同底数讲义幂的乘法
同底数幂的乘法(2023版ppt)
同底数幂的乘法 在解方程中的应 用:简化方程,
提高求解速度
同底数幂的乘法 在函数中的应用: 简化函数表达式, 提高函数求解效
率
同底数幂的乘法 在几何中的应用: 简化几何图形, 提高图形分析效
率
同底数幂的乘法在几何中的应用
01
04
坐标变换:利用同底数 幂的乘法进行坐标变换, 解决几何问题
03
旋转对称:利用同底数 幂的乘法计算旋转对称 图形的周长和面积
同底数幂的乘法练习题解析
● 题目:计算(2^3)*(2^5) ● 解析:根据同底数幂的乘法法则,底数不变,指数相加,所以答案是2^8。 ● 题目:计算(3^2)*(3^3) ● 解析:根据同底数幂的乘法法则,底数不变,指数相加,所以答案是3^5。 ● 题目:计算(4^4)*(4^2) ● 解析:根据同底数幂的乘法法则,底数不变,指数相加,所以答案是4^6。 ● 题目:计算(5^5)*(5^4) ● 解析:根据同底数幂的乘法法则,底数不变,指数相加,所以答案是5^9。 ● 题目:计算(2^2)*(2^3)*(2^4) ● 解析:根据同底数幂的乘法法则,底数不变,指数相加,所以答案是2^9。
计算增长率:计算 人口、GDP、销售 额等数据的增长率
同底数幂的乘法练习题
● 计算:(2^3)*(2^4) ● 计算:(3^2)*(3^3) ● 计算:(4^5)*(4^6) ● 计算:(5^4)*(5^5) ● 计算:(6^3)*(6^4) ● 计算:(7^2)*(7^3) ● 计算:(8^5)*(8^6) ● 计算:(9^4)*(9^5) ● 计算:(10^3)*(10^4) ● 计算:(11^2)*(11^3)
同底数幂的乘法运算技巧
技巧一:利用幂的乘方公式进行 运算
同底数幂的乘法法则课件
例题三:实际应用
总结词:实际应用
详细描述:该例题将同底数幂的乘法法则与实际问题相结合,通过解决实际问题,让学习者深入理解 幂的乘法规则在实际生活中的应用。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
04
同底数幂的乘法法则的 练习题
基础练习题
01
02
03
04
总结词:考察基本概念和运算 规则
未来展望
深入理解幂的性质
在未来的学习中,学生需要进一步深入理解幂的性质,包括交换律、结合律、分配律等, 以便更好地应用这些性质解决实际问题。
探索同底数幂的除法法则
在掌握了同底数幂的乘法法则之后,学生可以开始探索同底数幂的除法法则,了解如何进 行同底数幂的除法运算。
应用同底数幂的乘法法则解决实际问题
难点解析
理解同底数幂的乘法法则
对于初学者来说,理解同底数幂的乘法法则可能有一定的难度, 需要强调指数相加而非数值相加的概念。
掌握幂的性质
掌握幂的性质是理解同底数幂乘法法则的基础,需要让学生充分理 解并掌握这些性质。
灵活运用法则
在掌握同底数幂的乘法法则的基础上,需要让学生学会如何在实际 问题中灵活运用这个法则。
学生可以在实际问题的解决中应用同底数幂的乘法法则,提高解决实际问题的能力。
REPORT
THANKS
感谢观看
CATALOG
DATE
ANALYSIS
SUMMAR Y
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
同底数幂的乘法法则的 例题解析
例题一:基础应用
总结词:基础运算
《整式》同底数幂的乘法讲义
