电力变压器故障分析与诊断
配电变压器的故障分析

配电变压器的故障分析
1、变压器常见故障
配变在送电和运行中,常见的故障和特别现象有:
(1)变压器在经过停运后送电或试送电时,往往发觉电压不正常,如两相高一相低或指示为零;有的新投运变压器三相电压都很高,使部分用电设备因电压过高而烧毁;
(2)高压保险丝熔断送不上电;
(3)雷雨过后变压器送不上电;
(4)变压器声音不正常,如发出“吱吱”或“霹啪”响声;在运行中发出如青蛙“唧哇唧哇”的叫声等;
(5)高压接线柱烧坏,高压套管有严峻破损和闪络痕迹;
(6)在正常冷却状况下,变压器温度失常并且不断上升;
(7)油色变化过甚,油内消失炭质;
(8)变压器发出吼叫声,从平安气道、储油柜向外喷油,油箱及散热管变形、漏油、渗油等。
2、变压器故障分析
2.1从变压器的声音推断故障
(1)缺相时的响声
当变压器发生缺相时,若其次相不通,送上其次相仍无声,送上第三相时才有响声;假如第三相不通,响声不发生变化,和二相时一样。
发生缺相的缘由大致有三方面:①电源缺一相电;②变压器高压保险丝熔断一相;③变压器由于运输不慎,加上高压引线较细,造成振动断线(但未接壳)。
(2)调压分接开关不到位或接触不良
当变压器投入运行时,若分接开关不到位,将发出较大的“啾啾”响声,严峻时造成高压熔丝熔断;假如分接开关接触不良,就会产生稍微的“吱吱”火花放电声,一旦负荷加大,就有可能烧坏分接开关的触头。
遇到这种状况,要准时停电修理。
变压器故障的诊断与修复

变压器故障的诊断与修复在电力系统中,变压器作为一种重要的电气设备,承担着电能的传递和转换的任务。
然而,由于工作环境、设备老化等原因,变压器故障是难以避免的。
为了确保电力系统的安全稳定运行,及时准确地对变压器故障进行诊断与修复至关重要。
本文将介绍变压器常见的故障类型以及相应的诊断与修复方法。
1. 短路故障短路故障是变压器中最常见的故障之一。
它通常是由于绝缘材料受损或绝缘击穿引起的。
当变压器出现短路故障时,首先需要进行外观检查,检查绝缘子是否破裂、线圈是否有明显的烧损迹象。
接下来,可以采用绝缘电阻测试仪对绝缘材料进行测试。
如果绝缘电阻值较低,说明存在绝缘材料损坏的可能性。
修复短路故障时,需要更换损坏的绝缘材料,并进行必要的绝缘处理。
2. 渗漏故障渗漏故障是指变压器绕组之间或绕组与地之间发生的电气连接中断,导致电流“渗漏”到其他部分。
渗漏故障的产生可能是因为绝缘材料老化、绝缘子损坏等原因。
对于渗漏故障的诊断,可以通过红外热像仪对变压器进行扫描,检测具有异常温度的部位,进而确定渗漏故障的位置。
修复渗漏故障时,应根据具体情况进行线圈绝缘修复或绝缘子更换。
3. 过载故障当变压器长时间工作在超过额定容量的载荷下时,可能会导致过载故障。
过载故障主要表现为变压器温升过高、绕组电流异常等。
对于过载故障的诊断,首先需测量变压器的温度和电流,判断是否超过额定值。
另外,还可以对变压器油进行化验分析,检测油中是否存在异常物质。
修复过载故障的方法包括降低负载、增加冷却措施以及维护液压油等。
4. 绕组接地故障变压器绕组接地故障是指绕组中的线圈或导线与地之间发生不正常的电气连接。
这种故障可能会引起变压器的工作异常和安全隐患。
对于绕组接地故障的诊断,可以使用交流电阻测试仪进行测量,找出接地点的位置。
修复绕组接地故障时,需要清除接地点的外部污垢,并进行绝缘处理或更换线圈。
总结:变压器故障的诊断与修复是保证电力系统安全稳定运行的关键。
电力系统变压器的故障诊断分析与解决措施

