ST6015矩形格构式基础计算书
ST6015塔吊基础设计计算书
ST6015塔吊基础设计计算书一、设计依据《建筑结构荷载规范》GB50009-2001 《塔式起重机设计规范》GB/T13752-92 《建筑地基基础设计规范》GB50007-2011 《建筑桩基技术规范》JGJ94-2008 《混凝土结构设计规范》GB50010-2010二、基本参数塔吊型号:ST6015 基桩类型:预应力管桩垂直力:903 kN桩径(d): 400 mm水平力:157 kN基桩长度:29 m倾覆力矩:4650 kNm基桩中心距(S): 3.6m塔身宽度:2.0 m桩钢筋等级:Ⅱ级钢承台宽度(B):4.5 m桩砼强度等级:C30承台高度(h):1.35 m地下水位深度: 0 m承台钢筋等级:C级钢砼保护层厚度: 50 mm承台砼强度等级:C35 承台覆土深度:0.0 m三、土层力学参数四、塔吊基桩承载力验算1.计算简图:图中:k F 塔吊作用于基础上的垂直力标准值(kN ); ok M 塔吊作用于基础上的倾覆力矩标准值(kNm ); k H 塔吊作用于基础上的水平力标准值(kN ); k G 承台自重及其上覆土自重标准值(kN ); S 基桩中心距(m ); B 承台宽度(m ); h 承台高度(m )。
2.荷载计算:取地基土容重为163/kN m ,则 承台自重及上覆土自重标准值:k G =4.5×4.5×(1.35×25+0×16)= 683.4kN作用于承台基础底的弯矩:0k k k M M H h =+⋅ = 4650 + 157×1.35= 4862.0kNm3.基桩顶作用效应计算:(绕Z 轴)i xS×3.6 = 2.545 m垂直力(轴心受压):k k F G N n+== 903+683.44 =396.6 kN垂直力(偏心受压):2k k k iiF G M x N n x +=±∑= 903+683.4 4± 4862.0× 2.5452×2.5452max N = 1351.8kNmin N = -558.6kN水平力:H ik= H k /n=157/4=39.25kN 4.桩基竖向承载力验算(1)单桩竖向极限承载力标准值计算A p=π(d2²-d1²)/4 =3.14×(0.40²-0.22²)/4=0.087㎡ Q sk=u ∑q sikL i=3.14×0.40×1046.5=1314.4kN Q pk=qpkA p=3500×0.087=304.5kNQ uk =Qsk+Qpk=1314.4+304.5=1618.9kN R a=1/KQ uk=1/2×1618.9=809.5kN (2)桩基竖向承载力计算 1) 轴心竖向力作用下N k=329.85kN<R a=809.5kN ,竖向承载力满足要求。
最新整理2矩形格构式基础计算书_20151124.doc
矩形格构式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20xx2、《混凝土结构设计规范》GB50010-20xx3、《建筑桩基技术规范》JGJ94-20xx4、《建筑地基基础设计规范》GB50007-20xx5、《钢结构设计规范》GB50017-20xx一、塔机属性1、塔机传递至基础荷载标准值基础布置图承台及其上土的自重荷载标准值:G k=bl(hγc+h'γ')=4.4×4.4×(1.25×25+0×19)=605kN承台及其上土的自重荷载设计值:G=1.35G k=1.35×605=816.75kN 桩对角线距离:L=(a b2+a l2)0.5=(2.62+2.62)0.5=3.677m1、荷载效应标准组合轴心竖向力作用下:Q k=(F k+G k+G p2)/n=(509+605+20)/4=283.5kN荷载效应标准组合偏心竖向力作用下:Q kmax=(F k+G k+G p2)/n+(M k+F Vk(H0-h r+h/2))/L=(509+605+20)/4+(1668+71×(1.25+5-3-1.25/2))/3.677=787.824kNQ kmin=(F k+G k+G p2)/n-(M k+F Vk(H0-h r+h/2))/L=(509+605+20)/4-(1668+71×(1.25+5-3-1.25/2))/3.677=-220.824kN2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F+G+1.35×G p2)/n+(M+F v(H0-h r+h/2))/L=(687.15+816.75+1.35×20)/4+(2251.8+95.85×(1.25+5-3-1.25/2))/3.677=1063.562kNQ min=(F+G+1.35×G p2)/n-(M+F v(H0-h r+h/2))/L=(687.15+816.75+1.35×20)/4-(2251.8+95.85×(1.25+5-3-1.25/2))/3.677=-298.112kN 四、格构柱计算整个格构柱截面对X、Y轴惯性矩:I=4[I0+A0(a/2-Z0)2]=4×[423.16+28.91×(46.00/2-3.53)2]=45529.555cm4整个构件长细比:λx=λy=H0/(I/(4A0))0.5=500/(45529.555/(4×28.91))0.5=25.199分肢长细比:λ1=l01/i y0=30.00/2.46=12.195分肢毛截面积之和:A=4A0=4×28.91×102=11564mm2格构式钢柱绕两主轴的换算长细比:λ0=(λx2+λ12)0.5=(25.20xx+12.1952)0.5=27.995maxλ0max=27.995≤[λ]=150满足要求!2、格构式钢柱分肢的长细比验算λ1=12.195≤min(0.5λ0max,40)=min(0.5×50,40)=25满足要求!3、格构式钢柱受压稳定性验算λ0max(f y/235)0.5=50×(235/235)0.5=50查表《钢结构设计规范》GB50017附录C:b类截面轴心受压构件的稳定系数:φ=0. 856Q max/(φA)=1063.562×103/(0.856×11564)=107.444N/mm2≤f=215N/mm2满足要求!4、缀件验算缀件所受剪力:V=Af(f y/235)0.5/85=11564×215×10-3×(235/235)0.5/85=29.25kN格构柱相邻缀板轴线距离:l1=l01+30=30.00+30=60cm作用在一侧缀板上的弯矩:M0=Vl1/4=29.25×0.6/4=4.388kN·m分肢型钢形心轴之间距离:b1=a-2Z0=0.46-2×0.0353=0.389m作用在一侧缀板上的剪力:V0=Vl1/(2·b1)=29.25×0.6/(2×0.389)=22.535kNσ= M0/(bh2/6)=4.388×106/(10×3002/6)=29.25N/mm2≤f=215N/mm2满足要求!τ=3V0/(2bh)=3×22.535×103/(2×10×300)=11.267N/mm2≤τ=125N/mm2满足要求!角焊缝面积:A f=0.7h f l f=0.8×10×490=3430mm2角焊缝截面抵抗矩:W f=0.7h f l f2/6=0.7×10×4902/6=280117mm3垂直于角焊缝长度方向应力:σf=M0/W f=4.388×106/280117=16N/mm2平行于角焊缝长度方向剪应力:τf=V0/A f=22.535×103/3430=7N/mm2((σf /1.22)2+τf2)0.5=((16/1.22)2+72)0.5=14N/mm2≤f tw=160N/mm2满足要求!根据缀板的构造要求缀板高度:300mm≥2/3 b1=2/3×0.389×1000=260mm满足要求!缀板厚度:10mm≥max[1/40b1,6]= max[1/40×0.389×1000,6]=10mm满足要求!缀板间距:l1=600mm≤2b1=2×0.389×1000=779mm满足要求!线刚度:∑缀板/分肢=4×10×3003/(12×(460-2×35.3))/(423.16×104/600)=32.771≥6满足要求!五、桩承载力验算1、桩基竖向抗压承载力计算桩身周长:u=πd=3.14×0.8=2.513m桩端面积:A p=πd2/4=3.14×0.82/4=0.503m2R a=ψuΣq sia·l i+q pa·A p=0.8×2.513×(0.405×5+1.5×7+10.9×5+7.37×23)+410×0.503=681.67kNQ k=283.5kN≤R a=681.67kNQ kmax=787.824kN≤1.2R a=1.2×681.67=818.004kN满足要求!2、桩基竖向抗拔承载力计算Q kmin=-220.824kN<0按荷载效应标准组合计算的桩基拔力:Q k'=220.824kN桩身位于地下水位以下时,位于地下水位以下的桩自重按桩的浮重度计算,桩身的重力标准值:G p=l t A p(γz-10)=20.175×0.503×(25-10)=152.116kNR a'=ψuΣλi q sia l i+G p=0.8×2.513×(0.6×0.405×5+0.8×1.5×7+0.6×10.9×5+0.8×7.37×23)+15 2.116=509.851kNQ k'=220.824kN≤R a'=509.851kN满足要求!3、桩身承载力计算纵向普通钢筋截面面积:A s=nπd2/4=12×3.142×162/4=2413mm2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=1063.562kNψc f c A p+0.9f y'A s'=(0.75×14×0.503×106 + 0.9×(360×2412.743))×10-3=6259.561kN Q=1063.562kN≤ψc f c A p+0.9f y'A s'=6259.561kN满足要求!(2)、轴心受拔桩桩身承载力荷载效应基本组合下的桩顶轴向拉力设计值:Q'=-Q min=298.112kNf y A S=360×2412.743×10-3=868.588kNQ'=298.112kN≤f y A S=868.588kN满足要求!4、桩身构造配筋计算A s/A p×100%=(2412.743/(0.503×106))×100%=0.48%≥0.45%满足要求!