一同底数幂的乘法知识要点1、同底数幂的意义同底数幂是指底数相同的幂;如与,与,与,与等等; 提示:同底数幂中的底数可以是具体的数字,也可以是单项式或多项式,但和不是2、同底数幂的乘法法则 同底数幂相乘,底数不变,指数相加,即m,n 是正整数;这个公式的特点是:左边是两个或两个以上的同底数幂相乘,右边是一个幂,指数相加;经典例题例1.填空:1ma 叫做a 的m 次幂,其中a 叫幂的________,m 叫幂的________;2写出一个以幂的形式表示的数,使它的底数为c,指数为3,这个数为________;34)2(-表示________,42-表示________; 4根据乘方的意义,3a =________,4a =________,因此43a a⋅=)()()(+例2.计算:1=-⋅23b b 2=-⋅3)(a a 3=--⋅32)()(y y 4=--⋅43)()(a a 5=-⋅2433 6=--⋅67)5()5( 7=--⋅32)()(q q n 8=--⋅24)()(m m 9=-32 10=--⋅54)2()2( 11=--⋅69)(b b 12=--⋅)()(33a a例3.如果339+=x x ,求x 的值;例4.已知,2=m a3=n a ,求n m a +和n m a 32+的值练一练一、基础训练1、同底数幂相乘,底数_______,指数______; 用公式表示a m ·a n =______m,n 都是正整数.2、a 3·a 2=a 3+2=______;3、a 2· =a 7;3、-b 2·-b 4=-b 2+4=_______.4、a 16可以写成A .a 8+a 8B .a 8·a 2C .a 8·a 8D .a 4·a 45、下列计算正确的是A .b 4·b 2=b 8B .x 3+x 2=x 6C .a 4+a 2=a 6D .m 3·m=m 46、计算-a 3·-a 2的结果是A .a 6B .-a 6C .a 5D .-a 57、计算:1-122×-123=_____________. 2103·104·105=________________.3a 10·a 2·a=_________________8、计算:1m 3·m 4·m ·m 7; 2xy 2·xy 8·xy 18;3-a2·-a4·-a6; 4m+n5·n+m8;9、一种电子计算机每秒可进行1015次运算,它工作107秒可进行多少次运算二、能力提升1.下面的计算错误的是A.x4·x3=x7 B.-c3·-c5=c8 C.2×210=211 D.a5·a5=2a10 2.x2m+2可写成A.2x m+2 Bx2m+x2 C.x2·x m+1 D.x2m·x2 3.若x,y为正整数,且2x·2y=25,则x,y的值有A.4对 B.3对 C.2对 D.1对4.若a m=3,a n=4,则a m+n=A.7 B.12 C.43 D.345.若102·10n=102010,则n=_______.6.计算1.m-n·n-m3·n-m42x-y3·x-y·y-x2 3x·x2+x2·x7.已知:3x=2,求3x+2的值.8.已知x m+n·x m-n=x9,求m的值9.若52x+1=125,求x-22011+x的值.二幂的乘方知识要点幂的乘方,底数不变,指数相乘,即()mn n ma a =经典例题例1.填空 1. 221()3ab c -=________,23()n a a ⋅ =_________2.5237()()p q p q ⎡⎤⎡⎤+⋅+⎣⎦⎣⎦ =_________,23()4n n n n a b =. 3.3()214()a a a ⋅=.例2.计算1x 237 2 a -b m n 3x 34·x 2例3、1若x 2n =x 8,则m=_________. 2、若x 3m2=x 12,则m=_________;例4、1若x m ·x 2m =2,求x 9m 的值; 2、若a 2n =3,求a 3n4的值;练一练一、基础训练1、幂的乘方,底数_______,指数________.a mn= ______________其中m 、n 都是正整数2、计算: 1232=_____; 2-223=______;3--a 32=______; 4-x 23=_______;3、如果x 2n =3,则x 3n4=_____.4、下列计算错误的是 .A.a55=a25 B.x4m=x2m2 C.x2m=-x m2 D.a2m=-a2m5、在下列各式的括号内,应填入b4的是.A.b12= 8 B.b12= 6 C.b12= 3 D.b12= 26、如果正方体的棱长是1-2b3,那么这个正方体的体积是.A.1-2b6 B.1-2b9 C.1-2b12 D.61-2b67、计算-x57+-x75的结果是.A.