八年级下册数学全册同步练习答案

合集下载

19.1.2 函数的图象 人教版数学八年级下册同步练习(含解析)

19.1.2 函数的图象 人教版数学八年级下册同步练习(含解析)

第十九章 一次函数19.1.2 函数的图象基础过关全练知识点1 函数的图象1.【主题教育·中华优秀传统文化】北京冬奥会开幕式上,以“二十四节气”为主题的倒计时短片:用“中国式浪漫”美学惊艳了世界,下图是一年中部分节气所对应的白昼时长示意图,给出下列结论:①从立春到大寒,白昼时长先增大再减小;②夏至时白昼时长最长;③立夏和立秋,白昼时长大致相等;④立春是一年中白昼时长最短的节气.其中正确的结论有( )A.1个B.2个C.3个D.4个2.【新独家原创】疫情期间,为保障学校师生安全,某校每天进行全员核酸检测,小邦下课后从教室去160米的检测点做核酸检测,他用了2分钟到达检测点,扫码检测共用了2分钟,做完核酸检测后,他及时回教室,用了2.5分钟.下列图象能正确表示小邦离教室的距离与时间关系的是( )A B C D3.【主题教育·革命文化】为“传承红色基因,共筑中国梦”,八年级的师生开展了共赴井冈山红色革命根据地红色研学之旅,下图描述了汽车在一段时间内路程s(千米)与时间t(小时)的函数关系,下列说法中正确的是( )A.汽车在0~1小时的平均速度是60千米/时B.汽车在2~3小时的速度比0~0.5小时的速度快C.汽车行驶的平均速度为60千米/时D.汽车在0.5~1.5小时的速度是80千米/时4.【跨学科·化学】实验证实,放射性物质在放出射线后,质量将减少,减少的速度开始较快,后来较慢,实际上,物质所剩的质量与时间成某种函数关系.下图为镭的放射规律的函数图象,据此可计算32 mg镭缩减为1 mg所用的时间大约是 年.5.【教材变式·P83T9变式】小明骑单车上学,当他骑了一段路时,想起要买某本书,于是又折回到刚经过的某书店,买到书后继续去学校.如图所示的是他本次上学所用的时间与路程的关系示意图.根据图中提供的信息回答问题:(1)小明家到学校的路程是多少米?小明在书店停留了多少分钟?(2)本次上学途中,小明一共骑行了多少米?(3)当骑单车的速度超过300米/分时就超过了安全限度.问:在整个上学途中,哪个时间段小明的骑车速度最快?速度在安全限度内吗? (4)小明出发多长时间离家1 200米?知识点2 函数图象的画法6.画出函数y=2x-1的图象.(1)列表:x…-2-10123…y……(2)在如图所示的坐标系中描点并连线;(3)判断点A(-3,-5),B(2,-3),C(3,5)是否在函数y=2x-1的图象上;(4)若点P(m,9)在函数y=2x-1的图象上,求出m的值.知识点3 函数的三种表示方法7.【跨学科·物理】弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂重物的质量x(kg)有下面的关系,那么弹簧的长度y(cm)与所挂重物的质量x(kg)之间的关系式为( )x(kg)0123456y(cm)1212.51313.51414.515A.y=0.5x+12B.y=x+10.5C.y=0.5x+10D.y=x+128.甲、乙两人分别从相距18 km的A、B两地同时相向而行,甲以4 km/h 的平均速度步行,乙以比甲快1 km/h的平均速度步行,相遇而止. (1)求甲、乙两人之间的距离y(km)和所用的时间x(h)之间的函数关系式;(2)求出函数图象与x轴、y轴的交点坐标,画出函数的图象,并求出自变量x的取值范围.9.已知y是x的函数,自变量x的取值范围是x>0,下表是y与x的几组对应值.x…123579…y…1.983.952.631.581.130.88…小腾根据学习函数的经验,利用上述表格所反映出的y与x之间的变化规律,对该函数的图象与性质进行了探究.下面是小腾的探究过程,请补充完整.(1)如图,在平面直角坐标系xOy中,描出了以表中各组对应值为坐标的点,根据描出的点,画出该函数的图象;(2)根据画出的函数图象,写出:①x=4对应的函数值y约为 ;②该函数的一条性质: .能力提升全练10.【主题教育·革命文化】(2022湖南永州中考,10,★☆☆)学校组织部分师生去烈士陵园参加“不忘初心,牢记使命”主题教育活动.师生队伍从学校出发,匀速行走30分钟到达烈士陵园,用1小时在烈士陵园进行了祭扫和参观学习等活动,之后队伍按原路匀速步行45分钟返校.设师生队伍离学校的距离为y米,离校的时间为x分钟,则下列图象能大致反映y与x关系的是( )A B C D11.(2021安徽合肥四十五中模拟,6,★★☆)将一盛有部分水的圆柱形小水杯放入事先没有水的大圆柱形容器内,现用一个注水管沿大容器内壁匀速注水,如图所示,则小水杯水面的高度h(cm)与注水时间t(min)的函数图象大致为( )A B C D12.【主题教育·生命安全与健康】(2022山西太原期末,9,★★☆)骑行是一种健康自然的运动旅游方式,长期坚持骑自行车可增强心血管功能,提高人体新陈代谢和免疫力.下图是骑行爱好者小李某日骑自行车行驶路程(km)与时间(h)的图象,观察图象得到下列信息,其中正确的是( )A.小李实际骑行时间为6 hB.点P表示出发6 h,小李共骑行80 kmC.3~6 h小李的骑行速度比0~2 h慢D.0~3 h小李的平均速度是15 km/h13.(2022山东临沂中考,12,★★☆)甲、乙两车从A城出发前往B城,在整个行程中,汽车离开A城的距离y(单位:km)与时间x(单位:h)的对应关系如图所示.下列说法中不正确的是( )A.甲车行驶到距A城240 km处,被乙车追上B.A城与B城的距离是300 kmC.乙车的平均速度是80 km/hD.甲车比乙车早到B城14.(2021黑龙江牡丹江中考,7,★★☆)春耕期间,市农资公司连续8天调进一批化肥,并在开始调进化肥的第七天开始销售.若进货期间每天调进化肥的吨数与销售期间每天销售化肥的吨数都保持不变,这个公司的化肥存量s(单位:吨)与时间t(单位:天)之间的函数关系如图所示,则该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是 天.素养探究全练15.【创新意识】(2022浙江舟山中考)6月13日,某港口的潮水高度y(cm)和时间x(h)的部分数据及函数图象如下:x(h)…1112131415161718…y(cm)…18913710380101133202260…(数据来自某海洋研究所)(1)数学活动:①根据表中数据,通过描点、连线(光滑曲线)的方式补全该函数的图象.②观察函数图象,当x=4时,y的值为多少?当y的值最大时,x的值为多少?(2)数学思考:请结合函数图象,写出该函数的两条性质或结论;(3)数学应用:根据研究,当潮水高度超过260 cm时,货轮能够安全进出该港口,请问当天什么时间段适合货轮进出此港口?答案全解全析基础过关全练1.B 由题图可知,从立春到大寒,白昼时长先增大再减小后增大,∴结论①不正确;夏至时白昼时长最长,∴结论②正确;立夏和立秋,白昼时长大致相等,∴结论③正确;冬至是一年中白昼时长最短的节气,∴结论④不正确.故选B.2.C 去做核酸检测时用了2分钟,距离随时间的增加而增大;扫码检测共用了2分钟,离教室的距离没有发生变化;回教室用了2.5分钟,距离随时间的增加而减小.故选C.3.D 汽车在0~0.5小时的速度是30÷0.5=60千米/时,0.5~1.5小时的速度为(110-30)÷(1.5-0.5)=80千米/时,所以0~1小时的平均速度为(60+80)÷2=70千米/时,故A说法错误,不符合题意;汽车在2~3小时的速度为(150-110)÷(3-2)=40千米/时,所以汽车在2~3小时的速度比0~0.5小时的速度慢,故B说法错误,不符合题意;汽车行驶的平均速度为150÷3=50千米/时,故C说法错误,不符合题意;汽车在0.5~1.5小时的速度是80千米/时,故D说法正确,符合题意.故选D.4.答案 8 100解析 由题图可知,经过1 620年时,镭质量缩减为原来的12,经过1 620×2=3 240年时,镭质量缩减为原来的14=122,经过1 620×3=4 860年时,镭质量缩减为原来的18=123,经过1 620×4=6 480年时,镭质量缩减为原来的116=124,∴经过1 620×5=8 100年时,镭质量缩减为原来的125=132,∵32×132=1(mg),∴32 mg镭缩减为1 mg所用的时间大约是8 100年.故答案为8 100.5.解析 (1)根据题图可知,小明家到学校的路程是1 500米,小明在书店停留了12-8=4分钟.(2)1 500+(1 200-600)×2=2 700(米).故本次上学途中,小明一共骑行了2 700米.(3)根据题图可知,从12分钟至14分钟小明的骑车速度最快,这个过程中,骑车速度为(1 500-600)÷(14-12)=450(米/分钟),∵450>300,∴在12分钟至14分钟时,小明的骑车速度超过了安全限度.(4)设小明出发t分钟时,离家1 200米,①根据题图可知,当t=6时,小明离家1 200米;②根据题意,得600+450(t-12)=1 200,解得t=403.∴小明出发6分钟或403分钟时离家1 200米.6.解析 (1)列表:x…-2-10123…y…-5-3-1135…(2)描点并连线,画出函数图象如图所示.(3)把x=-3代入y=2x-1,得y=-7≠-5,把x=2代入y=2x-1,得y=3≠-3,把x=3代入y=2x-1,得y=5,所以点C在函数y=2x-1的图象上,点A和B不在函数y=2x-1的图象上.(4)∵点P(m,9)在函数y=2x-1的图象上,∴9=2m-1,解得m=5.7.A 由题表数据可得出弹簧的长度y(cm)与所挂重物的质量x(kg)之间的关系式为y=0.5x+12.8.解析 (1)y=18-(5x+4x)=-9x+18,故甲、乙两人之间的距离y(km)和所用的时间x(h)之间的函数关系式为y=-9x+18.(2)当x=0时,y=18,当y=0时,-9x+18=0,解得x=2,故函数图象与x轴、y 轴的交点坐标分别为(2,0)、(0,18).列表:x/h02y/km180描点、连线,画出的函数图象如图.自变量x的取值范围为0≤x≤2.9.解析 本题答案不唯一.画出的函数图象需符合表格中所反映出的y与x之间的变化规律,写出的函数值和函数性质需符合所画出的函数图象.如:(1)如图.(2)①1.98.②当x>2时,y随x的增大而减小.能力提升全练10.A 由题意易知,当0≤x<30时,y随x的增大而增大,当30≤x≤90时,y是一个定值,当90<x≤135时,y随x的增大而减小,∴能大致反映y与x关系的是选项A中的图象.11.B 将一盛有部分水的圆柱形小玻璃杯放入事先没有水的大圆柱形容器内,小玻璃杯内的水原来的高度一定大于0,则可以判断A、D一定错误,用一注水管沿大容器内壁匀速注水,水开始时不会流入小水杯,因而这段时间h不变,当大容器中的水面的高度与小水杯的高度齐平时,开始向小水杯内流水,h随t的增大而增大,当水注满小水杯后,小水杯内水面的高度h不再变化.故选B.12.B A.小李实际骑行时间为5 h,故本选项不合题意;B.点P表示出发6 h,小李共骑行80 km,故本选项符合题意;(km/h),0~2 h小李的骑行C.3~6 h小李的骑行速度为(80-30)÷(6-3)=503=15(km/h),速度为302>15,所以3~6 h小李的骑行速度比0~2 h快,故本选项不合题意;因为503=10(km/h),故本选项不合题意.D.3 h内,小李的平均速度是303故选B.13.D 由题图可知,A城与B城的距离是300 km,故选项B说法正确;甲车的平均速度是300÷5=60(km/h),所以甲车4小时行驶60×4=240 km,即甲车行驶到距A城240 km处,被乙车追上,故选项A说法正确;乙车的平均速度是240÷(4-1)=80(km/h),故选项C说法正确;由题图可知,乙车比甲车早到B城,故选项D说法不正确.故选D.14.答案 10解析 调进化肥的速度是30÷6=5(吨/天),由题图知在第6天时,库存物资有30吨,在第8天时库存物资有20吨,=10(吨/天),所以销售化肥的速度是30―20+5×22所以剩余的20吨化肥完全售出需要20÷10=2(天),故该公司这次化肥销售活动(从开始进货到销售完毕)所用的时间是8+2=10(天).故答案为10.素养探究全练15.解析 (1)①补全图象如图:②观察函数图象,当x=4时,y=200,当y的值最大时,x=21.(2)(答案不唯一)该函数的两条性质如下:①当2≤x≤7时,y随x的增大而增大;②当x=14时,y取得最小值,为80.(3)由图象可知,当y=260时,x=5或x=10或x=18或x=23,∴当5<x<10或18<x<23时,y>260,即当5<x<10或18<x<23时,适合货轮进出此港口.。

2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17.2勾股定理的逆定理》同步练习题(附答案)一.选择题1.在△ABC中,若AC2﹣BC2=AB2,则()A.∠A=90°B.∠B=90°C.∠C=90°D.不能确定2.满足下列条件的△ABC,不是直角三角形的是()A.b2﹣c2=a2B.a:b:c=3:4:5C.∠C=∠A﹣∠B D.∠A:∠B:∠C=9:12:153.下列四组线段中,可以构成直角三角形的是()A.4,5,6B.2,3,4C.,3,4D.1,,34.一个长方形抽屉长3cm,宽4cm,贴抽屉底面放一根木棒,那么这根木棒最长(不计木棒粗细)可以是()A.4cm B.5cm C.6cm D.7cm5.下列五组数:①4、5、6;②0.6、0.8、1;③7、4、25;④8、15、17;⑤9、40、41,其中是勾股数的组数为()A.2B.3C.4D.56.已知a、b、c为△ABC的三边,且满足(a﹣b)(a2+b2﹣c2)=0,则△ABC是()A.等边三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形7.△ABC中,已知AB=1,AC=2.要使∠B是直角,BC的长度是()A.B.C.3D.或8.如图,在高为5m,坡面长为13m的楼梯表面铺地毯,地毯的长度至少需要()A.17m B.18m C.25m D.26m9.一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口1.5小时后,则两船相距()A.10海里B.20海里C.30海里D.40海里二.填空题10.勾股数为一组连续自然数的是.11.已知△ABC中,AB=k,AC=k﹣1,BC=3,当k=时,∠C=90°.12.如图,某港口P位于东西方向的海岸线上,甲、乙轮船同时离开港口,各自沿一固定方向航行,甲、乙轮船每小时分别航行12海里和16海里,1小时后两船分别位于点A,B处,且相距20海里,如果知道甲船沿北偏西40°方向航行,则乙船沿方向航行.13.若一个三角形的三边之比为5:12:13,且周长为60cm,则它的面积为cm2.14.如图,一棵高为16m的大树被台风刮断,若树在离地面6m处折断,树顶端刚好落在地可上,此处离树底部m处.15.如图,每个小正方形的边长为1,则∠ABC的度数为°.16.若一个三角形的三边长分别为5、12、13,则此三角形的面积为.17.观察下列一组数:列举:3、4、5,猜想:32=4+5;列举:5、12、13,猜想:52=12+13;列举:7、24、25,猜想:72=24+25;…列举:13、b、c,猜想:132=b+c;请你分析上述数据的规律,结合相关知识求得b=,c=.18.如图所示,一架梯子AB长2.5米,顶端A靠墙AC上,这时梯子下端B与墙角C距离为0.7米,梯子滑动后停在DE的位置上,测得AE长为0.9米,则梯子底端点B移动的距离为米.三.解答题19.如图,四边形ABCD是舞蹈训练场地,要在场地上铺上草坪网.经过测量得知:∠B=90°,AB=24m,BC=7m,CD=15m,AD=20m.(1)判断∠D是不是直角,并说明理由;(2)求四边形ABCD需要铺的草坪网的面积.20.如图,点C是线段BD上的一点,∠B=∠D=90°,AB=3,BC=2,CD=6,DE=4,AE=,求证:∠ACE=90°.21.如图,在Rt△ABC中,∠BCA=90°,AC=12,AB=13,点D是Rt△ABC外一点,连接DC,DB,且CD=4,BD=3.(1)求BC的长;(2)求证:△BCD是直角三角形.22.如图所示,四边形ABCD,∠A=90°,AB=3m,BC=12m,CD=13m,DA=4m.(1)求证:BD⊥CB;(2)求四边形ABCD的面积;(3)如图2,以A为坐标原点,以AB、AD所在直线为x轴、y轴建立直角坐标系,点P在y轴上,若S△PBD=S四边形ABCD,求P的坐标.参考答案一.选择题1.解:∵AC2﹣BC2=AB2,∴AC2=BC2+AB2,∴∠B=90°.故选:B.2.解:b2﹣c2=a2则b2=a2+c2△ABC是直角三角形;a:b:c=3:4:5,设a=3x,b=4x,c=5x,a2+b2=c2,△ABC是直角三角形;∠C=∠A﹣∠B,则∠B=∠A+∠C,∠B=90°,△ABC是直角三角形;∠A:∠B:∠C=9:12:15,设∠A、∠B、∠C分别为9x、12x、15x,则9x+12x+15x=180°,解得,x=5°,则∠A、∠B、∠C分别为45°,60°,75°,△ABC不是直角三角形;故选:D.3.解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、22+32≠42,不能构成直角三角形,故不符合题意;C、()2+32=42,能构成直角三角形,故符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意.故选:C.4.解:这根木棒最长==5(cm),故选:B.5.解:①42+52≠62,故不是勾股数;②0.6、0.8、1不都是正整数,故不是勾股数;③72+42≠252,故不是勾股数;④82+152=172,故是勾股数;⑤92+402=412,故是勾股数;其中勾股数有2组,故选:A.6.解:∵(a﹣b)(a2+b2﹣c2)=0,∴a﹣b=0,或a2+b2﹣c2=0,即a=b或a2+b2=c2,∴△ABC的形状为等腰三角形或直角三角形.故选:D.7.解:∵∠B是直角,故AC为△ABC的斜边,AB为直角边,∴BC===.故选:A.8.解:由勾股定理得:楼梯的水平宽度==12,∵地毯铺满楼梯是其长度的和应该是楼梯的水平宽度与垂直高度的和,地毯的长度至少是12+5=17(米).故选:A.9.解:如图所示:∠1=∠2=45°,AB=12×1.5=18(海里),AC=16×1.5=24(海里),∴∠BAC=∠1+∠2=90°,即△ABC是直角三角形,∴BC===30(海里).故选:C.二.填空题10.解:设中间的数是x,那么前面的一个就x﹣1,后面的一个就是x+1,根据题意(x﹣1)2+x2=(x+1)2,解得:x=0(舍去)或x=4;4﹣1=3,4+1=5;故答案为:3、4、5.11.解:∵∠C=90°,∴AC2+BC2=AB2,∵AB=k,AC=k﹣1,BC=3,∴(k﹣1)2+32=k2,解得:k=5,故答案为:5.12.解:由题意可知:AP=12,BP=16,AB=20,∵122+162=202,∴△APB是直角三角形,∴∠APB=90°,由题意知∠APN=40°,∴∠BPN=90°﹣∠APN=90°﹣40°=50°,即乙船沿北偏东50°方向航行,故答案为:北偏东50°.13.解:设三边分别为5x,12x,13x,则5x+12x+13x=60,∴x=2,∴三边分别为10cm,24cm,26cm,∵102+242=262,∴三角形为直角三角形,∴S=10×24÷2=120cm2.故答案为:120.14.解:设树顶端落在离树底部x米处,由题意得:62+x2=(16﹣6)2,解得:x1=8,x2=﹣8(不合题意舍去).故答案为:8.15.解:连接AC,由勾股定理得:AC2=22+12=5,BC2=22+12=5,AB2=12+32=10,∴AC2+BC2=5+5=10=BA2,∴△ABC是等腰直角三角形,∠ACB=90°,∴∠ABC=45°,故答案为:45.16.解:∵52+122=132,∴三边长分别为5、12、13的三角形构成直角三角形,其中的直角边是5、12,∴此三角形的面积为×5×12=30.17.解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…则在13、b、c中,b==84,c==85.18.解:在直角△ABC中,已知AB=2.5米,BC=0.7米,∴AC===2.4米,在直角△CDE中,已知DE=AB=2.5米,AE=0.9米,∴CE=AC﹣AE=1.5米,∴CD===2米,∴BD=2米﹣0.7米=1.3米故答案为:1.3.三.解答题19.解:连接AC,如图,,在Rt△ABC中,AB=24 m,BC=7 m,∴AC==25 m,在△ADC中,CD=15 m,AD=20 m.AC=25 m,∵CD2+AD2=152+202=252=AC2,∴△ADC为直角三角形,∠D=90°.(2)由(1)知△ADC为直角三角形,∠D=90°,∴S△ADC==150 m²,∵S△ABC=m²,∴S四边形ABCD=S△ADC+S△ABC=150+84=234 m².20.证明:在Rt△ABC中,∠B=90°,AB=3,BC=2,∴AC===.在Rt△EDC中,∠D=90°,CD=6,DE=4,∴CE===2,∵AC2=13,CE2=52,AE2=65,∴AE2=AC2+CE2,∴△ACE是直角三角形,AE是斜边,∴∠ACE=90°.21.(1)解:∵Rt△ABC中,∠BCA=90°,AC=12,AB=13,∴BC===5;(2)证明:∵在△BCD中,CD=4,BD=3,BC=5,∴CD2+BD2=42+32=52=BC2,∴△BCD是直角三角形.22.(1)证明:连接BD.∵AD=4m,AB=3m,∠BAD=90°,∴BD=5m.又∵BC=12m,CD=13m,∴BD2+BC2=CD2.∴BD⊥CB;(2)四边形ABCD的面积=△ABD的面积+△BCD的面积=×3×4+×12×5=6+30=36(m2).故这块土地的面积是36m2;(3)∵S△PBD=S四边形ABCD,∴•PD•AB=×36,∴•PD×3=9,∴PD=6,∵D(0,4),点P在y轴上,∴P的坐标为(0,﹣2)或(0,10).。

4.3.1 正比例函数的图象和性质 湘教版数学八年级下册同步练习(含答案)

4.3.1 正比例函数的图象和性质 湘教版数学八年级下册同步练习(含答案)

