独立悬架侧倾中心
侧倾中心高度计算
侧倾中心高度计算
侧倾中心高度(Roll Center)是汽车悬挂系统设计中的一个重要指标,它用来描述车辆发生侧倾时重心高度的变化情况。
侧倾中心高度的计算方法因车辆的结构、悬挂系统类型和参数不同而略有不同,一般来说有以下几种常见的计算方法:
1. 几何法计算
几何法计算侧倾中心高度的方法比较简单,其中最直接的方法是采用三角函数法进行计算。
首先需要测量车辆的底盘高度、车身高度、前后轮距以及前后悬挂各自的斜率,然后根据三角函数计算得出侧倾中心高度。
2. 悬挂运动法计算
悬挂运动法计算侧倾中心高度的方法适用于采用独立式悬架的车辆。
该方法需要先建立车辆的模型,然后进行悬挂运动仿真,最终得出侧倾中心高度。
3. 基准线法计算
基准线法计算侧倾中心高度的方法比较简单,它是通过将车辆侧倾后的基准线作为参考线进行计算。
该方法需要先确定车辆侧倾后的基准线,然后在基准线上测量车轴与悬挂系统之间的距离,最终得出侧倾中心高度。
需要注意的是,不同的计算方法得出的结果可能会有所不同,因此在实际设计过程中,需要根据具体情况选择适合的计算方法,并对计算结果进行合理的检验和修正,以确保车辆的悬挂系统设计满足要求。
独立悬架导向机构
独立悬架导向机构的设计一、设计要求对前轮独立悬架导向机构的要求是:1)悬架上载荷变化时,保证轮距变化不超过±4.Omm,轮距变化大会引起轮胎早期磨损。
2)悬架上载荷变化时,前轮定位参数要有合理的变化特性,车轮不应产生纵向加速度。
3)汽车转弯行驶时,应使车身侧倾角小。
在0.4g侧向加速度作用下,车身侧倾角不大于6°~7°,并使车轮与车身的倾斜同向,以增强不足转向效应。
4)汽车制动时,应使车身有抗前俯作用;加速时,有抗后仰作用。
对后轮独止:悬架导向机构的要求是:1)悬架上的载荷变化时,轮距无显著变化。
2)汽车转弯行驶时,应使车身侧倾角小,并使车轮与车身的倾斜反向,以减小过多转向效应。
此外,导向机构还应有够强度,并可靠地传递除垂直力以外的各种力和力矩。
目前,汽车上广泛采用上、下臂不等长的双横臂式独立悬架(主要用于前悬架)和滑柱摆臂(麦弗逊)式独立悬架。
下面以这两种悬架为例,分别讨论独立悬架导向机构参数的选择方法,分析导向机构参数对前轮定位参数和轮距的影响。
二、导向机构的布置参数1.侧倾中心双横臂式独立悬架的侧倾中心由如图6—24所示方式得出。
将横臂内外转动点的连线延长,以便得到极点P,并同时获得P点的高度。
将P点与车轮接地点N连接,即可在汽车轴线上获得侧倾中心W。
当横臂相互平行时(图6—25),P点位于无穷远处。
作出与其平行的通过N点的平行线,同样可获得侧倾中心W。
双横臂式独立悬架的侧倾中心的高度hw通过下式计算得出滑柱摆臂式独立悬架的侧倾中心由如图6—26所示方式得出。
从悬架与车身的固定连接点E 作活塞杆运动方向的垂直线并将下横臂线延长。
两条线的交点即为P点。
滑柱摆臂式悬架的弹簧减振器柱EG布置得越垂直,下横臂GD布置得越接近水平,则侧倾小心W就越接近地面,从而使得在车轮上跳时车轮外倾角的变化很不理想。
如加长下横臂,则可改善运动学特性。
麦弗逊式独立悬架侧倾中心的高度hw可通过下式计算式中2.侧倾中心在独立悬架中,前后侧倾中心连线称为侧倾轴线。
10_ADAMS_CAR模块详细实例教程(悬架分析篇)
10_ADAMS_CAR模块详细实例教程(悬架分析篇)10悬架分析 (225)10.1悬架模型参数调整 (225)10.2悬架参数设定 (229)10.3悬架仿真 (231)10.4查看后处理结果 (233)附例 (234)224《悬架分析篇》10悬架分析在ADAMS/Car下可进⾏的悬架分析包括:(1)车轮同向运动(Parallel wheel analysis)(2)车轮反向运动(Oppositel wheel analysis)(3)侧倾和垂直⼒分析(Roll and vertical forces)-悬架的侧倾⾓变化,同时保持作⽤于悬架的总垂直⼒不变,因此作⽤于左右车轮的垂直⼒会变化,导致左右轮⼼的位置改变。
(4)单轮运动(Single wheel travel)-⼀个车轮固定,另⼀个车轮运动。
转向(Steering)-在给定轮⼼⾼度下,在转向盘或转向机上施加运动。
(5)静态分析(Static load)-可以在轮⼼或轮胎印迹上施加载荷,如纵向⼒、侧向⼒、垂直⼒。
(6)外部⽂件分析(External file)-利⽤外部⽂件来驱动仿真。
1)载荷分析(Loadcase),⽂件中包含的输⼊可以是轮⼼位移、转向盘转⾓,或者是作⽤⼒;2)车轮包络分析(wheel envelope),车轮同向运动的同时,车轮发⽣转到,主要是与CAD软件结合检查悬架、转向系等与车⾝的⼲涉。
10.1悬架模型参数调整在前⾯第8章已经完成前悬架模块的装配,在⼦系统或装配体中质量、硬点、衬套、弹簧和减振器特性是可以修该的,以满⾜⽤户实际情况。
1)修改质量特性在部件附近右击⿏标,在出现的清单⾥找到所要修改的部件,选择Modify。
出现如下窗⼝:225226在该对话框⾥可以修改质量和转动惯量特性。
2)修改硬点从菜单选择Ajust>Hardpoint>Table ,选择Table 可以同时编辑所有硬点。
⽽如果选择Modify 则⼀次只能修改⼀个硬点。
车辆侧倾因素及其对整车性能的影响
车辆侧倾因素及其对整车性能的影响2010年07月21日e-works1 导言车辆的侧倾运动性能是车辆性能的一个重要部分,关系到操纵稳定性、乘坐舒适性和安全性.车辆侧倾性能因素主要包括侧倾中心高度、侧倾角刚度、侧倾阻尼等。
侧倾中心高度在车辆转向时对轮胎抓地能力、左右轮载荷转移、转向性能等很多车辆性能均有重要的影响。