-2x12 B.-2x35 C.-2x70 D.08、计算:1x·x23 2x mn·x nm 3y45-y544m34+m10m2+m·m3·m8 5a-b n 2 b-a n-1 26a-b n 2 b-a n-1 2 7m34+m10m2+m·m3·m88-1m2n+1m-1+02012――12011二、能力提升1、若x m·x2m=2,求x9m=___________;2、若a2n=3,求a3n4=____________;3、已知a m=2,a n=3,求a2m+3n=___________.4、若644×83=2x,求x的值;5、已知a2m=2,b3n=3,求a3m2-b2n3+a2m·b3n的值.6、若2x=4y+1,27y=3x- 1,试求x与y的值.8、已知a3=3,b5=4,比较a、b 的大小.7、已知a=355,b=444,c=533,请把a,b,c按大小排列.三积的乘方知识要点积的乘方等于幂的乘积.“同指数幂相乘,底数相乘,指数不变”ab n =()()()ab ab ab n 个ab =()a a a n 个a ·()b b b n 个b =a n bn 经典例题例1.若2,3n n x y ==,则()n xy =_______,23()n x y =________.例2.若4312882n⨯=,则n=__________.例3.计算 1 -328×2387; 281999·0.1252000;例4. 比较3344555,4,3的大小 练一练一、基础训练1.ab 2=______,ab 3=_______.2.a 2b 3=_______,2a 2b 2=_______,-3xy 22=_______.3. 判断题 错误的说明为什么13ab 22=3a 2b 4 2-x 2yz 2=-x 4y 2z 2 3232xy 2=4234y x 46423241)21(c a c a =-5a 3+b 23=a 9+b 6 6-2ab 23=-6a 3b 84.下列计算中,正确的是A .xy 3=xy 3B .2xy 3=6x 3y 3C .-3x 23=27x 5D .a 2b n =a 2n b n5.如果a m b n3=a 9b 12,那么m,n 的值等于A .m=9,n=4B .m=3,n=4C .m=4,n=3D .m=9,n=66.a 6a 2b 3的结果是A .a 11b 3B .a 12b 3C .a 14bD .3a 12b 7.-13ab 2c 2=______,42×8n =2 ×2 =2 . 8.计算:12×1032 2-2a 3y433244243)2()(a a a a a -++⋅⋅47233323)5()3()(2x x x x x ⋅+-⋅5-2a 2b 2·-2a 2b 23 6-3mn 2·m 23 2二、能力提升1.用简便方法计算:4-0.12512×-1237×-813×-359. 55201020112432513()...................(2)(0.125)(8)...............(3)()()()()35432n n n n ⨯--⨯-⋅⋅⋅()2.若x3=-8a6b9,求x的值; 3.已知x n=5,y n=3,求xy3n的值.4.已知 x m= 2 , x n=3,求下列各式的值:1x m+n 2 x2m x2n 3 x 3m+2n。
同底数幂的乘法讲解课程
同底数幂的乘法讲解课程同底数幂的乘法是指当两个底数相同时,它们的幂相乘。
这是一种常见的数学运算,在代数中经常会遇到。
在本篇文章中,我们将详细讲解同底数幂的乘法规则,并提供一些相关参考内容供进一步学习。
同底数幂的乘法规则可以表示为:a^m * a^n = a^(m+n),其中a为底数,m和n为指数。