六、承台计算承台有效高度:h0=1250-50-22/2=1189mmM=(Q max+Q min)L/2=(1063.562+(-298.112))×3.677/2=1407.263kN·mX方向:M x=Ma b/L=1407.263×2.6/3.677=995.085kN·mY方向:M y=Ma l/L=1407.263×2.6/3.677=995.085kN·m2、受剪切计算V=F/n+M/L=687.15/4 + 2251.8/3.677=784.196kN受剪切承载力截面高度影响系数:βhs=(800/1189)1/4=0.906塔吊边缘至角桩内边缘的水平距离:a1b=(a b-B-d)/2=(2.6-1.6-0.8)/2=0.1ma1l=(a l-B-d)/2=(2.6-1.6-0.8)/2=0.1m剪跨比:λb'=a1b/h0=100/1189=0.084,取λb=0.25;λl'= a1l/h0=100/1189=0.084,取λl=0.25;承台剪切系数:αb=1.75/(λb+1)=1.75/(0.25+1)=1.4αl=1.75/(λl+1)=1.75/(0.25+1)=1.4βhsαb f t bh0=0.906×1.4×1.57×103×4.4×1.189=10414.52kNβhsαl f t lh0=0.906×1.4×1.57×103×4.4×1.189=10414.52kNV=784.196kN≤min(βhsαb f t bh0, βhsαl f t lh0)=10414.52kN满足要求!3、受冲切计算塔吊对承台底的冲切范围:B+2h0=1.6+2×1.189=3.978ma b=2.6m≤B+2h0=3.978m,a l=2.6m≤B+2h0=3.978m角桩位于冲切椎体以内,可不进行角桩冲切的承载力验算!4、承台配筋计算(1)、承台底面长向配筋面积αS1= M y/(α1f c bh02)=995.085×106/(1.03×16.7×4400×11892)=0.009ζ1=1-(1-2αS1)0.5=1-(1-2×0.009)0.5=0.009γS1=1-ζ1/2=1-0.009/2=0.995A S1=M y/(γS1h0f y1)=995.085×106/(0.995×1189×360)=2336mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/360)=max(0.2,0.196)=0.2% 梁底需要配筋:A1=max(A S1, ρbh0)=max(2336,0.002×4400×1189)=10464mm2 承台底长向实际配筋:A S1'=10834mm2≥A1=10464mm2满足要求!(2)、承台底面短向配筋面积αS2= M x/(α2f c bh02)=995.085×106/(1.03×16.7×4400×11892)=0.009ζ2=1-(1-2αS2)0.5=1-(1-2×0.009)0.5=0.009γS2=1-ζ2/2=1-0.009/2=0.995A S2=M x/(γS2h0f y1)=995.085×106/(0.995×1189×360)=2336mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/360)=max(0.2,0.196)=0.2% 梁底需要配筋:A2=max(2336, ρlh0)=max(2336,0.002×4400×1189)=10464mm2 承台底短向实际配筋:A S2'=10834mm2≥A2=10464mm2满足要求!(3)、承台顶面长向配筋面积承台顶长向实际配筋:A S3'=5853mm2≥0.5A S1'=0.5×10834=5417mm2满足要求!(4)、承台顶面短向配筋面积承台顶长向实际配筋:A S4'=5853mm2≥0.5A S2'=0.5×10834=5417mm2满足要求!(5)、承台竖向连接筋配筋面积承台竖向连接筋为双向Φ10@500。
6012塔吊矩形板式桩基础计算书
矩形板式桩基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑桩基技术规范》JGJ94-20084、《建筑地基基础设计规范》GB50007-2011一、塔机属性二、塔机荷载1、塔机传递至基础荷载标准值2、塔机传递至基础荷载设计值三、桩顶作用效应计算基础布置图承台及其上土的自重荷载标准值:G k=bl(hγc+h'γ')=5×5×(1.35×25+0×19)=843.75kN承台及其上土的自重荷载设计值:G=1.35G k=1.35×843.75=1139.062kN 桩对角线距离:L=(a b2+a l2)0.5=(3.62+3.62)0.5=5.091m1、荷载效应标准组合轴心竖向力作用下:Q k=(F k+G k)/n=(354.2+843.75)/4=299.488kN荷载效应标准组合偏心竖向力作用下:Q kmax=(F k+G k)/n+(M k+F Vk h)/L=(354.2+843.75)/4+(1260.5+61.9×1.35)/5.091=563.487kNQ kmin=(F k+G k)/n-(M k+F Vk h)/L=(354.2+843.75)/4-(1260.5+61.9×1.35)/5.091=35.488kN2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F+G)/n+(M+F v h)/L=(478.17+1139.062)/4+(1701.675+83.565×1.35)/5.091=760.707kN Q min=(F+G)/n-(M+F v h)/L=(478.17+1139.062)/4-(1701.675+83.565×1.35)/5.091=47.909kN 四、桩承载力验算1、桩基竖向抗压承载力计算桩身周长:u=πd=3.14×0.6=1.885m桩端面积:A p=πd2/4=3.14×0.62/4=0.283m2承载力计算深度:min(b/2,5)=min(5/2,5)=2.5mf ak=(2.5×150)/2.5=375/2.5=150kPa承台底净面积:A c=(bl-nA p)/n=(5×5-4×0.283)/4=5.967m2复合桩基竖向承载力特征值:R a=ψuΣq sia·l i+q pa·A p+εc f ak A c=0.8×1.885×(9.1×40+5.8×60)+2000×0.283+0.32×150×5.967=1 925.586kNQ k=299.488kN≤R a=1925.586kNQ kmax=563.487kN≤1.2R a=1.2×1925.586=2310.703kN满足要求!2、桩基竖向抗拔承载力计算Q kmin=35.488kN≥0不需要进行桩基竖向抗拔承载力计算!3、桩身承载力计算纵向预应力钢筋截面面积:A ps=nπd2/4=16×3.142×10.72/4=1439mm2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=760.707kN桩身结构竖向承载力设计值:R=3000kN满足要求!(2)、轴心受拔桩桩身承载力Q kmin=35.488kN≥0不需要进行轴心受拔桩桩身承载力计算!五、承台计算1、荷载计算承台有效高度:h0=1350-50-25/2=1288mmM=(Q max+Q min)L/2=(760.707+(47.909))×5.091/2=2058.401kN·mX方向:M x=Ma b/L=2058.401×3.6/5.091=1455.509kN·mY方向:M y=Ma l/L=2058.401×3.6/5.091=1455.509kN·m2、受剪切计算V=F/n+M/L=478.17/4 + 1701.675/5.091=453.783kN受剪切承载力截面高度影响系数:βhs=(800/1288)1/4=0.888塔吊边缘至角桩内边缘的水平距离:a1b=(a b-B-d)/2=(3.6-1.6-0.6)/2=0.7ma1l=(a l-B-d)/2=(3.6-1.6-0.6)/2=0.7m剪跨比:λb'=a1b/h0=700/1288=0.543,取λb=0.543;λl'= a1l/h0=700/1288=0.543,取λl=0.543;承台剪切系数:αb=1.75/(λb+1)=1.75/(0.543+1)=1.134αl=1.75/(λl+1)=1.75/(0.543+1)=1.134βhsαb f t bh0=0.888×1.134×1.57×103×5×1.288=10176.925kNβhsαl f t lh0=0.888×1.134×1.57×103×5×1.288=10176.925kNV=453.783kN≤min(βhsαb f t bh0,βhsαl f t lh0)=10176.925kN满足要求!3、受冲切计算塔吊对承台底的冲切范围:B+2h0=1.6+2×1.288=4.176ma b=3.6m≤B+2h0=4.176m,a l=3.6m≤B+2h0=4.176m角桩位于冲切椎体以内,可不进行角桩冲切的承载力验算!4、承台配筋计算(1)、承台底面长向配筋面积αS1= M y/(α1f c bh02)=1455.509×106/(1.03×16.7×5000×12882)=0.01δ1=1-(1-2αS1)0.5=1-(1-2×0.01)0.5=0.01γS1=1-δ1/2=1-0.01/2=0.995A S1=M y/(γS1h0f y1)=1455.509×106/(0.995×1288×360)=3156mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/360)=max(0.2,0.196)=0.2% 梁底需要配筋:A1=max(A S1, ρbh0)=max(3156,0.002×5000×1288)=12880mm2 承台底长向实际配筋:A S1'=14127mm2≥A1=12880mm2满足要求!(2)、承台底面短向配筋面积αS2= M x/(α2f c bh02)=1455.509×106/(1.03×16.7×5000×12882)=0.01δ2=1-(1-2αS2)0.5=1-(1-2×0.01)0.5=0.01γS2=1-δ2/2=1-0.01/2=0.995A S2=M x/(γS2h0f y1)=1455.509×106/(0.995×1288×360)=3156mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/360)=max(0.2,0.196)=0.2% 梁底需要配筋:A2=max(9674, ρlh0)=max(9674,0.002×5000×1288)=12880mm2 承台底短向实际配筋:A S2'=14127mm2≥A2=12880mm2满足要求!(3)、承台顶面长向配筋面积承台顶长向实际配筋:A S3'=14127mm2≥0.5A S1'=0.5×14127=7064mm2满足要求!(4)、承台顶面短向配筋面积承台顶长向实际配筋:A S4'=14127mm2≥0.5A S2'=0.5×14127=7064mm2满足要求!(5)、承台竖向连接筋配筋面积承台竖向连接筋为双向Φ10@500。
ST7030.ST6015塔吊基础设计计算书
ST70/30、ST60/15塔吊基础设计计算书1.概况我司台山电厂6#机组主房基础及框架施工阶段,拟布置ST70/30、ST60/15塔叫各1台,ST70/30塔吊布置在A排外8轴附近,ST60/15塔吊布置在固定端。
根据现场施工需要,拟布置的ST70/30塔吊的吊钩高弃为51.7m,ST60/15塔吊的吊钩高度为59.8 m。
根据主厂房开挖后,现场情况来看,目前的地下水位约为-5.5 m,塔吊基础的持力层主要为砂质粘土层,局部夹杂少量的淤泥、淤泥质土或工程前期冲孔桩施工遗留的泥浆等软弱土。
当基础持力层为软弱土时,需采用砂夹石(砂:碎石=7:3)进行换填处理。
砂质粘土的地基承载力标准值按120kPa取值,淤泥、淤泥质土等软弱土处理后的承载力标准值按70kPa取值。
ST70/30塔吊基础采用钢筋混凝土基础,截面尺寸初定为6.5m×6.5m×2m,基底标高均为-4.6m 混凝土强度等级为C30。
ST60/15塔吊基础采用钢筋混凝土基础,截面尺寸初定为7m×7m×2m,基底标高均为-4.6m,混凝土强度等级为C30。
