2020年郑州九年级数学一模答案
九年级郑州一模试卷数学【含答案】
九年级郑州一模试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a²2. 下列函数中,奇函数是()。
A. y = x²B. y = |x|C. y = x³D. y = x² + 13. 已知等差数列{an}中,a1=3,公差d=2,则a10=()。
A. 21B. 19C. 17D. 154. 下列方程中,属于一元二次方程的是()。
A. x + y = 1B. x² + y = 1C. x² + x + 1 = 0D. x³ + x² + x + 1 = 05. 在直角坐标系中,点P(2, -3)关于y轴的对称点是()。
A. (2, 3)B. (-2, -3)C. (-2, 3)D. (2, 3)二、判断题(每题1分,共5分)1. 任何两个奇函数的和一定是偶函数。
()2. 一元二次方程的解一定是实数。
()3. 对角线互相垂直的四边形一定是菱形。
()4. 两个等差数列的对应项相加得到的新数列一定是等差数列。
()5. 任何两个正数的算术平均数大于它们的几何平均数。
()三、填空题(每题1分,共5分)1. 已知等差数列{an}中,a1=1,公差d=3,则a5=______。
2. 若一个三角形的两边长分别为3和4,则第三边的长度范围是______。
3. 两个相同的正数相乘,结果为______。
4. 一元二次方程ax² + bx + c = 0(a≠0)的判别式是______。
5. 若直角三角形的两条直角边长分别为3和4,则斜边长为______。
四、简答题(每题2分,共10分)1. 请简述等差数列和等比数列的定义。
2. 请解释一元二次方程的根的判别式。
3. 请说明三角形的面积公式。
4. 请解释函数的单调性。
5. 请简述直角坐标系中点的坐标表示方法。
2020-2021郑州市第一中学九年级数学上期末第一次模拟试卷含答案
21.如图,BC 是半圆 O 的直径,D 是弧 AC 的中点,四边形 ABCD 的对角线 AC、BD 交于 点 E. (1)求证:△DCE∽△DBC;
(2)若 CE= 5 ,CD=2,求直径 BC 的长.
22.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材
最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对 A 《三国演义》、 B 《红 楼梦》、 C 《西游记》、 D 《水浒》四大名著开展“最受欢迎的传统文化经典著作”调
查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信 息绘制了下面两幅不完整的统计图:
(1)本次一共调查了_________名学生; (2)请将条形统计图补充完整; (3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或 列表的方法求恰好选中《三国演义》和《红楼梦》的概率.
A.②④⑤
B.②③⑤
C.①②④
D.①③④
10.设 a, b 是方程 x2 3x 2017 0 的两个实数根,则 a2 2a b 的值为( )
A.2017
B.2018
C.2019
D.2020
11.如图,矩形 ABCD 中,AB=8,BC=6,将矩形 ABCD 绕点 A 逆时针旋转得到矩形
AEFG,AE,FG 分别交射线 CD 于点 PH,连结 AH,若 P 是 CH 的中点,则△APH 的周长
【详解】
解:∵a、b 是方程 x2 3x 2017 0 的两个实数根,
∴ a b =-3;
又∵ a2 3a 2017 0 , ∴ a2 3a 2017 , ∴ a2 2a b
=( a2 3a )-( a b )
河南省七地市2020年九年级第一次模拟考试数学试题及答案
1523303030DANMEO BDC河南省2020年九年级七地市第一次联考试卷数学(时间:100分钟 满分:120分)一、选择题(共10小题,每小题3分,满分30分) 1.在有理数2,0,-1,-12中,最小的是( ) A. 2 B. 0 C. -1 D. -122.下列运算中正确的是( )A. 235a a a +=B. 248a a a =C. 236()a a =D. 2(3a)=93.国家发改委2月7日紧急下达第二批中央预算内投资2亿元人民币,专项补助承担重症感染患者救治任务的湖北多家医院重症治疗病区建设,其中数据2亿用科学记数法表示为( ) A.7210⨯ B.8210⨯ C. 72010⨯ D.80.210⨯4.如图所示的几何体,它的左视图是( )A. B. C. D.5.如图,在菱形ABCD 中,按以下步骤作图:①分别以点C 和点D 为圆心,大于12CD 为半径作弧,两弧交于点M ,N;②作直线MN ,且MN 恰好经过点A ,与CD 交于点E , 连接BE ,则下列说法错误的是 ( ) A.060ABC ∠= B.2ABEADESS= C.若AB=4,则7 D.21sin CBE ∠=6.中国人民银行于2019年9月10日陆续发行中华人民共和国成立70周年纪念币一套.该套纪念币共7枚,均为中华人民共和国法定货币,任意掷两枚量均匀的纪念币,恰好都是国徽一面朝上的概率是( ) A.12 B. 13 C. 14 D. 347.不等式组1231x x +>⎧⎨-≥⎩的解在数轴上表示为A.B.C. D.8.如图,⊙O 中,点D ,A 分别在劣级BC 和优弧BC 上,∠BDC=130°,则∠BOC=( ) A.120° B.110° C.15° D.100° 9.中秋节是我国的传统节日,人们索有吃月饼的习俗.汾阳月饼不仅汾阳人爱吃,而且风屝省城市场.省城某商场在中秋节来临之际购进A 、B 两种汾阳月共1500个,已知购进A 种月饼和B 种月饼的费用分别为3000元和2000元,且A 种月饼的单价比B 种月饼单价多1元.求A 、B 两种月饼的单价各是多少?设A 种月饼单价为x 元,根据题意,列方程正确的是( )A.3000200015001x x +=+ B. 2000200015001x x +=+ C.3000200015001x x +=- D.2000300015001x x +=- 10.如图,四边形ABCD 是正方形,AB=8,AC 、BD 交于点0,点P 、Q 分别是AB 、BD 上的动点,点P的运动路10213102102EABC DO EN A BC DM径是AB→BC ,点Q 的运动路径是BD ,两点的运动速度相同并且同时结束.若点P 的行程为x ,△PBQ 的面积为y ,则y 关于x 的函数图象大致为( )A.B.C.D.二、填空题(共5小题,每小题3分,满分15分) 11.11()2--=________.12.已知关于x 的一元二次方程2280x kx --=的一个根是2,则此方程的另一个根是________.13.如图,D 是矩形AOBC 的对称中心,A(0,4),B(6,0),若一个反比例函数的图象 经过点D ,交AC 于点M ,则点M 的坐标为________.14.如图,等边三角形ABC 内接于⊙O ,点D ,E 是⊙O 上两点, 且∠DOE=120°,若OD=2,则图中阴影部分的面积为________.15,如图,在矩形ABMN 中,AN=1,点C 是MN 的中点,分別连接AC ,BC ,且BC=2,点D 为AC 的中点,点E 为边AB 上一个动点,连接DE ,点A 关于直线DE 的对称点为点F ,分别连接DF ,EF.当EF ⊥AC 时,AE 的长为________.三、解答題(共8小题,満分75分)16.(8分)已知222111x x xy x x ++=---,其中x 是不等式组1030x x +≥⎧⎨-<⎩的整数解,请你求出y 的值. 17.(9分)钟南山院士谈到防护新型冠状病毒肺炎时说:“我们霱要重視防护,也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜”.某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区民在线参与作答《2020年新型冠状病毒防治》试卷(满分100分),社区管理员随机从甲、乙两个小区各抽取20名人员答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下: 收集数据甲小区:85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75 乙小区:80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90APxyxxy xyQ P EA B C O应用数据(1)填空:a=________,b=________c=________,d=________.(2)若甲小区有800人参与答卷,请估计甲小区成绩大于90分的人数. (3)社区管理员看完统计数据,认为甲小区对于新型冠状病毒肺炎防护知识掌程度更好,请你写出社区管理员的理由. 18.(9分)如图,已知AB 是⊙O 的直径,且AB=20,BM 切⊙0于点B ,点P 是⊙O 上的一个动点(不经过A 、B 两点),过点O 作OQ ∥AP 交BM 手点Q ,过点P 作 PE ⊥AB 交AB 于点C ,交QO 的延长线于点E ,连接PQ.(1)求证:△BOQ ≌△POQ; (2)填空: ⑩当PE=________时,四边形PAEO 是菱形;②当PE=________时,四边形POBQ 是正方形.19.(9分)如图1为放置在水平桌面l 上的台灯,底座的高AB 为5cm ,长度均为20em 的连杆BC 、CD 与AB 始终在同一平面上.(1)转动连杆BC 、CD ,使∠BCD 成平角,∠ABC=150°,如图2,求连杆端点D 离桌面的高度DE.(2)将(1)中的连杆CD 再绕点C 逆时针旋转,经试验后发现,如图3,当∠BCD=150°时台灯光线最佳.求此时连杆端点D 离桌面l 的高度比原来降低了多少厘米?20.(9分)如图,反比例函数y=kx(x >0)过点A(3,4),直线AC 与x 轴交于 点C(6,0),过点C 作x 轴的垂线BC 交反比例函数图象于点B. (1)填空:反比例函数的解析式为____________________,直线AC 的解析式为____________________,B 点的坐标是________.(2)在平面内有点D ,使得以A ,B ,C ,D 四点为项点的边形为平行四边形. ①在图中用直尺和2B 铅笔画出所有符合条件的平行四边形; ②根据所画形,请直接写出符合条件的所有点D 的坐标.21.(10分)夏季即将来临,某电器超市销售每台进价分别为300元、255元的A ,B 两种型号的空调扇,下表是近周(1)分别求出A ,B 两种型号空調扇的销售单价.(2)若超市准备用不超过8100元的金额再采购这两种型号的空调扇共30台,求A 种型号的空调扇最多能采购多少C图2lBAE图3lB CD台?(3)在(2)的条件下,超市销售完这30台电空调扇能否实现利润为2100元的目标?若能,请给出相应的采购方案;若不能,请说明理由22.(10分)在△ABC 中,CA=CB ,∠ACB=α(0°<α<180°),点P 是平面内不与A ,C 重合的任意一点,连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,CP.点M 是AB 的中点,点N 是AD 的中点.(1)问题发现 如图1,当α=60°时,MNPC的值是_____,直线MN 与直线PC 相交所成的较小角的度数是_____. (2)类比探究 如图2,当α=120°时,请写出MNPC的值及直线MN 与直线PC 相交所成的较小角的度数,并就图2的情形说明由.(3)解决问题 如图3,当α=90°时,若点E 是CB 的中点,点P 在直线ME 上,请直接写出点B ,P ,D 在同一条直线上时PDMN的值.23.(11分)如图,抛物线y=23+4x bx c -+与x 轴交于A 、B 两点,与y 轴交于C.直线y=34x+3经过点A 、C. (1)求抛物的解析式;(2)P 是抛物线上一动点,过P 作PM ∥y 轴交直线AC 于点M ,设点P 的横坐标为t.. ①若以点C 、O 、M 、P 为顶点的四边形是平行四边形,求t 的值.②当射线MP ,AC ,MO 中一条射线平分另外两条射线的夹角时,直接写出t 的值.图3ABCEM M BCDN PA图1图2PN ABCD MQPE A B CO 图2A BPGQEO河南省2020年九年级七地市第一次联考试卷数学答案一、选择题1—5:CCBAC 6—10:CCDCA 二、填空题:11:-4 12:-4 13:(32,4)14:43π三、解答题:16:解、原式等于=1x x xx x x --(+1)(+1)(+1)(-1) =111x xx x +--- =11x - 101,130x x x x x +≥⎧≠-≠⎨-<⎩为的整数解,且02x ∴=或 101;1x x ==--当时,121;1x x ==-当时,y 1-1∴=或;17:(1) a=8, b=5, c=90, d=82.5 (2)800⨯520=200人 (3)甲小区的平均数、中位数、众数都比乙小区大; 18:解:(1)如图所示:⊙O 中, OP=OA,<OPA=<OAPAP QO,<QOP=<OPA=<OAP ,QOB OAP AP QO <=< ,QOB QOPOP OB OQ OQ BOQ POQ∴<=<==∴≅H(2)①如图所示,若四边形PAEO 为菱形,则OA 、PE 相互垂直平分 ∴PE 过OA 的中点G ,OG 垂直平分PE R=20/2=10222OG OP OG=5OP=10OP =OG +PG PAEQ .Rt OGP ∴⊥∴∴中,,,,为菱形②如图所示:00,B ,90=10PEBQ BOQ POQ BM OPQ OBQ PQBE PE PEBQ ≅∴<=<<=∴∴∴四边形为正方形,则<PEB=90切圆O 于、O 重合正方形POBQ 中,PE=OB=R=10当时,四边形为正方形.19:解(1)如图所示:作BH 垂直DE 于H 直角三角形BDH 中,<ABC=0150∴<DBH=,DH=BD*sin 060=cm∴DE=DH+HE=DH+AB=(+5)cm所以连杆的端点D 距桌面L 的高度是( (2)如图所示作D 1F 1垂直CF 1于F 1,作DF 垂直CF 于F Rt D 1F 1C 中,<D1CF 1=<D1BH=060∴D 1F 1=D 1C*sin 060cm Rt DCF 中,<DCB=0150,<D1CD=030 ∴<DCF=D1CF1-<D1CD=030 ∴DF=DC*sin 030=10∴D1G=D1F1-DF=(10)cm∴此时连杆端点D 离桌面的高度比原来降低了(10)cm20:解、(1)12y x =, 483y x =-+, (6,2)(2)①分别以AB 和CD 为对角线,AC 和BD ,AD 和BC 为对角线得到如图所示的平行四边形 如图所示,ACBD1,ABCD2,ABD3CMB QBAPM②如图所示:D1(3,6)、D2(3,2)、D3(9,-2)21:解、(1)设A 种型号空調扇的销售单价为x,B 种型号空調扇的销售单价为y 231695563765x y x y +=⎧⎨+=⎩, 解得375315x y =⎧⎨=⎩答:A 种型号空調扇的销售单价为375元,B 种型号空調扇的销售单价为315元。
河南省2020年九年级一摸数学试卷参考答案及评分标准
河南省2020年中考数学一摸数学试卷参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11. 0 12. ︒145 13. 0 , 1 , 2 14. 233-π 15. 3或326-部分选择题、填空题答案解析7.已知关于x 的一元二次方程()01212=-++x x k 有实数根,则k 的取值范围是【 】(A )k ≥2- (B )k ≥2-且1-≠k (C )k ≥2 (D )k ≤2- 解析:本题为易错题,易忽视二次项系数不等于0这个限制条件.∵该方程是有实数根的一元二次方程∴()⎩⎨⎧≥++=∆≠+0142012k k 解之得:k ≥2-且1-≠k . ∴选择答案【 B 】.9. 如图所示,在平面直角坐标系xOy 中,点B 的坐标为()2,1,过点B 作y BA ⊥轴于点A ,连结OB ,将△AOB 绕点O 按顺时针方向旋转︒45,得到△''OB A ,则点'B 的坐标为 【 】(A )⎪⎪⎭⎫⎝⎛22,2 (B )⎪⎪⎭⎫ ⎝⎛22,223 (C )⎪⎪⎭⎫⎝⎛22,3 (D )⎪⎪⎭⎫ ⎝⎛1,223 第 9 题图解析:本题考查图形的变换与点的坐标,是河南中考的必考内容.如图所示,作出旋转后的△''OB A ,过点','B A 分别作x C A ⊥'轴,x D B ⊥'轴,作C A E B ''⊥,由题意可知,△OC A '和△E B A ''均为等腰直角三角形.∵()y AB B ⊥,2,1轴∴1'',2'====B A AB OA OA ∴2222''====OA C A OC 22212''''=====B A CD E B E A ∴223222=+=+=CD OC OD 22222'''=-=-==E A C A D B CE ∴⎪⎪⎭⎫⎝⎛22,223'B . 重要结论 等腰直角三角形的斜边长是直角边长的2倍.10. 如图1所示,在矩形ABCD 中,点E 在AD上,△BEF 为等边三角形,点M 从点B 出发,沿B →E →F 匀速运动到点F 时停止,过点M 作AD MP ⊥于点P ,设点M 运动的路径长为x ,MP 的长为y ,y 与x 的函数图象如图2所示,当3310=x cm 时,则MP 的长为【 】 图 1PMFEDC BA图 2/ cm(A )233cm (B )32cm (C )3cm (D )2 cm解析:本题考查几何图形与函数图象的关系,是河南中考的必考内容,难度较高,解题时要注意几何图形的变化与函数图象的变化之间的对应关系,尤其要注意几何图形上特殊点与函数图象上的特殊点所代表的意义. 由题意可知,等边△BEF 的边长为32cm ∵3310=x cm 32>cm ∴此时点M 在EF 边上,如下图所示.P MFEDC BA在Rt △PEM 中334323310=-=EM cm,︒=∠60PEM ∵EM MPPEM =∠sin∴22333460sin =⨯=︒⋅=EM MP cm ∴选择答案【 D 】.14. 如图所示,四边形OABC 为菱形,2=OA ,以点O 为圆心,OA 长为半径画弧AE ,弧AE 恰好经过点B ,连结OE ,BC OE ⊥,则图中阴影部分的面积为_________.解析:本题考查与圆有关的阴影面积的计算,是河南中考的必考内容.阴影部分面积的计算都要涉及到扇形面积的计算,所以要熟记扇形面积的计算公式:3602r n S π=扇形.注意添加半径的辅助线,来构造出扇形.第 14 题图连结OB ,设OE 与BC 交于点F ,则有:OABF AOE S S S 梯形扇形阴影-=由题意和作图可知,△AOB 和△BOC 均为等边三角形,︒=∠90AOE .∴312,12122=-===OF BC BF ∴()23213602902⨯+-⨯⨯=π阴影S 233-=π.15.如图,在等边△ABC 中,232+=AB , 点D 在边AB 上,且2=AD ,点E 是BC 边上一动点,将B ∠沿DE 折叠,当点B 的对应点'B 落在△ABC 的边上时,BE 的长为_________.解析:本题考查与动点有关的几何图形的折叠,是河南中考必考内容,难度大,考虑到答题的时限性和此类题目的难度,不建议学生在此类题目上花费太多的时间.此类题目的结果不唯一,需要根据不同的折叠情况分类讨论.本题折叠的结果分为两种情况:点'B 落在BC 边上和点'B 落在AC 边上.①当点'B 落在BC 边上时,如图1所示.图 1CE DB'BA由折叠可知,D B BD '= ∵︒=∠60B∴△'BDB 是等边三角形 ∴322232=-+==BD BE ;②当点'B 落在AC 边上时,如图2所示.F 图 2CE DB'BA先说明此时AB D B ⊥'. 作AB DF ⊥,在Rt △ADF 中3260tan =︒⋅=AD DF由折叠可知:32'==D B BD ∴DF D B =',显然,点'B 与点F 重合. ∴AB D B ⊥',从而AC E B ⊥' ∴42'==AD AB∴2324232'-=-+=C B 在Rt △CE B '中()326323260tan ''-=⨯-=︒⋅=C B E B ∴326'-==E B BE .综上所述,BE 的长为3或326-. 三、解答题(共75分) 16.(8分)先化简,再求值:x y x x y xy x 2222-÷⎪⎭⎫ ⎝⎛--, 其中32,32-=+=y x .解:x y x x y xy x 2222-÷⎪⎭⎫ ⎝⎛-- ()()()y x y x xxy x -+⋅-=2yx yx +-=…………………………………5分 当32,32-=+=y x 时原式2332323232=-+++-+=. ……………………………………………8分 17.(9分)解:整理数据 4 , 3; ……………………2分 分析数据 76; …………………………4分 得出结论(1)估计全校九年级成绩达到90分及以上的人数为1602541000=⨯(人);……………………………………………6分 (2)从平均数评价:九年级和八年级成绩相同;从中位数评价:八年级的中位数较大,成绩优秀的人数较多;从方差评价:九年级方差大,成绩不稳定,八年级方差小,成绩稳定,故八年级的成绩比较好.……………………………………………9分 18.(9分)如图所示,已知反比例函数()0≠=k xky 与一次函数b ax y +=的图象相交于点()1,-n A ,()3,1B ,过点A 作y AD ⊥轴于点D ,过点B 作x BC ⊥轴于点C ,连结CD .(1)求反比例函数的解析式;(2)求四边形ABCD 的面积.解:(1)把()3,1B 代入x ky =得:331=⨯=k ∴反比例函数的解析式为xy 3=;……………………………………………3分 (2)把()1,-n A 代入xy 3=得:3-=n ∴()1,3--A延长AD ,交BC 的延长线于点E ,则有()431=--=-=-=A B A E x x x x AE ()413=--=-=-=A B E B y y y y BE1==DE CE……………………………………………7分∴CDE ABE ABCD S S S ∆∆-=四边形21511214421=⨯⨯-⨯⨯=.……………9分 19.(9分)如图所示,在△ABC 中,︒=∠90C ,点D 是AB 边上一点,以BD 为直径的⊙O 与边AC 相切于点E ,与边BC 交于点F ,过点E 作AB EH ⊥于点H ,连结BE . (1)求证:BH BC =;(2)若4,5==AC AB ,求CE 的长.321OHFEDC A(1)证明:连结OE . ……………………1分 ∵OB OE = ∴21∠=∠ ∵AC 与⊙O 相切 ∴OE AC ⊥ ∵AC BC ⊥ ∴BC OE // ∴132∠=∠=∠ ∴BE 平分ABC ∠ 在△BCE 和△BHE 中∵⎪⎩⎪⎨⎧=∠=∠∠=∠BE BE BHE BCE 13 ∴△BCE ≌△BHE (AAS ) ∴BH BC =;……………………………………………5分(2)解:设x CE =,则x EH =,x AE -=4. 在Rt △ABC 中,由勾股定理得:3452222=-=-=AC AB BC……………………………………………6分 由(1)可知:3==BC BH ∴235=-=-=BH AB AH .……………………………………………7分 在Rt △AEH 中,由勾股定理得:222AE AH EH =+∴()22242x x -=+,解之得:23=x . ∴23=CE .………………………………9分 20.(9分)如图所示,为了测量某矿山CH的高度,科考组在距离矿山一段距离的B 点乘坐直升机垂直上升2000米至A 点,在A 点,在A 点观察H 点的俯角为︒35,然后乘坐直升机从A 水平向前飞行500米到E 点,此时观察H 点的俯角为︒45,所有的点都在同一平面内,科考队至此完成了数据监测,请你依据数据计算科考队测得的矿山高度.(结果保留整数,参考数据:)41.12,70.035tan ,82.035cos ,57.035sin ≈≈︒≈︒≈︒解:作AB HP ⊥,延长CH 交AE 的延长线于点D ,则四边形APHD 为矩形. 设x CH =米,则x PB =米∴()x DH AP -==2000米 在Rt △DEH 中,∵︒=∠45DEH ∴()x DH DE -==2000米 ∴5002000+-=+=x AE DE AD ()x -=2500米.……………………………………………3分 在Rt △ADH 中 ∵ADDH=︒35tan ∴70.025002000≈--xx………………………6分解之得:833≈x .…………………………8分 ∴833≈CH 米.答:科考队测得的矿山高度约为833米. ……………………………………………9分 21.(10分)随着第27届信阳茶文化节发布会、固始西九华山第三届郁金香风情文化节等系列活动的成功举办,越来越多的游客想要到信阳游玩.小明所在的公司想在五一黄金周期间组织员工去信阳游玩,咨询了甲、乙两家旅行社,两家旅行社分别推出优惠方案(未推出优惠方案前两家旅行社的收费标准相同).甲:购买一张团体票,然后个人票打六折优惠;乙:不购买团体票,当团体人数超过一定数量后超过部分的个人票打折优惠,优惠期间,公司的员工人数为x (人),在甲旅行社所需总费用为y 甲(元),在乙旅行社所需总费用为y 乙(元),y 甲、y 乙与x 之间的函数关系如图所示.(1)甲旅行社团体票是_________元,乙旅行社团体人数超过一定数量后,个人票打_________折;(2)求y 甲、y 乙关于x 的函数表达式; (3)请说明小明所在的公司选择哪个旅行社出游更划算.解:(1)600 , 四;……………………………………………2分 提示:当人数x 小于或等于10时,乙旅行社的个人票为300103000=(元),当人数超过10人时,个人票为=--102530004800120(元),4.0300120=,所以乙旅行社团体人数超过10人时,个人票打四折.(2)6001806003006.0+=+⨯=x x y 甲. ……………………………………………4分 当0≤x ≤10时,设乙y 的解析式为x k y 1=乙. 把()3000,10代入x k y 1=乙得:3001=k . ∴x y 300=乙;当10>x 时,设乙y 的解析式为b x k y +=2乙. 把()3000,10,()4800,25分别代入得:⎩⎨⎧=+=+48002530001022b k b k ,解之得:⎩⎨⎧==18001202b k .∴1800120+=x y 乙.∴()()⎩⎨⎧>+≤≤=101800120100300x x x x y 乙;……………………………………………7分 (3)当0≤x ≤10时,令x x 300600180=+,解之得:5=x ;当10>x 时,令1800120600180+=+x x ,解之得:20=x .∴当公司的员工人数为5或20时,甲、乙两家旅行社的总费用相同;当公司的员工人数大于5小于20时,选择甲旅行社出游更划算;当公司的员工人数小于5人或大于20时,选择乙旅行社出游更划算.…………………………………………10分 22.(10分)如图所示,在△ABC 中,BC AB =,D 、E 分别是边AB 、BC 上的动点,且BE BD =,连结AD 、AE ,点M 、N 、P 分别是CD 、AE 、AC 的中点,设α=∠B . (1)观察猜想①在求CEMN的值时,小明运用从特殊到一般的方法,先令︒=60α,解题思路如下: 如图1,先由BE BD BC AB ==,,得到AD CE =,再由中位线的性质得到PN PM =,︒=∠60NPM ,进而得出△PMN 为等边三角形,∴21==CE NP CE MN . ②如图2,当︒=90α时,仿照小明的思路求CEMN的值; (2)探究证明如图3,试猜想CEMN的值是否与()︒<<︒1800αα的度数有关,若有关,请用含α的式子表示出CEMN,若无关,请说明理由; (3)拓展应用如图4,︒=∠=36,2B AC ,点D 、E 分别是射线AB 、CB 上的动点,且CE AD =,点M 、N 、P 分别是线段CD 、AE 、AC 的中点,当1=BD 时,请直接写出MN 的长.图 2P NMD BA图 1PN M E D C BA图 4图 3PN MEDC BAPNMEDCBA解:(1)②∵BE BD BC AB ==, ∴CE AD =.∵BC AB =,︒=∠90B ∴△ABC 为等腰直角三角形∵点M 、N 、P 分别是CD 、AE 、AC 的中点 ∴CE PN CE PN 21,//=AD PM AD PM 21,//=∴︒=∠=∠=45,ACB APN PN PM︒=∠=∠45CAB CPM∴︒=︒-︒-︒=∠904545180NPM∴△PMN 为等腰直角三角形 ∴PN MN 2=∴222=⋅=CE PN CE MN ; ……………………………………………3分H图 5PNMED CBA(2)∵BE BD BC AB ==, ∴CE AD =.∵点M 、N 、P 分别是CD 、AE 、AC 的中点∴CE PN CE PN 21,//=AD PM AD PM 21,//=∴ACB APN PN PM ∠=∠=,CAB CPM ∠=∠∴CAB ACB NPM ∠-∠-︒=∠180α=∠=B作MN PH ⊥,如图5所示,则NH MN 2=,221α=∠=NPM NPH . 在Rt △NPH 中,∵PNNHNPH =∠sin ∴2sinα⋅=PN NH∴2sin2sin22αα===CEPNCENHCE MN ;……………………………………………8分 (3)455-=MN 或435+=MN . …………………………………………10分提示:注意条件“点D 、E 分别是射线AB 、CB 上的动点,且CE AD =”,考虑到点D 、E 不是边AB 、CB 上的动点,要进行分类讨论. ①当点D 、E 分别是边AB 、CB 上的动点时,作ACB ∠的平分线交AB 边于点F ,并连结BP ,如图6所示.图 6由题意容易得到2===BF CF AC ,且AC BP ⊥.设x BC =,则2-=x AF ,1-=x CE . 可证:△ACF ∽△ABC . ∴xx AB AC AC AF 222,=-=. 整理得:0422=--x x解之得:51+=x (51-=x 舍去). ∴51+=BC ,5151=-+=CE . 由(2)可知:︒=18sin CEMN. ∴︒=︒⋅=18sin 518sin CE MN . 在Rt △BCP 中41551118sin sin -=+==︒=∠BC CP CBP ∴()4554155-=-=MN ; ②当点D 、E 分别是边AB 、CB 的延长线上的动点时,如图7所示.52511+=++=CE图 7AB C DEM NP∴()43541552+=-⨯+=MN . 综上所述,MN 的长为455-或435+.重要结论 我们把顶角为︒36的等腰三角形称为特殊等腰三角形.已知特殊等腰三角形的底边长,作出其中一个底角的平分线,可以利用三角形相似的知识可以求出腰长.特殊等腰三角形23.(11分)如图所示,抛物线c x ax y +-=22与x 轴交于A 、B 两点,与y轴交于点C ,直线3+=x y 经过A 、C 两点. (1)求抛物线的解析式;(2)点N 是x 轴上的动点,过点N 作x 轴的垂线,交抛物线与点M ,交直线AC 于点H . ①点D 在线段OC 上,连结AD 、BD ,当BD AH =时,求AH AD +的最小值;②当OD OC 3=时,将直线AD 绕点A 旋转︒45,使直线AD 与y 轴交于点P ,请直接写出点P 的坐标.第 23 题图备用图解:(1)对于3+=x y ,令03=+x ,解之得:3-=x ,令0=x ,则3=y . ∴()0,3-A ,()3,0C .把()0,3-A ,()3,0C 代入c x ax y +-=22可得:⎩⎨⎧==++3069c c a ,解之得:⎩⎨⎧=-=31c a ∴抛物线的解析式为322+--=x x y ; ……………………………………………3分(2)①令0322=+--x x 解之得:31-=x ,12=x ∴()()0,1,0,3B A -……………………………………………5分 ∵BD AH =∴BD AD AH AD +=+ ∵BD AD +≥AB∴()()431min =--==+AB BD AD 即AH AD +的最小值为4;……………………………………………9分②点P 的坐标为⎪⎭⎫ ⎝⎛-23,0或()6,0.…………………………………………11分 提示:题目为指明直线AD 旋转的方向,这里要分为两种情况进行讨论.当直线AD 绕点A 顺时针旋转︒45时,如图1所示.图 1∵()()3,0,0,3C A -∴3==OC OA ,△AOC 为等腰直角三角形. ∴︒=∠=∠45ACO CAO .∵︒=∠+∠=∠+∠45OAD OAP OAD CAD ∴OAP CAD ∠=∠.作AC DE ⊥,则△DCE 为等腰直角三角形. ∵OD OC 3= ∴2,1==CD OD ∴2222===CD DE在Rt △AOD 中,由勾股定理得:10132222=+=+=OD OA AD∴55102sin sin ===∠=∠AD DE EAD CAD ∴55sin =∠OAP . 设m OP =,则5593222=+=+m m m m . 两边分别平方得:51922=+m m解之得:23=m (23-=m )舍去.∴23=OP∴⎪⎭⎫ ⎝⎛-23,0P ;当直线AD 绕点A 逆时针旋转︒45时,如图2.∵︒=∠=∠+∠45ACO CAP OPA第11页︒=∠=∠+∠45DAP CAD CAP∴CAD OPA ∠=∠作AC DE ⊥,则△DCE 为等腰直角三角形. 设m OP =∵55sin sin =∠=∠EAD CAD ∴5593sin 2=+==∠m PAOAOPA . 两边分别平方得:51992=+m . 解之得:6=m (6-=m )舍去. ∴6=OP ∴()6,0P .综上所述,点P 的坐标为⎪⎭⎫ ⎝⎛-23,0或()6,0.学生整理用图321OHFEDC BAF 图 6PNMEDCBA图 7ABCDEM NPxy第 23 题图OMH NDC BAxy备用图CBA O。