由于侧倾中心高度由悬架的几何机构决定,在设计初期确定之后,后起很难更改。
所以对它的理论分析和优化就显得尤为重要.国内外很多汽车企业的工程师们都对侧倾中心高度进行过深入的研究。
侧倾刚度和侧倾阻尼的作用比较明朗,由于侧倾角和侧倾角速度是重要的车辆操控稳定性和平顺性的评价指标,并且对其它指标如横摆角速度、侧向加速度也有影响,因此,侧倾刚度和侧倾阻尼的研究也不容忽视.下面利用多体动力学软件MSC ADAMS 对这些参数及其对车辆性能的影响进行详细的计算和分析.2 仿真模型算例为一款前后均配置独立悬架的中高级轿车.前悬架为双叉臂式,后悬架为多连杆式。
图1 前后悬架及整车仿真模型3 侧倾中心在前后轴轮心的横向垂直平面内,车辆在横向力作用下车身侧倾的瞬时回转中心称为侧倾中心。
前后侧倾中心的连线称为侧倾轴线,是车身相对于地面转动的瞬时轴线.侧倾中心距地面的高度称为侧倾中心高度。
车辆转向时,车身绕侧倾轴线进行回转。
严格说来侧倾中心的概念只在侧倾起始状态有意义。
侧倾中心高度对前后轴侧偏角、外倾角都有影响,进而影响车辆的转向性能和轮胎抓地能力。
侧倾中心的位置由悬架的导向机构决定,可以通过几何图解法得到.以算例中的前悬架——双叉臂独立悬架为例。
上控制臂和下控制臂两个平面的交线形成一条瞬时旋转轴线,该轴线与轮胎接地点可以形成一个平面。
左右两平面的交线与轮心处横向垂直面的交点就是悬架的几何侧倾中心。
图2 双叉臂悬架瞬时旋转轴线3。
1 侧倾中心高度与外倾补偿在转向运动中,侧倾中心高度(RCH)对轮胎的外倾补偿会产生影响,如图3所示。
武汉理工大学 车辆工程汽车理论讲稿(第5章)
汽车过多转向
K<0称为过多转向。过多转向汽车加速时,和中性转向
相比,稳态横摆角速度增益较大,但R= u / ,故转向
半径随车速增大而减小。显然,当 u 1/ K 时,
/ = 。这时较小的前轮转角都会导致激转而翻车。
为了保持良好的操纵稳定性,汽车都应当具有适度 的不足转向。
三种稳态响应
汽车稳态横摆角速度增益曲线
(k1
k2
)
v u
1 u
(ak1
bk2 )r
k1
mur
(ak1
bk2
)
v u
1 u
(a 2 k1
b2k2
)r
ak1
0
消去v后,得:
1
u
/L Ku
2
K
m L2
(a k2
b) k1
式中
/ — 稳态横摆角速度增益,也叫转向灵敏度;
K—稳定性因数(s2/m2); — 横摆角速度; u—车速;δ —前轮转角; m—汽车质量;L —轴距; a,b — 汽车质心到前后轴的距离; k1,k2 — 前后轮侧偏刚度。
图中c点是质心位置,cn是中性转向点。汽车向右转向。
中性转向点到前轮中心的距离为:
a Fy2 L k22 L Fy1 Fy2 k11 k22
k22 L k2 L
k12 k22
k1 k2
当轮胎和轴距一定时,中性转向点到前轮中心的距离便确定。
注意到汽车作稳态圆周运动时,横摆角加速度为0,前后轮实际侧偏 力合力作用点即在质心位置。
根据
u/L 1 Ku2
稳态横摆角速度增益较小,即较小。但因R= u / ,故
不足转向汽车转向半径随车速增大而增大。
汽车独立悬架设计说明书(毕业设计)
独立悬架设计说明书摘要本设计主要讲述了悬架的定义和重要性,描述了悬架的作用和功能主要阐述了独立悬架的类别和构造尤其是详细的介绍了麦弗逊式独立悬架的设计过程,本着满足车辆行使平顺性的原则,设计了麦弗逊式独立悬架的各个组成部件,并对其进行了校核。
如螺旋弹簧的设计和计算,横向稳定杆的设计,对导向机构进行了平顺性分析,横摆臂的长度计算和减震器的设计计算等。
轿车悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。
比如,为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及左右侧倾严重的不良倾向,不利于汽车的转向,容易导致汽车操纵不稳定等。
怎样处理好这些方面的关系就摆在了我们设计人员的面前。
因此要是能够设计出使这些方面都能达到一个和谐的悬架对越来越多的汽车使用人员来说将会带来极大的好处。
他们将会体会到优秀悬架带给他们的良好的舒适性,和安全的平顺性。
希望本人的设计能够满足大家的要求。
本设计的图纸主要由计算机绘制完成,计算机编档、排版,打印出图及论文。
还完成了一定量的英文翻译工作。
关键词:麦弗逊式独立悬架悬架汽车悬架AbstractThe main design on the suspension of the definition and importance of a suspension described the role and functions primarily on the type of independent suspension and tectonic particularly detailed introduced Maifuxun independent suspension design process, in the spirit of the exercise smoothly vehicles meet the principles of the design of the independent suspension Maifuxun various components, and the degree of their. If screw spring-loaded design and calculation, horizontal designed to guide agencies conducted smoothly