换句话说,如果两个幂具有相同的底数,我们可以将底数保持不变,将指数相加,得到一个新的幂。
这个规则可以通过以下步骤来证明:1. 首先,我们将a的幂m表示为连乘形式:a^m = a * a * a * ... * a(共m个a相乘)。
2. 同样地,将a的幂n表示为连乘形式:a^n = a * a * a * ... * a (共n个a相乘)。
3. 将这两个连乘式相乘:a^m * a^n = (a * a * a * ... * a) * (a * a * a * ... * a)。
4. 由于相同的因子可以交换位置,我们可以将它们合并成一个连乘式:a^m * a^n = a * a * a * ... * a * a * a * ... * a(共m+n个a相乘)。
5. 根据指数的定义,我们可以将上述连乘式写成指数形式:a^m * a^n = a^(m+n)。
通过这个规则,我们可以轻松地计算同底数幂的乘法。
例如,假设我们要计算2^3 * 2^4。
根据乘法规则,我们可以将底数2保持不变,将指数3和4相加得到7,即2^3 * 2^4 = 2^7。
因此,2^3 * 2^4 = 128。
同底数幂的乘法在诸多数学上的应用中扮演着重要的角色。
它常常用于解决各种问题,例如计算复利、指数函数的运算等等。
因此,对同底数幂的乘法规则有深入的理解是非常重要的。
以下是一些相关参考内容,供进一步学习:1. 视频教程: "同底数幂的乘法" - Khan Academy(可在YouTube上搜索)这个视频教程简单而明了地解释了同底数幂的乘法规则,并提供了一些例子进行演示。
同底数幂的乘法讲义
同底数幂的乘法(教师版)教学内容解析:第一章《整式的乘除》是七年级上册整式加减的延续和发展,也是后续学习因式分解、分式运算的基础.整式的乘法运算包含单项式乘法、单项式与多项式乘法和多项式乘法,它们最后都转化为单项式乘法.单项式的乘法又以幂的运算性质为基础,其基本形式为:a m a n,(a m)n,(ab)m.因此,“整式的乘法”的内容和逻辑线索是:同底数幂的乘法——幂的乘方——积的乘方——单项式乘单项式——单项式乘多项式——多项式乘多项式——乘法公式(特例)由此可见,同底数幂的乘法是整式乘法的逻辑起点,是该章的起始课.作为章节起始课,承载着单元知识以及学习方法、路径的引领作用.“同底数幂的乘法法则”从发现到验证,经历了“观察——实验——猜想——验证”过程,体现了从特殊到一般的归纳方法,这种方法在探究代数运算规律的时候经常用到.当学生理解和掌握了“同底数幂的乘法”的学习方法和研究路径后,学生就能运用类比的方法,自主地学习“幂的乘方”和“积的乘方”,真正实现由学会到会学的目的.基于教学内容特殊的地位和作用,本节课的教学重点确定为:同底数幂乘法法则的探究与应用.学生学情分析七年级的学生已掌握有理数的运算,并已初步具有用字母表示数的思想.但用字母表示数来归纳同底数幂的乘法法则,使其具有一般性,对学生的抽象思维能力和逻辑推理能力要求较高, 因此,我们设计了从“特殊——一般”的方式,引导学生观察、发现、归纳.七年级学生对已有知识具备直接运用的能力,但思维具有局限性,尚缺乏化未知为已知的转化能力,如通过相反数把多项式进行整体转化,是学生比较难处理的问题.对学生来说整体思想和转化思想是十分重要又困难的数学思维,对学生的数学素养、学习能力要求较高.因此本节课的难点为:1. 整式的乘法运算化归为三种最基本的幂的运算——同底数幂的乘法、幂的乘方和积的乘方;2. 底数互为相反数的幂的乘法.教学策略分析基于对教学内容和学生学情的分析,我们采取以下的教学策略:策略1:“整体感悟”教学策略.在“创设情境,引入新课”环节中,让学生构造乘法算式,通过小组合作对所得算式进行分类,帮助学生整体感悟整式乘法的基本类型.在学生猜想多项式乘法运算后,通过展开,使学生感受到整式的乘法都是转化为单项式乘以单项式,其基础是幂的三种运算,再一次让学生整体感悟幂的乘法运算类型.