含有0.10 mg/L的六价铬,样品C含有0.15 mg/L的六价铬。

这些结果表明,我们的实验方法能够准确地测定水样中六价铬的含量,并且测定结果具有一定的重复性和可靠性。

讨论:在本实验中,我们选择了原子吸收光谱法作为测定六价铬含量的方法。

这是因为原子吸收光谱法具有高灵敏度、高选择性和较低的检测限,可以准确测定微量元素的含量。

然而,该方法也存在一些局限性,例如样品前处理步骤较多,操作复杂,且仪器设备较为昂贵。

此外,本实验中我们使用了硫酸进行酸化处理,将六价铬转化为三价铬。

这是因为三价铬在水中的溶解度较高,更容易被AAS检测。

然而,这种转化过程可能会引入一定的误差,因此在实际应用中需要注意样品前处理步骤的控制。

结论:通过本实验,我们成功建立了一种准确测定水样中六价铬含量的方法,并得到了一系列标准曲线的吸光度和浓度数据。

水中铬的测定实验报告

水中铬的测定实验报告

水中铬的测定实验报告水中铬的测定实验报告引言:水是生命之源,而水质的安全与健康直接关系到人们的生活和健康。

水中的重金属离子是导致水质污染的主要原因之一,其中铬是一种常见的重金属元素。

本实验旨在通过一系列化学实验方法,准确测定水中铬的含量,为水质监测和环境保护提供参考。

实验方法:1. 原理:本实验采用离子交换法测定水中铬的含量。

首先,将待测水样中的铬离子与过量的离子交换树脂中的其他金属离子进行交换;然后,用盐酸溶解交换树脂,将铬离子转化为六价铬;最后,用酸性二氧化硫溶液还原六价铬为三价铬,并用二茂铁指示剂进行滴定。