2020年河南省实验中学九年级一模数学试卷(含答案和评分标准)
新华师大版九年级上册数学摸底试卷(十四)河南省实验中学一模数学试卷 D 卷姓名____________ 时间: 90分钟 满分:120分 总分____________ 一、选择题(每小题3分,共30分)1. 4-的相反数是 【 】 (A )4 (B )4- (C )41(D )2 2. 据官方数据统计,截止到2019年12月19日,故宫在2019年度接待游客1 900万人次,再创历史新高,将1 900万用科学记数法可表示为 【 】 (A )3109.1⨯ (B )5109.1⨯ (C )6109.1⨯ (D )7109.1⨯3. 如图所示,有一块含有︒30角的直角三角板的一个顶点放在直尺的一条边上.若︒=∠522,则1∠的度数是 【 】 (A )︒44 (B )︒25 (C )︒36 (D )︒38第 3 题图12DCB A俯视图左视图主视图644. 下列运算正确的是 【 】 (A )()523a a -=- (B )523a a a =⋅(C )()9223b a ab =- (D )1222=-a a5. 如图所示是某几何体的三视图,根据图中数据计算,这个几何体的侧面积为 【 】 (A )325π(B )π12 (C )π342 (D )π24 6. 一元二次方程()()()131--=-x x x x 根的情况是 【 】 (A )只有一个实数根为23(B )有两个实数根,一正一负 (C )两个正实数根 (D )无实数根7. 某组委会对参加“古典诗词背诵”大赛的若干同学进行了年龄调查,并制成了如图所示的频数分布直方图,则依据图中信息得到这组数据的中位数和众数分别是 【 】 (A )15 , 13 (B )15 , 15 (C )8 , 15 (D )14 , 16第 7 题图第 8 题图PGFEDCBA8. 如图所示,已知四边形ABCD 为平行四边形,按以下步骤作图:①以点A 为圆心,适当长度为半径作弧,分别交边AB 、AD 于点E 、F ;②分别以点E 、F 为圆心,大于EF 21的长为半径作弧,两弧在BAD ∠内交于点G ;③作射线AG ,交边BC 于点P ,若CP BP CD 3,6==,则平行四边形ABCD 的周长为 【 】 (A )20 (B )32 (C )28 (D )249. 如图所示,在平面直角坐标系中,边长为3的正方形ABCD 的边BC 在x 轴上,AD 交y 轴于点F ,一次函数()0≠+=k b kx y 的图象经过点C ,且与线段AF 始终有交点(含端点),若CO BO 2=,则k 的值可能为 【 】(A )32 (B )21- (C )23- (D )2 10. 如图所示,在直线x y 33=上依次取点 321D D D 、、顺次构造等边三角形△AB D 1、△BC D 2…点A 、B 、C 都在x 轴上,如果2=OA ,则第2019个等边三角形的顶点2019D 的坐标为 【 】 (A )()32,3220182018⨯ (B )()32,3220192019⨯ (C )()32,3220192019⨯ (D )()32,3220182018⨯ 二、填空题(每小题3分,共15分)11. 计算:=⎪⎭⎫⎝⎛---1314_________.12. 满足一元一次不等式组⎪⎩⎪⎨⎧>-≤-031201x x 的最大整数值为_________.13. 在不透明纸箱中放有除了标注数字不同其他完全相同的3张卡片,上面分别标注有数字为1、2、3,从中随机摸出一张,放回搅匀再摸第二张,两次抽得的数字之和为奇数的概率为_________.第 9 题图第 10 题图14. 如图所示,矩形ABCD 与以BC 为直径的半圆相切,连结BD ,若3=AB ,则阴影部分的面积为__________.第 14 题图第 15 题图MP DCBA15. 如图所示,矩形ABCD 中,8,5==BC AB ,点P 为BC 边上一动点(不与端点重合),连结AP ,将△ABP 沿着AP 折叠,点B 落在M 处,连结BM 、CM ,若△BMC 为等腰三角形,则BP 的长为__________.三、解答题(共75分)16.(8分)化简:x x x x x x x 121122++÷⎪⎭⎫ ⎝⎛---,并从不等式组⎪⎩⎪⎨⎧>+->+030121x x 的解集中选择一个合适的整数解代入求值.17.(9分)如图所示,△EDF 为⊙O 的内接三角形,FB 平分DFE ∠,连结BD ,过点B 作直线AC ,使BFE EBC ∠=∠. (1)求证:BF BG BD ⋅=2; (2)求证:直线AC 是⊙O 的切线.备用图18.(9分)网络时代,新兴词汇层出不穷,为了解大众对网络词汇的理解,某兴趣小组举行了一个“我是路人甲”的调查活动:选取四个热词A:“硬核人生”;B:“好嗨哦”;C:“双击666”;D:“杠精时代”在街道上对流动人群进行了抽样调查,要求被调查的每位只能勾选一个最熟悉的热词,根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了_________名路人; (2)补全条形统计图;(3)扇形统计图中的=b_________.D 108°CBb=_____°A 144°19.(9分)如图所示是某游乐公司修建的轮滑滑道草图,设计师从土台上直立大树的底端F 出发,水平滑行10米到E 点,沿着一个坡比为8 : 15的斜坡下行8. 5米到B 点,然后惯性滑行5. 5米到C 点停止,此时测得树梢P 点的仰角为︒24,若A 、B 、C 、D 均在一条直线上,请你根据图中数据试求树高多少米.(参考数据:45.024tan ,91.024cos ,41.024sin ≈︒≈︒≈︒)20.(9分)五一期间,某数码产品专营店预备购买A 品牌手机和B 品牌手机共30台,已知2台A 品牌手机和1台B 品牌手机价格为7 800元,1台A 品牌手机和2台B 品牌手机的价格为6 600元.(1)若购进A 品牌手机x 台,购进A 、B 品牌手机的总费用为W ,求W 与x 的函数关系式; (2)若该数码产品专营店购进两种品牌手机的总费用不超过60 000元,那么专营店最多购进A 品牌手机多少台?21.(10分)如图所示,反比例函数与一次函数图象交于A、B两点,点A在点B的下方且坐标为(3 , 2).(1)求反比例函数的解析式;(2)连结OA、OB,当△AOB的面积为8时,求直线AB的解析式.22.(10分)如图1所示,边长为4的正方形ABCD 与边长为()41<<a a 的正方形CFEG 的顶点C 重合,点E 在对角线AC 上.【问题发现】如图1所示,AE 与BF 的数量关系为_________;【类比探究】如图2所示,将正方形CFEG 绕点C 旋转,旋转角为α(︒<<︒300α),请问此时上述结论是否还成立?如成立写出推理过程,如不成立说明理由;【拓展延伸】若点F 为BC 的中点,且在正方形CFEG 的旋转过程中,有点A 、F 、G 在一条直线上,直接写出此时线段AG 的长度为__________.图 3图 2图 1DCBAG FEDCBAGF EDCBA23.(11分)如图所示,平面直角坐标系中,直线3+-=x y 交坐标轴于B 、C 两点,抛物线32++=bx ax y 经过B 、C 两点,且交x 轴于另一点()0,1-A .点D 为抛物线在第一象限内的一点,过点D 作CO DQ //,DQ 交BC 于点P ,交x 轴于Q . (1)求抛物线的解析式;(2)设点P 的横坐标为m ,在点D 的移动过程中,存在ACO DCP ∠=∠,求m 的值; (3)在抛物线上取点E ,在坐标系内取点F ,问是否存在以C 、B 、E 、F 为顶点且以CB 为边的矩形?如果存在请求出点E 的坐标,如果不存在,请说明理由.备用图1备用图2新华师大版九年级上册数学摸底试卷(十四)河南省实验中学一模数学试卷 D 卷 参考答案一、选择题(每小题3分,共24分)二、填空题(每小题3分,共21分) 11. 5 12. 1 13.94 14. 49π 15. 25或320 部分选择题、填空题答案解析9. 如图所示,在平面直角坐标系中,边长为3的正方形ABCD 的边BC 在x 轴上,AD 交y 轴于点F ,一次函数()0≠+=k b kx y 的图象经过点C ,且与线段AF 始终有交点(含端点),若CO BO 2=,则k 的值可能为 【 】(A )32 (B )21-(C )23- (D )2第 9 题图解析:由题意可知:1,2==OC OB∵四边形ABCD 为正方形∴()()()3,0,0,1,3,2F C A -把()()0,1,3,2C A -分别代入b kx y +=得:⎩⎨⎧=+=+-032b k b k ,解之得:⎩⎨⎧=-=11b k ∴1+-=x y ;把()()3,0,0,1F C 分别代入b kx y +=得:⎩⎨⎧==+30b b k ,解之得:⎩⎨⎧=-=33b k ∴33+-=x y .∵直线b kx y +=与线段AF 始终有交点(含端点)∴13-<<-k ∴选择答案【 C 】.10. 如图所示,在直线x y 33=上依次取点 321D D D 、、顺次构造等边三角形△AB D 1、△BC D 2…点A 、B 、C 都在x 轴上,如果2=OA ,则第2019个等边三角形的顶点2019D 的坐标为 【 】 (A )()32,3220182018⨯ (B )()32,3220192019⨯ (C )()32,3220192019⨯(D )()32,3220182018⨯第 10 题图解析:作x F D ⊥1轴,x G D ⊥2轴,如图所示. 设等边△AB D 1的边长为m 2,则m AF =,m F D 31=∵2=OA ∴()m m D 3,21+∵点()m m D 3,21+在直线x y 33=上 ∴3323=+m m ,解之得:1=m ∴()3,31D同法求得:()32,62D ,()33,123D ,…… ∴点2019D 的坐标为()32,3220182018⨯. ∴选择答案【 D 】.14. 如图所示,矩形ABCD 与以BC 为直径的半圆相切,连结BD ,若3=AB ,则阴影部分的面积为__________.第 14 题图解析:设半圆的圆心为点O ,切点为点E ,连结OE ,如图所示.则有AD OE ⊥,四边形ABOE 为正方形∴3==AB OB 易证:△DEF ≌△BOF ∴ππ493603902=⨯==BOES S 扇形阴影.15. 如图所示,矩形ABCD 中,8,5==BC AB ,点P 为BC 边上一动点(不与端点重合),连结AP ,将△ABP 沿着AP 折叠,点B 落在M 处,连结BM 、CM ,若△BMC 为等腰三角形,则BP 的长为__________. 解析:分为三种情况:①当MC MB =时,如图1所示. 过点M 作直线BC EF ⊥,交AD 于点F .第 15 题图MP DCBA图 1∴4,421=====BE AF BC CE BE 由折叠可知:︒=∠=∠===905,AMP ABP AM AB MP BP设x BP =,则x PE x MP -==4, 在Rt △AMF 中,由勾股定理得:3452222=-=-=AF AM MF易证:△PME ∽△MAF∴345,xx MF PE MA PM -== 解之得:25=x∴25=BP;②当8==BC BM 时,如图所示. 由轴对称的性质可知:AP 垂直平分BM ∴421==BM BH (如果两个图形关于某条直线对称,那么对称点的连线被对称轴垂直平分.) 在Rt △ABH 中,由勾股定理得:3452222=-=-=BH AB AH易证:△BPH ∽△ABH∴345,==x AH BH AB BP 解之得:320=x∴320=BP ;③当CM CB =时,点P 与点B 重合或与点C 重合,不符合题意,舍去. 综上所述,BP 对称为25或320. 三、解答题(共75分)16.(8分)化简:x x x x x x x 121122++÷⎪⎭⎫ ⎝⎛---,并从不等式组⎪⎩⎪⎨⎧>+->+030121x x 的解集中选择一个合适的整数解代入求值.解:x x x x x x x 121122++÷⎪⎭⎫ ⎝⎛--- ()()22111+⋅--=x x x x x 11+-=x ……………………………………………5分解不等式组⎪⎩⎪⎨⎧>+->+030121x x 得:32<<-x……………………………………………6分 ∵1,0±≠x ,且x 为整数∴2=x …………………………………7分 当2=x 时 原式31121-=+-=. ……………………8分 17.(9分)如图所示,△EDF 为⊙O 的内接三角形,FB 平分DFE ∠,连结BD ,过点B 作直线AC ,使BFE EBC ∠=∠. (1)求证:BF BG BD ⋅=2; (2)求证:直线AC 是⊙O 的切线.备用图证明:(1)∵FB 平分DFE ∠∴21∠=∠………………………………1分 ∵32∠=∠∴31∠=∠………………………………1分∵FBD DBG ∠=∠∴△BDG ∽△BFD ……………………3分 ∴BDBGBF BD =∴BF BG BD ⋅=2;………………………4分(2)连结BO 并延长,交⊙O 于点H ,连结EH .……………………………………………5分∴BFE BHE ∠=∠………………………6分 ∵BFE EBC ∠=∠∴BHE EBC ∠=∠ ……………………7分∵BH 为⊙O 的直径∴︒=∠90BEH …………………………8分∴︒=∠+∠=∠+∠90EBH EBC EBH BHE∴︒=∠90HBC ,即AC OB ⊥∴直线AC 是⊙O 的切线.………………9分 18.(9分)网络时代,新兴词汇层出不穷,为了解大众对网络词汇的理解,某兴趣小组举行了一个“我是路人甲”的调查活动:选取四个热词A:“硬核人生”;B:“好嗨哦”;C:“双击666”;D:“杠精时代”在街道上对流动人群进行了抽样调查,要求被调查的每位只能勾选一个最熟悉的热词,根据调查结果,该小组绘制了如下的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题: (1)本次调查中,一共调查了_________名路人;(2)补全条形统计图;(3)扇形统计图中的=b_________.D 108°CBb=_____°A 144°解:(1)300 ; ……………………………2分 提示:300360144120=÷(人). (2)选择D 的人数为:90360108300=⨯(人) …………………3分∴选择C 的人数为:159075120300=---(人)…………4分补全条形统计图如图所示; ……………6分(3)︒90. ………………………………9分 提示:︒=⨯︒9030075360. 19.(9分)如图所示是某游乐公司修建的轮滑滑道草图,设计师从土台上直立大树的底端F 出发,水平滑行10米到E 点,沿着一个坡比为8 : 15的斜坡下行8. 5米到B 点,然后惯性滑行5. 5米到C 点停止,此时测得树梢P 点的仰角为︒24,若A 、B 、C 、D 均在一条直线上,请你根据图中数据试求树高多少米.(参考数据:45.024tan ,91.024cos ,41.024sin ≈︒≈︒≈︒)解:作AB EG ⊥.…………………………1分 则四边形AGEF 为矩形∴10==EF AG 米,GE AF =……………………………………………2分 在Rt △BEG 中 ∵15:8=i ∴158=BG GE ……………………………3分 设x GE 8=,则x BG 15=,由勾股定理得:()()5.81715822==+=x x x BE解之得:5.0=x∴4==AF GE 米,5.7=BG 米……………………………………………5分 ∴BC BG AG AC ++= 235.55.710=++=米……………………………………………6分 在Rt △APC 中∵ACAP=︒24tan …………………………7分∴35.1045.02324tan =⨯≈︒⋅=AC AP 米 ……………………………………………8分 ∴35.6435.10=-=-=AF AP PF 米 ……………………………………………9分 答:树高约6.35米.20.(9分)五一期间,某数码产品专营店预备购买A 品牌手机和B 品牌手机共30台,已知2台A 品牌手机和1台B 品牌手机价格为7 800元,1台A 品牌手机和2台B 品牌手机的价格为6 600元.(1)若购进A 品牌手机x 台,购进A 、B 品牌手机的总费用为W ,求W 与x 的函数关系式;(2)若该数码产品专营店购进两种品牌手机的总费用不超过60 000元,那么专营店最多购进A 品牌手机多少台?解:(1)设1台A 品牌手机的进价为a 元,1台B 品牌手机的进价为b 元……………1分 由题意可得:⎩⎨⎧=+=+6600278002b a b a …………………………3分 解之得:⎩⎨⎧==18003000b a ………………………4分∴()5400012003018003000+=-+=x x x W……………………………………………6分 (2)由题意可知:540001200+x ≤60000…………………8分解之得:x ≤5 ……………………………9分 答:专营店最多购进A 品牌手机5台. 21.(10分)如图所示,反比例函数与一次函数图象交于A 、B 两点,点A 在点B 的下方且坐标为(3 , 2).(1)求反比例函数的解析式;(2)连结OA 、OB ,当△AOB 的面积为8时,求直线AB 的解析式.解:(1)设反比例函数的解析式为xky =. 把()23,A 代入xky =得:623=⨯=k ∴反比例函数的解析式为xy 6=;……………………………………………3分 (2)作x AC ⊥轴于点C ,作x BD ⊥轴于点D ,延长CA 、DB ,交于点E ,如图所示. ……………………………………………4分 则有3621=⨯==∆∆AOCBOD S S . ……………………………………………5分设点B 为⎪⎭⎫⎝⎛m m 6,,则m CE OD m BD 6,===∵()23,A ∴2,3==AC OC ∴26,3-=-=mAE m BE ∵ABE AOB AOC BOD CODE S S S S S ∆∆∆∆+++=矩形 ∴()⎪⎭⎫ ⎝⎛--⨯+++=⨯2632183363m m m 整理得:0982=-+m m解之得:9,121-==m m (不符合题意,舍去) ∴()6,1B …………………………………8分设直线AB 的解析式为b ax y += 把()23,A ,()6,1B 分别代入b ax y +=得:⎩⎨⎧=+=+623b a b a ,解之得:⎩⎨⎧=-=82b a ∴直线AB 的解析式为82+-=x y .…………………………………………10分 22.(10分)如图1所示,边长为4的正方形ABCD 与边长为()41<<a a 的正方形CFEG 的顶点C 重合,点E 在对角线AC 上. 【问题发现】如图1所示,AE 与BF 的数量关系为_________;【类比探究】如图2所示,将正方形CFEG 绕点C 旋转,旋转角为α(︒<<︒300α),请问此时上述结论是否还成立?如成立写出推理过程,如不成立说明理由;【拓展延伸】若点F 为BC 的中点,且在正方形CFEG 的旋转过程中,有点A 、F 、G 在一条直线上,直接写出此时线段AG 的长度为__________.图 1GF EDCBA图 2GFEDC BA图 3DCBA解:(1)BF AE 2=; …………………1分 提示:∵AB CD EF ////∴BF CFAE CE =(平行线分线段成比例定理) ∴2==CFCE BF AE ∴BF AE 2=.(2)成立; ………………………………2分 理由如下:连结CE ,如图所示.由旋转的性质可知:BCF ACE ∠=∠ ……………………………………………3分 ∵2==CF CEBC AC ∴△ACE ∽△BCF ………………………6分 ∴2==CFCEBF AE ∴BF AE 2=;…………………………8分 (3)230+或230-.…………………………………………10分 提示:分为两种情况:图 4①如图4所示,设CE 、FG 相交于点O ∵221==BC CF ∴222==CF GF ∴221===GF OC OG ∵四边形ABCD 为正方形 ∴242==BC AC 在Rt △AOC 中,由勾股定理得: ()()302242222=-=-=OC AC AO ∴230+=+=OG AO AG ;②如图5所示.图 5此时,230-=-=OG AO AG . 综上所述,线段AG 的长度为230+或230-.23.(11分)如图所示,平面直角坐标系中,直线3+-=x y 交坐标轴于B 、C 两点,抛物线32++=bx ax y 经过B 、C 两点,且交x 轴于另一点()0,1-A .点D 为抛物线在第一象限内的一点,过点D 作CO DQ //,DQ 交BC 于点P ,交x 轴于Q . (1)求抛物线的解析式;(2)设点P 的横坐标为m ,在点D 的移动过程中,存在ACO DCP ∠=∠,求m 的值; (3)在抛物线上取点E ,在坐标系内取点F ,问是否存在以C 、B 、E 、F 为顶点且以CB 为边的矩形?如果存在请求出点E 的坐标,如果不存在,请说明理由.备用图1备用图2解:(1)对于3+-=x y ,令0=x ,则3=y ; 令0=y ,则03=+-x ,解之得:3=x . ∴()()0,3,3,0B C …………………………1分 把()0,1-A 和()0,3B 分别代入抛物线的解析式可得:⎩⎨⎧=++=+-033903b a b a ,解之得:⎩⎨⎧=-=21b a ∴抛物线的解析式为322++-=x x y ;……………………………………………3分方法二:由题意可设抛物线的解析式为()()31-+=x x a y把()3,0C 代入()()31-+=x x a y 可得:33=-a ,解之得:1-=a∴()()31-+-=x x y∴抛物线的解析式为322++-=x x y .(2)∵()0,3B ,()3,0C ∴3==OC OB∴︒=∠45OCB图 1∵CO DQ //∴︒=∠=∠45OCB DPC……………………………………………4分 作BC PE ⊥ ……………………………5分 则DP DP DE 222==∵点P 的横坐标为m (30<<m ) ∴()()3,,32,2+-++-m m P m m m D∴3322-+++-=-=m m m y y DP P D m m 32+-=………………………6分()()2222212m m m m m CD -+=+-+=在Rt △AOC 中,由勾股定理得:10312222=+=+=OB OA AC∵ACO DCP ∠=∠ ∴ACO DCP ∠=∠sin sin ∴101==AC AO CD DE ∴DE CD 10= ∴2210DE CD =∴()[]()222223221021m m m m -⎪⎪⎭⎫⎝⎛⨯=-+ 整理得:0201322=+-m m解之得:4,2521==m m (不符合题意,舍去)∴m 的值为25; …………………………9分(3)存在,点E 的坐标为()5,2--或()4,1. …………………………………………11分提示:分为两种情况:①当点E 在直线BC 下方的抛物线上时, 如图2所示.图 2∵BC BE ⊥∴可设直线BE 的解析式为p x y += 把()0,3B 代入p x y +=得:03=+p ,解之得:3-=p∴直线BE 的解析式为3-=x y 解方程3322-=++-x x x 得:3,221=-=x x (舍去)∴()5,2--E ;②当点E 在直线BC 上方的抛物线上时, 如图3所示.图 3∵BC CE ⊥∴可设直线CE 的解析式为q x y += 把()3,0C 代入q x y +=得:3=q ∴直线CE 的解析式为3+=x y 解方程3322+=++-x x x 得:0,121==x x (舍去)∴()4,1E .综上所述,点E 的坐标为()5,2--或()4,1.学生整理用图。
河南省郑州市2019-2020学年中考数学一模考试卷含解析
河南省郑州市2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图,在平面直角坐标系中,以A(-1,0),B(2,0),C(0,1)为顶点构造平行四边形,下列各点中不能作为平行四边形顶点坐标的是()A.(3,1)B.(-4,1)C.(1,-1)D.(-3,1)2.已知x2-2x-3=0,则2x2-4x的值为()A.-6 B.6 C.-2或6 D.-2或303.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)4.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A.x(x+1)=210 B.x(x﹣1)=210C.2x(x﹣1)=210 D.12x(x﹣1)=2105.小轩从如图所示的二次函数y=ax 2+bx+c (a≠0)的图象中,观察得出了下面五条信息:①ab >0;②a+b+c <0;③b+2c >0;④a ﹣2b+4c >0;⑤3a b 2=. 你认为其中正确信息的个数有A .2个B .3个C .4个D .5个6.如图,在ABC ∆中,90ACB ∠=o ,6AC =,8BC =,点,P Q 分别在,AB BC 上,AQ CP ⊥于D ,45CQ BP =则ACP ∆的面积为( )A .232B .252C .272D .2927.已知关于x 的二次函数y =x 2﹣2x ﹣2,当a≤x≤a+2时,函数有最大值1,则a 的值为( ) A .﹣1或1 B .1或﹣3 C .﹣1或3 D .3或﹣38.如图在△ABC 中,AC =BC ,过点C 作CD ⊥AB ,垂足为点D ,过D 作DE ∥BC 交AC 于点E ,若BD =6,AE =5,则sin ∠EDC 的值为( )A .35B .725C .45D .24259.如图,已知点A 、B 、C 、D 在⊙O 上,圆心O 在∠D 内部,四边形ABCO 为平行四边形,则∠DAO 与∠DCO 的度数和是( )A.60°B.45°C.35°D.30°10.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有( )A.16个B.15个C.13个D.12个11.不等式组310xx<⎧⎨-≤⎩中两个不等式的解集,在数轴上表示正确的是A.B.C.D.12.如图,直线与y轴交于点(0,3)、与x轴交于点(a,0),当a满足时,k 的取值范围是()A.B.C.D.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.不解方程,判断方程2x2+3x﹣2=0的根的情况是_____.14x2-x的取值范围是______.15.若关于x的方程x2﹣8x+m=0有两个相等的实数根,则m=_____.16.同学们设计了一个重复抛掷的实验:全班48人分为8个小组,每组抛掷同一型号的一枚瓶盖300次,并记录盖面朝上的次数,下表是依次累计各小组的实验结果.1组1~2组1~3组1~4组1~5组1~6组1~7组1~8组盖面朝上次数165 335 483 632 801 949 1122 1276盖面朝上频率 0.5500.558 0.537 0.527 0.534 0.527 0.534 0.532根据实验,你认为这一型号的瓶盖盖面朝上的概率为____,理由是:____.17.今年,某县境内跨湖高速进入施工高峰期,交警队为提醒出行车辆,在一些主要路口设立了交通路况警示牌(如图).已知立杆AD 高度是4m ,从侧面C 点测得警示牌顶端点A 和底端B 点的仰角(∠ACD 和∠BCD )分别是60°,45°.那么路况警示牌AB 的高度为_____.18.若关于x 、y 的二元一次方程组3526x my x ny -=⎧⎨+=⎩的解是12x y =⎧⎨=⎩,则关于a 、b 的二元一次方程组3()()=52()()6a b m a b a b n a b +--⎧⎨++-=⎩的解是_______. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)我市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有______人,扇形统计图中“了解”部分所对应扇形的圆心角为______°.(2)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为_______人.(3)若从对校园安全知识达到“了解”程度的3个女生A 、B 、C 和2个男生M 、N 中分别随机抽取1人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到女生A 的概率.20.(6分)如图,某同学在测量建筑物AB的高度时,在地面的C处测得点A的仰角为30°,向前走60米到达D处,在D处测得点A的仰角为45°,求建筑物AB的高度.21.(6分)为保护环境,我市公交公司计划购买A型和B型两种环保节能公交车共10辆.若购买A型公交车1辆,B型公交车2辆,共需400万元;若购买A型公交车2辆,B型公交车1辆,共需350万元.求购买A型和B型公交车每辆各需多少万元?预计在某线路上A型和B型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A型和B型公交车的总费用不超过1200万元,且确保这10辆公交车在该线路的年均载客总和不少于680万人次,则该公司有哪几种购车方案?在(2)的条件下,哪种购车方案总费用最少?最少总费用是多少万元?22.(8分)小张骑自行车匀速从甲地到乙地,在途中因故停留了一段时间后,仍按原速骑行,小李骑摩托车比小张晚出发一段时间,以800米/分的速度匀速从乙地到甲地,两人距离乙地的路程y(米)与小张出发后的时间x(分)之间的函数图象如图所示.求小张骑自行车的速度;求小张停留后再出发时y与x 之间的函数表达式;求小张与小李相遇时x的值.23.(8分)计算:|3﹣1|+(﹣1)2018﹣tan60°24.(10分)在Rt△ABC中,∠BAC=,D是BC的中点,E是AD的中点.过点A作AF∥BC交BE 的延长线于点F.求证:△AEF≌△DEB;证明四边形ADCF是菱形;若AC=4,AB=5,求菱形ADCFD 的面积.25.(10分)某商店销售A 型和B 型两种电脑,其中A 型电脑每台的利润为400元,B 型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.求y 关于x 的函数关系式;该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大,最大利润是多少?实际进货时,厂家对A 型电脑出厂价下调a (0<a <200)元,且限定商店最多购进A 型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.26.(12分)如图,△ABC 是等腰直角三角形,且AC=BC ,P 是△ABC 外接圆⊙O 上的一动点(点P 与点C 位于直线AB 的异侧)连接AP 、BP ,延长AP 到D ,使PD=PB ,连接BD .(1)求证:PC ∥BD ;(2)若⊙O 的半径为2,∠ABP=60°,求CP 的长;(3)随着点P 的运动,PA PB PC+的值是否会发生变化,若变化,请说明理由;若不变,请给出证明. 27.(12分)解方程:1+231833x x x x x-=--参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.B【解析】【分析】作出图形,结合图形进行分析可得.【详解】如图所示:①以AC为对角线,可以画出▱AFCB,F(-3,1);②以AB为对角线,可以画出▱ACBE,E(1,-1);③以BC为对角线,可以画出▱ACDB,D(3,1),故选B.2.B【解析】方程两边同时乘以2,再化出2x2-4x求值.解:x2-2x-3=02×(x2-2x-3)=02×(x2-2x)-6=02x2-4x=6故选B.3.D【解析】【详解】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且OA'OA=13.∴A EAD=0E0D=13.∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2). 故答案选D.考点:位似变换.4.B【解析】【详解】设全组共有x名同学,那么每名同学送出的图书是(x−1)本;则总共送出的图书为x(x−1);又知实际互赠了210本图书,则x(x−1)=210.