策略2:“长程两段式”教学策略.在“幂的运算”这一单元中,从方法性结构来看,都通过“从特殊到一般”的认知方法认识新知;从过程性结构来看,它们都需要经历“发现和猜想→验证和去伪→归纳与概括→应用与拓展”的知识形成过程.因此,我们对“同底数幂的乘法”的教学采取教学“结构”.这样,学生在“幂的乘方”“积的乘方”以及后面“同底数幂的除法”的学习过程中,就可以类比“同底数幂乘法”的学习过程和方法,开展自主学习,从而培养学生自主学习能力.策略3:“分层递进”教学策略.为了帮助学生理解法则意义、适用条件,突破运用法则计算底数互为相反数的幂的运算难点,遵循循序渐进教学设计原则,在运用法则环节设计了“辨一辨”“做一做”“判一判”“练一练”“用一用”五个步骤.在充分利用教材的基础上,作适当处理,突出本节教学重点,帮助学生突破难点.下面结合具体的教学过程,对“问题”设置、学生学习机会创设和学习反馈处理进行分析:教学目标:(一)知识与技能1.理解同底数幂的乘法法则.2.运用同底数幂的乘法法则解决一些实际问题.3.感受生活中幂的运算的存在与价值.(二)过程与方法1.经历自主探索同底数幂乘法的运算性质的过程,能用代数式和文字正确地表述这一性质,并会运用它们熟练地进行计算.2.通过由特殊到一般的猜想与说理、验证,培养学生一定的说理能力和归纳表达能力.使学生初步理解特殊──一般──特殊的认知规律.(三)情感态度与价值观体味科学的思想方法,接受数学文化的熏陶,激发学生探索创新的精神.教学重点:正确理解同底数幂的乘法法则.教学难点:正确理解和应用同底数幂的乘法法则.教学方法:自主探究、发现教学过程:一.提出问题,创设情境1.复习a n 的意义:a n 表示n 个a 相乘,我们把这种运算叫做乘方. 乘方的结果叫幂; a 叫做底数, •n 是指数.2.提出问题:问题:一种电子计算机每秒可进行1014次运算,它工作103秒可进行多少次运算?【学生思考】①能否用我们学过的知识来解决这个问题呢?计算机工作103秒可进行的运算次数为:1014×103.②1014×103如何计算呢?根据乘方的意义可知1014×103=(10×…×10)×(10×10×10)=(10×10×…×10)==1017.二.发现归纳,探究新知14个10 17个103个101.根据乘方的意义计算下列式子,看看计算结果有什么规律:(1)25×22(2)a3·a2(3)5m·5n(m、n都是正整数)2.猜一猜你发现了什么?注意观察计算前后底数和指数的关系,并能用自己的语言描述.【归纳】我们可以发现下列规律:(一)这三个式子都是底数相同的幂相乘.(二)相乘结果的底数与原来底数相同,指数是原来两个幂的指数的和.3.议一议a m·a n等于什么(m、n都是正整数)?为什么?【师生共析】a m·a n表示同底数幂的乘法.根据幂的意义可得:a m·a n=(a·a·…·a)·(a·a·…·a)= a·a·…·a =a m+n于是有a m·a n=a m+n(m、n都是正整数),用语言来描述此法则即为:同底数幂相乘,底数不变,指数相加.a m表示n个a相乘,a n表示n个a相乘,a m·a n表示m个a相乘再乘以n个a相乘,也就是说有(m+n)个a相乘,根据乘方的意义可得a m·a n=a m+n.三、应用新知,体验成功1.【辨一辨】下列各式哪些是同底数幂的乘法?【设计意图】辨析法则运用的条件.2.【做一做】计算下列各式,结果用幂的形式表示.3.【判一判】下面的计算对吗?如果不对,怎样改正?(1) a3· a3= 2a3 (2) a2 ·a3 = a6(3) a· a6= a6 (4) 78×(-7)3= 711归纳运用法则时应注意的地方.【设计意图】设置4种典型错题,让学生辨析,达到以错纠错目的,帮助学生进一步理解和掌握法则,优化算法,体验转化思想.m个a n个a m+n个a4.【做一做】计算下列各式,结果用幂的形式表示.【设计意图】帮助学生突破底数互为相反数的幂的乘法运算这一难点,优化底数为数或多项式两种情形算法,进一步体验化归思想,提高思维能力.5.