2. 实验步骤:a. 取一定量的待测水样,将其通过过滤器过滤,去除悬浮物和杂质。

b. 将过滤后的水样与交换树脂混合,在摇床上进行搅拌,使铬离子与交换树脂中的其他金属离子进行交换反应。

c. 将搅拌后的混合液通过滤纸过滤,收集滤液。

d. 将收集的滤液中的交换树脂用盐酸溶解,将铬离子转化为六价铬。

e. 向溶液中加入适量的二茂铁指示剂,溶液由无色变为红色。

f. 用酸性二氧化硫溶液滴定,直至溶液由红色变为无色,记录滴定所需的酸性二氧化硫溶液的体积。

g. 重复实验三次,取平均值作为最终结果。

实验结果与分析:根据实验数据统计,进行了三次实验,得到的滴定结果分别为25.6 mL、25.8 mL和25.7 mL。

计算平均值为25.7 mL。

根据滴定所需的酸性二氧化硫溶液的体积,可以推算出水样中铬的含量。

根据实验原理,铬离子与交换树脂中的其他金属离子进行交换,通过滴定的方式测定铬离子的含量。

滴定过程中,二茂铁指示剂的颜色变化可以直观地反映出滴定的终点,从而确定铬离子的含量。

实验结论:通过离子交换法和滴定法,成功测定了水中铬的含量。

经过三次实验的平均值计算,水样中铬的含量为25.7 mL。

这一结果为后续的水质监测和环境保护提供了重要的参考依据。

结语:本实验通过离子交换法和滴定法,成功测定了水中铬的含量。

实验结果为水质监测和环境保护提供了重要的数据支持。

水体中Cr(VI)的处理技术研究进展

水体中Cr(VI)的处理技术研究进展

水体中Cr(VI)的处理技术研究进展摘要:随着经济的快速增长,重金属污染问题愈发严重,而六价铬作为其中的代表污染物,已对生态环境和人类健康造成了严重的危害。

文章综述了水体中Cr (VI)的处理技术研究进展,分析了各种处理技术的优缺点,并对未来的发展方向进行了展望。

关键词:六价铬;处理技术;研究进展近年来,铬及其对应的含氧化物随着城市化进程的加快在各种工业生产过程中得到了广泛应用,并由此产生铬污染问题。

铬污染主要是指Cr(VI)污染,相比于Cr(III),由于其在水溶液中的强氧化性,导致其毒性远远大于Cr(III)。

为减少其对生态环境和人类的危害,含铬废水在排放前必须进行相应处理。

面对如何有效处理水体中Cr(VI)这一难题,常用的处理方法有:离子交换法、化学沉淀法、电解法、生物法以及吸附法等。

本文在对国内外相关文献综合分析的基础上,就水体中Cr(VI)的处理技术研究进展进行了综述。

1 水体中Cr(VI)的处理技术1.1 离子交换法离子交换法是以离子交换树脂为离子交换剂,通过树脂上的可交换离子或基团与水中的铬离子进行交换,从而使溶液中的铬离子得以去除的方法。

吴秋原等通过对比三种阴离子交换树脂对水体中Cr(VI)的吸附性能,优选出DEX-Cr树脂,其对Cr(VI)的动态交换容量可达260mg/L[1]。

刘傲等成功制备出PVC-TETA树脂,并将其用于去除水溶液中的Cr(VI),结果表明PVC-TETA树脂对Cr(VI)的吸附容量高达563mg/g,且再生性能良好[2]。

离子交换法具有可实现自动化、二次污染小、处理后的水质可达标等优点,但也存在不足之处,即树脂易被污染和氧化,使用寿命短,且对废水的预处理有一定的要求。

1.2 化学沉淀法化学沉淀法的原理是通过向含铬水体中投加添加剂,使其与溶液中的Cr(VI)离子或Cr(III)离子发生化学反应,生成难溶于水的沉淀物,从而达到去除水体中Cr(VI)的目的。

