第十三讲 余数问题

合集下载

余数的知识点总结

余数的知识点总结

余数的知识点总结一、余数的概念余数的概念最早出现在我们学习除法的时候。

当我们用一个数除以另一个数时,商是一个整数,余数是一个小于被除数的正整数。

例如,当我们将13除以4时,商是3,余数是1。

因此,13÷4=3……1。

这里的1就是余数。

余数的概念可以用数学符号“mod”来表示,即a≡b(mod m),其中a是被除数,b是余数,m是除数。

这个符号读作“a同余b模m”。

例如,13≡1(mod 4)。

二、余数的性质1. 余数的范围余数的范围是0到除数-1之间。

例如,当我们将13除以4时,余数的范围就是0到3。

这是因为余数小于除数,所以余数的范围是有限的。

2. 余数的性质余数可以满足一些基本的性质,例如:如果a≡b(mod m)且c≡d(mod m),那么a+c≡b+d(mod m)。

这意味着如果两个数在模m下同余,那么它们的和也在模m下同余。

这个性质在数论和离散数学中有着重要的应用。

3. 余数的运算余数的运算规则和整数的运算规则是一样的。

例如,对于任意的整数a、b和m,有(a+b) mod m = ((a mod m) + (b mod m)) mod m。

这意味着在计算余数时,我们可以先对每个数取余,然后再进行加法或乘法运算,最后再取一次余数,结果不变。

三、余数的应用1. 时钟和日历在时钟和日历的应用中,余数概念起着非常重要的作用。

例如,一小时后的时间可以用(当前时间+1)mod 12来表示,从而得到12小时制的时间。

又如,计算日期间隔的时候,我们可以用(未来日期-当前日期)mod 7来表示,得到相对于当前日期的天数差。

2. 整数的性质余数概念也常常用来证明整数的性质。

例如,我们可以用余数来证明一个数的奇偶性。

对于任何整数a,a≡0(mod 2)当且仅当a是偶数;a≡1(mod 2)当且仅当a是奇数。

3. 数论问题在数论中,余数的概念是至关重要的。

例如,欧拉定理和费马小定理就是建立在余数的基础上。

四年级上册数学试题-(13)思维数学余数问题 数与量(吨的认识)沪教版(有答案)

四年级上册数学试题-(13)思维数学余数问题  数与量(吨的认识)沪教版(有答案)

升四年级思维数学第十三讲余数问题学习目标思维目标:1、理解除数和余数的关系。

2、掌握被除数=商×除数+余数。

3、理解余数的性质,学会运用余数的性质解决简单的实际问题。

数学知识:1、了解表示较重物体轻重时,一般用“吨”做单位,了解一吨的实际重量。

2、知道克、千克、吨之间的进率,会进行简单换算。

知识梳理思维:1、当余数为零时,我们就说除数能整除被除数,或者被除数能被除数整除。

2、两个整数相除,余数一定小于除数。

3、两个整数相除,,除数是a(a不等于0),余数有(a-1)种可能,比如除数是5,余数可能是4、3、2、1四种可能。

数学:1、1吨=1000千克;1千克=1000克;1吨=1000000克。

2、会对物体的重量进行估算。

精讲精练例1:一个除法算式中,除数是12,商是6,被除数最小是几?最大是几?(金钥匙:题目中除数和商都是固定的,那么余数小被除数就小,余数大,被除数就大。

余数必须比除数小,所以余数的范围应是1~11。

)解:当余数最小时,被除数最小:12×6+1=73;当余数最大时,被除数最大:12×6+11=83;试金石:1、()÷7=6……(),被除数最大是(),最小是()。

2、一个数除以9的商和余数相同,你能写出几个符合这样条件的数?例2:将两盒围棋子按照4白2黑的顺序排成一列,第34颗棋子是什么颜色?第67颗呢?(金钥匙:仔细观察棋子的排列顺序,有什么规律,发现都是4白2黑的顺序循环排列的。

也就是6颗棋子为一组,这一组中前4颗是白的,后2颗是黑的。

34颗棋子中有这样的几组?还剩几颗?列出算式34÷6=5(组)……4(颗),最后决定棋子颜色的是除法算式中的余数。

)解: 34÷6=5(组)……4(颗)答:第34颗棋子是白色。

67÷6=11(组)……1(颗)答:第67颗棋子是白色。

试金石:1、有一堆棋子,按2黑3白的顺序排列,第31颗棋子是什么颜色?第40颗呢?2、甲、乙、丙、丁四人分扑克牌,先给甲3张,乙2张,丙1张,丁2张,再给甲3张,乙2张,丙1张,丁2张……按这样的顺序发牌,最后一张(54张)牌发给谁?例3:2010年的10月1日是星期五,那么11月5日是星期几?(金钥匙:通常生活常识,我们知道十月是大月,有31天,所以先算出10月1日天到11月5日共有36天,)解: 36÷7=5(周)……1(天)答:11月5日是星期五。