故选:B.5.D【解析】试题分析:①如图,∵抛物线开口方向向下,∴a<1.∵对称轴xb12a3=-=-,∴2b a3=-<1.∴ab>1.故①正确.②如图,当x=1时,y<1,即a+b+c<1.故②正确.③如图,当x=﹣1时,y=a﹣b+c>1,∴2a﹣2b+2c>1,即3b﹣2b+2c>1.∴b+2c>1.故③正确.④如图,当x=﹣1时,y>1,即a﹣b+c>1,∵抛物线与y轴交于正半轴,∴c>1.∵b<1,∴c﹣b>1.∴(a﹣b+c)+(c﹣b)+2c>1,即a﹣2b+4c>1.故④正确.⑤如图,对称轴b12a3=-=-,则3a b2=.故⑤正确.综上所述,正确的结论是①②③④⑤,共5个.故选D.6.C【解析】【分析】先利用三角函数求出BE=4m,同(1)的方法判断出∠1=∠3,进而得出△ACQ∽△CEP,得出比例式求出PE ,最后用面积的差即可得出结论;【详解】 ∵45CQ BP =, ∴CQ=4m ,BP=5m ,在Rt △ABC 中,sinB=35,tanB=34, 如图2,过点P 作PE ⊥BC 于E ,在Rt △BPE 中,PE=BP•sinB=5m×35=3m ,tanB=PE BE , ∴334m BE =, ∴BE=4m ,CE=BC-BE=8-4m ,同(1)的方法得,∠1=∠3,∵∠ACQ=∠CEP ,∴△ACQ ∽△CEP ,∴CQ AC PE CE= , ∴46384m m m=- , ∴m=78, ∴PE=3m=218, ∴S △ACP =S △ACB -S △PCB =12BC×AC-12BC×PE=12BC (AC-PE )=12×8×(6-218)=272,故选C. 【点睛】本题是相似形综合题,主要考查了相似三角形的判定和性质,三角形的面积的计算方法,判断出△ACQ ∽△CEP 是解题的关键.7.A【解析】分析:详解:∵当a≤x≤a +2时,函数有最大值1,∴1=x 2-2x -2,解得:123,1x x ==- ,即-1≤x≤3, ∴a=-1或a+2=-1, ∴a=-1或1,故选A.点睛:本题考查了求二次函数的最大(小)值的方法,注意:只有当自变量x在整个取值范围内,函数值y 才在顶点处取最值,而当自变量取值范围只有一部分时,必须结合二次函数的增减性及对称轴判断何处取最大值,何处取最小值.8.A【解析】【分析】由等腰三角形三线合一的性质得出AD=DB=6,∠BDC=∠ADC=90°,由AE=5,DE∥BC知AC=2AE=10,∠EDC=∠BCD,再根据正弦函数的概念求解可得.【详解】∵△ABC中,AC=BC,过点C作CD⊥AB,∴AD=DB=6,∠BDC=∠ADC=90°,∵AE=5,DE∥BC,∴AC=2AE=10,∠EDC=∠BCD,∴sin∠EDC=sin∠BCD=63105 BDBC==,故选:A.【点睛】本题主要考查解直角三角形,解题的关键是熟练掌握等腰三角形三线合一的性质和平行线的性质及直角三角形的性质等知识点.9.A【解析】试题解析:连接OD,∵四边形ABCO为平行四边形,∴∠B=∠AOC,∵点A. B. C.D在⊙O上,180B ADC∴∠+∠=o,由圆周角定理得,12ADC AOC ∠=∠,2180ADC ADC∴∠+∠=o,解得, 60ADC ∠=o ,∵OA=OD ,OD=OC ,∴∠DAO=∠ODA ,∠ODC=∠DCO ,60.DAO DCO ∴∠+∠=o 故选A.点睛:在同圆或等圆中,同弧或等弧所对的圆周角等于圆心角的一半.10.D【解析】【分析】由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.【详解】解:设白球个数为:x 个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%, ∴4144x =+ , 解得:x=12,经检验x=12是原方程的根,故白球的个数为12个.故选:D . 【点睛】本题考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题的关键.11.B【解析】由①得,x<3,由②得,x≥1,所以不等式组的解集为:1≤x<3,在数轴上表示为:,故选B .12.C【解析】【分析】【详解】解:把点(0,2)(a ,0)代入,得b=2.则a=,∵, ∴,解得:k≥2.故选C .【点睛】本题考查一次函数与一元一次不等式,属于综合题,难度不大.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.有两个不相等的实数根.【解析】分析:先求一元二次方程的判别式,由△与0的大小关系来判断方程根的情况.详解:∵a=2,b=3,c=−2,∴24916250b ac =-=+=>V ,∴一元二次方程有两个不相等的实数根.故答案为有两个不相等的实数根.点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.14.x 2≥【解析】二次根式有意义的条件. x 2-x 20x 2-≥⇒≥.15.1【解析】【分析】根据判别式的意义得到△=(﹣8)2﹣4m =0,然后解关于m 的方程即可.【详解】△=(﹣8)2﹣4m =0,解得m =1,故答案为:1.【点睛】本题考查了根的判别式:一元二次方程ax 2+bx+c =0(a≠0)的根与△=b 2﹣4ac 有如下关系:当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程无实数根. 16.0.532, 在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.【解析】【分析】根据用频率估计概率解答即可.【详解】∵在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值,∴这一型号的瓶盖盖面朝上的概率为0.532,故答案为:0.532,在用频率估计概率时,试验次数越多越接近,所以取1﹣8组的频率值.【点睛】本题考查了利用频率估计概率的知识,解答此题关键是用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.17【解析】【分析】由特殊角的正切值即可得出线段CD 的长度,在Rt △BDC 中,由∠BCD=45°,得出CD=BD ,求出BD 长度,再利用线段间的关系即可得出结论.【详解】在Rt △ADC 中,∠ACD=60°,AD=4∴tan60°=AD CD∴∵在Rt △BCD 中,∠BAD=45∘,∴∴AB=AD-BD=4-3路况警示牌AB的高度为123-m..【点睛】解直角三角形的应用-仰角俯角问题.18.3212 ab⎧=⎪⎪⎨⎪=-⎪⎩【解析】分析:利用关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩可得m、n的数值,代入关于a、b的方程组即可求解,利用整体的思想找到两个方程组的联系再求解的方法更好.详解:∵关于x、y的二元一次方程组3526x myx ny-=⎧⎨+=⎩的解是12xy=⎧⎨=⎩,∴将解12xy=⎧⎨=⎩代入方程组3526x myx ny-=⎧⎨+=⎩可得m=﹣1,n=2∴关于a、b的二元一次方程组()()()()3=526a b m a ba b n a b⎧+--⎪⎨++-=⎪⎩整理为:42546a ba+=⎧⎨=⎩解得:3212 ab⎧=⎪⎪⎨⎪=-⎪⎩点睛:本题考查二元一次方程组的求解,重点是整体考虑的数学思想的理解运用在此题体现明显.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)60,30;;(2)300;(3)1 3【解析】【分析】(1)由了解很少的有30人,占50%,可求得接受问卷调查的学生数,继而求得扇形统计图中“了解”部分所对应扇形的圆心角;(2)利用样本估计总体的方法,即可求得答案;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好抽到女生A的情况,再利用概率公式求解即可求得答案.【详解】解:(1)∵了解很少的有30人,占50%,∴接受问卷调查的学生共有:30÷50%=60(人);∵了解部分的人数为60﹣(15+30+10)=5,∴扇形统计图中“了解”部分所对应扇形的圆心角为:560×360°=30°; 故答案为60,30;(2)根据题意得:900×15+560=300(人), 则估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数为300人,故答案为300;(3)画树状图如下:所有等可能的情况有6种,其中抽到女生A 的情况有2种,所以P (抽到女生A )=26=13. 【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.20.(3【解析】【分析】【详解】解:设建筑物AB 的高度为x 米在Rt △ABD 中,∠ADB=45°∴AB=DB=x∴BC=DB+CD= x+60在Rt △ABC 中,∠ACB=30°, ∴tan ∠ACB=AB CB∴tan 3060x x ︒=+∴3360xx=+∴x=30+30∴建筑物AB的高度为(30+30)米21.(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)三种方案:①购买A型公交车6辆,则B型公交车4辆;②购买A型公交车7辆,则B型公交车3辆;③购买A型公交车8辆,则B型公交车2辆;(3)购买A型公交车8辆,B型公交车2辆费用最少,最少费用为1100万元.【解析】【详解】详解:(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得,解得,答:购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由题意得,解得:6≤a≤8,因为a是整数,所以a=6,7,8;则(10-a)=4,3,2;三种方案:①购买A型公交车6辆,B型公交车4辆;②购买A型公交车7辆,B型公交车3辆;③购买A型公交车8辆,B型公交车2辆.(3)①购买A型公交车6辆,则B型公交车4辆:100×6+150×4=1200万元;②购买A型公交车7辆,则B型公交车3辆:100×7+150×3=1150万元;③购买A型公交车8辆,则B型公交车2辆:100×8+150×2=1100万元;故购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.22.(1)300米/分;(2)y=﹣300x+3000;(3)7811分. 【解析】【分析】 (1)由图象看出所需时间.再根据路程÷时间=速度算出小张骑自行车的速度.(2)根据由小张的速度可知:B (10,0),设出一次函数解析式,用待定系数法求解即可.(3)求出CD 的解析式,列出方程,求解即可.【详解】解:(1)由题意得:240012003004-=(米/分), 答:小张骑自行车的速度是300米/分;(2)由小张的速度可知:B (10,0),设直线AB 的解析式为:y=kx+b ,把A (6,1200)和B (10,0)代入得:10061200,k b k b +=⎧⎨+=⎩解得:3003000,k b =-⎧⎨=⎩ ∴小张停留后再出发时y 与x 之间的函数表达式;3003000y x =-+;(3)小李骑摩托车所用的时间:24003,800= ∵C (6,0),D (9,2400),同理得:CD 的解析式为:y=800x ﹣4800,则80048003003000x x -=-+, 7811x = 答:小张与小李相遇时x 的值是7811分.【点睛】考查一次函数的应用,考查学生观察图象的能力,熟练掌握待定系数法求一次函数解析式是解题的关键.23.1【解析】【分析】原式利用绝对值的代数意义,乘方的意义,以及特殊角的三角函数值计算即可求出值.【详解】1|+(﹣1)2118﹣tan61°=1+1=1.【点睛】本题考查了实数的运算,涉及了绝对值化简、特殊角的三角函数值,熟练掌握各运算的运算法则是解题的关键.24.(1)证明详见解析;(2)证明详见解析;(3)1.【解析】【分析】(1)利用平行线的性质及中点的定义,可利用AAS 证得结论;(2)由(1)可得AF=BD ,结合条件可求得AF=DC ,则可证明四边形ADCF 为平行四边形,再利用直角三角形的性质可证得AD=CD ,可证得四边形ADCF 为菱形;(3)连接DF ,可证得四边形ABDF 为平行四边形,则可求得DF 的长,利用菱形的面积公式可求得答案.【详解】(1)证明:∵AF ∥BC ,∴∠AFE=∠DBE ,∵E 是AD 的中点,∴AE=DE ,在△AFE 和△DBE 中,AFE DBE FEA BED AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS );(2)证明:由(1)知,△AFE ≌△DBE ,则AF=DB .∵AD 为BC 边上的中线∴DB=DC ,∴AF=CD .∵AF ∥BC ,∴四边形ADCF 是平行四边形,∵∠BAC=90°,D是BC的中点,E是AD的中点,∴AD=DC=12 BC,∴四边形ADCF是菱形;(3)连接DF,∵AF∥BD,AF=BD,∴四边形ABDF是平行四边形,∴DF=AB=5,∵四边形ADCF是菱形,∴S菱形ADCF=12AC▪DF=12×4×5=1.【点睛】本题主要考查菱形的性质及判定,利用全等三角形的性质证得AF=CD是解题的关键,注意菱形面积公式的应用.25.(1) =﹣100x+50000;(2) 该商店购进A型34台、B型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.【解析】【分析】(1)根据“总利润=A型电脑每台利润×A电脑数量+B型电脑每台利润×B电脑数量”可得函数解析式;(2)根据“B型电脑的进货量不超过A型电脑的2倍且电脑数量为整数”求得x的范围,再结合(1)所求函数解析式及一次函数的性质求解可得;(3)据题意得y=(400+a)x+500(100﹣x),即y=(a﹣100)x+50000,分三种情况讨论,①当0<a<100时,y随x的增大而减小,②a=100时,y=50000,③当100<m<200时,a﹣100>0,y随x的增大而增大,分别进行求解.【详解】(1)根据题意,y=400x+500(100﹣x)=﹣100x+50000;(2)∵100﹣x≤2x,∴x≥1003,∵y=﹣100x+50000中k=﹣100<0,∴y随x的增大而减小,∵x为正数,∴x=34时,y取得最大值,最大值为46600,答:该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元; (3)据题意得,y=(400+a )x+500(100﹣x ),即y=(a ﹣100)x+50000, 3313≤x≤60, ①当0<a <100时,y 随x 的增大而减小,∴当x=34时,y 取最大值,即商店购进34台A 型电脑和66台B 型电脑的销售利润最大.②a=100时,a ﹣100=0,y=50000,即商店购进A 型电脑数量满足3313≤x≤60的整数时,均获得最大利润; ③当100<a <200时,a ﹣100>0,y 随x 的增大而增大,∴当x=60时,y 取得最大值.即商店购进60台A 型电脑和40台B 型电脑的销售利润最大.【点睛】本题考查了一次函数的应用及一元一次不等式的应用,弄清题意,找出题中的数量关系列出函数关系式、找出不等关系列出不等式是解题的关键.26.(1)证明见解析;(2;(3)PA PB PC +的值不变,PA PB PC +=. 【解析】【分析】(1)根据等腰三角形的性质得到∠ABC=45°,∠ACB=90°,根据圆周角定理得到∠APB=90°,得到∠APC=∠D ,根据平行线的判定定理证明;(2)作BH ⊥CP ,根据正弦、余弦的定义分别求出CH 、PH ,计算即可;(3)证明△CBP ∽△ABD ,根据相似三角形的性质解答.【详解】(1)证明:∵△ABC 是等腰直角三角形,且AC=BC ,∴∠ABC=45°,∠ACB=90°,∴∠APC=∠ABC=45°,∴AB 为⊙O 的直径,∴∠APB=90°,∵PD=PB ,∴∠PBD=∠D=45°,∴∠APC=∠D=45°,∴PC ∥BD ;(2)作BH ⊥CP ,垂足为H ,∵⊙O的半径为2,∠ABP=60°,∴2,∠BCP=∠BAP=30°,∠CPB=∠BAC=45°,在Rt△BCH中,CH=BC•cos∠6,BH=BC•sin∠2,在Rt△BHP中,2,∴62;(3)PA PBPC+的值不变,∵∠BCP=∠BAP,∠CPB=∠D,∴△CBP∽△ABD,∴AD ABPC BC=2,∴PA PDPC+2,即PA PBPC+2.【点睛】本题考查的是圆周角定理、相似三角形的判定和性质以及锐角三角函数的概念,掌握圆周角定理、相似三角形的判定定理和性质定理是解题的关键.27.无解.【解析】【分析】两边都乘以x(x-3),去分母,化为整式方程求解即可.【详解】解:去分母得:x2﹣3x﹣x2=3x﹣18,解得:x=3,经检验x=3是增根,分式方程无解.【点睛】题考查了分式方程的解法,其基本思路是把方程的两边都乘以各分母的最简公分母,化为整式方程求解,求出x的值后不要忘记检验.。
2019-2020年郑州市初三中考数学一模模拟试题【含答案】
2019-2020年郑州市初三中考数学一模模拟试题【含答案】一、选择题1. 某车间2019年4月上旬生产零件的次品数如下(单位:个):0,2,0,2,3,0,2,3,1,2,则在这10天中该车间生产零件的次品数的 【 】A.众数是4B.中位数是1.5C.平均数是2D.方差是1.252. 如图所示,A ,B ,C 均在⊙O 上,若∠OAB =40O ,ACB 是优弧,则∠C 的度数为 【 】A. 40OB.45OC. 50OD. 55O3. 若二次函数y=ax 2+bx +c ,当x 取x 1,x 2(x 1≠x 2)时,函数值相等,则x 取x 1+x 2时,函数值为 【 】 A. a +c B. a - c C. - c D. c4. 已知在锐角△ABC 中,∠A =550 ,AB ﹥BC 。
则∠B 的取值范围是 【 】A.35o ﹤∠B ﹤55oB. 40o ﹤∠B ﹤55oC. 35o ﹤∠B ﹤70oD. 70o ﹤∠B ﹤90o5. 正比例函数y 1=k 1x (k 1>0)与反比例函数22k y x= (k 2>0)部分图象如图所示, 则不等式k 1x >2k x的解集在数轴上表示正确的是 【 】A. B.C.D.6. 定义运算符号“*”的意义为(a 、b 均不为0).下面有两个结论:①运算“*”满足交换律; ②运算“*”满足结合律 其中 【 】A.只有①正确B. 只有②正确C.①和②都正确 D. ①和②都不正确7. 已知00x y >>,且22231x xy y xy ⎧-=⎪⎨⎪+=⎩,那么()2x y +的值为 【 】 A. 2 B. 3 C. 4 D.58. 如图,点A 的坐标为(0,1),点 B 是 x 轴正半轴上的一动点,以 AB 为边作等腰直角 △ABC ,使∠BAC=90O ,设点 B 的横坐标为 x ,点 C 的纵坐标为 y ,能表示 y 与x 的函数关系的图象大致是( )A B C D9.已知△ABC 是⊙O 的内接正三角形,△ABC 的面积为a ,DEFG 是半圆O 的内接正方形,面积等于b ,那么ab 的值为 【 】A. 2B.2 C. 5 D. 1610. 横坐标、纵坐标都是整数的点叫做整点,函数1236-+=x x y 的图象上整点的个数是【 】 A .2个 B .3个 C .4个 D .5个 二、填空题11.如图,五边形ABCDE 是正五边形,若12//l l , 则12∠-∠= .12.实数a 、b 、c 满足a 2-6b = -17,b 2+8c = - 23,c 2+2a =14,则a +b +c =_______13.把抛物线2y x bx c =++的图象向右平移3个单位,再向下平移2个单位,所得图象的解析式是221y x x =-+,则b=_______,c=________ 14.对于正数x ,规定21()21x f x x +=-,则122018()()()______201920192019f f f +++=15.如图,在△ABC 内的三个小三角形的面积分别 是10、16、20,若△ABC 的面积S ,则S=_____16.工人师傅在一个长为25cm 、宽为18cm 的矩形铁皮上剪去一个和三边都相切的⊙A 后,在剩余部分的废料上再剪出一个最大的⊙B ,则圆B 的半径是___cm 三、解答题17. (本题满分10分)甲、乙两船从河中A 地同时出发,匀速顺水下行至某一时刻,两船分别到达B 地和C 地.已知河中各处水流速度相同,且A 地到B 地的航程大于A 地到C 地的航程.两船在各自动力不变情况下,分别从B 地和C 地驶回A 地所需的时间为t 1和t 2.试比较t 1和t 2的大小关系.18. (本题满分10分) 关于三角函数有如下的公式:()sin sin cos cos sin αβαβαβ+=+① ()cos cos cos sin sin αβαβαβ+=-②()()tan tan tan 1tan tan 01tan tan αβαβαβαβ++=-≠-其中③利用这些公式可以将一些不是特殊角的三角函数转化为特殊角的三角函数来求值,如:()(2tan 45tan 60tan105tan 45601tan 45tan 601422o o oooo o +=+==-+===-+-根据上面的知识,你可以选择适当的公式解决下面实际问题:如图所示,直升机在一建筑物CD 上方A 点处测得建筑物顶端D 点的俯角α为60o ,底端C 点的俯角β为75 o ,此时直升机与建筑物CD 的水平距离BC 为42米,求建筑物CD 的高。
2020年河南省中考数学一模试卷(附答案详解)
2020年河南省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.下列各数中,最大的数是()A. −12B. 14C. 0D. −22.据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是()A. 268×103B. 26.8×104C. 2.68×105D. 0.268×1063.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为()A.B.C.D.4.下列计算正确的是()A. a3+a3=a6B. (x−3)2=x2−9C. a3⋅a3=a6D. √2+√3=√55.下表是某校合唱团成员的年龄分布年龄/岁13141516频数515x10−x对于不同的x,下列关于年龄的统计量不会发生改变的是()A. 平均数、中位数B. 众数、中位数C. 平均数、方差D. 中位数、方差6.若关于x的方程kx2+2x−1=0有两个不相等的实数根,则k的取值范围是()A. k>−1B. k<−1C. k≥−1且k≠0D. k>−1且k≠07.在▱ABCD中,对角线AC与BD相交于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的是()A. AB=ADB. OA=OBC. AC=BDD. DC⊥BC8.阿信、小怡两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且阿信从任意一节车厢上车的机会相等,小怡从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为何()A. 12B. 15C. 110D. 1259.如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20°,则下列结论中错误的是()A. ∠CAD=40°B. ∠ACD=70°C. 点D为△ABC的外心D. ∠ACB=90°10.在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,动点E从点A出发沿AB向点B运动,动点F从点D出发,沿折线D−C−B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A. B.C. D.二、填空题(本大题共5小题,共15.0分)11.若x=√2−1,则x2+2x+1=______.12. 已知反比例函数y =m−2x,当x >0时,y 随x 增大而减小,则m 的取值范围是______.13. 不等式组{3x −5>15x −a ≤12有2个整数解,则实数a 的取值范围是______.14. 如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,AC =√3,分别以点A ,B 为圆心,AC ,BC 的长为半径画弧,交AB 于点D ,E ,则图中阴影部分的面积是______.15. 如图,在菱形ABCD 中,∠A =60°,AB =3,点M 为AB 边上一点,AM =2,点N 为AD 边上的一动点,沿MN 将△AMN 翻折,点A 落在点P 处,当点P 在菱形的对角线上时,AN 的长度为______.三、计算题(本大题共1小题,共8.0分) 16. 先化简,再求值:x 2+4x+4x+1÷(3x+1−x +1),其中x =sin30°+2−1+√4.四、解答题(本大题共7小题,共67.0分)17. 如图,△ABC 内接于圆O ,且AB =AC ,延长BC 到点D ,使CD =CA ,连接AD 交圆O 于点E . (1)求证:△ABE≌△CDE ; (2)填空:①当∠ABC 的度数为______时,四边形AOCE 是菱形. ②若AE =√3,AB =2√2,则DE 的长为______.18.为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有______名留守学生,B类型留守学生所在扇形的圆心角的度数为______;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?19.如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37°,在乙楼底部B点测得甲楼顶部D点的仰角为60°,则甲、乙两楼的高度为多少?(结果精确到1米,sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,√3≈1.73)20.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂足为点B,反比例函数y=k(x<0)的图象经过AO的中点C,交AB于点D.若x点D的坐标为(−4,n),且AD=3.(1)求反比例函数y=k的表达式;x(2)求经过C、D两点的直线所对应的函数解析式;(3)设点E是线段CD上的动点(不与点C、D重合),过点E且平行y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.21.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0< a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.22.【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120°,连接AD,求∠ADB的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90°,β=30°时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90°,β=30°以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是______三角形;∠ADB的度数为______.【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为______.23.如图,抛物线y=ax2+bx+c与x轴交于点A(−1,0),点B(3,0),与y轴交于点C,且过点D(2,−3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.答案和解析1.【答案】B【解析】解:−2<−12<0<14,则最大的数是14,故选:B.比较确定出最大的数即可.此题考查了有理数大小比较,熟练掌握运算法则是解本题的关键.2.【答案】C【解析】解:将26.8万用科学记数法表示为:2.68×105.故选:C.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】C【解析】【分析】本题考查了三视图的知识,掌握主视图是从物体的正面看得到的视图,左视图是从物体的左面看得到的视图,俯视图是从物体的上面看得到的视图是解题的关键.找到从左面看所得到的图形即可,注意所有的看到的棱都应表现在视图中.【解答】解:从左面看所得到的图形是正方形,切去部分的棱能看到,用实线表示,故选C.4.【答案】C【解析】此题主要考查了合并同类项以及完全平方公式和同底数幂的乘除运算,正确掌握相关运算法则是解题关键.直接利用合并同类项法则以及完全平方公式和同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a3+a3=2a3,故此选项错误;B、(x−3)2=x2−6x+9,故此选项错误;C、a3⋅a3=a6,正确;D、√2+√3无法合并,故此选项错误.故选:C.5.【答案】B【解析】解:由表可知,年龄为15岁与年龄为16岁的频数和为x+10−x=10,则总人数为:5+15+10=30,=14岁,故该组数据的众数为14岁,中位数为:14+142即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,故选:B.由频数分布表可知后两组的频数和为10,即可得知总人数,结合前两组的频数知出现次数最多的数据及第15、16个数据的平均数,可得答案.本题主要考查频数分布表及统计量的选择,由表中数据得出数据的总数是根本,熟练掌握平均数、中位数、众数及方差的定义和计算方法是解题的关键.6.【答案】D【解析】解:∵x的方程kx2+2x−1=0有两个不相等的实数根,∴k≠0且△=4−4k×(−1)>0,解得k>−1,∴k的取值范围为k>−1且k≠0.故选:D.根据△的意义得到k≠0且△=4−4k×(−1)>0,然后求出两不等式的公共部分即可.本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2−4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.【解析】【分析】本题主要考查了平行四边形的性质与矩形的判定,熟练掌握矩形是特殊的平行四边形是解题关键.根据有一个角是直角的平行四边形是矩形,对角线相等的平行四边形是矩形,对各选项分析判断后利用排除法求解.【解答】解:A、AB=AD,则▱ABCD是菱形,不能判定是矩形,故本选项错误;B、OA=OB,根据平行四边形的对角线互相平分,AC=BD,对角线相等的平行四边形是矩形可得▱ABCD是矩形,故本选项正确;C、AC=BD,根据对角线相等的平行四边形是矩形,故本选项正确;D、DC⊥BC,则∠BCD=90°,根据有一个角是直角的平行四边形是矩形可得▱ABCD 是矩形,故本选项正确.故选A.8.【答案】B【解析】解:二人上5节车厢的情况数是:5×5=25,两人在不同车厢的情况数是5×4=20,则两人从同一节车厢上车的概率是525=15;故选:B.根据阿信、小怡各有5节车厢可选择,共有25种,两人在不同车厢的情况数是20种,得出在同一节车厢上车的情况数是5种,根据概率公式即可得出答案.此题主要考查了概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.9.【答案】A【解析】解:∵由题意可知直线MN是线段BC的垂直平分线,∴BD=CD,∠B=∠BCD,∵∠B=20°,∴∠B=∠BCD=20°,∴∠CDA=20°+20°=40°.∵CD=AD,∴∠ACD=∠CAD=180°−40°2=70°,∴A错误,B正确;∵CD=AD,BD=CD,∴CD=AD=BD,∴点D为△ABC的外心,故C正确;∵∠ACD=70°,∠BCD=20°,∴∠ACB=70°+20°=90°,故D正确.故选:A.由题意可知直线MN是线段BC的垂直平分线,故BD=CD,∠B=∠BCD,故可得出∠CDA 的度数,根据CD=AD可知∠DCA=∠CAD,故可得出∠CAD的度数,进而可得出结论.本题考查的是作图−基本作图,熟知线段垂直平分线的作法是解答此题的关键.10.【答案】A【解析】【分析】本题为动点问题的函数图象探究题,考查了二次函数图象和锐角三角函数函数的应用,解答关键是分析动点到达临界点前后图形的变化.根据题意找到临界点,E、F分别同时到达D、C,画出一般图形利用锐角三角函数表示y即可.【解答】解:在Rt△ABC中,D为斜边AB的中点,∠B=60°,BC=2cm,∴AD=DC=DB=2,∠CDB=60°,∵E、F两点的速度均为1cm/s,∴当0≤x≤2时,y=12⋅AE⋅DF⋅sin∠CDB=√34x2,当2≤x≤4时,y=12⋅AE⋅BF⋅sin∠B=−√34x2+√3x,由图象可知A正确,故选:A.11.