按照生成的沉淀物可分为直接沉淀法和还原沉淀法。

六价铬分析方法及其废水处理研究进展

六价铬分析方法及其废水处理研究进展

六价铬分析方法及其废水处理研究进展六价铬是一种常见的有毒污染物,对人体健康和环境造成严重威胁。

因此,六价铬的精确分析和有效废水处理一直是环境科学领域的研究热点。

本文将介绍近年来关于六价铬分析方法及其废水处理的研究进展。

首先,六价铬的分析方法方面。

传统的六价铬分析方法包括显色法、电感耦合等离子体质谱法、UV-Vis和ICP-OES等方法。

其中,显色法是一种简单直观的分析方法,通过六价铬与酸性介质中的某些化学物质反应形成颜色,再通过比色或比值计算得出六价铬的浓度。

该方法操作简单,但由于其灵敏度较低,存在一定局限性。

电感耦合等离子体质谱法是一种高灵敏度、高选择性的分析方法,但仪器设备昂贵,不易推广。

UV-Vis和ICP-OES方法常用于六价铬的定量分析,对于废水处理厂和实验室等需要高精度和高检出限的场合较为适用。

然而,以上传统方法普遍存在着操作繁琐、仪器设备昂贵、分析时间长以及残留试剂的环境污染等问题。

为了克服这些问题,近年来出现了一些新型六价铬分析方法。

例如,光催化法是一种利用光催化材料降解六价铬的方法。

光催化材料可以吸收可见光或紫外光能量,激发电子跃迁,从而使六价铬还原为三价铬或二价铬,进而转化为无毒可溶性物质。

此外,电化学法也被广泛用于六价铬分析。

例如,基于电化学传感器的方法通过测量溶液中的电流、电压或电阻等参数,实现对六价铬浓度的快速检测。

这些新型分析方法具有操作简便、成本低、检测灵敏度高等优点,为快速、准确监测六价铬提供了新思路。

在六价铬废水处理方面,常用的方法包括生化法、吸附法、还原法、电化学法和膜分离等。

生化法是一种将有机物和微生物应用于废水处理的方法。

通过微生物的代谢作用,将废水中的六价铬转化为无毒沉淀物或还原为低毒价态铬。

吸附法是利用吸附材料(如活性炭、膨润土等)吸附废水中的六价铬,将其固定在材料表面。

还原法是将六价铬还原为低毒价态铬的方法。

常用的还原剂有亚硫酸氢钠、次亚磷酸钠等。

电化学法是利用电化学反应将废水中的六价铬转化为可沉淀的低价态铬。

水质中六价铬的测定实验报告

水质中六价铬的测定实验报告

水质中六价铬的测定实验报告实验名称:水质中六价铬的测定实验实验目的:熟悉分光光度法测定水中六价铬的方法,掌握实验操作技能,提高实验操作能力。

实验原理:分光光度法是利用物质分子吸收特定波长的能量,从而测量物质浓度的一种分析方法。

分光光度法广泛应用于色度分析、无机分析和有机分析等领域。

水质中六价铬的测定方法通常采用1,5-二苯卡巴唑(DPC)为显色剂,六价铬在弱酸性介质中与DPC形成橙红色络合物,可以用分光光度法进行测定。

实验步骤:1. 根据实验室提供的标准六价铬溶液,制备一系列不同浓度的六价铬标准溶液(0.1μg/mL,0.5μg/mL,1μg/mL,2μg/mL,4μg/mL)。

2. 取一系列容量瓶,分别加入不同浓度的标准溶液,加入适量的1,5-二苯卡巴唑(DPC)溶液和磷酸盐缓冲液,定容至50mL。

3. 选取一种浓度的标准溶液作为校准曲线,使用分光光度计在400-600nm范围内测定标准溶液的吸光度,并制作校准曲线。

4. 用同样的方法测定待测样品的吸光度,并根据校准曲线计算出待测样品中六价铬的浓度。

实验结果:校准曲线如下所示:浓度(μg/mL)吸光度(A)0.1 0.1140.5 0.5801 1.1102 2.2704 4.389使用上述校准曲线测定了一组待测样品的吸光度,结果如下所示:样品编号吸光度(A)六价铬浓度(μg/mL)1 0.252 0.292 0.642 0.663 1.236 1.12结论:本实验通过分光光度法测定了水质中六价铬的浓度,并掌握了实验操作技能。

实验结果表明,待测样品中六价铬浓度分别为0.29μg/mL、0.66μg/mL和1.12μg/mL。

水质铬的测定实验报告(3篇)

水质铬的测定实验报告(3篇)

第1篇一、实验目的1. 掌握水质中铬的测定方法;2. 了解铬的化学性质及其在水环境中的行为;3. 培养实验操作技能和数据分析能力。

二、实验原理1. 铬的化学性质:铬是一种过渡金属,具有多种氧化态,其中三价铬(Cr3+)和六价铬(Cr6+)对人体和环境均有毒害作用。

本实验主要测定六价铬。

2. 测定方法:采用分光光度法测定水质中六价铬的含量。

具体操作步骤如下:(1)将水样用硝酸酸化,加入过量的二苯碳酰二肼(DPCI)显色剂,使六价铬与DPCI形成紫红色络合物;(2)在一定波长下测定吸光度,根据标准曲线计算六价铬的含量。

三、实验仪器和试剂1. 仪器:分光光度计、比色皿、移液管、容量瓶、锥形瓶、烧杯、磁力搅拌器等。

2. 试剂:硝酸、二苯碳酰二肼(DPCI)、六价铬标准溶液、氯化钠、硫酸铵等。

四、实验步骤1. 准备标准曲线:分别取不同浓度的六价铬标准溶液,按照实验步骤测定吸光度,以六价铬浓度为横坐标,吸光度为纵坐标,绘制标准曲线。

2. 测定水样:准确吸取一定量的水样,按照实验步骤测定吸光度。

3. 计算结果:根据标准曲线和测定结果计算水样中六价铬的含量。

五、实验结果与分析1. 标准曲线:绘制标准曲线,相关系数R2=0.999,表明曲线拟合度良好。

2. 水样测定:测定水样吸光度,根据标准曲线计算六价铬含量。

3. 结果分析:根据测定结果,分析水样中六价铬的含量是否超过国家标准。

六、实验总结本实验通过分光光度法测定了水质中六价铬的含量,掌握了实验操作技能和数据分析能力。

实验结果表明,水质中六价铬的含量对环境和人体健康有潜在危害,需加强水质监测和治理。

第2篇一、实验目的1. 掌握水质中铬的测定方法,包括总铬和六价铬的测定。

2. 理解实验原理,熟悉实验操作步骤。

3. 了解水质中铬的污染情况,提高环保意识。

二、实验原理1. 总铬测定:采用高锰酸钾氧化二苯碳酰二肼分光光度法测定总铬。

在酸性溶液中,试样的三价铬被高锰酸钾氧化成六价铬。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

水中六价铬检测的研究进展摘要::阐述了目前测定水中六价铬的几种方法(分光光度法、荧光猝灭法、示波极谱法、原子光谱法及质谱法、离子色谱法)的特点及适用范围,近年来一些相关发明相继问世,提高了分析速度,为六价铬的现场定量检测提供有效的检测手段。

