第九章 案例分析(分布滞后模型)
9 分布滞后模型
9.120033
9.218058 2601.407 0.000000
8.2
有限分布滞后模型及其估计
Dependent Variable: Y
Method: Least Squares Sample(adjusted): 1958 1974 Included observations: 17 after adjusting endpoints Variable C Z2 R-squared Adjusted R-squared S.E. of regression Sum squared resid Coefficient -133.0331 1.366409 0.989328 0.988617 29.86519 13378.94 Std. Error 26.53012 0.036642 t-Statistic -5.014417 37.29030 Prob. 0.0002 0.0000 818.6959 279.9181 9.741395 9.839420
分别估计如下经验加权模型:
yt a bzkt ut
8.2
有限分布滞后模型及其估计
Dependent Variable: Y Method: Least Squares Sample(adjusted): 1958 1974 Included observations: 17 after adjusting endpoints Variable Coefficient Std. Error t-Statistic Prob.
Mean dependent var S.D. dependent var Akaike info criterion Schwarz criterion
Log likelihood
分布滞后模型(下)
分布滞后模型案例:电力投资与发电量的关系分析+1.电力投资与发电量的关系2.滞后关系如何体现分布滞后模型案例分析思路第一步:收集数据第二步:模型估计第三步:经济含义解释案例分析思路第一步:收集数据本文考虑电力建设投资与发电量的关系,样本范围为1975-1995的时间序列数据。
电力投资、发电量:《中国统计年鉴》相关文献:《中国知网》/输入Eviews 命令:cross y x根据y 与x 各滞后期的相关系数,初步确定滞后期长度为4到6期;输入Eviews 命令:LS y c PDL(x,p,2),其中p 依次取4-8,各期检验指标如下:确定滞后期长度第二步:模型估计p=6=6时,拟合优度最大,AIC 、SC 值最小,最终确定滞后期为6.i t i X i PDL -=∑+=602)1(02阿尔蒙多项式模型估计LS yc PDL(x,6,2)以阿尔蒙多项式降维6个滞后期X(-1) ,X(-2) ,…,X(-6+估计命令:Eviews→presentation估计方程y = 3319.46 + 0.3228*x+ 1.7769*x(-1) + 2.6898*x(-2) + 3.0613*x(-3)+ 2.8916*x(-4) + 2.1805*x(-5) + 0.9281*x(-6)阿尔蒙多项式法分布滞后模型估计结果:个单位。
发电量约增加期值每增加一个单位,3228.0变动一个单位,由于,表示长期乘数:x 8510.130=∑=si i β个单位。
的平均值变动滞后效应8510.13y ,资,表示电力基本建设投短期乘数:3228.00=β当第三步:经济含义解释经济含义:各滞后期的系数显著为正,表明电力投资存在滞后性,投资对发电的绩效在后续时期逐渐显现;各滞后期的系数呈“先增后减”的倒V型;电力建设对发电量的影响呈现周期性的变化,周期为6,第3期为波峰;阿尔蒙法对比OLS阿尔蒙多项式估计:y = 3319.46 + 0.3228*x+ 1.7769*x(-1) + 2.6898*x(-2) + 3.0613*x(-3) + 2.8916*x(-4) + 2.1805*x(-5) + 0.9281*x(-6)滞后6期的OLS估计:y= 3361.84+8.4213*x-11.4312*x(-1)+15.1390*x(-2)+4.7151*x(-3)-14.6913*x(-4) +26.9252*x(-5)-25.4101*x(-6) OLS估计式系数正负交替,阿尔蒙法系数呈倒V 型,结果更符合预期、更稳健;。