and analytical, Wang squatting length calculation and shock absorber design.Training is a perfect car for the car more difficult to achieve fuel, because it is necessary to meet the suspension of vehicle comfort, but also meet the requirements of the stability of its manipulation, and these two aspects are mutually antagonistic. For example, in order to achieve good sexual comfort, require a significant buffer car shock, which is designed spring-loaded soft farther, but the spring-loaded soft but easy to vehicle braking occurred "nod" and accelerate the "rise" and so serious adverse trends, to the detriment of the vehicle to easily lead to vehicle instability manipulation. How to handle the relationship between these areas before our designers have to face the problem .So if these meet the mission to design a harmonious suspension of a growing number of vehicles involved will bring great benefits. They will understand theiroutstanding suspension to the comfort of a good, and safe smoothly. I hope the design can satisfy all requirements.The design drawings completed mainly by computer mapping, computer archiving, typesetting, printing out maps and papers. Also completed a number of English translation work.Keyword:Maifusun type of independent suspension suspension Motor Training1概述1.1 悬架的定义及其重要性悬架是保证车轮与汽车承载之间具有弹性联系并能传递载荷、缓和冲击、衰减振动以及调节汽车行驶中的车身位置等有关装置的综总称。
双横臂独立悬架设计
目录中文摘要 ............................................................................. 错误!未定义书签。
英文摘要 ............................................................................. 错误!未定义书签。
前言 (III)1悬架的基本知识 (1)1.1认识悬架 (1)1.2国内外发展状况 (2)1.3悬架对汽车的影响 (3)1.3.1对汽车行使平顺性的影响 (3)1.3.2对汽车操纵稳定性的影响 (3)1.4独立悬架的优点 (4)1.5独立悬架的缺点 (4)1.6悬架的设计要求 (4)1.7独立悬架的分类 (5)1.7.1麦弗逊式独立悬架 (5)1.7.2多连杆式独立悬架 (5)1.8本章小结 (5)2独立悬架的组成及其相关计算 (5)2.1弹性元件的选择 (5)2.1.1螺旋弹簧的分类和选择 (7)2.1.2圆形截面圆柱螺旋压缩弹簧的参数设计 (8)2.2减振器的选择和计算 (10)2.2.1减振器的选择 (10)2.2.2汽车对减振器的要求 (11)2.2.3减振器的工作原理 (11)2.2.4减振器的参数计算 (12)2.3横向稳定杆 (17)2.4悬架的上、下横臂 (18)2.5悬架的导向机构 (19)2.5.1悬架的导向机构的设计要求 (19)2.5.2导向机构的布置参数 (20)2.5..3导向机构的布置方案 (21)2.5..4上下横臂的长度的确定 (22)2.6悬架的连接件轴销的校核 (23)2.7本章小结 (23)3 独立悬架的一些重要参数 (23)3.1簧载质量与非簧载质量 (23)3.2悬架的静挠度和动挠度 (24)3.3悬架的弹性特性 (25)3.3.1悬架的线性弹性特性曲线 (25)3.3.2悬架的非线性弹性特性曲线 (25)3.3.3悬架的刚度计算 (26)3.4悬架的上、下横臂的确定 (26)3.5悬架的其他一些参数的确定 (27)3.6本章小结 (29)4总结 (29)致谢 (30)参考文献 (31)双横臂独立悬架设计摘要汽车悬架是连接车架和车桥的装置,其作用是缓冲地面对于车身的冲击,并衰减由此产生的振动,提高乘客的舒适度。
汽车理论5-4
先确定侧倾轴线再确定侧倾中心,还是先确定 侧倾中心再确定侧倾轴线?