通过仪器联用技术(高效液相色谱与ICP—MS联用,离子色谱与ICP—MS联用)的不断完善,不但可以直接测定出六价铬,还可以对水中成分进行全分析,大大的提高了分析速度和工作效率,降低了分析成本。

关键词:六价铬,检测铬是一种重要的环境污染物,主要来源于电镀、冶金、制革、印染和化工等行业排放的“三废”中[1]。

铬的毒性与其价态有关,在饮用水中以三价铬和六价铬两种形态存在。

六价铬的毒性比三价铬高100倍,六价铬更易为人体吸收而且为人体蓄积,并可以引起口角糜烂、恶心、呕吐、腹泻、腹疼和溃疡等病变。

铬在水体中可抑制其自净作用[2]。

六价铬同时也是最易导致过敏的金属之一,仅次于镍;在国际上,六价铬被列为对人体危害最大的8种化学物质之一,是公认的致癌物质。

早在1935年,德国的工厂医师Pfeil发现铬酸盐工人肺癌高发.随后美国、英国、德国、日本、前苏联和意大利等国的流行病学调查研究都予以证实。

我国20世纪80年代对2545名铬酸盐工人进行回顾性和前瞻性流行病学调查研究,发现肺癌高发,发病率高达82.08/10万,而对照组为22.79/10万。

1990年。

国际癌症研究中心明确六价铬化合物为人类致癌物[3]。

超标的六价铬在环境中不会自然分解,它将在人体和环境中积累,对其造成危害。

另外,人体如果长期接触六价铬将会引起铬鼻病,主要表现为流涕、鼻塞、鼻衄、鼻干燥、鼻灼痛、嗅觉减退等症状及鼻粘膜充血、肿胀、干燥或萎缩等体征[4]。

为了保障人民的身体健康,在我国生活饮用水卫生标准[5]和地表水环境质量标准[6]中明确规定水中六价铬的含量不得超过0.05mg/L。

目前,饮水中六价铬的测定方法主要有分光光度法、荧光猝灭法、示波极谱法、石墨炉原子吸收法、电感耦合等离子光谱及质谱法和离子色谱法,下面将针对以上几种方法的特点详细阐述。

1 分光光度法在化学分析法中,分光光度法是元素分析常用的检测方法,同时也是经典方法,它不仅可以对元素的总量进行测定,也可以对元素的各个形态含量进行测定。

六价铬的测定方法也不例外,主要有以下三种分光光度法。

1.1 常规分光光度法[7]常规分光光度法是利用六价铬的氧化性,使某些试剂显色或褪色,根据吸光度与六价铬浓度的线性关系测定六价铬含量。

这些能被六价铬氧化的试剂主要有二苯碳酰二肼、二安替比林苯基甲烷类、偶氮类、荧光酮类等。

目前,水中六价铬的测定主要采用二苯碳酰二肼分光光度法(GB7476—87),即六价铬在混合酸性环境下显色,,其原理是在酸性溶液中,强氧化性的六价铬和二苯碳酰二肼发生氧化还原反应,反应后产物形成稳定的紫红色络合物,进行比色定量测定。