4.3 一次函数的图象1 正比例函数的图象和性质要点感知1画函数图象的步骤:(1)__________;(2)__________:建立直角坐标系,以__________为横坐标,__________为纵坐标,确定点的坐标;(3)__________.预习练习1-1下面所给点的坐标满足y=-2x的是( )A.(2,-1)B.(-1,2)C.(1,2)D.(2,1)要点感知2 正比例函数y=kx(k为常数,k≠0)的图象是一条__________,因此画正比例函数图象时,只要描出图象上的__________,然后过两点作一条直线即可,这条直线叫作“直线__________”.预习练习2-1 如图,某正比例函数的图象过点M(-2,1),则此正比例函数表达式为( )A.y=-xB.y=xC.y=-2xD.y=2x要点感知3 正比例函数图象的性质:直线y=kx(k≠0)是一条经过________的直线.当k>0时,直线y=kx经过第_______象限,从左到右,y随x的增大而________;当k<0时,直线y=kx经过第_____象限,从左到右,y随x的增大而________.知识点1 画正比例函数的图象1.正比例函数y=3x的大致图像是( )2.已知正比例函数y=x,请在平面直角坐标系中画出这个函数的图象.知识点2 正比例函数的图象与性质3.已知函数y=kx的函数值随x的增大而增大,则函数的图象经过( )A.第一、二象限B.第一、三象限C.第二、三象限D.第二、四象限4.对于函数y=-k2x(k是常数,k≠0)的图象,下列说法不正确的是( )A.其函数图象是一条直线B.其函数图象过点(,-k)C.其函数图象经过一、三象限D.y随着x增大而减小5.正比例函数y=-x的图象平分( )A.第一、三象限B.第一、二象限C.第二、三象限D.第二、四象限6.函数y=-5x的图象在第__________象限内,y随x的增大而__________.知识点3 实际问题中的正比例函数7.一根蜡烛长20 cm,点燃后每小时燃烧5 cm,则蜡烛燃烧的长度y(cm)与燃烧时间x(h)的函数关系用图象表示为下图中的( )8.小明用16元零花钱购买水果,已知水果单价是每千克4元,设买水果x千克用去的钱为y元,(1)求买水果用去的钱y(元)随买水果的数量x(千克)而变化的函数表达式;(2)画出这个函数的图象.9.已知正比例函数y=kx(k≠0),当x=1时,y=-2,则它的图象大致是( )10.已知正比例函数y=(3k-1)x,若y随x的增大而增大,则k的取值范围是( )A.k<0B.k>0C.k<D.k>11.若点A(-2,m)在正比例函数y=-x的图象上,则m的值是( )A. B.- C.1 D.-112.已知正比例函数y=kx(k<0)的图象上两点A(x1,y1)、B(x2,y2),且x1<x2,则下列不等式中恒成立的是( )A.y1+y2>0B.y1+y2<0C.y1-y2>0D.y1-y2<013.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图所示,则下列说法正确的是( )A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多14.写出一个图像经过一、三象限的正比例函数y=kx(k≠0)的解析式(关系式):_______________.15.当m=__________时,函数y=mx3m+4是正比例函数,此函数y随x的增大而__________.16.如图,正比例函数y=kx,y=mx,y=nx在同一平面直角坐标系中的图象如图所示.则系数k,m,n的大小关系是__________.17.已知正比例函数y=(k-2)x.(1)若函数图象经过第二、四象限,则k的范围是什么?(2)若函数图象经过第一、三象限,则k的范围是什么?18.已知正比例函数图象经过点(-1,2).(1)求此正比例函数的表达式;(2)画出这个函数图象;(3)点(2,-5)是否在此函数图象上?(4)若这个图象还经过点A(a,8),求点A的坐标.19.已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.(1)求正比例函数的表达式;(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.参考答案要点感知1(1)列表(2)描点自变量值相应的函数值(3)连线预习练习1-1B要点感知2 直线两点y=kx预习练习2-1A要点感知3 原点一、三上升增大二、四下降减少1.B2.图略.3.B4.C5.D6.二、四减小7.A8.(1)根据题意可得y=4x(0≤x≤4).(2)当x=0时,y=0;当x=4时,y=16.在平面直角坐标系中画出两点O(0,0),A(4,16),过这两点作线段OA,线段OA即函数y=4x(0≤x≤4)的图象,如图.9.A 10.D 11.C 12.C 13.B 14.y=3x(答案不唯一) 15.-1减小16.k>m>n 17.(1)k-2<0,∴k<2;(2)k-2>0,∴k>2.18.(1)设函数的表达式为:y=kx,则-k=2,即k=-2.故正比例函数的表达式为:y=-2x.(2)图象图略.(3)将点(2,-5)代入,左边=-5,右边=-4,左边≠右边,故点(2,-5)不在此函数图象上.(4)把(a,8)代入y=-2x,得8=-2a.解得a=-4.故点A的坐标是(-4,8).19.(1)∵点A的横坐标为3,且△AOH的面积为3,∴点A的纵坐标为-2,点A的坐标为(3,-2).∵正比例函数y=kx经过点A,∴3k=-2.解得k=-.∴正比例函数的表达式是y=-x.(2)∵△AOP的面积为5,点A的坐标为(3,-2),∴OP=5.∴点P的坐标为(5,0)或(-5,0).。

人教版八年级下册数学配套练习册答案

人教版八年级下册数学配套练习册答案

人教版八年级下册数学配套练习册答案第17章 分式§17.1分式及其基本性质(一)一、选择题. 1.C 2.B二、填空题. 1. 31, 2.1,1 3. v320小时 三、解答题. 1. 整式:32-a ,51+x ,)(41y x -,x ; 分式:222y x x -,a 1,n m +-3,ab 6; 有理式:32-a ,51+x ,222yx x -,a 1,n m +-3,)(41y x -,ab b ,x 2. (1) 0≠x 时, (2)23-≠x 时, (3)x 取任意实数时,(4)3±≠x 时 §17.1分式及其基本性质(二)一、选择题. 1.C 2.D二、填空题. 1. 3312y x , 2. 22b a - 3. 1≠a三、解答题. 1.(1) ac 41,(2) xy -1,(3) 22-+a a ,(4) b 1 2.(1) z y x xyz 222121 , z y x z 222114,zy x x 222115;(2)))((y x y x x x -+ ,))(()(2y x y x x y x -+- 3.cm abc π §17.2分式的运算(一)一、选择题. 1.D 2.A二、填空题. 1. a 2, 2. 21x 3. 338ab - 三、解答题.1.(1)xy31,(2)1-,(3)c -,(4)22--x ; 2. 4--x , 6- §17.2分式的运算(二)一、选择题. 1.D 2.B二、填空题. 1. m nn m 22-, 2. 1, 3. 1-三、解答题. 1.(1) 21+a ,(2)222ba ,(3)x ,(4)a 4- 2. 1+x ,当2=x 时 ,31=+x17.3可化为一元一次方程的分式方程(一)一、选择题. 1.C 2.B二、填空题. 1. 162-x ,64=+x 2. 5=x , 3. 2=x三、解答题. 1.(1)21=x ,(2)2=x ,(3)10-=x ,(4)2=x ,原方程无解; 2. 32=x 17.3可化为一元一次方程的分式方程(二)一、选择题. 1.C 2.D二、填空题. 1. 3+x ,3-x ,360380-=+x x 2. 1.018040=+x , 3.%25160=-xx 三、解答题. 1.第一次捐款的人数是400人,第二次捐款的人数是800人2. 甲的速度为60千米/小时,乙的速度为80千米/小时17.4 零指数与负整数指数(一)一、选择题. 1.B 2.D二、填空题. 1.0.001,0.0028 , 2.3-, 3. 1≠a三、解答题. 1.(1)1,(2)1251,(3)2010,(4) 9, (5) 41, (6) 4- 2.(1)0.0001,(2)0.016,(3)0.,(4)00000702.0-17.4 零指数与负整数指数(二)一、选择题. 1.B 2.C二、填空题. 1.610,610- 2.0., 31007.8-⨯ 3.m 4103.6-⨯三、解答题. 1.(1)8107.5⨯,(2)21001.1-⨯,(3)5103.4-⨯-,(4)510003.2-⨯ 2. (1)21a ,(2)331b a ,(3)4x ,(4)a 1, (5) yx 2, (6) 1036x ; 3. 15.9 第18章 函数及其图象§18.1变量与函数(一)一、选择题. 1.A 2.B二、填空题. 1. 2.5,x 、y 2.x 210- 3. x y 8.0=三、解答题. 1. x y 6.31000+= 2. )(108.112-+=x y§18.1变量与函数(二)一、选择题. 1.A 2.D二、填空题. 1. 1≠x 2. 5 3. x y 436-=,90≤≤x三、解答题. 1. x y 5.015-=,300≤≤x 的整数 2. (1))(2010500-+=x y ,(2)810元§18.2函数的图象(一)一、选择题. 1.B 2.A二、填空题. 1. x ,三,四 2. (-1,-2) 3. -7,4三、解答题. 1. 作图(略),点A 在y 轴上,点B 在第一象限,点C 在第四象限,点D 在第三象限; 2. (1)A (-3,2),B (0,-1),C (2,1) (2)6§18.2函数的图象(二)一、选择题. 1.A 2.B二、填空题. 1. 5.99 2. 20 3. (1)100 (2)甲 (3)秒米/10,秒米/8三、解答题. 1. (1)40 (2)8,5 (3)x y 540-=,80≤≤x2. (1)时间与距离 (2)10千米,30千米 (3)10点半到11点或12点到13点§18.2函数的图象(三)一、选择题. 1.C 2.D二、填空题. 1. 3 2. 12分钟 3. 2)220(21t y -=三、解答题1. (1)体温与时间(2):2.(1)x y -=4,40<<x (2)作图略§18.3一次函数(一)一、选择题. 1.B 2. B二、填空题. 1. (1)、(4), (1) 2. 3≠m ,2=m 3. x y 6.2=三、解答题. 1. (1)x y 5240+=,(2)390元; 2. 3-或1-§18.3一次函数(二)一、选择题. 1.A 2. C 时间t (h ) 612 18 24 体温(℃) 39 36 38 36二、填空题. 1. 35+-=x y 2. 31- 3. 0, 3 三、解答题. 1.作图略 ;两条直线平行 2. 13--=x y§18.3一次函数(三)一、选择题. 1.C 2. D二、填空题. 1. -2,1 2. (-2,0) ,(0,-6) 3. -2三、解答题. 1. (1)(1,0) ,(0,-3),作图略 (2)23 2. (1) x y 318-=,60<≤x (2)作图略,y 的值为6§18.3一次函数(四)一、选择题. 1.B 2.B二、填空题. 1. 第四 2. > 3. 1>m三、解答题. 1. (1)1>m (2) -2 2. (1) 2<x ,(2)b a >(图略)§18.3一次函数(五)一、选择题. 1.D 2.C二、填空题. 1. 57-=x y 2. 答案不唯一,如:2+=x y 3. -2, 2三、解答题. 1. 5+-=x y 2. (1)(4,0) (2)623-=x y §18.4反比例函数(一)一、选择题. 1.D 2.B 二、填空题. 1. x y 6=2. 13. xy 20=,反比例 三、解答题. 1. (1)xy 3= (2)点B 在图象上,点C 不在图象上,理由(略) 2. (1)x y 3-= (2)§18.4反比例函数(二)一、选择题. 1.D 2.D二、填空题. 1. 第一、三;减小 2. 二,第四 3. 2三、解答题.1. (1)-2 (2)21y y < 2. (1)x y 2-= , 21§18.5实践与探索(一)一、选择题. 1.A 2.B二、填空题. 1. 4- 2. (1,-1) 3. (4,3)三、解答题. 1. 2+=x y 2.(1)①.甲,甲,2 ②.3小时和5.5小时(2)甲在4到7小时内,10 个§18.5实践与探索(二)一、选择题. 1.A 2.B二、填空题. 1. 2-<y 2. 2-≤x 3. 0≤m三、解答题. 1.(1)27=x (2)27<x (作图略)2. (1)1000 (2)5000300-=x y (3)40§18.5实践与探索(三)一、选择题. 1.B 2.C二、填空题. 1. 7 ,815 2. )115(87x x y -+= 3. 125.0+=x y 三、解答题. 1. (1)102-=x y (2) 27cm第19章 全等三角形§19.1命题与定理(一)一、选择题. 1.C 2.A二、填空题. 1.题设,结论 2.如果两条直线相交,只有一个交点 ,真 3. 如:平行四边形的对边相等三、解答题. 1.(1)如果两条直线平行,那么内错角相等 (2)如果一条中线是直角三角形斜边上的中线,那么它等于斜边的一半; 2.(1)真命题;(2)假命题,如:22=-,但22≠-; 3.正确,已知: c a b a ⊥⊥,,求证:b ∥c ,证明(略)§19.2三角形全等的判定(一)一、选择题. 1. A 2.A二、填空题. 1.(1)AB 和DE ;AC 和DC ;BC 和EC (2)∠A 和∠D ;∠B 和∠E ;∠ACB 和∠DCE ; 2.2 3. 0110三、解答题. 1. (1)△ABP ≌△ACQ, AP 和AQ, AB 和AC, BP 和QC ,∠ABP 和∠ACQ, ∠BAP 和∠CAQ,∠APB 和∠AQC , (2)90°§19.2三角形全等的判定(二)一、选择题. 1.D 2.B二、填空题. 1. △ABD ≌△ACD ,△ABE ≌△ACE 或△BDE ≌△CDE 2. ABD , CDB, S.A.S3. ACB ECF三、解答题.1.证明:∵AB ∥ED ∴∠B =∠E 又∵AB =CE ,BC =ED ∴△ABC ≌△CED∴AC =CD2.证明:(1)∵△ABC 是等边三角形 ∴AC =BC ,∠B =60° 又∵DC 绕C 点顺时针旋转60°到CE 位置 ∴EC =DC ,∠DCE =60° ∴∠BCA =∠DCE ∴∠DC E –∠DCA =∠ACB –∠DCA, 即∠ACE =∠BCD ,∴△ACE ≌△BCD(2)∵△ACE ≌△BCD ∴∠EAC =∠B =60° ∴∠EAC =∠BCA ∴AE ∥BC§19.2三角形全等的判定(三)一、选择题. 1.D 2.C二、填空题. 1.(1) S.A.S; (2)A.S.A; (3)A.A.S 2. AD =EF (答案不唯一)三、解答题. 1.证明:∵AB ∥DE ∴∠B =∠DEF 又∵AC ∥DF ∴∠F =∠ACB ∵BE =CF ∴BE +EC =CF +EC ∴BC =EF ∴△ABC ≌△DEF ∴AB =DE2.证明:在ABCD 中,AD =BC ,AD ∥BC ∴∠DAC =∠BCA 又∵BE ∥DF∴∠AFD =∠BEC ∵BC =AD ∴△BCE ≌△DAF ∴AF =CE§19.2三角形全等的判定(四)一、选择题. 1.B 2.D二、填空题. 1. ACD ,直角 2. AE =AC (答案不唯一) 3. 3; △ABC ≌△ABD , △ACE ≌△ADE , △BCE ≌△BDE三、解答题. 1.证明:∵BE =CF ∴BE+EC =CF+EC ∴BC =EF 又∵AB =D E ,AC =DF ∴△ABC ≌△DEF ∴∠B =∠DEF ∴AB ∥DE2.证明:∵AB =DC ,AC =DB ,BC =BC ∴△ABC ≌△DCB ∴∠DBC =∠ACB∴BM =CM ∴AC –MC =BD –MB ∴AM =DM§19.2三角形全等的判定(五)一、选择题. 1.D 2.B二、填空题. 1.3 ; △ABC ≌△ADC ,△ABE ≌△ADE ,△BCE ≌△DCE 2. AC =BD (答案不唯一)三、解答题. 1.证明:∵BF =CD ∴BF+CF =CD+CF 即BC =DF 又∵∠B =∠D=90°,AC =EF ∴△ABC ≌△EDF ∴AB =DE2.证明:∵CD ⊥BD ∴∠B +∠BCD=90° 又∵∠ACB=90°∴∠FCE =∠B 又∵FE ⊥AC , ∴∠FEC =∠ACB=90° ∵CE =BC ∴△FEC ≌△ACB ∴AB =FC§19.3尺规作图(一)一、选择题. 1.C 2.A二、填空题. 1.圆规, 没有刻度的直尺 2.第一步:画射线AB ;第二步:以A 为圆心,MN 长为半径作弧,交AB 于点C三、解答题. 1.(略) 2.(略) 3.提示:先画//B C BC =,再以B ′为圆心,AB 长为半径作弧,再以C ′为圆心,AC 长为半径作弧,两弧交于点A ′,则△A ′B ′C ′为所求作的三角形.§19.3尺规作图(二)一、选择题. 1. D二、解答题. 1.(略) 2(略)§19.3尺规作图(三)一、填空题. 1. C △CED 等腰三角形底边上的高就是顶角的平分线二、解答题. 1.(略) 2.方法不唯一,如可以作点C 关于线段BD 的对称点C ′.§19.3尺规作图(四)一、填空题. 1.线段垂直平分线上的点到线段的两个端点的距离相等.二、解答题. 1.(略) 2.(略) 3. 提示:作线段AB 的垂直平分线与直线l 相交于点P ,则P 就是车站的位置.§19.4逆命题与逆定理(一)一、选择题. 1. C 2. D二、填空题.1.已知两个角是同一个角的补角,这两个角相等;若两个角相等,则这两个角的补角也相等.;2. 线段垂直平分线上的点到线段的两个端点的距离相等.3. 如果∠1和∠2是互为邻补角,那么∠1+∠2 =180 ° 真命题三、解答题. 1.(1)如果一个三角形的两个锐角互余,那么这个三角形是直角三角形,是真命题;(2)如果22,b a b a ==那么,是真命题; (3)平行四边形的对角线互相平分,是真命题. 2. 假命题,添加条件(答案不唯一)如:AC =DF 证明(略)§19.4逆命题与逆定理(二)一、选择题. 1. C 2. D二、填空题. 1. ①、②、③ 2.80 3.答案不唯一,如△BMD三、解答题. 1. OE 垂直平分AB 证明:∵AC =BD ,∠BAC =∠ABD ,BA =BA ∴△ABC ≌△BAD ∴∠OAB =∠OBA ∴△AOB 是等腰三角形 又∵E 是AB 的中点 ∴OE 垂直平分AB 2. 已知:①③(或①④,或②③,或②④) 证明(略)§19.4逆命题与逆定理(三)一、选择题. 1. C 2.D二、填空题. 1.15 2.50三、解答题1. 证明:如图,连结AP ,∵PE ⊥AB ,PF ⊥AC ,∴∠AEP =∠AFP = 90 又∵AE =AF ,AP =AP ,∴Rt △AEP ≌Rt △AFP ,∴∠EAP =∠F AP ,∴AP 是∠BAC 的角平分线,故点P 在∠BAC 的角平分线上2.提示:作EF ⊥CD ,垂足为F ,∵DE 平分∠ADC ,∠A = 90,EF ⊥CD ∴AE =FE ∵AE =BE ∴BE =FE 又∵∠B = 90,EF ⊥CD ∴点E 在∠DCB 的平分线上∴CE 平分∠DCB§19.4逆命题与逆定理(四)一、选择题. 1.C 2. B二、填空题. 1.60° 2.11 3.20°或70°三、解答题. 1.提示:作角平分线和作线段垂直平分线,两条线的交点P 为所求作. 第20章 平行四边形的判定§20.1平行四边形的判定(一)一、选择题. 1.D 2.D二、填空题. 1. AD =BC (答案不唯一) 2. AF =EC (答案不唯一) 3. 3三、解答题. 1.证明:∵DE ∥BC , EF ∥AB ∴四边形DEFB 是平行四边形 ∴DE =BF 又 ∵F 是BC 的中点 ∴BF =CF . ∴DE =CF2.证明:(1)∵四边形ABCD 是平行四边形 ∴AB =CD , AB ∥CD ∴∠ABD =∠BDC 又 ∵AE ⊥BD ,CF ⊥BD ∴⊿ABE ≌⊿CDF .(2) ∵⊿A BE ≌⊿CDF . ∴AE =CF 又 ∵AE ⊥BD ,CF ⊥BD ∴四边形AECF 是平行四边形§20.1平行四边形的判定(二)一、选择题. 1.C 2.C二、填空题. 1. 平行四边形 2. AE =CF (答案不唯一) 3. AE =CF (答案不唯一)三、解答题. 1.证明:∵∠BCA =180°-∠B -∠BAC ∠DAC =180°-∠D -∠DCA 且∠B =∠D ∠BAC =∠ACD ∴∠BCA =∠DAC ∴∠BAD =∠BCD∴四边形ABCD 是平行四边形2.证明:∵四边形ABCD 是平行四边形 ∴AO =CO ,BO =DO 又 ∵E 、F 、G 、H 分别为AO 、BO 、CO 、DO 的中点 ∴OE =OG ,OF =OH ∴四边形EFGH 是平行四边形§20.1平行四边形的判定(三)一、选择题. 1.A 2.C二、填空题. 1. 平行四边形 2. 3三、解答题. 1.证明:在□ABCD 中,AB =CD ,AB ∥CD ∵AE =CF ∴AB -AE =CD -CF即BE =DF ∴四边形EBFD 是平行四边形∴BD 、EF 互相平分2.证明:在□ABCD 中,AD =BC ,AD ∥BC ,AO =CO ∴∠DAC =∠BCA 又∵∠AOE = ∠COF ∴⊿AOE ≌⊿COF .∴AE =CF ∴DE =BF ∴四边形BEDF 是平行四边形§20.2 矩形的判定一、选择题. 1.B 2.D二、填空题. 1. AC =BD (答案不唯一) 2. ③,④三、解答题. 1.证明:(1)在□ABCD 中,AB =CD ∵BE =CF ∴BE+EF =CF +EF 即BF =CE 又∵AF =DE ∴⊿ABF ≌⊿DCE .(2)∵⊿ABF ≌⊿DCE .∴∠B =∠C 在□ABCD 中,∠B +∠C =180°∴∠B =∠C =90° ∴□ABCD 是矩形2.证明:∵AE ∥BD , BE ∥AC ∴四边形OAEB 是平行四边形 又∵AB =AD ,O 是BD 的中点∴∠AOB =90° ∴四边形OAEB 是矩形3.证明:(1)∵AF ∥BC ∴∠AFB =∠FBD 又∵E 是AD 的中点, ∠AEF =∠BED ∴⊿AEF ≌⊿DEB ∴AF =BD 又∵AF =DC ∴BD =DC ∴D 是BC 的中点(2)四边形ADCF 是矩形,理由是:∵AF =DC ,AF ∥DC ∴四边形ADCF 是平行四边形又∵AB =AC ,D 是BC 的中点 ∴∠ADC =90° ∴四边形ADCF 是矩形§20.3 菱形的判定一、选择题. 1.A 2.A二、填空题. 1. AB =AD (答案不唯一) 2. 332 3. 菱形 三、解答题. 1.证明:(1)∵AB ∥CD ,CE ∥AD ∴四边形AECD 是平行四边形 又∵AC 平分∠BAD ∴∠BAC =∠DAC ∵CE ∥AD ∴∠ECA =∠CAD∴∠EAC =∠ECA ∴AE =EC ∴四边形AECD 是菱形(2)⊿ABC 是直角三角形,理由是:∵AE =EC ,E 是AB 的中点 ∴AE =BE =EC ∴∠ACB =90°∴⊿ABC 是直角三角形2.证明:∵DF ⊥BC ,∠B =90°,∴AB ∥DF ,∵∠B =90°,∠A =60°, ∴∠C =30°, ∵∠EDF =∠A =60°,DF ⊥BC ,∴∠EDB =30°,∴AF ∥DE ,∴四边形AEDF 是平行四边形,由折叠可得AE =ED ,∴四边形AEDF 是菱形.3.证明:(1)在矩形ABCD 中,BO =DO ,AB ∥CD ∴AE ∥CF ∴∠E =∠F又∵∠BOE =∠DOF ,∴⊿BOE ≌⊿DOF .(2)当EF ⊥AC 时,以A 、E 、C 、F 为顶点的四边形是菱形 ∵⊿BOE ≌⊿DOF .∴EO =FO 在矩形ABCD 中, AO =CO ∴四边形AECF 是平行四边形 又∵EF ⊥AC , ∴四边形AECF 是菱形§20.4 正方形的判定一、选择题. 1.D 2.C二、填空题. 1. AB =BC (答案不唯一) 2. AC =BD (答案不唯一)三、解答题. 1.证明:(1)∵AB =AC ∴∠B =∠C 又∵DE ⊥AB ,DF ⊥AC ,D 是BC 的中点 ∴⊿BED ≌⊿CFD .(2)∵∠A =90°,DE ⊥AB ,DF ⊥AC ∴四边形AEDF 是矩形 又∵⊿BED ≌⊿CFD∴DE =DF ∴四边形DF AE 是正方形.2.证明:(1)在中,AO =CO 又∵⊿ACE 是等边三角形 ∴EO ⊥AC .∴四边形ABCD 是菱形.(2)∵⊿ACE 是等边三角形 ∴∠AED =21∠AEC =30°,∠EAC =60° 又∵∠AED =2∠EAD ∴∠EAD =15°∴∠DAC =45°∴∠ADO =45°∴AO =DO ∴四边形ABCD 是正方形.§20.5 等腰梯形的判定一、选择题. 1.B 2.D二、填空题. 1.等腰梯形 2. 4 3. ③,④三、解答题. 1.证明:(1)∵AB =AC ∴∠ABC =∠ACB 又∵BD ⊥AC ,CE ⊥AB , BC =BC ∴⊿BCE ≌⊿CBD ∴EB =CD ∴AE =AD ∴∠AED =∠ADB∵∠A+∠AED +∠ADE =∠A+∠ABC +∠ACB ∴∠AED =∠ABC ∴DE ∥BC∴四边形BCDE 是等腰梯形.2.证明:(1)在菱形ABCD 中,∠CAB =21∠DAB =30°,AD =BC , ∵CE ⊥AC , ∴∠E =60°, 又∵DA ∥BC , ∴∠CBE =∠DAB =60°∴CB =CE ,∴AD =CE , ∴四边形AECD 是等腰梯形.3.在等腰梯形ABCD 中,AD ∥BC , ∴∠B =∠BCD , ∵GE ∥DC ,∴∠GEB =∠BCD , ∴∠B =∠GEB , ∴BG =EG , 又∵GE ∥DC , ∴∠EGF =∠H , ∵EF =FC , ∠EFG =∠CFH , ∴⊿GEF ≌⊿HCF , ∴EG =CH , ∴BG =CH.第21章 数据的整理与初步处理§21.1 算术平均数与加权平均数(一)一、选择题. 1.C 2.B二、填空题. 1. 169 2. 20 3. 73三、解答题. 1. 82 2. 3.01§21.1 算术平均数与加权平均数(二)一、选择题. 1.D 2.C二、填空题. 1. 14 2. 1529.625三、解答题. 1.(1) 84 (2) 83.2§21.1 算术平均数与加权平均数(三)一、选择题. 1.D 2.C二、填空题. 1. 4.4 2. 87 3. 16三、解答题. 1. (1)41 (2)49200 2. (1)A (2)C§21.1算术平均数与加权平均数(四)一、选择题. 1.D 2.B二、填空题. 1. 1 2. 30% 3. 25180三、解答题. 1. (略) 2. (1)15 15 20 (2)甲 (3)丙§21.2平均数、中位数和众数的选用(一)一、选择题. 1.B 2.D二、填空题. 1. 1.5 2. 9, 9, 3. 2, 4三、解答题. 1.(1)8 (2)37.5 2.(1)260 240 (2)不合理,因为大部分工人的月加工零件数小于260个§21.2平均数、中位数和众数的选用(二)一、选择题. 1.C 2.B二、填空题. 1.众数 2. 中位数 3. 1.70米三、解答题. 1.(1)众数:0.03,中位数:0.03 (2)不符合,因为平均数为0.03>0.0252. (1)3,5,2,2 (2)26,25,24 (3)不能,因为众数为26,只有9个人达到目标,没有到一半.§21.3 极差、方差与标准差(一)一、选择题. 1.D 2.B二、填空题. 1. 70 2. 4 3.甲三、解答题. 1.甲:6 乙:4 2. (1) 甲:4 乙:4 (2) 甲的销售更稳定一些,因为甲的方差约为0.57,乙的方差约为1.14,甲的方差较小,故甲的销售更稳定一些。