2.设计校核2.1 ST70/30塔吊基础地基承载力校核2.1.1计算公式根据《建筑地基基础设计规范》GB50007-2002,在轴心荷载作用时:P k≤f a当偏心荷载作用时,除符合上式要求外,尚应符合下式要求:P kmax≤1.2f a2.1.2基础底面的压力的计算1)当轴心荷载作用时:P k=(F k+G k)/A根据《ST70/30塔吊使用说明书》中塔吊的中吊钩高度为51.7m按最不利荷载组合,在工作状况下:P k=(F k+G k)/A=(964×1.4+6.5×6.5×2×24×1.4)/(6.5×6.5)=99.12kpa在排工作状况下:P k=(F k+G k)/A=(844.24×1.4+6.5×6.5×2×24×1.4)/(6.5×6.5)=95.2kPa2)当偏心荷载作用时:kmax=(F k+G k)/A+Mk/Wkmin=(F k+G k)/A-Mk/W根据《ST70/30塔吊使用说明书》中塔吊的吊钩高度为51.7m,按最不利荷载组合,在工作状况下:Pkmax=(F k+G k)/A+Mk/W=99.12+2750 ×1.4/(6.5×6.5 2/6)=183.2kPa另,e=Mk/(Fk+Gk)=2750×1.4/(964×1.4+6.5×6.5×2×24×1.4)=0.92m<b/6=6.5/6=1.08m故Pmax不需修正。
塔吊基础施工方案的编制
目录
塔吊基础形式应根据工程地质、荷载大小与塔机稳定性要求、 现场条件、技术经济指标,并结合《塔吊使用说明书》等要求进 行确定
按基础类型分类:
桩基础按桩类型分类:
矩形承台基础
十字交叉梁基础
格构柱混凝土承台
格构柱直锚式
格构柱型钢承台
1、编制依据: (1)、《塔式起重机使用说明书》; (2)、《塔式起重机基础说明书》; (3)、塔式起重机安全规程GB5144-2006; (4)、建筑施工塔式起重机安装、使用、拆卸安全技术规 程JGJ196-2010 (5)、混凝土结构设计规范GB50010-2010; (6)、建筑地基基础设计规范GB50007-2011; (7)、地质勘察报告书; (8)、PKPM、品茗等计算软件 (9)、项目基坑支护图、结施图、建施图等
1)、基础的设计思路: ①根据综合情况确定基础类型; ②确定基础埋置深度和地基承载力特征值、单桩承载力特征 值; ③根据地基承载力特征值计算基础底面尺寸,需满足塔吊基 础说明书要求; ④根据需要进行变形验算; ⑤进行基础的结构设计; ⑥绘制基础施工详图;
由于影响地基基础设计的因素较多,一般是先假设后计算 ,往往需要反复几次才能完成。
2、工程概况
1)应说明场地地坪标高、地下室底板、顶板及屋面或构架 标高,以便于基础面标高及塔机高度的选择;
2)地质情况中着重说明各土层深度、厚度、相应设计参数 (承载力特征值、天然重度、内聚力、内摩擦角等)及相应 承载力估算值;
3)说明地下水位标高与地下室结构标高(底板、顶板)的 相对关系,以及与场地地坪标高的对应关系,以便于塔吊基 础标高的设置及基础形式的选择。
6、计算书
1)矩形承台(天然基础)
用PKPM计算时应注意:塔吊参数根据说明书选取
QTZ6015塔吊基础计算
附:QTZ6015塔吊基础计算1、塔吊概况本塔吊选型为QTZ6015,拟采用钢筋混凝土四桩承台基础,借用四根工程桩作为基础桩,塔吊位于SR/SP/S7/S8轴区域,布设位置如下图:2、TC6015A-10E塔吊基础受力塔吊支座反力标准值M1=5100KN.mN=760KNV=117KN荷载系数取1.4承台尺寸见布置图:长:6945mm,宽:6769mm,高:1200mm承台自重:25×(6.945×6.735×1.2)=1403KN塔吊荷载及承台自重主要由四根工程桩来承担。
由于此承台形状为平行四边形而非矩形,需计算各工况后方可确定最大值。
工况一:塔吊大臂沿X方向时:每根桩分担的荷载为:压力\拉力:1.2×14034⁄+1.4×7604⁄±1.4×(5100+117×1.2)(5.315×2)⁄={1377.1KN −3.3 KN工况二:塔吊大臂平行于Y 方向时:每根桩分担的荷载为:压力\拉力:1.2×14034⁄+1.4×7604⁄±1.4×(5100+117×1.2)(5.163×2)⁄={1397.4KN −23.6 KN工况三:塔吊大臂平行于长斜边时:每根桩分担的荷载为:压力\拉力:1.2×14034⁄+1.4×7604⁄±1.4×(5100+117×1.2)7.805⁄={1626.9KN −253.1 KN压力: 1.2×14034⁄+1.4×7604⁄=686.9KN工况四:塔吊大臂平行于短斜边时:每根桩分担的荷载为:压力\拉力:1.2×14034⁄+1.4×7604⁄±1.4×(5100+117×1.2)7.036⁄={1729.6KN −355.8 KN压力: 1.2×14034⁄+1.4×7604⁄=686.9KN综合以上分析桩分担的最大荷载为:压力: F1=1729.6 KN拉力: F2=−355.8 KN3、塔吊承台受力计算3.1承台受弯计算板式承台抗弯计算的主要问题是确定外荷载引起的弯矩,在确定弯矩后,即可按《混凝土结构设计规范》(GB50010-2010)计算承台的配筋。
中联TC6012-6 QTZ80矩形板式基础计算书
矩形板式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑地基基础设计规范》GB50007-2011一、塔机属性1、塔机传递至基础荷载标准值基础布置图G k=blhγc=5.8×5.8×1.3×25=1093.3kN基础及其上土的自重荷载设计值:G=1.35G k=1.35×1093.3=1475.955kN 荷载效应标准组合时,平行基础边长方向受力:M k''=1677.3kN·mF vk''=F vk'/1.2=80.4/1.2=67kN荷载效应基本组合时,平行基础边长方向受力:M''=2264.355kN·mF v''=F v'/1.2=108.54/1.2=90.45kN基础长宽比:l/b=5.8/5.8=1≤1.1,基础计算形式为方形基础。
W x=lb2/6=5.8×5.82/6=32.519m3W y=bl2/6=5.8×5.82/6=32.519m3相应于荷载效应标准组合时,同时作用于基础X、Y方向的倾覆力矩:M kx=M k b/(b2+l2)0.5=1677.3×5.8/(5.82+5.82)0.5=1186.03kN·mM ky=M k l/(b2+l2)0.5=1677.3×5.8/(5.82+5.82)0.5=1186.03kN·m1、偏心距验算(1)、偏心位置相应于荷载效应标准组合时,基础边缘的最小压力值:P kmin=(F k+G k)/A-M kx/W x-M ky/W y=(443.9+1093.3)/33.64-1186.03/32.519-1186.03/32.519=-27.249<0偏心荷载合力作用点在核心区外。
矩形板式塔吊基础计算书
矩形板式基础计算书一、塔机属性二、塔机荷载塔机竖向荷载简图k三、承台验算G k=blhγc=4.85×4.85×1.05×25.00=617.47kN承台及其上土的自重荷载设计值:G=1.2G k=1.2×617.47=740.96kN荷载效应标准组合时,平行承台边长方向受力:M k''=G1R G1+G2R Qmax-G3R G3-G4R G4+0.9×(M2+0.5F vk H/1.2)=27.14×22.75+3.68×11.50-19.80×8.54-82.32×9.04+0.9×(820.00+0.5×16.15×32.00/1.2) =678.29kN·mF Vk''=F Vk/1.2=16.15/1.2=13.46kN荷载效应基本组合时,平行承台边长方向受力:M''=1.2×(G1R G1+G2R Qmax-G3R G3-G4R G4)+1.4×0.9×(M2+0.5F vk H/1.2)=1.2×27.14×22.75+3.68×11.50-19.80×8.54-82.32×9.04)+1.4×0.9×(820.00+0.5×16.15×32.00/ 1.2)=1000.31kN·mF V''=F V/1.2=22.61/1.2=18.84kN基础长宽比:l/b=4.85/4.85=1.00≤1.1,基础计算形式为方形基础。
W x=lb2/6=4.85×4.852/6=19.01m3W y=bl2/6=4.85×4.852/6=19.01m3相应于荷载效应标准组合时,作用于基础X、Y方向的弯矩:M kx=M k b/(b2+l2)0.5=613.23×4.85/(4.852+4.852)0.5=433.62kN·mM ky=M k l/(b2+l2)0.5=613.23×4.85/(4.852+4.852)0.5=433.62kN·m1、偏心验算(1)、偏心位置相应于荷载效应标准组合时,基础边缘的最小压力值:P kmin=(F k+G k)/A-M kx/W x-M ky/W y=(373.04+617.47)/23.52-433.62/19.01-433.62/19.01=-3.50<0偏心荷载合力作用点在核心区外。
商业区不同格构柱长度塔吊基础的计算书_secret
ST55/13塔吊基础的计算书1.土层参数2.塔吊基础计算说明本计算书计算内容为大基坑两种格构柱长度的塔吊,考虑按照格构柱的工程桩φ800,桩长24.0m;格构柱截面460×460,采用4L160×16× 16,格构柱长度21.00m,缀板尺寸440×300×12,格构柱支撑双拼140×10× 10角钢;承台5600× 5600×1350的最不利参数计算,如能满足,则格构柱长度21.00m也能满足。
3.塔吊承台计算3.1.参数信息塔吊型号:ST55/13,自重(包括压重)F1=539.22kN,最大起重荷载F2=60.00kN塔吊倾覆力距M=1806.00kN.m,塔吊起重高度H=15.00m,塔身宽度B=1.6m混凝土强度:C30,钢筋级别:Ⅰ级,承台长度Lc或宽度Bc=5.60m桩直径或方桩边长d=0.80m,桩心距a=4.00m,承台厚度H c=1.35m基础埋深D=0.00m,承台箍筋间距S=200mm,保护层厚度:50mm3.2.塔吊基础承台顶面的竖向力与弯矩计算1. 塔吊自重(包括压重)F1=539.22kN2. 塔吊最大起重荷载F2=60.00kN作用于桩基承台顶面的竖向力F=1.2×539.22=647.06kN塔吊的倾覆力矩M=1.4×1806.00=2528.40kN.m3.3.矩形承台弯矩的计算计算简图:图中x轴的方向是随机变化的,设计计算时应按照倾覆力矩M最不利方向进行验算。
1. 桩顶竖向力的计算(依据《建筑桩基础技术规范》(JGJ 94—2008)其中 n──单桩个数,n=4;F──作用于桩基承台顶面的竖向力设计值,F=1.2×539.22=647.06kN;G──桩基承台的自重,G=1.2×(25.0×Bc×Bc×Hc+20.0×Bc×Bc×D)=1270.08kN;M x,M y──承台底面的弯矩设计值(kN.m);xi,y i──单桩相对承台中心轴的XY方向距离(m);Ni──单桩桩顶竖向力设计值(kN)。
矩形格构式根本计算书 缀板
1.35Mk=1.35×1332.34=1798.659
1.35Fk'=1.35×449=606.15 1.35Fvk'=1.35×46.8=63.18
1.35Mk=1.35×2429.15=3279.352
2.5
0.8
C30
0
50
20