出长度 ; 对调整引线有困难的 , 可在安装胶珠的各密封 面加 密封胶 : 为 增大压紧力可将瓷质压帽换成铜质压帽 1 . 5阀门渗漏 阀门处 渗油主要是原 因主要是阀门的质 量不过关 . 阀门连 接面 如 比较粗糙 、 薄 , 单 单层 密封 : 因此要解 决阀门渗油首先应严格控制 阀门 质量 , 采用机 械强度高 , 表面光滑 , 转动灵活 , 双面密封 阀 门 , 最好规 定 阀 门 的 型 号 和生 产 厂 家
近年来工业的迅速发展 , 电力供应已成为工业生产 、 国防军事 、 科 时, 出现变形 、 易 散股 、 露铜现象 。采用普通换位导线 时 , 由于 电流大 , 技发展及人民生活中至关重要的因素 人们对能源不问断供应的依赖 换位爬坡 . 该部位会产生较大 的扭矩 . 同时处在绕 组二 端的线饼 . 由于 性 大 大增 加 然 而 . 电力 变 压 器 事 故 时 有 发 生 , 而且 有 增 长 的趋 势 。对 幅向和轴向漏磁场的共同作用 . 也会产生较大的扭矩 , 致使扭曲变形。
一ห้องสมุดไป่ตู้
。
1常 见 故 障及 其诊 断措 施 .
11 压 器 渗 油 .变 变压器渗油不仅为给电力企业带来较大 的经 济损失 、环境污染 . 还 会 影 响 变 压 器 的 安 全 运 行 . 能 造 成 不 必 要 的停 运 甚 至 变 压 器 的 损 可 毁事故 , 电力客户带来生产上的损失竹活上的不便 。 给 因此 . 有必要解 决 变 压 器 渗 漏 没 问 题 1 . 箱 焊 缝 油 2油 对于平面接缝处渗油可直接进行焊接 , 对于拐角加 强筋 连接处渗 油则往往渗漏点查找不准 , 或补焊于内和的原因欠渗漏 对 于这样的 渗点可加用铁板进行补焊 . 两面接处 . 可将铁板裁成纺状进行补 焊 : 三 面连接处 可根据 实际位置将铁板 裁成感 触形进 行补焊 : 该不也适用 于 套管电流互 感器二 次引线 盒拐 角焊缝渗 漏焊接 13高压套管升高座或进入孑 法 兰渗油 . L 这些部 位主要 是由于胶垫安 装不合适 . 运行 中可对法兰进行施胶 密。 封堵前用堵漏胶将法兰之 间缝 隙堵好 . 待堵漏胶完全 固化后 . 出 退 个法 兰紧固螺丝 . 将施胶 枪嘴拧人该 螺丝孔 . 然后用高压将 密封胶 注入法兰 间隙. 直至各法兰螺丝帽有胶挤 出为止 1 . 压 侧 套 管 渗 漏 4低 其原 因是受 母线用伸缩 节连接 : 引线偏短 , 如 可重新调整 引线引
电力变压器常见故障分析

电力变压器常见故障分析电力变压器是电力系统中不可或缺的关键设备,用于改变电压的大小和分配电能。
然而,由于长期运行和恶劣工作环境,电力变压器存在着一些常见的故障。
本文将详细介绍一些常见的电力变压器故障,并分析其原因和解决办法。
首先,变压器的绝缘故障是最常见的故障之一、绝缘故障可能出现在变压器的绕组、绝缘材料和油纸绝缘等部位。
绕组绝缘故障主要是由于电压梯度分布不均匀、绝缘材料老化或受潮等原因引起的。
绝缘材料老化是指长时间工作后,绝缘材料内部的脂肪和油分质量减少,导致绝缘性能下降。
这些故障可能会导致电压击穿、放电和绕组短路等问题。
解决这些故障的方法包括定期检查绝缘材料、加强维护和更换老化材料。
其次,变压器的过载故障也是常见的故障之一、过载故障主要是由于变压器承载的负荷超过了设计容量,导致变压器过热和损坏。
过载故障可能是由于电力系统负荷突然增加、短暂过载或长时间过载引起的。
解决这些故障的方法包括定期监测变压器负荷、合理规划负荷分配、提高变压器的散热能力和增加冷却设备。
第三,变压器的接地故障也是常见的故障之一、接地故障主要是由于变压器绝缘材料破损、接地电流超过额定值或接地导线腐蚀等原因引起的。
接地故障会导致变压器和电力系统的安全性下降,并可能引发火灾和爆炸。
解决这些故障的方法包括定期检查绝缘材料、加强接地电流监测、及时更换绝缘材料和处理腐蚀问题。
另外,变压器的漏油故障也需要关注。
漏油故障可能是由于变压器表面的密封不良、油箱内部的腐蚀或变压器本体的振动等原因引起的。
漏油会导致变压器内部的绝缘材料暴露在空气中,加速绝缘材料老化和绝缘性能下降。
解决这些故障的方法包括定期检查变压器的密封性、及时更换漏油部件和处理油箱腐蚀问题。
最后,变压器的短路故障也是常见的故障之一、短路故障主要是由于绕组间隙的短路、绝缘材料老化或绝缘破损等原因引起的。
短路故障会导致变压器发生严重的电流过载和热升高,并可能引发火灾和爆炸。
解决这些故障的方法包括定期检查绝缘材料、加强绕组绝缘和减少绕组间隙。
变压器运行中的各种异常与故障原因分析报告