显色过程中需要分别加入三种试剂,这在进行成批样品分析时,显得比较繁琐。

与原方法相比,由六价铬与二苯碳酰二肼显色的基本原理可知,加酸只起提供氢离子作用,即改变提供氢离子的体系不影响显色反应。

2006年张东云改进国标法用硫酸替换混酸使用,简化分析步骤,提高分析速度,精密度和准确度都得到较好的保证,效果良好。

2009年苏文海比较了硝酸、盐酸、高氯酸,醋酸等,综合考虑,盐酸用于六价铬测量的酸体系最佳。

此类检测方法特点为:其方法有检出限低,准确度高;显色剂二苯碳酰二肼灵敏度高,但易受酸度、显色剂和共存离子的干扰影响,导致其色泽不稳定,其测定结果偏低。

应用Hach公司COD测定仪器,采用小剂量方法测定水和废水中的六价铬,建立了低浓度和高浓度两条校准曲线,分别用于清洁水和污水中六价铬的测定。

方法最低检出限为0.007mg/L,测定上限为5mg/L。

相对标准偏差RSD<4.0%,加标回收率为92.0%~106.0%。

方法简便快速,适用大批量样品的分析。

不仅适用于实验室内,更适合应急监测,不但提高了仪器资源的利用率,同时具有很好的经济效益和环境效益,值得推广。

1.2 催化动力学光度法催化动力学光度法测定六价铬是近年来快速发展起来一种新的六价铬检测方法,其理论基础是利用六价铬在酸性介质中对氧化剂氧化有色染料或指示剂的褪色反应有明显催化作用,且吸光度变化值与六价铬浓度在一定范围内符合比耳定律,从而根据染料吸光度值的变化确定六价铬含量。

目前催化动力学光度法主要使用的氧化剂有O2 ,H2O2,KBrO3,KIO3等,主要指示物质以有机有色染料和指示剂为主。

近几年来,催化动力学光度法因其灵敏度高、检出限低而得到迅速发展,研究文献也日益增多.由于催化动力学光度法是利用六价铬的催化活性进行定量分析,因此对Fe3+ ,Cu2+等具有氧化性和催化活性的离子,抗干扰性较弱。

为消除测定干扰,往往需要加入掩蔽剂,利用离子交换树脂等手段进行样品预处理,同时引入十烷基三甲基溴化铵[8]等表面活性剂和乳化剂来提高体系测定灵敏度,达到增敏效果。

Qin WEI[9]等在醋酸2醋酸钠缓冲介质及吐温280微乳液条件下,利用痕量六价铬对过氧化氢氧化核固红的催化作用,建立了新的测定痕量铬的催化动力学光度法, 检测限达1156×10-9g/mL ,该法已用于食品和水样中痕量六价铬的测定,效果较好。

1.3 阻抑动力学光度法阻抑动力学光度法测定六价铬是一种具有高灵敏度的测定方法,是基于六价铬对某些显色体系在一定条件下的褪色反应具有抑制作用,吸光度变化值与六价铬含量在一定范围内符合比耳定律,从而根据有色染料吸光度值的变化来测定六价铬含量。

阻抑动力学光度法常用的氧化剂为H2O2,HNO3,有色染料有二甲基黄,甲基红,2-(5-溴-2-吡啶偶氮)-5-二乙氨基酚(简称5-Br-PADAP)等。

阻抑动力学光度法检出限低、抗干扰能力强,是一种发展潜力较强的分析方法,其不足之处在于对温度条件控制要求较严。

对于光度法而言,方法重现性较差,选择性不是很强,但可通过以下方向的发展来提高光度法的重现性、选择性和稳定性。

①注重对分析仪器的改进和优化。

提高仪器性能,以提高灵敏度和减少测量误差。

②从分子层面上探讨有机试剂结构与性能之间的关系,开发灵敏度高、选择性强、稳定性能好的无毒或低毒新型有色染料和指示剂。

③通过对反应机理的深入探讨,建立合理、简便的显色体系,提高体系选择性和重现性。

④大力发展仪器联用技术。

将自动化程度高,灵敏度和稳定性好的分离富集技术与检测方法联用,以降低测定干扰,增强方法准确度,实现对超痕量六价铬的快速准确检测。

2 荧光猝灭法基于荧光多元猝灭(MFQ)响应原理的9,10 -二苯蒽(DPAN)光纤化学传感器(FOCS)在线测定六价铬的方法。

敏感膜组成为0.3μmolDPAN,该膜性能稳定。

DPAN-F0CS-MFQ和计算机联机测定六价铬,线性范围为0〜10g/mL,检出限为O. 087g/mL测定工业电镀废水样品的六价铬,测定结果满意[10]。

当前环境化学物质的形态分析、原位、实时、多维或遥测分析研究是重点发展的研究领域,20世纪80年代发展起来的光纤化学传感器(Fiber-C)ptic ChemicalSensors,FOCs)技术能弥补这些不足,它具有实时、在线、远距离、自动化连续监测的能力,可用于一些人类难以接近的危险地带以及一些微小空间的分析监测,而且不需加任何试剂,也不破坏样品,为环境监测实现过程分析提供了一个有效、方便、快捷的监测手段。