5-4 汽车操纵稳定性与悬架的关系
一、汽车的侧倾
(一)车厢的侧倾轴线
1.单横臂独立悬架车厢的侧倾中心 Om
vd vg
5-4 汽车操纵稳定性与悬架的关系
一、汽车的侧倾
(一)车厢的侧倾轴线
2.双横臂独立悬架车厢的侧倾中心 O13
2
3
1
二、侧倾时垂直载荷对……的影响
FY kl kr
平均侧偏刚度
1 k0 (kl k r ) 2
k'0
显然,平均侧偏刚度k'0小于 变化之前k0。而且ΔW越大 ,则k'0越小。
FY FY α0 则 2k 0 2k 0
5-4 汽车操纵稳定性与悬架的关系
FZ2l FZ 2l FZ 2l
FZ1r FZ 1r FZ 1r
FZ2r FZ 2r FZ 2r
5-4 汽车操纵稳定性与悬架的关系
二、侧倾时垂直载荷……对稳态响应的 影响
设垂直载荷没有发生改变时,左右车轮的垂直载荷 都为W0,左右车轮的侧偏刚度都为k0,W=2W0, 则相应的侧偏角为
思考
如何通过改变前后轴左、右侧 车轮垂直载荷的变化量来提高 汽车的不足转向量?横向稳定 杆用在前后悬架对汽车稳态响 应特性所起到的作用是否相同? 为什么?
5-4 汽车操纵稳定性与悬架的关系
三、侧倾外倾—侧倾时车轮外倾角的变化
γ+ 不变 侧倾时γ的变 化有三种可能 与FY同向 侧倾 与FY反向 侧倾
5-4 汽车操纵稳定性与悬架的关系
(二)悬架的侧倾角刚度
2.悬架侧倾角刚度KΦr
1 dT K lB 2 dΦr 2 1 B 2 KΦ Kl 2
双横臂悬架侧倾中心研究
双横臂独立悬架动态侧倾中心的研究0 引言车辆在行驶的过程中,由于路况较为复杂,当车辆路过崎岖路面或进行转向时,车轮与路面间的相对位置关系发生改变,进而将会导致车辆侧倾中心位置的变化。
在悬架运动过程中,侧倾中心的位置是瞬时变动的。
悬架的侧倾中心高度决定了整车侧倾轴线的位置。
侧倾中心位置高,它到簧载质量质心的距离就会相应缩短,在相同的侧向力作用下,则侧倾力臂与侧倾力矩均会较小,有利于车辆的稳定性。
然而,侧倾中心也不能过高,否则会使得车身侧倾时轮距变化过大,进而加剧轮胎的磨损[1]。
在确定侧倾中心的高度时,应该综合考虑各类因素的影响。
常用的轿车前独立悬架侧倾中心高度为0~120 mm,后独立悬架(不包括纵臂式)侧倾中心高度为80~150 mm[2]。
上、下横臂轴轴线皆与车辆纵向轴线平行的双横臂独立悬架是此类悬架中结构最简单的一种[3]。
1 车辆动态侧倾中心的坐标表示1.1 车身坐标系的建立建立一固连在车身上的坐标系,如图1所示。
此车身坐标系建立原则如下:以车辆静止停靠在水平路面上时的轮胎接地点G1、G2点所在直线与车辆左右中心轴线的交点为坐标系原点O;y轴沿车辆左右中心轴线,由O点指向车厢顶部方向为y轴正方向;x轴垂直于y轴,并定义由O点指向车辆右侧方向为x轴正方向。
汽车车身相对于车身坐标系静止。
图1 双横臂独立悬架车辆示意图我们作出如下假设:(1)车辆左、右侧悬架以及车辆结构、形式相同,簧载质量质心位于车辆左右中心轴线、即y轴上;(2)将双横臂悬架的横臂以及转向节、车身等均视为刚体,忽略一切弹性变形效应;(3)将轮胎简化成一条直线,不考虑其断面宽度,并认为在与地面接触过程中,车轮不发生变形以及相对滑动。
1.2 内转向定点A1、A2、D1、D2在坐标系中的位置双横臂悬架内转向点A1、A2、D1、D2在车身坐标系xoy中为4个定点,即它们在车身坐标系中的坐标表示不会随车轮的跳动而发生变化。
因此,我们可以选取“当车辆静止停靠在水平路面上时”这一特殊工况,以进行定点坐标的确定。
悬架特性参数
悬架是汽车中的一个重要总成,它把车架与车轮弹性地联系起来,关系到汽车的多种使用性能。
从外表上看,轿车悬架仅是由一些杆、筒以及弹簧组成,但千万不要以为它很简单,相反轿车悬架是一个较难达到完美要求的汽车总成,这是因为悬架既要满足汽车的舒适性要求,又要满足其操纵稳定性的要求,而这两方面又是互相对立的。
比如,为了取得良好的舒适性,需要大大缓冲汽车的震动,这样弹簧就要设计得软些,但弹簧软了却容易使汽车发生刹车“点头”、加速“抬头”以及左右侧倾严重的不良倾向,不利于汽车的转向,容易导致汽车操纵不稳定等。
比较重要的参数有:1.车轮外倾角前轮外倾角分零外倾角、正外倾角、负外倾角。
如果空车时车轮的安装正好垂直于路面,则满载时车桥因承载变形而可能出现车轮内倾,这样将加速车轮胎的磨损。
另外,路面对车轮的垂直反力沿轮毂的轴向分力将使轮毂压向外端的小轴承,加重了外端小轴承及轮毂紧固螺母的负荷,降低它们的寿命。
因此,前轮有一个外倾角,同时为防止车轮出现过大的不足转向或过度转向趋势,为防止车轮出现过大的不足转向或过度转向趋势,一般希望车轮从满载位置起上下跳动40mm的范围内,车轮外倾角变化在1度左右。
车轮外倾角的变化与悬架的形式有关,车轮外倾角的设置影响到汽车的转向操作性能和直线行驶稳定性能。
汽车作曲线行驶时,车轮随车身一起倾斜,即车身外侧车轮向正的外倾角方向变化,从而降低了其侧偏性能。