2020—2021人教版八年级数学下册19.1--19.3同步练 习含答案

2020—2021人教版八年级数学下册19.1--19.3同步练 习含答案

19.1 函数一、选择题1. 某影院每张电影票的售价为元,某日共售出张票,票房收入为元,下列说法正确的是( )A.、是常量,是变量B.是常量,、是变量C.、、都是变量D.、、都是常量2. 当时,函数的函数值为()A. B. C. D.3. 已知变量与之间的关系满足如图,那么能反映与之间函数关系的解析式是A. B.C. D.4. 如图,在下列的四个图象中,不能表示是的函数图象的是()A. B.C. D.5. 长方形的周长为,其中一边长为面积为,则与的关系式为A. B.C. D.6. 在函数中,自变量的取值范围是()A. B.C. D.7. 函数的自变量的取值范围是()A. B.C. D.且8. 实践证明分钟跳绳测验的最佳状态是前秒速度匀速增加,后秒冲刺,中间速度保持不变,则跳绳速度(个/秒)与时间(秒)之间的函数图象大致为( )A. B.C. D.二、填空题9. 如图所示,甲、乙两车在某时间段内速度随时间变化的图象.下列结论:①甲的速度始终保持不变;②乙车第秒时的速度为米/秒;③乙车前秒行驶的总路程为米.其中正确的是________.(填序号)10. 某水果店五一期间开展促销活动,卖出苹果数量(千克)与售价(千克/元)的关系如下表:…数量(千克)…售价(千克/元)则售价(千克/元)与数量(千克)之间的关系式是________.11. 如图,圆柱的高是厘米,当圆柱的底面半径由小到大变化时,圆柱的体积也随之发生了变化.(1)在这个变化过程中,自变量为________,因变量为________;(2)如果圆柱底面半径为(厘米),那么圆柱的体积(厘米)与的关系式为________.12. 根据如图所示的程序计算函数的值,若输入的值是或时,输出的值相等,则等于________.三、解答题13. 已知函数,当时,,求的值.14. 为了解某种车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成如表:汽车行驶时间(小时)…油箱剩余油量(升)…(2)根据上表可知,该车油箱的大小为______升,每小时耗油____升;(3)请求出两个变量之间的关系式(用来表示)15. 成外“龟兔赛跑”的故事同学们都非常熟悉,图中的线段和折线表示“龟兔赛跑”时路程与时间的关系.请你根据图中给出的信息,解决下列问题:(1)折线表示赛跑过程中________的路程与时间的关系,线段表示赛跑过程中________的路程与时间的关系.赛跑的全程是________米.(2)兔子在起初每分钟跑多少米?乌龟每分钟爬多少米?(3)乌龟用了多少分钟追上了正在睡觉的兔子?(4)兔子醒来,以千米时的速度跑向终点,结果还是比乌龟晚到了分钟,请你算一算,兔子中间停下睡觉用了多少分钟?参考答案19.1 函数同步习题1一、选择题1.【答案】B2.【答案】D3.【答案】D4.【答案】C5.【答案】D6.【答案】D7.【答案】A8.【答案】C二、填空题9.【答案】②③10.【答案】=11.【答案】(1)底面半径,,体积;(2)12.【答案】三、解答题13.【答案】解:把,代入得,整理得,解得,.14.【答案】(1);(2),;(3)15.【答案】 (1)兔子,乌龟,(2)兔子在起初每分钟跑米;(3)乌龟每分钟爬米.(4)分钟、分钟19.2一次函数一、单选题1.一次函数 y = mx +1m -的图像过点(0,2),且 y 随 x 的增大而增大,则 m 的值为( ) A .-1B .3C .1D .-1 或 32.如果实数,k b 满足0kb <且不等式kx b <的解集是bx k>,那么函数y kx b =+的图象只可能是( )A .B .C .D .3.若一次函数(2)1y k x =-+的函数值y 随x 的增大而增大,则( ) A .2k <B .2k >C .0k >D .k 0<4.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( ) A .24y x =-B .24y x =+C .22y x =+D .22y x =-5.已知直线y 1=kx+1(k <0)与直线y 2=mx (m >0)的交点坐标为(12,12m),则不等式组mx ﹣2<kx+1<mx 的解集为( )A .x>12B .12<x<32C .x<32D .0<x<326.如图,已知一次函数2y kx =+的图象与x 轴,y 轴分别交于点,A B ,与正比例函数13y x =交于点C ,已知点C 的横坐标为2,下列结论:①关于x 的方程20kx +=的解为3x =;②对于直线2y kx =+,当3x <时,0y >;③直线2y kx =+中,2k =-;④方程组302y x y kx -=⎧⎨-=⎩的解为223x y =⎧⎪⎨=⎪⎩.其中正确的有( )个A .1B .2C .3D .47.函数y=2x ﹣5的图象经过( ) A .第一、三、四象限 B .第一、二、四象限 C .第二、三、四象限D .第一、二、三象限8.要得到函数y =2x +3的图象,只需将函数y =2x 的图象( ) A .向左平移3个单位 B .向右平移3个单位 C .向下平移3个单位 D .向上平移3个单位二、填空题9.在平面直角坐标系中,已知一次函数21y x =-+的图象经过()()111222P x y P x y ,,,两点.若12x x <,则1y ______2y (填“>”“<”或“=”).10.在20km 越野赛中,甲乙两选手的行程y (单位:km )随时间x (单位:h )变化的图象如图所示,根据图象信息,下列说法:①两人相遇前,甲速度一直小于乙速度;②出发后1小时,两人行程均为10km ;③出发后1.5小时,甲的行程比乙多3km ;④甲比乙先到达终点.其中正确的说法是_________(填序号).11.直线32y x =-与y 轴交点的坐标是_________ .12.一次函数y 1=kx+b 与y 2=x+a 的图象如图,则下列结论:①k <0;②a >0;③关于x 的方程kx ﹣x=a ﹣b 的解是x=3;④当x >3时,y 1<y 2中.则正确的序号有____________.13.如图,在平面直角坐标系中,△A 1B 1C 1,△A 2B 2C 2,△A 3B 3C 3,…,△A n B n C n 均为等腰直角三角形,且∠C 1=∠C 2=∠C 3=…=∠C n =90°,点A 1,A 2,A 3,…,A n 和点B 1,B 2,B 3,…,B n分别在正比例函数y =12x 和y =﹣x 的图象上,且点A 1,A 2,A 3,…,A n 的横坐标分别为1,2,3…n ,线段A 1B 1,A 2B 2,A 3B 3,…,A n B n 均与y 轴平行.按照图中所反映的规律,则△A n B n C n 的顶点C n 的坐标是____.(其中n 为正整数)14.(A 2+B 2≠0)在平画直角坐标系xy 中,点P (x 0,y 0)到直线Ax +By +C =0的距离公式为:d =0022Ax By c A B+++例如,P (1,3)到直线4x +3y ﹣3=0的距离为:d =2243+=2.若点M (1,0)到直线x +y +C =0的距离为2,则实数C 的值为_____.三、解答题15.已知:一次函数y=kx +b 的图象经过M (0,2),(1,3)两点. ⑴求k ,b 的值;⑵若一次函数y=kx +b 的图象与x 轴交点为A (a ,0),求a 的值.16.如图,直线l 是一次函数y kx b =+的图象,若点()3,A m 在直线l 上,求m 的值.17.(1)已知函数y x =+m+1.是正比例函数,求m 的值; (2)已知函数24y (5)m m x -=+m+1是一次函数,求m 的值.18.若y -2与x+1成正比例.当x=2时,y=11. (1)求y 与x 的函数关系式; (2)求当x=0时,y 的值; (3)求当y=0时,x 的值.19.在平面直角坐标系中,直线AB 经过()1,1、()3,5-两点. (1)求直线AB 所对应的函数解析式: (2)若点(),2P a -在直线AB 上,求a 的值.20.如图,一次函数y ax b =+的图象与正比例函数y kx =的图象交于点M .(1)求正比例函数和一次函数的解析式;(2)根据图象写出使正比例函数的值大于一次函数的值的x 的取值范围; (3)求MOP △的面积.21.全民健身的今天,散步运动是大众喜欢的活动项目。