六年级下册数学讲义-小学奥数精讲精练:第十三讲 关于个位数字与完全平方数

六年级下册数学讲义-小学奥数精讲精练:第十三讲 关于个位数字与完全平方数

第十三讲 关于个位数字与完全平方数在整数的各种问题中,确定个位数字是十分重要的.下面我们专门讨论整数乘方的个位数字.一、整数乘方的个位数字整数的个位数字只有 0,1,2,3,4,5,6,7,8,9 十种.下面我们列出表格,看一看经过不同次数的乘方之后,个位数字如何变化.a 01 2 3 4 5 6 7 8 9a 2 a 3 a 4 a 5 …………从表中可以看出:(1)平方数的个位数字只可能是 0,1,4,5,6,9,而不可能是 2,3,7,8.(2)三次方的个位数字从 0,1 到 9 都有可能.(3)四次方的个位数字只可能是 0,1,6,5,不可能是 2,3,4,7,8,9.(4)五次方的个位数字与一次方的个位数字完全相同.于是,六次方的个位数字与0 1 4 9 6 5 6 9 4 10 1 8 7 4 5 6 3 2 90 1 6 1 6 5 6 1 6 10 1 2 3 4 5 6 7 8 9二次方的个位数字完全相同;七次方的个位数字与三次方的个位数字完全相同;八次方的个位数字与四次方的个位数字完全相同.不难看出:a1,a5,a9,……的个位数字相同;a2,a6,a10,……的个位数字相同;a3,a7,a11,……的个位数字相同;a4,a8,a12,……的个位数字相同.(5)个位为0,1,5,6 的数无论多少次乘方,其个位数字保持不变.例1 求31993+41995+51995 的末位数字分析:只要分别求出31993,41994,51995的个位数字,再相加即可求出31993+41994+51995的个位数学解:∵51995 的个位数字为5,从各个数字乘方后的个位数字表中可以看到,4 的奇次方的个位数字为4,偶次方的个位数字为 6,∴41994 的个位数字为6;又34k+1 的个位数字为3,34k+2 的个位数字为9,34k+3 的个位数字为7,34k 的个位数字为1,而1993=4×498+1,∴31993 的个位数字与31 的个位数字相同.故31993+41994 +51995 的个位数字与3+6+5=14 的个位数字相同,即31993+41994+51995 的个位数字为4.例2 从1,1,3,3,5,5,7,7,9,9 中取出5 个数,其中至少有三个数不重复,且它们的乘积的个位数字是1.问这5 个数的和应是多少?分析与解:要求取出的5 个数乘积的个位数字是1,显然所取的5 个数中不能有数字5,只能从1,3,7,9 中取,由于要求至少有三个数不重复,那么只能有一个数重复取两次.即只可能有1×1×3×7×9,1×3×3×7×9,1×3×7×7×9,1×3×7×9×9 四种情形.经检验上述四个乘积的个位数字分别为9,7,3,l.故所取的五个数为1,3,7,9,9.这五个数的和为29.例3 我们把从1 开始若干个自然数的连乘积用简单的符号表示,如1×2×3×4×5 记作5!,读作5 的阶乘;1×2×3×……×100 记作100!,读作100 的阶乘;1×2×3×……×n,1 记作n!,读作n 的阶乘.求N=1!+2!+3!+……+1992!+1993!的个位数字.分析:只要将1!,2!,3!,……,1992!,1993!的个位数字一一求出后相加,就可得出各个阶乘的和的个位数字.但要求出各个阶乘的个位数字,需计算1993 项,且每一项几乎都是一大串数字之积,工作量是否会太大?解:∵1!=1,2!=1×2=2,3!=1×2×3=6,4!=1×2×3×4=24,5!=1×2×3×4×5=120,可以看出6!直至1993!的个位数字都是0.因此,N=1!+2!+3!+4!+5!+……+1993!的个位数字就是1+2+6+24+0+……+0 的个位数字.即N 的个位数字为3.例4 求14+24+34+……+19924+19934 的个位数字.分析与解:1,2,3,……,1992,1993,这些数的个位数字不过是1,2,3,4,5,6,7,8,9,0.其四次方的个位数字依次为1,6,1,6,5,6,1,6,1,0,…….前十个数字和为 1+6+1+6+5+6+1+6+1+0=33,个位数字为3.这样就可将14+24+34+44+……+19924+19934 分为十项一组,每组的个位数字均为3.即(14+24+34+……+104)+(114+124+134+…+204)+…+(19814+19824+19834+…+19904)+19914+19924+19934.前 1990 项的和的个位数字与3×199 的个位数字相同,即为 7.而 19914 的个位数字为1,19924 的个位数字为6,19934 的个位数字为1.所以14+24+……+19924+19934 的个位数字与7+1+6+1=15 的个位数字相同,即为5.下面我们来研究两个相邻的自然数乘积的个位数字.二、相邻自然数乘积的个位数字由于仅考虑个位数字,相邻的自然数之积1×2=2,2×3=6,3×4=12,4×5=20,5×6=30,6×7=42,7×8=56,8×9=72,9×10=90,10×11=110的个位数字只可能是0,2,6 三种.因此,若一个自然数的个位数字不是0,2,6,那么,这个自然数不可能是两个相邻自然数的乘积.例5 是否存在自然数n,使得n2+n+7 是35 的倍数?分析与解:分别取n=1,2,3,4,5,依次得到n2+n+7 的值为9,13,19,27,37,显然它们都不是35 的倍数.但是这样一个个试下去,即使试到n=100,n2+n+7 都不是 35 的倍数,也不能说不存在自然数 n,使得 n2+n+7 为 35 的倍数.因为自然数有无穷多个,不可能每个都试到.注意到n2+n=n×(n+1)是两个相邻自然数的乘积,n2+n=n×(n+1)的个位数字只可能是0,2,6,所以n2+n+7 的个位数字只可能是7,9,3.由于个位数字是7,9,3 的自然数不可能是5 的倍数,当然更不可能是35 的倍数.例6不论n是怎么样的自然数,3×(5n+1)都不可能是两个连续自然数的乘积.解:由于5 的任何次方的个位数字总是5,5n+1 的个位数字为 6,3×(5n+1)的个位数字是8.而相邻的两个自然数的乘积的个位数字只能是0,2,6.故3×(5n+1)不可能是两个连续自然数的乘积.例7 若n!+4 是两个相邻自然数的乘积,你能找出所有这种自然数n 吗?分析:要想成为两个相邻自然数的乘积,至少其个位数字应为0,2,6 之一.我们已经知道5!=120,个位数字为0,当 n 大于 5 时,n!的个位数字都是0,此时 n!+4 的个位数字为 4,故这时n!+4 不可能是相邻自然数的乘积.于是只要对n≤4 的自然数分别讨论n!+4 即可.当n=1 时,11+4=5;当n=2 时,2!+4=6;当n=3 时,3!+4=10;当n=4 时,4!+4=28.由于10,28 都无法表为两个相邻自然数的乘积.而 6=2×3,所以,只有当n=2 时,n!+4 是两个相邻自然数的乘积.三、关于完全平方数我们已经知道,个位数字为2,3,7,8 的自然数不可能是完全平方数.其实,一个整数是否为完全平方数,还可以用其它方法来判断.例如,我们可以将完全平方数逐个列出:1,4,9,16,25,36,49,64,81, 100,121,……10000,……在两个连续正整数的平方数之间不存在完全平方数.即如果 n2<a<(n+1)2,那么a 不是完全平方数,下面将给出完全平方数应满足的条件,若这些条件之一不满足,则决不可能是完全平方数.1.任何偶数的平方必为4 的倍数,可表为4k 形式;任何奇数的平方必为4 的倍数加1,可表为4k+1 形式;任何整数被4 除,只有四种可能性,即余数为0,1,2,3.或者说整数只有4k,4k+1,4k+2,4k+3 四种形式.显然形如4k+2,4k+3 的整数不是完全平方数.2.(k 为整数)任何整数被3 除,只有三种可能性,即余数为0,1,2.或者说整数只有3k,3k+1,3k+2 三种形式.形如3k 的整数平方后仍是3 的倍数;形如3k+1 的整数平方后仍是3 的倍数加1;形如3k+2 的整数平方后必为3 的倍数加1.即任何整数平方后只可能是3n 或 3n+1 的形式.因此,形如 3n+2 的数不可能是完全平方数.3.(n,k 为整数)任何整数被5 除的余数有0,1,2,3,4 共五种情形.形如5k的整数平方后仍是5 的倍数;形如5k+1 和5k+4 的整数平方后必为5 的倍数加1;形如5k+2,5k+3 的整数,平方后必为5 的倍数加4.所以任何整数平方后只可能是5n,5n+1,5n+4 的形式.即形如5n+2,5n+3 的数,不可能是完全平方数.(这就是说完全平方数个位数字不可能是2,3, 7,8).同理可知,形如8n+2,8n+3,8n+5,8n+6,8n+7 的数不是完全平方数;形如9n+2,9n+3,9n+5,9n+6,9n+8 的数不是完全平方数.4.(n,足为整数)考察完全平方数的个位和十位上的数字.由42=16,62=36,82=64,102=100,122=144,52=25,72=49,92=81,112=121,132=169,可以发现:完全平方数个位数字是奇数时,其十位上的数字必为偶数.完全平方数的个位数字为6 时,其十位数字必为奇数(证明从略).例8 用300 个2 和若干个0 组成的整数有没有可能是完全平方数?分析:由 300 个 2 和若干个 0 组成的整数,其位数至少是301 位,除首位为 2 外, 各数位上都有可能是2 和0.但不可能逐个检查.由于各数位上的数字和为600(这是所有由300 个 2 和若干个 0 组成的数的共同特性),所以组成的整数一定能被3 整除.但600 并非32=9 的倍数.解:设由300 个2 和若干个0 组成的数为A,则其数字和为600.∵3|600, ∴3|A.即A 中只有3 这个约数,而无32=9 作为约数,所以A 不是完全平方数.150151 却是奇数 1.我们知道,奇数的平方必为 4 的倍数加 1,即 4k +1 的形式. 但 4k +3 形式的数不是完全平方数.从其个位为 1 可知,它必为 10k +1 或 10k +9 形式的数平方而得.(1)式两边同除以 10 得显然,此式左边为偶数,右边为奇数,两边不相等.152(2)式两边同除以 10 得:显然,此式左边为偶数,右边为奇数,两边不相等.习题十三1.求 71993+81994+91995 的个位数字.2.求 1111990 ×1121991×1131992×1141993 的个位数字.3.求 110+210+310+410+510+610+710+810+910+1010 的个位数字.4.一箱水果,如果将它们每五个(一份)分装在小圆盒内,最后还剩下两个. 问这箱水果的总个数是否可能是完全平方数?5.求 1!+2!+……+100!的个位数字.6.对于任何自然数 n,n (n +1)都不可能是完全平方数.7.证明不能被 3 整除的数的平方与 1 的差能被 3 整除.8.若a 不能被5 整除,则a4-1 能被5 整除.9.求一个四位数,使它的前两位数字相同,后两位数字相同,且这个四位数为完全平方数.10.证明 6,66,666,……这串数中,没有完全平方数.。

【讲义】人教版 五年级上册数学第十三讲 期末综合复习(一)

【讲义】人教版 五年级上册数学第十三讲 期末综合复习(一)

第十三讲期末综合复习〔一〕专题知识梳理〔数与代数〕知识综合测评一、填空。

1、4.19393…可以简写成〔〕,保存一位小数约是〔〕,保存三位小数约是〔〕。

2、在〔〕里填上“>〞“<〞或“=〞。

6.4÷0.9〔〕6.4 3.5÷0.01〔〕3.5×1006.7×1.1〔〕6.7 1÷3〔〕0.34.4÷2〔〕4.4×0.5 32÷1.1〔〕323、在一个除法算式中,被除数和除数同时扩大到原来的10倍,商〔〕。