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电通,力1根保过据护管生高线产中0不工资仅艺料可高试以中卷解资配决料置吊试技顶卷术层要是配求指置,机不对组规电在范气进高设行中备继资进电料行保试空护卷载高问与中题带资2负料2,荷试而下卷且高总可中体保资配障料置2试时32卷,3各调需类控要管试在路验最习;大题对限到设度位备内。进来在行确管调保路整机敷使组设其高过在中程正资1常料中工试,况卷要下安加与全强过,看度并25工且52作尽22下可护都能1关可地于以缩管正小路常故高工障中作高资;中料对资试于料卷继试连电卷接保破管护坏口进范处行围理整,高核或中对者资定对料值某试,些卷审异弯核常扁与高度校中固对资定图料盒纸试位,卷置编工.写况保复进护杂行层设自防备动腐与处跨装理接置,地高尤线中其弯资要曲料避半试免径卷错标调误高试高等方中,案资要,料求编试技5写、卷术重电保交要气护底设设装。备备置管4高调、动线中试电作敷资高气,设料中课并技3试资件且、术卷料中拒管试试调绝路包验卷试动敷含方技作设线案术,技槽以来术、及避管系免架统不等启必多动要项方高方案中式;资,对料为整试解套卷决启突高动然中过停语程机文中。电高因气中此课资,件料电中试力管卷高壁电中薄气资、设料接备试口进卷不行保严调护等试装问工置题作调,并试合且技理进术利行,用过要管关求线运电敷行力设高保技中护术资装。料置线试做缆卷到敷技准设术确原指灵则导活:。。在对对分于于线调差盒试动处过保,程护当中装不高置同中高电资中压料资回试料路卷试交技卷叉术调时问试,题技应,术采作是用为指金调发属试电隔人机板员一进,变行需压隔要器开在组处事在理前发;掌生同握内一图部线纸故槽资障内料时,、,强设需电备要回制进路造行须厂外同家部时出电切具源断高高习中中题资资电料料源试试,卷卷线试切缆验除敷报从设告而完与采毕相用,关高要技中进术资行资料检料试查,卷和并主检且要测了保处解护理现装。场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。
矩形格构式基础计算书(品茗2014版计算书)解析
矩形格构式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑桩基技术规范》JGJ94-20084、《建筑地基基础设计规范》GB50007-20115、《钢结构设计规范》GB50017-2003一、塔机属性塔机型号QTZ60(浙江建机)塔机独立状态的最大起吊高度H0(m) 40塔机独立状态的计算高度H(m) 43塔身桁架结构圆钢管塔身桁架结构宽度B(m) 1.6二、塔机荷载塔机竖向荷载简图1、塔机自身荷载标准值2、风荷载标准值ωk(kN/m2)3、塔机传递至基础荷载标准值4、塔机传递至基础荷载设计值三、桩顶作用效应计算基础布置图承台及其上土的自重荷载标准值:G k=bl(hγc+h'γ')=4.8×4.8×(1.2×25+0×19)=691.2kN承台及其上土的自重荷载设计值:G=1.2G k=1.2×691.2=829.44kN桩对角线距离:L=(a b2+a l2)0.5=(3.62+3.62)0.5=5.091m1、荷载效应标准组合轴心竖向力作用下:Q k=(F k+G k+G p2)/n=(461.4+691.2+20)/4=293.15kN 荷载效应标准组合偏心竖向力作用下:Q kmax=(F k+G k+G p2)/n+(M k+F Vk h)/L=(461.4+691.2+20)/4+(637.738+17.049×1.2)/5.091=422.432kNQ kmin=(F k+G k+G p2)/n-(M k+F Vk h)/L=(461.4+691.2+20)/4-(637.738+17.049×1.2)/5.091=163.868kN2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F+G+1.35×G p2)/n+(M+F v h)/L=(565.68+829.44+1.35×20)/4+(955.465+23.869×1.2)/5.091=548.827kNQ min=(F+G+1.35×G p2)/n-(M+F v h)/L=(565.68+829.44+1.35×20)/4-(955.465+23.869×1.2)/5.091=162.233kN四、格构柱计算1、格构式钢柱换算长细比验算整个格构柱截面对X、Y轴惯性矩:I=4[I0+A0(a/2-Z0)2]=4×[236.53+26.26×(46.00/2-2.99)2]=43004.147cm4整个构件长细比:λx=λy=H0/(I/(4A0))0.5=1130/(43004.147/(4×26.26))0.5=55.847分肢长细比:λ1=l01/i y0=31.00/1.94=15.979分肢毛截面积之和:A=4A0=4×26.26×102=10504mm2格构式钢柱绕两主轴的换算长细比:λ0 max=(λx2+λ12)0.5=(55.8472+15.9792)0.5=58.088 λ0max=58.088≤[λ]=150满足要求!2、格构式钢柱分肢的长细比验算λ1=15.979≤min(0.5λ0max,40)=min(0.5×58.088,40)=29.044满足要求!3、格构式钢柱受压稳定性验算λ0max(f y/235)0.5=58.088×(215/235)0.5=55.561查表《钢结构设计规范》GB50017附录C:b类截面轴心受压构件的稳定系数:φ=0.828 Q max/(φA)=548.827×103/(0.828×10504)=63.103N/mm2≤f=215N/mm2满足要求!4、缀件验算缀件所受剪力:V=Af(f y/235)0.5/85=10504×215×10-3×(215/235)0.5/85=25.413kN格构柱相邻缀板轴线距离:l1=l01+30=31.00+30=61cm作用在一侧缀板上的弯矩:M0=Vl1/4=25.413×0.61/4=3.876kN·m分肢型钢形心轴之间距离:b1=a-2Z0=0.46-2×0.0299=0.4m作用在一侧缀板上的剪力:V0=Vl1/(2·b1)=25.413×0.61/(2×0.4)=19.368kNσ= M0/(bh2/6)=3.876×106/(20×3002/6)=12.918N/mm2≤f=215N/mm2满足要求!τ=3V0/(2bh)=3×19.368×103/(2×20×300)=4.842N/mm2≤τ=125N/mm2满足要求!角焊缝面积:A f=0.7h f l f=0.8×10×464=3248mm2角焊缝截面抵抗矩:W f=0.7h f l f2/6=0.7×10×4642/6=251179mm3垂直于角焊缝长度方向应力:σf=M0/W f=3.876×106/251179=15N/mm2平行于角焊缝长度方向剪应力:τf=V0/A f=19.368×103/3248=6N/mm2((σf /1.22)2+τf2)0.5=((15/1.22)2+62)0.5=14N/mm2≤f tw=160N/mm2满足要求!根据缀板的构造要求缀板高度:300mm≥2/3 b1=2/3×0.4×1000=267mm满足要求!缀板厚度:20mm≥max[1/40b1,6]= max[1/40×0.4×1000,6]=10mm满足要求!缀板间距:l1=610mm≤2b1=2×0.4×1000=800mm满足要求!线刚度:∑缀板/分肢=4×20×3003/(12×(460-2×29.9))/(236.53×104/610)=115.995≥6满足要求!五、桩承载力验算考虑基坑开挖后,格构柱段外露,不存在侧阻力,此时为最不利状态1、桩基竖向抗压承载力计算桩身周长:u=πd=3.14×0.8=2.513m桩端面积:A p=πd2/4=3.14×0.82/4=0.503m2R a=uΣq sia·l i+q pa·A p=2.513×(5.8×5+7.4×24+3.1×18)+200×0.503=760.014kNQ k=293.15kN≤R a=760.014kNQ kmax=422.432kN≤1.2R a=1.2×760.014=912.017kN满足要求!2、桩基竖向抗拔承载力计算Q kmin=163.868kN≥0不需要进行桩基竖向抗拔承载力计算!3、桩身承载力计算纵向普通钢筋截面面积:A s=nπd2/4=12×3.142×162/4=2413mm2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=548.827kNψc f c A p+0.9f y'A s'=(0.75×12×0.503×106 + 0.9×(300×2412.743))×10-3=5210.017kN Q=548.827kN≤ψc f c A p+0.9f y'A s'=5210.017kN满足要求!(2)、轴心受拔桩桩身承载力Q kmin=163.868kN≥0不需要进行轴心受拔桩桩身承载力计算!4、桩身构造配筋计算A s/A p×100%=(2412.743/(0.503×106))×100%=0.48%≥0.45%满足要求!六、承台计算1、荷载计算承台有效高度:h0=1200-50-25/2=1138mmM=(Q max+Q min)L/2=(548.827+(162.233))×5.091/2=1810.063kN·mX方向:M x=Ma b/L=1810.063×3.6/5.091=1279.908kN·mY方向:M y=Ma l/L=1810.063×3.6/5.091=1279.908kN·m2、受剪切计算V=F/n+M/L=565.68/4 + 955.465/5.091=329.091kN受剪切承载力截面高度影响系数:βhs=(800/1138)1/4=0.916塔吊边缘至角桩内边缘的水平距离:a1b=(a b-B-d)/2=(3.6-1.6-0.8)/2=0.6ma1l=(a l-B-d)/2=(3.6-1.6-0.8)/2=0.6m剪跨比:λb'=a1b/h0=600/1138=0.527,取λb=0.527;λl'= a1l/h0=600/1138=0.527,取λl=0.527;承台剪切系数:αb=1.75/(λb+1)=1.75/(0.527+1)=1.146αl=1.75/(λl+1)=1.75/(0.527+1)=1.146βhsαb f t bh0=0.916×1.146×1.27×103×4.8×1.138=7278.715kNβhsαl f t lh0=0.916×1.146×1.27×103×4.8×1.138=7278.715kNV=329.091kN≤min(βhsαb f t bh0,βhsαl f t lh0)=7278.715kN满足要求!3、受冲切计算塔吊对承台底的冲切范围:B+2h0=1.6+2×1.138=3.876ma b=3.6m≤B+2h0=3.876m,a l=3.6m≤B+2h0=3.876m角桩位于冲切椎体以内,可不进行角桩冲切的承载力验算!4、承台配筋计算(1)、承台底面长向配筋面积αS1= M y/(α1f c bh02)=1279.908×106/(1.05×11.9×4800×11382)=0.016ζ1=1-(1-2αS1)0.5=1-(1-2×0.016)0.5=0.017γS1=1-ζ1/2=1-0.017/2=0.992A S1=M y/(γS1h0f y1)=1279.908×106/(0.992×1138×360)=3151mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.27/360)=max(0.2,0.159)=0.2%梁底需要配筋:A1=max(A S1, ρbh0)=max(3151,0.002×4800×1138)=10925mm2 承台底长向实际配筋:A S1'=12272mm2≥A1=10925mm2满足要求!(2)、承台底面短向配筋面积αS2= M x/(α2f c bh02)=1279.908×106/(1.05×11.9×4800×11382)=0.016ζ2=1-(1-2αS2)0.5=1-(1-2×0.016)0.5=0.017γS2=1-ζ2/2=1-0.017/2=0.992A S2=M x/(γS2h0f y1)=1279.908×106/(0.992×1138×360)=3151mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.27/360)=max(0.2,0.159)=0.2% 梁底需要配筋:A2=max(9674, ρlh0)=max(9674,0.002×4800×1138)=10925mm2 承台底短向实际配筋:A S2'=12272mm2≥A2=10925mm2满足要求!(3)、承台顶面长向配筋面积承台顶长向实际配筋:A S3'=6362mm2≥0.5A S1'=0.5×12272=6136mm2满足要求!(4)、承台顶面短向配筋面积承台顶长向实际配筋:A S4'=6362mm2≥0.5A S2'=0.5×12272=6136mm2满足要求!(5)、承台竖向连接筋配筋面积承台竖向连接筋为双向Φ10@500。