【答案】2【解析】解:原式=(x+1)2,当x=√2−1时,原式=(√2)2=2.首先把所求的式子化成=(x+1)2的形式,然后代入求值.本题考查了二次根式的化简求值,正确对所求式子进行变形是关键.12.【答案】m>2【解析】【分析】本题考查了反比例函数的性质,根据反比例函数的性质找出m−2>0是解题的关键.,当x>0时,y随x增大而减小,可得出m−2>0,解之即可根据反比例函数y=m−2x得出m的取值范围.【解答】,当x>0时,y随x增大而减小,解:∵反比例函数y=m−2x∴m−2>0,解得:m>2.故答案为m>2.13.【答案】8≤a<13【解析】解:解不等式3x−5>1,得:x>2,,解不等式5x−a≤12,得:x≤a+125∵不等式组有2个整数解,∴其整数解为3和4,<5,则4≤a+125解得:8≤a<13,故答案为:8≤a<13.首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.本题考查解一元一次不等式组及不等组的整数解,正确解出不等式组的解集,确定a的范围是解决本题的关键.14.【答案】5π12−√32【解析】【分析】本题考查扇形面积的计算、含30°角的直角三角形,解答本题的关键是明确题意,利用数形结合的思想解答.根据题意和图形可知阴影部分的面积是扇形ACE与扇形BCD的面积之和与Rt△ABC的面积之差.【解答】解:∵在Rt△ABC,∠C=90°,∠A=30°,AC=√3,∴∠B=60°,BC=tan30°×AC=1,阴影部分的面积S=S扇形ACE +S扇形BCD−S△ACB=30π×(√3)2360+60π×12360−12×1×√3=5π12−√32,故答案为:5π12−√32.15.【答案】2或5−√13【解析】【分析】分两种情况:①当点P在菱形对角线AC上时,由折叠的性质得:AN=PN,AM=PM,证出∠AMN=∠ANM=60°,得出AN=AM=2;②当点P在菱形对角线BD上时,设AN=x,由折叠的性质得:PM=AM=2,PN= AN=x,∠MPN=∠A=60°,求出BM=AB−AM=1,证明△PDN∽△MBP,得出DNBP=PD BM =PNPM,求出PD=12x,由比例式3−x3−12x=x2,求出x的值即可.本题考查了翻折变换的性质、菱形的性质、相似三角形的判定与性质、等腰三角形的判定以及分类讨论等知识;熟练掌握翻折变换的性质,证明三角形相似是关键.【解答】解:分两种情况:①当点P在菱形对角线AC上时,如图1所示::由折叠的性质得:AN=PN,AM=PM,∵四边形ABCD是菱形,∠BAD=60°,∴∠PAM=∠PAN=30°,∴∠AMN=∠ANM=90°−30°=60°,∴AN=AM=2;②当点P在菱形对角线BD上时,如图2所示:设AN=x,由折叠的性质得:PM=AM=2,PN=AN=x,∠MPN=∠A=60°,∵AB=3,∴BM=AB−AM=1,∵四边形ABCD是菱形,∴∠ADC=180°−60°=120°,∠PDN=∠MBP=12∠ADC=60°,∵∠BPN=∠BPM+60°=∠DNP+60°,∴∠BPM=∠DNP,∴△PDN∽△MBP,∴DNBP =PDBM=PNPM,即3−xBP=PD1=x2,∴PD=12x,∴3−x3−12x=12x解得:x=5−√13或x=5+√13(不合题意舍去),∴AN=5−√13,综上所述,AN的长为2或5−√13;故答案为:2或5−√13.16.【答案】解:当x=sin30°+2−1+√4时,∴x=12+12+2=3原式=(x+2)2x+1÷4−x2x+1=−x+2x−2=−5【解析】根据分式的运算法则以及实数的运算法则即可求出答案.本题考查分式的运算法则,解题的关键是熟练运用分式的运算法则,本题属于基础题型.17.【答案】60°5√33【解析】解:(1)∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≌△CDE(AAS);(2)①当∠ABC的度数为60°时,四边形AOCE是菱形;理由是:连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180°,∵∠ABC=60,∴∠AEC=120°=∠AOC,∵OA=OC,∴∠OAC=∠OCA=30°,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60°,∵∠ACB=∠CAD+∠D,∵AC=CD,∴∠CAD=∠D=30°,∴∠ACE=180°−120°−30°=30°,∴∠OAE=∠OCE=60°,∴四边形AOCE是平行四边形,∵OA=OC,∴▱AOCE是菱形;②∵△ABE≌△CDE,∴AE=CE=√3,AB=CD=2√2,∵∠DCE=∠DAB,∠D=∠D,∴△DCE∽△DAB,∴DCDA =CEAB,即√2DE+√3=√32√2,解得DE=5√33,故答案为:5√33.(1)根据AAS证明两三角形全等;(2)①先证明∠AOC=∠AEC=120°,∠OAE=∠OCE=60°,可得▱AOCE,由OA=OC 可得结论;②由△ABE≌△CDE知AE=CE=√3,AB=CD=2√2,证△DCE∽△DAB得DCDA =CEAB,据此求解即可.本题是圆的综合题,考查了等腰三角形的性质、等边三角形的性质和判定、三角形相似和全等的性质和判定、四点共圆的性质、菱形的判定等知识,难度适中,正确判断圆中角的关系是关键.18.【答案】(1)10,144 ;(2)10−2−4−2=2(人),如图所示:(3)2400×210×20%=96(人),答:估计该校将有96名留守学生在此关爱活动中受益.【解析】解:(1)2÷20%=10(人),4×100%×360°=144°,10故答案为:10,144;(2)见答案;(3)见答案.(1)依据C类型的人数以及百分比,即可得到该班留守的学生数量,依据B类型留守学生所占的百分比,即可得到其所在扇形的圆心角的度数;(2)依据D类型留守学生的数量,即可将条形统计图补充完整;(3)依据D类型的留守学生所占的百分比,即可估计该校将有多少名留守学生在此关爱活动中受益.本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.19.【答案】解:作AE⊥CD于E.则四边形ABCE是矩形.在Rt△BCD中,CD=BC⋅tan60°=50√3≈87(米),在Rt△ADE中,∵DE=AE⋅tan37°≈50×0.75=37.5(米),∴AB=CE=CD−DE≈50√3−37.5≈49(米).答:甲、乙两楼的高度分别为87米,49米.【解析】作AE⊥CD于E.则四边形ABCE是矩形.解直角三角形分别求出CD,DE即可解决问题.本题考查解直角三角形的应用−仰角俯角问题,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.20.【答案】解:(1)∵AD=3,D(−4,n),∴A(−4,n+3),∵点C是OA的中点,∴C(−2,n+3),2∵点C,D(−4,n)在双曲线y=kx上,∴{k=−2×n+3 2k=−4n,∴{k=−4n=1,∴反比例函数解析式为y=−4x;②由①知,n=1,∴C(−2,2),D(−4,1),设直线CD的解析式为y=ax+b,∴{−2a+b=2−4a+b=1,∴{a=1 2b=3,∴直线CD的解析式为y=12x+3;(3)如图,由(2)知,直线CD的解析式为y=12x+3,设点E(m,12m+3),由(2)知,C(−2,2),D(−4,1),∴−4<m<−2,∵EF//y轴交双曲线y=−4x于F,∴F(m,−4m),∴EF=12m+3+4m,∴S△OEF=12(12m+3+4m)×(−m)=−12(12m2+3m+4)=−14(m+3)2+14,∵−4<m<−2,∴m=−3时,S△OEF最大,最大值为14.【解析】(1)先确定出点A坐标,进而得出点C坐标,将点C,D坐标代入反比例函数中即可得出结论;(2)由n=1,求出点C,D坐标,利用待定系数法即可得出结论;(3)设出点E坐标,进而表示出点F坐标,即可建立面积与m的函数关系式即可得出结论.此题是反比例函数综合题,主要考查了待定系数法,线段的中点坐标公式,解本题的关键是建立S△OEF与m的函数关系式.21.【答案】解:(1)根据题意得,y=250−10(x−25)=−10x+500(30≤x≤38);(2)设每天扣除捐赠后可获得利润为w元.w=(x−20−a)(−10x+500)=−10x2+(10a+700)x−500a−10000(30≤x ≤38)对称轴为x=35+12a,且0<a≤6,则30<35+12a≤38,则当x=35+12a时,w取得最大值,∴(35+12a−20−a)[−10×(35+12a)+500]=1960∴a1=2,a2=58(不合题意舍去),∴a=2.【解析】本题考查了二次函数的应用,难度较大,最大销售利润的问题常利用函数的增减性来解答,正确的理解题意,确定变量,建立函数模型.(1)根据题意列函数关系式即可;(2)设每天扣除捐赠后可获得利润为w元.根据题意得到w=(x−20−a)(−10x+ 500)=−10x2+(10a+700)x−500a−10000(30≤x≤38),求得对称轴为x=35+1 2a,则30<35+12a≤38,故当x=35+12a时,w取得最大值,解方程得到a1=2,a2=58,于是得到a=2.22.【答案】等边30°7+√3或7−√3【解析】解:【特例探究】①如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,∵AB=AC,∠BAC=90°,∴∠ABC=45°,∵∠DBC =30°,∴∠ABD =∠ABC −∠DBC =15°, 在△ABD 和△ABD′中,{AB =AB∠ABD =∠ABD′BD =BD′∴△ABD≌△ABD′,∴∠ABD =∠ABD′=15°,∠ADB =∠AD′B , ∴∠D′BC =∠ABD′+∠ABC =60°, ∵BD =BD′,BD =BC , ∴BD′=BC ,∴△D′BC 是等边三角形,②∵△D′BC 是等边三角形, ∴D′B =D′C ,∠BD′C =60°, 在△AD′B 和△AD′C 中,{AD =AD′D′B =D′C AB =AC∴△AD′B≌△AD′C , ∴∠AD′B =∠AD′C , ∴∠AD′B =12∠BD′C =30°, ∴∠ADB =30°.【问题解决】解:∵∠DBC <∠ABC , ∴60°<α≤120°,如图3中,作∠ABD′=∠ABD ,BD′=BD ,连接CD′,AD′,∵AB =AC , ∴∠ABC =∠ACB , ∵∠BAC =α,∴∠ABC =12(180°−α)=90°−12α,∴∠ABD=∠ABC−∠DBC=90°−12α−β,同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=90°−12α−β,BD=BD′,∠ADB=∠AD′B∴∠D′BC=∠ABD′+∠ABC=90°−12α−β+90°−12α=180°−(α+β),∵α+β=120°,∴∠D′BC=60°,由(1)②可知,△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∴∠AD′B=12∠BD′C=30°,∴∠ADB=30°.【拓展应用】第①情况:当60°<α<120°时,如图3−1,由(2)知,∠ADB=30°,作AE⊥BD,在Rt△ADE中,∠ADB=30°,AD=2,∴DE=√3,∵△BCD′是等边三角形,∴BD′=BC=7,∴BD=BD′=7,∴BE=BD−DE=7−√3;第②情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=12(180°−α)=90°−12α,∴∠ABD=∠DBC−∠ABC=β−(90°−12α),同(1)①可证△ABD≌△ABD′,∴∠ABD=∠ABD′=β−(90°−12α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC−∠ABD′=90°−12α−[β−(90°−12α)]=180°−(α+β),∴D′B=D′C,∠BD′C=60°.同(1)②可证△AD′B≌△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360°,∴∠ADB=∠AD′B=150°,在Rt△ADE中,∠ADE=30°,AD=2,∴DE=√3,∴BE=BD+DE=7+√3,故答案为:7+√3或7−√3.【特例探究】①如图2中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′,由△ABD≌△ABD′,推出△D′BC是等边三角形;②借助①的结论,再判断出△AD′B≌△AD′C,得∠AD′B=∠AD′C,由此即可解决问题.【问题解决】当60°<α≤120°时,如图3中,作∠AB D′=∠ABD,B D′=BD,连接CD′,AD′,证明方法类似(1).【拓展应用】第①种情况:当60°<α≤120°时,如图3中,作∠AB D′=∠ABD,B D′= BD,连接CD′,AD′,证明方法类似(1),最后利用含30度角的直角三角形求出DE,即可得出结论;第②种情况:当0°<α<60°时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.证明方法类似(1),最后利用含30度角的直角三角形的性质即可得出结论.此题是三角形综合题,主要考查全等三角形的判定和性质.等边三角形的性质、等腰三角形的性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.23.【答案】解:(1)函数的表达式为:y =a(x +1)(x −3),将点D 坐标代入上式并解得:a =1,故抛物线的表达式为:y =x 2−2x −3…①;(2)设直线PD 与y 轴交于点G ,设点P(m,m 2−2m −3),将点P 、D 的坐标代入一次函数表达式:y =sx +t 并解得:直线PD 的表达式为:y =mx −3−2m ,则OG =3+2m ,S △POD =12×OG(x D −x P )=12(3+2m)(2−m)=−m 2+12m +3, ∵−1<0,故S △POD 有最大值,当m =14时,其最大值为4916;(3)∵OB =OC =3,∴∠OCB =∠OBC =45°,∵∠ABC =∠OBE ,故△OBE 与△ABC 相似时,分为两种情况:①当∠ACB =∠BOQ 时,AB =4,BC =3√2,AC =√10,过点A 作AH ⊥BC 与点H ,S△ABC=12×AH×BC=12AB×OC,解得:AH=2√2,则sin∠ACB=AHAC =√5,则tan∠ACB=2,则直线OQ的表达式为:y=−2x…②,联立①②并解得:x=±√3(舍去负值),故点Q(√3,−2√3)②∠BAC=∠BOQ时,tan∠BAC=OCOA =31=3=tan∠BOQ,则直线OQ的表达式为:y=−3x…③,联立①③并解得:x=−1+√132,故点Q(−1+√132,1−√132);综上,点Q(√3,−2√3)或(−1+√132,1−√132).【解析】(1)函数的表达式为:y=a(x+1)(x−3),将点D坐标代入上式,即可求解;(2)S△POD=12×OG(x D−x P)=12(3+2m)(2−m)=−m2+12m+3,即可求解;(3)分∠ACB=∠BOQ、∠BAC=∠BOQ,两种情况分别求解,通过角的关系,确定直线OQ倾斜角,进而求解.本题考查的是二次函数综合运用,涉及到解直角三角形、三角形相似、面积的计算等,其中(3),要注意分类求解,避免遗漏.。
河南省七地市2020年九年级第一次模拟考试数学试题及答案
1523303030DANMEO BDC河南省2020年九年级七地市第一次联考试卷数学(时间:100分钟 满分:120分)一、选择题(共10小题,每小题3分,满分30分) 1.在有理数2,0,-1,-12中,最小的是( )A. 2B. 0C. -1D. -122.下列运算中正确的是( )A. 235a a a +=B. 248a a a =C. 236()a a =D. 2(3a)=93.国家发改委2月7日紧急下达第二批中央预算内投资2亿元人民币,专项补助承担重症感染患者救治任务的湖北多家医院重症治疗病区建设,其中数据2亿用科学记数法表示为( ) A.7210⨯ B.8210⨯ C. 72010⨯ D.80.210⨯4.如图所示的几何体,它的左视图是( )A. B. C. D.5.如图,在菱形ABCD 中,按以下步骤作图:①分别以点C 和点D 为圆心,大于12CD 为半径作弧,两弧交于点M ,N ;②作直线MN ,且MN 恰好经过点A ,与CD 交于点E , 连接BE ,则下列说法错误的是 ( ) A.060ABC ∠= B.2ABEADESS= C.若AB=4,则7 D.21sin CBE ∠ 6.中国人民银行于2019年9月10日陆续发行中华人民共和国成立70周年纪念币一套.该套纪念币共7枚,均为中华人民共和国法定货币,任意掷两枚量均匀的纪念币,恰好都是国徽一面朝上的概率是( ) A.12 B. 13 C. 14 D. 347.不等式组1231xx +>⎧⎨-≥⎩的解在数轴上表示为A.102B.13C. 102D. 1028.如图,⊙O 中,点D ,A 分别在劣级BC 和优弧BC 上,∠BDC =130°,则∠BOC =( ) A.120° B.110° C.15° D.100° 9.中秋节是我国的传统节日,人们索有吃月饼的习俗.汾阳月饼不仅汾阳人爱吃,而且风屝省城市场.省城某商场在中秋节来临之际购进A 、B 两种汾阳月共1500个,已知购进A 种月饼和B 种月饼的费用分别为3000元和2000元,且A 种月饼的单价比B 种月饼单价多1元.求A 、B 两种月饼的单价各是多少?设A 种月饼单价为x 元,根据题意,列方程正确的是( )A.3000200015001x x +=+ B. 2000200015001x x +=+ C.3000200015001x x +=- D.2000300015001x x +=-EABC DO EN A BC DM是AB →BC ,点Q 的运动路径是BD ,两点的运动速度相同并且同时结束.若点P 的行程为x ,△PBQ 的面积为y ,则y 关于x 的函数图象大致为( )A PA.xyB.xC.xyD.xy二、填空题(共5小题,每小题3分,满分15分) 11.11()2--=________.12.已知关于x 的一元二次方程2280x kx --=的一个根是2,则此方程的另一个根是________.13.如图,D 是矩形AOBC 的对称中心,A (0,4),B (6,0),若一个反比例函数的图象 经过点D ,交AC 于点M ,则点M 的坐标为________.14.如图,等边三角形ABC 内接于⊙O ,点D ,E 是⊙O 上两点, 且∠DOE =120°,若OD =2,则图中阴影部分的面积为________.15,如图,在矩形ABMN 中,AN =1,点C 是MN 的中点,分別连接AC ,BC ,且BC =2,点D 为AC 的中点,点E 为边AB 上一个动点,连接DE ,点A 关于直线DE 的对称点为点F ,分别连接DF ,EF .当EF ⊥AC 时,AE 的长为________.三、解答題(共8小题,満分75分)16.(8分)已知222111x x xy x x ++=---,其中x 是不等式组1030x x +≥⎧⎨-<⎩的整数解,请你求出y 的值. 17.(9分)钟南山院士谈到防护新型冠状病毒肺炎时说:“我们霱要重視防护,也不必恐慌,尽量少去人员密集的场所,出门戴口罩,在室内注意通风,勤洗手,多运动,少熬夜”.某社区为了加强社区居民对新型冠状病毒肺炎防护知识的了解,通过微信群宣传新型冠状病毒肺炎的防护知识,并鼓励社区民在线参与作答《2020年新型冠状病毒防治》试卷(满分100分),社区管理员随机从甲、乙两个小区各抽取20名人员答卷成绩,并对他们的成绩(单位:分)进行统计、分析,过程如下: 收集数据甲小区:85 80 95 100 90 95 85 65 75 85 90 90 70 90 100 80 80 90 95 75 乙小区:80 60 80 95 65 100 90 85 85 80 95 75 80 90 70 80 95 75 100 90Q P EA B C O 981987654312y O x 234567(1)填空:a =________,b =________c =________,d =________.(2)若甲小区有800人参与答卷,请估计甲小区成绩大于90分的人数. (3)社区管理员看完统计数据,认为甲小区对于新型冠状病毒肺炎防护知识掌程度更好,请你写出社区管理员的理由. 18.(9分)如图,已知AB 是⊙O 的直径,且AB =20,BM 切⊙0于点B ,点P 是⊙O 上的一个动点(不经过A 、B 两点),过点O 作OQ ∥AP 交BM 手点Q ,过点P 作 PE ⊥AB 交AB 于点C ,交QO 的延长线于点E ,连接PQ .(1)求证:△BOQ ≌△POQ ; (2)填空: ⑩当PE =________时,四边形P AEO 是菱形;②当PE =________时,四边形POBQ 是正方形.19.(9分)如图1为放置在水平桌面l 上的台灯,底座的高AB 为5cm ,长度均为20em 的连杆BC 、CD 与AB 始终在同一平面上.C图2lB图3lB CA(1)转动连杆BC 、CD ,使∠BCD 成平角,∠ABC =150°,如图2,求连杆端点D 离桌面的高度DE . (2)将(1)中的连杆CD 再绕点C 逆时针旋转,经试验后发现,如图3,当∠BCD =150°时台灯光线最佳.求此时连杆端点D 离桌面l 的高度比原来降低了多少厘米?20.(9分)如图,反比例函数y =kx(x >0)过点A (3,4),直线AC 与x 轴交于 点C (6,0),过点C 作x 轴的垂线BC 交反比例函数图象于点B . (1)填空:反比例函数的解析式为____________________,直线AC 的解析式为____________________,B 点的坐标是________.(2)在平面内有点D ,使得以A ,B ,C ,D 四点为项点的边形为平行四边形. ①在图中用直尺和2B 铅笔画出所有符合条件的平行四边形; ②根据所画形,请直接写出符合条件的所有点D 的坐标.21.(10分)夏季即将来临,某电器超市销售每台进价分别为300元、255元的A ,B 两种型号的空调扇,下表是近周销售数量 销售时段A 种型号B 种型号销售收入 第一周 2台 3台 1695元 第二周5台6台3765元(1)分别求出A ,B 两种型号空調扇的销售单价.(2)若超市准备用不超过8100元的金额再采购这两种型号的空调扇共30台,求A 种型号的空调扇最多能采购多少台?22.(10分)在△ABC 中,CA =CB ,∠ACB =α(0°<α<180°),点P 是平面内不与A ,C 重合的任意一点,连接AP ,将线段AP 绕点P 逆时针旋转α得到线段DP ,连接AD ,CP .点M 是AB 的中点,点N 是AD 的中点.图3ABCEM M BCDN PA图1图2PN ABCD M(1)问题发现 如图1,当α=60°时,MNPC的值是_____,直线MN 与直线PC 相交所成的较小角的度数是_____. (2)类比探究 如图2,当α=120°时,请写出MNPC的值及直线MN 与直线PC 相交所成的较小角的度数,并就图2的情形说明由.(3)解决问题 如图3,当α=90°时,若点E 是CB 的中点,点P 在直线ME 上,请直接写出点B ,P ,D 在同一条直线上时PDMN的值.23.(11分)如图,抛物线y =23+4x bx c -+与x 轴交于A 、B 两点,与y 轴交于C .直线y =34x +3经过点A 、C . (1)求抛物的解析式;(2)P 是抛物线上一动点,过P 作PM ∥y 轴交直线AC 于点M ,设点P 的横坐标为t .. ①若以点C 、O 、M 、P 为顶点的四边形是平行四边形,求t 的值.②当射线MP ,AC ,MO 中一条射线平分另外两条射线的夹角时,直接写出t 的值.QPE A B CO 图2A BPGQEO河南省2020年九年级七地市第一次联考试卷数学答案一、选择题1—5:CCBAC 6—10:CCDCA 二、填空题:11:-4 12:-4 13:(32,4)14:43π三、解答题:16:解、原式等于=1x x xx x x --(+1)(+1)(+1)(-1) =111x xx x +--- =11x - 101,130x x x x x +≥⎧≠-≠⎨-<⎩为的整数解,且02x ∴=或 101;1x x ==--当时,121;1x x ==-当时,y 1-1∴=或;17:(1) a =8, b =5, c =90, d =82.5 (2)800⨯520=200人 (3)甲小区的平均数、中位数、众数都比乙小区大; 18:解:(1)如图所示:⊙O 中, OP =OA ,<OP A =<OAPAP QO ,<QOP =<OP A =<OAP ,QOB OAP AP QO <=< ,QOB QOPOP OB OQ OQ BOQ POQ∴<=<==∴≅ (2)①如图所示,若四边形P AEO 为菱形,则OA 、PE 相互垂直平分 ∴PE 过OA 的中点G ,OG 垂直平分PE R =20/2=10222OG OP OG=5OP=10OP =OG +PG PAEQ .Rt OGP ∴⊥∴∴中,,,,为菱形②如图所示:HD3MB Q00,B ,90=10PEBQ BOQ POQ BM OPQ OBQ PQB EPE PEBQ ≅∴<=<<=∴∴∴四边形为正方形,则<PEB=90切圆O 于、O 重合正方形POBQ 中,PE=OB=R=10当时,四边形为正方形.19:解(1)如图所示:作BH 垂直DE 于H 直角三角形BDH 中,<ABC =0150∴<DBH =,DH =BD *sin 060= ∴DE =DH +HE =DH +AB =(+5)cm所以连杆的端点D 距桌面L 的高度是(+5)cm (2)如图所示作D 1F 1垂直CF 1于F 1,作DF 垂直CF 于F Rt D 1F 1C 中,<D 1CF 1=<D 1BH =060∴D 1F 1=D 1C *sin 060Rt DCF 中,<DCB =0150,<D 1CD =030 ∴<DCF =D 1CF 1-<D 1CD =030 ∴DF =DC *sin 030=10∴D 1G =D 1F 1-DF =(10)cm∴此时连杆端点D 离桌面的高度比原来降低了(10)cm20:解、(1)12y x =, 483y x =-+, (6,2) (2)①分别以AB 和CD 为对角线,AC 和BD ,AD 和BC 为对角线得到如图所示的平行四边形 如图所示,ACBD 1,ABCD 2,ABD 3C ②如图所示:D 1(3,6)、D 2(3,2)、D 3(9,-2)21:解、(1)设A 种型号空調扇的销售单价为x ,B 种型号空調扇的销售单价为y 231695563765x y x y +=⎧⎨+=⎩, 解得375315x y =⎧⎨=⎩答:A 种型号空調扇的销售单价为375元,B 种型号空調扇的销售单价为315元。
2020-2021郑州市初三数学上期末一模试题附答案
2020-2021郑州市初三数学上期末一模试题附答案一、选择题1.毕业前期,某班的全体学生互赠贺卡,共赠贺卡1980张.设某班共有x 名学生,那么所列方程为( ) A .()1119802x x += B .()1119802x x -= C .()11980x x += D .()11980x x -=2.如图,在5×5正方形网格中,一条圆弧经过A 、B 、C 三点,那么这条圆弧所在的圆的圆心为图中的( )A .MB .PC .QD .R3.如图,在△ABC 中,∠CAB=65°,在同一平面内,将△ABC 绕点A 旋转到△AB′C′的位置,使得CC′∥AB ,则∠BAB′的度数为( )A .25°B .30°C .50°D .55°4.如图中∠BOD 的度数是( )A .150°B .125°C .110°D .55°5.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是( ) A .12B .14C .16D .1126.用配方法解方程x 2+2x ﹣5=0时,原方程应变形为( ) A .(x ﹣1)2=6 B .(x+1)2=6C .(x+2)2=9D .(x ﹣2)2=97.以394cx ±+=为根的一元二次方程可能是( )A .230x x c --=B .230x x c +-=C .230-+=x x cD .230++=x x c 8.方程x 2=4x 的解是( )A .x =0B .x 1=4,x 2=0C .x =4D .x =29.一个不透明的袋子里装着质地、大小都相同的3个红球和2个绿球,随机从中摸出一球,不再放回袋中,充分搅匀后再随机摸出一球.两次都摸到红球的概率是( ) A .310B .925C .920D .3510.天虹商场一月份鞋帽专柜的营业额为100万元,三月份鞋帽专柜的营业额为150万元.设一到三月每月平均增长率为x ,则下列方程正确的是( ) A .100(1+2x )=150B .100(1+x )2=150C .100(1+x )+100(1+x )2=150D .100+100(1+x )+100(1+x )2=15011.分别写有数字0,﹣1,﹣2,1,3的五张卡片,除数字不同外其他均相同,从中任抽一张,那么抽到负数的概率是( ) A .15B .25C .35D .4512.已知二次函数y =ax 2+bx +c(a≠0)的图象如图所示,当y >0时,x 的取值范围是( )A .-1<x <2B .x >2C .x <-1D .x <-1或x >2二、填空题13.已知:如图,在△AOB 中,∠AOB =90°,AO =3 cm ,BO =4 cm .将△AOB 绕顶点O ,按顺时针方向旋转到△A 1OB 1处,此时线段OB 1与AB 的交点D 恰好为AB 的中点,则线段B 1D =__________cm .14.已知二次函数y =3x 2+2x ,当﹣1≤x ≤0时,函数值y 的取值范围是_____.15.三角形两边长分别是4和2,第三边长是2x 2﹣9x +4=0的一个根,则三角形的周长是_____.16.若点A (-3,y 1)、B (0,y 2)是二次函数y=-2(x -1)2+3图象上的两点,那么y 1与y 2的大小关系是________(填y 1>y 2、y 1=y 2或y 1<y 2).17.一元二次方程250x x c -+=有两个不相等的实数根且两根之积为正数,若c 是整数,则c=_____.(只需填一个).18.如图,点A 是抛物线24y x x =-对称轴上的一点,连接OA ,以A 为旋转中心将AO 逆时针旋转90°得到AO ′,当O ′恰好落在抛物线上时,点A 的坐标为______________.19.如图,AB 是⊙O 的直径,点C 在⊙O 上,AE 是⊙O 的切线,A 为切点,连接BC 并延长交AE 于点D .若AOC=80°,则ADB 的度数为( )A .40°B .50°C .60°D .20°20.如图,在“3×3”网格中,有3个涂成黑色的小方格.若再从余下的6个小方格中随机选取1个涂成黑色,则完成的图案为轴对称图案的概率是______.三、解答题21.关于x 的一元二次方程x 2﹣x ﹣(m +2)=0有两个不相等的实数根. (1)求m 的取值范围;(2)若m 为符合条件的最小整数,求此方程的根.22.关于x 的一元二次方程x 2﹣2x ﹣(n ﹣1)=0有两个不相等的实数根. (1)求n 的取值范围;(2)若n 为取值范围内的最小整数,求此方程的根. 23.如图,AB 是O 的直径,AC 是上半圆的弦,过点C 作O 的切线DE 交AB 的延长线于点E ,过点A 作切线DE 的垂线,垂足为D ,且与O 交于点F ,设DAC ∠,CEA ∠的度数分别是a β、.()1用含a的代数式表示β,并直接写出a的取值范围;()2连接OF与AC交于点'O,当点'O是AC的中点时,求aβ、的值.24.已知如图,以Rt△ABC的AC边为直径作⊙O交斜边AB于点E,连接EO并延长交BC的延长线于点D,点F为BC的中点,连接EF.(1)求证:EF是⊙O的切线;(2)若⊙O的半径为3,∠EAC=60°,求AD的长.25.已知关于x的一元二次方程x2+(m+3)x+m+2=0.(1)求证:无论m取何值,原方程总有两个实数根;(2)若x1,x2是原方程的两根,且x12+x22=2,求m的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】根据题意得:每人要赠送(x-1)张贺卡,有x个人,然后根据题意可列出方程:(x-1)x=1980.【详解】解:根据题意得:每人要赠送(x-1)张贺卡,有x个人,∴全班共送:(x-1)x=1980,故选:D.【点睛】此题主要考查了由实际问题抽象出一元二次方程,本题要注意读清题意,弄清楚每人要赠送(x-1)张贺卡,有x个人是解决问题的关键.2.C解析:C【解析】【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB,BC的垂直平分线即可得到答案.【详解】解:作AB的垂直平分线,作BC的垂直平分线,如图,它们都经过Q,所以点Q为这条圆弧所在圆的圆心.故选:C.