变压器运行中的各种异常与故障原因分析报告变压器是电力系统中重要的电气设备,其正常运行对于电力系统的稳定供电至关重要。
然而,在变压器运行过程中,可能会出现各种异常与故障,本文将分析变压器运行中的常见异常与故障原因,并提出相应的解决方案。
1.温度异常温度是变压器正常运行的重要指标,过高或过低的温度都可能导致变压器故障。
温度异常的原因主要包括:(1)绕组过载:当变压器负载超过额定负载时,会导致绕组发热,从而使变压器温度升高。
(2)冷却系统故障:变压器的冷却系统异常工作或故障,如冷却风扇故障、散热器堵塞等,都会导致变压器温度异常升高。
解决方案:(1)合理负载分配:避免变压器过载,根据变压器的额定容量合理分配负载。
(2)定期检查冷却系统:保证变压器冷却系统的正常工作,清洗散热器、检查风扇等。
2.油介质异常油介质是变压器中的重要绝缘材料,其异常可能导致变压器故障。
油介质异常的原因主要包括:(1)氧化:油介质长时间使用或油质不合格,容易出现氧化现象,导致介质失去绝缘能力。
(2)污染:外界杂质或内部绝缘材料老化、变质等原因,会导致油介质污染。
解决方案:(1)定期检测油质:定期检测变压器中油质的氧化程度和污染程度,并及时更换变质的油介质。
(2)加强绝缘材料保护:避免外界杂质进入变压器,并定期检查绝缘材料的老化情况。
3.绕组短路绕组短路是变压器常见的故障之一,主要原因包括:(1)绝缘损坏:绝缘材料老化、绝缘接头松动等情况会导致绕组绝缘损坏。
(2)接线故障:错误的接线或接线松动会导致绕组短路。
解决方案:(1)加强绝缘材料保护:定期检查绝缘材料的老化情况,并及时更换损坏的绝缘材料。
(2)定期检查接线:定期检查绕组的接线情况,确保接线正确紧固。
4.黑烟、火花和爆炸变压器出现黑烟、火花和爆炸等异常情况,可能由以下原因引起:(1)过载:变压器长时间工作于过载状态会导致绕组发热、产生黑烟等。
(2)绝缘损坏:绕组绝缘材料破损、老化等情况可能引起火花和爆炸。
电力变压器典型故障分析及处理

配電變壓器故障的判斷分析及處理摘要:電力變壓器是電力系統中最關鍵的設備之一,它承擔著電壓變換,電能分配和傳輸,並提供電力服務。
在運行中,配電變壓器經常發生故障。
本文針對配電變壓器故障率高這一實際情況,著重分析了配電變壓器常見的故障和異常現象及主要原因,並針對這些故障進行了分析,同時提出了一些具體的防範解決措施,為防止和減少配電變壓故障的發生。
關鍵字:變壓器故障;短路故障;絕緣故障;故障處理。
一、變壓器發生故障的原因1.1、製造工藝存在缺陷。
如設計不合理、材料品質低劣以及加工不精細等。
1.2 、缺乏良好的管理及維護。
如檢修後乾燥處理不充分,安裝不細心,以及由於檢測能力有限導致某些故障未能及時發現而繼續發展或故障設備修復不徹底等。
1.3 、絕緣老化。
變壓器在正常運行中,由於長期受到熱、電、機械應力以及環境因素的影響,會發生一些不可逆的變化過程,使絕緣老化,通常這一過程非常緩慢,但當設備發生某些異常情況時,則會加速絕緣老化過程,迅速形成故障。
1.4 、惡劣的環境和苛刻的運行條件,以及長期超過技術規定允許的範圍運行,往往是直接導致故障的起因。
二、變壓器故障按嚴酷程度分類2.1 、類災難性:變壓器爆炸或完全損壞;2.2 、類致命性:變壓器性能嚴重下降或嚴重受損,必須立即停運;2.3 、類臨界性:變壓器性能輕度下降或輕度受損;2.4 、類輕度性:不甚影響變壓器運行但要進行非計畫檢修。
三、變壓器故障按部位分類分析變壓器故障按部位通常可分為繞組、鐵心、絕緣、引線、分接開關、套管、密封等七類故障。
如下圖所示。
3.1 、繞組故障分析變壓器繞組是變壓器的心臟,構成變壓器輸入,輸出電能的電氣回路,其故障模式可分為:繞組短路、繞組斷路、繞組鬆動、變形、位移、繞組燒損。
其中繞組短路又可分為:層間短路、匝間短路、股間短路等。
變壓器繞組故障除外在因素外,大部分是由於繞組本身結構及絕緣不合理所引起,以繞組短路出現率最高,它不僅影響到繞組本身,而且對鐵心、引線、絕緣層等都有極大的影響。
电力变压器的故障诊断与预测