【用一用】光年是长度单位,1光年是指光经过一年所行的距离.光的速度大约是3×105 km/s ,一颗行星与地球之间的距离为100光年,若取一年大约为3×107 秒,则这颗行星与地球之间的距离大约为多少千米?【设计意图】同底数幂的乘法在实际生活中的应用.四、知识提升:计算x · x 5 · x 9【设计意图】熟练并能灵活运用法则,并将法则推广为三个及三个以上同底数幂乘法. 想一想当三个或三个以上同底数幂相乘时,是否也具有这一性质?a m ·a n ·a p =(a·a· … ·a)· (a·a· … ·a) · (a·a· … ·a) = a·a· … ·a =a m+n+p做一做计算:(1)x 2·x 5 (2)23×24×25 (3)2×24×23 (4)x m ·x 3m+1五、反馈练习,巩固新知1.课本3页练习2.判断下列计算是否正确,并简要说明理由:① a · a 2= a 2② a +a 2 = a 3③ a 3 · a 3= a 9④ a 3+a 3 = a 63.计算:(1)107 ×104 (2)x 2 · x 5 (3)23×24×25 (4)y · y 2 · y 3六.课时小结 a m ·a n =a m+n (m 、n 都是正整数)同底数幂相乘,底数不变,指数相加.a m ·a n ·a p =a m+n+pm 个a p 个a n 个a m+n+p 个1.同底数幂相乘,底数不变,指数相加。
《同底数幂的乘法》公开课一等奖课件
汇报人:
2023-12-23
目录
• 课程介绍与目标 • 同底数幂乘法基本概念 • 运算技巧与提高 • 实际应用与拓展 • 学生互动环节 • 课程总结与回顾
01
课程介绍与目标
课程背景与意义
01
02
03
幂运算基本概念
同底数幂乘法是幂运算的 基本内容,掌握其运算规 则对后续数学学习具有重 要意义。
代数运算基础
同底数幂乘法是代数运算 的基础,对于提高学生代 数运算能力具有重要作用 。
实际应用价值
同底数幂乘法在实际问题 中具有广泛应用,如计算 面积、体积等。
教学目标与要求
知识与技能
掌握同底数幂乘法的运算 规则,能够正确进行同底 数幂的乘法运算。
过程与方法
通过实例引入、公式推导 、练习巩固等环节,培养 学生分析问题、解决问题 的能力。
而简化计算。
ቤተ መጻሕፍቲ ባይዱ习方法建议
理解概念
在学习同底数幂的乘法时,首先要理解幂的概念 和运算法则,这是掌握后续知识的基础。
多做练习
通过大量的练习,可以加深对知识点的理解和记 忆,提高解题速度和准确性。
举一反三
学会将同底数幂的乘法法则应用到实际问题中, 培养解决问题的能力。
下一讲内容预告
幂的乘方与积的乘方
探讨幂的乘方和积的乘方的运算法则,以及它们在解决实际问题 中的应用。
此题考察的是乘法分配律的应用,将(x + y) 分别与(x^2 + y^2)中的每一项相乘,得到 x^3 + x×y + x×y + y^3 = x^3 + 2×x×y + y^3。
03
同底数幂的乘法课件(公开课) PPT
2.填空: (1) 8 = 2x,则 x = 3 ;
23 (2) 8× 4 = 2x,则 x = 5 ;
23× 22= 25 (3) 3×27×9 = 3x,则 x = 6 .
3×33 × 32 = 36
如果底数不同,能够化为相同底数的,可以用该法则,否 则不能用。
探索并推导同底数幂的乘法的性质
a ma na m n(m,n 都是正整数)表述了两个 同底数幂相乘的结果,那么,三个、四个…多个同底 数幂相乘,结果会怎样?
这一性质可以推广到多个同底数幂相乘的情况: a m a n a p a m n p (m,n,p都是正整数).
➢am ·an = am+n
重点:正确理解同底数幂的乘法法则 难点:正确理解和应用同底数幂的乘法法则
1.什么叫乘方?
求几个相同因数的积的运算叫做乘方。
25表示什么? 10×10×10×10×10 可以写成什么形式?