4、3时15分=〔〕时;6m26cm2=〔〕m25.把4.6,4.63,4.63,4.63,4.6这五个数按照从小到大的顺序排列起来是〔〕。

6.李奶奶家养鹅x只,养鸡的只数是养鹅只数的4倍,李奶奶家养鸡〔〕只,养的鸡和鹅共〔〕只。

二、判断。

1、当a=7,b=5时,a2-b2=4。

〔〕2、在被除数不为0的除法算式中,除数大于0且小于1,商就大于被除数。

〔〕3、7.425是无限小数。

〔〕4、一个数除以0.2,商一定小于这个数。

〔〕5、0.7×0.7÷0.7×0.7=1÷1=1。

〔〕6、一个大于0的数乘1.01,所得的积比这个数大。

〔〕三、选择1、一支铅笔0.25元,小明买了3支这样的铅笔,他付给售货员1元,应找回〔〕元。

A、0.35B、0.25C、0.152.求a与b的和的3倍是多少,列式为〔〕A、a+36 B.、3a+b C、3(a+6)3、当x=〔〕时,5x=x2。

A、2B、5C、0或54.下面各算式的得数大于1的是〔〕A、0.99÷0.99B、0.99÷0.9C、1×0.99四、计算。

1.脱式计算,能简算的要简算。

12.5×0.96×0.8 1.28×8.6+0.72×8.620.6-8.4÷2.1+0.35×22.解以下方程。

数学运算余数问题

数学运算余数问题

数学运算余数问题
在数学运算中,余数问题是一个常见的问题类型。

余数是指在整数除法中,被除数减去除数与商的乘积后得到的剩余部分。

例如,在计算 10 ÷ 3 时,商是 3,除数是 3,被除数是 10。

根据余数的定义,我们可以计算得到余数为 1,因为 10 - 3 × 3 = 1。

在解决余数问题时,我们需要掌握几个关键点:
余数必须是一个非负整数,即余数大于等于0。

如果被除数小于除数,那么余数为0。

余数是除法的结果的一部分,它反映了被除数未被完全除尽的部分。

余数有特定的性质,如余数的和等于两个被除数的和除以除数的余数,余数的乘积等于两个被除数的乘积除以除数的余数等。

这些性质在解决复杂数学问题时非常有用。

在解决具体问题时,我们需要根据题目的要求和条件来选择合适的方法。

例如,我们可以通过整除的性质来确定余数的范围,或者通过循环计算来找到满足条件的余数。

同时,我们还需要注意运算的顺序和精度,以避免出现错误的结果。

总之,余数问题是一个重要的数学概念,它涉及到整数除法、模运算等多个方面。

通过掌握余数的定义、性质和解题技巧,我们可以更好地解决各种数学问题。

小学数学奥数基础教程三年级目30讲全

小学数学奥数基础教程三年级目30讲全

第一讲:数的认识本讲主要介绍了数的认识,包括数的读法、数的编写方法和数的顺序等内容。

通过数的认识,帮助学生培养对数的概念的理解和掌握。

第二讲:数的比较本讲主要介绍了数的比较,包括数的大小比较和数的排序等内容。

通过比较数的大小和排序,帮助学生培养对数的大小关系的理解和掌握。

第三讲:数的加减法本讲主要介绍了数的加法和减法,包括数的加法和减法的基本运算方法和应用等内容。

通过加减法的学习,帮助学生培养对数的运算能力的理解和掌握。

第四讲:数的运算律本讲主要介绍了数的运算律,包括加法的交换律、结合律和减法的借位等内容。

通过学习运算律,帮助学生培养对数的运算规律的理解和掌握。

第五讲:数的乘法本讲主要介绍了数的乘法,包括数的乘法的基本运算方法和应用等内容。

通过乘法的学习,帮助学生培养对数的乘法运算能力的理解和掌握。

第六讲:数的除法本讲主要介绍了数的除法,包括数的除法的基本运算方法和应用等内容。

通过除法的学习,帮助学生培养对数的除法运算能力的理解和掌握。

第七讲:数的整除和余数本讲主要介绍了数的整除和余数,包括整除的概念、整除的规律和余数的计算等内容。

通过学习整除和余数,帮助学生培养对数的整除和余数的理解和掌握。

第八讲:数的倍数和最小公倍数本讲主要介绍了数的倍数和最小公倍数,包括倍数的概念、倍数的计算方法和最小公倍数的求法等内容。

通过学习倍数和最小公倍数,帮助学生培养对数的倍数和最小公倍数的理解和掌握。

第九讲:数的约数和最大公约数本讲主要介绍了数的约数和最大公约数,包括约数的概念、约数的计算方法和最大公约数的求法等内容。

通过学习约数和最大公约数,帮助学生培养对数的约数和最大公约数的理解和掌握。

第十讲:数的分数本讲主要介绍了数的分数,包括分数的概念、分数的读法和分数的计算等内容。

通过学习分数,帮助学生培养对分数的理解和掌握。

第十一讲:数的比例本讲主要介绍了数的比例,包括比例的概念、比例的计算和比例的应用等内容。

通过学习比例,帮助学生培养对比例的理解和掌握。

除法的商与余数小学四年级数学上册第十三课教案

除法的商与余数小学四年级数学上册第十三课教案

除法的商与余数小学四年级数学上册第十三课教案教学目标:1. 理解除法的概念,明白商与余数的含义;2. 学会进行简单的除法运算,得到商和余数;3. 掌握用竖式计算进行除法运算的方法。

教学准备:1. 教师准备教案、小黑板、白板笔、作业本和铅笔;2. 学生准备教材、作业本和铅笔。

教学过程:一、导入(5分钟)教师通过提问,复习上节课学到的加法和减法运算。

例如:“小明有3个苹果,小红有4个苹果,他们一共有多少个苹果?”等。

二、新知讲解(10分钟)教师出示一张纸条,上面写着“9除以2等于多少?”让学生思考,并引导学生明白除法运算的概念。

三、讨论与实践(15分钟)1. 教师设计一道简单的除法题目,例如:“小明有12个苹果,想要平均分给4个朋友。

请问,每个人可以得到几个苹果?”学生可以向前一侧推理,找出答案:每个人可以得到3个苹果,3就是商。

2. 学生自主进行小组活动,解决一些简单的除法问题,并找出对应的商和余数(若有余数)。

四、归纳总结(10分钟)1. 教师引导学生归纳除法的关键要素:被除数、除数、商和余数。

2. 学生在白板上画出运算符号“÷”和“=”,并注明每个数字的含义和位置关系。

五、练习巩固(15分钟)1. 教师出示一些除法运算题目,学生在书写纸上进行答题。

2. 学生互相交流和校对答案,找出解题方法的不同以及有无错误。

六、拓展应用(15分钟)1. 教师出示一些较难的除法题目,并引导学生进行竖式计算,得到商和余数。

2. 学生进行小组合作,解答难题,提高运算能力与思维能力。

七、总结反思(5分钟)教师和学生一起总结本节课的学习内容,回顾重点知识和要点,并记录可能出现的错误和困惑。

教学延伸:教师可鼓励学生通过互动游戏、作业练习等方式进一步巩固除法相关知识,提高运算速度和准确率。

同时,教师可以借助一些教学资源和多媒体设备展示一些与除法相关的趣味视频或课件,以吸引学生的兴趣和注意力。

教学评价:1. 教师观察学生在课上的参与度和学习情况;2. 根据学生的作业完成情况,评价其掌握程度;3. 通过课堂上的讨论和答疑,了解学生对除法概念和运算方法的理解程度。