6015矩形板式桩基础计算书
6015矩形板式桩基础计算书矩形板式桩基础计算书⼀、塔机属性⼆、塔机荷载1、塔机传递⾄基础荷载标准值2、塔机传递⾄基础荷载设计值三、桩顶作⽤效应计算矩形桩式基础布置图承台及其上⼟的⾃重荷载标准值:G k=bl(hγc+h'γ')=4.6×4.6×(1×25+0×19)=529kN承台及其上⼟的⾃重荷载设计值:G=1.35G k=1.35×529=714.15kN 桩对⾓线距离:L=(a b2+a l2)0.5=(3.22+3.22)0.5=4.53m 1、荷载效应标准组合轴⼼竖向⼒作⽤下:Q k=(F k+G k)/n=(681+529)/4=302.5kN荷载效应标准组合偏⼼竖向⼒作⽤下:Q kmax=(F k+G k)/n+(M k+F Vk h)/L=(681+529)/4+(4647+156.2×1)/4.53=1363.87kNQ kmin=(F k+G k)/n-(M k+F Vk h)/L=(681+529)/4-(4647+156.2×1)/4.53=-758.87kN2、荷载效应基本组合荷载效应基本组合偏⼼竖向⼒作⽤下:Q max=(F+G)/n+(M+F v h)/L=(919.35+714.15)/4+(6273.45+210.87×1)/4.53=1841.22kNQ min=(F+G)/n-(M+F v h)/L=(919.35+714.15)/4-(6273.45+210.87×1)/4.53=-1024.47kN 四、桩承载⼒验算1、桩基竖向抗压承载⼒计算桩⾝周长:u=πd=3.14×0.7=2.2m桩端⾯积:A p=πd2/4=3.14×0.72/4=0.38m2R a=uΣq sia·l i+q pa·A p=2.2×(7.79×35+2×50+5.73×54+1.48×55)+500×0.38=1871.38kN Q k=302.5kN≤R a=1871.38kNQ kmax=1363.87kN≤1.2R a=1.2×1871.38=2245.66kN满⾜要求!2、桩基竖向抗拔承载⼒计算Q kmin=-758.87kN<0按荷载效应标准组合计算的桩基拔⼒:Q k'=758.87kN桩⾝的重⼒标准值:G p=l t A pγz=17×0.38×25=163.56kNR a'=uΣλi q sia l i+G p=2.2×(0.7×7.79×35+0.7×2×50+0.7×5.73×54+0.7×1.48×55)+163.56 =1338.83kN Q k'=758.87kN≤R a'=1338.83kN满⾜要求!3、桩⾝承载⼒计算纵向普通钢筋截⾯⾯积:A s=nπd2/4=12×3.14×182/4=3054mm2(1)、轴⼼受压桩桩⾝承载⼒荷载效应基本组合下的桩顶轴向压⼒设计值:Q=Q max=1841.22kN桩⾝结构竖向承载⼒设计值:R=2050kN满⾜要求!(2)、轴⼼受拔桩桩⾝承载⼒荷载效应基本组合下的桩顶轴向拉⼒设计值:Q'=-Q min=1024.47kNf y A S=360×3053.63×10-3=1099.31kNQ'=1024.47kN≤f y A S=1099.31kN满⾜要求!4、桩⾝构造配筋计算A s/A p×100%=(3053.63/(0.38×106))×100%=0.79%≥0.65%满⾜要求!五、承台计算1、荷载计算承台有效⾼度:h0=1000-50-20/2=940mmM=(Q max+Q min)L/2=(1841.22+(-1024.47))×4.53/2=1848.09kN·mX⽅向:M x=Ma b/L=1848.09×3.2/4.53=1306.8kN·mY⽅向:M y=Ma l/L=1848.09×3.2/4.53=1306.8kN·m2、受剪切计算V=F/n+M/L=919.35/4 + 6273.45/4.53=1616.09kN受剪切承载⼒截⾯⾼度影响系数:βhs=(800/940)1/4=0.96塔吊边缘⾄⾓桩内边缘的⽔平距离:a1b=(a b-B-d)/2=(3.2-2-0.7)/2=0.25ma1l=(a l-B-d)/2=(3.2-2-0.7)/2=0.25m 剪跨⽐:λb'=a1b/h0=250/940=0.27,取λb=0.27;λl'= a1l/h0=250/940=0.27,取λl=0.27;承台剪切系数:αb=1.75/(λb+1)=1.75/(0.27+1)=1.38αl=1.75/(λl+1)=1.75/(0.27+1)=1.38βhsαb f t bh0=0.96×1.38×1.57×103×4.6×0.94=9013.53kNβhsαl f t lh0=0.96×1.38×1.57×103×4.6×0.94=9013.53kNV=1616.09kN≤min(βhsαb f t bh0,βhsαl f t lh0)=9013.53kN满⾜要求!3、受冲切计算塔吊对承台底的冲切范围:B+2h0=2+2×0.94=3.88ma b=3.2m≤B+2h0=3.88m,a l=3.2m≤B+2h0=3.88m⾓桩位于冲切椎体以内,可不进⾏⾓桩冲切的承载⼒验算!4、承台配筋计算(1)、承台底⾯长向配筋⾯积αS1= M y/(α1f c bh02)=1306.8×106/(1.03×16.7×4600×9402)=0.019δ1=1-(1-2αS1)0.5=1-(1-2×0.019)0.5=0.019γS1=1-δ1/2=1-0.019/2=0.991A S1=M y/(γS1h0f y1)=1306.8×106/(0.991×940×360)=3899mm2最⼩配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/360)=max(0.2,0.2)=0.2% 梁底需要配筋:A1=max(A S1,ρbh0)=max(3899,0.002×4600×940)=8648mm2 承台底长向实际配筋:A S1'=9347mm2≥A1=8648mm2满⾜要求!(2)、承台底⾯短向配筋⾯积αS2= M x/(α2f c bh02)=1306.8×106/(1.03×16.7×4600×9402)=0.019δ2=1-(1-2αS2)0.5=1-(1-2×0.019)0.5=0.019γS2=1-δ2/2=1-0.019/2=0.991A S2=M x/(γS2h0f y1)=1306.8×106/(0.991×940×360)=3899mm2最⼩配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/360)=max(0.2,0.2)=0.2% 梁底需要配筋:A2=max(9674,ρlh0)=max(9674,0.002×4600×940)=8648mm2 承台底短向实际配筋:A S2'=9347mm2≥A2=8648mm2满⾜要求!(3)、承台顶⾯长向配筋⾯积承台顶长向实际配筋:A S3'=6108mm2≥0.5A S1'=0.5×9347=4674mm2满⾜要求!(4)、承台顶⾯短向配筋⾯积承台顶长向实际配筋:A S4'=6108mm2≥0.5A S2'=0.5×9347=4674mm2满⾜要求!(5)、承台竖向连接筋配筋⾯积承台竖向连接筋为双向Φ10@500。
矩形格构式基础计算书
矩形格构式基础计算书一、塔机属性二、塔机荷载1、塔机传递至基础荷载标准值矩形桩式基础布置图承台及其上土的自重荷载标准值:G k=bl(hγc+h'γ')=4×4×(1×25+0×19)=400kN承台及其上土的自重荷载设计值:G=1.35G k=1.35×400=540kN 桩对角线距离:L=(a b2+a l2)0.5=(2.42+2.42)0.5=3.39m1、荷载效应标准组合轴心竖向力作用下:Q k=(F k+G k)/n=(779+400)/4=294.75kN荷载效应标准组合偏心竖向力作用下:Q kmax=(F k+G k)/n+(M k+F Vk h)/L=(779+400)/4+(4553+153×6)/3.39=1906.66kNQ kmin=(F k+G k)/n-(M k+F Vk h)/L=(779+400)/4-(4553+153×6)/3.39=-1317.16kN2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F+G)/n+(M+F v h)/L=(1051.65+540)/4+(6146.55+206.55×6)/3.39=2573.99kNQ min=(F+G)/n-(M+F v h)/L=(1051.65+540)/4-(6146.55+206.55×6)/3.39=-1778.16kN四、格构柱计算整个格构柱截面对X、Y轴惯性矩:I=4[I0+A0(a/2-Z0)2]=4×[688.81+37.57×(46.00/2-3.98)2]=57120.59cm4整个构件长细比:λx=λy=H0/(I/(4A0))0.5=850/(57120.59/(4×37.57))0.5=43.6 分肢长细比:λ1=l01/i y0=31.00/2.75=11.27分肢毛截面积之和:A=4A0=4×37.57×102=15028mm2格构式钢柱绕两主轴的换算长细比:λ0 max=(λx2+λ12)0.5=(43.62+11.272)0.5=45.03 满足要求!2、格构式钢柱分肢的长细比验算λ1=11.27≤min(0.5λ0max,40)=min(0.5×45.03,40)=22.52满足要求!3、格构式钢柱受压稳定性验算λ0max(f y/235)0.5=45.03×(215/235)0.5=43.07查表《钢结构设计规范》GB50017附录C:b类截面轴心受压构件的稳定系数:φ=0.887Q max/(φA)=2573.99×103/(0.887×15028)=193.1N/mm2≤f=215N/mm2满足要求!4、缀件验算缀件所受剪力:V=Af(f y/235)0.5/85=15028×215×10-3×(235/235)0.5/85=38.01kN 格构柱相邻缀板轴线距离:l1=l01+30=31.00+30=61cm作用在一侧缀板上的弯矩:M0=Vl1/4=38.01×0.61/4=5.8kN·m分肢型钢形心轴之间距离:b1=a-2Z0=0.46-2×0.0398=0.38m作用在一侧缀板上的剪力:V0=Vl1/(2·b1)=38.01×0.61/(2×0.38)=30.48kN角焊缝面积:A f=0.8h f l f=0.8×10×200=1600mm2角焊缝截面抵抗矩:W f=0.7h f l f2/6=0.7×10×2002/6=46667mm3垂直于角焊缝长度方向应力:σf=M0/W f=5.8×106/46667=124N/mm2垂直于角焊缝长度方向剪应力:τf=V0/A f=30.48×103/1600=19N/mm2((σf /1.22)2+τf2)0.5=((124/1.22)2+192)0.5=104N/mm2≤f tw=160N/mm2满足要求!