电力变压器的故障诊断与预测电力变压器(Power Transformer)是电力系统中非常重要的设备,它将高电压输入转换为适用于输送和分配的低电压输出。
然而,由于使用环境、负载变化以及设备老化等原因,电力变压器可能会发生故障,这不仅会造成停电和电力损失,还可能对电力设备和系统造成严重损害。
因此,故障诊断与预测成为电力变压器运行与维护的重要组成部分。
第一章:电力变压器的基本工作原理电力变压器是利用电磁感应的原理工作的。
其基本结构包括主绕组、副绕组、铁芯等元件。
主绕组通过铁芯的磁路连接副绕组,将高电压输入转换为低电压输出。
同时,在变压器中还会存在一些常见的故障类型,例如绝缘老化、绕组短路、接地故障等。
第二章:电力变压器故障诊断方法1. 绝缘状况评估绝缘老化是电力变压器常见的故障类型之一。
通过绝缘状况评估可以了解绝缘系统的健康状况。
对绝缘电阻、介质损耗因数和介质含水率等指标进行测试和分析,可以判断绝缘是否出现问题。
2. 油质分析变压器油中含有大量的信息,通过油质分析可以了解变压器内部是否存在故障。
油中气体的成分和含量、电离度、溶解气体的浓度等指标可以用来判断绝缘状况、放电情况和油的老化程度。
3. 振动测试电力变压器的运行过程中会产生振动,通过振动测试可以检测变压器内部是否存在异常情况。
例如,绕组松动、铁芯变形等故障都可能会引起振动的改变。
第三章:电力变压器故障预测方法1. 温度监测与分析电力变压器的温度是判断其运行状况的重要指标。
通过温度监测装置对变压器不同部位的温度进行实时监测,与历史数据进行对比分析,可以判断变压器内部是否存在过载、接触不良等问题。
2. 红外热像测试红外热像测试是一种无损检测技术,可以检测变压器内部的温度分布情况。
通过红外热像仪对变压器进行扫描,可以找出可能存在的热点,并及时采取措施进行修复,以避免故障的发生。
3. 气体成分分析当电力变压器发生故障时,会产生大量的气体,气体成分分析可以判断故障的类型和程度。
电力变压器故障分析与诊断

电力变压器故障分析与诊断[摘要]电力变压器是电力系统中最关键的设备之一,它承担着电压变换,电能分配和传输,并提供电力服务。
因此,变压器的正常运行是对电力系统安全、可靠、优质、经济运行的重要保证,必须最大限度地防止和减少变压器故障和事故的发生。
但由于变压器长期运行,故障和事故总不可能完全避免,且引发故障和事故又出于众多方面的原因。
如外力的破坏和影响,不可抗拒的自然灾害,安装、检修、维护中存在的问题和制造过程中遗留的设备缺陷等事故隐患,特别是电力变压器长期运行后造成的绝缘老化、材质劣化及预期寿命的影响,已成为发生故障的主要因素。
同时,部分工作人员业务素质不高、技术水平不够或违章作业等,都会造成事故或导致事故的扩大,从而危及电力系统的安全运行……[关键词]电力变压器故障电力系统分析诊断中图分类号:c34 文献标识码:a 文章编号:1009-914x(2013)23-0041-011 变压器故障油浸电力变压器的故障常被分为内部故障和外部故障两种。
内部故障为变压器油箱内发生的各种故障,其主要类型有:各相绕组之间发生的相间短路、绕组的线匝之间发生的匝间短路、绕组或引出线通过外壳发生的接地故障等。
外部故障为变压器油箱外部绝缘套管及其引出线上发生的各种故障,其主要类型有:绝缘套管闪落或破碎而发生的接地<通过外壳)短路,引出线之间发生相间故障等而引起变压器内部故障或绕组变形等。
变压器的内部故障从性质上一般又分为热故障和电故障两大类。
热故障通常为变压器内部局部过热、温度升高。
根据其严重程度,热性故障常被分为轻度过热(一般低于150℃)、低温过热(150—300℃)、中温过热(300~700℃)、高温过热(一般高于700℃)四种故障隋况。
电故障通常指变压器内部在高电场强度的作用下,造成绝缘性能下降或劣化的故障。
根据放电的能量密度不同,电故障又分为局部放电、火花放电和高能电弧放电三种故障类型。
由于变压器故障涉及面较广,具体类型的划分方式较多,如从回路划分主要有电路故障、磁路故障和油路故障。
变压器异常运行分析与故障事故判断检查处理步骤方法