最新北师大版八年级数学下册第二章同步测试题及答案全套

最新北师大版八年级数学下册第二章同步测试题及答案全套

最新北师大版八年级数学下册第二章同步测试题及答案全套第二章 一元一次不等式与一元一次不等式组1 不等关系知能演练提升能力提升1.下面给出了6个式子:①3>0;②4x+3>0;③x=3;④x -1;⑤x+2≤3;⑥2x ≠0. 其中不等式共有( ) A .2个 B .3个 C .4个 D .5个2.根据下列数量关系列出相应的不等式,其中错误的是( ) A.a 与3的和大于1:a+3>1 B.a 与2的差不小于3:a -2≥3C.b 与1的和的3倍是一个非负数:3(b+1)>0D.b 的2倍与3的差是负数:2b -3<03.如图,对a ,b ,c 三种物体的质量判断正确的是( )A.a<cB.a<bC.a>cD.b<c4.在开山工程爆破时,已知导火索燃烧的速度为0.5 cm/s,人跑开的速度是4 m/s,为了使放炮的人在爆破时能安全跑到100 m 以外(不包括100 m)的安全区,导火索的长度x (cm)应满足的不等式是( ) A.4×x0.5≥100 B.4×x0.5≤100 C.4×x 0.5<100D.4×x0.5>1005.如图,左托盘物体x 的质量与右托盘两个砝码的质量之间的大小关系是:x 80.6.某饮料瓶上有这样的字样:保质期18个月.如果用x (月)表示保质期,那么该饮料的保质期可以用不等式表示为 .7.某班同学外出春游,要拍照合影留念,若一张彩色底片需0.57元,冲印一张需0.35元.每人预定一张,出钱不超过0.45元.设合影的同学有x 人,则可列不等式为 .8.在“庆祝世界反法西斯战争胜利70周年”知识竞赛中,一共有25道题,答对一题得10分,答错(或不答)一题扣5分.设小明同学在这次竞赛中答对x 道题. (1)根据所给条件,完成下表:答题情况 答对 答错或不答 题 数 x每题分值 10 -5得 分 10x(2)小明同学的竞赛成绩超过100分,写出满足关系的不等式.创新应用9.如图,用锤子以相同的力将铁钉钉入木块,随着铁钉的深入,铁钉所受的阻力也越来越大.当铁钉进入木块部分长度足够时,每次钉入木块的铁钉长度是前一次的13.已知这个铁钉被敲击3次后全部进入木块(木块足够厚),且第一次敲击后,铁钉进入木块的长度是a cm .若铁钉总长度是 6 cm,试求a 的取值范围.答案: 能力提升1.C2.C3.C4.D5.>6.x ≤187.0.57+0.35x ≤0.45x8.解 (1)25-x -5(25-x )(2)根据题意,得10x -5(25-x )>100. 创新应用9.解 若敲击2次后铁钉恰好全部进入木块,则有a+13a=6,解得a=92,而实际这个铁钉被敲击3次后全部进入木块,所以a<92.若敲击 3次后恰好全部进入木块,则有 a+13a+19a=6,解得a=5413.综上可知,a 的取值范围是5413≤a<92.2 不等式的基本性质知能演练提升能力提升1.已知a ,b ,c 均为实数,若a>b ,c ≠0,则下列结论不一定正确的是( )A.a+c>b+cB.c -a<c -bC.a c2>b c2D.a 2>ab>b 22.已知实数a ,b 在数轴上的位置如图,则a -ba+b 0.(填“>”“<”或“=”)3.下列四个判断:①若ac 2>bc 2,则a>b ;②若a>b ,则a|c|>b|c|;③若a>b ,则b a<1;④若a>0,则b -a<b.其中正确的是 .(填序号)4.已知-m+5>-n+5,试比较10m+8与10n+8的大小.5.如图,有四个小朋友在公园玩跷跷板,他们的体重分别为P ,Q ,R ,S.请你根据图中的情境确定他们的体重大小关系.(用“>”连接起来)6.甲、乙两超市为了促销一种定价相同的商品,甲超市连续两次降价10%,乙超市一次性降价20%,请问在哪家超市购买这种商品更合算?创新应用7.阅读下列材料:试判断a 2-3a+7与-3a+2的大小.分析:要判断两个数的大小,我们往往使用作差法,即若a -b>0,则a>b ;若a -b<0,则a<b ;若a -b=0,则a=b. 解:∵(a 2-3a+7)-(-3a+2)=a 2-3a+7+3a -2=a 2+5,且a 2≥0, ∴a 2+5>0.∴a 2-3a+7>-3a+2.阅读后,应用这种方法比较a 2-b 2+22与a 2-2b 2+13的大小.答案:能力提升 1.D2.< 由数轴知0<a<1,b<-1,故a -b>0,a+b<0.由不等式的基本性质3,a -b>0两边除以a+b ,得a -b a+b<0.3.①④4.解 根据不等式的基本性质1,不等式-m+5>-n+5的两边都减去5,得-m>-n ,根据不等式的基本性质3,不等式的两边都乘-1,得m<n ;根据不等式的基本性质2,不等式的两边都乘10,得 10m<10n ,根据不等式的基本性质1,不等式的两边都加上8,得10m+8<10n+8.5.解 由题中第一个图知S>P ;由题中第二个图知P>R ,故S>P>R.又由题中第三个图知P+R>S+Q ,而由S>P ,得S+Q>P+Q ,所以P+R>P+Q ,故R>Q.因此,S>P>R>Q.6.解 设这种商品的价格为a (a>0)元,在甲超市购买需付款a (1-10%)·(1-10%)元,即0.81a 元.在乙超市购买需付款a (1-20%)元,即0.8a 元.∵0.81>0.8,且a>0,∴0.81a>0.8a ,∴在乙超市购买更合算. 创新应用 7.解a 2-b 2+22−a 2-2b 2+13=3a 2-3b 2+66−2a 2-4b 2+26=3a 2-3b 2+6-2a 2+4b 2-26=a 2+b 2+46,由a 2≥0,b 2≥0,得a 2+b 2≥0, 故a 2+b 2+4≥4.故a 2+b 2+46≥46.∵46>0,∴a 2-b 2+22>a 2-2b 2+13.3 不等式的解集知能演练提升能力提升1.下列数值不是不等式5x ≥2x+9的解的是( )A.5B.4C.3D.22.如果式子√2x +6 有意义,那么x 的取值范围在数轴上表示出来正确的是( )3.若关于x 的不等式x -b>0恰有两个负整数解,则b 的取值范围是( ) A.-3<b<-2 B.-3<b ≤-2C.-3≤b≤-2D.-3≤b<-24.已知关于x的不等式的解集如图,则这个不等式的非负整数解是.5.如果a与12的差小于a的9倍与8的和,那么请写出一个符合题意的a的值.6.已知x=3是方程x=x-a-1的解,求关于x的不等式ax+5<0的解集.27.是否存在整数m,使关于x的不等式mx-m>3x+2的解集为x<-4?若存在,求出整数m的值;若不存在,请说明理由.创新应用8.现有A,B两种型号的钢管,每根A型钢管的长度比每根B型钢管的长度的2倍少5 cm.现取这两种型号的钢管分别做长方形的钢框的长与宽,焊成周长大于2.9 m的长方形钢框.(1)B型钢管至少有多长才合适?列出不等式.(2)如果每根B型钢管的长度有以下四种选择:45 cm,55 cm,48 cm,50 cm,那么哪些合适?哪些不合适?答案:能力提升1.D2.C3.D4.0,1,2题中数轴表示的解集是x<3,满足x<3的非负整数有0,1,2,故这个不等式的非负整数解是0,1,2.5.答案不唯一,如0,1,2.只要满足a>-5即可.26.分析本题是方程与不等式的综合运用,通过解方程求出a的值,把a的值代入不等式,然后求不等式的解集.解由x=x-a-1,得2x=x-a-2,2∵x=3是原方程的解,∴a=-x-2=-3-2=-5.∴不等式ax+5<0可化为-5x+5<0,利用不等式的性质,得x>1.7.解∵mx-m>3x+2,∴(m-3)x>m+2.=-4,要使x<-4,必须m-3<0,且m+2m-3解得m<3,m=2,∴存在整数m=2,使关于x 的不等式mx -m>3x+2的解集为x<-4.创新应用8.解 (1)设B 型钢管的长为x cm,则A 型钢管的长为(2x -5) cm .根据题意,得2(x+2x -5)>290.(2)把45 cm,55 cm,48 cm,50 cm 分别代入(1)中的不等式,得x=55是该不等式的解,所以 55 cm 合适,45 cm,48 cm ,50 cm 不合适.4 一元一次不等式第1课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.不等式2(x+1)<3x 的解集在数轴上表示为 ( )2.不等式x -72+1<3x -22的负整数解有( )A.1个B.2个C.3个D.4个3.若不等式ax>b 的解集是x<ba,则a 的取值范围是( )A.a ≤0B.a<0C.a ≥0D.a>04.定义新运算:对于任意实数a ,b 都有:a b=a (a -b )+1,其中等式右边是通常的加法、减法及乘法运算,如:2 5=2×(2-5)+1=2×(-3)+1=-5.则不等式3 x<13的解集为 .5.若(m -2)x 2m+1-1>5是关于x 的一元一次不等式,则该不等式的解集是 .6.解不等式x -1≤1+x3,并把解集在数轴上表示出来.7.已知不等式x+8>4x+m (m 是常数)的解集是x<3,求m 的值.8.当1≤x ≤2时,ax+2>0,试求a 的取值范围.创新应用9.已知关于x ,y 的方程组{x -y =3,2x +y =6a的解满足不等式x+y<3,求实数a 的取值范围.答案: 能力提升1.D2.A3.B4.x>-15.x<-3 根据一元一次不等式的定义,可知2m+1=1,且m -2≠0,即m=0.把m=0 代入不等式,得-2x -1>5.解这个不等式,得x<-3.6.解 去分母,得3(x -1)≤1+x.去括号,得3x -3≤1+x.移项、合并同类项,得2x ≤4. 两边同除以2,得x ≤2.该不等式的解集用数轴表示如图所示:7.解 移项,得4x -x<8-m.合并同类项,得 3x<8-m.两边同除以3,得x<8-m 3.∵不等式的解集为x<3,∴8-m 3=3,解得m=-1.8.解 由题可知,当1≤x ≤2时,ax+2>0恒成立.①当a>0时,得x>-2a ,故-2a <1,故a>-2,又∵a>0,∴a>0;②当a=0时,原不等式为2>0,故当1≤x ≤2时,不等式恒成立;③当a<0时,得x<-2a ,故-2a >2,故a>-1,又∵a<0,∴-1<a<0.综上所述,a 的取值范围是a>-1. 创新应用9.解 把方程组中的两个方程相加,得3x=3+6a ,得x=1+2a,代入x-y=3,得y=x-3=2a-2.故x+y=4a-1,于是有4a-1<3,解得a<1.第2课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.某种商品的进价为800元,出售标价为1 200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,最多可打()A.6折B.7折C.8折D.9折2.老王家上个月付电话费31元以上,其中月租费21元.已知市内通话如果每次不超过3分钟,则话费为0.18元.如果老王家上个月打的全部是市内电话,且每次都不超过3分钟,那么老王家上个月通话次数最少为()A.55次B.56次C.57次D.58次3.小宏准备用50元买甲、乙两种饮料共10瓶,已知甲饮料每瓶7元,乙饮料每瓶4元,则小宏最多能买甲饮料.4.一只纸箱的质量为1 kg,放入一些苹果(每个苹果的质量约为0.25 kg)后,箱子和苹果的总质量不超过10 kg.这只箱子内最多能装个苹果.5.为绿化校园,某校计划购进A,B两种树苗,共21棵.已知A种树苗每棵90元,B种树苗每棵70元.设购买B 种树苗x棵,购买两种树苗所需费用为y元.(1)y与x的函数关系式为:;(2)若购买B种树苗的数量少于A种树苗的数量,请给出一种费用最省的方案,并求出该方案所需费用.6.某超市有甲、乙两种商品,甲商品每件进价10元,售价15元;乙商品每件进价30元,售价40元.(1)若该超市一次性购进两种商品共80件,且恰好用去1 600元,问购进甲、乙两种商品各多少件?(2)若该超市要使两种商品共80件的购进费用不超过1 640元,且总利润(利润=售价-进价)不少于600元,请你帮助该超市设计相应的进货方案,并指出使该超市利润最大的方案.7.某城市平均每天产生垃圾700 t,由甲、乙两个处理厂处理.已知甲厂每小时可处理垃圾55 t,需费用550元;乙厂每小时可处理垃圾45 t,需费用495元.问:(1)甲、乙两厂同时处理该城市的垃圾,每天需多长时间完成?(2)如果规定该城市每天用于处理垃圾的费用不得超过7 370元,那么甲厂每天处理垃圾至少需要多长时间?创新应用8.为了提倡低碳经济,某公司为了更好地节约能源,决定购买节省能源的10台新机器.现有甲、乙两种型号的设备供选择,其中每台的价格、工作量如下表:(1)经预算:该公司购买的节能设备的资金不超过110万元,请列式解答有几种购买方案可供选择;(2)在(1)的条件下,若每月要求产量不低于2 040吨,为了节约资金,请你设计一种最省钱的购买方案.答案:能力提升1.B2.B3.3瓶 设小宏买x 瓶甲饮料.列不等式为7x+4(10-x )≤50,解得x ≤313,即最多能买3瓶甲饮料.4.36 设这只纸箱内装x 个苹果.根据题意得0.25x+1≤10,解得x ≤36, 所以x 的最大值是36.5.解 (1)y=-20x+1 890 y=90(21-x )+70x=-20x+1 890.(2)由题意,得x<21-x ,解得x<10.5.又∵x ≥1,∴1≤x<10.5,且x 为整数.由(1)中一次函数知,y 随x 的增大而减小,故当x=10时,y 取最小值-20×10+1 890=1 690,因此,费用最省的方案是购买B 种树苗10棵,A 种树苗11棵,所需费用为1 690元.6.解 (1)设该超市购进甲商品x 件,乙商品(80-x )件.由题意,得10x+30(80-x )=1 600.解得x=40,80-x=40.因此,购进甲、乙两种商品各40件.(2)设该超市购进甲商品x 件,乙商品(80-x )件.由题意,得{10x +30(80-x )≤1 640,(15-10)x +(40-30)(80-x )≥600.解得38≤x ≤40.∵x 为整数,∴x=38,39,40,相应的y=42,41,40.从而利润分别为5×38+10×42=610,5×39+10×41=605,5×40+10×40=600. 因此,使该超市利润最大的方案是购进甲商品38件,乙商品42件.7.解 (1)设甲、乙两厂同时处理垃圾,每天需x h .依题意,得(55+45)x=700.解这个方程,得x=7.所以,甲、乙两厂同时处理垃圾,每天需7 h 完成. (2)设甲厂每天处理垃圾需要y h . 依题意,得55y×55055+(700-55y )×49545≤7 370,解得y ≥6.所以,甲厂每天处理垃圾至少需要6 h . 创新应用8.解 (1)设购买节省能源的甲型新设备x 台,乙型新设备(10-x )台.根据题意得12x+10(10-x )≤110, 解得x ≤5,∵x 取非负整数, ∴x=0,1,2,3,4,5, ∴有6种购买方案.(2)由题意得240x+180(10-x )≥2 040, 解得x ≥4, 则x 为4或5.当x=4时,购买资金为12×4+10×6=108(万元), 当x=5时,购买资金为12×5+10×5=110(万元),则最省钱的购买方案为选购甲型设备4台,乙型设备6台.5 一元一次不等式与一次函数第1课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.如图,已知直线y=kx+b 交坐标轴于A (-3,0),B (0,5)两点,则不等式-kx -b<0 的解集为( ) A.x>-3 B.x<-3 C.x>3 D.x<3 2.如图,函数y 1=|x|和y 2=13x+43的图象相交于(-1,1),(2,2)两点.当y 1>y 2时,x 的取值范围是( ) A.x<-1 B.-1<x<2 C.x>2 D.x<-1或x>23.如图,已知直线y 1=x+b 与y 2=kx -1相交于点P ,点P 的横坐标为-1,则关于x 的不等式x+b>kx -1的解集在数轴上表示正确的是( )4.在一次800 m 的长跑比赛中,甲、乙两人所跑的路程s (m)与各自所用时间t (s)之间的函数图象分别为线段OA 和折线OBCD ,下列说法正确的是( )A.甲的速度随时间的增加而增大B.乙的平均速度比甲的平均速度大C.在起跑后180 s 时,两人相遇D.在起跑后50 s 时,乙在甲的前面5.如图,已知一次函数y=kx+b的图象与x轴的交点坐标为(2,0),则下列说法:①y随x的增大而减小;②b>0;③关于x的方程kx+b=0的解为x=2.其中说法正确的有.(把你认为说法正确的序号都填上)6.若直线y=kx+b经过A(-2,-1)和B(-3,0)两点,则不等式2x<kx+b的解集为.7.当x为何值时,一次函数y=-2x+3的值小于一次函数y=3x-5的值?(1)一变:当x为何值时,一次函数y=-2x+3的值等于一次函数y=3x-5的值?(2)二变:当x为何值时,一次函数y=-2x+3的图象在一次函数y=3x-5的图象的上方?(3)三变:已知一次函数y1=-2x+a,y2=3x-5a,当x=3时,y1>y2,求a的取值范围.8.x+3的图象,观察图象回答下列问题:如图,直线l是函数y=12(1)当x取何值时,1x+3>0?2x+3<5?(2)当x取何值时,12x+3,则点P的坐标可能是(-2,1)吗?(3)若点P(x,y)满足x<5,且y>129.我边防局接到情报,在离海岸5海里处有一可疑船只A正向公海方向行驶,边防局迅速派出快艇B追赶.如图,l A,l B分别表示两船相对于海岸的距离s(海里)与追赶时间t(min)之间的关系.(1)A,B哪个速度更快?(2)B能否追上A?创新应用10.甲有存款600元,乙有存款2 000元,从本月开始,他们进行零存整取储蓄,甲每月存款500元,乙每月存款200元.(1)列出甲、乙的存款额y1,y2(元)与存款月数x(月)之间的函数关系式,并画出函数图象;(2)请问到第几个月,甲的存款额超过乙的存款额?答案:能力提升1.A2.D3.A4.D5.①②③6.x<-1易知y=-x-3,所以2x<-x-3,解得x<-1.7.解由题意,可知-2x+3<3x-5,.即-5x<-8,得x>85(1)由题意,可知-2x+3=3x-5,.即-5x=-8,得x=85(2)由题意,可知-2x+3>3x-5,.即-5x>-8,得x<85(3)当x=3时,y1=-6+a,y2=9-5a,∵y1>y2,∴-6+a>9-5a,.即6a>15,得a>528.解由题图可以看出函数与x轴的交点为(-6,0).x+3>0.(1)当x>-6时,12(2)由题图可以看出,当y=5时,x=4,x+3<5.所以当x<4时,12(3)由题意,得点P 满足横坐标x<5的同时,对应的点P 的位置要在直线的上方,而点(-2,1)在直线的下方, 故点P 的坐标不可能是(-2,1).9.分析 根据题图提供的信息,分别求出l A ,l B 的关系式,根据k 值的大小来判断谁的速度快,B 能否追上A.实际上,根据图象就可以直接作出判断.解 (1)∵直线l A 过(0,5),(10,7)两点,设直线l A 的函数表达式为s=k 1t+b ,则{5=b ,7=10k 1+b ,∴{k 1=15,b =5.∴s=15t+5. ∵直线l B 过(0,0),(10,5)两点,设直线l B 的函数表达式为s=k 2t ,则5=10k 2,∴k 2=12.∴s=12t.∵k 1<k 2,∴B 的速度快. (2)∵k 1<k 2,∴B 能追上A.创新应用10.解 (1)y 1=600+500x ;y 2=2 000+200x.函数图象如图.(2)令600+500x>2 000+200x ,解得x>423, 所以到第5个月甲的存款额超过乙的存款额.第2课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.某市打市话的收费标准是:每次3 min 以内(含3 min)收费0.2元,以后每 min 收费0.1元(不足1 min 按1 min 计).某天小芳给同学打了一个6 min 的市话,所用电话费为0.5元;小刚现准备给同学打市话6 min,他经过思考以后,决定先打3 min,挂断后再打3 min,这样只需电话费0.4元.若你想给某同学打市话,准备通话10 min,则你所需要的电话费至少为( ) A.0.6元 B.0.7元 C.0.8元 D.0.9元2.声音在空气中的传播速度y (m/s)(简称音速)与气温x (℃)满足关系式:y=35x+331.当音速超过340 m/s 时,气温 .3.某医药公司要把药品运往外地,现有两种运输方式可供选择.方式一:使用快递公司的邮车运输,装卸收费400元,另外每千米再加收4元;方式二:使用铁路运输公司的火车运输,装卸收费820元,另外每千米再加收2元.当运输路程时,选择邮车运输较好.4.某单位需刻录一批光盘,若在电脑公司刻录每张需8元(包括空白光盘费);若单位自制,除租用刻录机需120元外,每张还需成本4元(包括空白光盘费).问刻录这批光盘是到电脑公司刻录费用省,还是自制费用省?请说明理由.5.某商场计划投入一笔资金采购一批商品,经市场调研发现,如果本月初出售,那么可获利10%,然后将本利再投资其他商品,到下月初又可获利10%;如果下月初出售,那么可获利25%,但要支付仓储费8 000元.请你根据商场的资金情况,向商场提出合理化建议,说明何时出售获利较多.6.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A,B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见下表:(1)设派往A地区x台乙型联合收割机,农机租赁公司这50台联合收割机一天获得的租金为y(元),求y与x 之间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提出一条合理建议.7.甲、乙两家体育器材商店出售同样的乒乓球拍和乒乓球,球拍每副定价60元,乒乓球每盒定价10元.世界乒乓球锦标赛期间,两家商店都搞促销活动:甲商店规定每买1副乒乓球拍赠2盒乒乓球;乙商店规定所有商品9折优惠.某校乒乓球队需要买2副乒乓球拍,乒乓球若干盒(不少于4盒).设该校要买乒乓球x盒,所需商品在甲商店购买需用y1元,在乙商店购买需用y2元.(1)请分别写出y1,y2与x之间的函数关系式(不必注明自变量x的取值范围);(2)对x的取值情况进行分析,试说明在哪一家商店购买所需商品比较便宜;(3)若该校要买2副乒乓球拍和20盒乒乓球,在不考虑其他因素的情况下,请你设计一个最省钱的购买方案.创新应用8.新农村社区改造中,有一部分楼盘要对外销售,某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/m2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元.已知该楼盘每套楼房面积均为120 m2.若购买者一次性付清所有房款,则开发商有两种优惠方案:方案一:降价8%,另外每套楼房赠送a元装修基金;方案二:降价10%,没有其他赠送.(1)请写出售价y(元/m2)与楼层x(1≤x≤23,x取整数)之间的函数关系式;(2)老王要购买第十六层的一套楼房,若他一次性付清购房款,请帮他计算哪种优惠方案更加合算.答案:能力提升1.B2.超过15 ℃3.小于210千米4.解设需刻录x张光盘,单位自制的总费用为y1元,电脑公司刻录的总费用为y2元.由题意,得y1=4x+120,y2=8x.(1)当y1>y2,即4x+120>8x时,解得x<30;(2)当y1=y2,即4x+120=8x时,解得x=30;(3)当y1<y2,即4x+120<8x时,解得x>30.所以,当刻录光盘少于30张时,到电脑公司刻录费用省;当刻录光盘等于30张时,两个地方都行;当刻录光盘多于30张时,单位自制费用省.5.解设商场投入资金x元,如果本月初出售,到下月初可获利y1元,则y1=10%x+(1+10%)x·10%=0.1x+0.11x=0.21x;如果下月初出售,可获利y2元,则y2=25%x-8 000=0.25x-8 000.当y1=y2,即0.21x=0.25x-8 000时,x=200 000;当y1>y2,即0.21x>0.25x-8 000时,x<200 000;当y1<y2,即0.21x<0.25x-8 000时,x>200 000.所以,若商场投入资金20万元,两种销售方式获利相同;若商场投入资金少于20万元,本月初出售获利较多;若商场投入资金多于20万元,下月初出售获利较多.6.解(1)派往A地区的乙型收割机为x台,则派往A地区的甲型收割机为(30-x)台,派往B地区的乙型收割机为(30-x)台,派往B地区的甲型收割机为(x-10)台.则y=1 600x+1 800(30-x)+1 200(30-x)+1 600(x-10)=200x+74 000(10≤x≤30,x是正整数).(2)由题意,得200x+74 000≥79 600,解得x≥28.由于10≤x≤30,所以,x取28,29,30三个值.因此有三种分配方案.(3)由于一次函数y=200x+74 000的值是随着x的增大而增大的,故当x=30时,y取最大值.建议农机租赁公司将30台乙型收割机全部派往A地区,20台甲型收割机全部派往B地区,可使公司获得的租金最高.7.解(1)y1=10(x-4)+120=10x+80,y2=(10x+120)×90%=9x+108,x≥4,且x是整数.(2)若y1>y2,即10x+80>9x+108,解得x>28;若y1=y2,即10x+80=9x+108,解得x=28;若y1<y2,即10x+80<9x+108,解得x<28.故当x>28时,在乙商店购买所需的商品比较便宜;当4≤x<28时,在甲商店购买所需的商品比较便宜;当x=28时,在两家商店购买所需商品价钱一样.(3)若所需商品全部在一家商店购买,由(2)知,购买2副球拍和20盒乒乓球时,在甲商店购买比乙商店购买便宜,需10×20+80=280(元).若所需商品在两家商店购买,可以到甲商店购买2副乒乓球拍,需要2×60=120(元),同时获得4盒乒乓球;到乙商店购买16盒乒乓球,需16×10×90%=144(元),共需120+144=264(元).∵264元<280元,∴最佳的购买方案是:到甲商店购买2副乒乓球拍,获赠4盒乒乓球,到乙商店购买16盒乒乓球. 创新应用8.解 (1)当1≤x ≤8时,每平方米的售价应为y=4 000-(8-x )×30=30x+3 760(元/m 2),当9≤x ≤23时,每平方米的售价应为y=4 000+(x -8)×50=50x+3 600(元/m 2).故y={30x +3 760(1≤x ≤8),50x +3 600(9≤x ≤23).(2)第十六层楼房的每平方米的价格为50×16+3 600=4 400(元/m 2), 按照方案一所交房款为W 1=4 400×120×(1-8%)-a=485 760-a (元), 按照方案二所交房款为W 2=4 400×120×(1-10%)=475 200(元), 当W 1>W 2时,即485 760-a>475 200,解得0<a<10 560, 当W 1<W 2时,即485 760-a<475 200,解得a>10 560,故当0<a<10 560时,方案二合算;当a>10 560时,方案一合算;当a=10 560时,两种方案一样合算.6 一元一次不等式组第1课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.若一个关于x 的一元一次不等式组的解集在数轴上表示如图,则该不等式组的解集是( )A.-2<x<1B.-2<x ≤1C.-2≤x<1D.-2≤x ≤12.如图,天平右盘中的每个砝码的质量都是1 g,则物体A 的质量m (g)的取值范围在数轴上可表示为 ( )3.不等式组{4x -3>2x -6,25-x ≥-35的整数解的个数为( )A.1B.2C.3D.44.已知不等式组{x >2,x <a 的解集中共有5个整数,则a 的取值范围为( )A.7<a ≤8B.6<a ≤7C.7≤a<8D.7≤a ≤85.如果不等式组{3-2x ≥0,x ≥m ①②有解,那么m 的取值范围是 .6.不等式组{3x +4≥0,12x -24≤1的所有整数解的积为 .7.将一箱苹果分给若干名小朋友,若每名小朋友分5个苹果,则还剩12个苹果,若每名小朋友分8个苹果,则有一名小朋友分到了苹果但不足5个,则有小朋友 名,苹果 个.8.已知三个一元一次不等式:2x>6,2x ≥x+1,x -4<0,请从中选择你喜欢的两个不等式,组成一个不等式组,求出这个不等式组的解集,并把解集在数轴上表示出来.9.解不等式组{4(x +1)≤7x +10,x -5<x -83,并写出它的所有非负整数解.创新应用10.一个长方形足球场的长为x m,宽为70 m.如果它的周长大于350 m,面积小于7 560 m 2,求x 的取值范围,并判断这个足球场是否可以用作国际足球比赛.(注:用于国际足球比赛的足球场地的长在100 m 到110 m 之间,宽在64 m 到75 m 之间)答案: 能力提升1.C2.A3.C4.A5.m ≤32 首先将不等式组化简,由不等式①解得x ≤32,∵不等式组有解,∴m 的取值范围为m ≤32.6.07.6 428.解 答案不唯一,如(1)2x>6与x -4<0结合,组成不等式组{2x >6,x -4<0.①②解不等式①,得x>3;解不等式②,得x<4. 故不等式组的解集为3<x<4.不等式组的解集在数轴上表示如图.(2)2x ≥x+1与x -4<0结合,组成不等式组{2x ≥x +1,x -4<0.①②解不等式①,得x ≥1;解不等式②,得x<4.故不等式组的解集为1≤x<4.不等式组的解集在数轴上表示如图.9.解 {4(x +1)≤7x +10,x -5<x -83.①②由①得4x+4≤7x+10,-3x ≤6,x ≥-2. 由②得3x -15<x -8,2x<7,x<72.把不等式①②的解集在数轴上表示如图.所以不等式组的解集为-2≤x<72,其非负整数解为0,1,2,3. 创新应用10.解 由题意,得{2(x +70)>350,70x <7 560,解得105<x<108.所以可以用作国际足球比赛.第2课时知能演练提升ZHINENG YANLIAN TISHENG能力提升1.不等式组{2x +12<12x -4,3x -1≤2x的解集在数轴上表示正确的是( )2.关于x 的不等式组{3x -1>4(x -1),x <m的解集为x<3,则m 的取值范围为( )A.m=3B.m>3C.m<3D.m ≥33.生物兴趣小组要在温箱里培养A,B 两种菌苗.已知A 种菌苗的生长温度x (℃)的范围是35≤x ≤38,B 种菌苗的生长温度y (℃)的范围是34≤y ≤36.则温箱里的温度T (℃)的范围是( ) A.34≤T ≤38 B.35≤T ≤38C.35≤T ≤36D.36≤T ≤384.若不等式组{x <m +1,x >2m -1无解,则m 的取值范围是 . 5.若ab>0,根据学过的知识可将其转化为{a >0,b >0或{a <0,b <0.若x -2与x -3的乘积为正数,则x 的取值范围是 .6.关于x 的不等式组{x+152>x -3,2x+23<x +a 只有4个整数解,求a 的取值范围.7.一种药品的说明书上写着:“每日用量60~120 mg,分3~4次服用.”一次服用这种药品的剂量在什么范围?创新应用8.南海地质勘探队在一次勘探中发现了很有价值的A,B 两种矿石,A 矿石大约565 t,B 矿石大约500 t .要一次性将两种矿石运往冶炼厂,需要不同型号的甲、乙两种货船共30艘,甲货船每艘运费1 000元,乙货船每艘运费1 200元.(1)设运送这些矿石的总运费为y 元,若使用甲货船x 艘,请写出y 和x 之间的函数关系式.(2)如果甲货船最多可装A 矿石20 t 和B 矿石15 t,乙货船最多可装A 矿石15 t 和B 矿石25 t,装矿石时按此要求安排甲、乙两种货船,共有几种安排方案?哪种安排方案运费最低并求出最低运费.答案:能力提升1.C2.D3.C4.m ≥2 不等式组{x <m +1,x >2m -1无解, 因此,2m -1≥m+1,解这个不等式得m ≥2.5.x>3或x<2 由(x -2)(x -3)>0得{x -2>0,x -3>0或{x -2<0,x -3<0.解第一个不等式组得x>3,解第二个不等式组得x<2.故x 的取值范围是x>3或x<2.6.解 解不等式组{x+152>x -3,2x+23<x +a ,得{x <21,x >2-3a . 由不等式组有4个整数解,可知这4个解应是20,19,18,17,则 16≤2-3a<17,解得a 的取值范围为-5<a ≤-143.7.解 设一次服用的剂量为x mg .若分3次服用,则{3x ≥60,3x ≤120,解得20≤x ≤40; 若分4次服用,则{4x ≥60,4x ≤120,解得15≤x ≤30. 创新应用8.解 (1)y=1 000x+1 200(30-x ).(2){20x +15(30-x )≥565,15x +25(30-x )≥500,解得23≤x ≤25.因为x 为整数,所以x 可取23,24,25.因此共有3种方案. 方案一:甲货船23艘、乙货船7艘,运费y=1 000×23+1 200×7=31 400元; 方案二:甲货船24艘、乙货船6艘,运费y=1 000×24+1 200×6=31 200元; 方案三:甲货船25艘、乙货船5艘,运费y=1 000×25+1 200×5=31 000元. 所以,方案三运费最低,最低运费为31 000元.。

新部编初中数学八年级下册同步练习试题及答案_第16章 二次根式(19页)

新部编初中数学八年级下册同步练习试题及答案_第16章 二次根式(19页)