分布滞后模型与自回归模型.ppt
1、滞后效应与产生滞后效应的原因
因变量受到自身或另一解释变量的前几 期值影响的现象称为滞后效应。
表示前几期值的变量称为滞后变量。 如:消费函数
通常认为,本期的消费除了受本期的收入影 响之外,还受前1期,或前2期收入的影响:
Ct=0+1Yt+2Yt-1+3Yt-2+t Yt-1,Yt-2为滞后变量。
以滞后变量作为解释变量,就得到滞后变量模 型。它的一般形式为:
Yt 0 1Yt1 2Yt2 qYtq 0 X t 1X t1 s X ts t q,s:滞后时间间隔
自回归分布滞后模型(autoregressive distributed lag model, ADL):既含有Y对自身滞后变量的回归, 还包括着X分布在不同时期的滞后变量
无限分布滞后模型,主要是通过适当的模型 变换,使其转化为只需估计有限个参数的自回归 模型。
(1)经验加权法 根据实际问题的特点、实际经验给各滞后变 量指定权数,滞后变量按权数线性组合,构成新 的变量。权数据的类型有:
常见的滞后结构类型
w
w
t (c)
•递减型:
即认为权数是递减的,X的近期值对Y的影响较 远期值大。
本节基本内容:
●经济活动中的滞后现象 ●滞后效应产生的原因 ●滞后变量模型
一、滞后变量模型
通常把这种过去时期的,具有滞后作用的变量 叫做滞后变量(Lagged Variable),含有滞后变量 的模型称为滞后变量模型。
滞后变量模型考虑了时间因素的作用,使静态 分析的问题有可能成为动态分析。含有滞后解释变 量的模型,又称动态模型(Dynamical Model)。
如消费函数中,收入的近期值对消费的影响作 用显然大于远期值的影响。
第九章 滞后模型
第九章 滞后变量回归模型回归分析经常遇到时间序列资料,如果在回归模型中不仅含有解释变量X 的当前值而且含有X 的滞后值,它就称为分布滞后模型(Distributed-Lag Model),如t t t t t X X X Y εβββα++++=--221100(9.0.1)就是一个分布滞后模型。
如果模型中包含一个或若干个因变量的滞后值,它就称为自回归模型(Autoregressive Model),如t t t t Y X Y εγβα+++=-1(9.0.2)就是一个自回归模型。
分布滞后模型与自回归模型都属于滞后变量回归模型,它在经济领域有广泛的应用。
一个当前的经济指针,经常受到过去某些经济指针(包括自身的)影响,这是件很常见很容易理解的事情。
我们在处理这一类问题时要考虑下列问题:1.经济分析中滞后起什么作用? 2.滞后的原因是什么?3.在实证分析中对滞后有没有什么理论判别方法?4.自回归与分布滞后有什么关系?能否从一个导出另一个? 5.滞后变量模型中有哪一些统计问题?6.变量之间的滞后是否意味着灾难?如果是,如何度量它? 这些问题有些是不能给出精确定义或精确解答的,只可体会其意思。
我们以下主要是从经济模型的数学形式来展开讨论。
第一节 模型概念:消费滞后、通胀滞后与存款创生实际经济活动中,因变量Y 经常是与经济自变量的过去值有关,而与当前值有关反而少一些。
为了具体说明这种滞后关系,我们看一些实例。
1.消费滞后假如一个消费者从今年起每年工资增加2000元,并将持续一段时间。
他的消费行为将受到怎样的影响呢?一般来说,他不会把当年增加的收入全部花光。
很可能是,他把每增加的2000元当年花掉800元,第二年花掉600元,第三年花掉400元,余下的永久储蓄起来。
这样到第三年,他的消费增加额将是1800元。
这样的消费函数写下就是t t t t t X X X C Y ε++++=--212.03.04.0(9.1.1)这里Y 是消费开支,C 是常数,X 是收入。
分布滞后模型及其估计
将(2)代入(1),得
从而估计多项式的系数,再由多项式的系数与模型参数间
的
关系Yt,最 后 得0到X t分(布滞0 后 模1 型 。2)即X t1 (0 21 42)X t2 (0 31 92)X t3 ut
3
3
3
0 X ti 1 iX ti 2 i2 X ti ut (3)
权和Zt (各滞后变量的线性组合),把 Zt 作为新解释变量拟合一 元线性回归模型
Y Z u
t
0
1t
i
问题:不同时间的解释变量应该给多大的权数?