五、桩承载力验算1、桩基竖向抗压承载力计算桩身周长:u=πd=3.14×0.8=2.51m桩端面积:A p=πd2/4=3.14×0.82/4=0.5m2R a=uΣq sia·l i+q pa·A p=2.51×(13.5×24+11.5×22)+500×0.5=1701.49kNQ k=294.75kN≤R a=1701.49kNQ kmax=1906.66kN≤1.2R a=1.2×1701.49=2041.78kN满足要求!2、桩基竖向抗拔承载力计算Q kmin=-1317.16kN<0按荷载效应标准组合计算的桩基拔力:Q k'=1317.16kN桩身的重力标准值:G p=l t A pγz=30×0.5×24=361.91kNR a'=uΣλi q sia l i+G p=2.51×(0.7×13.5×24+0.7×11.5×22)+361.91 =1377.02kNQ k'=1317.16kN≤R a'=1377.02kN满足要求!3、桩身承载力计算纵向普通钢筋截面面积:A s=nπd2/4=14×3.14×252/4=6872mm2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=2573.99kNψc f c A p+0.9f y'A s'=(0.75×14×0.5×106 + 0.9×(360×6872.23))×10-3=7864.98kN Q=2573.99kN≤ψc f c A p+0.9f y'A s'=7864.98kN满足要求!(2)、轴心受拔桩桩身承载力荷载效应基本组合下的桩顶轴向拉力设计值:Q'=-Q min=1778.16kNf y A S=360×6872.23×10-3=2474kNQ'=1778.16kN≤f y A S=2474kN满足要求!4、桩身构造配筋计算A s/A p×100%=(6872.23/(0.5×106))×100%=1.37%≥0.45%满足要求!六、承台计算承台有效高度:h0=1000-50-22/2=939mmM=(Q max+Q min)L/2=(2573.99+(-1778.16))×3.39/2=1350.56kN·mX方向:M x=Ma b/L=1350.56×2.4/3.39=954.99kN·mY方向:M y=Ma l/L=1350.56×2.4/3.39=954.99kN·m2、受剪切计算V=F/n+M/L=1051.65/4 + 6146.55/3.39=2073.86kN受剪切承载力截面高度影响系数:βhs=(800/939)1/4=0.96塔吊边缘至角桩内边缘的水平距离:a1b=(a b-B-d)/2=(2.4-2-0.8)/2=-0.2ma1l=(a l-B-d)/2=(2.4-2-0.8)/2=-0.2m剪跨比:λb'=a1b/h0=-200/939=-0.21,取λb=0.25;λl'= a1l/h0=-200/939=-0.21,取λl=0.25;承台剪切系数:αb=1.75/(λb+1)=1.75/(0.25+1)=1.4αl=1.75/(λl+1)=1.75/(0.25+1)=1.4βhsαb f t bh0=0.96×1.4×1.27×103×4×0.94=6415.99kNβhsαl f t lh0=0.96×1.4×1.27×103×4×0.94=6415.99kNV=2073.86kN≤min(βhsαb f t bh0,βhsαl f t lh0)=6415.99kN满足要求!3、受冲切计算塔吊对承台底的冲切范围:B+2h0=2+2×0.94=3.88ma b=2.4m≤B+2h0=3.88m,a l=2.4m≤B+2h0=3.88m角桩位于冲切椎体以内,可不进行角桩冲切的承载力验算!4、承台配筋计算(1)、承台底面长向配筋面积αS1= M y/(α1f c bh02)=954.99×106/(1.05×11.9×4000×9392)=0.022ζ1=1-(1-2αS1)0.5=1-(1-2×0.022)0.5=0.022γS1=1-ζ1/2=1-0.022/2=0.989A S1=M y/(γS1h0f y1)=954.99×106/(0.989×939×360)=2857mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.27/360)=max(0.2,0.16)=0.2% 梁底需要配筋:A1=max(A S1, ρbh0)=max(2857,0.002×4000×939)=7512mm2 承台底长向实际配筋:A S1'=7983mm2≥A1=7512mm2满足要求!(2)、承台底面短向配筋面积αS2= M x/(α2f c bh02)=954.99×106/(1.05×11.9×4000×9392)=0.022ζ2=1-(1-2αS2)0.5=1-(1-2×0.022)0.5=0.022γS2=1-ζ2/2=1-0.022/2=0.989A S2=M x/(γS2h0f y1)=954.99×106/(0.989×939×360)=2857mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.27/360)=max(0.2,0.16)=0.2% 梁底需要配筋:A2=max(9674, ρlh0)=max(9674,0.002×4000×939)=7512mm2承台底短向实际配筋:A S2'=7983mm2≥A2=7512mm2满足要求!(3)、承台顶面长向配筋面积承台顶长向实际配筋:A S3'=5344mm2≥0.5A S1'=0.5×7983=3992mm2 满足要求!(4)、承台顶面短向配筋面积承台顶长向实际配筋:A S4'=5344mm2≥0.5A S2'=0.5×7983=3992mm2 满足要求!(5)、承台竖向连接筋配筋面积承台竖向连接筋为双向Φ10@500。
1元计算书_58_矩形板式基础计算书
矩形板式基础计算书工程信息:工程名称:某工程;方案编制人:张三;编制日期:2021/4/1。
施工单位:某施工单位;结构类型:框架;计算依据:依据《塔式起重机混凝土基础工程技术规程》(JGJ/T187-2009)、《塔式起重机设计规范》(GB/T13752-2017)、《混凝土结构设计规范》(GB50010-2010)、《建筑地基基础设计规范》(GB50007-2011)、《建筑结构荷载规范》(GB50009-2012)编制。
一、参数信息1)塔吊基本参数塔吊型号:QTZ63,塔吊最大起吊高度H0=40m,塔身宽度B=1.6m;2)塔机自重参数塔身自重G0=251kN,起重臂自重G1=37.4kN,小车和吊钩自重G2=3.8kN,平衡臂自重G3=19.8kN,平衡块自重G4=89.4kN,最大起重荷载Q max=60kN,最小起重荷载Q max=10kN;3)塔机尺寸参数起重臂重心到塔身中心的距离R G1=22m,小车和吊钩重心到塔身中心的距离R G2=11.5m,平衡臂重心到塔身中心的距离R G3=6.3m,平衡块重心到塔身中心的距离R G4=11.8m,最大起重荷载到塔身中心的距离R Qmax=11.5m,最小起重荷载到塔身中心的距离R Qmin=50m;4)塔吊承台参数承台长度b=4.8m,承台宽度l=4.8m,承台高度h=1.25m,承台混凝土强度等级:C35,承台混凝土自重=25kN/m3,承台上部覆土厚度d=1.5m,承台上部覆土重度=17kN/m3;5)塔吊基础参数地基承载力特征值f a=150kN/m2,基础宽度地基承载力修正系数ηb=0.3,基础埋深地基承载力修正系数ηd=1.6,基础埋深地基承载力修正系数γ=25kN/m3,基础底面以上的土的加权平均重度γm=25kN/m3,承台埋置深度D=1.5m,修正后的地基承载力特征值f a=203.5kN/m2;6)风荷载参数塔身桁架杆件类型为:型钢或方钢管,地面粗糙度类型为:B类城市郊区,塔机计算高度h=43m,塔身前后片桁架平均充实率α0=0.35,塔身风向系数α=1.2,基本风压W0=0.45kN/m2(工程所在地:北京,取50年一遇),风荷载高度变化系数μz=1.32,风荷载体型系数μs=1.95,风荷载风振系数βz=1.65;7)承台配筋参数承台底面长向配筋:使用HPB235钢筋,直径为20mm,间距为160mm;承台底面短向配筋:使用HPB235钢筋,直径为20mm,间距为160mm;二、荷载计算1、自重荷载及起重荷载1)塔机自重标准值F k1=251+37.4+3.8+19.8+89.4=401.4kN;2)基础自重标准值G k=4.8×4.8×(1.25×25+1.5×17)=1307.52kN;3)起重荷载标准值F qk=60kN;2、风荷载计算计算公式如下:1)工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值工作状态下ω0=0.2kN/m2μz=1.32μs=1.95βz=1.59α0=0.35α=1.2计算结果:ωk=0.65kN/m2q sk=0.44kN/mb. 塔机所受风荷载水平合力标准值F vk=q sk×H=18.92kNc. 基础顶面风荷载产生的力矩标准值M sk=0.5F vk×H=406.78kN·m2)非工作状态下塔机塔身截面对角线方向所受风荷载标准值a. 塔机所受风均布线荷载标准值非工作状态下ω0=0.45kN/m2(北京,取50年一遇)μz=1.32μs=1.95βz=1.65α0=0.35α=1.2计算结果:ωk=1.53kN/m2q'sk=1.03kN/mb. 塔机所受风荷载水平合力标准值F'vk=q'sk×H=44.29kNc. 基础顶面风荷载产生的力矩标准值M'sk=0.5F'vk×H=952.24kN·m3、塔机的倾覆力矩塔机自身产生的倾覆力矩,向前(起重臂方向)为正,向后为负。
矩形板式桩基础计算书