【点睛】本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.3.C解析:C【解析】试题解析:∵CC′∥AB,∴∠ACC′=∠CAB=65°,∵△ABC绕点A旋转得到△AB′C′,∴AC=AC′,∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,∴∠CAC′=∠BAB′=50°.故选C.4.C解析:C【解析】试题分析:如图,连接OC.∵∠BOC=2∠BAC=50°,∠COD=2∠CED=60°,∴∠BOD=∠BOC+∠COD=110°,故选C.【考点】圆周角定理.5.C解析:C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解. 【详解】 解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况, ∴两次都摸到白球的概率是:21126=. 故答案为C . 【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.6.B解析:B 【解析】 x 2+2x ﹣5=0, x 2+2x=5, x 2+2x+1=5+1, (x+1)2=6, 故选B.7.A解析:A 【解析】 【分析】根据一元二次方程根与系数的关系求解即可. 【详解】设x 1,x 2是一元二次方程的两个根, ∵394cx ±+=∴x 1+x 2=3,x 1∙x 2=-c ,∴该一元二次方程为:21212()0x x x x x x -++=,即230x x c --=故选A. 【点睛】此题主要考查了根据一元二次方程的根与系数的关系列一元二次方程.8.B【解析】【分析】移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x2=4x,x2﹣4x=0,x(x﹣4)=0,x﹣4=0,x=0,x1=4,x2=0,故选B.【点睛】本题考查了解一元二次方程,能把一元二次方程转化成一元一次方程是解此题的关键.9.A解析:A【解析】【分析】列表或画树状图得出所有等可能的结果,找出两次都为红球的情况数,即可求出所求的概率:【详解】列表如下:∴63P2010==两次红,10.B解析:B【解析】【分析】可设每月营业额平均增长率为x,则二月份的营业额是100(1+x),三月份的营业额是100(1+x)(1+x),则可以得到方程即可.【详解】设二、三两个月每月的平均增长率是x.根据题意得:100(1+x)2=150,故选:B.【点睛】本题考查数量平均变化率问题.原来的数量为a,平均每次增长或降低的百分率为x的话,经过第一次调整,就调整到a×(1±x),再经过第二次调整就是a(1±x)(1±x)=a (1±x)2.增长用“+”,下降用“-”.11.B解析:B【解析】试题分析:根据概率的求法,找准两点:①全部等可能情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率. 因此,从0,﹣1,﹣2,1,3中任抽一张,那么抽到负数的概率是2 5 .故选B.考点:概率.12.D解析:D【解析】【分析】根据已知图象可以得到图象与x轴的交点是(-1,0),(2,0),又y>0时,图象在x 轴的上方,由此可以求出x的取值范围.【详解】依题意得图象与x轴的交点是(-1,0),(2,0),当y>0时,图象在x轴的上方,此时x<-1或x>2,∴x的取值范围是x<-1或x>2,故选D.【点睛】本题考查了二次函数与不等式,解答此题的关键是求出图象与x轴的交点,然后由图象找出当y>0时,自变量x的范围,注意数形结合思想的运用.二、填空题13.5【解析】试题解析:∵在△AOB中∠AOB=90°AO=3cmBO=4cm∴AB==5cm ∵点D为AB的中点∴OD=AB=25cm∵将△AOB绕顶点O按顺时针方向旋转到△A1O B1处∴OB1=OB=解析:5【解析】试题解析:∵在△AOB中,∠AOB=90°,AO=3cm,BO=4cm,∴AB cm,∵点D为AB的中点,∴OD=12AB=2.5cm.∵将△AOB绕顶点O,按顺时针方向旋转到△A1OB1处,∴OB1=OB=4cm,∴B1D=OB1﹣OD=1.5cm.故答案为1.5.14.﹣≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴根据二次函数的性质即可求解【详解】∵y=3x2+2x=3(x+)2﹣∴函数的对称轴为x=﹣∴当﹣1≤x≤0时函数有最小值﹣当x=﹣1时有最大解析:﹣13≤y≤1【解析】【分析】利用配方法转化二次函数求出对称轴,根据二次函数的性质即可求解.【详解】∵y=3x2+2x=3(x+13)2﹣13,∴函数的对称轴为x=﹣13,∴当﹣1≤x≤0时,函数有最小值﹣13,当x=﹣1时,有最大值1,∴y的取值范围是﹣13≤y≤1,故答案为﹣13≤y≤1.【点睛】本题考查二次函数的性质、一般式和顶点式之间的转化,解题的关键是熟练掌握二次函数的性质.15.【解析】【分析】先利用因式分解法求出方程的解再由三角形的三边关系确定出第三边最后求周长即可【详解】解:方程2x2﹣9x+4=0分解因式得:(2x﹣1)(x﹣4)=0解得:x=或x=4当x=时+2<4解析:【解析】【分析】先利用因式分解法求出方程的解,再由三角形的三边关系确定出第三边,最后求周长即可. 【详解】解:方程2x 2﹣9x +4=0,分解因式得:(2x ﹣1)(x ﹣4)=0, 解得:x =12或x =4, 当x =12时,12+2<4,不能构成三角形,舍去; 则三角形周长为4+4+2=10. 故答案为:10. 【点睛】本题主要考查了解一元二次方程,正确使用因式分解法解一元二次方程是解答本题的关键.16.y1<y2【解析】试题分析:根据题意可知二次函数的对称轴为x=1由a=-2可知当x >1时y 随x 增大而减小当x <1时y 随x 增大而增大因此由-3<0<1可知y1<y2故答案为y1<y2点睛:此题主要考查解析:y 1<y 2 【解析】试题分析:根据题意可知二次函数的对称轴为x=1,由a=-2,可知当x >1时,y 随 x 增大而减小,当x <1时,y 随x 增大而增大,因此由-3<0<1,可知y 1<y 2. 故答案为y 1<y 2.点睛:此题主要考查了二次函数的图像与性质,解题关键是求出其对称轴,然后根据对称轴和a 的值判断其增减性,然后可判断.17.123456中的任何一个数【解析】【分析】【详解】解:∵一元二次方程有两个不相等的实数根∴△=解得∵c 是整数∴c=123456故答案为123456中的任何一个数【点睛】本题考查根的判别式;根与系数的解析:1,2,3,4,5,6中的任何一个数. 【解析】 【分析】 【详解】解:∵一元二次方程250x x c -+=有两个不相等的实数根,∴△=2(5)40c -->,解得254c <, ∵125x x +=,120x x c =>,c 是整数, ∴c=1,2,3,4,5,6.故答案为1,2,3,4,5,6中的任何一个数. 【点睛】本题考查根的判别式;根与系数的关系;开放型.18.(22)或(2-1)【解析】∵抛物线y=x2-4x 对称轴为直线x=-∴设点A 坐标为(2m )如图所示作AP⊥y 轴于点P 作O′Q⊥直线x=2∴∠APO=∠AQO′=90°∴∠QAO′+∠AO′Q=90°解析:(2,2)或(2,-1)【解析】∵抛物线y=x 2-4x 对称轴为直线x=-422-= ∴设点A 坐标为(2,m ),如图所示,作AP ⊥y 轴于点P ,作O′Q ⊥直线x=2,∴∠APO=∠AQO ′=90°,∴∠QAO ′+∠AO ′Q=90°,∵∠QAO ′+∠OAQ=90°,∴∠AO ′Q=∠OAQ ,又∠OAQ=∠AOP ,∴∠AO ′Q=∠AOP ,在△AOP 和△AO′Q 中,APO AQO AOP AO QAO AO ∠∠'⎧⎪∠∠'⎨⎪'⎩===∴△AOP ≌△AO ′Q (AAS ),∴AP=AQ=2,PO=QO′=m ,则点O ′坐标为(2+m ,m-2),代入y=x 2-4x 得:m-2=(2+m )2-4(2+m ),解得:m=-1或m=2,∴点A 坐标为(2,-1)或(2,2),故答案是:(2,-1)或(2,2).【点睛】本题考查了坐标与图形的变换-旋转,全等三角形的判定与性质,函数图形上点的特征,根据全等三角形的判定与性质得出点O ′的坐标是解题的关键.19.B 【解析】试题分析:根据AE 是⊙O 的切线A 为切点AB 是⊙O 的直径可以先得出∠BAD 为直角再由同弧所对的圆周角等于它所对的圆心角的一半求出∠B 从而得到∠ADB 的度数由题意得:∠BAD=90°∵∠B=∠解析:B.【解析】试题分析:根据AE是⊙O的切线,A为切点,AB是⊙O的直径,可以先得出∠BAD为直角.再由同弧所对的圆周角等于它所对的圆心角的一半,求出∠B,从而得到∠ADB的度数.由题意得:∠BAD=90°,∵∠B=∠AOC=40°,∴∠ADB=90°-∠B=50°.故选B.考点:圆的基本性质、切线的性质.20.13【解析】【分析】【详解】试题分析:有6种等可能的结果符合条件的只有2种则完成的图案为轴对称图案的概率是考点:轴对称图形的定义求某个事件的概率解析:.【解析】【分析】【详解】试题分析:有6种等可能的结果,符合条件的只有2种,则完成的图案为轴对称图案的概率是..考点:轴对称图形的定义,求某个事件的概率 .三、解答题21.(1)m>94-;(2)x1=0,x2=1.【解析】【分析】解答本题的关键是是掌握好一元二次方程的根的判别式.(1)求出△=5+4m>0即可求出m的取值范围;(2)因为m=﹣1为符合条件的最小整数,把m=﹣1代入原方程求解即可.【详解】解:(1)△=1+4(m+2)=9+4m>0∴94 m>-.(2)∵m 为符合条件的最小整数,∴m=﹣2.∴原方程变为2=0x x -∴x 1=0,x 2=1.考点:1.解一元二次方程;2.根的判别式.22.(1)n >0;(2)x 1=0,x 2=2.【解析】【分析】(1)根据方程有两个不相等的实数根可知240b ac ∆=-> ,即可求出n 的取值范围; (2)根据题意得出n 的值,将其代入方程,即可求得答案.【详解】(1)根据题意知,[]224(2)41(1)0b ac n ∆=-=--⨯⨯-->解之得:0n >;(2)∵0n > 且n 为取值范围内的最小整数,∴1n =,则方程为220x x -=,即(2)0x x -=,解得120,2x x ==.【点睛】本题主要考查了一元二次方程根的判别式,明确和掌握一元二次方程20(a 0)++=≠ax bx c 的根与24b ac ∆=-的关系(①当>0∆ 时,方程有两个不相等的实数根;②当0∆= 时方程有两个相等的实数根;③当∆<0 时,方程无实数根)是解题关键.23.(1)β=90°-2α(0°<α<45°);(2)α=β=30°【解析】【分析】(1)首先证明2DAE α∠= ,在t R ADE △ 中,根据两锐角互余,可知()290045αβα+=︒︒︒<< ;(2)连接OF 交AC 于O′,连接CF ,只要证明四边形AFCO 是菱形,推出AFO 是等边三角形即可解决问题.【详解】解:(1)连接OC .∵DE 是⊙O 的切线,∴OC⊥DE,∵AD⊥DE,∴AD∥OC,∴∠DAC=∠ACO,∵OA=OC,∴∠OCA=∠OAC,∴∠DAE=2α,∵∠D=90°,∴∠DAE+∠E=90°,∴2α+β=90°∴β=90°-2α(0°<α<45°).(2)连接OF交AC于O′,连接CF.∵AO′=CO′,∴AC⊥OF,∴FA=FC,∴∠FAC=∠FCA=∠CAO,∴CF∥OA,∵AF∥OC,∴四边形AFCO是平行四边形,∵OA=OC,∴四边形AFCO是菱形,∴AF=AO=OF,∴△AOF是等边三角形,∴∠FAO=2α=60°,∴α=30°,∵2α+β=90°,∴β=30°,∴α=β=30°.【点睛】本题考查了圆和三角形的问题,掌握圆的切线的性质以及等边三角形的性质和证明是解题的关键.24.(1)证明见解析;(2)37【解析】【分析】(1)连接FO,可根据三角形中位线的性质可判断易证OF∥AB,然后根据直径所对的圆周角是直角,可得CE⊥AE,进而知OF⊥CE,然后根据垂径定理可得∠FEC=∠FCE,∠OEC=∠OCE,再通过Rt△ABC可知∠OEC+∠FEC=90°,因此可证FE为⊙O的切线;(2)根据⊙O的半径为3,可知AO=CO=EO=3,再由∠EAC=60°可证得∠COD=∠EOA=60°,在Rt△OCD中,∠COD=60°,OC=3,可由勾股定理求得CD=33,最后根据Rt△ACD,用勾股定理求得结果.【详解】解:(1)连接FO易证OF∥AB∵AC⊙O的直径∴CE⊥AE∵OF∥AB∴OF⊥CE∴OF所在直线垂直平分CE∴FC=FE,OE=OC∴∠FEC=∠FCE,∠0EC=∠OCE∵Rt△ABC∴∠ACB=90°即:∠OCE+∠FCE=90°∴∠OEC+∠FEC=90°即:∠FEO=90°∴FE为⊙O的切线(2)∵⊙O的半径为3∴AO=CO=EO=3∵∠EAC=60°,OA=OE∴∠EOA=60°∴∠COD=∠EOA=60°∵在Rt△OCD中,∠COD=60°,OC=3∴CD=33∵在Rt△ACD中,∠ACD=90°,CD=33,AC=6∴AD=37【点睛】本题考查切线的判定,中位线的性质,以及特殊直角三角形的边角关系和勾股定理.25.(1)详见解析;(2)m=﹣3或m=﹣1【解析】【分析】(1)根据根的判别式即可求出答案.(2)利用跟与系数的关系可以得到如果把所求代数式利用完全平方公式变形,结合前面的等式即可解答.【详解】解:(1)证明:∵△=(m+3)2﹣4(m+2)=(m+1)2,∵无论m取何值,(m+1)2≥0,∴原方程总有两个实数根.(2)∵x1,x2是原方程的两根,∴x1+x2=﹣(m+3),x1x2=m+2,∵x12+x22=2,∴(x1+x2)2﹣2x1x2=2,∴代入化简可得:m2+4m+3=0,解得:m=﹣3或m=﹣1【点睛】此题考查根与系数的关系,根的判别式,解题的关键是熟练运用根与系数的关系,本题属于基础题型.。
2020年河南省郑州市中考数学一模试卷含答案.pdf
2020年河南省郑州市中考数学一模试卷一、选择题(每小题3分,共30分,下列各小题均有四个答案,其中只有一个是正确的)1.(3分)﹣的相反数是()A .B .﹣C .D .﹣2.(3分)华为Mate 30 5G 系列是近期相当火爆的5G 国产手机,它采用的麒麟990 5G 芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A .1.03×109B .10.3×109C .1.03×1010D .1.03×10113.(3分)下列运算正确的是()A .3x ﹣2x =xB .3x+2x =5x 2C .3x?2x =6xD .3x ÷2x =4.(3分)如图是由5个完全相同的小正方体搭成的几何体,如果将小正方体A 放到小正方体B 的正上方,则它的()A .左视图会发生改变B .俯视图会发生改变C .主视图会发生改变D .三种视图都会发生改变5.(3分)如图,平行四边形ABCD 中,AB =3,BC =5.以点C 为圆心,适当长为半径画弧,交BC 于点P ,交CD 于点Q ,再分别以点P ,Q 为圆心,大于PQ 的长为半径画弧,两弧相交于点N ,射线CN 交BA 的延长线于点E ,则AE 的长是()A .B .C .1D .26.(3分)郑州市某中学获评“2019年河南省中小学书香校园”,学校在创建过程中购买了一批图书.已知购买科普类图书花费12000元,购买文学类图书花费10500元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本,求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.﹣=100B.﹣=100C.﹣=100D.﹣=1007.(3分)2019年9月8日第十一届全国少数民族传统体育运动会在郑州奥体中心隆重开幕,某单位得到了两张开幕式的门票,为了弘扬劳动精神,决定从本单位的劳动模范小李、小张、小杨、小王四人中选取两人去参加开幕式,那么同时选中小李和小张的概率为()A.B.C.D.8.(3分)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=,如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,那么a2020的值是()A.﹣2B.C.D.9.(3分)用三个不等式a>b,ab>0,>中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.310.(3分)使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m 3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮的旋转角度约为()A.33°B.36°C.42°D.49°二、填空题(每小题3分,共15分)11.(3分)计算:(﹣1)0+()﹣2=.12.(3分)如图,五边形ABCDE是正五边形.若l1∥l2,则∠1﹣∠2=°.13.(3分)如果一元二次方程9x 2﹣6x+m=0有两个不相等的实数根,那么m的值可以为.(写出一个值即可)14.(3分)如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR 分别交AC,CD于点P,Q.平行四边形ABCD的面积为6,则图中阴影部分的面积为.15.(3分)如图,在矩形ABMN中,AN=1,点C是MN的中点,分别连接AC,BC,且BC=2,点D为AC的中点,点E为边AB上一个动点,连接DE,点A关于直线DE的对称点为点F,分别连接DF,EF.当EF⊥AC时,AE的长为.三、解答题(共75分)16.(8分)已知分式1﹣÷(1+).(1)请对分式进行化简;(2)如图,若m为正整数,则该分式的值对应的点落在数轴上的第段上.(填写序号即可)17.(9分)某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x<6.6 6.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数2m10621 b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为;②一分钟仰卧起坐成绩的中位数为;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代A B C D E F G H码实心球8.17.77.57.57.37.27.0 6.5一分钟*4247*4752*49仰卧起坐其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.18.(9分)在△ABC中,∠BAC=90°,AD是BC边上的中线,点E为AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:AD=AF;(2)填空:①当∠ACB=°时,四边形ADCF为正方形;②连接DF,当∠ACB=°时,四边形ABDF为菱形.19.(9分)某校“趣味数学”社团开展了测量本校旗杆高度的实践活动.“综合与实践”小组制订了测量方案,并完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,该小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如表(不完整)课题测量旗杆的高度成员组长:xxx组员:xxx,xxx,xxx测量工具角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD=1.5m,测点A,B与H在同一条水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E在同一条直线上,点E在GH上.测量数据测量项目第一次第二次平均值∠GCE的度数26.4°26.6°26.5°∠GDE的度数32.7°33.3°33°A,B之间的距离 5.9m 6.1m ……任务一:两次测量A,B之间的距离的平均值=m任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(参考数据:sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)20.(9分)如图,在平面直角坐标系中,已知点B(0,4),等边三角形OAB的顶点A在反比例函数y=(x>0)的图象上.(1)求反比例函数的表达式;(2)把△OAB沿y轴向上平移a个单位长度,对应得到△O'A'B'.当这个函数的图象经过△O'A'B'一边的中点时,求a的值.21.(10分)《郑州市城市生活垃圾分类管理办法》于2019年12月起施行.某社区要投放A,B两种垃圾桶,负责人小李调查发现:购买数量少于100个购买数量不少于100个购买数量种类A原价销售以原价的7.5折销售B原价销售以原价的8折销售若购买A种垃圾桶80个,B种垃圾桶120个,则共需付款6880元;若购买A种垃圾桶100个,B种垃圾桶100个,则共需付款6150元.(1)求A,B两种垃圾桶的单价各为多少元?(2)若需要购买A,B两种垃圾桶共200个,且B种垃圾桶不多于A种垃圾桶数量的,如何购买使花费最少,最少费用为多少元?请说明理由.22.(10分)(一)发现探究在△ABC中,AB=AC,点P在平面内,连接AP并将线段AP绕点A顺时针方向旋转与∠BAC相等的角度,得到线段AQ,连接BQ.【发现】如图1,如果点P是BC边上任意一点,则线段BQ和线段PC的数量关系是;【探究】如图2,如果点P为平面内任意一点.前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图2所示的位置关系加以证明(或说明);(二)拓展应用【应用】如图3,在△DEF中,DE=8,∠EDF=60°,∠DEF=75°,P是线段EF上的任意一点,连接DP,将线段DP绕点D顺时针方向旋转60°,得到线段DQ,连接EQ.请直接写出线段EQ长度的最小值.23.(11分)如图,在平面直角坐标系中,直线y=﹣x+n与x轴,y轴分别交于点B,点C,抛物线y=ax 2+bx+(a≠0)过B,C两点,且交x轴于另一点A(﹣2,0),连接AC.(1)求抛物线的表达式;(2)已知点P为第一象限内抛物线上一点,且点P的横坐标为m,请用含m的代数式表示点P到直线BC的距离;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC 相似?若存在,直接写出点Q的坐标;若不存在,请说明理由.2020年河南省郑州市中考数学一模试卷参考答案与试题解析一、选择题(每小题3分,共30分,下列各小题均有四个答案,其中只有一个是正确的)1.(3分)﹣的相反数是()A .B .﹣C .D .﹣【解答】解:﹣的相反数是.故选:A .2.(3分)华为Mate 30 5G 系列是近期相当火爆的5G 国产手机,它采用的麒麟990 5G 芯片在指甲盖大小的尺寸上集成了103亿个晶体管,将103亿用科学记数法表示为()A .1.03×109B .10.3×109C .1.03×1010D .1.03×1011【解答】解:103亿=103 0000 0000=1.03×1010,故选:C .3.(3分)下列运算正确的是()A .3x ﹣2x =xB .3x+2x =5x 2C .3x?2x =6xD .3x ÷2x =【解答】解:A 、结果是x ,故本选项符合题意;B 、结果是5x ,故本选项不符合题意;C 、结果是6x 2,故本选项不符合题意;D 、结果是,故本选项不符合题意;故选:A .4.(3分)如图是由5个完全相同的小正方体搭成的几何体,如果将小正方体A 放到小正方体B 的正上方,则它的()A .左视图会发生改变B .俯视图会发生改变C .主视图会发生改变D .三种视图都会发生改变【解答】解:如果将小正方体A 放到小正方体B 的正上方,则它的主视图会发生改变,俯视图和左视图不变.故选:C.5.(3分)如图,平行四边形ABCD中,AB=3,BC=5.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A.B.C.1D.2【解答】解:∵由题意可知CE是∠BCD的平分线,∴∠BCE=∠DCE.∵四边形ABCD是平行四边形,∴AB∥CD,∴∠DCE=∠E,∴∠BCE=∠AEC,∴BE=BC=5,∵AB=3,∴AE=BE﹣AB=2,故选:D.6.(3分)郑州市某中学获评“2019年河南省中小学书香校园”,学校在创建过程中购买了一批图书.已知购买科普类图书花费12000元,购买文学类图书花费10500元,其中科普类图书平均每本的价格比文学类图书平均每本的价格贵5元,且购买科普书的数量比购买文学书的数量少100本,求科普类图书平均每本的价格是多少元?若设科普类图书平均每本的价格是x元,则可列方程为()A.﹣=100B.﹣=100C.﹣=100D.﹣=100【解答】解:设科普类图书平均每本的价格是x元,则可列方程为:﹣=100.故选:D.7.(3分)2019年9月8日第十一届全国少数民族传统体育运动会在郑州奥体中心隆重开幕,某单位得到了两张开幕式的门票,为了弘扬劳动精神,决定从本单位的劳动模范小李、小张、小杨、小王四人中选取两人去参加开幕式,那么同时选中小李和小张的概率为()A.B.C.D.【解答】解:根据题意画图如下:共有12种等可能的结果数,其中同时选中小李和小张的有2种,则同时选中小李和小张的概率为=;故选:D.8.(3分)已知有理数a≠1,我们把称为a的差倒数,如:2的差倒数是=﹣1,﹣1的差倒数是=,如果a1=﹣2,a2是a1的差倒数,a3是a2的差倒数,a4是a3的差倒数,…,依此类推,那么a2020的值是()A.﹣2B.C.D.【解答】解:∵a1=﹣2,∴a2==,a3==,a4==﹣2,……∴这个数列以﹣2,,依次循环,∵2020÷3=673…1,∴a2020的值是﹣2.故选:A.9.(3分)用三个不等式a>b,ab>0,>中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为()A.0B.1C.2D.3【解答】解:①若a>b,ab>0,则>;假命题:理由:∵a>b,ab>0,∴a>b>0,∴<;②若ab>0,>,则a>b,假命题;理由:∵ab>0,∴a、b同号,∵>,∴a<b;③若a>b,>,则ab>0,假命题;理由:∵a>b,>,∴a、b异号,∴ab<0.∴组成真命题的个数为0个;故选:A.10.(3分)使用家用燃气灶烧开同一壶水所需的燃气量y(单位:m 3)与旋钮的旋转角度x(单位:度)(0°<x≤90°)近似满足函数关系y=ax2+bx+c(a≠0).如图记录了某种家用节能燃气灶烧开同一壶水的旋钮的旋转角度x与燃气量y的三组数据,根据上述函数模型和数据,可推断出此燃气灶烧开一壶水最节省燃气的旋钮的旋转角度约为()A.33°B.36°C.42°D.49°【解答】解:由图象可知,物线开口向上,该函数的对称轴x >且x <54,∴36<x <54,即对称轴位于直线x =36与直线x =54之间且靠近直线x =36,故选:C .二、填空题(每小题3分,共15分)11.(3分)计算:(﹣1)0+()﹣2=5.【解答】解:原式=1+4=5.故答案为:5.12.(3分)如图,五边形ABCDE 是正五边形.若l 1∥l 2,则∠1﹣∠2=72°.【解答】解:过B 点作BF ∥l 1,∵五边形ABCDE 是正五边形,∴∠ABC =108°,∵BF ∥l 1,l 1∥l 2,∴BF ∥l 2,∴∠3=180°﹣∠1,∠4=∠2,∴180°﹣∠1+∠2=∠ABC =108°,∴∠1﹣∠2=72°.故答案为:72.13.(3分)如果一元二次方程9x 2﹣6x+m =0有两个不相等的实数根,那么m 的值可以为.(写出一个值即可)【解答】解:根据题意得△=(﹣6)2﹣4×9m >0,解得m<1,所以m可取0.故答案为0.14.(3分)如图,四边形ABCD和四边形ACED都是平行四边形,点R为DE的中点,BR 分别交AC,CD于点P,Q.平行四边形ABCD的面积为6,则图中阴影部分的面积为.【解答】解:∵四边形ABCD和四边形ACED都是平行四边形,∴AD=BC=CE,AB∥CD,AC∥DE,∴平行四边形ACED的面积=平行四边形ABCD的面积=6,△BCP∽△BDE,△ABP∽△CQP∽△DQR,∴△ABC的面积=△CDE的面积=3,CP:ER=BC:BE=1:2,∵点R为DE的中点,∴CP:DR=1:2,∴CP:AC=CP:DE=1:4,∵S△ABC=3,∴S△ABP=S△ABC=,∵CP:AP=1:3,∴S△PCQ=S△ABP=,∵CP:DR=1:2,∴S△DQR=4S△PCQ=1,∴S阴影=S△PCQ+S△DQR=.故答案为:.15.(3分)如图,在矩形ABMN中,AN=1,点C是MN的中点,分别连接AC,BC,且BC=2,点D为AC的中点,点E为边AB上一个动点,连接DE,点A关于直线DE的对称点为点F,分别连接DF,EF.当EF⊥AC时,AE的长为或.【解答】解:∵四边形ABMN是矩形,∴AN=BM=1,∠M=∠N=90°,∵CM=CN,∴△BMC≌△ANC(SAS),∴BC=AC=2,∴AC=2AN,∴∠ACN=30°,∵AB∥MN,∴∠CAB=∠CBA=30°,①如图1中,当DF⊥AB时,∠ADF=60°,∵DA=DF,∴△ADF是等边三角形,∴∠AFD=60°,∵∠DFE=∠DAE=30°,∴EF平分∠AFD,∴EF⊥AD,此时AE=.②如图2中,当△AEF是等边三角形时,EF⊥AC,此时EF=.综上所述,满足条件的EF的值为或.三、解答题(共75分)16.(8分)已知分式1﹣÷(1+).(1)请对分式进行化简;(2)如图,若m为正整数,则该分式的值对应的点落在数轴上的第①段上.(填写序号即可)【解答】解:(1)原式=1﹣÷=1﹣?=1﹣==;(2)∵原式=1﹣,m为正整数且m=1,∴该分式的值应落在数轴的①处,故答案为:①.17.(9分)某年级共有150名女生,为了解该年级女生实心球成绩(单位:米)和一分钟仰卧起坐成绩(单位:个)的情况,从中随机抽取30名女生进行测试,获得了他们的相关成绩,并对数据进行整理、描述和分析.下面给出了部分信息.a.实心球成绩的频数分布如表所示:分组 6.2≤x<6.6 6.6≤x<7.07.0≤x<7.47.4≤x<7.87.8≤x<8.28.2≤x<8.6频数2m10621 b.实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3c.一分钟仰卧起坐成绩如图所示:根据以上信息,回答下列问题:(1)①表中m的值为9;②一分钟仰卧起坐成绩的中位数为45;(2)若实心球成绩达到7.2米及以上时,成绩记为优秀.①请估计全年级女生实心球成绩达到优秀的人数;②该年级某班体育委员将本班在这次抽样测试中被抽取的8名女生的两项成绩的数据抄录如表所示:女生代A B C D E F G H码实心球8.17.77.57.57.37.27.0 6.5一分钟*4247*4752*49仰卧起坐其中有3名女生的一分钟仰卧起坐成绩未抄录完整,但老师说这8名女生中恰好有4人两项测试成绩都达到了优秀,于是体育委员推测女生E的一分钟仰卧起坐成绩达到了优秀,你同意体育委员的说法吗?并说明你的理由.【解答】解:(1)①m=30﹣2﹣10﹣6﹣2﹣1=9,故答案为:9;②由条形统计图可得,一分钟仰卧起坐成绩的中位数为45,故答案为:45;(2)①∵实心球成绩在7.0≤x<7.4这一组的是:7.0,7.0,7.0,7.1,7.1,7.1,7.2,7.2,7.3,7.3,∴实心球成绩在7.0≤x<7.4这一组优秀的有4人,∴全年级女生实心球成绩达到优秀的人数是:150×=65,答:全年级女生实心球成绩达到优秀的有65人;②同意,理由:如果女生E的仰卧起坐成绩未到达优秀,那么只有A、D、F有可能两项测试成绩都达到优秀,这与恰有4个人两项成绩都达到优秀,矛盾,因此,女生E的一分钟仰卧起坐成绩达到了优秀.18.(9分)在△ABC中,∠BAC=90°,AD是BC边上的中线,点E为AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.(1)求证:AD=AF;(2)填空:①当∠ACB=45°时,四边形ADCF为正方形;②连接DF,当∠ACB=30°时,四边形ABDF为菱形.【解答】(1)证明:∵∠BAC=90°,AD是BC边上的中线,∵AD=CD=BD,∵点E为AD的中点,∴AE=DE,∵AF∥BC,∴∠AFE=∠DBE,∵∠AF=∠DEB,∴△AEF≌△DEB(AAS),∴AF=BD,∴AD=AF;(2)解:①当∠ACB=45°时,四边形ADCF为正方形;∵AD=AF,∴AF=CD,∵AF∥CD,∴四边形ADCF是菱形,∴∠ACD=∠ACF=45°,∴∠DCF=90°,∴四边形ADCF是正方形;②当∠ACB=30°时,四边形ABDF为菱形;∵四边形ADCF是菱形,四边形ABDF是平行四边形,∴CD=CF,∵∠ACB=∠ACF=30°,∴∠DCF=60°,∴△DCF是等边三角形,∴DF=CD,∴DF=BD,∴四边形ABDF为菱形.故答案为:45,30.19.(9分)某校“趣味数学”社团开展了测量本校旗杆高度的实践活动.“综合与实践”小组制订了测量方案,并完成了实地测量.他们在该旗杆底部所在的平地上,选取两个不同测点,分别测量了该旗杆顶端的仰角以及这两个测点之间的距离.