变压器异常运行分析与故障事故判断检查处理步骤方法变压器是电力系统中起着增、降电压功能的重要设备,但由于各种原因,变压器在运行过程中可能会出现异常情况,并可能引发故障事故。
为了保障电力系统的正常运行,需要及时发现并处理变压器的异常运行情况。
下面是变压器异常运行分析与故障事故判断检查处理的步骤方法。
1.观察和记录变压器的运行情况在正常运行期间,以及每次例行检查时,都要观察和记录变压器的运行情况,包括油温、油位、气体指示报警等。
如果发现异常情况,如油温升高、油位下降等,要及时记录下来。
2.分析异常情况出现的原因对于记录下来的异常情况,需要进行分析,找出其可能的原因。
可能的原因包括变压器内部故障、外部故障、负荷过大等。
根据异常情况的特点和记录的时间、工况等信息,找出与之相关的可能原因,并作出初步判断。
3.进行检查和测量根据初步判断的结果,进行详细的检查和测量。
包括变压器内部的绝缘电阻测量、绕组温度测量、油样分析等。
同时,也要检查变压器外部的接线、冷却系统等设备,确保其正常运行。
4.分析检查和测量结果根据检查和测量的结果,进一步分析异常情况的原因。
如果是变压器内部故障,可以根据测量结果来确定具体的故障部位;如果是外部故障,需要查找故障的具体原因,例如是否存在过电压、短路等问题。
5.制定处理措施根据分析的结果,制定相应的处理措施。
对于变压器内部故障,可能需要进行维修或更换故障部件;对于外部故障,可能需要采取相应的措施来避免类似故障的再次发生。
6.定期维护和检修除了对异常情况的处理外,还应该加强对变压器的定期维护和检修。
定期维护包括对变压器的加油、绝缘测试、松紧螺栓检查等;定期检修则是指对变压器进行全面的检修和维护,包括绝缘表面清洗、接地电阻测量等。
7.事故判断和处理当变压器出现严重故障时,需要进行事故判断和处理。
事故判断包括对变压器故障的严重程度进行评估,以确定相应的处理措施。
处理措施可能包括紧急停机、维修、更换等。
分析电力变压器高压试验及故障处理措施

分析电力变压器高压试验及故障处理措施电力变压器是电力系统中不可或缺的重要设备,其安全稳定运行对整个电力系统的运行起着关键作用。
为了确保变压器的安全可靠运行,必须进行高压试验,并且当出现故障时,要能够快速有效地处理。
本文将对电力变压器高压试验及故障处理措施进行分析。
一、电力变压器高压试验1. 高压试验的目的电力变压器高压试验是在制造过程中进行的一项重要测试,其目的是检验变压器绝缘系统的可靠性,以确保变压器在运行过程中不会因绝缘系统问题而造成事故。
2. 高压试验的方法高压试验通常采用交流耐压方法,其步骤如下:(1)检查变压器的绝缘系统,确保无明显缺陷;(2)将高压试验设备接入变压器的绕组上;(3)逐步升高测试电压,持续一定时间,观察变压器的绝缘系统是否能够承受高压;(4)降低测试电压后,检查变压器的绝缘系统是否有损坏。
3. 高压试验的注意事项进行高压试验时,需要注意以下几点:(1)测试设备必须符合国家标准,保证测试的准确性和安全性;(2)在测试过程中,应加强监测,确保变压器绝缘系统能够承受高压;(3)测试完成后,应对变压器的绝缘系统进行全面检查,确保没有损坏。
二、电力变压器故障处理措施1. 变压器内部故障的诊断当电力变压器出现故障时,首先需要进行全面的诊断,以确定故障的具体位置和原因。
通常采用的诊断方法有:(1)观察变压器的外部情况,检查是否有泄漏、异味等异常情况;(2)使用红外热像仪对变压器进行热成像,了解变压器内部是否存在异常热点;(3)对变压器进行遥测监测,分析变压器内部的运行状态;(4)进行变压器的开路和短路测试,通过测试数据分析故障位置和原因。
2. 故障处理措施一旦确定了变压器的故障位置和原因,就需要采取相应的处理措施,以尽快恢复变压器的正常运行。
常见的故障处理措施有:(1)对变压器故障部位进行修复,例如更换绝缘材料、绕组、导线等;(2)对变压器进行继续监测,以确保故障得到了根本性的解决;(3)对变压器进行冷却处理,以缓解故障带来的影响;(4)对变压器进行全面的检修,排查其他潜在的故障隐患。
电力变压器的故障原因及类型分析