矩形板式桩基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑桩基技术规范》JGJ94-20084、《建筑地基基础设计规范》GB50007-2011一、塔机属性塔机型号TC5610塔机独立状态的最大起吊高度H0(m) 41.5塔机独立状态的计算高度H(m) 45.9塔身桁架结构方钢管塔身桁架结构宽度B(m) 1.6塔机竖向荷载简图1、塔机自身荷载标准值2k34承台布置桩数n 4 承台高度h(m) 1.35 承台长l(m) 6 承台宽b(m) 6承台长向桩心距a l(m) 4.5 承台宽向桩心距a b(m) 4.5 桩直径d(m) 0.5承台参数承台混凝土等级C35 承台混凝土自重γC(kN/m3) 25 承台上部覆土厚度h'(m) 0 承台上部覆土的重度γ'(kN/m3) 19 承台混凝土保护层厚度δ(mm)50 配置暗梁否矩形桩式基础布置图承台及其上土的自重荷载标准值:G k=bl(hγc+h'γ')=6×6×(1.35×25+0×19)=1215kN承台及其上土的自重荷载设计值:G=1.2G k=1.2×1215=1458kN桩对角线距离:L=(a b2+a l2)0.5=(4.52+4.52)0.5=6.36m1、荷载效应标准组合轴心竖向力作用下:Q k=(F k+G k)/n=(401.4+1215)/4=404.1kN 荷载效应标准组合偏心竖向力作用下:Q kmax=(F k+G k)/n+(M k+F Vk h)/L=(401.4+1215)/4+(899.65+54.75×1.35)/6.36=557.08kN Q kmin=(F k+G k)/n-(M k+F Vk h)/L=(401.4+1215)/4-(899.65+54.75×1.35)/6.36=251.12kN 2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F+G)/n+(M+F v h)/L=(481.68+1458)/4+(1330.89+76.65×1.35)/6.36=710.31kN Q min=(F+G)/n-(M+F v h)/L=(481.68+1458)/4-(1330.89+76.65×1.35)/6.36=259.53kN 四、桩承载力验算1桩身周长:u=πd=3.14×0.5=1.57m桩端面积:A p=πd2/4=3.14×0.52/4=0.2m2R a=uΣq sia·l i+q pa·A p=1.57×(3.3×40+1.9×8+0.5×25+2.4×45+3.1×35+0.8×80)+3500×0.2=1378.69kN Q k=404.1kN≤R a=1378.69kNQ kmax=557.08kN≤1.2R a=1.2×1378.69=1654.43kN满足要求!2、桩基竖向抗拔承载力计算Q kmin=251.12kN≥0不需要进行桩基竖向抗拔承载力计算!3、桩身承载力计算纵向预应力钢筋截面面积:A ps=nπd2/4=12×3.14×10.72/4=1079mm2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=710.31kN桩身结构竖向承载力设计值:R=2000kN满足要求!(2)、轴心受拔桩桩身承载力Q kmin=251.12kN≥0不需要进行轴心受拔桩桩身承载力计算!五、承台计算1、荷载计算承台有效高度:h0=1350-50-25/2=1288mmM=(Q max+Q min)L/2=(710.31+(259.53))×6.36/2=3086.01kN·mX方向:M x=Ma b/L=3086.01×4.5/6.36=2182.14kN·mY方向:M y=Ma l/L=3086.01×4.5/6.36=2182.14kN·m2、受剪切计算V=F/n+M/L=481.68/4 + 1330.89/6.36=329.55kN受剪切承载力截面高度影响系数:βhs=(800/1288)1/4=0.89塔吊边缘至角桩内边缘的水平距离:a1b=(a b-B-d)/2=(4.5-1.6-0.5)/2=1.2ma1l=(a l-B-d)/2=(4.5-1.6-0.5)/2=1.2m 剪跨比:λb'=a1b/h0=1200/1288=0.93,取λb=0.93;λl'= a1l/h0=1200/1288=0.93,取λl=0.93;承台剪切系数:αb=1.75/(λb+1)=1.75/(0.93+1)=0.91αl=1.75/(λl+1)=1.75/(0.93+1)=0.91βhsαb f t bh0=0.89×0.91×1.57×103×6×1.29=9758.07kNβhsαl f t lh0=0.89×0.91×1.57×103×6×1.29=9758.07kNV=329.55kN≤min(βhsαb f t bh0,βhsαl f t lh0)=9758.07kN满足要求!3、受冲切计算塔吊对承台底的冲切范围:B+2h0=1.6+2×1.29=4.18ma b=4.5m>B+2h0=4.18m,a l=4.5m>B+2h0=4.18m角桩内边缘至承台外边缘距离:c b=(b-a b+d)/2=(6-4.5+0.5)/2=1mc l=(l-a l+d)/2=(6-4.5+0.5)/2=1m角桩冲跨比::λb''=a1b/h0=1200/1288=0.93,取λb=0.93;λl''= a1l/h0=1200/1288=0.93,取λl=0.93;角桩冲切系数:β1b=0.56/(λb+0.2)=0.56/(0.93+0.2)=0.49β1l=0.56/(λl+0.2)=0.56/(0.93+0.2)=0.49[β1b(c b+a lb/2)+β1l(c l+a ll/2)]βhp·f t·h0=[0.49×(1+1.2/2)+0.49×(1+1.2/2)]×0.95×1570×1.29=3055.31kNN l=V=329.55kN≤[β1b(c b+a lb/2)+β1l(c l+a ll/2)]βhp·f t·h0=3055.31kN满足要求!4、承台配筋计算(1)、承台底面长向配筋面积αS1= M y/(α1f c bh02)=2182.14×106/(1.03×16.7×6000×12882)=0.013ζ1=1-(1-2αS1)0.5=1-(1-2×0.013)0.5=0.013γS1=1-ζ1/2=1-0.013/2=0.994A S1=M y/(γS1h0f y1)=2182.14×106/(0.994×1288×360)=4737mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/360)=max(0.2,0.2)=0.2% 梁底需要配筋:A1=max(A S1, ρbh0)=max(4737,0.002×6000×1288)=15456mm2 承台底长向实际配筋:A S1'=20126mm2≥A1=15456mm2满足要求!(2)、承台底面短向配筋面积αS2= M x/(α2f c bh02)=2182.14×106/(1.03×16.7×6000×12882)=0.013ζ2=1-(1-2αS2)0.5=1-(1-2×0.013)0.5=0.013γS2=1-ζ2/2=1-0.013/2=0.994A S2=M x/(γS2h0f y1)=2182.14×106/(0.994×1288×360)=4737mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/360)=max(0.2,0.2)=0.2% 梁底需要配筋:A2=max(9674, ρlh0)=max(9674,0.002×6000×1288)=15456mm2 承台底短向实际配筋:A S2'=20126mm2≥A2=15456mm2满足要求!(3)、承台顶面长向配筋面积承台顶长向实际配筋:A S3'=12881mm2≥0.5A S1'=0.5×20126=10063mm2满足要求!(4)、承台顶面短向配筋面积承台顶长向实际配筋:A S4'=12881mm2≥0.5A S2'=0.5×20126=10063mm2满足要求!(5)、承台竖向连接筋配筋面积承台竖向连接筋为双向Φ10@500。
塔式起重机矩形板式基础计算方案书
矩形板式基础计算方案书工程名称:施工单位:编制人:日期:目录一、编制依据 (5)二、塔机属性 (5)三、塔机荷载 (6)四、基础验算 (8)五、基础配筋验算 (12)一、编制依据1、工程施工图纸及现场概况2、塔机使用说明书3、《塔式起重机混凝土基础工程技术规范JGJ/T 187-2009》4、《建筑施工塔式起重机安装、使用、拆卸安全技术规程》JGJ196-20105、《塔式起重机设计规范》GB13752-926、《混凝土结构设计规范GB50010-2002》7、《建筑结构荷载规范》(GB50009-2001)2006年版8、《建筑地基基础设计规范》(GB50007-2002)9、《建筑安全检查标准》(JGJ59-99)二、塔机属性三、塔机荷载(一)塔机自身荷载标准值(二)风荷载标准值(三)塔机传递至基础荷载标准值(四)塔机传递至基础荷载设计值四、基础验算基础及其上土的自重荷载标准值:G k =6.5×6.5×1.25×25=1320.31kN 基础及其上土的自重荷载设计值:G=1.2×1320.31=1584.37kN 荷载效应标准组合时,平行基础边长方向受力: M k '' =G 1R G1+G 2 R G2-G 3R G3-G 4R G4+0.9×(M 2+0.5F vk H/1.2)=37.4×22+3.8×11.5-19.8×6.3-89.4×11.8+0.9×(690+0.5×12.52×43/1.2)=509.73kN·mF vk ''=F vk '/1.2=12.52/1.2=10.43kN荷载效应基本组合时,平行基础边长方向受力:M''= 1.2×(G 1R G1+G 2 R G2-G 3R G3-G 4R G4)+1.4×0.9×(M 2+0.5F vk H/1.2)=1.2×(37.4×22+3.8×11.5-19.8×6.3-89.4×11.8)+1.4×0.9×(690+0.5×12.52×43/1.2)=776.25kN·m F v ''=F v '/1.2=17.53/1.2=14.61kN基础长宽比:l/b=6.5/6.5=1 <1.1,基础计算形式为方形基础。
地下建筑结构课程设计矩形闭合框架计算书
' Ne f y/ AS (h0 a s/ )
1 f c b h02
1 1 2 s
As
/ 1 f c bh0 f y / AS N
fy
若 b ,说明受压钢筋不足,应该增大 AS 或者加大截面重算。
2a s/ 若 ,则仿照双筋梁计算,再取 AS ’=0 带入等式计算,将二者 AS 结果取小值。 h0
上表中的数据都没有除以砼的弹性模量 E,是因为解联立方程时,E 为公约数被约掉了。 X1 151.4706 X2 237.4648
假定下图为实际结构的弯矩图,则计算出来的弯矩为负值时,说明与图中方向相反。
M 5 M 2 X 2 1 M 6 X 2 1 M 7 M 3 M 1 X 1 X 2 1 M 8 M 1 X 1 X 2 1 M 4
M7’ 130.8346
由砼规范,在轴向压力、弯矩、剪力共同作用下,构件的受剪承载力计算应满足:
V 1.5(
A 1.75 f t bh0 0.07 N ) f yv sv h0 VC V AS ,若 VAS ≤0,说明不需要配筋 1 S
M V h0
其中: 计算结果:
由ΣMB=0,可得
M 5 M 5 Q顶
4.2.2 侧墙
/
d墙 2000
q1 d 墙 2 ( ) 2 2000
同理,假定墙上分布梯形荷载,则墙根处内力最大,计算墙根内力:
d d d d e 2 1 Q墙 (e2 e1 )(H 顶 底 ) 1 (H 顶 底 ) 3 2 2000 2 2000
0.9827
AS ’
821.7632