高思竞赛数学导引-五年级第十三讲-数字谜综合学生版

高思竞赛数学导引-五年级第十三讲-数字谜综合学生版

第13讲 数字谜综合一内容概述涉及小数、分数、循环小数酌数字谜问题;须要利用数论学问解决的数字谜问题.典型问题爱好篇1.有一个四位数,在它的某位数字后加上一个小数点,得到一个小数,再把这个小数和原来的四位数相加,得数是4003.64求这个四位数.2.试将1、2、3、4、5、6、7分别填人下面的方框中,每个数字只用一次:口口口(这是一个三位数),口口口(这是一个三位数),口(这是一个一位数),使得这三个数中随意两个都互质.已知其中一个三位数已填好,它是714,求另外两个数.3.用1至9这9个数字各一次组成若干个数,这些数中最多有多少个合数?4.如图13-!,4个小三角形的顶点处有6个圆圈,在这些圆圈中分别填上6个质数(可以重复),使得它们的和是20,而且每个小三角形3个顶点上的数之和相等,请问:这6个质数的乘积是多少?5.在一个带有余数的除法算式中,商比除数大2,在被除数、除数、商和余数中,最大数与最小数之差是1023.请问:此算式中的4个数之和最大可能是多少?6.在乘法算式“好好好春杯迎杯=⨯”中,不同的汉字表示不同的数字,相同的汉字表示相同的数字.请问:“迎+春+杯+好”等于多少?7.将1至9这9个数填入下面算式中的9个方框内(每个数字只能用一次),使等式成立.口口口×口口=口口×口口=55688.循环小数B A.0化成最简分数后,分子与分母之和为40,那么A 和B 分别是多少?9.在算式“7=+金杯竞赛华罗庚数学”中,华、罗、庚、金、杯、数、学、竞、赛九个字,分别代表数字1、2、3、4、5、6、7、8、9.已知“竞 = 8,赛 = 6”,请把这个算式写出来.10.已知“GOOD BAD BAD =+”是一个正确的加法算式,其中相同的字母代表相同的数字,不同的字母代表不同的数字,已知GOOD 不是8的倍数.请问:ABGD 代表的四位数是什么?拓展篇1.[4.2×5 - (1+2.5 + 9.1 + 0.7)] + 0.04=100.2.用0至9这10个数字恰好组成一位数、两位数、三位数、四位数各一个(每个数字只能用一次),且这四个数两两互质.其中的四位数是2940,另外三个数可能是多少?3.学数学科学数数=⨯.在上面的算式中,每一个汉字代表一个数字,不同的汉字代表不同的数字.请问:“数学”所代表的两位数是多少?4.在等式“口△×△口×口O×◇△=口△口△口△”中,口、△、O 、◇分别代表不同的数字.四位数◇O 口△是多少?5.将1、2、3、4、5、6、7、8、9这9个数字分别填人下式的各个方框中,使等式成立:口口×口口=口口×口口口=3634.6.已知a 是一个自然数,A 、B 是1至9中的数字,最简分数差B A a 33.0222=.请问:a 是多少?7.把质数373按数位拆开(不变更各数之间的依次),只能得到3、7、37、73这四个数,它们仍旧都是质数,请找出全部具有这种性质的质数.8.在下面各题中,请你用给出的四个数,适当进行加、减、乘、除运算,每个数恰好用一次,使得计算结果等于24. (1)1,4,5,6; (2)1,5,5,5; (3)3,3,7,7; (4)3,3,8,8.9.把1至6填人下面的方框中,每个数字恰好运用一次,使得等式成立,请写出所有的答案. 口.口×口.口=口.口10.如图13-2所示,三角形纸片盖住的都是质数数字,正方形纸片盖住的都是合数数字,要使得两个加数的差尽可能小,较大的加数是多少?11.在下面两个算式中,相同的汉字表示相同的数字,不同的汉字表示不同的数字.花相似人不同代表的六位数是多少? 花相似岁岁年年=⨯ 不同人年年年年÷=÷12.在图13-3所示的算式中,每个字母代表一个数字,不同的字母代表不同的数字.假如CHINA 代表的五位数能被24整除,那么这个五位数是多少?超越篇1.两个学生计算同一个乘法算式,两个乘数都是两位数,他们各抄错了一个数字,但计算结果都是1360.事实上正确结果的个位不是0,那么正确结果应当是多少?2.用0至9这10个数字组成一些质数(每个数字恰好用一次),这些质数的和最小是多少?3.已知b 13a.0A 是纯循环小数,将它写成最简分数后,使得分母最小.那么这个分数是多少?4.数学家维纳在博士毕业典礼上说:“我现在年龄的三次方是一个四位数,现在年龄的四次方是一个六位数,并且这两个数刚好包含数字0至9各一次,所以全部数字都得朝拜我,我将在数学领域干出一番大事业.”请问:他是几岁毕业的?5.一个四位数的每一位数字都是非零的偶数,它又恰好是某个偶数数字组成的数的平方,请问:这个四位数是多少?6.在图134所示算式的每个方框内填人一个数字,要求所填的数字都是质数,并使竖式成立. 答案:775×33=255757.a 、b 、c 是三个互不相同的自然数,且满意cba ×7bc =bca ×abc ,求三位数abc8.已知算式234235286 = cab ×bca ×abc ,其中a > b > c .后来发觉右边的乘积的数字依次出现错。

部编版数学五年级上册第13讲.定义新运算进阶.优秀A版

部编版数学五年级上册第13讲.定义新运算进阶.优秀A版
第 13 讲
第十三讲 定义新运算进阶
知识站牌
五年级春季
五年级春季
比较与估算
分数四则混合运算
五年级秋季
定义新运算进阶 五年级秋季
五年级暑假 循环小数
分数加减
学会使用方程来解决定义新运算问题,加强分数运算的练习
漫画释义
第 9 级下 优秀 A 版 教师版 1
课堂引入
点头表示同意,摇头表示不同意;行人靠右行,这些都是我们生活中的规则,在数学中,同样 也有一些约定的规则,也就是运算符号.比如“+”“-”“×”“÷”都是我们熟悉的运算符号.但是有的地 方会有不一样的规则,比如在英国等地行人是靠左行的,而数学里同样也可能会出现一些特殊的运 算符号,比如我们规定☆表示选择两数中较大的一个,如 2☆7=7.相对于我们原本熟悉的运算,这 便是新运算.今天我们就一起来学习定义新运算.
【分析】根据 34 2 3 ,得到 m 14 m 2 3 ,解出 m 6 .所以, 34 63 4 11 .
2 14 2 2 3
234 12
2.

a和
b
都是除
0
以外的数,若规定
ab
b a
a b

a□b b a
a b
,那么1.32□4 13
25
6x y x 2y
,求
29
.
(学案对应:学案 1)
【分析】根据定义 xy = 6x y 于是有 29 629 5 2
x 2y
2 2 9 5
想想练练: 如果规定 a *b 5 a 1 b ,其中 a、b 是自然数,那么10 * 6 __________. 2
【分析】考察定义新运算. 10 6 510 1 6 50 3 47 2

6华数奥赛教材六年级

6华数奥赛教材六年级

《华数奥赛教材(6年级)》目录
上册
第一讲速算与巧算(一)
第二讲速算与巧算(二)
第三讲估算
第四讲计数问题(一)
第五讲计数问题(二)
第六讲分数与百分数(一)
第七讲分数与百分数(二)
第八讲圆的面积
第九讲圆的面积及综合问题
第十讲工程问题(一)
第十一讲工程问题(二)
第十二讲整除问题
第十三讲余数问题
《华数奥赛教材(6年级)》目录
下册
第一讲比和比例(一)
第二讲比和比例(二)
第三讲立体图形的计算(一)
第四讲立体图形的计算(二)
第五讲列方程解应用题(一)
第六讲列方程解应用题(二)
第七讲不定方程
第八讲逻辑推理问题
第九讲行程问题
第十讲时钟问题
第十一讲观察与归纳
第十二讲周期性问题
综合练习(一)综合练习(二)综合练习(三)综合练习(四)综合练习(五)综合练习(六)综合练习(七)综合练习(八)。

余数问题(二)

余数问题(二)

第十三讲余数问题余数问题我们已经学过了两讲,但那两讲主要都是应用余数性质去解决除法中的除数问题,今天我们要解决的是除法中的被除数问题—“中国剩余定理”。

本类形题的出题特点:已知两种或三种除数和余数的情况,求同时满足这些情况的被除数是多少。

例如:一个自然数除以4余3,除以9余4,除以6余1,求满足条件的最小三位数?本类形题的解题方法:根据余数的基本含义有:公倍加余法和公倍减余法。

根据同余的性质有:逐级满足法。

一、公倍加余法例:求满足除以3余1,除以4余1的最小两位数?分析:根据余数的定义我们知道,余数表示被除数除以除数时没有除尽,还多出来的一些数,所以满足除以3余1的数,应该都是3的倍数再加上1即可;同理,满足除以4余1的数,应该都是4的倍数再加上1即可。