为保证轮胎的侧偏性能,悬架设计要求上跳时外倾角向负值变化,下落时向正值变化。
但是从操纵稳定性来讲,要求前悬架设计成上跳时外倾角向增大方向变化,下落时向减小方向变化,后悬架设计成上跳时向减小方向变化,下落时向增大方向变化。
2.主销后倾角主销后倾角是指在车身侧视图主销轴与垂直轴的夹角,正的主销后倾角是指主销顶部向后倾的角度。
主销后倾角的主要作用是使车轮复位以提高车辆直线行驶的稳定性。
当行驶中的汽车遇到外力产生偏离时,后倾角产生回正力矩使车轮自动回复到原来位置。
汽车设计考试试题(卷)八套整理后
汽车设计试卷、填空题1、由动力装置、底盘、车身、电器设备等四部分组成的汽车,是用来载送人员和货物的运输工具。
1、后备系数E是离合器设计中的一个重要参数,它反映了离合器传动发动机(最大转矩)的可靠程度。
2、常用的离合器操纵机构,主要有机械式、液压式、机械式和液压式操纵机构的助力器、(气压式)和自动操纵机构等。
3、扭转减震器主要有弹性元件和(阻尼元件)等组成。
4、1、对离合器操纵机构的要求有哪些?答:а、踏板力要尽可能小,乘用车一般在80至150N范围内,商用车不大于150至200N。
1、b、踏板行程一般在80至150mm范围内,最大不应超过180mm。
2、c、应有踏板行程调整装置。
3、d、应有踏板行程限位装置。
4、e、应有足够的刚度。
5、f、传动效率更高。
б、g、发动机震动及车架和驾驶室的变形不会影响其正常工作。
7、h、工作可靠、寿命长,维修保养方便。
8、9、2、请简述制动系的功用。
10、制动系的功用是使汽车以适当的减速度降速行驶直至停车;在下坡行驶时,使汽车保持适当的稳定车速;使汽车可靠地停在原地或坡道上。
11、12、3、进行总体设计工作应满足如下要求:13、1)汽车的各项性能、成本等,要求达到企业在商品计划中所确定的指标;14、2)严格遵守和贯彻有关法规、标准中的规定,注意不要侵犯专利;15、3)尽最大可能地去贯彻三化,即标准化、通用化和系列化;16、4)进行有关运动学方面的校核,保证汽车有正确的运动和避免运动干涉;17、5)拆装与维修方便。
18、19、为了提高制动工作的可靠性,应采用分路系统,即全车的所有行车制动器的液压或气压管路分为两个或者的互相独立回路,其中一个回路失效后,仍可利用其他完好的回路起制动作用。
20、驱动桥位于传动系末端,其基本功用首先是增扭、降速、改变转矩的传递方向,即增大由传动轴或直接从变速器传来的转矩,并将转矩合理地分配给左、右驱动车轮;其次,驱动桥还要承受作用于路面和车架或车身之间的垂直力、纵向力和横向力,以及动力矩和反作用力矩等。
汽车设计讲稿-第六章悬架设计
汽车设计讲稿-第六章悬架设计第六章悬架设计§6-1 概述:一、功用:传力、缓冲、减振:保证平顺性、操纵稳定性二、组成:弹性元件:传递垂直力,评价指标为单位质量储能等导向装置:车轮运动导向,并传递垂直力以外的力和力矩减振器:减振缓冲块:减轻车轴对车架的撞击,防止弹性元件变形过大横向稳定器:减少转弯时车身侧倾太大和横向角振动三、设计要求:1)良好的行驶平顺性:簧上质量 + 弹性元件的固有频率低;前、后悬架固有频率匹配:乘:前悬架固有频率要低于后悬架尽量避免悬架撞击车架;簧上质量变化时,车身高度变化小。
2)减振性好:衰减振动、抑制共振、减小振幅。
3)操纵稳定性好:车轮跳动时,主销定位参数变化不大;前轮不摆振;稍有不足转向(δ1>δ2)4)制动不点头,加速不后仰,转弯时侧倾角合适5)隔声好6)空间尺寸小。
7)传力可靠、质量小、强度和寿命足够。
§6-2 悬架结构形式分析:一、非独立悬架和独立悬架:二、独立悬架结构形式分析:1、评价指标:1)侧倾中心高度:A、侧倾中心:车身在通过左、右车轮中心的横向垂直平面内发生侧倾时,相对于地面的瞬时转动中心,叫侧倾中心。
B、侧倾中心高度:侧倾中心到地面的距离。
C、侧倾中心位置影响:位置高:侧倾中心到质心的距离缩短,侧向力臂和侧倾力矩↓,车身侧倾角↓;过高:车身倾斜时轮距变化大,加速轮胎车轮外倾角α磨损。
2)车轮定位参数:车轮外倾角α,主销内倾角β,主销后倾角γ,车轮前束等会发生变化。
主销后倾角γ变化大→转向轮摆振车轮外倾角α化大→直线行驶稳定性;轮距变化,轮胎磨损3)悬架侧倾角刚度A、车厢侧倾角:车厢绕侧倾轴线转动的角度B、影响:车厢侧倾角与侧倾力矩和悬架总的侧倾角刚度有关,影响操纵稳定性和平顺性4)横向刚度:影响操纵稳定性转向轴上悬架横向刚度小,转向轮易摆振,5)空间尺寸:占用横向尺寸→影响发动机布置和拆装;占用高度尺寸→影响行李箱大小和油箱布置。
汽车悬架设计
《汽车设计》电子教案
8.4 弹性元件的计算
➢8.4.3 螺旋弹簧的计算
螺旋弹簧常用于独立悬架中,它通
常只能承受垂直载荷。螺旋弹簧的主要
尺寸是平均直径D,钢丝直径d 和工作 圈数 n ,如图所示。
设计时先根据行驶平顺性的要求,
确定悬架的静挠度 fc和动挠度 fd,然后