电力变压器的故障原因及类型分析电力变压器是电力系统中重要的电气设备,负责实现电能的变换和传输。
然而,由于工作环境的复杂性和设备自身的特点,电力变压器存在着各种故障隐患,如短路、漏电、继电器故障等。
本文将对电力变压器的故障原因及类型进行详细分析。
一、电力变压器故障原因分析:1.设备老化:电力变压器使用时间的增加会导致导线、绝缘材料等部件老化,从而使得设备运行不稳定,容易出现故障。
2.绝缘材料损坏:绝缘材料对于电力变压器的正常运行是十分重要的,但由于环境因素、电弧放电等原因,绝缘材料容易受到损坏,导致电流泄漏或短路现象。
3.过载:如果电力变压器长时间运行在超负荷状态下,会导致变压器内部温度升高,绕组绝缘老化,增加设备故障的风险。
4.短路:短路是电力变压器常见的故障类型之一,主要是由于线圈绝缘破损、外部金属物质侵入导致的。
5.外力损坏:电力变压器常常运行在户外环境,容易受到风雨、倒塌等外力破坏,导致设备故障。
6.继电器故障:继电器是电力变压器中的重要部件之一,用于控制和保护设备。
如果继电器故障,会导致设备无法正常工作,甚至引起短路等严重后果。
二、电力变压器故障类型分析:1.短路故障:短路是电力变压器常见的故障类型,包括区间短路和相间短路。
区间短路主要是由于绕组绝缘老化或外界物体侵入引起的,相间短路多发生在电力系统线路的接地故障。
2.漏电故障:漏电是指电流从设备的外壳或导线泄漏到地面或其他部分,造成电流不平衡和能量损失。
漏电故障可能由绝缘材料破损或电力变压器内部接地故障引起。
3.绝缘损坏故障:绝缘损坏故障主要是指电力变压器绝缘材料发生老化、破损或受到外力损坏,导致电流泄露或短路。
4.过载故障:过载是指电力变压器长时间运行在超负荷状态下,导致设备内部温度升高,绕组绝缘老化,甚至引起火灾等事故。
5.继电器故障:继电器是电力变压器中的重要部件,用于控制和保护设备。
如果继电器发生故障,会导致设备无法正常工作,甚至引起短路等严重后果。
750kV电力变压器内部故障分析诊断与对策

o ea in o a s r e s p rt ft n fm r. o r o Ke r s ta so e ; i h r e a l; n l ss n ig o i ywo d : r n fr r d s ag u t a a y i a d d a n ss m c f
路、 绝缘击穿等 内部短路故障都会造成变压器的严 重损坏 , 研究和预防变压器 内部故障产生 的机理和 原 因, 对提高变压器 的可靠运行具有十分重要的意 义 。通过 分析 事 故发 生 的起 源 和过 程 , 设 备 运行 对 维护单位提供借鉴 , 防止类似事故再次发生 。
d s h r e s e emi e y h e r t ic a g i d tr n d b t r e ai a d t e c u e a e o, n h a s s r
a l z d b i u a ec e k a d r tr e o i n e r t n nay e yst o tg h c eu n d frt d s t g ai . e n he i o T i p p r n r d c s h a p ia in f a t l ic a g h s a e i t u e t e p l t o p ri d s h r e o c o a mo i r g f r h rn f r e . o r e sz d t n f r e s h n t i o e ta so on t m r F rl g - ie r so a a m r ,t e
和返 厂解体检查 , 对故 障原 因进行 了分析 , 笔者针对 局部放
电监测 的应用进行 了介绍 , 出针对大容量变压器可采用局 提 放在线监测 , 提高运行 的可靠性 , 同时对变压器安装 、 运行提 出建议与对策 。 关键词 :变压器 ; 放电故 障; 析诊断 分
电力变压器内部常见故障分析