第十六章 二次根式测试1 二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.a +1表示二次根式的条件是______. 2.当x ______时,12--x 有意义,当x ______时,31+x 有意义. 3.若无意义2+x ,则x 的取值范围是______. 4.直接写出下列各式的结果: (1)49=_______;(2)2)7(_______; (3)2)7(-_______;(4)2)7(--_______; (5)2)7.0(_______;(6)22])7([- _______. 二、选择题5.下列计算正确的有( ).①2)2(2=- ②22=- ③2)2(2=- ④2)2(2-=-A .①、②B .③、④C .①、③D .②、④6.下列各式中一定是二次根式的是( ). A .23-B .2)3.0(-C .2-D .x7.当x =2时,下列各式中,没有意义的是( ). A .2-xB .x -2C .22-xD .22x -8.已知,21)12(2a a -=-那么a 的取值范围是( ).A .21>aB .21<a C .21≥a D .21≤a 三、解答题9.当x 为何值时,下列式子有意义? (1);1x -(2);2x -(3);12+x (4)⋅+-xx2110.计算下列各式:(1);)23(2 (2);)1(22+a(3);)43(22-⨯-(4).)323(2-综合、运用、诊断一、填空题11.x 2-表示二次根式的条件是______. 12.使12-x x有意义的x 的取值范围是______. 13.已知411+=-+-y x x ,则x y 的平方根为______. 14.当x =-2时,2244121x x x x ++-+-=________. 二、选择题15.下列各式中,x 的取值范围是x >2的是( ).A .2-xB .21-xC .x -21D .121-x16.若022|5|=++-y x ,则x -y 的值是( ). A .-7B .-5C .3D .7三、解答题17.计算下列各式:(1);)π14.3(2- (2);)3(22--(3);])32[(21-(4).)5.03(2218.当a =2,b =-1,c =-1时,求代数式aacb b 242-±-的值.拓广、探究、思考19.已知数a ,b ,c 在数轴上的位置如图所示:化简:||)(||22b b c c a a ---++-的结果是:______________________.20.已知△ABC 的三边长a ,b ,c 均为整数,且a 和b 满足.09622=+-+-b b a 试求△ABC 的c 边的长.测试2 二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果y x xy ⋅=24成立,x ,y 必须满足条件______.2.计算:(1)=⨯12172_________;(2)=--)84)(213(__________; (3)=⨯-03.027.02___________.3.化简:(1)=⨯3649______;(2)=⨯25.081.0 ______;(3)=-45______. 二、选择题4.下列计算正确的是( ). A .532=⋅ B .632=⋅C .48=D .3)3(2-=-5.如果)3(3-=-⋅x x x x ,那么( ).A .x ≥0B .x ≥3C .0≤x ≤3D .x 为任意实数6.当x =-3时,2x 的值是( ). A .±3 B .3 C .-3 D .9三、解答题7.计算:(1);26⨯(2));33(35-⨯- (3);8223⨯(4);1252735⨯ (5);131aab ⋅(6);5252ac c b b a ⋅⋅(7);49)7(2⨯- (8);51322-(9).7272y x8.已知三角形一边长为cm 2,这条边上的高为cm 12,求该三角形的面积.综合、运用、诊断一、填空题9.定义运算“@”的运算法则为:,4@+=xy y x 则(2@6)@6=______.10.已知矩形的长为cm 52,宽为cm 10,则面积为______cm 2.11.比较大小:(1)23_____32;(2)25______34;(3)-22_______-6. 二、选择题12.若b a b a -=2成立,则a ,b 满足的条件是( ).A .a <0且b >0B .a ≤0且b ≥0C .a <0且b ≥0D .a ,b 异号13.把4324根号外的因式移进根号内,结果等于( ). A .11- B .11C .44-D .112三、解答题14.计算:(1)=⋅x xy 6335_______;(2)=+222927b a a _______;(3)=⋅⋅21132212_______; (4)=+⋅)123(3_______.15.若(x -y +2)2与2-+y x 互为相反数,求(x +y )x 的值.拓广、探究、思考16.化简:(1)=-+1110)12()12(________;(2)=-⋅+)13()13(_________.测试3 二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)=12______;(2)=x 18______;(3)=3548y x ______;(4)=xy______; (5)=32______;(6)=214______;(7)=+243x x ______;(8)=+3121______. 2.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:23 与.2(1)32与______; (2)32与______;(3)a 3与______; (4)23a 与______; (5)33a 与______. 二、选择题 3.xxx x -=-11成立的条件是( ). A .x <1且x ≠0 B .x >0且x ≠1C .0<x ≤1D .0<x <14.下列计算不正确的是( ). A .471613= B .xy x x y 63132= C .201)51()41(22=-D .x x x3294= 5.把321化成最简二次根式为( ). A .3232 B .32321C .281 D .241 三、计算题 6.(1);2516 (2);972(3);324 (4);1252755÷-(5);1525 (6);3366÷(7);211311÷(8).125.02121÷综合、运用、诊断一、填空题7.化简二次根式:(1)=⨯62________(2)=81_________(3)=-314_________8.计算下列各式,使得结果的分母中不含有二次根式: (1)=51_______(2)=x 2_________(3)=322__________(4)=y x5__________ 9.已知,732.13≈则≈31______;≈27_________.(结果精确到0.001) 二、选择题 10.已知13+=a ,132-=b ,则a 与b 的关系为( ). A .a =b B .ab =1C .a =-bD .ab =-111.下列各式中,最简二次根式是( ).A .yx -1B .ba C .42+x D .b a 25三、解答题12.计算:(1);3b a ab ab ⨯÷ (2);3212y xy ÷(3)⋅++ba b a13.当24,24+=-=y x 时,求222y xy x +-和xy 2+x 2y 的值.拓广、探究、思考14.观察规律:,32321,23231,12121-=+-=+-=+……并求值.(1)=+2271_______;(2)=+10111_______;(3)=++11n n _______.15.试探究22)(a 、a 与a 之间的关系.测试4 二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式15,12,18,82,454,125,27,32化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.2.计算:(1)=+31312________; (2)=-x x 43__________.二、选择题3.化简后,与2的被开方数相同的二次根式是( ). A .10B .12C .21 D .61 4.下列说法正确的是( ).A .被开方数相同的二次根式可以合并B .8与80可以合并C .只有根指数为2的根式才能合并D .2与50不能合并5.下列计算,正确的是( ). A .3232=+B .5225=-C .a a a 26225=+D .xy x y 32=+ 三、计算题6..48512739-+ 7..61224-+8.⋅++3218121 9.⋅---)5.04313()81412(10..1878523x x x +- 11.⋅-+xx x x 1246932综合、运用、诊断一、填空题12.已知二次根式b a b +4与b a +3是同类二次根式,(a +b )a 的值是______.13.3832ab 与b a b 26无法合并,这种说法是______的.(填“正确”或“错误”) 二、选择题14.在下列二次根式中,与a 是同类二次根式的是( ).A .a 2B .23aC .3aD .4a三、计算题 15..)15(2822180-+-- 16.).272(43)32(21--+17.⋅+-+bb a b a a124118..21233ab bb a aba bab a-+-四、解答题19.化简求值:y y xy xx 3241+-+,其中4=x ,91=y .20.当321-=x 时,求代数式x 2-4x +2的值.拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立?你认为成立的,在括号内画“√”,否则画“×”.①322322=+( ) ②833833=+( )③15441544=+( ) ④24552455=+( ) (2)你判断完以上各题后,发现了什么规律?请用含有n 的式子将规律表示出来,并写出n 的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.测试5 二次根式的加减(二)学习要求会进行二次根式的混合运算,能够运用乘法公式简化运算.课堂学习检测一、填空题1.当a =______时,最简二次根式12-a 与73--a 可以合并. 2.若27+=a ,27-=b ,那么a +b =______,ab =______.3.合并二次根式:(1)=-+)18(50________;(2)=+-ax xax45________. 二、选择题4.下列各组二次根式化成最简二次根式后的被开方数完全相同的是( ). A .ab 与2abB mn 与nm 11+ C .22n m +与22n m - D .2398b a 与4329b a5.下列计算正确的是( ). A .b a b a b a -=-+2))(2( B .1239)33(2=+=+C .32)23(6+=+÷D .641426412)232(2-=+-=- 6.)32)(23(+-等于( ). A .7 B .223366-+- C .1D .22336-+三、计算题(能简算的要简算) 7.⋅-121).2218( 8.).4818)(122(+-9.).32841)(236215(-- 10.).3218)(8321(-+11..6)1242764810(÷+- 12..)18212(2-综合、运用、诊断一、填空题13.(1)规定运算:(a *b )=|a -b |,其中a ,b 为实数,则=+7)3*7(_______.(2)设5=a ,且b 是a 的小数部分,则=-ba a ________.二、选择题14.b a -与a b -的关系是( ). A .互为倒数 B .互为相反数 C .相等D .乘积是有理式15.下列计算正确的是( ).A .b a b a +=+2)(B .ab b a =+C .b a b a +=+22D .a aa =⋅1三、解答题 16.⋅+⋅-221221 17.⋅--+⨯2818)212(218..)21()21(20092008-+ 19..)()(22b a b a --+四、解答题20.已知,23,23-=+=y x 求(1)x 2-xy +y 2;(2)x 3y +xy 3的值.21.已知25-=x ,求4)25()549(2++-+x x 的值.拓广、探究、思考22.两个含有二次根式的代数式相乘,如果它们的积不含有二次根式,我们说这两个代数式互为有理化因式.如:a 与a ,63+与63-互为有理化因式. 试写下列各式的有理化因式: (1)25与______;(2)y x 2-与______;(3)mn 与______; (4)32+与______; (5)223+与______;(6)3223-与______.23.已知,732.13,414.12≈≈求)23(6-÷.(精确到0.01)答案与提示第十六章 二次根式测试11.a ≥-1.2.<1, >-3.3.x <-2.4.(1)7; (2)7; (3)7; (4)-7; (5)0.7; (6)49. 5.C . 6.B . 7.D . 8.D .9.(1)x ≤1;(2)x =0;(3)x 是任意实数;(4)x ≤1且x ≠-2.10.(1)18;(2)a 2+1;(3);23- (4)6.11.x ≤0. 12.x ≥0且⋅=/21x 13.±1. 14.0. 15.B . 16.D . 17.(1)π-3.14;(2)-9;(3);23 (4)36. 18.21-或1.19.0. 20.提示:a =2,b =3,于是1<c <5,所以c =2,3,4.测试2 1.x ≥0且y ≥0.2.(1);6 (2)24;(3)-0.18.3.(1)42;(2)0.45;(3).53- 4.B . 5.B . 6.B .7.(1);32 (2)45; (3)24; (4);53 (5);3b(6);52(7)49; (8)12; (9)⋅y xy 263 8..cm 629..72 10.210. 11.(1)>;(2)>;(3)<. 12.B . 13.D .14.(1);245y x (2);332b a + (3) ;34 (4)9. 15.1. 16.(1);12- (2).2测试31.(1);32 (2);23x (3);342xy y x (4);xxy (5);36 (6);223 (7);32+x x (8)630. 2..3)5(;3)4(;3)3(;2)2(;3)1(a a 3.C . 4.C . 5.C . 6..4)8(;322)7(;22)6(;63)5(;215)4(;22)3(;35)2(;54)1(-7.⋅-339)3(;42)2(;32)1( 8.⋅y y x x x 55)4(;66)3(;2)2(;55)1( 9.0.577,5.196. 10.A . 11.C . 12..)3(;33)2(;)1(b a x bab+ 13..112;2222222=+=+-y x xy y xy x 14..1)3(;1011)2(;722)1(n n -+--15.当a ≥0时,a a a ==22)(;当a <0时,a a -=2,而2)(a 无意义.测试41..454,125;12,27;18,82,32 2.(1).)2(;33x3.C . 4.A . 5.C . 6..33 7..632+ 8.⋅827 9..23+ 10..214x 11..3x 12.1. 13.错误. 14.C . 15..12+ 16.⋅-423411 17..321b a + 18.0.19.原式,32y x+=代入得2. 20.1. 21.(1)都画“√”;(2)1122-=-+n n nn n n (n ≥2,且n 为整数);(3)证明:⋅-=-=-+-=-+111)1(1223222n nn n n n n n n n n n 测试51.6. 2..3,72 3.(1);22 (2) .3ax - 4.D . 5.D . 6.B . 7.⋅668..1862-- 9..3314218-10.⋅417 11..215 12..62484-13.(1)3;(2).55-- 14.B . 15.D . 16.⋅-4117.2. 18..21- 19.ab 4(可以按整式乘法,也可以按因式分解法).20.(1)9; (2)10. 21.4.22.(1)2; (2)y x 2-; (3)mn ; (4)32-; (5)223-; (6)3223+(答案)不唯一. 23.约7.70.第十六章 二次根式全章测试一、填空题 1.已知mnm 1+-有意义,则在平面直角坐标系中,点P (m ,n )位于第______象限. 2.322-的相反数是______,绝对值是______. 3.若3:2:=y x ,则=-xy y x 2)(______.4.已知直角三角形的两条直角边长分别为5和52,那么这个三角形的周长为______. 5.当32-=x 时,代数式3)32()347(2++++x x 的值为______. 二、选择题6.当a <2时,式子2)2(,2,2,2-+--a a a a 中,有意义的有( ). A .1个 B .2个C .3个D .4个7.下列各式的计算中,正确的是( ). A .6)9(4)9()4(=-⨯-=-⨯- B .7434322=+=+C .9181404122=⨯=-D .2323= 8.若(x +2)2=2,则x 等于( ). A .42+B .42-C .22-±D .22±9.a ,b 两数满足b <0<a 且|b |>|a |,则下列各式中,有意义的是( ). A .b a +B .a b -C .b a -D .ab10.已知A 点坐标为),0,2(A 点B 在直线y =-x 上运动,当线段AB 最短时,B 点坐标( ).A .(0,0)B .)22,22(- C .(1,-1) D .)22,22(-三、计算题11..1502963546244-+- 12.).32)(23(--13..25341122÷⋅ 14.).94(323ab ab ab a aba b+-+15.⋅⋅-⋅ba b a ab ba 3)23(35 16.⋅÷+--+xy yx y x xy yx y )(四、解答题17.已知a 是2的算术平方根,求222<-a x 的正整数解.18.已知:如图,直角梯形ABCD 中,AD ∥BC ,∠A =90°,△BCD 为等边三角形,且AD 2=,求梯形ABCD 的周长.附加题19.先观察下列等式,再回答问题.①;2111111112111122=+-+=++②;6111212113121122=+-+=++ ③⋅=+-+=++12111313114131122(1)请根据上面三个等式提供的信息,猜想2251411++的结果; (2)请按照上面各等式反映的规律,试写出用n (n 为正整数)表示的等式.20.用6个边长为12cm 的正方形拼成一个长方形,有多少种拼法?求出每种长方形的对角线长(精确到0.1cm ,可用计算器计算).答案与提示第十六章 二次根式全章测试1.三. 2..223,223-- 3..2665- 4..555+ 5..32+ 6.B . 7.C . 8.C . 9.C . 10.B . 11..68- 12..562- 13.⋅1023 14..2ab - 15..293ab b a - 16.0. 17.x <3;正整数解为1,2. 18.周长为.625+ 19.(1);2011141411=+-+(2).)1(111111)1(11122++=+-+=+++n n n nn n20.两种:(1)拼成6×1,对角线);cm (0.733712721222≈=+(2)拼成2×3,对角线3.431312362422≈=+(cm).。

人教版八年级数学下册正方形知识点及同步练习、含答案

人教版八年级数学下册正方形知识点及同步练习、含答案

学科:数学 教学内容:正方形【学习目标】1.掌握正方形的定义、性质和判定方法.2.能正确区别平行四边形、矩形、菱形、正方形之间的关系. 3.能运用正方形的性质和判定方法进行有关的计算和证明.【主体知识归纳】1.正方形:有一组邻边相等并且有一个角是直角的平行四边形叫做正方形.2.正方形的性质:正方形除具有平行四边形、矩形、菱形的一切性质外,还具有: (1)正方形的四个角都是直角,四条边都相等;(2)正方形的两条对角线相等并且互相垂直平分,每条对角线平分一组对角. 3.正方形的判定(1)根据正方形的定义;(2)有一组邻边相等的矩形是正方形; (3)有一个角是直角的菱形是正方形; (4)既是矩形又是菱形的四边形是正方形.【基础知识精讲】1.掌握正方形定义是学好本节的关键,正方形是在平行四边形的前提下定义的,它包含两层意思:正方形矩形平行四边形并且有一个角是直角的菱形四边形有一组邻边相等的平行⎭⎬⎫)()2()()1(正方形不仅是特殊的平行四边形,而且是特殊的矩形,又是特殊的菱形.2.正方形的性质可归纳如下: 边:对边平行,四边相等; 角:四个角都是直角;对角线:对角线相等,互相垂直平分,每条对角线平分一组对角. 此外:正方形的一条对角线把正方形分成两个全等的等腰直角三角形,对角线与边的夹角是45°;正方形的两条对角线把它分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴,学习时,应熟悉这些最基本的内容.【例题精讲】[例1]如图4-50,已知矩形ABCD 中,F 为CD 的中点,在BC 上有一点E ,使AE =DC +CE ,AF 平分∠EAD .求证:矩形ABCD 是正方形.图4—50剖析:欲证矩形ABCD是正方形,只要证明有一组邻边相等即可,由已知AE=DC+CE,容易想到若能证明AE=AD+CE便可证得AD=DC,由于AF平分∠EAD,因此可在AE上截取AG=AD,再证GE=CE,就可得出要证的结论.证明:在AE上截取AG=AD,连结FG、FE.∵四边形ABCD是矩形,∴∠D=∠C=90°.∵AD=AG,∠DAF=∠GAF,AF=AF∴△ADF≌△AGF,∴DF=GF,∠D=∠AGF=90°.∵DF=CF,∴GF=CF.∵∠FGE=∠C=90°,FE=FE,∴Rt△GFE≌Rt△CFE.∴GE=CE,∴AD+CE=AE.又DC+CE=AE,∴AD=DC.∴矩形ABCD是正方形.说明:要判定一个四边形是正方形,可先判定这个四边形是矩形,再证明有一组邻边相等;或先判定它是菱形,再证明有一个角是直角.[例2]如图4-51,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于点F,则OE=OF.图4—51对上述命题的证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO.∴∠3+∠2=90°,∵AG⊥BE,∴∠1+∠3=90°.∴∠1=∠2,∴△BOE≌△AOF,∴OE=OF问题:对于上述命题,若点E在AC延长线上,AG⊥EB,交EB的延长线于G,AG的延长线交DB的延长线于点F,其他条件不变(如图4-52),结论“OE=OF”还成立吗?如果成立,请给出证明;如果不成立,请说明理由.图4—52剖析:可仿上述的证明,证△BOE≌△AOF.解:结论OE=OF仍然成立,证明如下:∵四边形ABCD是正方形,∴∠BOE=∠AOF=90°,BO=AO,∴∠OFA+∠FAE=90°又∵AG⊥EB,∴∠OEB+∠EAF=90°,∴∠OEB=∠OFA,∴△BOE≌△AOF,∴OE=OF.[例3]有一正方形池塘,池塘四个角上有四棵树,现计划把此池塘改为面积扩大一倍的正方形,能否不毁掉树木而达到要求?请你设计出方案来.图4—53剖析:新改造的池塘的面积是原面积的2倍,因此,新边长应为原边长的2倍,而正方形的对角线是边长的2倍,故以原对角线的长为边长构造新的正方形.答案:如图4-53,分别过B、D作AC的平行线,分别过A、C作BD的平行线,四条线分别交于A′、B′、C′、D′,则四边形A′B′C′D′为要求的正方形.【同步达纲练习】1.选择题(1)下列命题中,假命题的个数是()①四边都相等的四边形是正方形②对角线互相垂直的平行四边形是正方形③四角都相等的四边形是正方形④对角线相等的菱形是正方形A.1 B.2 C.3 D.4(2)正方形具有而菱形不具有的性质是()A.对角线互相垂直平分B.对角线相等C.邻边相等D.每条对角线平分一组对角(3)正方形的对角线与边长之比为()A.1∶1 B.2∶1 C.1∶2 D.2∶1(4)以等边△ABC的边BC为边向外作正方形BCDE,则①∠ABD=105°,②∠ACD=150°,③∠DAE=30°,④△ABE≌△ACD,其中正确的结论有()A.1个 B.2个 C.3个 D.4个(5)在正方形ABCD中,P、Q、R、S分别在边AB、BC、CD、DA上,且AP=BQ=CR=DS =1,AB=5,那么四边形PQRS的面积等于()A.17 B.16 C.15 D.9(6)如图4-54,正方形ABCD中,O是对角线AC、BD的交点,过O点作OE⊥OF分别交AB、BC于E、F,若AE=4,CF=3,则EF等于()图4—54A.7 B.5 C.4 D.3(7)在正方形ABCD中,E、F两点分别是BC、CD边上的点,若△AEF是边长为2的等边三角形,则正方形ABCD的边长为()A.213+B.213-C.3 D.2(8)如图4-55,在正方形ABCD中,CE=MN,∠MCE=35°,那么∠ANM等于()图4—55A.45°B.55°C.65°D.75°2.填空题(1)已知正方形的面积是16 cm2,则它的一边长是_____,一条对角线长是_____.(2)已知正方形的对角线长为22,则此正方形的周长为_____,面积为_____. (3)在正方形ABCD 中,两条对角线相交于O ,∠BAC 的平分线交BD 于E ,若正方形ABCD 的周长是16 cm ,则DE =_____cm .(4)在正方形ABCD 的边BC 的延长线上取一点E ,使CE =AC ,连结AE 交CD 于F ,那么∠AFC 等于_____度.3.如图4-56,已知正方形ABCD 中,E 为CD 边上一点,F 为BC 延长线上一点,且CE =CF .图4—56(1)求证:△BCE ≌△DCF ;(2)若∠BEC =60°,求∠EFD 的度数.4.已知:如图4-57,在正方形ABCD 中,E 是CB 延长线上一点,EB =21BC ,如果F 是AB 的中点,请你在正方形ABCD 上找一点,与F 点连结成线段,并证明它和AE 相等.图4—575.以△ABC 的AB 、AC 为边,向三角形外作正方形ABDE 及ACGF ,作AN ⊥BC 于点N ,延长NA 交EF 于M 点.(1)求证:EM =FM ;(2)若使AM =21EF ,则△ABC 必须满足什么条件呢?图4—586.如图4-58,已知正方形ABCD 中,M 、F 分别在边AB 、AD 上,且MB =FD ,E 是AB 延长线上一点,MN ⊥DM ,MN 与∠CBE 的平分线相交于N .求证:DM =MN .7.如图4-59,已知C是线段AB上的一点,分别以AC、BC为边作正方形ACDE和BCFG.图4—59求证:AF=DB;若点C在线段AB的延长线上,猜想上述结论是否正确,如果正确,请加以证明,如果不正确,请说明理由.【思路拓展题】你会设计吗今有一片正方形土地,要在其上修筑两条笔直的道路,使道路把这片地分成形状相同且面积相等的4部分,若道路的宽度忽略不计,请设计三种不同的修筑方案.(在给出如图4-60的三张正方形纸片上分别画图,并简述画图步骤)图4—60参考答案【同步达纲练习】1.(1)C (2)B (3)B (4)D (5)A (6)B (7)A(8)B2.(1)4 42(2)8 4 (3)4 (4)112.53.(1)略(2)15°4.连结CF,可证△ABE≌△CBF或连结DF,让△ABE≌△DAF。

19.2.2 一次函数(1) 人教版数学八年级下册同步练习(含解析)

19.2.2 一次函数(1) 人教版数学八年级下册同步练习(含解析)