根据导向机构特点选择杆杠比,从而换
根据气囊结构型式不同,空气弹簧可分为囊式、膜式和复合式三 种。囊式又分为单曲式、双曲式和多曲式;与膜式相比,囊式寿命较 长、制造方便,刚度较大,故常用于商用车。
23
《汽车设计》电子教案
8.4 弹性元件的计算
➢8.4.4 空气弹簧和油气弹簧的计算
2. 油气弹簧 油气弹簧是空气弹簧的一种特例,它以气体作为弹性元件,在气 体与活塞之间引入油液作为中间介质。油气弹簧的工作缸由气室和浸 在油液中的阻尼阀组成。 油气弹簧有双气室和两级压力式。
5. 钢板弹簧组装后总成弧高
L2
6.
H0
钢板弹簧强度校核
8R0
1) 汽车紧急制动时
15
《汽车设计》电子教案
8.4 弹性元件的计算
➢8.4.1 钢板弹簧的计算
6. 钢板弹簧强度校核 2) 驱动时
16
《汽车设计》电子教案
8.4 弹性元件的计算
➢8.4.1 钢板弹簧的计算
6. 钢板弹簧强度校核 3) 钢板弹簧卷耳和弹簧销的强度计算 卷耳应力为
8.5 独立悬架导向机构设计
➢8.5.3 双横臂悬架导向机构设计
1.前轮定位参数的变化 表中列出了几种国外乘用车双横臂式独立悬架的一些参数,供设
计时参考。
车牌名称
上臂长A(mm)
下臂长r(mm)
车辆动力学,汽车的操纵稳定性3.
3 汽车的操纵稳定性目录3 汽车的操纵稳定性 03.1 自由刚体运动微分方程 (1)补充知识:自由刚体的运动(摘自《理论力学》上册) (1)(一)建立坐标系 (3)(二)汽车上任一点的运动方程 (5)(三)汽车运动的动力学方程 (8)3.2 线性二自由度汽车运动微分方程及分析 (11)(一)运动微分方程 (11)(二)稳态响应分析 (13)(三)瞬态响应分析 (17)3.3 车厢侧倾分析 (19)(一)车厢的侧倾轴线 (19)(二)悬架的侧倾线刚度 (22)(三)悬架的侧倾角刚度 (25)(四)车厢的侧倾角 (26)(五)车厢侧倾后垂直载荷在左、右侧车轮上的重新分配 (29)(六)车厢侧倾对转向系统的其它影响 (32)3.4 线性三自由度汽车运动微分方程分析 (35)(一)三自由度汽车运动微分方程 (35)(二)稳态响应 (43)(三)瞬态响应 (43)3.5 前轴和转向轮摆振方程 (47)(一)前左轮主销的摆动方程 (47)(二)前右轮主销的摆动方程 (52)(三)前轴绕纵轴的摆动方程 (52)3汽车的操纵稳定性操纵稳定性定义(两个方面):a 、汽车能遵循驾驶员通过转向系及转向车轮给定的方向行驶;b 、当遭遇外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力。
汽车的操纵稳定性是决定高速汽车安全行驶的一个主要性能,也称为“高速车辆的生命线”。
3.1 自由刚体运动微分方程补充知识:自由刚体的运动(摘自《理论力学》上册)工程中,有一些刚体,如飞机、火箭、人造卫星等,它们在空间可以作任意的运动,这样的刚体称为自由刚体。
为了确定自由刚体在空间的位置,取定坐标系oxyz 和与刚体固结的动坐标系0x y z '''',如下图所示。
只要确定了动坐标系的位置,刚体的位置也就确定了。
动坐标系的原点o '是任意选取的,称为基点。
在基点上安上一个始终保持平动的坐标系o ξηζ',则自由刚体的运动可分解为随基点的平动和绕基点的转动。
轻型货车悬架系统的设计
摘要汽车悬架是汽车的车架与车桥或车轮之间的一切传力连接装置的总称,其作用是传递作用在车轮和车架之间的力和力扭,并且缓冲由不平路面传给车架或车身的冲击力,并衰减由此引起的震动,以保证汽车能平顺地行驶。
典型的悬架结构由弹性元件、导向机构以及减震器等组成,个别结构则还有缓冲块、横向稳定杆等。
弹性元件又有钢板弹簧、空气弹簧、螺旋弹簧以及扭杆弹簧等形式,而现代轿车悬架多采用螺旋弹簧和扭杆弹簧,个别高级轿车则使用空气弹簧。
汽车悬架性能是影响汽车行驶平顺性、操纵稳定性和行驶速度的重要因素。
因此,研究汽车振动,设计新型悬架系统,将振动控制到最低水平是提高现代汽车质量的重要措施。
本文研究的主要问题如下:(1)对前、后悬架的结构进行设计,主要是确定减震器的类型。
(2)对悬架的各个尺寸参数进行计算及相关零部件的尺寸进行设计计算。
(3)对减震器和导向机构进行选择计算,确定减震器的类型等。
本文是对轻型货车的前后悬架进行的设计计算,同时兼顾舒适性与运货能力。