为了减小测量误差,该小组在测量仰角的度数以及两个测点之间的距离时,都分别测量了两次并取它们的平均值作为测量结果,测量数据如表(不完整)课题测量旗杆的高度成员组长:xxx组员:xxx,xxx,xxx测量工具角度的仪器,皮尺等测量示意图说明:线段GH表示学校旗杆,测量角度的仪器的高度AC=BD=1.5m,测点A,B与H在同一条水平直线上,A,B之间的距离可以直接测得,且点G,H,A,B,C,D都在同一竖直平面内,点C,D,E在同一条直线上,点E在GH上.测量数据测量项目第一次第二次平均值∠GCE的度数26.4°26.6°26.5°∠GDE的度数32.7°33.3°33°A,B之间的距离 5.9m 6.1m ……任务一:两次测量A,B之间的距离的平均值=6m任务二:根据以上测量结果,请你帮助该“综合与实践”小组求出学校旗杆GH的高度.(参考数据:sin26.5°≈0.45,cos26.5°≈0.89,tan26.5°≈0.50,sin33°≈0.54,cos33°≈0.84,tan33°≈0.65)任务三:该“综合与实践”小组在制定方案时,讨论过“利用物体在阳光下的影子测量旗杆的高度”的方案,但未被采纳.你认为其原因可能是什么?(写出一条即可)【解答】解:任务一:=(5.9+6.1)=6,故答案为:6;任务二:设EG=xm,在Rt△DEG中,∠DEG=90°,∠GDE=33°,∵tan33°=,∴DE=,在Rt△CEG中,∠CEG=90°,∠GCE=25.7°,∵tan26.5°=,CE=,∵CD=CE﹣DE,∴﹣=6,∴x=13,∴GH=EG+EH=13+1.5=14.5,答:旗杆GH的高度为14.5米;任务三:没有太阳光,或旗杆底部不可能达到相等.20.(9分)如图,在平面直角坐标系中,已知点B(0,4),等边三角形OAB的顶点A在反比例函数y=(x>0)的图象上.(1)求反比例函数的表达式;(2)把△OAB沿y轴向上平移a个单位长度,对应得到△O'A'B'.当这个函数的图象经过△O'A'B'一边的中点时,求a的值.【解答】解:(1)∵点B(0,4),等边三角形OAB的顶点A在反比例函数y=(x>0)的图象上,∴点A的坐标为(2,2),∴2=,得k=4,即反比例函数的表达式是y=;(2)当反比例函数y=过边A′B′的中点时,∵边O′A′的中点是(,3+a),∴3+a=,得a=1;当反比例函数y=过边O′A′的中点时,∵边A′B′的中点是(,1+a),∴1+a=,得a=3;由上可得,a的值是1或3.21.(10分)《郑州市城市生活垃圾分类管理办法》于2019年12月起施行.某社区要投放A,B两种垃圾桶,负责人小李调查发现:购买数量少于100个购买数量不少于100个购买数量种类A原价销售以原价的7.5折销售B原价销售以原价的8折销售若购买A种垃圾桶80个,B种垃圾桶120个,则共需付款6880元;若购买A种垃圾桶100个,B种垃圾桶100个,则共需付款6150元.(1)求A,B两种垃圾桶的单价各为多少元?(2)若需要购买A,B两种垃圾桶共200个,且B种垃圾桶不多于A种垃圾桶数量的,如何购买使花费最少,最少费用为多少元?请说明理由.【解答】解:(1)设A种垃圾桶的单价为x元,B种垃圾桶的单价为y元,根据题意得,解得,答:A种垃圾桶的单价为50元,B种垃圾桶的单价为30元;(2)设购买A种垃圾桶为a个,则购买B种垃圾桶为(200﹣a)个,根据题意得,解得a≥150;设购买A,B两种垃圾桶的总费用为W元,则W=0.75×50a+30(200﹣a)=7.5a+6000,∵k=7.5>0,∴W随x的增大而增大,∴当a=150时,花费最少,最少费用为:7.5×150+6000=7125(元).答:购买A种垃圾桶150个,B种垃圾桶50个花费最少,最少费用为7125元.22.(10分)(一)发现探究在△ABC中,AB=AC,点P在平面内,连接AP并将线段AP绕点A顺时针方向旋转与∠BAC相等的角度,得到线段AQ,连接BQ.【发现】如图1,如果点P是BC边上任意一点,则线段BQ和线段PC的数量关系是BQ =PC;【探究】如图2,如果点P为平面内任意一点.前面发现的结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.请仅以图2所示的位置关系加以证明(或说明);(二)拓展应用【应用】如图3,在△DEF中,DE=8,∠EDF=60°,∠DEF=75°,P是线段EF上的任意一点,连接DP,将线段DP绕点D顺时针方向旋转60°,得到线段DQ,连接EQ.请直接写出线段EQ长度的最小值.【解答】解:【发现】由旋转知,AQ=AP,∵∠P AQ=∠BAC,∴∠P AQ﹣∠BAP=∠BAC﹣∠BAP,∴∠BAQ=∠CAP,∵AB=AC,∴△BAQ≌△CAP(SAS),∴BQ=CP,故答案为:BQ=PC;【探究】结论:BQ=PC仍然成立,理由:由旋转知,AQ=AP,∵∠P AQ=∠BAC,∴∠P AQ﹣∠BAP=∠BAC﹣∠BAP,∴∠BAQ=∠CAP,∵AB=AC,∴△BAQ≌△CAP(SAS),∴BQ=CP,【应用】如图3,在DF上取一点H,使DH=DE=8,连接PH,过点H作HM⊥EF于M,由旋转知,DQ=DP,∠PDQ=60°,∵∠EDF=60°,∴∠PDQ=∠EDF,∴∠EDQ=∠HDP,∴△DEQ≌△DHP(SAS),∴EQ=HP,要使EQ最小,则有HP最小,而点H是定点,点P是EF上的动点,∴当HM⊥EF(点P和点M重合)时,HP最小,即:点P与点M重合,EQ最小,最小值为HM,过点E作EG⊥DF于G,在Rt△DEG中,DE=8,∠EDF=60°,∴∠DEG=30°,∴DG=DE=4,∴EG=DG=4,在Rt△EGF中,∠FEG=∠DEF﹣∠DEG=75°﹣30°=45°,∴∠F=90°﹣∠FEG=45°=∠FEG,FG=EG=4,∴DF=DG+FG=4+4,∴FH=DF﹣DH=4+4﹣8=4﹣4,在Rt△HMF中,∠F=45°,∴HM=FH=(4﹣4)=2﹣2,即:EQ的最小值为2﹣2.23.(11分)如图,在平面直角坐标系中,直线y=﹣x+n与x轴,y轴分别交于点B,点C,抛物线y=ax 2+bx+(a≠0)过B,C两点,且交x轴于另一点A(﹣2,0),连接AC.(1)求抛物线的表达式;(2)已知点P为第一象限内抛物线上一点,且点P的横坐标为m,请用含m的代数式表示点P到直线BC的距离;(3)抛物线上是否存在一点Q(点C除外),使以点Q,A,B为顶点的三角形与△ABC 相似?若存在,直接写出点Q的坐标;若不存在,请说明理由.【解答】解:(1)点C(0,),则直线y=﹣x+n=﹣x+,则点B(3,0),则抛物线的表达式为:y=a(x﹣3)(x+2)=a(x2﹣x﹣6),故﹣6a=,解得:a=﹣,故抛物线的表达式为:y=﹣x2+x+;(2)过点P作y轴的平行线交BC于点G,作PH⊥BC于点H,则∠HPG=∠CBA=α,tan∠CBA===tanα,则cosα=,设点P(m,﹣m2+m+),则点G(m,﹣m+),则PH=PGcosα=(﹣m2+m++m﹣)=﹣m2+m;(3)①当点Q在x轴上方时,则点Q,A,B为顶点的三角形与△ABC全等,此时点Q与点C关于函数对称轴对称,则点Q(1,);②当点Q在x轴下方时,(Ⅰ)当∠BAQ=∠CAB时,△QAB∽△BAC,则=,由勾股定理得:AC=5,AQ===10,过点Q作QH⊥x轴于点H,由△HAQ∽△OAC得:==,∵OC=,AQ=10,∴QH=6,则AH=8,OH=18﹣2=6,∴Q(6,﹣6);根据点的对称性,当点Q在第三象限时,符合条件的点Q(﹣5,﹣6);故点Q的坐标为:(6,﹣6)或(﹣5,﹣6);(Ⅱ)当∠BAQ=∠CBA时,则直线AQ∥BC,直线BC表达式中的k为:﹣,则直线AQ的表达式为:y=﹣x﹣2…②,联立①②并解得:x=5或﹣2(舍去﹣2),故点Q(5,﹣),=,而=,故≠,即Q,A,B为顶点的三角形与△ABC不相似,故舍去,Q的对称点(﹣4,﹣)同样也舍去,即点Q的为:(﹣4,﹣)、(5,﹣)均不符合题意,都舍去;综上,点Q的坐标为:(1,)或(6,﹣6)或(﹣5,﹣6).。
河南省2020年中考数学一模试卷(解析版)
2020年河南省中考数学一模试卷一、选择题(共10小题)1.﹣的相反数是()A.﹣B.C.﹣2 D.22.截止北京时间2020年4月11日21时许,全球累计新冠确诊病例数已超171万例.将1710000用科学记数法表示()A.1.71×105B.0.171×107C.1.71×106D.17100003.某个几何体的三视图如图所示,该几何体是()A.B.C.D.4.某校九年级8位同学一分钟跳绳的次数排序后如下:150,164,168,168,172,176,183,185.则由这组数据得到的结论中错误的是()A.中位数为170 B.众数为168C.极差为35 D.平均数为1705.下列运算正确的是()A.(﹣2a)2=﹣4a2B.(a+b)2=a2+b2C.(a5)2=a7D.(﹣a+2)(﹣a﹣2)=a2﹣46.若一次函数y=kx+b的图象不经过第二象限,则关于x的方程x2+kx+b=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数根C.无实数根D.无法确定7.不等式组的所有非负整数解的和是()A.10 B.7 C.6 D.08.如图,共有12个大小相同的小正方形,其中阴影部分的5个小正方形是一个正方体的表面展开图的一部分,现从其余的小正方形中任取一个涂上阴影,能构成这个正方体的表面展开图的概率是()A.B.C.D.9.将一个含30°角的直角三角板ABC与一个直尺如图放置,∠ACB=90°,点A在直尺边MN上,点B在直尺边PQ上,BC交MN于点D,若∠ABP=15°,AC=8,则AD的长为()A.B.8 C.8D.810.如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A2,交x轴于点B2,以A2B2为边作正方形A2B2C2D2;过点C2作x 轴的垂线,垂足为A3,交直线l于点D3,以A3D3为边作正方形A3B3C3D3,…,按此规律操作下所得到的正方形A n B n∁n D n的面积是()A.()n B.()n﹣1C.()n D.()n﹣1二、填空题(共5小题)11.计算:2cos45°﹣(+1)0=.12.明代数学家程大位的《算法统宗》中有这样一个问题(如图),其大意为:有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,请问:所分的银子共有两.(注:明代时1斤=16两,故有“半斤八两”这个成语)13.端午节是我国传统佳节,小峰同学带了4个粽子(除粽馅不同外,其他均相同),其中有两个肉馅粽子、一个红枣粽子和一个豆沙粽子,准备从中任意拿出两个送给他的好朋友小悦,小悦拿到的两个粽子都是肉馅的概率是.14.如图,在△ABC中,BC=4,以点A为圆心、2为半径的⊙A与BC相切于点D,交AB 于E,交AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是(结果保留π).15.如图,△ABC和△ADE是有公共顶点的等腰直角三角形,∠BAC=∠DAE=90°,点P 为射线BD,CE的交点,若AB=2,AD=1,把△ADE绕点A旋转,当∠EAC=90°时,则PB的长为.三、解答题(共8小题)16.先化简,再求值:(﹣)÷(﹣)•(++2),其中+(n﹣3)2=0.17.如图,四边形ABCD内接于⊙O,对角线AC为⊙O的直径,过点C作AC的垂线交AD 的延长线于点E,点F为CE的中点,连接DB,DC,DF.(1)求∠CDE的度数;(2)求证:DF是⊙O的切线;(3)若AC=2DE,求tan∠ABD的值.18.如图,直线y=﹣2x+4交x轴于点A,交y轴于点B,与反比例函数y=的图象有唯一的公共点C.(1)求k的值及C点坐标;(2)直线l与直线y=﹣2x+4关于x轴对称,且与y轴交于点B',与双曲线y=交于D,E两点,求△CDE的面积.19.“武汉告急”,新型冠状病毒的肆虐,使武汉医疗设备严重缺乏,某校号召全校师生捐款购买医用口罩支援疫区,由于学生不能到校捐款,校方采用网上捐款的办法,设置了四个捐款按钮,A:5元;B:10元;C:20元;D:50元,最终全校2000名学生全部参与捐款,活动结束后校团委随机抽查了20名学生捐款数额,根据各捐款数额对应的人数绘制了扇形统计图(如图1)和尚未完成的条形统计图(如图2),请解答下列问题:(1)在图1中,捐款20元所对应的圆心角度数为,将条形统计图补充完整.(2)这20名学生捐款的众数为,中位数为.(3)在求这20名学生捐款的平均数时,小亮是这样分析的:第一步:求平均数的公式是=;第二步:此问题中n=4,x1=5,x2=10,x3=20,x4=50;第三步:==21.25(元).①小亮的分析是不正确的,他错在第几步?②请你帮他计算出正确的平均数,并估计这2000名学生共捐款多少元?20.在小水池旁有一盏路灯,已知支架AB的长是0.8 m,A端到地面的距离AC是4 m,支架AB与灯柱AC的夹角为65°.小明在水池的外沿D测得支架B端的仰角是45°,在水(结池的内沿E测得支架A端的仰角是50°(点C,E,D在同一直线上),求小水池的宽DE.果精确到0.1 m)(sin65°≈0.9,cos65°≈0.4,tan50°≈1.2)21.为落实“绿水青山就是金山银山”的发展理念,某市政部门招标一工程队负责在山脚下修建一座水库的土方施工任务.该工程队有A,B两种型号的挖掘机,已知3台A型和5台B型挖掘机同时施工一小时挖土165 m3;4台A型和7台B型挖掘机同时施工1 h挖土225 m3.每台A型挖掘机1 h的施工费用为300元,每台B型挖掘机1 h的施工费用为180元.(1)分别求每台A型,B型挖掘机1 h挖土多少m3?(2)若不同数量的A型和B型挖掘机共12台同时施工4 h,至少完成1080 m3的挖土量,且总费用不超过12960元,问施工时有哪几种调配方案,并指出哪种调配方案的施工费用最低,最低费用是多少元?22.我们定义:有一组邻角相等的凸四边形叫做“等邻角四边形”(1)概念理解:请你根据上述定义举一个等邻角四边形的例子;(2)问题探究:如图1,在等邻角四边形ABCD中,∠DAB=∠ABC,AD,BC的中垂线恰好交于AB边上一点P,连结AC,BD,试探究AC与BD的数量关系,并说明理由;(3)应用拓展:如图2,在Rt△ABC与Rt△ABD中,∠C=∠D=90°,BC=BD=3,AB=5,将Rt△ABD 绕着点A顺时针旋转角α(0°<∠α<∠BAC)得到Rt△AB′D′(如图3),当凸四边形AD′BC 为等邻角四边形时,求出它的面积.23.如图,二次函数y=ax2+x+c的图象交x轴于A,B(4,0)两点,交y轴于点C(0,2).(1)求二次函数的解析式;(2)点P为第一象限抛物线上一个动点,PM⊥x轴于点M.交直线BC于点Q,过点C 作CN⊥PM于点N.连接PC;①若△PCQ为以CQ为腰的等腰三角形,求点P的横坐标;②点G为点N关于PC的对称点,当点G落在坐标轴上时,直接写出点P的坐标.参考答案与试题解析一、选择题(共10小题)1.【分析】根据只有符号不同的两个数互为相反数,可得答案.【解答】解:﹣的相反数是,故选:B.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.【解答】解:将数据1710000用科学记数法表示为:1.71×106.故选:C.3.【分析】由三视图可知:该几何体为上下两部分组成,上面是一个圆柱,下面是一个长方体.【解答】解:由三视图可知:该几何体为上下两部分组成,上面是一个圆柱,下面是一个长方体且圆柱的高度和长方体的高度相当.故选:A.4.【分析】根据找中位数要把数据按从小到大的顺序排列,位于最中间的一个数(或两个数的平均数)为中位数;众数是一组数据中出现次数最多的数据,注意众数可以不止一个;极差就是这组数中最大值与最小值的差以及平均数的计算公式,对每一项进行分析即可.【解答】解:把数据按从小到大的顺序排列后150,164,168,168,172,176,183,185,所以这组数据的中位数是(168+172)÷2=170,168出现的次数最多,所以众数是168,极差为:185﹣150=35;平均数为:(150+164+168+168+172+176+183+185)÷7=170.8,故选:D.5.【分析】按照积的乘方运算、完全平方公式、幂的乘方、平方差公式分别计算,再选择.【解答】解:(﹣2a)2=4a2,故选项A不合题意;(a+b)2=a2+2ab+b2,故选项B不合题意;(a5)2=a10,故选项C不合题意;(﹣a+2)(﹣a﹣2)=a2﹣4,故选项D符合题意.故选:D.6.【分析】利用一次函数的性质得到k>0,b≤0,再判断△=k2﹣4b>0,从而得到方程根的情况.【解答】解:∵一次函数y=kx+b的图象不经过第二象限,∴k>0,b≤0,∴△=k2﹣4b>0,∴方程有两个不相等的实数根.故选:A.7.【分析】分别求出每一个不等式的解集,即可确定不等式组的解集,继而可得知不等式组的非负整数解.【解答】解:,解不等式①得:x>﹣2.5,解不等式②得:x≤4,∴不等式组的解集为:﹣2.5<x≤4,∴不等式组的所有非负整数解是:0,1,2,3,4,∴不等式组的所有非负整数解的和是0+1+2+3+4=10,故选:A.8.【分析】根据正方形表面展开图的结构即可求出判断出构成这个正方体的表面展开图的概率.【解答】解:设没有涂上阴影的分别为:A,B,C,D,E,F,G,如图所示,从其余的小正方形中任取一个涂上阴影共有7种情况,而能够构成正方体的表面展开图的有以下情况,D,E,F,G,∴能构成这个正方体的表面展开图的概率是,故选:A.9.【分析】先由平行线的性质可得∠DAB=∠ABP=15°,根据三角形内角和定理得到∠CAB=60°,∠CAD=∠CAB﹣∠DAB=45°,那么△ACD是等腰直角三角形,从而求出AD=AC=8.【解答】解:由题意可得,MN∥PQ,∴∠DAB=∠ABP=15°,∵∠CAB=180°﹣∠C﹣∠ABC=180°﹣90°﹣30°=60°,∴∠CAD=∠CAB﹣∠DAB=60°﹣15°=45°,∵∠ACD=90°,∴∠ADC=45°,∴△ACD是等腰直角三角形,∴AD=AC=8.故选:C.10.【分析】根据正比例函数的性质得到∠D1OA1=45°,分别求出正方形A1B1C1D1的面积、正方形A2B2C2D2的面积,总结规律解答.【解答】解:∵直线l为正比例函数y=x的图象,∴∠D1OA1=45°,∴D1A1=OA1=1,∴正方形A1B1C1D1的面积=1=()1﹣1,由勾股定理得,OD1=,D1A2=,∴A2B2=A2O=,∴正方形A2B2C2D2的面积==()2﹣1,同理,A3D3=OA3=,∴正方形A3B3C3D3的面积==()3﹣1,…由规律可知,正方形A n B n∁n D n的面积=()n﹣1,故选:B.二、填空题(共5小题)11.【分析】直接利用特殊角的三角函数值、零指数幂的性质分别化简得出答案.【解答】解:原式=2×﹣1=﹣1.故答案为:﹣1.12.【分析】可设有x人,根据有一群人分银子,如果每人分七两,则剩余四两;如果每人分九两,则还差八两,根据所分的银子的总两数相等可列出方程,求解即可.【解答】解:设有x人,依题意有7x+4=9x﹣8,解得x=6,7x+4=42+4=46.答:所分的银子共有46两.故答案为:46.13.【分析】根据题意可以用树状图表示出所有的可能结果,再由树状图可以得到小悦拿到的两个粽子都是肉馅的概率.【解答】解:肉粽记为A、红枣粽子记为B、豆沙粽子记为C,由题意可得,由树状图可知共有12种可能的结果,其中小悦拿到的两个粽子都是肉馅的情况数为2,∴小悦拿到的两个粽子都是肉馅的概率==,故答案为:.14.【分析】由于BC切⊙A于D,那么连接AD,可得出AD⊥BC,即△ABC的高AD=2;已知了底边BC的长,可求出△ABC的面积.根据圆周角定理,易求得∠EAF=2∠P=80°,已知了圆的半径,可求出扇形AEF的面积.图中阴影部分的面积=△ABC的面积﹣扇形AEF的面积.由此可求阴影部分的面积.【解答】解:连接AD,则AD⊥BC;△ABC中,BC=4,AD=2;∴S△ABC=BC•AD=4.∵∠EAF=2∠EPF=80°,AE=AF=2;∴S扇形EAF==;∴S阴影=S△ABC﹣S扇形EAF=4﹣.15.【分析】分为点E在AB上和点E在AB的延长线上两种情况画出图形,然后再证明△PEB∽△AEC,最后依据相似三角形的性质进行证明即可.【解答】解:∵△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°,∴AB=AC,AD=AE,∠DAB=∠CAE,∴△ADB≌△AEC(SAS),①当点E在AB上时,BE=AB﹣AE=1,∵∠EAC=90°,∴CE==,∵△ADB≌△AEC,∴∠DBA=∠ECA,∵∠PEB=∠AEC,∴△PEB∽△AEC,∴,∴=,∴PB=;②当点E在BA延长线上时,BE=3,∵∠EAC=90°,∴CE==,∵△ADB≌△AEC,∴∠DBA=∠ECA,∵∠BEP=∠CEA,∴△PEB∽△AEC,∴=,∴=,∴PB=,综上所述,PB的长为或.故答案为:或.三、解答题(共8小题)16.【分析】先通分,再利用因式分解,把可以分解的分解,然后统一化成乘法运算,约分化简,再将所给等式化简,得出m和n的值,最后代回化简后的分式即可.【解答】解:(﹣)÷(﹣)•(++2)=÷•=••=﹣.∵+(n﹣3)2=0.∴m+1=0,n﹣3=0,∴m=﹣1,n=3.∴﹣=﹣=.∴原式的值为.17.【分析】(1)直接利用圆周角定理得出∠CDE的度数;(2)直接利用直角三角形的性质结合等腰三角形的性质得出∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,进而得出答案;(3)利用相似三角形的性质结合勾股定理表示出AD,DC的长,再利用圆周角定理得出tan∠ABD的值.【解答】(1)解:∵对角线AC为⊙O的直径,∴∠ADC=90°,∴∠EDC=90°;(2)证明:连接DO,∵∠EDC=90°,F是EC的中点,∴DF=FC,∴∠FDC=∠FCD,∵OD=OC,∴∠OCD=∠ODC,∵∠OCF=90°,∴∠ODF=∠ODC+∠FDC=∠OCD+∠DCF=90°,∴DF是⊙O的切线;(3)解:方法一:设DE=1,则AC=2,由AC2=AD×AE∴20=AD(AD+1)∴AD=4或﹣5(舍去)∵DC2=AC2﹣AD2∴DC=2,∴tan∠ABD=tan∠ACD==2;方法二:如图所示:可得∠ABD=∠ACD,∵∠E+∠DCE=90°,∠DCA+∠DCE=90°,∴∠DCA=∠E,又∵∠ADC=∠CDE=90°,∴△CDE∽△ADC,∴=,∴DC2=AD•DE∵AC=2DE,∴设DE=x,则AC=2x,则AC2﹣AD2=AD•DE,即(2x)2﹣AD2=AD•x,整理得:AD2+AD•x﹣20x2=0,解得:AD=4x或﹣5x(负数舍去),则DC==2x,故tan∠ABD=tan∠ACD===2.18.【分析】(1)令﹣2x+4=,则2x2﹣4x+k=0,依据直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,即可得到k的值,进而得出点C的坐标;(2)依据直线l与直线y=﹣2x+4关于x轴对称,即可得到直线l为y=2x﹣4,再根据=2x﹣4,即可得到E(﹣1,﹣6),D(3,2),可得CD=2,进而得出△CDE的面积=×2×(6+2)=8.【解答】解:(1)令﹣2x+4=,则2x2﹣4x+k=0,∵直线y=﹣2x+4与反比例函数y=的图象有唯一的公共点C,∴△=16﹣8k=0,解得k=2,∴2x2﹣4x+2=0,解得x=1,∴y=2,即C(1,2);(2)∵直线l与直线y=﹣2x+4关于x轴对称,∴A(2,0),B'(0,﹣4),∴直线l为y=2x﹣4,令=2x﹣4,则x2﹣2x﹣3=0,解得x1=3,x2=﹣1,∴E(﹣1,﹣6),D(3,2),又∵C(1,2),∴CD=3﹣1=2,∴△CDE的面积=×2×(6+2)=8.19.【分析】(1)捐款为20元的圆心角占360°的20%,D组占10%,可求出D组人数,补全统计图;(2)根据中位数、众数的意义进行计算即可;(3)根据平均数的意义和计算方法进行判断和修改即可.【解答】解:(1)360°×20%=72°,20×10%=2(人),故答案为:72°,补全条形统计图如图所示:(2)这20名学生捐款金额出现次数最多的是10元,因此众数是10元,将这20名学生捐款从小到大排列后,处在第10,11位的两个数都是10元,因此中位数是10元;故答案为:10元,10元;(3)①错在第二步,②==16(元),16×2000=32000(元),答:正确的平均数是16元,这2000名学生共捐款32000元.20.【分析】过点B作BF⊥AC于F,BG⊥CD于G,根据三角函数和直角三角形的性质解答即可.【解答】解:过点B作BF⊥AC于F,BG⊥CD于G,在Rt△BAF中,∠BAF=65°,BF=AB•sin∠BAF=0.8×0.9=0.72,AF=AB•cos∠BAF=0.8×0.4=0.32,∴FC=AF+AC=4.32,∵四边形FCGB是矩形,∴BG=FC=4.32,CG=BF=0.72,∵∠BDG=45°,∴∠BDG=∠GBD,∴GD=GB=4.32,∴CD=CG+GD=5.04,在Rt△ACE中,∠AEC=50°,CE=,∴DE=CD﹣CE=5.04﹣3.33=1.71≈1.7,答:小水池的宽DE为1.7 m.21.【分析】(1)根据题意列出方程组即可;(2)利用总费用不超过12960元求出方案数量,再利用一次函数增减性求出最低费用.【解答】解:(1)设每台A型,B型挖掘机一小时分别挖土x m3和y m3,根据题意得解得:∴每台A型挖掘机1 h挖土30 m3,每台B型挖掘机1 h挖土15 m3(2)设A型挖掘机有m台,总费用为W元,则B型挖掘机有(12﹣m)台.根据题意得W=4×300m+4×180(12﹣m)=480m+8640∵∴解得∵m≠12﹣m,解得m≠6∴7≤m≤9∴共有三种调配方案,方案一:当m=7时,12﹣m=5,即A型挖掘机7台,B型挖掘机5台;方案二:当m=8时,12﹣m=4,即A型挖掘机8台,B型挖掘机4台;方案三:当m=9时,12﹣m=3,即A型挖掘机9台,B型挖掘机3台.…∵480>0,由一次函数的性质可知,W随m的减小而减小,∴当m=7时,W小=480×7+8640=12000此时A型挖掘机7台,B型挖掘机5台的施工费用最低,最低费用为12000元.22.【分析】(1)矩形或正方形邻角相等,满足“等邻角四边形”条件;(2)AC=BD,理由为:连接PD,PC,如图1所示,根据PE,PF分别为AD,BC的垂直平分线,得到两对角相等,利用等角对等角得到两对角相等,进而确定出∠APC=∠DPB,利用SAS得到三角形ACB与三角形DPB全等,利用全等三角形对应边相等即可得证;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,由S四边形ACBD′=S△ACE﹣S△BED′,求出四边形ACBD′面积;(ii)当∠D′BC=∠ACB =90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,由S四边形ACBD′=S△AED′+S矩形ECBD′,求出四边形ACBD′面积即可.【解答】解:(1)矩形或正方形;(2)AC=BD,理由为:连接PD,PC,如图1所示:∵PE是AD的垂直平分线,PF是BC的垂直平分线,∴P A=PD,PC=PB,∴∠P AD=∠PDA,∠PBC=∠PCB,∴∠DPB=2∠P AD,∠APC=2∠PBC,即∠P AD=∠PBC,∴∠APC=∠DPB,∴△APC≌△DPB(SAS),∴AC=BD;(3)分两种情况考虑:(i)当∠AD′B=∠D′BC时,延长AD′,CB交于点E,如图3(i)所示,∴∠ED′B=∠EBD′,∴EB=ED′,设EB=ED′=x,由勾股定理得:42+(3+x)2=(4+x)2,解得:x=4.5,过点D′作D′F⊥CE于F,∴D′F∥AC,∴△ED′F∽△EAC,∴=,即=,解得:D′F=,∴S△ACE=AC×EC=×4×(3+4.5)=15;S△BED′=BE×D′F=×4.5×=,则S四边形ACBD′=S△ACE﹣S△BED′=15﹣=10;(ii)当∠D′BC=∠ACB=90°时,过点D′作D′E⊥AC于点E,如图3(ii)所示,∴四边形ECBD′是矩形,∴ED′=BC=3,在Rt△AED′中,根据勾股定理得:AE==,∴S△AED′=AE×ED′=××3=,S矩形ECBD′=CE×CB=(4﹣)×3=12﹣3,则S四边形ACBD′=S△AED′+S矩形ECBD′=+12﹣3=12﹣.23.【分析】(1)先由直线y=﹣x+2求出B,C的坐标,再将其代入抛物线y=ax2+x+c 中,即可求出抛物线解析式;(2)①将等腰三角形分两种情况进行讨论,即可分别求出m的值;②当点N'落在坐标轴上时,存在两种情形,一种是点N'落在y轴上,一种是点N′落在x轴上,分情况即可求出点P的坐标.【解答】解:(1)∵直线y=﹣x+2经过B,C,∴B(4,0),C(0,2),∵抛物线y=ax2+x+c交x轴于点A,交y轴于点C,∴,解得,∴抛物线的解析式为y=﹣x2+x+2;(2)∵点P在抛物线在第一象限内的图象上,点P的横坐标为m,∴0<m<4,P(m,﹣m2+m+2),①∵PM⊥x轴,交直线y=﹣x+2于点Q,∴Q(m,﹣m+2),∴PQ=(﹣m2+m+2)﹣(﹣m+2)=﹣m2+2m,∵PD∥CO,∴,∴CQ==m,当PQ=CQ时,﹣m2+2m=m,解得m1=4﹣,m2=0(舍去);当PC=CQ时,PM+QM=2CO,即(﹣m2+m+2)+(﹣m+2)=2×2,∴﹣m2+m=0,解得m1=2,m2=0(舍去);综上,当△PCQ是等腰三角形时,m的值为m=4﹣,2;②存在,理由如下:当点N'落在坐标轴上时,存在两种情形:如图1,当点N'落在y轴上时,点P(m,﹣m2+m+2)在直线y=x+2上,∴﹣m2+m+2=m+2,解得m1=1,m2=0(舍去),∴P(1,3);如图2,当点N'落在x轴上时,△CON'∽△N'DP,∴,∴,∵PN=2﹣(﹣m2+m+2)=m(m﹣3),∴N'M==m﹣3,∴ON'=OM﹣MN=m﹣(m﹣3)=3,在△CON'中,CN'==,∴m=,则P(,),综上所述,当点N′落在坐标轴上时,点P的坐标为(1,3)或(,).。
九年级郑州一模试卷数学【含答案】
九年级郑州一模试卷数学【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个正方形的边长为a,则它的对角线长为()。
A. a/2B. a√2C. 2aD. a√32. 下列函数中,哪个函数在其定义域内是增函数?()A. y = -x^2B. y = x^3C. y = -xD. y = 1/x3. 在直角坐标系中,点P(2, -3)关于x轴的对称点坐标是()。
A. (2, 3)B. (2, -3)C. (-2, -3)D. (-2, 3)4. 若一个等差数列的首项为3,公差为2,则第10项是()。
A. 21B. 19C. 17D. 155. 下列哪个数是素数?()A. 21B. 27C. 29D. 35二、判断题(每题1分,共5分)1. 任何两个奇数之和都是偶数。
()2. 方程x^2 5x + 6 = 0的解是x = 2和x = 3。
()3. 在直角三角形中,最长边的平方等于另外两边平方和。
()4. 函数y = 2x + 3的图像是一条水平线。
()5. 一个等边三角形的每个角都是60度。
()三、填空题(每题1分,共5分)1. 若等差数列的前5项和为35,公差为3,则首项为______。
2. 函数y = -2x + 5与y轴的交点坐标是______。
3. 一个圆的半径为5cm,则它的直径为______cm。
4. 若sinθ = 1/2,且θ是锐角,则θ的度数为______度。
5. 一个等腰三角形的底边长为8cm,腰长为5cm,则其周长为______cm。
四、简答题(每题2分,共10分)1. 解释什么是等差数列?2. 如何计算一个三角形的面积?3. 什么是函数的图像?4. 解释什么是平行线?5. 什么是直角坐标系?五、应用题(每题2分,共10分)1. 一个长方形的长是宽的两倍,若其周长是30cm,求长方形的长和宽。
2. 解方程2x 5 = 3(x + 1)。
3. 若一个正方形的对角线长为10cm,求其面积。
2020-2021郑州市初三数学下期末一模试题附答案