“经验加权法” 包括:
(1) 递减滞后结构
Xt
Xt-1
Xt-2
Xt-3
1/2
1/4
1/6
1/8
(令0 1 2 ) (令1 1 4 ) (令 2 1 6 ) (令 3 1 8 )
例 消费滞后模型
Yˆt 0.735 0.886Xt 0.012Xt1 0.010Xt2
t = (8.16)
(4.23)
(0.51)
(0.52)
R2 0.997
由于解释变量之间高度线性相关,由OLS估计的结果分析: 滞后收入对消费没有显著性影响(造成了一种假象)。
(三) 滞后长度难以确定 在大对数情况下,有限分布滞后模型的最大滞后长度S是未
j 1
例如 Yt 0 X t 1X t1 2 X t2 3 X t3 ut (1)
设 m 2 i 0 1i 2i2
(总约束)
i 0 0 0 1 0 2 0 0
i 1 1 0 1 2 i 2 2 0 21 42
(2)
(先验约束)
i 3 3 0 31 92
i0
i 1
第九章 滞后变量模型
Yt * = b0 + b1 X t + ut
( 9.19 )
Yt*不可观测。由于生产条件的波动,生产管理 方面的原因,库存储备Yt的实际变化量只是预期变 化的一部分。
郑州大学商学院
储备按预定水平逐步进行调整,故有如下局部 储备按预定水平逐步进行调整,故有如下局部 调整假设: 调整假设 * Yt − Yt −1 = δ (Yt − Yt −1 ) ( 9.20 )
郑州大学商学院
( 9.25)
(9.25)减去(9.26)得
Yt = γ b0 + γ b1 X t + (1 − γ ) Yt −1 + ut − (1 − γ ) ut −1
( 9.27 )
郑州大学商学院
郑州大学商学院
Yt = a0 + b0 X t + b1 X t −1 + b2 X t − 2 + ⋅⋅⋅ + bs X t − s + ut
( 9.1)
Yt = a0 + b0Yt + b1Yt −1 + b2Yt − 2 + ⋅⋅⋅ + bρ Yt − ρ + ut
( 9.2 )
(9.1)仅含有解释变量的滞后变量,称为外 生滞后变量模型或分布滞后模型; (9.2)仅含有被解释变量的滞后变量,称为 外生滞后变量模型或自回归模型。
Yt = δ Yt * + (1 − δ ) Yt −1
其中,δ为调整系数 调整系数,0≤ δ ≤1 调整系数 将( 9.19)式代入(9.21)
( 9.21)
Yt = δ b0 + δ b1 X t + (1 − δ ) Yt −1 + δ ut
09滞后变量模型的基本概念
(表示过去各个时期X每变动一个单位对Y平均变动的影响 )
(或 ) 长期乘数
i 1 i i 1 i
s
(表示X变动一个单位对Y的总影响 )
2、自回归模型:回归模型不仅含解释变量的即期值,
还含被解释变量的若干期滞后值。
Y X Y Y u
t 0 t 1 t 1 q t q
同乘以,得:
Yt 1 0 X t i ut 1
i i 1
(4)
(3)-(4)
二、自适应预期模型
在经济活动中,预期起着决定性作用。人们常根据他们对 某些经济变量未来走势的预期变动来改变自己的行为决策。 例如:生产取决于预期的销售; 投资取决于预期的利润; 长期利率取决于预期的短期利率于预期的通货膨胀 率之和 X 即影响被解释变量的因素不是Xt,而是预期值 t
u ut (1 )ut 1
* t
自适应预期模型特点:
1、以一个滞后因变量代替了预期值。 2、干扰项是一阶自相关,作为解释变量的滞后因 变量与随机干扰项不独立。
三、局部调整模型
局部调整模型是构造滞后变量模型的另一种方法。这种方法 早先是用来研究 物资贮备问题。例如,企业为了保证生产或 供应,必须保持一定的原材料贮备。 * Y 对于一定的产量或销售量Xt ,存在着预期的最佳库存 t
最后得长期货币流通需求量 模型的估计式为
ln Y 0.4669 0.333ln X 1.0781ln X
* t 1t
2t