第十九章 一次函数19.2.2 一次函数(1)基础过关全练知识点1 一次函数的定义1.下列函数关系式中,属于一次函数的是( )A.y =2x -1  B.y =x 2+1C.y =kx +b (k 、b 是常数)D.y =1-2x2.(2022黑龙江哈尔滨期末)当m 为何值时,函数y =(m -3)x 3-|m |+m +2是一次函数( )A.2B.-2C.-2或2D.3知识点2 一次函数的图象与性质3.【教材变式·P92例3变式】下列函数图象中,表示直线y =2x +1的是( )A B C D4.【教材变式·P91思考变式】将直线y =5x 向下平移2个单位长度,所得直线的表达式为( )A.y =5x -2B.y =5x +2C.y =5(x +2)D.y =5(x -2)5.(2020黑龙江牡丹江中考)已知一次函数y =(2m -3)x +3n +1的图象经过第一、二、三象限,则m 、n 的取值是( )A.m >3,n >3B.m >32,n >-13 C.m <32,n <13 D.m >32,n <136.【新独家原创】新定义:[a,b,c]为函数y=ax2+bx+c(a,b,c为实数)的“关联数”.若“关联数”为[m-2,m,-1]的函数为一次函数,对于该一次函数,下列说法正确的是( ) A.它的图象过点(1,0) B.y值随着x值的增大而减小C.它的图象经过第二象限D.当x>1时,y>07.(2022云南八中期末)在一次函数y=(5a2+8)x-3(a为常数)的图象上有A(x1,y1),B(x2,y2),C(x3,y3)三点.若x1<x2<x3,则y1,y2,y3的大小关系为( )A.y1<y2<y3B.y2<y1<y3C.y1<y3<y2D.y3<y2<y18.(2020辽宁丹东中考)已知一次函数y=-2x+b,且b>0,则它的图象不经过第 象限.9.(2021四川眉山中考)一次函数y=(2a+3)x+2的值随x值的增大而减小,则常数a的取值范围是 .10.已知函数y=(2m+1)x+m-3.(1)若函数图象经过原点,求m的值;(2)若该函数的图象与直线y=3x-3平行,求m的值;(3)若这个函数是一次函数,且y随着x的增大而减小,求m的取值范围. 能力提升全练11.(2022湖南邵阳中考,8,★☆☆)在直角坐标系中,已知点,m,点,n是直线y=kx+b(k<0)上的两点,则m,n的大小关系是( )A.m<nB.m>nC.m≥nD.m≤n12.(2022河南信阳期末,8,★☆☆)已知点A(x1,y1),B(x2,y2)在直线y=kx+b(k≠0)上,y随x的增大而增大,且kb>0,则在平面直角坐标系内,它的图象大致是( )A B C D13.(2022浙江绍兴中考,9,★★☆)已知(x1,y1),(x2,y2),(x3,y3)为直线y=-2x+3上的三个点,且x1<x2<x3,则以下判断正确的是( ) A.若x1x2>0,则y1y3>0 B.若x1x3<0,则y1y2>0C.若x2x3>0,则y1y3>0D.若x2x3<0,则y1y2>014.(2020四川凉山州中考,7,★★☆)若一次函数y=(2m+1)x+m-3的图象不经过第二象限,则m的取值范围是( ) A.m>-12B.m<3C.-12<m<3 D.―12<m≤315.(2022安徽芜湖一中期末,12,★☆☆)已知点A(x1,y1),B(x2,y2)在一次函数y=(a-2)x+1的图象上,当x1>x2时,y1<y2,则a的取值范围是 .16.(2022重庆期末,12,★★☆)若关于x的分式方程6xx―1=3+axx―1的解为整数,且一次函数y=(7-a)x+a的图象不经过第四象限,则符合题意的整数a的个数为 .素养探究全练17.【几何直观】在平面直角坐标系xOy中,点P的坐标为(m+1,m-1).(1)试判断点P是否在一次函数y=x-2的图象上,并说明理由;(2)如图,一次函数y=-12x+3的图象与x轴、y轴分别相交于点A、B,若点P在△AOB的内部,求m的取值范围.18.【运算能力】一次函数y=(m-2)x+m2-1的图象经过点A(0,3).(1)求m的值,并写出函数解析式;(2)若函数图象与x轴交于点B,直线y=(n+2)x+n2-1也经过点A(0,3),且与x轴交于点C,求线段BC的长.答案全解全析基础过关全练1.D y =2x -1中,2x 不是整式,不是一次函数,y =x 2+1不是一次函数,y =kx +b (k 、b 是常数)中,当k =0时,不是一次函数,y =1-2x 是一次函数.故选D .2.C 由题意得3-|m |=1且m -3≠0,∴m =±2且m ≠3,∴m 的值为2或-2,故选C .3.B ∵k =2>0,b =1>0,∴直线经过第一、二、三象限.故选B .4.A 将直线y =5x 向下平移2个单位长度,所得直线的表达式为y =5x -2.故选A .5.B ∵一次函数y =(2m -3)x +3n +1的图象经过第一、二、三象限,∴2m ―3>0,3n +1>0,解得m >32,n >-13,故选B .6.D 根据题意可得m -2=0,且m ≠0,解得m =2,所以该一次函数表达式为y =2x -1,把x =1代入y =2x -1得到y =1,故该函数图象经过点(1,1),不经过点(1,0),故选项A 错误;函数y =2x -1中,k =2>0,则y 值随着x 值的增大而增大,故选项B 错误;函数y =2x -1中,k =2>0,b =-1<0,则该函数图象经过第一、三、四象限,故选项C 错误;当x >1时,2x -1>1,即y >1,故y >0正确,故选项D 正确.故选D .7.A 一次函数y =(5a 2+8)x -3(a 为常数)中,5a 2+8>0,∴y随x的增大而增大,∵x1<x2<x3,∴y1<y2<y3,故选A.8.答案 三解析 ∵一次函数y=-2x+b,且b>0,∴它的图象经过第一、二、四象限,不经过第三象限.9.答案 a<-32解析 ∵一次函数y=(2a+3)x+2的值随x值的增大而减小,∴2a+3<0,解得a<-32.10.解析 (1)∵函数y=(2m+1)x+m-3的图象经过原点,∴当x=0时,y=0,即m-3=0,解得m=3.(2)∵函数y=(2m+1)x+m-3的图象与直线y=3x-3平行,∴2m+1=3,且m-3≠-3,解得m=1.(3)∵这个函数是一次函数,且y随着x的增大而减小,∴2m+1<0,解得m<-12.能力提升全练11.A ∵点,m,点,n是直线y=kx+b上的两点,且k<0,∴y随x的增大而减小,∵32>72,∴m<n,故选A.12.A ∵点A(x1,y1),B(x2,y2)在直线y=kx+b(k≠0)上,y随x的增大而增大,且kb>0,∴k>0,b>0,∴直线y=kx+b经过第一、二、三象限,故选A.13.D ∵y=-2x+3中,-2<0,∴y随x的增大而减小,当y=0时,x=1.5,∵(x1,y1),(x2,y2),(x3,y3)为直线y=-2x+3上的三个点,且x1<x2<x3,∴若x1x2>0,则x1,x2同号,但不能确定y1y3的正负,故选项A不符合题意;若x1x3<0,则x1,x3异号,但不能确定y1y2的正负,故选项B不符合题意;若x2x3>0,则x2,x3同号,但不能确定y1y3的正负,故选项C不符合题意;若x2x3<0,则x2,x3异号,则x1,x2同时为负,故y1,y2同时为正,故y1y2>0,故选项D符合题意.故选D.14.D 根据题意得2m+1>0,m―3≤0,解得―12<m≤3.故选D.15.答案 a<2解析 ∵当x1>x2时,y1<y2,∴a-2<0,∴a<2,故答案为a<2.16.答案 3解析 ∵一次函数y=(7-a)x+a的图象不经过第四象限,∴7―a>0,a≥0,解得0≤a<7,由分式方程6xx―1=3+axx―1得x=3a―3,∵分式方程6xx―1=3+axx―1的解为整数,且x≠1,∴整数a=0,2,4,∴符合题意的整数a的个数为3.素养探究全练17.解析 (1)∵当x=m+1时,y=m+1-2=m-1,∴点P(m+1,m-1)在函数y=x-2的图象上.(2)∵函数y=-12x+3的图象与x轴、y轴分别相交于点A、B,∴A (6,0),B (0,3),∵点P 在△AOB 的内部,∴0<m +1<6,0<m -1<3,m -1<-12(m +1)+3,∴1<m <73.18.解析 (1)由题意得m 2-1=3,所以m =±2.又m -2≠0,所以m ≠2,所以m =-2,所以y =-4x +3.(2)由题意可得点B ,0.因为直线y =(n +2)x +n 2-1经过点A (0,3),所以n 2-1=3,所以n =±2.又n +2≠0,所以n ≠-2,所以n =2.所以y =4x +3,所以点C 的坐标为―34,0,所以线段BC 的长为34―=32.。

人教版八年级数学下册同步练习《16.2 二次根式的乘除》 含答案

人教版八年级数学下册同步练习《16.2 二次根式的乘除》 含答案

人教版八年级数学下册同步练习《16.2 二次根式的乘除》◆基础知识作业1.计算: =2.长方形的宽为,面积为,则长方形的长约为(精确到0.01).3.能使等式成立的x的取值范围是()A.x≠2 B.x≥0 C.x>2 D.x≥24.下列二次根式中,最简二次根式是()A.B.C.D.5.化简的结果是()A.B.C.D.6.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣7.二次根式,,的大小关系是()A.B.<<C.<<D.<<8.化简:(1)(2)(3)(4)(5)(7)÷.◆能力方法作业9.若和都是最简二次根式,则m= ,n= .10.化简﹣÷= .11.比较大小:﹣﹣.12.下列二次根式中,是最简二次根式的是()A. B. C.D.13.下列根式中,是最简二次根式的是()A.B.C.D.14.计算:等于()A.B.C.D.15.把根号外的因式移入根号内,其结果是()A.B.﹣C.D.﹣16.化简:(1)(2)(x>0)17.计算(1)4÷(﹣5)(2)÷()(a>0,b>0,c>0)18.把根号外的因式移到根号内:(2).◆能力拓展与探究19.下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.20.化简:a(a>b>0)21.体积为18的长方体的宽为1cm,高为=2cm,求这个长方体的长.人教版八年级数学下册同步练习《16.2 二次根式的乘除》解析◆基础知识作业1.计算: =【考点】二次根式的乘除法.【分析】根据二次根式的除法法则对二次根式化简即可.【解答】解:原式==.【点评】主要考查了二次根式的乘除法运算.二次根式的运算法则:乘法法则=(a≥0,b≥0).除法法则=(a>0,b≥0).2.长方形的宽为,面积为,则长方形的长约为 2.83 (精确到0.01).【考点】二次根式的应用.【分析】根据二次根式的相关概念解答.【解答】解:设长方形的长为a,则2=a,a==2≈2.83.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:•=(a≥0,b≥0);=(a≥0,b>0).3.能使等式成立的x的取值范围是()A.x≠2 B.x≥0 C.x>2 D.x≥2【考点】二次根式的乘除法;二次根式有意义的条件.【分析】本题需注意的是,被开方数为非负数,且分式的分母不能为0,列不等式组求出x的取值范围.【解答】解:由题意可得,,解之得x>2.故本题选C.【点评】二次根式的被开方数是非负数,分母不为0,是本题确定取值范围的主要依据.4.下列二次根式中,最简二次根式是()A.B.C.D.【考点】最简二次根式.【分析】判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察.【解答】解:A、=|a|,可化简;B、==,可化简;C、==3,可化简;因此只有D: =,不能开方,符合最简二次根式的条件.故选D.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.5.化简的结果是()A.B.C.D.【考点】二次根式的性质与化简.【专题】计算题.【分析】原式被开方数利用平方差公式化简,约分后化简即可得到结果.【解答】解:原式====.故选D【点评】此题考查了二次根式的性质与化简,熟练掌握运算法则是解本题的关键.6.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣【考点】二次根式的性质与化简.【分析】二次根式有意义,y<0,结合已知条件得y<0,化简即可得出最简形式.【解答】解:根据题意,xy>0,得x和y同号,又x中,≥0,得y<0,故x<0,y<0,所以原式====﹣.故答案选D.【点评】主要考查了二次根式的化简,注意开平方的结果为非负数.7.二次根式,,的大小关系是()A.B.<<C.<<D.<<【考点】分母有理化.【分析】本题可先将各式分母有理化,然后再比较它们的大小.【解答】解:将三个二次根式化成同分母分数比较:∵=, ==,;∴<<.故本题选C.【点评】解答本题的关键是将各分式分母有理化,然后再比较它们的大小.在分母有理化的过程中,找出分母的有理化因式是解题的关键.8.化简:(1)(2)(3)(4)(5)(6)(7)÷.【考点】二次根式的乘除法.【分析】(1)直接进行化简即可;(2)直接进行化简即可;(3)先进行加法运算,然后进行化简即可;(4)先计算根号下的数值,然后进行化简即可;(5)先计算根号下的数值,然后进行化简即可;(6)先进行除法运算,然后进行化简;(7)先进行除法运算,然后进行化简.【解答】解:(1)原式=;(2)原式=;(3)原式==;(4)原式==;(5)原=;(6)原式==2;(7)原式==3.【点评】本题考查了二次根式的乘除法,解答本题的关键是掌握运算法则以及二次根式的化简.◆能力方法作业9.若和都是最简二次根式,则m= 1 ,n= 2 .【考点】最简二次根式.【分析】由于两二次根式都是最简二次根式,因此被开方数的幂指数均为1,由此可得出关于m、n 的方程组,可求出m、n的值.【解答】解:由题意,知:,解得:;因此m的值为1,n的值为2.故答案为:1,2.【点评】本题考查的最简二次根式的定义.当已知一个二次根式是最简二次根式时,那么被开方数(或因式)的幂指数必为1.10.化简﹣÷= .【考点】二次根式的乘除法.【分析】运用二次根式的运算性质,结合最简二次根式的概念,对二次根式进行化简.注意约分的运用.【解答】解:原式=﹣•=﹣•=﹣••=﹣2a.【点评】在二次根式的化简中,准确运用二次根式的性质,二次根式的除法法则和最简二次根式的概念,把结果化成最简的形式.11.比较大小:﹣<﹣.【考点】实数大小比较.【分析】首先把两个数平方,再根据分母大的反而小即可比较两数的大小.【解答】解:∵(﹣)2=,(﹣)2=,又∵>,∴﹣<﹣,即﹣<﹣.故填空答案:<【点评】此题主要考查了实数的大小比较,比较两个实数的大小,可以采用作差法、取近似值法、比较n次方的方法等.12.下列二次根式中,是最简二次根式的是()A. B. C.D.【考点】最简二次根式.【分析】判定一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件(①被开方数不含分母;②被开方数不含能开得尽方的因数或因式)是否同时满足,同时满足的就是最简二次根式,否则就不是.【解答】解:A、被开方数里含有能开得尽方的因数8,故本选项错误;B、符合最简二次根式的条件;故本选项正确;B、,被开方数里含有能开得尽方的因式x2;故本选项错误;C、被开方数里含有分母;故本选项错误.D、被开方数里含有能开得尽方的因式a2;故本选项错误;故选;B.【点评】本题主要考查了最简二次根式的定义,最简二次根式必须满足两个条件:(1)被开方数不含分母;(2)被开方数不含能开得尽方的因数或因式.13.(2013秋•阆中市期末)下列根式中,是最简二次根式的是()A.B.C.D.【考点】最简二次根式.【分析】A选项的被开方数中含有分母;B、D选项的被开方数中含有能开得尽方的因数或因式;因此这三个选项都不是最简二次根式.所以只有C选项符合最简二次根式的要求.【解答】解:因为:A、=;B、=2;D、=|b|;所以这三项都可化简,不是最简二次根式.故选:C.【点评】在判断最简二次根式的过程中要注意:(1)在二次根式的被开方数中,只要含有分数或小数,就不是最简二次根式;(2)在二次根式的被开方数中的每一个因式(或因数),如果幂的指数大于或等于2,也不是最简二次根式.14.计算:等于()A.B.C.D.【考点】二次根式的乘除法.【分析】根据二次根式的乘除法法则计算.【解答】解: ==.故选A.【点评】二次根式的乘除法法则:(a≥0,b≥0);(a≥0,b>0).15.把根号外的因式移入根号内,其结果是()A.B.﹣C.D.﹣【考点】二次根式的乘除法.【分析】由于被开方数为非负数,可确定1﹣a的取值范围,然后再按二次根式的乘除法法则计算即可.【解答】解:由已知可得,1﹣a>0,即a﹣1<0,所以, =﹣=﹣.故本题选B.【点评】由已知得出1﹣a的取值范围是解答此题的关键.16.化简:(1)(2)(x>0)【考点】二次根式的乘除法.【分析】(1)先进行二次根式的化简,然后求解;(2)直接进行二次根式的化简即可.【解答】解:(1)原式==;(2)原式=.【点评】本题考查了二次根式的乘除法,掌握二次根式的乘法法则和除法法则以及二次根式的化简是解题的关键.17.计算(1)4÷(﹣5)(2)÷()(a>0,b>0,c>0)【考点】二次根式的乘除法.【分析】(1)先进行二次根式的化简,然后求解即可;(2)先进行二次根式的除法运算,然后化简求解.【解答】解:(1)原式=﹣4×=﹣;(2)原式==.【点评】本题考查了二次根式的乘除法,掌握二次根式的乘法法则和除法法则以及二次根式的化简是解题的关键.18.把根号外的因式移到根号内:(1)(2).【考点】二次根式的性质与化简.【专题】计算题.【分析】(1)先变形得到原式=﹣5×,然后利用二次根式的性质化简后约分即可;(2)先变形得到原式=(1﹣x)•,然后利用二次根式的性质化简后约分即可.【解答】解:(1)原式=﹣5×=﹣5×=﹣;(2)原式=(1﹣x)•=(1﹣x)•=﹣.【点评】本题考查了二次根式的性质与化简: =|a|.◆能力拓展与探究19.下列各式计算正确的是()A.a12÷a6=a2 B.(x+y)2=x2+y2C.D.【考点】二次根式的乘除法;同底数幂的除法;完全平方公式;分式的基本性质.【分析】此类题目难度不大,可用验算法解答.【解答】解:A、a12÷a6是同底数幂的除法,指数相减而不是相除,所以a12÷a6=a6,错误;B、(x+y)2为完全平方公式,应该等于x2+y2+2xy,错误;C、===﹣,错误;D、正确.故选D.【点评】正确理解二次根式乘法、积的算术平方根等概念是解答问题的关键.运算法则:①a m÷a n=a m﹣n,②÷=(a≥0,b>0).20.化简:a(a>b>0)【考点】二次根式的性质与化简.【专题】计算题.【分析】先利用完全平方公式变形得到原式=a,再利用二次根式的性质得到原式=a•|﹣|,然后利用a>b>0去绝对值后进行分式的运算.【解答】解:原式=a=a•|﹣|,∵a>b>0,∴原式=a•[﹣(﹣)]=.【点评】本题考查了二次根式的性质和化简: =|a|.也考查了完全平方公式和绝对值的意义.21.体积为18的长方体的宽为1cm,高为=2cm,求这个长方体的长.【考点】二次根式的乘除法.【分析】已知长方体的宽与高,根据二次根式的乘法,即可求得这个长方体的长.【解答】解:长方体的高为=2cm,宽为1cm,则长方体的长为: =9cm,答:长方体的长是9cm.【点评】此题考查了二次根式的乘法.此题比较简单,注意÷=(a>0,b>0)。

新人教版初中数学八年级下册同步练习试题及答案_第16章二次根式

新人教版初中数学八年级下册同步练习试题及答案_第16章二次根式

新人教版初中数学八年级下册同步练习试题及答案_第16章二次根式测试1二次根式学习要求掌握二次根式的概念和意义,会根据算术平方根的意义进行二次根式的运算.课堂学习检验一、填空题1.1a表示二次根式的条件是______.2.当某______时,21有意义,当某______时,有意义.某1某33.若无意义某2,则某的取值范围是______.4.直接写出下列各式的结果:(1)49=_______;(2)(7)2_______;(3)(7)2_______;(4)(7)2_______;(5)(0.7)2_______;(6)[(7)2]2_______.二、选择题5.下列计算正确的有().①(2)22②22③(2)22④(2)22A.①、②B.③、④6.下列各式中一定是二次根式的是().A.32B.(0.3)2C.①、③D.②、④C.2D.某7.当某=2时,下列各式中,没有意义的是().A.某2 B.2某C.某22D.2某28.已知(2a1)212a,那么a的取值范围是().11B.a22三、解答题9.当某为何值时,下列式子有意义A.a(1)1某;(3)某21;C.a12D.a12(2)某2;(4)10.计算下列各式:(1)(32)2;综合、运用、诊断一、填空题11.2某表示二次根式的条件是______.12.使(2)(a21)2;3(3)2()2;4(4)(322).3某有意义的某的取值范围是______.2某113.已知某11某y4,则某y的平方根为______.14.当某=-2时,12某某214某4某2=________.二、选择题15.下列各式中,某的取值范围是某>2的是().11A.某2B.C.某22某16.若|某5|2y20,则某-y的值是().A.-7三、解答题17.计算下列各式:2(1)(3.14π);D.12某1B.-5C.3D.7(2)(32)2;2(3)[()1]2;3(4)(30.52)2.bb24ac18.当a=2,b=-1,c=-1时,求代数式的值.2a拓广、探究、思考19.已知数a,b,c在数轴上的位置如图所示:化简:a2|ac|(cb)2|b|的结果是:______________________.20.已知△ABC的三边长a,b,c均为整数,且a和b满足a2b26b90.试求△ABC的c边的长.测试2二次根式的乘除(一)学习要求会进行二次根式的乘法运算,能对二次根式进行化简.课堂学习检测一、填空题1.如果4某y2某y成立,某,y必须满足条件______.11_________;(2)(3)(48)__________;1222.计算:(1)72(3)20.270.03___________.3.化简:(1)4936______;(2)0.810.25______;(3)45______.二、选择题4.下列计算正确的是().A.2355.如果某某3A.某≥0B.236C.84D.(3)23某(某3),那么().B.某≥3C.0≤某≤3D.某为任意实数6.当某=-3时,某2的值是().A.±3三、解答题7.计算:(1)62;(4)(7)(7)249;8.已知三角形一边长为2cm,这条边上的高为12cm,求该三角形的面积.(8)13252;(9)527;3125B.3C.-3D.9(2)53(33);(3)3228;(5)ab11;3a(6)2a2bc;5bc5a72某2y7.综合、运用、诊断一、填空题10.已知矩形的长为25cm,宽为10cm,则面积为______cm2.11.比较大小:(1)32_____23;(2)52______43;(3)-22_______-6.二、选择题12.若a2bab成立,则a,b满足的条件是().A.a<0且b>013.把42B.a≤0且b≥0C.a<0且b≥0D.a,b异号3根号外的因式移进根号内,结果等于().4B.11C.44D.211A.11三、解答题14.计算:(1)53某y36某_______;211_______;32(2)27a29a2b2_______;(3)122(4)3(312)_______.15.若(某-y+2)2与某y2互为相反数,求(某+y)某的值.拓广、探究、思考16.化简:(1)(21)10(21)11________;(2)(31)(31)_________.测试3二次根式的乘除(二)学习要求会进行二次根式的除法运算,能把二次根式化成最简二次根式.课堂学习检测一、填空题1.把下列各式化成最简二次根式:(1)12______;(2)18某______;(3)48某5y3______;(4)y______;某(5)2111______.______;(6)4______;(7)某43某2______;(8)22332.在横线上填出一个最简单的因式,使得它与所给二次根式相乘的结果为有理式,如:32与2.(1)23与______;(2)32与______;(3)3a与______;(4)3a2与______;(5)3a3与______.二、选择题3.1某1某成立的条件是().某某A.某<1且某≠0B.某>0且某≠14.下列计算不正确的是().A.317164C.0<某≤1D.0<某<1 B.2y16某y3某3某42某3某9某111C.()2()24520D.5.把1化成最简二次根式为().32B.A.3232三、计算题6.(1)16;2513232C.128D.1247(2)2;9(3)24;3(4)5752125;(5)5;215(6)6633;11(7)11;32(8)110.125.22综合、运用、诊断一、填空题7.化简二次根式:(1)26________(2)11_________(3)4_________388.计算下列各式,使得结果的分母中不含有二次根式:(1) 15_______(2)22某__________(4)_________(3)__________某235y1______;27_________.(结果精确到0.001)39.已知31.732,则二、选择题10.已知a31,b2,则a与b的关系为().31C.a=-bD.ab=-1A.a=bB.ab=111.下列各式中,最简二次根式是().A.1某yB.abC.某24D.5a2b三、解答题ba312.计算:(1)ab;ba(2)12某y2y;3(3)abab2213.当某42,y42时,求某2某yy和某y2+某2y的值.拓广、探究、思考14.观察规律:12121,13232,12323,并求值.1722_______;(2)11110_______;(3)1nn1_______.15.试探究a2、(a)2与a之间的关系.测试4二次根式的加减(一)学习要求掌握可以合并的二次根式的特征,会进行二次根式的加、减运算.课堂学习检测一、填空题1.下列二次根式32,27,125,445,28,18,12,15化简后,与2的被开方数相同的有______,与3的被开方数相同的有______,与5的被开方数相同的有______.1________;32.计算:(1)123二、选择题(2)3某4某__________.3.化简后,与2的被开方数相同的二次根式是().A.10B.12C.12D.164.下列说法正确的是().A.被开方数相同的二次根式可以合并C.只有根指数为2的根式才能合并5.下列计算,正确的是().A.2323B.5225D.y2某3某yB.8与80可以合并D.2与50不能合并C.52a2a62a三、计算题6.93712548.8.10.32某58某718某.7.24126.11128329.(12411)(340.5)8311.综合、运用、诊断一、填空题12.已知二次根式ab4b与3ab是同类二次根式,(a+b)a的值是______.13.2a8ab3与6b无法合并,这种说法是______的.(填“正确”或“错误”)32b二、选择题14.在下列二次根式中,与a是同类二次根式的是().A.2a三、计算题15.1817.a1a14bb2abB.3a2C.a3D.a4228(51)0.216.13(23)(227).2418.2ababab1aa3b2bab3.四、解答题y311某19.化简求值:某4yy,其中某4,y.29某20.当某拓广、探究、思考21.探究下面的问题:(1)判断下列各式是否成立你认为成立的,在括号内画“√”,否则画“某”.①2123时,求代数式某2-4某+2的值.③444()41515④555()52424(2)你判断完以上各题后,发现了什么规律请用含有n的式子将规律表示出来,并写出n的取值范围.(3)请你用所学的数学知识说明你在(2)题中所写式子的正确性.。

2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17-2勾股定理的逆定理》同步练习题(附答案)