2020-2021郑州市初三数学下期末一模试题附答案一、选择题1.“厉行勤俭节约,反对铺张浪费”势在必行,最新统计数据显示,中国每年浪费食物总量折合粮食大约是230000000人一年的口粮,将230000000用科学记数法表示为( ) A.2.3×109 B.0.23×109 C.2.3×108 D.23×1072.如图,在热气球C处测得地面A、B两点的俯角分别为30°、45°,热气球C的高度CD 为100米,点A、D、B在同一直线上,则AB两点的距离是()A.200米B.2003米C.2203米D.100(31)+米3.已知二次函数y=ax2+bx+c,且a>b>c,a+b+c=0,有以下四个命题,则一定正确命题的序号是()①x=1是二次方程ax2+bx+c=0的一个实数根;②二次函数y=ax2+bx+c的开口向下;③二次函数y=ax2+bx+c的对称轴在y轴的左侧;④不等式4a+2b+c>0一定成立.A.①②B.①③C.①④D.③④4.九年级某同学6次数学小测验的成绩分别为:90分,95分,96分,96分,95分,89分,则该同学这6次成绩的中位数是()A.94B.95分C.95.5分D.96分5.为了绿化校园,30名学生共种78棵树苗,其中男生每人种3棵,女生每人种2棵,设男生有x人,女生有y人,根据题意,所列方程组正确的是()A.783230x yx y+=⎧⎨+=⎩B.782330x yx y+=⎧⎨+=⎩C.302378x yx y+=⎧⎨+=⎩D.303278x yx y+=⎧⎨+=⎩6.若关于x的方程333x m mx x++--=3的解为正数,则m的取值范围是()A.m<92B.m<92且m≠32C.m>﹣94D.m>﹣94且m≠﹣347.如图是一个几何体的三视图(图中尺寸单位:cm),根据图中所示数据求得这个几何体的侧面积是()A .212cmB .()212πcm +C .26πcmD .28πcm8.“绿水青山就是金山银山”.某工程队承接了60万平方米的荒山绿化任务,为了迎接雨季的到来,实际工作时每天的工作效率比原计划提高了25%,结果提前30天完成了这一任务.设实际工作时每天绿化的面积为x 万平方米,则下面所列方程中正确的是( ) A .606030(125%)x x-=+ B .606030(125%)x x-=+C .60(125%)6030x x⨯+-=D .6060(125%)30x x⨯+-= 9.已知关于x 的方程2x+a-9=0的解是x=2,则a 的值为 A .2 B .3 C .4 D .5 10.an30°的值为( )A .B .C .D .11.若一元二次方程x 2﹣2kx +k 2=0的一根为x =﹣1,则k 的值为( ) A .﹣1B .0C .1或﹣1D .2或012.为了帮助市内一名患“白血病”的中学生,东营市某学校数学社团15名同学积极捐款,捐款情况如下表所示,下列说法正确的是( ) 捐款数额 10 20 30 50 100 人数24531A .众数是100B .中位数是30C .极差是20D .平均数是30二、填空题13.如图,在菱形ABCD 中,AB=5,AC=8,则菱形的面积是 .14.半径为2的圆中,60°的圆心角所对的弧的弧长为_____.15.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____. 16.如图,是将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°,180°,270°后形成的图形.若∠BAD=60°,AB=2,则图中阴影部分的面积为 .17.已知扇形AOB的半径为4cm,圆心角∠AOB的度数为90°,若将此扇形围成一个圆锥的侧面,则围成的圆锥的底面半径为________cm18.计算:82-=_______________.19.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD =∠MAP+∠PAB,则AP=_____.20.若ab=2,则222a ba ab--的值为________.三、解答题21.为响应珠海环保城市建设,我市某污水处理公司不断改进污水处理设备,新设备每小时处理污水量是原系统的1.5倍,原来处理1200m3污水所用的时间比现在多用10小时.(1)原来每小时处理污水量是多少m2?(2)若用新设备处理污水960m3,需要多长时间?22.2x=600答:甲公司有600人,乙公司有500人.点睛:本题考查了分式方程的应用,关键是分析题意找出等量关系,通过设未知数并根据等量关系列出方程.23.如图,点B、C、D都在⊙O上,过点C作AC∥BD交OB延长线于点A,连接CD,且∠CDB=∠OBD=30°,DB=63cm.(1)求证:AC是⊙O的切线;(2)求由弦CD、BD与弧BC所围成的阴影部分的面积.(结果保留π)24.已知关于x的方程220x ax a++-=.(1)当该方程的一个根为1时,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.25.4月18日,一年一度的“风筝节”活动在市政广场举行,如图,广场上有一风筝A,小江抓着风筝线的一端站在D处,他从牵引端E测得风筝A的仰角为67°,同一时刻小芸在附近一座距地面30米高(BC=30米)的居民楼顶B处测得风筝A的仰角是45°,已知小江与居民楼的距离CD=40米,牵引端距地面高度DE=1.5米,根据以上条件计算风筝距地面的高度(结果精确到0.1米,参考数据:sin67°≈1213,cos67°≈513,tan67°≈125,2≈1.414).26.距离中考体育考试时间越来越近,某校想了解初三年级1500名学生跳绳情况,从中随机抽查了20名男生和20名女生的跳绳成绩,收集到了以下数据:男生:192、166,189,186,184,182,178,177,174,170,188,168,205,165,158,150,188,172,180,188女生:186,198,162,192,188,186,185,184,180,180,186,193,178,175,172,166,155,183,187,184.根据统计数据制作了如下统计表:个数x150≤x<170170≤x<185185≤x<190x≥190男生5852女生38a3两组数据的极差、平均数、中位数、众数如表所示:极差平均数中位数众数男生55178b c女生43181184186(1)请将上面两个表格补充完整:a=____,b=_____,c=_____;(2)请根据抽样调查的数据估计该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有多少人?(3)体育组的江老师看了表格数据后认为初三年级的女生跳绳成绩比男生好,请你结合统计数据,写出支持江老师观点的理由.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C【解析】230000000= 2.3×108 ,故选C.2.D解析:D 【解析】 【分析】在热气球C 处测得地面B 点的俯角分别为45°,BD=CD=100米,再在Rt △ACD 中求出AD 的长,据此即可求出AB 的长. 【详解】∵在热气球C 处测得地面B 点的俯角分别为45°, ∴BD =CD =100米,∵在热气球C 处测得地面A 点的俯角分别为30°, ∴AC =2×100=200米,∴AD∴AB =AD +BD =100( 故选D . 【点睛】本题考查了解直角三角形的应用--仰角、俯角问题,要求学生能借助仰角构造直角三角形并解直角三角形.3.C解析:C 【解析】试题分析:当x=1时,a+b+c=0,因此可知二次方程ax 2+bx +c=0的一个实数根,故①正确;根据a >b >c ,且a+b+c =0,可知a >0,函数的开口向上,故②不正确; 根据二次函数的对称轴为x =-2ba,可知无法判断对称轴的位置,故③不正确; 根据其图像开口向上,且当x =2时,4a+2b+c >a+b+c=0,故不等式4a+2b+c>0一定成立,故④正确. 故选:C.4.B解析:B 【解析】根据中位数的定义直接求解即可.【详解】把这些数从小到大排列为:89分,90分,95分,95分,96分,96分,则该同学这6次成绩的中位数是:=95分;故选:B.【点睛】此题考查了确定一组数据的中位数的能力.一些学生往往对这个概念掌握不清楚,计算方法不明确而误选其它选项,注意找中位数的时候一定要先排好顺序,然后再根据奇数和偶数个来确定中位数,如果数据有奇数个,则正中间的数字即为所求,如果是偶数个则找中间两位数的平均数.5.A解析:A【解析】【分析】【详解】该班男生有x人,女生有y人.根据题意得:30 3278 x yx y+=⎧⎨+=⎩,故选D.考点:由实际问题抽象出二元一次方程组.6.B解析:B【解析】【分析】【详解】解:去分母得:x+m﹣3m=3x﹣9,整理得:2x=﹣2m+9,解得:x=292m-+,已知关于x的方程333x m mx x++--=3的解为正数,所以﹣2m+9>0,解得m<92,当x=3时,x=292m-+=3,解得:m=32,所以m的取值范围是:m<92且m≠32.故答案选B.7.C【解析】 【分析】根据三视图确定该几何体是圆柱体,再计算圆柱体的侧面积. 【详解】先由三视图确定该几何体是圆柱体,底面半径是2÷2=1cm ,高是3cm . 所以该几何体的侧面积为2π×1×3=6π(cm 2). 故选C . 【点睛】此题主要考查了由三视图确定几何体和求圆柱体的侧面积,关键是根据三视图确定该几何体是圆柱体.8.C解析:C 【解析】分析:设实际工作时每天绿化的面积为x 万平方米,根据工作时间=工作总量÷工作效率结合提前 30 天完成任务,即可得出关于x 的分式方程.详解:设实际工作时每天绿化的面积为x 万平方米,则原来每天绿化的面积为125%x+万平方米,依题意得:606030125%x x-=+,即()60125%6030x x⨯+-=. 故选C .点睛:考查了由实际问题抽象出分式方程.找到关键描述语,找到合适的等量关系是解决问题的关键.9.D解析:D 【解析】∵方程2x +a ﹣9=0的解是x =2,∴2×2+a ﹣9=0, 解得a =5.故选D .10.D解析:D 【解析】 【分析】直接利用特殊角的三角函数值求解即可. 【详解】 tan30°=,故选:D .【点睛】本题考查特殊角的三角函数的值的求法,熟记特殊的三角函数值是解题的关键.11.A解析:A【解析】【分析】把x=﹣1代入方程计算即可求出k的值.【详解】解:把x=﹣1代入方程得:1+2k+k2=0,解得:k=﹣1,故选:A.【点睛】此题考查了一元二次方程的解,方程的解即为能使方程左右两边相等的未知数的值.12.B解析:B【解析】分析:根据中位数、众数和极差的概念及平均数的计算公式,分别求出这组数据的中位数、平均数、众数和极差,得到正确结论.详解:该组数据中出现次数最多的数是30,故众数是30不是100,所以选项A不正确;该组共有15个数据,其中第8个数据是30,故中位数是30,所以选项B正确;该组数据的极差是100-10=90,故极差是90不是20,所以选项C不正确;该组数据的平均数是102204305503100100245313⨯+⨯+⨯+⨯+=++++不是30,所以选项D不正确.故选B.点睛:本题考查了中位数、平均数、众数和极差的概念.题目难度不大,注意勿混淆概念.二、填空题13.【解析】【分析】连接BD交AC于点O由勾股定理可得BO=3根据菱形的性质求出BD再计算面积【详解】连接BD交AC于点O根据菱形的性质可得AC⊥BDAO=CO=4由勾股定理可得BO=3所以BD=6即可解析:【解析】【分析】连接BD,交AC于点O,由勾股定理可得BO=3,根据菱形的性质求出BD,再计算面积.【详解】连接BD,交AC于点O,根据菱形的性质可得AC⊥BD,AO=CO=4,由勾股定理可得BO=3,所以BD=6,即可得菱形的面积是12×6×8=24.考点:菱形的性质;勾股定理.14.【解析】根据弧长公式可得:=故答案为 解析:2π3【解析】根据弧长公式可得:602180π⨯⨯=23π, 故答案为23π. 15.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<. 【解析】 【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<, ∴1k >,3k <, ∴13k <<, 故答案为:13k <<. 【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.16.12﹣4【解析】【分析】【详解】试题分析:如图所示:连接ACBD 交于点E 连接DFFMMNDN∵将菱形ABCD 以点O 为中心按顺时针方向分别旋转90°180°270°后形成的图形∠BAD=60°AB=2解析:12﹣3【解析】【分析】【详解】试题分析:如图所示:连接AC,BD交于点E,连接DF,FM,MN,DN,∵将菱形ABCD以点O为中心按顺时针方向分别旋转90°,180°,270°后形成的图形,∠BAD=60°,AB=2,∴AC⊥BD,四边形DNMF是正方形,∠AOC=90°,BD=2,AE=EC=3,∴∠AOE=45°,ED=1,∴AE=EO=3,DO=3﹣1,∴S正方形DNMF=2(3﹣1)×2(3﹣1)×12=8﹣43,S△ADF=12×AD×AFsin30°=1,∴则图中阴影部分的面积为:4S△ADF+S正方形DNMF=4+8﹣43=12﹣43.故答案为12﹣43.考点:1、旋转的性质;2、菱形的性质.17.1【解析】试题分析:根据圆锥的侧面展开图为一扇形这个扇形的弧长等于圆锥底面的周长和弧长公式可设圆锥的底面圆的半径为rcm根据题意得2πr=解得r=1故答案为:1点睛:本题考查了圆锥的计算:圆锥的侧面解析:1【解析】试题分析:根据圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长和弧长公式,可设圆锥的底面圆的半径为rcm,根据题意得2πr=904180π⨯,解得r=1.故答案为:1.点睛:本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.18.【解析】【分析】先把化简为2再合并同类二次根式即可得解【详解】2-=故答案为【点睛】本题考查了二次根式的运算正确对二次根式进行化简是关键2【解析】【分析】82.【详解】=..【点睛】本题考查了二次根式的运算,正确对二次根式进行化简是关键.19.6【解析】分析:根据BD=CDAB=CD可得BD=BA再根据AM⊥BDDN⊥AB即可得到DN=AM=3依据∠ABD=∠MAP+∠PAB∠ABD=∠P+∠BAP即可得到△APM是等腰直角三角形进而得到解析:6【解析】分析:根据BD=CD,AB=CD,可得BD=BA,再根据AM⊥BD,DN⊥AB,即可得到,依据∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,即可得到△APM是等腰直角三角形,进而得到AM=6.详解:∵BD=CD,AB=CD,∴BD=BA,又∵AM⊥BD,DN⊥AB,∴,又∵∠ABD=∠MAP+∠PAB,∠ABD=∠P+∠BAP,∴∠P=∠PAM,∴△APM是等腰直角三角形,∴AM=6,故答案为6.点睛:本题主要考查了平行四边形的性质以及等腰直角三角形的性质的运用,解决问题给的关键是判定△APM是等腰直角三角形.20.【解析】分析:先根据题意得出a=2b再由分式的基本性质把原式进行化简把a=2b代入进行计算即可详解:∵=2∴a=2b原式==当a=2b时原式==故答案为点睛:本题考查的是分式的化简求值熟知分式的基本解析:3 2【解析】分析:先根据题意得出a=2b,再由分式的基本性质把原式进行化简,把a=2b代入进行计算即可.详解:∵ab=2,∴a=2b,原式=()()() a b a b a a b+--=a b a +当a =2b 时,原式=22b b b +=32. 故答案为32. 点睛:本题考查的是分式的化简求值,熟知分式的基本性质是解答此题的关键.三、解答题21.(1)原来每小时处理污水量是40m 2;(2)需要16小时.【解析】试题分析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2,根据原来处理1200m 3污水所用的时间比现在多用10小时这个等量关系,列出方程求解即可. ()2根据()960 1.54016÷⨯=即可求出.试题解析:()1设原来每小时处理污水量是x m 2,新设备每小时处理污水量是1.5x m 2, 根据题意得:1200120010,1.5x x-= 去分母得:1800120015x ,-= 解得:40x =,经检验40x = 是分式方程的解,且符合题意,则原来每小时处理污水量是40m 2;(2)根据题意得:()960 1.54016÷⨯=(小时),则需要16小时.22.无23.(1)证明见解析;(2)6πcm 2.【解析】【分析】连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)求出∠COB 的度数,求出∠A 的度数,根据三角形的内角和定理求出∠OCA 的度数,根据切线的判定推出即可; (2)证明△CDM ≌△OBM ,从而得到S 阴影=S 扇形BOC .【详解】如图,连接BC ,OD ,OC ,设OC 与BD 交于点M .(1)根据圆周角定理得:∠COB=2∠CDB=2×30°=60°,∵AC ∥BD ,∴∠A=∠OBD=30°,∴∠OCA=180°﹣30°﹣60°=90°,即OC ⊥AC ,∵OC 为半径,∴AC 是⊙O 的切线;(2)由(1)知,AC为⊙O的切线,∴OC⊥AC.∵AC∥BD,∴OC⊥BD.由垂径定理可知,MD=MB=1 2BD=33.在Rt△OBM中,∠COB=60°,OB=33cos303MB︒==6.在△CDM与△OBM中3090CDM OBMMD MBCMD OMB︒︒⎧∠=∠=⎪=⎨⎪∠=∠=⎩,∴△CDM≌△OBM(ASA),∴S△CDM=S△OBM∴阴影部分的面积S阴影=S扇形BOC=2606360π⋅=6π(cm2).考点:1.切线的判定;2.扇形面积的计算.24.(1)12,32-;(2)证明见解析.【解析】试题分析:(1)根据一元二次方程根与系数的关系列方程组求解即可.(2)要证方程都有两个不相等的实数根,只要证明根的判别式大于0即可.试题解析:(1)设方程的另一根为x1,∵该方程的一个根为1,∴1111{211axax+=--⋅=.解得132{12xa=-=.∴a的值为12,该方程的另一根为32-.(2)∵()()222241248444240a a a a a a a∆=-⋅⋅-=-+=-++=-+>,∴不论a取何实数,该方程都有两个不相等的实数根.考点:1.一元二次方程根与系数的关系;2. 一元二次方程根根的判别式;3.配方法的应用. 25.风筝距地面的高度49.9m.【解析】【分析】作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,利用∠AEH的正切列方程求解即可.【详解】如图,作AM⊥CD于M,作BF⊥AM于F,EH⊥AM于H.∵∠ABF=45°,∠AFB=90°,∴AF=BF,设AF=BF=x,则CM=BF=x,DM=HE=40-x,AH=x+30-1.5=x+28.5,在Rt△AHE中,tan67°=AH HE,∴1228.5 540xx+=-,解得x≈19.9 m.∴AM=19.9+30=49.9 m.∴风筝距地面的高度49.9 m.【点睛】本题考查了解直角三角形的应用,解决此问题的关键在于正确理解题意得基础上建立数学模型,把实际问题转化为数学问题.26.(1)a=6,b=179,c=188;(2)600;(3)详见解析.【解析】【分析】(1)依据中位数以及众数的定义即可将上面两个表格补充完整;(2)依据样本中能得满分(185个及以上)的同学所占的比例,即可估计该校初三年级学生中考跳绳成绩能得满分的人数;(3)依据两组数据的极差和平均数的大小,即可得到结论.【详解】(1)满足185≤x<190的数据有:186,188,186,185,186,187.∴a=6,20名男生的跳绳成绩排序后最中间的两个数据为178和180,∴b=(178+180)=179,20名男生的跳绳成绩中出现次数最多的数据为188,∴c=188,故答案为:6;179;188;(2)∵20名男生和20名女生的跳绳成绩中,185个及以上的有16个,∴该校初三年级学生中考跳绳成绩能得满分(185个及以上)的同学大约能有1500×=600(人);(3)理由:初三年级的女生跳绳成绩的极差较小,而平均数较大.【点睛】本题考查了用样本估计总体,中位数,众数,正确的理解题意是解题的关键.一般来说,用样本去估计总体时,样本越具有代表性、容量越大,这时对总体的估计也就越精确.。
2020年河南省中考数学一模试卷 (含解析)
2020年河南省中考数学一模试卷一、选择题(本大题共10小题,共30.0分)1.−4的相反数是()A. −14B. 14C. −4D. 42. 4.如图所示的几何体的主视图、左视图、俯视图中有两个视图是相同的,则不同的视图是()A. B. C. D.3.下列调查中,适合采用全面调查(普查)方式的是()A. 了解中央电视台“走遍中国栏目的收视率B. 了解某班同学“跳绳”的月考成绩C. 了解全国快递包裹产生包装垃圾的数量D. 了解青海湖斑头雁种群数量4.如图,已知∠1=60°,如果CD//BE,那么∠B的度数为()A. 60°B. 100°C. 110D. 120°5.计算(6×103)×(8×105)的结果是()A. 48×109B. 48×1015C. 4.8×108D. 4.8×1096.已知点A(a,2)与点B(b,3)都在反比例函数y=−6x的图象上,则a与b的大小关系是()A. a<bB. a>bC. a=bD. 不能确定7.关于x的方程x2+2kx−1=0的根的情况描述正确的是()A. k为任何实数,方程都没有实数根B. k为任何实数,方程都有两个不相等的实数根C. k为任何实数,方程都有两个相等的实数根D. k取不同实数,方程的实数根的情况共有三种可能8. 近年来,“快递业”成为我国经济的一匹“黑马”,2017年我国快递业务量为400亿件,2019年快递量将达到600亿件,设快递量平均每年增长率为x ,则下列方程中正确的是( )A. 400(1+x)=600B. 400(1+2x)=600C. 400(1+x)2=600D. 600(1−x)2=4009. 如图,E 是正方形ABCD 的边BC 的延长线上一点,若CE =CA ,AE交CD 于F ,则∠FAC 的度数是( )A. 22.5°B. 30°C. 45°D. 67.5°10. 如图所示,△ABC 中,AB =AC ,∠B =30°,AB ⊥AD ,AD =4cm ,则BC 的长为( )A. 8cmB. 4cmC. 12cmD. 6cm二、填空题(本大题共5小题,共15.0分)11. 请写出一个小于4的无理数:______.(写出一个正确答案即可) 12. 解不等式组:{4x +6>1−x3(x −1)≤x +5,并把解集在数轴上表示出来.13. 学生甲与学生乙玩一种转盘游戏.如图是两个完全相同的转盘,每个转盘被分成面积相等的四个区域,分别用数字“1”、“2”、“3”、“4”表示.固定指针,同时转动两个转盘,任其自由停止,若两指针所指数字的积为奇数,则甲获胜;若两指针所指数字的积为偶数,则乙获胜;若指针指向扇形的分界线,则都重转一次.在该游戏中乙获胜的概率是______ .14. 边长为1的正方形ABCD 中,E 为边AD 的中点,连接线段CE 交BD 于点F ,点M 为线段CE 延长线上一点,且∠MAF 为直角,则DM 的长为______ .15. 如图,△ABC 中,AB =16,BC =10,AM 平分∠BAC ,∠BAM =15°,点D 、E 分别为AM 、AB 上的动点,则BD +DE 的最小值是______.三、解答题(本大题共8小题,共75.0分) 16. 先化简,再求值:(1−1x+2)÷x 2+2x+1x+2,其中x =√3−1.17. 随着2019年全国两会的隆重召开,中学生对时事新闻的关注空前高涨,某校为了解中学生对时事新闻的关注情况,组织全校九年级学生开展“时事新闻大比拼”比赛,随机抽取九年级的25名学生的成绩(满分为100分)整理统计如下:收集数据25名学生的成绩(满分为100分)统计如下(单位:分):90,74,88,65,98,75,81,44,85,70,55,80,95,88,72,87,60,56,76,66,78,72,82,63,100整理数据按如下分组整理样本数据并补全表格: 成绩x(分) 90≤x ≤100 75≤x <9060≤x <75x <60 人数_____108_____分析数据补充完成下面的统计分析表: 平均数 中位数 方差76______190.88得出结论(1)若全校九年级有1000名学生,请估计全校九年级有多少学生成绩达到90分及以上;(2)若八年级的平均数为76分,中位数为80分,方差为102.5,请你分别从平均数、中位数和方差三个方面做出评价,你认为哪个年级的成绩较好?18.如图,为了测量建筑物AD的高度,小亮从建筑物正前方10米处的点B出发,沿坡度i=1:√3的斜坡BC前进6米到达点C,在点C处放置测角仪,测得建筑物顶部D的仰角为40°,测角仪CE的高为1.3米,A、B、C、D、E在同一平面内,且建筑物和测角仪都与地面垂直求建筑物AD 的高度.(结果精确到0.1米参考数据:sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,√3≈1.73)19.如图,l1,l2分别表示一种白炽灯和一种节能灯的费用y(费用=灯的售价+电费,单位:元)与照明时间t(ℎ)的函数图象,假设两种灯泡的使用寿命都是2000ℎ,照明效果一样.(1)根据图象分别求出l1,l2的函数表达式;(2)当照明时间是多少小时时,两种灯的费用相等?(3)小亮房间计划照明2500ℎ,他买了一个白炽灯和一个节能灯,请你帮助他设计最省钱的用灯方法(直接给出答案,不必写出解答过程).20.已知,AB为⊙O的直径,弦CD⊥AB于点E,在CD的延长线上取一点P,PG与⊙O相切于点G,连接AG交CD于点F.(Ⅰ)如图①,若∠A=20°,求∠GFP和∠AGP的大小;(Ⅱ)如图②,若E为半径OA的中点,DG//AB,且OA=2√3,求PF的长.21.已知抛物线y=ax2经过点A(−2,−8).(1)求此抛物线的函数解析式;(2)判断点B(−1,−4)是否在此抛物线上.(3)求出此抛物线上纵坐标为−6的点的坐标.22.如图1,⊙O的直径AB=4cm,点C为线段AB上一动点,过点C作AB的垂线交⊙O于点D,E,连结AD,AE.设AC的长为x cm,△ADE的面积为y cm2.图1 图2小东根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行了探究.下面是小东的探究过程,请帮助小东完成下面的问题.(1)通过对图1的研究、分析与计算,得到了y与x的几组对应值,如下表:x/cm00.51 1.52 2.53 3.54y/cm200.7 1.7 2.9a 4.8 5.2 4.60请求出表中小东漏填的数a;(2)如图2,建立平面直角坐标系xOy,描出表中各对应值为坐标的点,画出该函数的大致图象;(3)结合画出的函数图象,当△ADE的面积为4cm2时,求出AC的长.23.正方形ABCD中,将边AB所在直线绕点A逆时针旋转一个角度α得到直线AM,过点C作CE⊥AM,垂足为E,连接BE.(1)当0°<α<45°时,设AM交BC于点F,①如图1,若α=35°,则∠BCE=____°;②如图2,用等式表示线段AE,BE,CE之间的数量关系,并证明;(2)当45°<α<90°时(如图3),请直接用等式表示线段AE,BE,CE之间的数量关系.【答案与解析】1.答案:D解析:解:−4的相反数是:4.故选:D.直接利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.此题主要考查了相反数的定义,正确把握定义是解题关键.2.答案:D解析:试题分析:几何体的左视图和主视图是相同的,则不同的视图是俯视图,俯视图是D选项所给的图形。
2020年河南省中考数学一模试卷(含解析)
2020年河南省中考数学一模试卷一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的)1.下列各数中,最大的数是( ) A.−12 B.14C.0D.−22.据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是( ) A.268×103 B.26.8×104 C.2.68×105 D.0.268×1063.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( )A.B.C.D.4.下列计算正确的是( ) A.a 3+a 3=a 6 B.(x −3)2=x 2−9 C.a 3⋅a 3=a 6 D.√2+√3=√55.下表是某校合唱团成员的年龄分布对于不同的x ,下列关于年龄的统计量不会发生改变的是( )C.平均数、方差D.中位数、方差6.若关于x的方程kx2+2x−1=0有两个不相等的实数根,则k的取值范围是()A.k>−1B.k<−1C.k≥−1且k≠0D.k>−1且k≠07.在菱形ABCD中,对角线AC与BD相交于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的是( )A.AB=ADB.OA=OBC.AC=BDD.DC⊥BC8.阿信、小怡两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且阿信从任意一节车厢上车的机会相等,小怡从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为何()A.12B.15C.110D.1259.如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20∘,则下列结论中错误的是()A.∠CAD=40∘B.∠ACD=70∘C.点D为△ABC的外心D.∠ACB=90∘10.在Rt△ABC中,D为斜边AB的中点,∠B=60∘,BC=2cm,动点E从点A 出发沿AB向点B运动,动点F从点D出发,沿折线D−C−B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,A.B.C.D.二、填空题(每小题3分,共15分) 11.若x =√2−1,则x 2+2x +1=________.12.已知反比例函数y =m−2x,当x >0时,y 随x 增大而减小,则m 的取值范围是________.13.不等式组{3x −5>15x −a ≤12 有2个整数解,则实数a 的取值范围是________.14.如图,在Rt △ABC 中,∠ACB =90∘,∠A =30∘,AC =√3,分别以点A ,B 为圆心,AC ,BC 的长为半径画弧,交AB 于点D ,E ,则图中阴影部分的面积是_______.15.如图,在菱形ABCD中,∠A=60∘,AB=3,点M为AB边上一点,AM=2,点N为AD边上的一动点,沿MN将△AMN翻折,点A落在点P处,当点P在菱形的对角线上时,AN的长度为________.三、解答题(本大题共8个小题,满分75分)16.先化简,再求值:x2+4x+4x+1÷(3x+1−x+1),其中x=sin30∘+2−1+√4.17.如图,△ABC内接于圆O,且AB=AC,延长BC到点D,使CD=CA,连接AD交圆O于点E.(1)求证:△ABE≅△CDE;(2)填空:①当∠ABC的度数为________时,四边形AOCE是菱形.②若AE=√3,AB=2√2,则DE的长为5√33.18.为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有________名留守学生,B类型留守学生所在扇形的圆心角的度数为________;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?19.如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37∘,在乙楼底部B点测得甲楼顶部D点的仰角为60∘,则甲、乙两楼的高度为多少?(结果精确到1米,sin37∘≈0.60,cos37∘≈0.80,tan37∘≈0.75,√3≈1.73)20.如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,(x<0)的图象经过AO的中点C,交AB于点垂足为点B,反比例函数y=kxD.若点D的坐标为(−4, n),且AD=3.(1)求反比例函数的表达式;(2)求经过C、D两点的直线的函数解析式;(3)设点E是线段CD上的动点(不与点C、D重合),过点E且平行于y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.21.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.22.【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120∘,连接AD,求∠ADB的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90∘,β=30∘时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90∘,β=30∘以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是________三角形;∠ADB的度数为________.【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为________.23.如图,抛物线y=ax2+bx+c与x轴交于点A(−1, 0),点B(3, 0),与y轴交于点C,且过点D(2, −3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.2020年河南省中考数学一模试卷一、选择题(每小题3分,共30分.下列各小题均有四个答案,其中只有一个是正确的)1.下列各数中,最大的数是( ) A.