货币流通量对长期利率的弹性,本期为-0.2401, 长期为-0.333。对工业企业存款的弹性本期为 0.7773,长期为1.0781。说明在经济体制下,工 业企业存款每增长1%,在本期的影响是货币流通 量增长0.773%,长期影响增长1.0781%。
第九章分布滞后和自回归模型
基本思想:以滞后期i 的一个适当次数的多项
式,模拟分布滞后模型的系数。 可分别模拟单调下降、先升后降,以及循环变
化等不同的滞后效应类型。
设一个有限分布滞后模型为:
Yt 0 X t 1X t 1 K X t K t
也可以写成:
分布滞后模型形式上是含有解释变量滞后项的 多元回归模型。
但分布滞后模型主要用来研究经济变量作用的 时间滞后效应、长期影响,以及经济变量之间 的动态影响关系,可用于评价经济政策的中长 期效果,属于动态计量分析的范畴。
二、分布滞后模型参数估计
用分布滞后模型研究滞后效应,进行预测分析 和评估政策效果之前,先要估计模型中的未知 参数。
i0
i0
则模型变为:
i0
Yt a0Z0t a1Z1t a2Z2t t
很显然,上述 Z0t、Z1t和 Z2t 只是 X t及其各
期滞后的线性组合,因此仍是非随机的 或与误差项无关。
因此可用OLS法对该式进行参数估计,得 到估计值
最后,只需要把这些估计值代入滞后参数多项 式,就可以得到得到各个滞后参数的估计值:
这种现象就是滞后效应。滞后效应在经济问题 中是普遍存在的。
例如人们获得后通常不会立即全部花掉,而是 会在以后一个阶段分次花费,因此收入对人们 消费的影响往往有时间滞后和持续的影响。
滞后效应对经济问题的影响非常重要。要准确 把握经济关系,特别是长期动态关系,避免预 测和决策偏差,必须重视这种滞后效应。
从另一个角度,滞后效应也可以反过来 理解为当期某指标受上期、再上期其他 某指标的影响。
例如上述消费滞后效应也可理解为,当 年消费不仅受到当年收入(40%)的影 响,而且受到上年收入(30%)、再上 年收入(20%)的影响。用公式表示就 是:Ct 0.4It 0.3It1 0.2It2
分布滞后模型2
L β α
ˆ = ˆ + kα + k2α ˆ1 ˆ2 k 0
2.应用阿尔蒙模型之前需要解决的问题
(1)如何确定滞后长度 k 可以结合统计量来检验 如何确定滞后长度 结合相关系数分析,计算因变量和自变量的各期相关 计 量 经 济 学 系 数,可以大致判断滞后期长度; 利用调整后的修正系数 R2 ,在模型中逐期增加滞 后变量,扩大滞后期长度,直到模型的修正拟合系数不 再增加为止;或者先取一个较长的滞后期,再逐渐剔除 滞后变量,缩短滞后期长度,直到模型修正的拟合系数 明显下降为止;
Yt = α + β0 Xt + β1Xt−1 +L+ βk Xt−k + εt = α + ∑βi Xt−i + εt
i=0 k
计 量 经 济 学
根据数学中的维尔斯特拉斯定理,阿尔蒙假定估计参数β可 用滞后长度i的一个适当高次的多项式逼近
根据数学中的维尔斯特拉斯定理,阿尔蒙假定βi可用i的 一个适当高次的多项式逼近
i=0
3
估计上面的方程,有下面的结果
ˆ Yt = −9152.012 + 0.5825Z0t +1.2231Z1t − 0.5446Z2t
t=
(3.4431) (2.4112)
(-3.1145)
3.进一步得到βi的系数
ˆ ˆ β0 = α0 = 0.5825
计 量 经 济 学
ˆ ˆ ˆ ˆ β1 = α0 +α1 +α2 = 0.5825 +1.2231− 0.5446 = 1.261 ˆ ˆ ˆ ˆ β2 = α0 + 2α1 + 4α2 = 0.5825 + 2 ×1.2231− 4 ×0.5446 = 0.8503
第九章 滞后变量模型
总乘数=3.96875,平均滞后时间=0.944882
有限分布滞后模型的估计 模型:
Yt = a + b0 X t + b1 X t −1 + b2 X t − 2 + L + bs X t − s + ut t = s + 1, s + 2,L , n
宗旨是对分布滞后参数b1……bs施加约束 施加约束, 减少待估变量的个数