电力变压器内部常见故障分析电力变压器由一次绕组、二次绕组和铁芯等三个基本部件组成,造成变压器故障的原因主要有:设计制造工艺、包装、运输、装卸、现场安装工艺质量、运行过程的异常状况(过负荷、线路冲击、谐波含量)、遭受雷击、误操作、动物危害、维护管理不当等。
但是,不管什么原因造成的故障,最终还是与其内部结构有关,下面针对变压器不同内部结构的常见故障,分析其主要原因。
一、从绕组的连接方式分析:电力变压器的绕组有螺旋式、连续式、纠结式、纠连式等。
螺旋式线圈因由多根导线并绕,导线排布时难免存在换位现象,制造时由于换位过程需要弯扭导线,易使导线扭伤。
因此采用螺旋式线圈绕组的变压器最常见的故障原因是,绕组线圈换位处导线扭伤导致的匝间绝缘受损,从而造成匝间短路。
多股导线并绕时,若股绝缘损伤,导致股间短路而造成环流。
这类故障均为典型的涉及固体绝缘的过热性故障。
虽然线圈匝间经垫块隔开,但当过热严重时,也可导致匝间短路放电。
连续式线圈由1~4跟导线并绕成若干匝构成一组“线饼”,即线段,段间由垫块支撑构成横向油道。
导线同样需要换位。
若采用多股并绕,则可能造成与螺旋式线圈同样的常见故障。
特别式这种线圈形式因受雷击过电压作用时,纵向电位梯度分布不均匀,端部电位升高,需加静电屏,严重的需加绝缘层。
由于绝缘层的厚度增加导致线圈层间间隙减少,从而造成油道堵塞,引起涉及固体绝缘材料的局部过热故障。
以上两种线圈形式属于老式结构。
螺旋式仅适用于35kV电压等级的变压器,连续式也只适用于35~110kV电压等级的变压器。
现代变压器制造多采用纠结式或纠连式线圈结构。
因其增大了线圈纵向电容,改善了雷击过电压分布,从而可以防止雷击造成的匝间击穿事故。
但是,纠结式线饼间需焊接连线,焊接头较多。
如果连线和段间纠结线接头焊接不良容易造成局部过热,严重的会引起匝间或段间电弧放电事故。
二、从变压器的紧固方式分析:变压器的紧固分为幅向紧固和轴向紧固。
变压器的幅向紧固包括线圈对铁芯紧固和各线圈间的紧固。
变压器的主要故障及诊断方法

变压器的主要故障及诊断方法变压器是电力系统中重要的电气设备,常见故障包括外护套断裂、铁芯过热、绕组短路、油泄漏等。
诊断方法有外观检查、测量测试、热像仪检测、振动分析等。
1.外护套断裂:变压器外护套是保护绝缘结构、减小漏电说等重要部件。
断裂会导致绝缘性能下降,增加漏电风险。
诊断方法可通过外观检查,检查护套是否有破损、龟裂等。
2.铁芯过热:铁芯过热可能导致变压器损耗增大、效率下降。
诊断方法可通过热像仪检测,检查变压器各个部分的温度分布是否均匀,是否有异常热点。
3.绕组短路:绕组短路是变压器最常见的故障之一,可能导致变压器局部过热,甚至引发火灾。
诊断方法可通过绝缘电阻测试,使用万用表或绝缘电阻测试仪,检测各个绕组的电阻值是否符合规定的范围。
4.油泄漏:变压器的油泵漏会导致绝缘性能下降,可能引起火灾和爆炸。
诊断方法可通过外观检查,检查变压器外壳是否有漏油现象,同时进行油质检测,检查油质是否符合规定的质量标准。
5.内部绕组接触不良:内部绕组接触不良会导致电流过大,导致绕组内部短路或过热。
诊断方法可通过振动分析,使用振动检测仪检测变压器振动情况,判断是否存在内部接触不良的问题。
6.内部绝缘老化:内部绝缘老化会导致绝缘性能下降,增加漏电风险。
诊断方法可通过绝缘电阻测试和局部放电检测,检测绝缘电阻和局部放电情况,判断是否存在内部绝缘老化的问题。
7.外部绕组污秽:外部绕组污秽会导致绝缘性能下降,增大漏电风险。
诊断方法可通过外观检查、局部放电检测和环氧树脂视灯检测,检查绕组是否有污秽现象。
总之,变压器的主要故障包括外护套断裂、铁芯过热、绕组短路、油泄漏、内部绕组接触不良、绝缘老化和外部绕组污秽等。
诊断方法有外观检查、测量测试、热像仪检测、振动分析、绝缘电阻测试、局部放电检测等。
通过及时的诊断和维修,可以预防变压器故障的发生,确保电力系统安全稳定运行。
电力变压器常见故障分析与处理