−12 B.14C.0D.−2【解答】−2<−12<0<14, 则最大的数是14,2.据统计,今年“五一”小长假期间,我市约有26.8万人次游览了植物园和动物园,则数据26.8万用科学记数法表示正确的是( ) A.268×103 B.26.8×104 C.2.68×105 D.0.268×106【解答】将26.8万用科学记数法表示为:2.68×105.3.如图是将正方体切去一个角后形成的几何体,则该几何体的左视图为( )A.B.C.D.【解答】从左面看所得到的图形是正方形,切去部分的棱能看到,用实线表示, 4.下列计算正确的是( ) A.a 3+a 3=a 6 B.(x −3)2=x 2−9 C.a 3⋅a 3=a 6 D.√2+√3=√5解:A、a3+a3=2a3,故此选项错误;B、(x−3)2=x2−6x+9,故此选项错误;C、a3⋅a3=a6,正确;D、√2+√3无法计算,故此选项错误.故选C.5.下表是某校合唱团成员的年龄分布对于不同的x,下列关于年龄的统计量不会发生改变的是()A.平均数、中位数B.众数、中位数C.平均数、方差D.中位数、方差【解答】由表可知,年龄为15岁与年龄为16岁的频数和为x+10−x=10,则总人数为:5+15+10=30,=14岁,故该组数据的众数为14岁,中位数为:14+142即对于不同的x,关于年龄的统计量不会发生改变的是众数和中位数,6.若关于x的方程kx2+2x−1=0有两个不相等的实数根,则k的取值范围是()A.k>−1B.k<−1C.k≥−1且k≠0D.k>−1且k≠0【解答】∵x的方程kx2+2x−1=0有两个不相等的实数根,∴k≠0且△=4−4k×(−1)>0,解得k>−1,∴k的取值范围为k>−1且k≠0.7.在菱形ABCD中,对角线AC与BD相交于点O,再添加一个条件,仍不能判定四边形ABCD是矩形的是( )A.AB=ADB.OA=OBC.AC=BDD.DC⊥BC【解答】解:A,AB=AD,则ABCD是菱形,不能判定是矩形,故本选项错误;的平行四边形是矩形可得ABCD是矩形,故本选项正确;C,AC=BD,根据对角线相等的平行四边形是矩形,故本选项正确;D,DC⊥BC,则∠BCD=90∘,根据有一个角是直角的平行四边形是矩形可得ABCD是矩形,故本选项正确.故选A.8.阿信、小怡两人打算搭乘同一班次电车上学,若此班次电车共有5节车厢,且阿信从任意一节车厢上车的机会相等,小怡从任意一节车厢上车的机会相等,则两人从同一节车厢上车的概率为何()A.12B.15C.110D.125【解答】二人上5节车厢的情况数是:5×5=25,两人在不同车厢的情况数是5×4=20,则两人从同一节车厢上车的概率是525=15;9.如图,在已知的△ABC中,按以下步骤作图:①分别以B、C为圆心,以大于12BC的长为半径作弧,两弧相交于点M、N;②作直线MN交AB于点D,连接CD,若CD=AD,∠B=20∘,则下列结论中错误的是()A.∠CAD=40∘B.∠ACD=70∘C.点D为△ABC的外心D.∠ACB=90∘【解答】∵由题意可知直线MN是线段BC的垂直平分线,∴BD=CD,∠B=∠BCD,∵∠B=20∘,∴∠B=∠BCD=20∘,∴∠CDA=20∘+20∘=40∘.∵CD=AD,=70∘,∴∠ACD=∠CAD=180−402∴A错误,B正确;∵CD=AD,BD=CD,∴CD=AD=BD,∴点D为△ABC的外心,故C正确;∵∠ACD=70∘,∠BCD=20∘,∴∠ACB=70∘+20∘=90∘,故D正确.10.在Rt△ABC中,D为斜边AB的中点,∠B=60∘,BC=2cm,动点E从点A 出发沿AB向点B运动,动点F从点D出发,沿折线D−C−B运动,两点的速度均为1cm/s,到达终点均停止运动,设AE的长为x,△AEF的面积为y,则y与x的图象大致为()A.B.C.D.【解答】在Rt△ABC中,D为斜边AB的中点,∠B=60∘,BC=2cm,∴AD=DC=DB=2,∠CDB=60∘∵EF 两点的速度均为1cm/s∴当0≤x ≤2时,y =12⋅DE ⋅DF ⋅sin∠CDB =√34x 2当2≤x ≤4时,y =12⋅AE ⋅BF ⋅sin∠B =−√34x 2+√3x由图象可知A 正确二、填空题(每小题3分,共15分) 若x =√2−1,则x 2+2x +1=________. 【解答】 原式=(x +1)2,当x =√2−1时,原式=(√2)2=2. 已知反比例函数y =m−2x,当x >0时,y 随x 增大而减小,则m 的取值范围是________. 【解答】 此题暂无解答不等式组{3x −5>15x −a ≤12 有2个整数解,则实数a 的取值范围是________.【解答】解不等式3x −5>1,得:x >2, 解不等式5x −a ≤12,得:x ≤a+125,∵不等式组有2个整数解, ∴其整数解为3和4, 则4≤a+125<5,解得:8≤a <13,如图,在Rt △ABC 中,∠ACB =90∘,∠A =30∘,AC =√3,分别以点A ,B 为圆心,AC ,BC 的长为半径画弧,交AB 于点D ,E ,则图中阴影部分的面积是________5π12−√32.【解答】∵在Rt△ABC,∠C=90∘,∠A=30∘,AC=√3,∴∠B=60∘,BC=tan30∘×AC=1,阴影部分的面积S=S扇形BCE +S扇形ACD−S△ACB=30π×(√3)2360+60π×12360−1 2×1×√3=5π12−√32,如图,在菱形ABCD中,∠A=60∘,AB=3,点M为AB边上一点,AM=2,点N为AD边上的一动点,沿MN将△AMN翻折,点A落在点P处,当点P在菱形的对角线上时,AN的长度为________.【解答】分两种情况:①当点P在菱形对角线AC上时,如图1所示::由折叠的性质得:AN=PN,AM=PM,∵四边形ABCD是菱形,∠BAD=60∘,∴∠PAM=∠PAN=30∘,∴∠AMN=∠ANM=90∘−30∘=60∘,∴AN=AM=2;②当点P在菱形对角线BD上时,如图2所示:设AN=x,由折叠的性质得:PM=AM=2,PN=AN=x,∠MPN=∠A=60∘,∵AB=3,∴BM=AB−AM=1,∵四边形ABCD是菱形,∴∠ADC=180∘−60∘=120∘,∠PDN=∠MBP=12∠ADC=60∘,∵∠BPN=∠BPM+60∘=∠DNP+60∘,∴∠BPM=∠DNP,∴△PDN∽△MBP,∴DNBP =PDBM=PNPM,即3−xBP=PD1=x2,∴PD=12x,∴3−x3−12x=12x解得:x=5−√13或x=5+√13(不合题意舍去),∴AN=5−√13,综上所述,AN的长为2或5−√13;三、解答题(本大题共8个小题,满分75分)先化简,再求值:x2+4x+4x+1÷(3x+1−x+1),其中x=sin30∘+2−1+√4.【解答】当x=sin30∘+2−1+√4时,∴x=12+12+2=3原式=(x+2)2x+1÷4−x2x+1=−x+2 x−2=−5如图,△ABC内接于圆O,且AB=AC,延长BC到点D,使CD=CA,连接AD交圆O于点E.(1)求证:△ABE≅△CDE;(2)填空:①当∠ABC的度数为________时,四边形AOCE是菱形.②若AE=√3,AB=2√2,则DE的长为5√33.【解答】∵AB=AC,CD=CA,∴∠ABC=∠ACB,AB=CD,∵四边形ABCE是圆内接四边形,∴∠ECD=∠BAE,∠CED=∠ABC,∵∠ABC=∠ACB=∠AEB,∴∠CED=∠AEB,∴△ABE≅△CDE(AAS);①当∠ABC的度数为60∘时,四边形AOCE是菱形;理由是:连接AO、OC,∵四边形ABCE是圆内接四边形,∴∠ABC+∠AEC=180∘,∵∠ABC=60,∴∠AEC=120∘=∠AOC,∵OA=OC,∴∠OAC=∠OCA=30∘,∵AB=AC,∴△ABC是等边三角形,∴∠ACB=60∘,∵∠ACB=∠CAD+∠D,∵AC=CD,∴∠CAD=∠D=30∘,∴∠ACE=180∘−120∘−30∘=30∘,∴∠OAE=∠OCE=60∘,∴四边形AOCE是平行四边形,∵OA=OC,∴AOCE是菱形;②∵△ABE≅△CDE,∴AE=CE=√3,AB=CD=2√2,∵∠DCE=∠DAB,∠D=∠D,∴△DCE∽△DAB,∴DCDA =CEAB,即√2DE+√3=√32√2,解得DE=5√3,3.故答案为:5√33为更精准地关爱留守学生,某学校将留守学生的各种情形分成四种类型:A.由父母一方照看;B.由爷爷奶奶照看;C.由叔姨等近亲照看;D.直接寄宿学校.某数学小组随机调查了一个班级,发现该班留守学生数量占全班总人数的20%,并将调查结果制成如下两幅不完整的统计图.(1)该班共有________名留守学生,B类型留守学生所在扇形的圆心角的度数为________;(2)将条形统计图补充完整;(3)已知该校共有2400名学生,现学校打算对D类型的留守学生进行手拉手关爱活动,请你估计该校将有多少名留守学生在此关爱活动中受益?【解答】2÷20%=10(人),4×100%×360∘=144∘,10故答案为:10,144;10−2−4−2=2(人),如图所示:×20%=96(人),2400×210答:估计该校将有96名留守学生在此关爱活动中受益.如图,某小区有甲、乙两座楼房,楼间距BC为50米,在乙楼顶部A点测得甲楼顶部D点的仰角为37∘,在乙楼底部B点测得甲楼顶部D点的仰角为60∘,则甲、乙两楼的高度为多少?(结果精确到1米,sin37∘≈0.60,cos37∘≈0.80,tan37∘≈0.75,√3≈1.73)【解答】作AE⊥CD于E.则四边形ABCE是矩形.在Rt△BCD中,CD=BC⋅tan60∘=50×√3≈87(米),在Rt△ADE中,∵DE=AE⋅tan37∘=50×0.75≈38(米),∴AB=CE=CD−DE=87−38=49(米).如图,在平面直角坐标系中,O为坐标原点,△ABO的边AB垂直于x轴,垂(x<0)的图象经过AO的中点C,交AB于点足为点B,反比例函数y=kxD.若点D的坐标为(−4, n),且AD=3.(1)求反比例函数的表达式;(2)求经过C、D两点的直线的函数解析式;(3)设点E是线段CD上的动点(不与点C、D重合),过点E且平行于y轴的直线l与反比例函数的图象交于点F,求△OEF面积的最大值.【解答】解:(1)∵AB⊥x轴,点D的坐标为(−4,n),且AD=3,∴A(−4,n+3).∵C为AO的中点,∴C(−2,n+32),由点C,D都在反比例函数的图象上,可得−4n=−2×n+32,解得n=1,∴k=−4n=−4,故反比例函数的解析式为y=−4x.(2)由(1)可得C(−2,2),D(−4,1),设直线CD的解析式为y=mx+b,将C(−2,2),D(−4,1)分别代入,得{−2m+b=2,−4m+b=1,解得{m=12, b=3,故经过C,D两点的直线的函数解析式为y=12x+3.(3)设E(a,12a+3),则F(a,−4a),∴EF=12a+3−(−4a)=12a+3+4a,∴S△OEF=12×(−a)×(12a+3+4a)=−14(a+3)2+14,∵点E在线段CD上,且不与点C,D重合,∴−4<a<−2,故当a=−3时,△OEF的面积最大,为14.当今,越来越多的青少年在观看影片《流浪地球》后,更加喜欢同名科幻小说,该小说销量也急剧上升.书店为满足广大顾客需求,订购该科幻小说若干本,每本进价为20元.根据以往经验:当销售单价是25元时,每天的销售量是250本;销售单价每上涨1元,每天的销售量就减少10本,书店要求每本书的利润不低于10元且不高于18元.(1)直接写出书店销售该科幻小说时每天的销售量y(本)与销售单价x(元)之间的函数关系式及自变量的取值范围.(2)书店决定每销售1本该科幻小说,就捐赠a(0<a≤6)元给困难职工,每天扣除捐赠后可获得最大利润为1960元,求a的值.【解答】解:(1)根据题意得,y=250−10(x−25)=−10x+500(30≤x≤38).(2)设每天扣除捐赠后可获得利润为w元,由题意得,w=(x−20−a)(−10x+500)=−10x2+(10a+700)x−500a−10000(30≤x≤38),对称轴为x=35+12a,且0<a≤6,则35<35+12a≤38,则当x=35+12a时,w取得最大值,∴(35+12a−20−a)[−10(35+12a)+500]=1960,∴a1=2,a2=58(不合题意舍去),∴a=2.【问题提出】在△ABC中,AB=AC≠BC,点D和点A在直线BC的同侧,BD=BC,∠BAC=α,∠DBC=β,且α+β=120∘,连接AD,求∠ADB的度数.(不必解答)【特例探究】小聪先从特殊问题开始研究,当α=90∘,β=30∘时,利用轴对称知识,以AB为对称轴构造△ABD的轴对称图形△ABD′,连接CD′(如图2),然后利用α=90∘,β=30∘以及等边三角形等相关知识便可解决这个问题.请结合小聪研究问题的过程和思路,在这种特殊情况下填空:△D′BC的形状是________三角形;∠ADB的度数为________.【问题解决】在原问题中,当∠DBC<∠ABC(如图1)时,请计算∠ADB的度数;【拓展应用】在原问题中,过点A作直线AE⊥BD,交直线BD于E,其他条件不变若BC=7,AD=2.请直接写出线段BE的长为________.【解答】第②情况:当0∘<α<60∘时,如图4中,作∠ABD′=∠ABD,BD′=BD,连接CD′,AD′.同理可得:∠ABC=12(180∘−α)=90∘−12α,∴∠ABD=∠DBC−∠ABC=β−(90∘−12α),同(1)①可证△ABD≅△ABD′,∴∠ABD=∠ABD′=β−(90∘−12α),BD=BD′,∠ADB=∠AD′B,∴∠D′BC=∠ABC−∠ABD′=90∘−12α−[β−(90∘−12α)]=180∘−(α+β),∴D′B=D′C,∠BD′C=60∘.同(1)②可证△AD′B≅△AD′C,∴∠AD′B=∠AD′C,∵∠AD′B+∠AD′C+∠BD′C=360∘,∴∠ADB=∠AD′B=150∘,在Rt△ADE中,∠ADE=30∘,AD=2,∴DE=√3,∴BE=BD+DE=7+√3,故答案为:7+√3或7−√3.如图,抛物线y=ax2+bx+c与x轴交于点A(−1, 0),点B(3, 0),与y轴交于点C,且过点D(2, −3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)当点P在直线OD下方时,求△POD面积的最大值.(3)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.【解答】函数的表达式为:y=a(x+1)(x−3),将点D坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2−2x−3…①;设直线PD与y轴交于点G,设点P(m, m2−2m−3),将点P、D的坐标代入一次函数表达式:y=sx+t并解得:直线PD的表达式为:y=mx−3−2m,则OG=3+2m,S△POD=12×OG(x D−x P)=12(3+2m)(2−m)=−m2+12m+3,∵−1<0,故S△POD有最大值,当m=14时,其最大值为4916;∵OB=OC=3,∴∠OCB=∠OBC=45∘,∵∠ABC=∠OBE,故△OBE与△ABC相似时,分为两种情况:①当∠ACB=∠BOQ时,AB=4,BC=3√2,AC=√10,过点A作AH⊥BC于点H,S△ABC=12×AH×BC=12AB×OC,解得:AH=2√2,则sin∠ACB=AHAC =√5,则tan∠ACB=2,则直线OQ的表达式为:y=−2x…②,联立①②并解得:x=±√3,故点Q1(√3, −2√3),Q2(−√3, 2√3),②∠BAC=∠BOQ时,tan∠BAC=OCOA =31=3=tan∠BOQ,则点Q(n, −3n),则直线OQ的表达式为:y=−3x…③,联立①③并解得:x=−1±√132,故点Q3(−1+√132, 3−3√132),Q4(−1−√132, 3+3√132);综上,当△OBE与△ABC相似时,Q的坐标为:(√3, −2√3)或(−1+√132, 3−3√132)或(−√3, 2√3)或(−1−√132, 3+3√132).。
2020年郑州九年级数学一模答案
2019—2020学年上期期末考试九年级数学参考答案、选择题(每小题3分,共30分)(4分)(注:无答无单位不扣分;无过程扣 2分,但是给答案分1分) ②同意 ........ (8分)理由如下:如果女生 E 的仰卧起坐成绩未到达优秀,那么只有 A 、D 、F 有可能两项测试 成绩都达到优秀,这与“恰有 4个人这两项成绩都达到优秀”矛盾 .因此,女生E 的一 分钟仰卧起坐成绩达到了优秀. ........题号 1 2 3 4 5 6 7 8 9 10 答案BCACDDDAAC(每小题3分, 共15分) 二、填空题 11. 512. 7213.答案不唯一, m<1即可,女口 0.14.5伍3或弓三、解答题 (共 75分)16.解:(1) 原式m (m 1)(m 1)(2 分)(m 1)(m 1)m (m 1)(m 1) 1 m 1 m m 1(2)②(5分) (8 分)(3 分)17•解:(1)① 9;(2 分)②45;(2)①全年级女生实心球成绩达到优秀的人数是:450X呼沖,答:全年级女生实心球成绩达到优秀的有195人.(7 分)18. (1)证明:•••点E为AD的中点, ••• AE=DE.................... (1 分)•/ AF // BC,•••/ AEF = Z DEB ,• △ AEF ◎△ DEB . .......... ( 3 分) • AF=BD .•••/ BAC=90° , AD 是BC 边上的中线,1 • AD = BD= BC ...................... ( 4 分)2• AD=AF .......... (5 分)(2[① 45° .......... (7 分)②30°................. (9 分)x x 6 ................................... (6 分)0.50 0.65 • x = 13.• GH = GE+EH = 13+1.5 = 14.5.答:旗杆GH 的高度为14.5米. ............... (8 分) (注 :见到方程给到6分,不加1.5扣1 分)任务三:没有太阳光,或旗杆底部不可能达到等理由均可.20. ........................................................................................ 解:(1)过点A 作AC OB于点C ...............................................................................•••/ AFE = / DBE ........................ (2分)任务二:设 EG = xm , 在 Rt △ DEG 中… / DEG = = 90° — [GDE = 33°,•/ tan33° = EG • DE = = x x … (3分)DE 'tan 33 0.65 在 Rt △ CEG 中,/ J CEG = =90°,Z :GCE = 26.5°,•/ tan26.5°= =EG ,CE = x x (4分)CEtan 26.5 0.5019.解:任务一: 6; ............. (2分)易知四边形 ABDC 为矩形,• CD=AB . 又••• CD = CE - DE ,(1分)1 Q OAE是等边三角形,AOB 60 , OC -OB.2Q B(0,4), OB OA 4,OC 2, AC 2\F3 . ................ (3 分)把点A(2 3,2)代入y k,得k 4 3 .x故反比例函数的表达式为y 虫3;......... (5分)X(注:用面积解答不扣分)(2)分两种情况讨论:①设AB边的中点为点D,(图略)可求得D点坐标为(3,3).平移后中点D'坐标(、,3,3+a),当函数图象过点D'时,,3(3 a) 4.3,a 1. ....................... (7分)②设AO边的中点为点E,(图略)可求得E点坐标为(3,1).平移后中点E'坐标(, 1 + a),当函数图象过点E“时,、、3(1 a) 4.、3 , a 3.综上所述,a的值为1或3. ......... (9分)21. ..................................................................................................................................... 解:(1)设A种垃圾桶和B种垃圾桶的单价分别为x元,y元. ..........................80x 0.8y 120 6880 ............... (2分)由题意可得:0.75x 100 0.8y 100 6150 .............. (3 分)答:A种垃圾桶和B种垃圾桶的单价分别为50元,30元...................... (5分)(2)设购买A种垃圾桶m个,则B种垃圾桶购买(200- m)个.由题意可得200 1 m m, 解得m 150 . ..... (7 分)3设总费用为W元,W 0.7550m30 (200m )37.5m600030m7.5m 6000(9分)•/ 7.5>0 ,••• W随m的增大而增大.故当m=150时,W最小.即当购买A种垃圾桶150个,B种垃圾桶50个时,总费用最少,最少费用为7.5 X 150+6000=7125 (元)............... (10 分)(1 分)解得: x 50 y 30(注:不用函数也可以,道理说明白就给分,没有过程或说明扣1分;答不完整扣1分)22•解:(一)发现探究【探究】如图2,结论仍然成立 ................. 理由:I/ PAQ =Z CAB ,•••/ QAB+ / BAP =/ BAP + / FAC , •••/ QAB =/ PAC , •/ AB = AC , AQ = AP ,• △ QAB ^A PAC (SAS ),•- BQ = PC.................. (7 分)(注 :判断正确给1分,没有判断但推理正确不扣分) (二)拓展应用【应用】2、.. 6 2、、2 ............ (10分)(理由如下:如图 3,在DF 上截取DG = DE ,连接PG ,过点G 作GI 丄EF 于点I ,过 点E 作EH 丄DF 于点H .V/ QDP = / EDF ,•••/ QDE = / PDF . •/ DQ = DP , DE = DG , • △ QDE ◎△ PDG ( SAS ). • EQ = PG .•••当PG 的值最小时,EQ 的值最小. 在 Rt △ DEH 中,V/ EDH = 60°, DE = 8,1• EH = DE?sin60°= 4 3 , DH = - DE=42V/ F = 180° -/ DEF -/ EDF = 180° - 75°- 60°= 45•••在 Rt A FEH 中,HF=HE = 4.3 . • GF = DF - DG = 4.3 4 8 4、3 4 .在 Rt △ GIF 中,V/ F = 45°,GI = 2、、6 2、2.根据“垂线段最短”可知,当点 P 与I 重合时,PG 的值最小,• EQ 的最小值为2、、62迈.)【发现】 BQ = PC . ............. (3 分) 图32 23.解:(1)V抛物线y ax bx 3(a0)过B, C两点,点C在y轴上,a•••点C 的坐标为C (0, 3) ............ (1分)21 由y x n 过点C ,可知,n213 二直线y - x - . 22•••抛物线过B , A 两点,点A (- 2, 0), 抛物线的表达式设为: y = a ( x - 3) (x+2),其经过点C (0, 3 ) i ,解得:a =1.24故抛物线的表达式为:y 1 2 1 3 y = x x -; .............(4 分) -x -x - 4 4 2(注:没有化成一般式不扣分)3•••在 Rt A BCO , CO =一,BO = 3 ,2•••直线y3与x 轴交于点B , •点B 的坐标分别为2B (3, 0)(2 分)(2)过点 设点P (m, 二 PG= - m4 P 作y 轴的平行线交 BC 于点G ,作PH 丄BC 于点H ,1 2 1-m m4 42 13 i -m4 23),则点G (m, 2 1 3 -m 2 1 3 -m -),2 2 3m (4)在 Rt △ PGH 和 Rt △ BCO 中, •••/ PHG = Z BOC = 90° ,又•••/ PGH =Z BCO , • Rt △ PGH s Rt △BCO.• PH BO PG BC .(6分)I 2 二BC= CO BO2(3)232故PH= ^5PG5 2、553m)卫4 103.5m.10/ 12(m43(3 )点Q 的坐标为:(1, 3)或(6,- 6)或(-5,- 6).2 (8 分)(注:正确的坐标每个给1分;三个点的坐标都正确但是有多出的坐标,一共扣(11 分)1分)a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019—2020学年上期期末考试九年级数学 参考答案一、选择题(每小题3分,共30分)二、填空题(每小题3分,共15分)11. 5 12. 72 13.答案不唯一,m <1即可,如0. 14.4515.3或33三、解答题(共75分)16.解:(1)原式111(1)(1)1m m m m m -+=-÷+-- 1(1)(1)1m mm m m =-÷+-- 11(1)(1)m m m m m -=-⨯+- 111.1m m m =-+=+ (2)②17.解:(1)①9; ②45;............ (5分)............ (3分)............ (2分)............ (8分)............ (2分)............ (4分)(2)①全年级女生实心球成绩达到优秀的人数是:450195,答:全年级女生实心球成绩达到优秀的有195人.(注:无答无单位不扣分;无过程扣2分,但是给答案分1分) ②同意. ............ (8分)理由如下:如果女生E 的仰卧起坐成绩未到达优秀,那么只有A 、D 、F 有可能两项测试成绩都达到优秀,这与“恰有4个人这两项成绩都达到优秀”矛盾. 因此,女生E 的一分钟仰卧起坐成绩达到了优秀.18.(1)证明:∵点E 为AD 的中点, ∴AE =DE ............. (1分) ∵AF ∥BC ,∴∠AFE =∠DBE ............. (2分) ∵∠AEF =∠DEB , ∴△AEF ≌△DEB . ∴AF =BD .∵∠BAC =90°,AD 是BC 边上的中线,∴AD =BD=BC 21............. (4分) ∴AD =AF .(2)①45°;............ (7分)②30°............. (7分)............ (9分)............ (9分)............ (5分)............ (3分)19.解:任务一: 6;任务二:设EG =x m ,在Rt △DEG 中,∠DEG =90°,∠GDE =33°,∵tan33°=EG DE ,∴DE =tan 330.65x x =︒............. (3分)在Rt △CEG 中,∠CEG =90°,∠GCE =°,∵°=EG CE ,CE =tan 26.50.50x x =︒............. (4分) 易知四边形ABDC 为矩形,∴CD=AB . 又∵CD =CE ﹣DE ,∴60.500.65x x -=. ∴x =13.∴GH =GE +EH =13+=. 答:旗杆GH 的高度为米.(注:见到方程给到6分,不加扣1分)任务三:没有太阳光,或旗杆底部不可能达到等理由均可.20.解:(1)过点A 作AC OB ⊥于点C .OAB ∆是等边三角形,60AOB ∴∠=︒,12OC OB =............. (9分)............ (6分)............ (2分)............ (8分)............ (1分)(0,4)B ,4OB OA ∴==,2OC ∴=,AC =把点A 代入ky x=,得k =.故反比例函数的表达式为y x=; (注:用面积解答不扣分) (2)分两种情况讨论:①设AB 边的中点为点D ,(图略)可求得D,3).平移后中点D',3+a ),当函数图象过点D' 时,34)3(3=+a ,1=a .②设AO 边的中点为点E ,(图略)可求得E,1).平移后中点E',1+a ),当函数图象过点E''时,34)1(3=+a ,3=a .综上所述,a 的值为1或3.21.解:(1)设A 种垃圾桶和B 种垃圾桶的单价分别为x 元,y 元.由题意可得:800.812068800.751000.81006150x y x y +⨯=⎧⎨⨯+⨯=⎩............ (5分)............ (3分)............ (7分)............ (1分)............ (3分)............ (9分)............ (2分)图2解得:5030x y =⎧⎨=⎩答:A 种垃圾桶和B 种垃圾桶的单价分别为50元,30元. (2)设购买A 种垃圾桶m 个,则B 种垃圾桶购买(200-m )个.由题意可得12003m m -≤,解得150m ≥. 设总费用为W 元,0.755030(200)37.56000307.56000W m m m m m =⨯+⨯-=+-=+ ∵>0,∴W 随m 的增大而增大. 故当m =150时,W 最小.即当购买A 种垃圾桶150个,B 种垃圾桶50个时,总费用最少,最少费用为×150+6000=7125(元).(注:不用函数也可以,道理说明白就给分,没有过程或说明扣1分;答不完整扣1分) 22.解:(一)发现探究【发现】 BQ =PC . 【探究】如图2,结论仍然成立............. (4分) 理由:∵∠PAQ =∠CAB , ∴∠QAB +∠BAP =∠BAP +∠PAC ,............ (10分) ............ (7分)............ (5分)............ (9分)............ (3图3∴∠QAB =∠PAC , ∵AB =AC ,AQ =AP , ∴△QAB ≌△PAC (SAS ), ∴BQ =PC .(注:判断正确给1分,没有判断但推理正确不扣分) (二)拓展应用【应用】 . (理由如下:如图3,在DF 上截取DG =DE ,连接PG ,过点G 作GI ⊥EF 于点I ,过点E 作EH ⊥DF 于点H . ∵∠QDP =∠EDF , ∴∠QDE =∠PDF . ∵DQ =DP ,DE =DG , ∴△QDE ≌△PDG (SAS ). ∴EQ =PG .∴当PG 的值最小时,EQ 的值最小. 在Rt △DEH 中,∵∠EDH =60°,DE =8,∴EH =DE •sin60°=DH =12DE =4. ∵∠F =180°﹣∠DEF ﹣∠EDF =180°﹣75°﹣60°=45°,∴在Rt △FEH 中,HF=HE =............ (7分)............(10分)∴GF =DF ﹣DG=484-=. 在Rt △GIF 中, ∵∠F =45°,∴GI=.根据“垂线段最短”可知,当点P 与I 重合时,PG 的值最小,∴EQ的最小值为.)23.解:(1)∵抛物线)0(232≠++=a bx ax y 过B ,C 两点,点C 在y 轴上, ∴点C 的坐标为C (0,32). ............ (1分) 由n x y +-=21过点C ,可知,.23=n ∴直线2321+-=x y . ∵直线2321+-=x y 与x 轴交于点B ,∴点B 的坐标分别为B (3,0).∵抛物线过B ,A 两点,点A (﹣2,0), 抛物线的表达式设为:y =a (x ﹣3)(x +2), 其经过点C (0,32),解得:a =14-. 故抛物线的表达式为:y =2113442x x -++; (注:没有化成一般式不扣分)(2)过点P 作y 轴的平行线交BC 于点G ,作PH ⊥BC 于点H ,............ (4分)............ (2分)设点P 2113(,)442m m m -++,则点G 13(,)22m m -+,∴PG =2211313134422244m m m m m -+++-=-+.在Rt △PGH 和Rt △BCO 中, ∵∠PHG =∠BOC =90°, 又∵∠PGH =∠BCO , ∴Rt △PGH ∽Rt △BCO .∴BCBOPG PH =. ∵在Rt △BCO ,CO =23,BO =3, ∴BC =2533)23(2222=+=+BO CO . 故22252513535()44PG m m =-+=. (3)点Q 的坐标为:(1,32)或(6,﹣6)或(﹣5,﹣6).(注:正确的坐标每个给1分;三个点的坐标都正确但是有多出的坐标,一共扣1分)............ (11分)............ (8分) ............ (6分)。