1.2 1.0 0.8 0.6 0.4 0.2 0.0 -0.2 50 55 60 65 70 X 75 80 85 90
12.5 12.0 11.5 11.0 10.5 10.0 9.5 50 55 60 65 70 Y 75 80 85 90
模拟2: 年以前X为 ,以后为1 模拟 :1960年以前 为0,以后为 年以前
称为分布滞后消费函数。 含义: 本期的消费Yt不仅依赖于本期的收入Xt, 还依赖于过去s个时期的收入:Xt-1、Xt- 2,…… Xt-s 这样,就将时间因素引入了模型,使模型具有 了动态的特征 动态的特征。 动态的特征
例:固定资产存量
K t = a + b0 I t + b1 I t −1 + b2 I t − 2 + L + bs I t − s + ut t = s + 1, s + 2,L , n
X t -2 - - x1 x2 … xn-2
X t -3 - - - x1 … xn-3
分布滞后模型
Yt = a + b0 X t + b1 X t −1 + b2 X t − 2 + L + bs X t − s + ut t = s + 1, s + 2,L , n
-第九章-分布滞后和自回归演示课件.ppt
bjhk
11
这种模型正是分析判断滞后效应的存在性及其 模式,研究经济行为、经济关系中滞后作用的 基本模型,称为“分布滞后模型” 。
理论上可以考虑有无限多滞后项的分布滞后模
型:Ct c0 c1It c2It 1 c3It 2 t
这种分布滞后模型通常称为“无限分布滞后模 型”,相比之下,只有有限个滞后项的分布滞 后模型则称为“有限分布滞后模型”。
或:Ct c0 c1It c2It 1 c3It 2 cK It K 1 t
模型中的c0是反映基本消费的常数,c1 等
是反映滞后效应结构的系数,这些参数 的数值,是否显著都是未知的,需要根 据收入和消费数据通过计量分析估计。
有时反映滞后期长度的K也是未知的,也 需要通过分析确定。
第九章 分布滞后和自回归模型
bjhk
1
前言
前面各章基本上没有区别所用的数据究竟是时 间序列数据还是截面数据。但这两类数据在计 量经济分析中还是有明显差异的。
时间序列数据是经济运动动态过程的数量记录, 包含不同于横截面数据的特殊信息,可以进行 动态计量分析,但时间序列数据的内在联系也 可能给计量经济分析带来问题和困难。
bjhk
9
(二)分布滞后模型
已知存在滞后效应以及滞后效应的时间 长度和结构时,对滞后作用的分析预测 是比较简单的。
但现实中的问题常常是只知道可能存在 滞后效应,滞后效应是否确实存在,滞 后效应的持续长度,及其结构模式都是 未知的。
bjhk
10
例如消费滞后效应问题可能是:
Ct c0 c1It c2It 1 c3It 2 t
bjhk
8
当然,消费者的消费行为一般不可能满足严格 函数关系,必然会因素随机因素干扰而有波动。
分布滞后模型(上)
定义:因变量受到自身滞后Y(-1)或另一解释变量的前几期值X(-1) 影响的现象称为滞后效应。
表示前几期值Y(-1)、X(-2)的变量称为滞后变量。
举例1:消费函数。消费除了受本期收入影响之外,还受前1期,或前2期 收入的影响:
Ct=0+1Yt+2Yt-1+3Yt-2+t Yt-1,Yt-2为滞后变量
0 Xt 1Xt1 2 Xt2 ... s Xts t
0短期或即期乘数,表示本期X变化一单位对Y平均值的影响程 度。
i (i=1,2…,s):动态乘数或延迟系数,表示各滞后期
s
X的变动对Y平均值影响的大小。
i 称为长期或均衡乘数,表示X变动一个单位,
举例2:投资函数。当年产出依赖于过去若干期内投资形成的固定资产。 YtIt=0+1It+2It-1+3It-2+tIt-1,It-2为滞后变量——投资回报周期
分布滞后模型(distributed-lag
m
o
d
e
l
)
定义:仅受解释变量X当期值及滞后期的影响。
s
Yt i X ti t i0
i0
由于滞后效应而形成的对Y平均值总影响的大小。
滞后变量X(-1)、X(-2)…X(-i)如何引入模型Y中?