那么如想两个都满足,我们只需要找到3,4的最小公倍数再加上这个都有的余数1就可以了,所以最小的两位数即为[3,4]+1=12+1=13二、公倍减余法例:求满足除以3余2,除以4余3的最小两位数?分析:根据余数的定义我们知道,这个数除以3余2,说明还差1个数就又是3的倍数了,则这样的数应该都是3的倍数再减1即可;同理,满足除以4余3的数,也是还差1个就又是4的倍数了,则这样的数应该都是4的倍数再减1即可。

那么如想两个都满足,我们只需要找到3,4的最小公倍数再减去1就可以了。

所以最小的两位数即为[3,4]-1=12-1=11三、逐级满足法例:求满足除以7余2,除以4余1,除以11余4的最小自然数?分析:此题没有余数相同的,也没有差相同的,则上述两种方法均不可用。

那么我们可以根据同余的性质逐级满足,最后求出同时满足三种情况的最小自然数。

过程如下:(1)满足除以7余2的数应该是7a+2这样的数,但这样的数又要除以4余1。

说明:7a+2除以4是余1的,即:7a+2≡1(mod4)7a+2≡5(mod4)7a≡5-2≡3(mod4)3a≡3(mod4)a=1则满足前两种情况(除以7余2,除以4余1)的最小数为:7×1+2=9则满足前两种情况(除以7余2,除以4余1)的所有数为:[7,4]×b+9(2)那么满足除以7余2,除以4余1应该是28b+9这样的数,但这样的数又要除以11余4。

余数问题求解技巧

余数问题求解技巧

余数问题求解技巧当我们进行数学运算时,有时候我们需要求解一个问题的余数。

余数是一个数字除以另一个数字所得到的剩下的部分。

在解决余数问题时,有一些技巧可以帮助我们更有效地解决问题。

1. 余数定义:余数是除法运算中除数除以被除数得到的剩余部分。

用数学符号表示,余数可以表示为:被除数= 除数×商 + 余数。

例如,当我们计算20除以3时,可以得到商为6,余数为2,即20 = 3 × 6 + 2。

2. 同余定理:同余定理指出,如果两个整数在除以一个正整数时具有相同的余数,那么这两个整数之差是这个正整数的倍数。

例如,如果a除以n的余数是r,b除以n 的余数也是r,那么就有a - b能够被n整除。

3. 整数相加求余:当我们面对两个整数相加并求余的问题时,可以先对两个整数分别求余,然后再相加,最后再对结果求余。

例如,求解(23 + 33) mod 5,先分别对23和33求余,得到3和3,然后再相加得到6,最后再对结果6求余得到1。

4. 余数的性质:余数具有一些特定的性质,可以用来简化问题。

例如,两个数的和的余数等于两个数分别取余后再相加的余数,即(a + b) mod n = (a mod n + b mod n) mod n。

5. 除数的特殊取值:在解决求余的问题时,有时候除数的特殊取值可以帮助我们更快地得到答案。

例如,当除数是10的幂时,我们可以直接取被除数的末尾几位数作为余数。

例如,求解4357 mod 1000,我们可以直接取57作为余数。

6. 负数求余:当我们面对负数求余的问题时,可以先将负数转换为正数,然后再对正数求余,最后再将结果转换为负数。

例如,求解-25 mod 7,可以将-25转换为25,然后再对25求余,得到结果4,最后再将结果转换为负数-4。

7. 大数求余:当我们面对大数求余的问题时,直接使用除法运算可能会比较繁琐。

可以利用同余定理简化求余运算。

例如,求解1234567 mod 8,我们可以将1234567分解为(1200000 + 3000 + 400 + 60 + 7) mod 8,然后分别对每一项求余,得到(0 + 3 + 0 + 4 + 7) mod 8 = 14 mod 8 = 6。

部编版数学四年级上册第13讲.超常体系

部编版数学四年级上册第13讲.超常体系
二、 数的整除性质主要有:
2 第 7 级下 超常体系 教师版
第 13 讲
(1) 如果甲数能被乙数整除,乙数能被丙数整除,那么甲数能被丙数整除. (2) 如果两个数都能被一个自然数整除,那么这两个数的和与差都能被这个自然数整除. (3) 如果一个数能分别被几个两两互质的自然数整除,那么这个数能被这几个两两互质的自然
【分析】 (1) 能被 2 整除的数有 152,660,414,9064 能被 5 整除的数有 660,4375,24125
(2)能被 4 整除的数有 152,660,9064 能被 25 整除的数有 4375,24125
(3)能被 8 整除的数有 152,9064 能被 125 整除的数有 4375,24125
方法二:利用 99 的整除性,20+□□ +08=99,□□ =99-20-8=71.
(3)方法一:试除法 200399÷99=2024 23,所以最后两位是 99-23=76. 方法二:利用 99 的整除性,20+03+ □□ =99,□□ =99-20-3=76.
例4
某个七位数 1993□□□ 能够同时被 2,3,4,5,6,7,8,9 整除,那么它的最后三位数字依次是多 少?
第 7 级下 超常体系 教师版 5
1993000÷2520=790… … 2200,余 2200 可以看成不足 2520-2200=320,所以在末三位的方格 内填入 320 即可.
例5
1、 20092009 能否被 11 整除? 2、 20092009200909 能否被 11 整除?
3 个2009
整除. 3、20092009 200909 中奇位数减偶位数的差为 (9 2) n 9 7n 9 ,当 n 5 时,(7n 9)

余数问题的方法和技巧

余数问题的方法和技巧

余数问题的方法和技巧
1. 哎呀,余数问题其实不难啦!比如 17 除以 5,得到商 3 余 2,那这里的 2 就是余数呀!遇到余数问题时,咱可以先看看除数是多少,就像找到钥匙去开锁一样,先找到关键所在。

示例:咱想想看哦,要是有一堆苹果要分给几个小朋友,知道了除数不就知道每个小朋友能分几个,剩下几个嘛。

2. 嘿,还有一招呢!可以用被除数减去余数,然后再除以除数,可神奇啦!像 23 除以 4 余 3,那 (23-3) 除以 4 就正好整除啦!
示例:这就好比你有一些钱,花了一部分还剩点,然后你能算出你原来花了多少钱能买几个东西一样。

3. 哇塞,一定要记住余数一定小于除数哦!这就像弟弟永远比哥哥小一样理所当然呀!
示例:如果余数比除数大,那不是还能接着分嘛,这多不合理呀,是不是?
4. 还有哦,同余问题也很有趣呀!比如两个数除以同一个数余数相同,嘿嘿。

示例:就像你和朋友都去买糖果,最后剩下的糖果数一样,多有意思呀。

5. 咱可以通过余数来推断一些情况呀,比如判断一个数是不是另一个数的倍数啥的,神奇吧?
示例:假如一个数除以 5 余 0,那不用说肯定是 5 的倍数啦。

6. 利用余数还可以解决周期问题呢,这可太妙啦!
示例:就像四季更替一样,有规律有周期,通过余数能找到在哪个阶段呢。

7. 知道了余数的性质,那解题不就更得心应手啦?
示例:这不就像有了秘密武器,啥难题都不怕啦。

8. 余数问题真的超好玩的,大家一定要多试试呀!
示例:相信自己,一旦掌握了,那感觉简直太棒啦!
我的观点结论:余数问题不可怕,方法技巧掌握好,就能轻松解决。

大家一起加油哦!。

余数问题(二)

余数问题(二)

第十三讲余数问题余数问题我们已经学过了两讲,但那两讲主要都是应用余数性质去解决除法中的除数问题,今天我们要解决的是除法中的被除数问题—“中国剩余定理”。

本类形题的出题特点:已知两种或三种除数和余数的情况,求同时满足这些情况的被除数是多少。

例如:一个自然数除以4余3,除以9余4,除以6余1,求满足条件的最小三位数?本类形题的解题方法:根据余数的基本含义有:公倍加余法和公倍减余法。

根据同余的性质有:逐级满足法。

一、公倍加余法例:求满足除以3余1,除以4余1的最小两位数?分析:根据余数的定义我们知道,余数表示被除数除以除数时没有除尽,还多出来的一些数,所以满足除以3余1的数,应该都是3的倍数再加上1即可;同理,满足除以4余1的数,应该都是4的倍数再加上1即可。