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ST6015矩形格构式基础计算书计算依据:1、《塔式起重机混凝土基础工程技术规程》JGJ/T187-20092、《混凝土结构设计规范》GB50010-20103、《建筑桩基技术规范》JGJ94-20084、《建筑地基基础设计规范》GB50007-20115、《钢结构设计规范》GB50017-2003一、塔机属性1、塔机传递至基础荷载标准值2、塔机传递至基础荷载设计值承台及其上土的自重荷载标准值:G k=bl(hγc+h'γ')=4.6×4.6×(1.4×25+0×19)=740.6kN承台及其上土的自重荷载设计值:G=1.35G k=1.35×740.6=999.81kN桩对角线距离:L=(a b2+a l2)0.5=(32+32)0.5=4.243m1、荷载效应标准组合轴心竖向力作用下:Q k=(F k+G k+G p2)/n=(695+740.6+20)/4=363.9kN荷载效应标准组合偏心竖向力作用下:Q kmax=(F k+G k+G p2)/n+(M k+F Vk h)/L=(695+740.6+20)/4+(4647+156×30.9)/4.243=2595.099kN Q kmin=(F k+G k+G p2)/n-(M k+F Vk h)/L=(695+740.6+20)/4-(4647+156×30.9)/4.243=-1867.499kN2、荷载效应基本组合荷载效应基本组合偏心竖向力作用下:Q max=(F+G+1.35×G p2)/n+(M+F v h)/L=(938.25+999.81+1.35×20)/4+(6273.45+210.6×30.9)/4.243=3503.518kN Q min=(F+G+1.35×G p2)/n-(M+F v h)/L=(938.25+999.81+1.35×20)/4-(6273.45+210.6×30.9)/4.243=-2520.988kN 四、格构柱计算整个格构柱截面对X、Y轴惯性矩:I=4[I0+A0(a/2-Z0)2]=4×[1881.12+61.95×(51.00/2-5.13)2]=110345.844cm4整个构件长细比:λx=λy=H0/(I/(4A0))0.5=390/(110345.844/(4×61.95))0.5=18.482 分肢长细比:λ1=l01/i y0=30.00/3.53=8.499分肢毛截面积之和:A=4A0=4×61.95×102=24780mm2格构式钢柱绕两主轴的换算长细比:λ0 max=(λx2+λ12)0.5=(18.4822+8.4992)0.5=20.342 λ0max=20.342≤[λ]=150满足要求!2、格构式钢柱分肢的长细比验算λ1=8.499≤min(0.5λ0max,40)=min(0.5×20.342,40)=10.171满足要求!3、格构式钢柱受压稳定性验算λ0max(f y/235)0.5=20.342×(345/235)0.5=24.647查表《钢结构设计规范》GB50017附录C:b类截面轴心受压构件的稳定系数:υ=0.953Q max/(υA)=2039.426×103/(0.953×24780)=86.36N/mm2≤f=295N/mm2满足要求!4、缀件验算缀件所受剪力:V=Af(f y/235)0.5/85=24780×295×10-3×(345/235)0.5/85=104.203kN 格构柱相邻缀板轴线距离:l1=l01+30=30.00+30=60cm作用在一侧缀板上的弯矩:M0=Vl1/4=104.203×0.6/4=15.63kN·m分肢型钢形心轴之间距离:b1=a-2Z0=0.51-2×0.0513=0.407m作用在一侧缀板上的剪力:V0=Vl1/(2·b1)=104.203×0.6/(2×0.407)=76.733kNσ= M0/(bh2/6)=15.63×106/(16×3002/6)=65.127N/mm2≤f=215N/mm2满足要求!τ=3V0/(2bh)=3×76.733×103/(2×16×300)=23.979N/mm2≤τ=125N/mm2满足要求!角焊缝面积:A f=0.7h f l f=0.8×8×620=3472mm2角焊缝截面抵抗矩:W f=0.7h f l f2/6=0.7×8×6202/6=358773mm3垂直于角焊缝长度方向应力:σf=M0/W f=15.63×106/358773=44N/mm2平行于角焊缝长度方向剪应力:τf=V0/A f=76.733×103/3472=22N/mm2((σf /1.22)2+τf2)0.5=((44/1.22)2+222)0.5=42N/mm2≤f tw=200N/mm2满足要求!根据缀板的构造要求缀板高度:300mm≥2/3 b1=2/3×0.407×1000=272mm满足要求!缀板厚度:16mm≥max[1/40b1,6]= max[1/40×0.407×1000,6]=10mm满足要求!缀板间距:l1=600mm≤2b1=2×0.407×1000=815mm满足要求!线刚度:∑缀板/分肢=4×16×3003/(12×(510-2×51.3))/(1881.12×104/600)=11.274≥6满足要求!五、桩承载力验算1、桩基竖向抗压承载力计算桩身周长:u=πd=3.14×0.9=2.827m桩端面积:A p=πd2/4=3.14×0.92/4=0.636m2承载力计算深度:min(b/2,5)=min(4.6/2,5)=2.3mf ak=(2×0+0.3×85)/2.3=25.5/2.3=11.087kPa承台底净面积:A c=(bl-nA p)/n=(4.6×4.6-4×0.636)/4=4.654m2复合桩基竖向承载力特征值:R a=uΣq sia·l i+q pa·A p+εc f ak A c=2.827×(1.9×17.5+4×22.5+3×25+12×22.5+11.2×25+2×32.5)+600×0.636+0.1×11.087×4.654=2686.273kNQ k=363.9kN≤R a=2686.273kNQ kmax=2595.099kN≤1.2R a=1.2×2686.273=3223.528kN满足要求!2、桩基竖向抗拔承载力计算Q kmin=-1867.499kN<0按荷载效应标准组合计算的桩基拔力:Q k'=1867.499kN桩身位于地下水位以下时,位于地下水位以下的桩自重按桩的浮重度计算,桩身的重力标准值:G p=(l t-(H0-h r-h/2))×(γz-10)×A p=(60.2-(30.6-3.8-1.4/2))×(25-10)×0.636 =325.402kNR a'=uΣλi q sia l i+G p=2.827×(0.75×1.9×17.5+0.75×4×22.5+0.75×3×25+0.75×12×22.5+0.75×11.2×25+0.75×2×32.5)+325.402=2049.96kNQ k'=1867.499kN≤R a'=2049.96kN满足要求!3、桩身承载力计算纵向普通钢筋截面面积:A s=nπd2/4=16×3.142×252/4=7854mm2(1)、轴心受压桩桩身承载力荷载效应基本组合下的桩顶轴向压力设计值:Q=Q max=3503.518kNψc f c A p+0.9f y'A s'=(0.75×17×0.636×106 + 0.9×(360×7853.982))×10-3=10795.494kN Q=3503.518kN≤ψc f c A p+0.9f y'A s'=10795.494kN满足要求!(2)、轴心受拔桩桩身承载力荷载效应基本组合下的桩顶轴向拉力设计值:Q'=-Q min=2520.988kNf y A S=360×7853.982×10-3=2827.433kNQ'=2520.988kN≤f y A S=2827.433kN满足要求!4、桩身构造配筋计算A s/A p×100%=(7853.982/(0.636×106))×100%=1.235%≥0.45%满足要求!六、承台计算承台有效高度:h0=1400-50-25/2=1338mmM=(Q max+Q min)L/2=(3503.518+(-2520.988))×4.243/2=2084.437kN·mX方向:M x=Ma b/L=2084.437×3/4.243=1473.795kN·mY方向:M y=Ma l/L=2084.437×3/4.243=1473.795kN·m2、受剪切计算V=F/n+M/L=938.25/4 + 6273.45/4.243=1713.229kN受剪切承载力截面高度影响系数:βhs=(800/1338)1/4=0.879塔吊边缘至角桩内边缘的水平距离:a1b=(a b-B-d)/2=(3-2-0.9)/2=0.05ma1l=(a l-B-d)/2=(3-2-0.9)/2=0.05m 剪跨比:λb'=a1b/h0=50/1338=0.037,取λb=0.25;λl'= a1l/h0=50/1338=0.037,取λl=0.25;承台剪切系数:αb=1.75/(λb+1)=1.75/(0.25+1)=1.4αl=1.75/(λl+1)=1.75/(0.25+1)=1.4βhsαb f t bh0=0.879×1.4×1.57×103×4.6×1.338=11895.977kNβhsαl f t lh0=0.879×1.4×1.57×103×4.6×1.338=11895.977kNV=1713.229kN≤min(βhsαb f t bh0,βhsαl f t lh0)=11895.977kN满足要求!3、受冲切计算塔吊对承台底的冲切范围:B+2h0=2+2×1.338=4.676ma b=3m≤B+2h0=4.676m,a l=3m≤B+2h0=4.676m角桩位于冲切椎体以内,可不进行角桩冲切的承载力验算!4、承台配筋计算(1)、承台底面长向配筋面积αS1= M y/(α1f c bh02)=1473.795×106/(1.03×16.7×4600×13382)=0.01δ1=1-(1-2αS1)0.5=1-(1-2×0.01)0.5=0.01γS1=1-δ1/2=1-0.01/2=0.995A S1=M y/(γS1h0f y1)=1473.795×106/(0.995×1338×300)=3691mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/300)=max(0.2,0.236)=0.236% 梁底需要配筋:A1=max(A S1, ρbh0)=max(3691,0.0024×4600×1338)=14495mm2 承台底长向实际配筋:A S1'=15545mm2≥A1=14495mm2满足要求!(2)、承台底面短向配筋面积αS2= M x/(α2f c bh02)=1473.795×106/(1.03×16.7×4600×13382)=0.01δ2=1-(1-2αS2)0.5=1-(1-2×0.01)0.5=0.01γS2=1-δ2/2=1-0.01/2=0.995A S2=M x/(γS2h0f y1)=1473.795×106/(0.995×1338×300)=3691mm2最小配筋率:ρ=max(0.2,45f t/f y1)=max(0.2,45×1.57/300)=max(0.2,0.236)=0.236% 梁底需要配筋:A2=max(9674, ρlh0)=max(9674,0.0024×4600×1338)=14495mm2 承台底短向实际配筋:A S2'=15545mm2≥A2=14495mm2满足要求!(3)、承台顶面长向配筋面积承台顶长向实际配筋:A S3'=12038mm2≥0.5A S1'=0.5×15545=7773mm2满足要求!(4)、承台顶面短向配筋面积承台顶长向实际配筋:A S4'=12038mm2≥0.5A S2'=0.5×15545=7773mm2满足要求!(5)、承台竖向连接筋配筋面积承台竖向连接筋为双向Φ10@500。