能否运用传统OLS估计方法?
(1)没有先验准则确定滞后期长度; (2)如果滞后期较长,将缺乏足够的自由度; (3)滞后变量X(-1)、X(-2)…X(-i)高度相关;
OLS方法失效
改进思想:针对有限分布滞后期模型,通过阿尔蒙
变换,定义新变量,以减少解释变量个数,然后用 OLS法估计参数。 —— 降维思想
计量经济学第九章分布滞后和自回归模型
自回归模型的理论导出
适应性预期(Adaptive expectation)模型
在某些实际问题中,因变量 Yt 并不取决于解释变量的当
前实际值
X
t
,而取决于X
t
的“预期水平”或“长期均衡水X
* t
平” 。
例如,家庭本期消费水平,取决于本期收入的预期值;
❖ 为了解决滞后长度不确定的困难,可以依次估计滞 后效应变量的一期滞后、二期滞后…当发现滞后变 量(加入的最多期滞后)的回归系数在统计上开始 变得不显著,或至少有一个变量的系数改变符号 (由正变负或由负变正)时,就不再增加滞后期, 把此前一个模型作为分布滞后模型的形式,相应参 数估计作为模型的参数估计。
市场上某种商品供求量,决定于本期该商品价格的均衡值。
因此,适应性预期模型最初表现形式是
Yt
0
1
X
* t
t
由于预期变量是不可实际观测的,往往作如下 适应性预期假定:
X
* t
X* t 1
(Xt
X
* t 1
)
其中:r为预期系数(coefficient of expectation), 0r 1。
该式的经济含义为:“经济行为者将根据过去的 经验修改他们的预期”,即本期预期值的形成是一 个逐步调整过程,本期预期值的增量是本期实际值 与前一期预期值之差的一部分,其比例为r 。
这个假定还可写成:
X
* t
X t
(1
)
X
* t 1
将
X
* t
X t
(1
)
X
* t 1
代入
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第九章 案例分析
【案例7.1】 为了研究1955—1974年期间美国制造业库存量Y 和销售额X 的关系,
用阿尔蒙法估计如下有限分布滞后模型:
t
t t t t t u X X X X Y +++++=---3322110ββββα
将系数i β(i =0,1,2,3)用二次多项式近似,即
00αβ=
2101αααβ++=
210242αααβ++=
210393αααβ++=
则原模型可变为
t t t t t u Z Z Z Y ++++=221100αααα
其中
3
212321132109432---------++=++=+++=t t t t t t t t t t t t t X X X Z X X X Z X X X X Z
在Eviews 工作文件中输入X 和Y 的数据,在工作文件窗口中点击“Genr ”工具栏,出现对话框,输入生成变量Z 0t 的公式,点击“OK ”;类似,可生成Z 1t 、Z 2t 变量的数据。
进入Equation Specification 对话栏,键入回归方程形式
Y C Z0 Z1 Z2
点击“OK ”,显示回归结果(见表7.2)。
表7.2
表中Z0、 Z1、Z2对应的系数分别为210ααα、、的估计值210ˆˆˆααα
、、。
将它们代入
分布滞后系数的阿尔蒙多项式中,可计算出3210ˆ
ˆˆˆββββ、、、的估计值为:
-0.522)432155.0(9902049.03661248.0ˆ9ˆ3ˆˆ0.736725)432155.0(4902049.02661248.0ˆ4ˆ2ˆˆ 1.131142)432155.0(902049.0661248.0ˆˆˆˆ661248.0ˆˆ2101
21012101
00
=-⨯+⨯+=++==-⨯+⨯+=++==-++=++===αααβαααβαααβαβ
从而,分布滞后模型的最终估计式为:
32155495.076178.015686.1630281.0419601.6----+++-=t t t t t X X X X Y