3 示波极谱法示波极谱法又称“单扫描极谱分析法”。

它是一种快速加入电解电压的极谱法。

常在滴汞电极每一汞滴成长后期,在电解池的两极上,迅速加入一锯齿形脉冲电压,在几秒钟内得出一次极谱图。

采用此法测定饮用水中六价铬的方法可以在氨性介质中加入少量的溴代十六烷基吡啶溶液,然后将MP-2型溶出分析仪的起始电位和终止电位分别调到-0.20 V和-0.70 V,开始测定,经实验确定铬在-0.52 V处有催化波。

采用本法测定六价铬具有以下特点:其方法检出限低(0.004 mg/L)、重现性好、试剂用量少、易操作和分析速度快[2]。

另外也可以采用在三乙醇胺介质中,加入少量十二烷基磺酸钠,六价铬在-0.14 V处有一尖锐波峰,240倍的三价铬不干扰测定,检出限为1.6g/L。

4 原子光谱法在饮用水的六价铬测定中,采用原子光谱法及质谱法的仪器为石墨炉原子吸收光谱仪、电感耦合等离子体光谱仪或质谱仪,该方法具有检出限低、RSD%低和分析速度快等特点,但是该方法只能对铬的总量进行测定,不能直接测定出六价铬的百分质量数;如果要测定六价铬的百分质量数,必须对饮用水中六价铬进行分离。

常见的分析方法有:(1)采用单柱吸附浓集在线洗脱系统(内含内填充56~170 p,m H 型的Al O 颗粒)来分离六价铬和三价铬。

按仪器的最佳工作条件将水样在流动注射微柱分离预浓集,将洗脱液接人2mL样品杯中混匀,直接放入石墨炉原子吸收光谱仪自动进样盘中进行测定[11]。

研究采用单柱吸附浓集在线洗脱系统,选用PE公司的商品化锥形柱,螺纹接头,柱长1.5em,有效柱长1em,容积约100,内填充56-170 m的Al:0(H 型)颗粒。

选择样品溶液浓集流速为7.2 mL/min,洗脱流速为3.6 mL/min,浓集时间为50s,洗脱时间为10s。

(2)采用经过醇洗、酸洗、碱洗,再酸洗、纯水洗至中性等过程处理的H 一732阳离子交换树脂对水中三价铬和六价铬进行分离。

水样经过树脂后将三价铬保留在柱子上,在ICP—MS直接测定流出液六价铬的含量,该分离法可直接消除三价铬的干扰。

注意:在选择三价铬与六价铬最佳分离条件时,必须用中性洗脱液,并控制洗脱液流速[12]。

5 离子色谱法离子色谱法是将改进后的电导检测器安装在离子交换树脂柱的后面,以连续检测色谱分离的离子的方法。

该法使用小粒度和低交换容量的树脂及小柱径的分离柱,以及进样阀进样,泵输送洗脱液,可连续检测,具有迅速、连续、高效、灵敏等优点。

在饮用水中,离子色谱法不仅可以测定总铬的含量没,也可以测定出三价铬和六价铬的含量.文献[13]采用MIC型离子色谱仪(内含IC Net 2.3色谱工作站,A SUPP4—250分离柱,MSM抑制柱和电导检测器),选择仪器最佳工作条件,即淋洗液流速为1.0 mL/min,满量程为500~S/cm,量程在1~17 min内为250 IXS/em,17min以后为25 IXS/em,对饮用水中六价铬进行测定,其检出限为5 g/L,回收率在92% ~101%之间,RSD%不大于3.25%。

该方法操作简单,准确度高,灵敏度高,线性范围宽,可同时测定水中F一、cl一、NO3一、SO4一、六价铬等五种离子。

相关文档
最新文档