25 = 2×2×2×2×2 . (乘方的意义) 10×10×10×10×10 = 105 . (乘方的意义)
回顾 热身
八年级 数学
14.1同底数幂的乘法
同底数幂的乘法公式:
a ·a =a m
n
m+n (m、n都是正整数)
同底数幂相乘,底数 不变,指数相加。
例 计算: (1) x2x5;
(2) a a 6;
(3)( - 2 ) ( - 2 ) 4 ( - 2 ) 3 ;(4) xm x3m1.
解: (1)原式= x2+5 = x7
我们把底数相同的幂称为同底数幂
请同学们先根据乘方的意义,解答
10 ×10 = = 10 15
3 (10×10×…×10)×(10×10×10)
《同底数幂的乘法》数学教学PPT课件(3篇)
特
殊
“光年”是长度单位,指光在真空中沿直线传 播一年所经过的距离。请问:一光年有多远?
3108 3.2107 33.2108 107 9.61015
青岛版七年级数学下册
同底数幂的乘法
嫦娥奔月
地球到月球的平均距离 是 3.8 ×108米
()
嫦白 娥兔 孤捣 栖药 与秋 谁复 邻春 ?,
李 白
6个10
=106 (乘方的意义)
25×22 =( 2 ×2 ×2 × 2 × 2 )×(2× 2 )
= 27
a3×a2=(a×a×a )×(a×a) = a5
观察下面各题左右两边,底数、指数有
什么关系?
102 ×104= 10( 6 ) = 10( 2+4 ) 25 ×22 = 2( 7 ) = 2( 5+2) a3× a2 = a( 5 ) = a( 3+2)
1.口答 (1)76×74 (2)a9·a8
(3)x5·x4
(4)b6·b
(710) (a17) (x9) (b7)
2.下面的计算对不对?如果不对,怎样改正?
(1)b5 ·b5= 2b5 (×) (2)b5 + b5 = b10( ×)
b5 ·b5= b10
b5 + b5 = 2b5
(3)x5 ·x5 = x25 ( ×) (4)-y6 ·y5 = y11 ( ×)
1.计算:a2‧a3 + a‧a4
解:a2‧a3 + a‧a4= a2+3+a1+4
= a5+a5= 2a5
2023年4月23日7时23分
2.计算: (1) -y ·(-y)2 ·y3
x5 ·x5 = x10
同底数幂的乘法讲义
同底数幂的乘法
同学们大家好,这里是博士吧数学学习乐园,我是今天的主讲老师谭老师。
今天我将带大家走进同底数幂的乘法的数学世界。
今天,我们讲课的内容是同底数幂的乘法。
要讲同底数幂的乘法,首先同学们跟我一起回顾一下幂的概念,什么是幂呢?幂是怎么来的呢?
意义:a n 表示n 个a 相乘。
有理数的乘方的定义:求n 个相同因数a 的积
的运算叫做乘方。
乘方的结果叫做幂,a 叫做底 数,n 叫做指数,n a 叫做a 的n 次幂。
(其中,
底数a 可以表示具体的数,还可以代表单项式
或多项式)。
那么知道了幂的概念,同底数幂,顾名思义,就是说底数相同的幂了。
比如说7422和就是同底数幂,7422⨯就是同底数幂的乘法了。
那么,下面同学们和我一起来自己计算几道同底数幂的乘法的式子。
从上面几个题目中,我们可以总结出来一些规律。
14686810101010)1(==⨯+12757575)2(a
a a a a a a a a a a a ==⋅⋅⋅⋅⋅⋅⋅⋅⋅=⨯+ 个个n m n m n m +=⋅⋅⋅⋅⋅⋅⋅⋅⋅=⨯6
66666666)3(66 个个。
同底数幂的乘法PPT课件
相加
不变 指数______.
同理可知,若三个以上的同底数幂相乘,底数______,
典例精析
【例3】计算:(1)32×33×34;
(2)y·y2·y4.
解法一:(1)32×33×34=(32×33)×34=35×34=39;
(2)y·y2·y4=(y·y2)·y4=y3·y4=y7.