在实际应用中,Eviews 提供了多项式分布滞后指令“PDL ”用于估计分布滞后模型。
下面结合本例给出操作过程:
在Eviews 中输入X 和Y 的数据,进入Equation Specification 对话栏,键入方程形式
Y C PDL(X, 3, 2)
其中,“PDL 指令”表示进行多项式分布滞后(Polynomial Distributed Lags )模型的估计,括号中的3表示X 的分布滞后长度,2表示多项式的阶数。
在Estimation Settings 栏中选择Least Squares(最小二乘法),点击OK ,屏幕将显示回归分析结果(见表7.3)。
表
7.3
需要指出的是,用“PDL ”估计分布滞后模型时,Eviews 所采用的滞后系数多项式变换不是形如(7.4)式的阿尔蒙多项式,而是阿尔蒙多项式的派生形式。
因此,输出结果中PDL01、PDL02、PDL03对应的估计系数不是阿尔蒙多项式系数210ααα、、的估计。
但同前面分步计算的结果相比,最终的分布滞后估计
系数式3210ˆ
ˆˆˆββββ、、、是相同的。
【案例7.2】 货币主义学派认为,产生通货膨胀的必要条件是货币的超量供应。
物价变动与货币供应量的变化有着较为密切的联系,但是二者之间的关系不是瞬时的,货币供应量的变化对物价的影响存在一定时滞。
有研究表明,西方国家的通货膨胀时滞大约为2—3个季度。
在中国,大家普遍认同货币供给的变化对物价具有滞后影响,但滞后期究竟有多长,还存在不同的认识。
下面采集1996-2005年全国广义货币供应量和物价指数的月度数据(见表7.4)对这一问题进行研究。
表7.4 1996-2005年全国广义货币供应量及物价指数月度数据
为了考察货币供应量的变化对物价的影响,我们用广义货币M2的月增长量M2Z 作为解释变量,以居民消费价格月度同比指数TBZS 为被解释变量进行研究。
首先估计如下回归模型
t
t t u Z M TBZS ++=20βα
得如下回归结果(表7.5)。
表7.5
平的影响在统计意义上不明显。
为了分析货币供应量变化影响物价的滞后性,我们做滞后6个月的分布滞后模型的估计,在Eviews工作文档的方程设定窗口中,输入
TBZS C M2Z M2Z(-1) M2Z(-2) M2Z(-3) M2Z(-4) M2Z(-5) M2Z(-6)
结果见表7.6。
表7.6
水平的影响要经过一段时间才能逐步显现。
但各滞后期的系数的t统计量值不显著,因此还不能据此判断滞后期究竟有多长。
为此,我们做滞后12个月的分布滞后模型的估计,结果见表7.7。
表7.7
表7.7显示,从M2Z到M2Z(-11),回归系数都不显著异于零,而M2Z(-12)的回归系数t统计量值为3.016798,在5%显著性水平下拒绝系数为零的原假设。
这一结果表明,当期货币供应量变化对物价水平的影响在经过12个月(即一年)后明显地显现出来。
为了考察货币供应量变化对物价水平影响的持续期,我们做滞后18个月的分布滞后模型的估计,结果见表7.8。
表7.8
17个月开始t 值变得不显著;再从回归系数来看,从滞后11个月开始,货币供应量变化对物价水平的影响明显增加,再滞后14个月时达到最大,然后逐步下降。
通过上述一系列分析,我们可以做出这样的判断:在我国,货币供应量变化对物价水平的影响具有明显的滞后性,滞后期大约为一年,而且滞后影响具有持续性,持续的长度大约为半年,其影响力度先递增然后递减,滞后结构为Λ型。
当然,从上述回归结果也可以看出,回归方程的2
R 不高,DW 值也偏低,表明除了货币供应量外,还有其他因素影响物价变化;同时,过多的滞后变量也可能引起多重共线性问题。
如果我们分析的重点是货币供应量变化对物价影响的滞后性,上述结果已能说明问题。
如果要提高模型的预测精度,则可以考虑对模型进行改进。
根据前面的分析可知,分布滞后模型可以用子回归模型来代替,因此我们估计如下子自回归模型:
t t t u TBZS TBZS ++=-1βα
在Eviews 工作文档的方程设定窗口中,输入
TBZS C TBZS(-1)
估计结果见表7.9。
表7.9。