关键词:悬架;弹性元件;弹簧;缓冲块;减震ABSTRACTAutomotive vehicle suspension frame and axle or the wheel of all transmission between the general term for connecting devices, and its role is to transfer the role at the wheel and frame and between the torsional force, and uneven pavement from the buffer Biography to the frame or body of the impact, and the attenuation caused by vibration, to ensure the vehicle can travel smoothly. A typical structure of a flexible suspension components, shock absorbers and other agencies, as well as orientation of the individual block structure is also a buffer, such as horizontal Stabilizer. Elastic components and leaf springs, air springs, coil spring, as well as the form of torsion bar spring, and the use of many modern cars suspension coil spring and torsion bar springs, individual car use advanced air springs. Suspension performance is the impact of motor vehicles to motor cars and ride comfort, handling and stability and an important factor in speed. Therefore, the research vehicle vibration, the design of the new suspension system to the minimum level of vibration control is to improve the quality of Hyundai Motor important measures.The main problems discussed in this paper are as follows:(1)Front and rear suspension design of the structure, primarily determine the type of shock absorber.(2)The various dimensions of the suspension parameters were calculated and related parts of the size of the design calculations(3)The guiding mechanism of shock absorber selection calculations to determine the types of shock absorbers.This article is for light goods vehicles, front and rear suspension design and calculation, taking into account the comfort and cargo capacity.Key words:Suspension;Elastic element;Spring;Block buff;Damping目录摘要 (I)Abstract (II)第1章绪论 (1)1.1 汽车悬架概述 (1)1.2我国汽车悬架发展的现状 (2)1.3 研究的背景及意义 (3)1.4 毕业论文研究内容 (4)第2章悬架的结构形式分析及选择 (5)2.1 非独立悬架和独立悬架 (5)2.2 前、后悬架方案的选择 (6)2.3 辅助元件 (6)2.4 本章总结 (7)第3章主要参数的选择 (8)3.1 选择的要求及方法 (8)3.2 悬架的静绕度 (8)3.3 悬架动挠度 (9)3.4 悬架弹性特性 (9)3.5 本章总结 (10)第4章弹性元件的计算 (11)4.1 钢板弹簧的布置方案的选择 (11)4.2 钢板弹簧主要参数的确定 (11)4.2.1 满载弧高 (11)4.2.2钢板弹簧长度L的确定 (12)4.3 钢板弹簧总成在自由状态下的弧高及曲率半径计算 (15)4.4 钢板弹簧的刚度验算 (17)4.5 弹簧的最大应力点及最大应力 (18)4.6 弹簧卷耳和弹簧销的强度核算 (19)4.7螺旋弹簧的设计计算 (21)4.7.1螺旋弹簧形式、材料的选择 (21)4.7.2确定弹簧直径及刚度 (21)4.7.3 其他参数的计算 (22)4.7.4弹簧的校验 (22)4.8 本章总结 (23)第5章减振器的设计计算 (24)5.1 减振器的分类 (24)5. 2 主要性能参数的选择 (24)5.2.1 相对阻尼系数ψ (24)5.2.2 减振器阻尼系数的确定 (25)5.2.3 最大卸荷力的确定 (26)5.3 筒式减振器主要尺寸参数的确定 (26)5.4 本章总结 (27)第6章导向机构的设计 (28)6.1导向机构的布置参数 (28)6.2 麦弗逊式悬架导向机构设计 (29)6.3本章总结 (32)结论 (33)参考文献 (34)致谢 (35)附录 (36)第1章绪论1.1汽车悬架概述悬架由弹性元件、导向装置、减振器、缓冲块和横向稳定器等组成。