那么如想两个都满足,我们只需要找到3,4的最小公倍数再加上这个都有的余数1就可以了,所以最小的两位数即为[3,4]+1=12+1=13二、公倍减余法例:求满足除以3余2,除以4余3的最小两位数?分析:根据余数的定义我们知道,这个数除以3余2,说明还差1个数就又是3的倍数了,则这样的数应该都是3的倍数再减1即可;同理,满足除以4余3的数,也是还差1个就又是4的倍数了,则这样的数应该都是4的倍数再减1即可。

那么如想两个都满足,我们只需要找到3,4的最小公倍数再减去1就可以了。

所以最小的两位数即为[3,4]-1=12-1=11三、逐级满足法例:求满足除以7余2,除以4余1,除以11余4的最小自然数?分析:此题没有余数相同的,也没有差相同的,则上述两种方法均不可用。

那么我们可以根据同余的性质逐级满足,最后求出同时满足三种情况的最小自然数。

过程如下:(1)满足除以7余2的数应该是7a+2这样的数,但这样的数又要除以4余1。

说明:7a+2除以4是余1的,即:7a+2≡1(mod4)7a+2≡5(mod4)7a≡5-2≡3(mod4)3a≡3(mod4)a=1则满足前两种情况(除以7余2,除以4余1)的最小数为:7×1+2=9则满足前两种情况(除以7余2,除以4余1)的所有数为:[7,4]×b+9(2)那么满足除以7余2,除以4余1应该是28b+9这样的数,但这样的数又要除以11余4。

余数问题

余数问题

民间传说着一则故事——“韩信点兵”。

秦朝末年,楚汉相争。

一次,韩信将1500名将士与楚王大将李锋交战。

苦战一场,楚军不敌,败退回营,汉军也死伤四五百人,于是韩信整顿兵马也返回大本营。

当行至一山坡,忽有后军来报,说有楚军骑兵追来。

只见远方尘土飞扬,杀声震天。

汉军本来已十分疲惫,这时队伍大哗。

韩信兵马到坡顶,见来敌不足五百骑,便急速点兵迎敌。

他命令士兵3人一排,结果多出2名;接着命令士兵5人一排,结果多出3名;他又命令士兵7人一排,结果又多出2名。

韩信马上向将士们宣布:我军有1073名勇士,敌人不足五百,我们居高临下,以众击寡,一定能打败敌人。

汉军本来就信服自己的统帅,这一来更相信韩信是“神仙下凡”、“神机妙算”。

于是士气大振。

一时间旌旗摇动,鼓声喧天,汉军步步进逼,楚军乱作一团。

交战不久,楚军大败而逃。

解:一个数除以3余2,除以5余3,除以7余2,求适合此条件的最小数 解答: 23。

70×2+21×3+15×2-105×2=23那么韩信点的兵在1000-1500之间,应该是70×2+21×3+15×2+105×9=1073在我国古代算书《孙子算经》中有这样一个问题:"今有物不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?"意思是,"一个数除以3余2,除以5余3,除以7余2.求适合这个条件的最小数."这个问题称为"孙子问题".关于孙子问题的一般解法,国际上称为"中国剩余定理".如何求符合上述条件的正整数N呢?《孙子算经》给出了一个非常有效的巧妙解法。