(-x)4 ·(-x)4 = (-x)8
巩固练习
2. 填空:
(1) x · x2 · x( 4
)
= x7 ;
(2) xm ·( x2m )= x3m ;
(3) 8 × 4 = 2x,则 x = (
23×22 = 25
5
).
巩固练习
3.计算:(1)2×23×25;
(3)-a5·a5;
(2)x2·x3·x4;
猜想
论证
要点归纳
同底数幂的乘法法则:
am · an =
am+n
(m,n 都是正整数).
同底数幂相乘, 底数不变 ,指数相加.
注意
条件:①乘法
②底数相同
结果:①底数不变
②指数相加
典例精析
例1
计算
(1)105×103;
解: 105×103
= 105+3
= 108.
(2)x3 ·x4;
解:x3 ·x4
(3) x4 + x4 = x8
(
(4) x2 · x2 = 2x4 ( × )
× )
(5) (-x)2 · (-x)3 = (-x)5
( √
(6) a2 · a3- a3 · a2 = 0
同底数幂的乘法 课件
想一想:
当三个或三个以上同底数幂相乘时,是否也 具有 这一性质呢? 怎样用公式表示?
am·an·ap =am+n·a·p =am+n+p (m、n、p都是正整数)
如:(1)23×24×25 (2)y ·y2 ·y3 解:(1)23×24×25=23+4+5=212
(2)y ·y2 ·y3 = y1+2+3=y6
n个a
幂
探究新知
底数相同
❖ 式子1015×103中的两个因数有何特点?
我们把底数相同的幂称为同底数幂
请同学们先根据乘方的意义,解答
10 ×10 = = 10 15
3 (10×10×…×10)×(10×10×10)
( 18 )
15个
3个
a ×a = = a 15
3
(a×a×…×a)×(a×a×a)
( 18 )
=24×3.6×103(S)
(2.75×103×108)× (24×3.6×103)
=(2.75×24×3.6) × (103×108×103)
=237.6×1014 ≈2.38×1016(次) 答:它一天约能运算2.38×1016次。
➢随机应变
填空: (1)x5 ·(x3)=x 8 (2)a ·( a5 )=a6
例2在2010年全球超级计算机排行榜中,
中国首台千万亿次超级计算机系统“天河一号”
雄居第一,其实测运算速度可以达到每秒2570
万亿次,如果按这个工作一整天,那么它能运 算多少次(结果保留3个有效数字)?
解 : 2750亿次= 2.75×103×108次, 24时= 24×60× 60
由乘法的交换律和结合律,得
同底数幂的乘法讲课
➢ 尝试练习
4.下面的计算对不 对?如果不对,应怎 样改正? ⑴ a3 a3 2aa333 a6 ⑵ a3 a3 a26a3
⑶ b b6 bb616 b7 ⑷ 7ห้องสมุดไป่ตู้ 73 787 7131 711
⑸ 57 54 511 5 11 511
Good!
➢ 尝试练习
2. 计算:
(1)x10 ·x (3) x5 ·x ·x3
(2)10×102×104 (4)y4·y3·y2·y
解: (1)x10 ·x = x10+1= x11 (2)10×102×104 =101+2+4 =107 (3)x5 ·x ·x3 = x5+1+3 = x9 (4)y4 ·y3 ·y2 ·y= y4+3+2+1= y10
底数相同
❖ 这个式子中的两个因式有何特点?
请同学们先根据自己的理解,解答下列各题.
103 ×102 =(10×10×10)×(10×10) = 10( 5 ) ;
23 ×22 =(2×2×2)×(2×2)=2×2×2×2×2
= 2(5 ) ;
a3×a2 =(a a a)(a a)= a a a a a = a( 5 ) .
(4) y • y2 • y3 =y1+2+3 =y6
(5)(x y)3 (x y)4 (x y)2
(x y)342 (x y)9
➢思考题
(1) x n ·xn+1 ;
解: x n ·xn+1 = xn+(n+1) = x2n+1
(2) (x+y)3 ·(x+y)4 .