2022-2023学年人教版八年级数学下册《17.2勾股定理的逆定理》同步练习题(附答案)一.选择题1.下列几组数据中,不能作为直角三角形的三条边的是()A.1,2,B.3,4,5C.1,,D.4,12,13 2.在△ABC中,若AB=3,BC=5,AC=,则下列说法正确的是()A.△ABC是锐角三角形B.△ABC是直角三角形且∠C=90°C.△ABC是钝角三角形D.△ABC是直角三角形且∠B=90°3.如果将直角三角形的三条边长同时扩大10倍,那么得到的三角形是()A.锐角三角形B.钝角三角形C.直角三角形D.不能确定4.下列各组数中,是勾股数的是()A.7,8,9B.6,8,10C.5,12,14D.3,4,65.在△ABC中,若AC2﹣BC2=AB2,则()A.∠A=90°B.∠B=90°C.∠C=90°D.∠A=45°6.如图,一个梯子AB斜靠在一竖直的墙AO上,测得AO=2m.若梯子的顶端沿墙下滑0.5米,这时梯子的底端也恰好外移0.5米,则梯子的长度AB为()A.2.5m B.3m C.1.5m D.3.5m7.如图,在以下四个正方形网格中,各有一个三角形,不是直角三角形的是()A.B.C.D.8.如图,正方形网格中,每一小格的边长为1.网格内有△P AB,则∠P AB+∠PBA的度数是()A.30°B.45°C.50°D.60°二.填空题9.一个三角形的三边长为8cm、17cm、15cm,则其面积为cm2.10.如图,已知∠BAC=90°,BC=,AB=1,AD=CD=1,则∠BAD=.11.如图,长方体木箱的长、宽、高分别为12cm,4cm,3cm,则能放进木箱中的直木棒最长为cm.12.观察下列几组勾股数,并填空:①6,8,10,②8,15,17,③10,24,26,④12,35,37,则第⑤组勾股数为.13.如图,露在水面上的鱼线BC长为6m,钓鱼者想看看鱼钩上的情况,把鱼竿AC转动到AC'的位置,此时露在水面上的鱼线B'C'为8m,若BB'的长为2m,则钓鱼竿AC的长为m.14.在平静的湖面上,有一朵荷花高出水面半尺,忽然一阵强风吹来把荷花垂直拉到水里且荷花恰好落在水面.花在水平方向上离开原来的位置2尺远,则这个湖的水深是尺.15.如图是某公园的一角,有人为了抄近道而避开路的拐角∠ABC(∠ABC=90°),于是在草坪内走出了一条不该有的“捷径路AC”.已知AB=8米,BC=6米,他们踩坏了米的草坪,只为少走米的路.16.图是屋架设计图的一部分,点E、F分别为斜梁AB、AC的中点,D为横梁BC的中点,EM⊥BC于点M,FN⊥BC于点N,若AB=AC=6m,∠BAC=120°,则EM+AD+FN 等于m,四边形AEDC的周长为m.三.解答题17.如图是一块地的平面图,AD=4m,CD=3m,AB=13m,BC=12m,∠ADC=90°,求这块地的面积.18.为了绿化环境,我市某中学有一块四边形的=空地ABCD,如图所示,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要300元,问总共需投入多少元?19.“某市道路交通管理条例”规定:小汽车在城市道路上行驶速度不得超过60千米/时,如图,一辆小汽车在一条城市道路上直道行驶,某一时刻刚好行驶到路面对车速检测仪A 正前方24米的C处,过了1.5秒后到达B处(BC⊥AC),测得小汽车与车速检测仪间的距离AB为40米,判断这辆小汽车是否超速?若超速,则超速了多少?若没有超速,说明理由.20.如图,有一艘货船和一艘客船同时从港口A出发,客船与货船速度的比为4:3,出发1小时后,客船比货船多走了5海里.货船沿东偏南10°方向航行,2小时后货船到达B 处,客船到达C处,若此时两船相距50海里.(1)求两船的速度分别是多少?(2)求客船航行的方向.21.《西江月》中描述:平地秋千未起,踏板一尺离地,送行二步恰竿齐,五尺板高离地…;翻译成现代文为:如图,秋千OA静止的时候,踏板离地高一尺(AC=1尺)将它往前推进两步(EB=10尺),此时踏板升高离地五尺(BD=5尺),求秋千绳索OB的长度.22.位于沈阳的红河峡谷漂流项目深受欢迎,在景区游船放置区,工作人员把偏离的游船从点A拉回点B的位置(如图).在离水面高度为8m的岸上点C,工作人员用绳子拉船移动,开始时绳子AC的长为17m,工作人员以0.35米/秒的速度拉绳子,经过20秒后游船移动到点D的位置,问此时游船移动的距离AD的长是多少?23.如图,南北向MN为我国领海线,即MN以西为我国领海,以东为公海.上午9时50分,我国反走私艇A发现正东方有一走私艇C以16海里/时的速度偷偷向我领海开来,便立即通知正在MN线上巡逻的我国反走私艇B密切注意.(1)如图1,若反走私艇A和走私艇C的距离是10海里,A、B两艇的距离是6海里;反走私艇B测得距离C艇8海里,若走私艇C的速度不变,则再过多少小时它会进入我国领海?(2)如图2,若反走私艇A和走私艇C的距离是12海里,A、B两艇的距离是8海里,反走私艇B测得距离C艇10海里,发现走私艇C时,反走私艇B便立即沿领海线MN 对走私艇C进行拦截.若要使拦截成功,假设走私艇C的速度不变,那么反走私艇B的速度至少应为多少海里/时?(结果中若有根号,则保留根号).参考答案一.选择题1.解:A、12+()2=22,符合勾股定理的逆定理,故能作为直角三角形的三边长;B、32+42=52,符合勾股定理的逆定理,故能作为直角三角形的三边长;C、12+()2=()2,符合勾股定理的逆定理,故能作为直角三角形的三边长;D、42+122≠132,不符合勾股定理的逆定理,故不能作为直角三角形的三边长.故选:D.2.解:在△ABC中,AB=3,BC=5,AC=,∴AC2=34,AB2+BC2=9+25=34,∴AC2=AB2+BC2,∴△ABC是直角三角形,∠B=90°,故选:D.3.解:设原直角三角形的两直角边分别为a,b,斜边为c,则a2+b2=c2,∵三条边长同时扩大10倍为10a,10b,10c,∴(10a)2+(10b)2=100a2+100b2=100(a2+b2)=100c2,∴(10c)2=100c2,∴(10a)2+(10b)2=(10c)2,∴如果将直角三角形的三条边长同时扩大10倍,那么得到的三角形是直角三角形,故选:C.4.解:A、72+82≠92,故不是勾股数,故选项不符合题意;B、62+82=102,能构成直角三角形,都是整数,是勾股数,故选项符合题意;C、52+122≠142,故不是勾股数,故选项不符合题意;D、32+42≠62,故不是勾股数,故选项不符合题意.故选:B.5.解:∵AC2﹣BC2=AB2,∴AC2=BC2+AB2,∴∠B=90°.故选:B.6.解:设BO=xm,依题意得:AC=0.5m,BD=0.5m,AO=2m.在Rt△AOB中,根据勾股定理得:AB2=AO2+OB2=22+x2,在Rt△COD中,根据勾股定理得:CD2=CO2+OD2=(2﹣0.5)2+(x+0.5)2,∴22+x2=(2﹣0.5)2+(x+0.5)2,解得:x=1.5,∴AB==2.5(m),即梯子的长度AB为2.5m,故选:A.7.解:选项A如图:A、∵AC2=12+32=10,BC2=12+22=5,AB2=12+42=17,∴△ABC不是直角三角形,故本选项符合题意;选项B如图:B、∵AC2=22+42=20,BC2=12+22=5,AB2=32+42=25,∴△ABC是直角三角形,故本选项不符合题意;选项C如图:C、∵AB2=22+22=8,AC2=22+22=8,BC2=16,∴△ABC是直角三角形,故本选项不符合题意;选项D如图:D、∵AC2=12+32=10,BC2=12+32=10,AB2=22+42=20,∴△ABC是直角三角形,故本选项不符合题意.故选:A.8.解:延长AP到点C,连接BC,如右图所示,由图可得,∠CPB=∠P AB+∠PBA,PC==,BC==,PB==,∴BC2+PC2=PB2,CP=CB,∴△BCP是等腰直角三角形,∴∠CPB=45°,∴∠P AB+∠PBA=45°,故选:B.二.填空题9.解:∵82+152=172,∴此三角形是直角三角形,∴此直角三角形的面积为:×8×15=60(cm2).故答案为:60.10.解:∵∠BAC=90°,BC=,AB=1,∴AC==,∵AD=CD=1,12+12=()2,AD2+CD2=AC2,∴∠D=90°,∴∠DAC=45°,∴∠BAD=90°﹣45°=45°.故答案为:45°.11.解:∵侧面对角线BC2=32+42=52,∴CB=5cm,∵AC=12cm,∴AB==13(cm),∴空木箱能放的最大长度为13cm,故答案为:13.12.解:根据题目给出的前几组数的规律可得:这组数中的第一个数是2(n+2),第二个是:(n+1)(n+3),第三个数是:(n+2)2+1,故可得第⑤组勾股数是14,48,50.故答案为:14,48,50.13.解:设AB′=xm,∵AC′=AC,∴AB′2+B′C′2=AB2+BC2,∴x2+82=(x+2)2+62.解得x=6,∴AB=8m,∴AC===10(m),故答案为:10.14.解:若设湖水的深度x尺.则荷花的长是(x+0.5)米.在直角三角形中,根据勾股定理,得:(x+0.5)2=x2+22,解之得:x=3.75,∴湖水的深度为3.75尺.故答案为:3.75.15.解:在Rt△ABC中,∠ABC=90°,AB=8米,BC=6米,∴AC===10(米),∴BC+AB﹣AC=6+8﹣10=4(米),∴他们踩坏了10米的草坪,只为少走4米的路,故答案为:10,4.16.解:∵AB=AC=6m,∠BAC=120°,D为横梁BC的中点,∴∠B=∠C=30°,∠BAD=∠DAC=60°,∵点E、F分别为斜梁AB、AC的中点,EM⊥BC于点M,FN⊥BC于点N,∴AE=AD=AB=3m,FN=EM=BE=AB=1.5m,∴△AED是等边三角形,∴EM+AD+FN=3+1.5+1.5=6(m),∵AD=3m,AC=6m,∴DC==3(m),∴四边形AEDC的周长为:3+3+3+6=(12+3)m.故答案为:6,(12+3).三.解答题17.解:如图,连接AC,∵AD=4,CD=3,∠ADC=90°,∴AC==5,∴S△ACD=6,在△ABC中,∵AC=5,BC=12,AB=13,∴AC2+BC2=AB2,∴△ABC为直角三角形,且∠ACB=90°,∴Rt△ABC的面积=30,∴四边形ABCD的面积=30﹣6=24.18.解:(1)连接BD,在Rt△ABD中,BD2=AB2+AD2=32+42=52,在△CBD中,CD2=132,BC2=122,而122+52=132,即BC2+BD2=CD2,∴∠DBC=90°,则S四边形ABCD=S△BAD+S△DBC=•AD•AB+DB•BC=×4×3+×12×5=36(平方米);(2)需费用36×300=10800(元).19.解:小汽车已超速,理由如下:根据题意得:AC=24米,AB=40米,∠ACB=90°,在Rt△ACB中,根据勾股定理得:BC===32(米),∵小汽车1.5秒行驶32米,∴小汽车行驶速度为76.8千米/时,∵76.8>60,∴小汽车已超速,超速76.8﹣60=16.8(千米/时).20.解:(1)设两船的速度分别是4x海里/小时和3x海里/小时,依题意得4x﹣3x=5.解得x=5,∴4x=20,3x=15,∴两船的速度分别是20海里/小时和15海里/小时;(2)由题可得,AB=15×2=30,AC=20×2=40,BC=50,∴AB2+AC2=BC2,∴△ABC是直角三角形,且∠BAC=90°,又∵货船沿东偏南10°方向航行,∴客船航行的方向为北偏东10°方向.21.解:设OA=OB=x尺,∵EC=BD=5尺,AC=1尺,∴EA=EC﹣AC=5﹣1=4(尺),OE=OA﹣AE=(x﹣4)尺,在Rt△OEB中,OE=(x﹣4)尺,OB=x尺,EB=10尺,根据勾股定理得:x2=(x﹣4)2+102,整理得:8x=116,即2x=29,解得:x=14.5.则秋千绳索的长度为14.5尺.22.解:在Rt△ABC中,∠ABC=90°,BC=8m,AC=17m,∴AB===15(m),∵工作人员以0.35米/秒的速度拉绳子,经过20秒后游船移动到点D的位置,∴CD=17﹣0.35×20=10(m),∴BD===6(m),∴AD=AB﹣BD=9(m).答:此时游船移动的距离AD的长是9m.23.解:(1)由题意,AC=10海里,AB=6海里,BC=8海里,∴AB2+BC2=AC2,∴∠ABC=90°.由面积法得AC•BE=AB•BC,即10BE=6×8,∴BE=.在Rt△BEC中,CE==,∵艇C的速度为16海里/时,∴所求的时间为÷16=,答:再过小时艇C会进入我国领海.(2)由题意,AC=12海里,AB=8海里,BC=10海里,设CE=x,由勾股定理,得AB2﹣AE2=BC2﹣CE2,即82﹣(12﹣x)2=102﹣x2,解得x=,∴CE==7.5,再由勾股定理,得BE==(海里)设反走私艇B的速度为y海里/时,则=,解得y=.检验可知y=是方程的解,且适合题意.答:反走私艇B的速度至少应为海里/时.。

人教版八年级下册数学《菱形的性质与判定》同步练习(含答案)

人教版八年级下册数学《菱形的性质与判定》同步练习(含答案)

菱形的性质与判定一 、填空题(本大题共6小题)1.如图,在菱形ABCD 中,60A ∠=︒,E 、F 分别是AB 、AD 的中点,若2EF =,则菱形ABCD 的边长是 .2.如图,如果要使平行四边形ABCD 成为一个菱形,需要添加一个条件,那么你添加的条件是 .3.如图2,一活动菱形衣架中,菱形的边长均为16cm 若墙上钉子间的距离16cm AB BC ==,则1∠= 度.4.已知菱形的一个内角为60︒,一条对角线的长为23,则另一条对角线的长为________.5.菱形的周长为20cm ,两邻角度数之比为2:1,则菱形较短的对角线的长度为6.已知菱形ABCD 的两条对角线AC BD ,的乘积等于菱形的一条边长的平方,则菱形的一个钝角的大小是二 、解答题(本大题共7小题)DCAB 图21CBAE F DBCA7.如图,ACD ∆、ABE ∆、BCF ∆均为直线BC 同侧的等边三角形.已知AB AC =.⑴ 顺次连结A 、D 、F 、E 四点所构成的图形有哪几类?直接写出构成图形的类型和相应 的条件.⑵ 当BAC ∠为 度时,四边形ADFE 为正方形.8.如图,在梯形纸片ABCD 中,//AD BC ,AD CD >,将纸片沿过点D 的直线折叠,使点C 落在AD 上的点C 处,折痕DE 交BC 于点E ,连结C E '.求证:四边形CDC E '是菱形.9.如图,在四边形ABCD 中,E 为AB 上一点,ADE ∆和BCE ∆都是等边三角形,AB 、BC 、CD 、DA 的中点分别为P 、Q 、M 、N ,证明四边形PQMN 为平行四边形且PQ PN =.10.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBAC'DCB A EQEP NMDCBA11.如图,四边形ABCD 中,AB CD E F G H =,,,,分别是AD BC BD AC ,,,的中点,求证:EF GH ,相互垂直平分12.已知:如图,在平行四边形ABCD 中,AE 是BC 边上的高,将ABE ∆沿BC 方向平移,使点E 与点C 重合,得GFC ∆.若60B ∠=︒,当AB 与BC 满足什么数量关系时,四边形ABFG 是菱形?证明你的结论.13.已知,菱形ABCD 中,E 、F 分别是BC 、CD 上的点,且60B EAF ∠=∠=︒,18BAE ∠=︒.求:CEF ∠的度数.FEDCBACDH GFEBAGF E DCBAFEDCBA菱形的性质与判定答案解析一 、填空题 1.42.AB AD AC BD =⊥,3.120︒;由题意可知:构成三角形为等边三角形4.2或65.56.150°;如图,过点A 作AE BC ⊥于E ,则12AC BD BC AE ⋅=⋅,又2AC BD AB ⋅=,得1302AE AB ABC =∠=︒,,150BAD ∠=︒二 、解答题7.⑴ 构成的图形有两类,一类是菱形,一类是线段.当图形为菱形时,∠ BAC ≠60°(或A 与F 不重合、△ABC 不为正三角形)(若写出图形为平行四边形时,不给分)当图形为线段时,∠BAC = 60°(或A 与F 重合、△ABC 为正三角形). ⑵ 150︒.8.根据题意可知则. ∵, ∴. ∴, ∴.∴, ∴四边形为菱形. 9.如图,连结AC 、BD .∵PQ 为ABC ∆的中位线EDCBA'CDE C DE ∆≅∆'''CD C D C DE CDE CE C E =∠=∠=,,//AD BC C DE CDE '∠=∠CDE CED ∠=∠CD CE =CD C D C E CE ''===CDC E 'QNMD C∴PQ AC ∥且12PQ AC = 同理MN AC ∥且12MN AC = ∴MN PQ ∥且MN PQ = ∴四边形PQMN 为平行四边形. 在AEC ∆和DEB ∆中AE DE =,EC EB =,60AED CEB ∠=︒=∠即AEC DEB ∠=∠ ∴AEC DEB ∆∆≌ ∴AC BD =∴1122PQ AC BD PN ===. 10.连接AC ,∵四边形ABCD 为菱形∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ ∴18CEF ∠=︒在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.11.连结EG GF FH HE ,,,,根据题意,EG HF ,分别是DAB CAB ∆∆,的中位线,所以12EG HF AB ==,同理可证:12GF EH CD ==,因为AB CD =,所以ABCDEFEG HF GF EH ===,则四边形EGFH 是菱形,所以EF GH ,相互垂直12.当32BC AB =时,四边形ABFC 是菱形.∵AB GF ∥,AG BF ∥ ∴四边形ABFG 是平行四边形 ∵Rt ABE ∆中,60B ∠=︒ ∴30BAE ∠=︒ ∴12BE AB =∵BE CF =,32BC AB = ∴12EF AB = ∴AB BF =∴四边形ABFG 是菱形.13.连接AC ,∵四边形ABCD 为菱形∴AB BC CD AD ===∴ABC △和ACD △为等边三角形 ∴60AB AC B ACD BAC =∠=∠=∠=︒, ∵60EAF ∠=︒ ∴BAE CAF ∠=∠ ∴ABE ACF △≌△ ∴AE AF = ∵60EAF ∠=︒ ∴AEF △为等边三角形 ∴60AEF ∠=︒∵AEC B BAE AEF CEF ∠=∠+∠=∠+∠ABEFGHD CABCDEF∴18∠=︒CEF分析:在矩形、菱形的定理题中,有时也常连对角线,把四边形问题转化为三角形问题.。