术曰:“三、三数之剩二,置一百四十;五、五数之剩三,置六十三;七、七数之剩二,置三十,并之,得二百三十三。

以二百一十减之,即得。

凡三、三数之剩一,则置七十;五、五数之剩一,则置二十一;七、七数之剩一,则置十五。

高斯小学奥数含答案三年级(下)第13讲 简单抽屉原理

高斯小学奥数含答案三年级(下)第13讲 简单抽屉原理

第十三讲简单抽屉原理- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 把10个苹果放进9个抽屉中,无论怎么放,一定能找到一个抽屉,里面至少有2个苹果.这个看上去很显然的现象,在数学中我们把它称作抽屉原理.一般地,我们有如下结论: 抽屉原理I把一些苹果随意放入若干个抽屉,如果苹果个数多于抽屉个数,那么一定能找到一个抽屉,里面至少有2个苹果.以9个抽屉为例:把9个苹果放进9个抽屉,这时苹果个数不多于抽屉个数,如果苹果平均放进抽屉中,则每个抽屉都只放了1个苹果.但如果把10个苹果放进9个抽屉,这时苹果个数多于抽屉个数,一定能找到一个抽屉,里面至少有2个苹果.因为即使每个抽屉都放1个苹果时,也只能放进199⨯=个苹果,剩下的1个苹果再放进任何一个抽屉,都会使该抽屉中有2个苹果.类似的,把99个苹果放进9个抽屉,苹果个数多于抽屉个数,一定能找到一个抽屉,里面至少有2个苹果.事实上,我们还可以发现:如果这99个苹果平均放进9个抽屉中,每个抽屉里放99911÷=个苹果,如果放得不平均,则肯定有某个抽屉里的苹果多于11个.但如果把100个苹果放进9个抽屉,即使每个抽屉都放11个苹果,只能放99个苹果,剩下1个苹果再放进抽屉中,一定会使得某个抽屉至少有12个苹果.我们把“抽屉原理I ”加以推广,就可以得到一个更全面的抽屉原理.抽屉原理II把m 个苹果放入n 个抽屉(m 大于n ),结果有两种可能:(1)如果m n ÷没有余数,那么就一定有抽屉至少放了“m n ÷”个苹果;(2)如果m n ÷有余数,那么就一定有抽屉至少放了“m n ÷的商再加1”个苹果. 抽屉原理也称“鸽巢原理”或“狄利克莱原理”,是19世纪德国数学家狄利克莱最早提出的,在组合数学中有着非常重要的地位.回想刚才得出抽屉原理的过程,在计算时我们都使用了平均分配的思想.为什么要平如果把96个苹果放入8个抽屉,那么一定有抽屉至少放了________个苹果.如果把97片培根放在8个盘子,那么一定有盘子至少放了________片培根.如果把98只羊放在8个笼子里,那么一定有笼子至少放了________只羊.练 一 练均分呢?因为只有这样做才能使得放入同一个抽屉的苹果尽量少,求出的结果才是至少..几个.虽然我们算的是分到同一个抽屉的苹果,但考虑的时候却是让同一抽屉中的苹果尽量少——这种从反面考虑的分析方法又叫做“最不利原则”,即考虑最坏的情形.这一原则不仅体现在抽屉原理中,它还在解决很多与“至多”、“至少”相关的问题时非常有用. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - 分析:如果没有满足“有5条相同品种的鱼”的要求,最“倒霉”的情况是什么?换句话说,当结论不成立时,最多可能有多少条鱼?只要比这个“最多的”还要多,结论就肯定成立了.分析:仍旧考虑问题的反面,当本题中的结论不成立时,最多能取出多少个球?练习2爷爷给小明买了一盒糖,这些糖分为苹果味、桔子味和菠萝味三种口味,每种口味各30颗.小明特别喜欢吃苹果味的,他闭着眼睛,至少需要摸出多少颗糖,才能保证一定能拿到1颗苹果味的?至少需要摸出多少颗糖,才能保证能拿到两种口味的糖?一个布袋里有大小相同颜色不同的一些木球,其中红色的有10个,黄色的有8个,蓝色的有3个,绿色的有1个.现在闭着眼睛从中摸球,请问:(1)至少要取出多少个球,才能保证取出的球至少有三种颜色?(2)至少要取出多少个球,才能保证其中必有红球和黄球?例题2练习1一个布袋里有7种不同颜色的彩球,每种颜色的彩球都有很多,那么至少要拿出多少个彩球,才能保证其中有6个相同颜色的彩球? 一个鱼缸里有4个品种的鱼,每种鱼都有很多条.至少要捞出多少条鱼,才能保证其中有5条相同品种的鱼?例题1例题3将1只白袜子、2只黑袜子、3只红袜子、8只黄袜子和9只绿袜子放入一个布袋里.请问:(1)一次至少要摸出多少只袜子才能保证一定有颜色相同的两双袜子?(2)一次至少要摸出多少只袜子才能保证一定有颜色不同的两双袜子?(两只袜子颜色相同即为一双)分析:结论的反面是什么?在不满足结论的情况下,最多能摸出多少只袜子?练习3袋子里白袜子、黑袜子、红袜子各10只.现在闭着眼睛从袋子中摸袜子,请问:(1)至少要摸出多少只袜子才能保证一定有颜色相同的两双袜子?(2)至少要摸出多少只袜子才能保证一定有颜色不同的两双袜子?例题4一副扑克牌共54张,其中有2张王牌,还有黑桃、红心、草花和方块4种花色的牌各13张.现在要从中随意取出一些牌,如果要保证在取出来的牌中至少包含三种花色,并且这三种花色的牌至少都有3张,那么最少要取出多少张牌?分析:本题中我们要保证“至少包含三种花色”和“这三种花色的牌至少都有3张”这两个条件,如果不能同时保证这两个条件,那么最多可能取出多少张牌?练习4口袋中装有4种不同颜色的珠子,每种都是100个.要想保证从袋中摸出3种不同颜色的珠子,并且每种至少10个,那么至少要摸出多少个珠子?例题5大头把一副围棋子混装在一个盒子中(围棋子有黑、白两种颜色),然后每次从盒子中摸出4枚棋子,那么他至少要闭着眼睛摸几次,才能保证其中有三次摸出棋子的颜色情况是相同的?(不必考虑每次摸出的4枚棋子的顺序)分析:摸出的4枚棋子的颜色情况都有哪几种?如果结论不成立,最多可能摸了几次?分析:至少有3个格子里的米粒一样多的反面是最多只有2个格子的米粒数一样多,想想这时格子里至少有多少个米粒?国王让阿凡提在88 的国际象棋棋盘的每个格子里放米粒.结果每个格子里至少放一粒米,无论怎么放都至少有3个格子里的米粒一样多,那么至多有多少个米粒?例题6 鸽巢原理鸽巢原理又名抽屉原理或狄利克雷原理,它由德国数学家狄利克雷(Divichlet ,1805—1855)首先发现.鸽巢原理在组合学中占据着非常重要的地位,它常被用来证明一些关于存在性的数学问题,并且在数论和密码学中也有着广泛的应用.使用鸽巢原理解题的关键是巧妙构造鸽巢或抽屉,即如何找出合乎问题条件的分类原则.鸽巢原理的应用在几何图形中:例:在边长为2的等边三角形内任意选择5个点,存在2个点,其间距离至多为1.分析:由题意,可以构造出4个抽屉,每个抽屉满足在其中的距离至多为1.根据抽屉原理,在4个抽屉里分别放置4个点,不论第5个点如何放置,都满足两点之间的距离最多为1.小 故 事课堂内外二桃杀三士《晏子春秋》里有一个“二桃杀三士”的故事.齐景公养着三名勇士,他们名叫田开疆、公孙接和古冶子.这三名勇士都力大无比,武功超群,为齐景公立下过不少功劳.但他们也刚愎自用,目中无人,得罪了齐国的宰相晏婴.晏子便劝齐景公杀掉他们,并献上一计:以齐景公的名义赏赐三名勇士两个桃子,让他们自己评功,按功劳的大小吃桃.三名勇士都认为自己的功劳很大,应该单独吃一个桃子.于是公孙接讲了自己的打虎功,拿了一只桃;田开疆讲了自己的杀敌功,拿起了另一桃.两人正准备要吃桃子,古冶子说出了自己更大的功劳.公孙接、田开疆都觉得自己的功劳确实不如古冶子大,感到羞愧难当,赶忙让出桃子.并且觉得自己功劳不如人家,却抢着要吃桃子,实在丢人,是好汉就没有脸再活下去,于是都拔剑自刎了.古冶子见了,后悔不迭.仰天长叹道:“如果放弃桃子而隐瞒功劳,则有失勇士尊严;为了维护自己而羞辱同伴,又有损哥们义气.如今两个伙伴都为此而死了,我独自活着,算什么勇士!”说罢,也拔剑自杀了.晏子采用借“桃”杀人的办法,不费吹灰之力,便达到了他预定的目的,可说是善于运用权谋.汉朝的一位无名氏在一首诗中曾不无讽刺的写道:“……一朝被谗言,二桃杀三士.谁能为此谋,相国务晏子!”值得指出的是,在晏子的权谋之中,包含了一个重要的数学原理──抽屉原理.在“二桃杀三士”的故事中,把两个桃子看作两个抽屉,把三名勇士放进去,至少有两名勇士在同一个抽屉里,即有两人必须合吃一个桃子.如果勇士们宁死也不肯忍受同吃一个桃子的羞耻,那么悲剧的结局就无法避免.作业1.口袋里装有红、黄、蓝、绿4种颜色的球各5个.小华闭着眼睛从口袋里往外摸球,每次摸出1个球.他至少要摸出多少个球,才能保证摸出的球中每种颜色的球都有?2.小钱的存钱罐中有4种硬币:1分、2分、5分、1角,这四种硬币分别有5个、10个、15个、20个.小钱闭着眼睛向外摸硬币,他至少摸出多少个硬币,才能保证摸出的硬币中至少有两种不同的面值?至少摸出多少个硬币,才能保证摸出的硬币中既有5分硬币也有1角硬币?3.如果筷子颜色有黑色、白色、黄色、红色、蓝色五种,每种各有10根.在黑暗中取出一些筷子,为了搭配出两双颜色相同的筷子,最少要取多少根才能保证达到要求?为了搭配出两双颜色不同的筷子,最少要取多少根才能保证达到要求?(两根颜色相同的筷子搭配成一双筷子)4.盒子里一共有4种不同形状的零件,分别有9、10、11和12个,至少要从中摸出多少个零件,才能保证有3种不同形状的零件,并且这三种零件中每种至少有3个?5.中午放学,食堂里有五种菜供学生们选择,每人只能选两种不同的菜.至少有多少名学生,才能保证其中至少有5名学生选择的菜完全相同?第十三讲 简单抽屉原理1. 例题1答案:17解答:17.最不利情况是没有5条相同品种的鱼,这时最多每个品种都有4条鱼,一共4416⨯=条.只要比16条多,就能保证有5条相同品种的鱼了.因此至少捞出17条鱼.2. 例题2答案:(1)19;(2)15.解答:(1)如果取出的球没有三种颜色,最不利的情况是尽量多地取出其中的某两种,红球和黄球最多,全都取出共有10818+=个球.只要多于18个,就能保证有三种颜色的球了,因此至少取出19个.(2)如果取出的球中红球和黄球不同时出现,最不利的情况是首先蓝球和绿球都取出,并且红球和黄球中的一种也都取出,红球比黄球多,应将红球全部取出,此时共取出311014++=个球,因此至少取出15个球,才能保证红球黄球同时出现.3. 例题3答案:(1)13;(2)14.解答:(1)如果没有颜色相同的两双袜子,这时每种颜色的袜子至多3只,一共至多1233312++++=只.因此至少摸出13只才能保证有两双颜色相同的袜子.(2)如果没有颜色不同的两双袜子,那么最不利情况是成双成对的袜子都是同一种颜色的,这时最多有9111113++++=只袜子.因此至少摸出14只才能保证有两双颜色不同的袜子.4. 例题4答案:33.解答:反过来考虑,就是“最多只有2种花色的牌不少于3张,其余花色都不到3张.”最不利的情况就要使取的牌尽量多,我们应该将其中两种花色尽量多取、剩下两种花色都取2张,包括2张大小王牌,最多能取13222232⨯+⨯+=张牌.因此至少取出33张才能保证满足要求.5. 例题5答案:11.解答:摸出的棋子的颜色情况有五种:4白、3白1黑、2白2黑、1白3黑、4黑.根据最不利原则,如果没有三次摸出棋子颜色情况相同,最多是每种情况各摸出2次,一共2510⨯=次.只要摸的次数比10次多,就能保证至少有三次摸出棋子颜色情况相同.因此至少摸11次.6. 例题6答案:1055.简答:如果不满足条件,最多只有两个格子中的米粒数一样多,则64个格子里至少有11223332321056++++++++=个米粒.如果少于1056个米粒,就必然有三个格子里的米粒数一样多,因此至多有1055个米粒.7. 练习1答案:36. 简答:如果不满足条件,最多可以取出7535⨯=个彩球,因此取出36个彩球就能保证有6个颜色相同的. 8. 练习2答案:61;31.简答:第一个问题,如果不满足条件,拿的都不是苹果味的,最多拿光了桔子味的和菠萝味的,一共303060+=颗.因此至少拿61颗,才能保证拿到苹果味的.第二个问题,如果拿的不到两种口味,最多一种口味,最多可以拿30颗,因此至少拿31颗才能保证拿到两种口味.9. 练习3答案:(1)10;(2)13.简答:(1)至少摸出333110+++=只袜子.(2)至少摸出1012113+⨯+=只袜子.10. 练习4答案:219.简答:如果不满足条件,其中两种颜色的珠子尽量多,另外八种颜色的珠子都不到10个,这时最多可以有++⨯=个珠子.因此至少拿219个珠子,才能保证有三种颜色的珠子都至少10个.1001002921811.作业1答案:16.⨯=个.因此至少摸出16个球就能满足要求.简答:如果不满足要求,最多摸出三种颜色的球,最多有531512.作业2答案:21;36.简答:第一个问题,如果不满足要求,就只摸出一种面值的,最多20个,因此至少摸出21才能满足要求.第++=个硬币,因此至少摸出36二个问题,如果不满足要求,5分硬币和1角硬币缺一种,最多有5102035个硬币才能满足要求.13.作业3答案:16;15.⨯+=根才能满足要求.第二个问题,至少取出简答:与例题5方法相同.第一个问题,至少取出35116+⨯+=根才能满足要求.101411514.作业4答案:28.++++=个零件才能满足要求.简答:与例题4方法相同,至少摸出11122212815.作业5⨯=名学答案:41.简答:从5种菜中选择2种不同的菜,有10种方式.如果不满足要求,最多选出41040生,因此选出41名学生即可满足要求.。