汽车设计
(1)双横臂式独立悬架侧倾中心:将上下横臂内外转动点的连线延长,以便得到极点P,并同时获得P点的高度。将P点与车轮接地点N连接即可在汽车轴线上获得侧倾中心W。另外,横臂相互平行的双横臂式独立悬架侧倾中心确定见P201图6-38
(2)麦弗逊式独立悬架侧倾中心:从悬架与车身的固定连接点E作活塞杆运动方向的垂线并将下横臂线延长交于P点。见P点与车轮接地点N的连线交在汽车轴线上交点W机尾侧倾中心。
7.推倒双曲面齿轮和弧齿锥齿轮的传动比公式,并说明其公式中反映出的问题。
1)推导:双曲面齿轮的传动比为 ios=n主/n从=w主/w从,又w功=TΦ可知ios=T从/T主=F2r2/F1r1=r2cosβ2/r1cosβ1。同理可得弧齿锥齿轮的传动比io1=r2/r1。
2)由公式反映的问题:
①当双曲面齿轮与弧齿锥齿轮尺寸相同时,双曲面齿轮传动具有更大的传动比。
地平线;地平面在侧视图和前视图的投影线称为地平线
前轮垂直线:通过左右前轮中心,并垂直于地面的平面,在侧视图上和俯视图上的投影线,称为前轮垂直线
2.前置后驱的优缺点:
优点:轴荷分布合理,因而有利于提高轮胎寿命;前轮不驱动,因而不需要采用等速万向节,有利于减少制造成本;操纵机构简单;采暖机构简单,且管路短供暖效率高;发动机冷却条件好;上坡时因驱动轮上的附着力搭因而爬坡能力强;改装为客货两用车或救护车比较容易;有足够大的行李空间;因变速器与主减速分开,故拆装维修容易;发动机的接近性良好。
(2)为使离合器尺寸不至过搭,减少传动系过载保证操纵轻便,β不宜太大了;当使用条件恶劣,需要拖带挂车时,为提高起步能力,减少离合器滑磨β应选的较大些,汽车总质量越大,β应越大;采用柴油机时,由于工作粗暴,转矩较不平稳,选取的β值应比汽油机大些。双片离合器4.……的β值应大于单片离合器。
悬架侧倾中心名词解释
悬架侧倾中心名词解释
悬架侧倾中心,又称为悬挂系统的侧倾中心,是汽车悬挂系统的一个重要参数。
它是指在车辆转弯或侧向力作用下,车身发生侧倾时,悬挂系统的质心所在的位置。
这个位置对于车辆的操控性能、行驶稳定性和舒适性有着重要的影响。
在汽车悬挂系统中,悬挂部件(如弹簧、减振器等)的质量和分布会影响到悬挂系统的侧倾中心位置。
当车辆行驶在不平整路面上时,车身会发生侧倾,此时悬挂系统的侧倾中心位置对于车辆的稳定性和舒适性起着关键作用。
如果侧倾中心位置设置得当,车辆在行驶过程中能够更好地保持平稳,降低驾驶员的疲劳感,提高行驶安全性。
悬架侧倾中心的设定与车辆的转向特性密切相关。
一般来说,车辆在高速行驶时,需要较小的侧倾角度以保证稳定性;而在低速行驶或急转弯时,较大的侧倾角度有助于提高车辆的操控性能。
因此,悬架侧倾中心的设定需要根据车辆的使用环境和驾驶需求来进行调整。
在实际生产过程中,悬架侧倾中心的设定通常通过调整悬挂部件的质量和分布来实现。
例如,可以通过增加弹簧刚度、改变减振器的阻尼系数或者调整悬挂部件的安装角度等方式来改变悬挂系统的侧倾中心位置。
此外,还可以通过优化车身结构设计,使车身在受到侧向力作用时能够更好地跟随悬挂系统的运动,从
而提高车辆的行驶稳定性和舒适性。
悬架侧倾中心是汽车悬挂系统的一个重要参数,它对于车辆的操控性能、行驶稳定性和舒适性有着重要的影响。
通过对悬架侧倾中心的合理设定和优化,可以有效提高车辆的行驶品质,为驾驶员和乘客带来更好的驾驶体验。
悬架侧倾角刚度
车辆的侧倾角刚度
车辆的侧倾角刚度指侧倾时,单位车厢转 角下,悬架系统给车厢的总恢复力。
K φr dT = dφ r
式中 T--总弹性恢复力矩 φr--车厢侧倾角
可以通过悬架的线刚度来计算侧倾角刚度。
悬架线刚度指车轮保持在地面上,车厢作 垂直运动时,车厢单位位移下悬架给车厢的 总弹性恢复力。 具有非独立悬架的汽车车厢作垂直位移时, 单位车厢位移时所受到的弹性恢复力,就是 弹簧直接作用于车厢的弹性力。因此,悬架 的刚度就是两个弹簧线刚度之和。
非独立悬架的线刚度 Kl=2ks
m kl = 2k s n
2
单横臂独立悬架上车厢的侧倾中心双横臂独立悬架上车厢的侧倾中心车辆的侧倾角刚度车辆的侧倾角刚度指侧倾时单位车厢转角下悬架系统给车厢的总恢复力
悬架的侧倾
侧倾轴线:车厢相对地面转动的瞬时轴线 称为车厢侧倾轴。它与前后轴处的垂直断 面的交点称为前、后侧倾中心。
单横臂独立悬架上车厢的侧倾中心
双横臂独立悬架上车厢的侧倾中心