最新数学练习册八年级下册参考答案【直接打印】优秀名师资料

最新数学练习册八年级下册参考答案【直接打印】优秀名师资料

数学练习册八年级下册参考答案【直接打印】数学练习册八年级下册参考答案6.1第1课时1.相等;相等.2.互补.3.120?;60?.4.C.5.B6.B7.130?,50?.8.提示:先证?BEC是等边三角形.9.略.10.提示:延长ED交AC于点M,延长FD交AB于点N,证明四边形DFHM与EDNG都是平行四边形.第2课时1.互相平分.2.4;?ABD与?CDB,?ABC与?CDA,?OAB与?OCD,?OAD与?OCB3.C4.C 5.(1)略;(2)14.6.略.7.9,5.8.如OE=OF,DE=DF,AE=CF,DE=BF. 6.2第1课时1.平行,相等;平行且相等的四边形.2.6;3.3.C4.D5.提示:可利用判定定理1或平行四边形定义证明.6.本题是第5题的拓展,可直接证明,亦可利用第5题的结论.7.提示:证明四边形BDEF是平行四边形.第2课时1.105?.2.平行四边形.3.B4.B5.提示:证明四边形MFNE的两组对边分别相等.6.略.7.四边形EGFH是平行四边形,提示:利用三角形全等证明OE=OF.6.3第1课时1.四个角都是直角;两条对角线相等.2.2.3.5 cm和10 cm.4.B5.A6.A7.提示:利用直角三角形性质定理2.8.提示:证明Rt?ABF?Rt?DCE.9.AD=CF.提示:证明?AED??FDC.第2课时1.32.对角线或两个邻角.3.D4.D5.矩形,证略.6.略.7.提示:四边形AEBD是矩形.8.提示:连PE.S?BDE=12ED?(PF+PG),又S?BDE=12ED?AB..第3课时1.菱形.2.菱.3.AD平分?BAC.4.A5.D6.略.7.60?.提示:连接BF,则?CDF=?CBF.8.菱形,证略.第4课时1.4.2.一组邻边相等;一个角是直角.3.D4.A5.正方形,证略.6.正方形,证略.7.提示:延长CB至P点,使PB,DN,连接AP,?ABP??ADN,AP=AN,?PAB=?NAD.?PAM=45?,?AMP??AMN,S?AMN=S?ABM+S?ADN.6.41.12,20,242.53.2a4.B5.B6.平行四边形,证明略.7.提示:过点E作EF?AB,交BC于点F,证明?ADE??EFC.8.AP=AQ.提示:取BC的中点F,连接MF,NF,证明MF=NF,从而?FMN=?FNM,?PQC=?QPB,再证?APQ=?AQP.第六章综合练习1.6;32.123.正方形4.17或14或185.C6.C7.B8.C9.48 cm210.略.11.60?;75?12.提示:先证四边形AECF是平行四边形.13.提示:取BF的中点G,连接DG,证明?EDG??EAF.14.提示:证明Rt?AFD?Rt?BEA.15.(1)菱形;(2)?A为45?,证明略.16.正确,证明略.17.提示:连接AC交EF于点O.?AOE??COF.AE=CF,四边形AFCE是平行四边形,由AC?EF,可知AFCE是菱形.18.取AE中点P,连OP.OP=12CE.OP?AD.?OFP=?ABD+?BAE=?BAE+45?,??EAC=?BAE,?OPF=?PAO+?AOP=?EAC+ 45?=?OFP,??OPF是等腰三角形,OF=OP=12CE.19.提示:(1)用t表示AQ,AP,列方程6-t=2t,得t=2;(2)求出S?QAC=36-6t,S?APC=6t,S四边形QAPC=(36-6t)+6t=36,故与t无关. 检测站1.平行四边形;菱形2.45?3.B4.B5.112.5?6.提示:连接CP,得 ACPQ,因而AQ=CP=AP.7.(1)略;(2)四边形ACFD为平行四边形,证略.8.(1)略;(2)当?BAC=90?时,四边形ADCE是正方形,证略.7.11.14,142.1,03.0.4,34.B5.D6.B7.(1)1.2;(2)97;(3)10-2.8.(1)-0.2;(2)2.5;(3)5. 9.0.5 m.10.111 111 1117.21.122.253.100或28.4.C5.A6.257.128.89.165.提示:利用?ADE面积.10.提示:AB=10.设DE=x,则x2+(10-6)2=(8-x)2,解得x=3,也可以利用S?ABC=S?ADC+S?ABD来求. 7.3第1课时1.无限不循环小数,无限不循环小数,循环小数2.略3.6,74.C5.D6.B7.3,不是有理数,1.738.2,8,189.可能是5,是有理数;也可能是7,是无理数10.易证明四边形EFGH是正方形,设正方形ABCD的边长为xcm,则x2=64,?x=8,于是AH=AE=4,?EF=42+42=32.由52,32?62,5.62,32,5.72,5.652,32,5.662,可以估计正方形EFGH的每条边长精确到0.01 cm的不足近似值为5.65 cm,过剩近似值为5.66 cm. 第2课时,无数个,1.5,1.7,2.1,无数个,3,2+0.1,5-0.13.C4.C5.(1)略;(2)先作出1.32.1,2表示2的点A,再作OA的垂直平分线,它与OA的交点表示22;(3)略.6.8个.提示:以A为顶点有3个等腰三角形,以B为顶点有5个等腰三角形.7.可构造一条边长为10的直角三角形,或利用方格纸、数轴、第8题中的方法等.8.(1)11;(2)n2;(3)14(1+2+…+10)=554 7.41.1202.直角三角形3.C4.B5.32+42=526.BC2=34=BD2+CD2,?BDC是直角三角形7.BD2+CD2=BC2,?BCD为直角三角形.在?ACD中,设AD=x,则x2+162=(12+x)2,x=143,周长=16038.a2+b2=c2,c=b+2.?(c+b)(c-b)=a2,c-b=2,?c+b=12a2,c=14a2+1,b=14a2-1.当a=20时,b=99,c=101. 7.51.平方根有两个,算术平方根只有一个;算术平方根是正的平方根2.?4,?2,?3,?33.D4.C5.C6.(1)0.6,?0.6;(2)911,?911;(3)103,?103;(4)5,?57.(1)?0.2;(2)-65;(3)58.(1)x=?19;(2)x=?6;(3)x=32或x=12.9.88个 7.61.立方根,x=3a,正,负,02.2,-3,-35,0.13.5 m4.D5.B6.(1)-12;(2)37.8, 328.(1)-512;(2)139.略10.382=4,3272=9.7.71.6.694 027 188,6.692.-1.77 939 465 2,-1.783.(1)85.15;(2)1.77;(3)0.28;(4)67.234.(1)12.62; (2)1.46;(3)-1.55;(4)-0.245.(1)6,315;(2)27,31336.4817.(1)其绝对值逐渐减小且越来越接近-1;(2)其绝对值逐渐增大且越来越接近-18.(1)450,447.2;(2)16,15.967.8第1课时1.5,-15,52.π3.D4.B5.略6.-3,-8,-5,-2,2,5,8,37.(1)17,17;(2)4,5;(3)略8.左边,因为32,2.第2课时1.(-2,-3);(2,3).2.223.y=2.4.B5.C6.(1)A(0,(-3,2);B″(3,2) -3);(2)B′7.C(3,0),D(32,32).8.O(0,0),B(322,322), C(0,32),D(-322,322).第3课时1.加、减、乘、除、乘方、开方.2.2-1和2-2.3.C4.D5.2+3,2?3,2+36.(1)0.82; (2)4.597.2608.v=78.9,70,超过规定的速度.9.(1)AC=AB=13;(2)522.第七章综合练习1.?32.4或343.(3+13)m4.35.76.答案开放,如-30,-π-2等.7.48.B9.D10.B11.B12.略.13.(1)8.2;(2)11.14.(1)26,5.23;(2)10,326.15.1316.设两直角边长为a,b,得(a2)2+b2=16,(b2)2+a2=9,两式相加,得54(a2+b2)=25,a2+b2=20,斜边长为20.17.2.0 s.18.提示:由AB=5,在方格纸上找出格点C,使C点到A,B的距离分别为10,5,由(5)2=(10)2,可知?ABC是直角三角形,面积为12(5)(5)=2.5.点C位置不唯(5)2+一.19.1220.13 m21.5.3 m22.原式=(10-a)(10+a)=10-a2=10-9=1.23.弟弟大一岁. 检测站1.-2+3,10-3.2.,3.D4.C5.26.0,?1,?2,?3,?4.7.(1),;(2),.8.4.3 cm.9.30 cm2.10.3,33,333,33…3(n个3).提示:根号下表为(10n-1)2/9.8.1第1课时1.,2.,3.,4.,5.C6.A7.(1)a,1a;(2)3a+5,20;(3)23a-11?2;(4)a(1-x%)?15(元)8.(1)a-2,a,a+1,a+3;(2)-22,-33,33,229.4v?31010.(1,5),(2,3),(2,4),(2,5),(3,4),(3,5),(4,5)11.设两个港口距离为s,江水水速为a,汽船在静水中速度为v,则t1=2sv,t2=sv+a+sv-a=2vsv2-a2,t1=2vsv2,2vsv2-a2=t2第2课时1.,2.,3.,4.,5.,6.D7.D8.A9.(1)x,10;(2)x,4;(3)x,57;(4)x,210.(1),;(2),;(3),;(4),,,11.a+23,2a+13,a,在a,1两边同加2a,得3a,2a+1,在a,1两边同加a+1,得2a+1,a+2,都除以3即得.12.如改为:“若a,b,0,则a2,b2”或改为“若a,b,且a+b,0,则a2,b2”则成为真命题.8.2第1课时1.x,-32.x?23.0,1,2,3,4,54.7,8,9,105.C6.C7.略8.-4,-3,-2,-19.略10.满足x,3的每个x的值都能使x-2,0成立,但不能说x,3是x-2,0的解集,这是因为满足x,3的x的值不是x-2,0的所有解11.x2,0 第2课时1.x,522.y?123.x,-454.k,135.x?-46.D7.B8.(1)x?-1;(2)x,53;(3)x,-2;(4)y?29.最后一步由-x,-13得x,13是错误的10.a=811.m,128.31.x?892.23.100 m/min4.C5.B6.307.348.a,29.72,81,908.4第1课时1.6,x,102.x,13.如x+1?3,2x+5,14.m?25.D6.C7.B8.(1)x,34;(2)-134?x,59.-1,0,1,2 10.-3,m?-2.11.x,32a+72b,x,-53a+2b,由32a+72b=22, -53a+2b=5,得a=3,b=5第2课时1.-1,0,1.2.-1,a,5.提示:解方程组,得x=4a+4, y=-a+5.所以4a+4,0,-a+5,0.解得a,-1且a,5.3.B.4.C.5.-4?x,8.6.-3?m?1,提示:解方程组,得x=1+m2, y=1-m4,由1+m2?1,1-m4?1,推出.7.(1)-1,a,5;提示:解方程组得x=4a+4,,0,y,0,解不等式组得出答案.8.-45,x,1.提示:原不等式相当于解以下两个y=-a+5.由x不等式组:?x-1,0,x+45,0;?x-1,0,x+45,0..不等式组?无解,所以不等式组?的解集即为原不等式的解集:-45,x,1. 第八章综合练习1.,2.-123.a,-14.65.120元~130元6.A7.D,提示:由a-b,c,a+b都加(a+b)可得8.C9.B10.(1)x,-10;(2)x?2;(3)1?x,3211.a=412.3,4,513.当x,2,x=2,x,2时,第1个代数式的值分别大于、等于、小于第2个代数式的值.14.4人15.a,0或a,8.提示:满足条件的a的取值范围应是a+1,1或a,8.16.a=0,1,2.检测站1.x,-6.2.a+b,0.3.1.4.x,8.5.B.6.D.7.A.8.(1)x,2;(2)-2?x,3;(3)x?-6.9.2,m,-4.10.x,40时,去甲店;x=40时,两家均可;x,40时,去乙店.9.1第1课时1.?-322.10;923.B4.C5.(1)35;(2)12; (3)12;(4)6.6.a2+17.x?3且x?4.8.(1)(a+10)(a-10);(2)(2a+3)(2a-3). 第2课时1.0.30.3a3b22.?13.B4.B5.D6.(1)128; (2)43;(3)18;(4)75.7.628.(1)π-3;(2)a+1;(3)12;(4)702.9.设宽为x,x=4.对角线长410.10.小莹解答正确.小亮答案错在(1-a)2=1-a,当a=5时,1-a,0,所以当a=5时,(1-a)2=a-1.第3课时1.15,30,42.2.x,33.C4.D5.A6.(1)25;(2)33;(3)216;(4)xx2.7.(1)2491;(2)2-a.8.(1)第11个为64729,第12个为827;(2)第2n-1个是(23)n,第2n个也是(23)n.9.21.2,32,-33.2.A3.C4.(1)14059;334;(3)-43;(4)28105.5.22. (2)563-6.162或172.7.439.3第1课时1.(1)-833;(2)48;(3)62(4)2.2.B3.B4.(1)302;(2)1;(3)2;(4)32.5.(1)46;(2)23.6.(1)36;(2)510;(3)2n2n(n为正整数). 第2课时1.(1)1;(2)6+106.2.D3.A4.(1)6(6-2-3+1);(2)1+5;(3)352;(4)1;(5)36+43.5.(1)7;(2)125.7.2 015第九章综合练习1.(1)76;(2)-33;(3)2+3;(4)-5.2.B3.D4.C5.(1)-246;(2)152.6.略.7.(1)2;(2)-64+362.8.122.9.22.10.(1)-1;(2)都不满足;(3)?12.11.(1)略;(2)a=m2+2n2,b=2mn;(3)略.检测站1. 2.?3.?4. 5. 6.D7.A8.-1+3+62.9.-42.10.(1)45-542;(2)42(3-6).11.设另一直角边长为a,则(6)2+a2=(32)2,a=23.设斜边上的高为h,则12?32h=12?23?6,h=2.12.x=16. 10.1第1课时1.(1)2;(2)0,1,1,2;(3)1.2.A3.(1)大气压与海拔高度的函数关系,海拔高度;(2)80 Kpa;(3)海平面的大气压,海拔12 km时的大气压;(4)海拔高度逐渐上升时,大气压逐渐下降.4.(1)24 min,90 km/h;(2)2~6,30 km/h,16~21,90 km/h;(3)汽车停止;(4)略.5.(1)10元;(2)1.5元/kg;(3)35.第2课时1.300,17.2.B3.A4.略.5~7.略.8.(1)略;(2)超过8 kg不超过9 kg. 10.2第1课时1.52.?3,=-33.C4.C5.y=3x6.(1)y=-x+40;(2)10件.7.(1)0.92;(2)4 852元/人.第2课时1.(4,0)(0,8).2.一、二、四.3.D4.B5.略.6.a=-52.7.(1)y=t+0.5;(2)1;(3)(t+0.5)万公顷.10.31.三2.增大3.二、三、四,减少.4.C5.D6.(1)y=x+2;(2)(-2,0);(3)1.7.(1)3;(2)a,3;(3)a,3.8.y=79x-83或y=-79x-13. 10.41.y=25x+152.10x-15y=93.A4.C5.x=-1,y=-1..6.x+2y=3,2x-y=1.7.6.提示:由直线y=2x+a与y=-x+b都经过点A(-2,0),得a=4,b=-2.又得B(0,4),C(0,-2).BC=6,AO=2,S?ABC=12BC?AO=6.8.y=4x-3.提示:l经过(2,5)(1,1)两点.10.51.x,12,x,12,x=12.2.x,123.x,24.x,0,x,2,0?x?2.5.B.6.D.7.A.8.B.9.y=-12x+3.当x,6时,y,0;当x=6时,y=0;当x,6时,y,0.10.x,111.y1=-2x+1.当x,35时,y1,y2;当x=53时,y1=y2;当x,53时,y1,y2.12.(1)k=1,b=2;(2)略;(3)x,13.13.m,7k,1;(2)4对:l1:x-2y=9, 14.(1)-4,l2:x+3y=-11;l1:x-2y=8,l2:x+3y=-7;l1:x-2y=7,l2:x+3y=-3l1:x-2y=6,l2:x+3y=1.10.61.大于80 L2.x,1(kg)3.B4.D5.(1)y甲,5x+200(x?10),y乙=4.5x+225.(2)由(1),x=50时,y甲=y乙;10?x,50时,y甲,y乙;x,50时,y甲,y乙.6.(1)设A种商品销售x件,则B种商品销售(100-x)件.10x+15(100-x)=1350,x=30,100-x=70.(2)设该商店购进A种商品a件,则B种商品购进(200-a)件,由200-a?3a,得a?50.利润w=10a+15(200-a)=-5a+3 000.由于-5,0,当a=50时,w达到最大,最大值为-5?50+3 000=2 750元.即当购进A,B两种商品分别为50件和150件时,获利最大,最大利润为2 750元.7.3?b?68.(1)共3种方案:A:30,B:20;A:31,B:19;A:32,B:18;(2)y=700x+1x)=60 000-500x;(3)采用第1种方案获利最多,为45 000元. 200(50-第十章综合练习1.-12.,-13,,,13,=-13.3.2,73.4.B5.A6.C7.C8.(1)(3,0),(0,4);(2)是.9.略.10.(1)l1:y=2x-1,l2:y=6x+7;(2)l1与x轴交点坐标为(12,0),l2与x轴交点坐标为(-76,0),l1,l2与x轴围成的三角形底边长为53,l1,l2交于(-2,-5),底边上的高为5.S=12?53?5=256;(3)当x,-2时,l1的函数值大于l2的函数值.11.(1)y甲=300x,y乙=350(x-3);(2)乙旅行社;(3)当人数少于21人时,选乙旅行社合算,人数多于21人时,选甲旅行社合算.12.2+23.提示:点P在线段OA的垂直平分线PM上,M为PM与x轴的交点.OM=2,OP=4,PM=OP2-OM2=23.P(2,23),点P在直线y=-x+m上,所以m=2+23.13.(1)y=150-x;(2)由题意得y?2x.所以150-x?2x.解得x?50.又因为x?0,150-x?0,因此0?x?50.所以p=1 500x+2 000(150-x)=-500x+300 000,从而x=300 000-p500,于是0?300 000-p500?50,解得275 000?p?300 000.检测站1.y=-2x+7.2.,.提示:y随x增大而增大,可知k,0,图象与y轴交点在原点上方,故b,0.所以kb,0.3.A.4.C.5.画图略,x=23y=73..6.(1,3)7.1,k?2.提示:因为图象不过第一象限,所以2(1-k),0,12k-1?0.11.1第1课时1.平移方向平移距离全等.2.平行(或在同一条直线上)且相等3.9+2或3+24.4;30?,?5.C6.略7.略8.(1)92 cm2;(2)y=12(4-x)2第2课时1.AB=DE,AC=DF,BC=EF,BE=CF;?DEF2.16 cm.3.A4.C5.平移距离为56.四边形ABCA′与ACC′A′为平行四边形,理由略7.?BEF与?CGH都是等边三角形,则 BF=EF,GC=GH,?六边形EFGHIJ的周长=2(EF+FG+GH)=2(BF+FG+GC)=2BC=2.第3课时1.(3,-1);(3,-5);(1,-3);(5,-3)2.(a+3,b+2);(a-2,b-3)3.D4.A′(2,1),B′(1,-1,),C′(3,0),图略5.(1)平移距离为13;(2)B′(2,-1),C′(1,2);(3)P′(a+3,b+2)6.(1)D(-4,3);(2)A′(-4+2,1-2),B′(-1+2,1-2),C′(-1+2,3-2),D′(-4+2,3-2);(3)8-52.提示:重叠部分是一个矩形,它的长等于点B与D′的横坐标的差3-2,宽等于点D′与B的纵坐标的差2-2.11.2第1课时1.旋转中心,旋转方向,旋转角,全等2.相等;相等3.D4.B5.略6.327.(1)6-23(cm);提示:C′C=BD-BC′-CD=(6+63)-23-63=6-23;(2)30? 第2课时1.PB;60?2.?FDE或?EDC或?AFE;点D或点D或点F;逆时针或逆时针或顺时针;60 ?或120 ?或120 ?3.A4.D5.略6.(1)3;(2)BE?DF.提示:延长BE,交DF于点G,?DGE=?DAB=90?.7.四边形AHCG的面积不变为16,证明略.提示:证明?AHB??AGD. 第3课时1.2.提示:连A′B,OA=OA′,?A′OA=60?,?AOB=30?,?AOB??A′OB.A′B=AB=2.2.(1)10,135?.(2)平行.提示:A′C′?CB.A′C′=AC=BC.3.D.提示:连接OA,OB,旋转角为?AOB.4.2-33.提示:连AE.?B′AD=60?,?DAE=30?.DE=AD?13=33.CE=CD-DE=1-33.四边形ADEB′的面积=2?S?ADE=2?12?1?33=33.所求的蝶形面积=2-33.5.等边三角形.提示:?APD=60?,?PAD为等边三角形.?PDC=?PAE=30?,?DAE=?DAP-?PAE=30?,?PAE=30?,?BAE=60?,又CD=AB=EA,?ABE为等边三角形.6.PA=PB+DQ.提示:将Rt?ADQ绕点A顺时针方向旋转90?到Rt?ABE,Rt?ADQ?Rt?ABE,?AQD=?E,DQ=BE.由旋转角=90?,?BAE+?BAP+?PAQ=90?.又因?PAQ=?DAQ,?BAE+?BAD+?DAQ=90?.在Rt?ADQ 中,?AQD+?DAQ=90?,故?AQD=?BAE+?BAP=?EAP.又因?ABP=?ABE=90?,所以P,B,E在同一条直线上.?AEP为等腰三角形,PA=PE=PB+BE=PB+DQ. 11.3第1课时1.180?2.略3.454.B5.略6.BC?DE.理由略.7.延长AD至G,使DG=AD,连接BG.因为点D是AG,BC的中点,所以?ADC与?GDB关于点D成中心对称.?ADC??GDB.AC=BG,?G=?CAD.又因为AE=EF,?CAD=?AFE,而?AFE,?BFD,?G=?BFG,BG=BF.推出BF=AC. 第2课时1.中心对称图形2.对称中心;被对称中心平分3.A4.C5.(1)略;(2)无数条,过对称中心;(3)菱形、正方形、平行四边形;(4)中心对称性质.6.(1)连接AD,交BE于O.将?ABC绕O旋转180?;(2)是.O是对称中心.7.(1)(2)(3)点H是矩形ABEF与矩形KEBC的对称中心,也是矩形ACDG与矩形KFGD的对称中心.第十一章综合练习1.41 ?;平行;相等2.ED;103.48 cm24.?B;?DAE;点A;?BAD;35.60 ?6.120?7.B8.C9.B10.略11.(1)向左平移3个单位长度,向上平移2个单位长度.平移距离13单位长度;(2)A′(-2,4),B′(-5,1)12.(1)60?;(2)3.13.6+23.提示:?B′AC=60?-15?=45?,?AB′D是等腰直角三角形.由AD=22,得AB′=2,AB=AB′=2,BC=23,?ABC的周长=2+4+23=6+23.14.略15.不变,1.16.(1)?AGD=?D+?ACD=30?+120?=150?.(2)旋转角?AFE=?DEF=60?时DE?AB.17.(1)提示:?ABQ??ACP,因而?ABQ可以看作是由?ACP绕点A旋转得到的;(2)BQ=CP仍成立;(3)BQ=CP仍成立.18.(1)不能;(2)以正方形对角线交点为旋转中心逆时针旋转90?. 检测站1.水平;82.35?;6;123.D4.略5.(1)略;(2)如以点C为旋转中心顺时针旋转90?,或以点C为旋转中心逆时针旋转90?,等.6.(1)四边形ABC′D′是平行四边形,提示:证明AB瘙綊C′D′;(2)当移动距离为3时,四边形ABC′D′是菱形,提示:设BB′=x,由BC′=C′D′得BB′2+B′C′2=C′D′2,得x2+1=22.当移动距离为133时,四边形ABC′D′是矩形.提示:由BC′?C′D′得BC′2+C′D′2=BD′2,得x2+1+22=(x+3)2. 总复习题1.平行四边形.2.12 cm,20 cm.3.平行四边形.4.2-15.A,50?,等腰三角形.6.c,bc,ac,ab.1)163;(2)2;7.C.8.D.9.D.10.D.11.提示:通过三角形全等关系推出,GE=FH,GF=EH.12.((3)2+3;(4)192.13.(23,23),(2,-2).14.37.5 cm2.15.提示:梯形BCC′D′面积有两种算法:一是12(BC+C′D′)?BD′=12(BD′)2=12(a+b)2;一是S?ACC′+S?ABC+S?AC′D′=12c2+12ab+12ab.由此推出a2+b2=c2.16.(1)80 km/h和60 km/h;(2)240+34?240=420 (km);(3)160 km.17.(1)购进甲种商品40件,乙种商品60件;(2)购进甲种商品20件,乙种商品80件,总利润最大,最大利润900元.18.(1)x=6;(2)-2?x,6;(3)-3k+b,-7k+b.19.(1)A(-2,-1-3);(2)A1(0,1+3),B1(1,1),C(-1,1);(3)A9(16,1+3),B9(17,1),C9(15,1).20.32.提示:x2+1+(x-3)2+4=(x-0)2+12+(x-3)2+22,在直角坐标系中,上或右端可视为x轴同侧两点A(0,1)和B(3,2)分别与x轴上的点P(x,0)的距离PA,PB的和.作点A关于x轴的对称点A′(0,-1),则线段A′B的长为PA+PB的最小值.由勾股定理,A′B=32+32=32.21.45?.提示:把Rt?CDQ绕点C旋转到Rt?CBE,其中E在直线AB上.证明?CQP??CEP. 22.提示:设批发市场两次卖出的白糖价格分别为x,y(单位:元/kg),A,B分别是甲、乙两超市购进白糖的平均价格,则根据题意: A=(2?1 000)?(1 000x+1 000y)=2xyx+y,B=(1 000x+1 000y)?(2?1 000)=x+y2.B-A=x+y2-2xyx+y=(x+y)2-2xy2(x+y)=x2+y22(x+y),0.所以,乙超市购进白糖的平均价格高些,甲超市的进货方式比较合算.23.提示:A,B两公司有化肥数量恰好等于张村、李庄所需化肥数量.设A公司化肥运往张村x吨,则运往李庄(200-x)吨,B公司化肥运往张村(220-x)吨,运往李庄,280-(200-x),吨=(80+x)吨,需要总运费设为y元.据题意,得y=20x+25(200-x)+15(220-x)+22(80+x)=2x+10 060,0?x?200.当x=0时,y最小=10 060.所以运费最少为10 060元,只要从A公司运往李庄200吨,从B公司运往张村220吨,运往李庄80吨,即达到运费最少.总检测站1.3 cm2.2.?B=90?或AB?CD等.3.5,25.4.D.5.A.6.C.7.AC=EH+FG.提示:过点H 作HK?AB,交AC于K,得 AEHK,KC=FG,AK=EH.8.4.9.90?,等腰直角三角形.10.(1)AC=13,BC=5,AB=4,AC2+BC2?AC2,?ABC不是直角三角形.CD=13,AD=26,AC2+CD2=AD2,?ACD是直角三角形;(2)D,C,B不在一条直线上,因?ACD+?ACB?180?;(3)45?.11.(1)设l1:y1=k1x+2,由图象知17=500k1+2,解得k1=0.03.所以y1=0.03x+2(0?x?2 000).类似地可求出y2=0.012x+20(0?x?2 000).(3)看法不对.两灯同时点亮时,当0?x?1 000时,白炽灯省钱;当x=1 000时,两灯费用相同;当1000,x?2 000时,节能灯省钱.12.结论(1)不成立.结论(2)(3)成立.提示:证明?ABG??CBE.1..??,,??′ ???αβ??????S?ACC′。

(完整版)人教八年级数学下册同步练习题及答案

(完整版)人教八年级数学下册同步练习题及答案

1第十六章、分式 16.1.1从分数到分式(第一课时)一、课前小测:1、________________________统称为整式.2、23表示_______÷______的商,那么(2a+b )÷(m+n )可以表示为________. 3、甲种水果每千克价格a 元,乙种水果每千克价格b 元,取甲种水果m 千克,乙种水果n 千克,混合后,平均每千克价格是_________.二、基础训练:1、分式24x x -,当x_______时,分式有意义;当x_______时,分式的值为零; 当x_______时,分式15x -+的值为正;当x______时,分式241x -+的值为负. 2、有理式①2x ,②5x y +,③12a -,④1x π-中,是分式的有( ) A .①② B .③④ C .①③ D .①②③④23、使分式||1x x -无意义,x 的取值是( ) A .0 B .1 C .-1 D .±1三、综合训练:1、当x______时,分式2134x x +-无意义. 2、当x_______时,分式2212x x x -+-的值为零. 3、当x 取何值时,下列分式有意义?(1) (2)2323x x +-16.1.2分式的基本性质(第二课时)一、课前小测:23+x31.如果分式x211-的值为负数,则的x 取值范围是( ) A.21≤x B.21<x C.21≥x D.21>x 2. 当_____时,分式4312-+x x 无意义.当______时,分式68-x x 有意义 二、基础训练:1、分式的基本性质为:_________ ___.用字母表示为:_____________________.2、判断下列约分是否正确:(1)c b c a ++=b a , (2)22y x y x --=y x +1, (3)nm n m ++=0。

3、根据分式的基本性质,分式a a b --可变形为( ) A .a a b-- B .a a b + C .-a a b - D .a a b + 4、填空:4 (1) x x x 3222+= ()3+x , (2) 32386b b a =()33a , 5、约分:(1)c ab b a 2263 (2)532164xyz yz x - 三、综合训练:1、通分:(1)231ab 和b a 272 (2)xx x --21和x x x +-21 2、若a =23,则2223712aa a a ---+的值等于______。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档