余数问题(教师版)

余数问题(教师版)

余数问题是数论知识板块中另一个内容丰富,题目难度较大的知识体系,也是各大杯赛小升初考试必考的奥数知识点,所以学好本讲对于学生来说非常重要。

许多孩子都接触过余数的有关问题,并有不少孩子说“遇到余数的问题就基本晕菜了!”余数问题主要包括了带余除法的定义,三大余数定理(加法余数定理,乘法余数定理,和同余定理),及中国剩余定理和有关弃九法原理的应用。

一、带余除法的定义及性质 一般地,如果a 是整数,b 是整数(b ≠0),若有a ÷b=q ……r ,也就是a =b ×q +r,0≤r <b ;我们称上面的除法算式为一个带余除法算式。

这里:(1)当0r =时:我们称a 可以被b 整除,q 称为a 除以b 的商或完全商(2)当0r ≠时:我们称a 不可以被b 整除,q 称为a 除以b 的商或不完全商一个完美的带余除法讲解模型:如图这是一堆书,共有a 本,这个a 就可以理解为被除数,现在要求按照b 本一捆打包,那么b 就是除数5-6余数问题教学目标知识点拨的角色,经过打包后共打包了c捆,那么这个c就是商,最后还剩余d本,这个d就是余数。

这个图能够让学生清晰的明白带余除法算式中4个量的关系。

并且可以看出余数一定要比除数小。

二、三大余数定理:1.余数的加法定理a与b的和除以c的余数,等于a,b分别除以c的余数之和,或这个和除以c的余数。

例如:23,16除以5的余数分别是3和1,所以23+16=39除以5的余数等于4,即两个余数的和3+1.当余数的和比除数大时,所求的余数等于余数之和再除以c的余数。

例如:23,19除以5的余数分别是3和4,所以23+19=42除以5的余数等于3+4=7除以5的余数,即2.2.余数的乘法定理a与b的乘积除以c的余数,等于a,b分别除以c的余数的积,或者这个积除以c所得的余数。

例如:23,16除以5的余数分别是3和1,所以23×16除以5的余数等于3×1=3。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

余数问题
例1、有一整数,除300、262、205,得到相同的余数,问这个整数是多少?
例2、某个自然数被247除余63,被248除余63,求这个自然数被26除的余数。

例3、三个连续正整数,中间一个是完全平方数,将这样的三个连续正整数的积称为“美妙数”。

问所有小于2008的“美妙数”的最大公约数是多少?
例4、甲、乙两个自然数,它们的和被3除余1,它们的差能被3整除,求甲数被3除的余数。

例5、甲、乙、丙三数之和是100,甲数除以乙数或丙数除以甲数,得数都是商5余1,乙数是多少?
例6、将从1开始到103的连续奇数依次写成一个多位数:
a=13579111315171921…9799101103.则数a共有多少位?数a除以9的余数是多少?
例7、已知:a=19911991…1991(1991个1991)
问:a除以13所得余数是几?
例8、圆周上放置有7个空盒子,按顺时针方向依次编号为1、2、3、4、5、6、7.小明首先将第1枚白色棋子放入1号盒子,然后将第2枚白色棋子放入3号盒子,再将第3枚白色棋子放入6号盒子,……,放置了第了k-1枚白色棋子后,小明依顺时针方向向前数了k-1个盒子,并将第k枚白色棋子放在下一个盒子中放入了300枚红色棋子。

请回答:每个盒子各有多少枚白色棋子?每个盒子各有多少枚棋子?
2004天是星期几?
例9、今天是星期一,再过2004
例10、把由1开始的自然数依次写下来,直写到第201位为止,这个数除以3的余数是几?
例11、有一颗棋子放在图中的1号位置上,现按顺时针方向,第一次跳一步,跳到2号位置;第二次跳两步,跳到4号位置,第三次跳三步,又跳到1号位置……这样一直进行下去。

问:哪几号位置永远跳不到?
练习
1、小东在计算除法时,把除数87写成78,结果得到的商是54,余数是8,求正确的商和
余数。

2、智慧老师到小明的年级访问,小明说他们年级共一百多名同学,老人请同学们按三人一
行排队,结果多出一人,按五人一行排队,结果多出了二人,按七人一行排队,结果多出一人,老人说我知道你们年级的人数应该是多少人。

你知道小明的年级有多少人吗?
3、幼儿园有糖115颗,饼干148块,橘子74个,平均分给大班小朋友,结果糖多出7颗,
饼干多出4块,橘子多出2个。

问这个大班的小朋友最多有多少人?
4、试求一个四位数,它被131除的余数是112,倍132除的余数是98.
5、如果69、90、125被自然数N(N不等于1)除,所得余数相同,求81被N除的余数。

6、1×2×3×4×5×6×7×8×9×10除以11的余数是
7、自然数A被1981除的余数是35,被1982除的余数也是35,它被14除的余数是多少?
8、现有一堆糖块,它们不能被12个儿童平分,也不能被16个儿童或28个儿童平分,如果这堆糖块增加5块,则这堆糖块就能被以上三群儿童平分。

求这堆糖至少有多少块?
9、从和为55的10个不同的非零自然数中,取出3个数后,余下的数之和是55的7
11
,则
取出的三个数的积最大等于()
A、280
B、270
C、252
D、216
10、2006×2006×……×2006(2008个2006)除以2007的余数是多少?
11、从401到1000的所有整数中,被8除余数是1的数有多少个?
12、有一张纸片,第一次将它撕成4小片,第二次将其中的一张又撕成4小片,以后每一次都将其中的一小张撕成更小的4小片,请问:
(1)撕了五次后,一共得到多少张纸片?
(2)能否撕成1994张纸片?
13、圆周上有83个空盒,顺时针依次编号为0、1、2、3、…、82,小明沿顺时针方向按如下规则向盒中放球:第一次在1号盒中放一个;二次隔一个盒子,在3号盒中放一个;第三次隔两个盒子,在6号盒中放一个;……;第k 次向前隔k-1个盒子,在下一个盒子中放入一个球。

如此共放了2005个球。

问:有球的盒子中哪个盒子中球数最少?它里面有多少个球?
14、123456789123456789++++++++除以3的余数是几?为什么?
15、把自然数如下图排列,问2020位于哪个字母下面?
A B C D E F G H I
1 2 3 4 5
9 8 7 6
10 11 12 13 14
18 17 16 15
19 20 …
16、某商场向顾客发放9999张购物券,每张购物券上印有一个四位数的号码,从0001到9999号。

如果号码的前两位数之和等于后两位数之和,则称这张购物券为“幸运券”,例如号码0734,因为0+7=3+4,所以这个号码的购物券是幸运券。

试说明,这个商场所发的购物券中,所有幸运券的号码之和能被101整除。

相关文档
最新文档