电力变压器常见故障分析与处理
1.短路故障
短路故障是电力变压器常见的故障之一、导致短路故障的原因包括绝缘损坏、绝缘材料老化、绝缘油失效等。
在检测到短路故障时,首先应立即切断对应的电源,并对变压器进行检修。
具体处理方法包括替换损坏的绕组,更换绝缘材料,检查和更换变压器内部各种连接器和导体,确保绝缘材料和绝缘油的质量符合要求。
2.过载故障
过载故障是由于变压器负荷超过额定容量而引起的。
过载故障可能会导致电压降低、温升过高,严重时甚至会引发变压器内部零件损坏。
处理过载故障的方法包括调整负荷,合理规划负荷分布,增加变压器容量等。
3.绝缘老化
绝缘老化是电力变压器常见的故障之一、绝缘老化可能是由于使用时间长、操作不当、环境恶劣等原因引起的。
当发现绝缘老化时,需要进行绝缘测试,评估其绝缘程度,根据测试结果决定是否需要更换绝缘材料。
此外,还应注意提高变压器的运行环境,加强绝缘材料的保养和维护。
4.变压器油污染
变压器油污染是由于变压器内部绝缘油受到污染引起的。
污染物可能是水分、固体颗粒、氧化物等。
油污染会导致变压器绝缘能力下降,甚至引发绝缘击穿。
处理油污染的方法包括定期检查油质量,定期更换变压器内部绝缘油,保持变压器内部清洁等。
5.异常噪声
总之,针对电力变压器的常见故障,及时发现并采取相应的处理措施
是非常重要的。
通过定期维护、检查和测试,保持变压器设备的良好状态,可以提高电力系统的运行可靠性,保障供电质量。
同时,还应加强对变压
器的监测和维护,以提前发现和处理潜在故障,减少停电事故的发生。
电力变压器的故障分析与诊断

一般用单臂电桥测量,1 欧以下的则用双臂电桥
测量。在线圈温度稳定的情况下进行测量,要求
变压器油箱上、下部的温度之差不超过 39 在 C,
电流稳定后读数。减少试验回路中的导线接触
电阻。
2. 4 铁芯故障
铁芯故障原因是铁芯柱的穿心螺杆或铁轮的
收稿 日期 : 2005 - 9 一 12
3. 2
测最结果 引起变压器线圈电阻值超出规范要求的因素
第 34 卷 2006 年 2 月
云 南
电 力 技
术
Vol. 34 No. 1
Fe b . 20 0 6
YUNNAN E LE CTRIC POW ER
电力变压 器 的故 障分析 与诊 断
蒋 媛
( 云南电网 公司昆明供电局,云南 昆明 650000 ) 摘要: 介绍了电力变压器运行中 几种常见故障的类型及诊断方法。
20
年第 1 期
云南电力技术
第 34 卷
很多,在测渐增加到 3,故
接线错误、引线电阻及其接线电阻过大、变压器 充电时间短、电桥的电压不足等; 变压器本身则
有分接头接触不好、线圈或引线焊接不良、断裂、
障可能是悬浮电位体的连续火花放电或固体材料 之间油的击穿。
脱气和测量两个过程。矿物油是由大约2871 种液 态碳氢化合物组成的, 通常只鉴别绝缘油中的氢 气 ( H2 ) , 氧 气 ( 02 ) , 氮 气 ( N2 ) 、甲烷 (CH4) 、一氧化碳 ( CO) 、乙烷 ( CZ ) 、二氧 CA H。 化碳 ( CO, ) 、乙烯 ( CA ) 、乙炔 ( CA ) 9 种 气体,将这些气体从油中脱出并经分析证明它们 的存在及含量,即可反映出产生这些气体的故障
气空腔中的放电,这种空腔是由于不完全浸渍、
电力变压器常见故障的分析与处理

电力变压器常见故障的分析与处理首先,我们来介绍变压器常见的故障类型:1.短路故障:变压器的短路故障主要分为内部短路和外部短路两种情况。
内部短路主要由绕组短路引起,通常是由于绕组绝缘老化、绝缘油泄漏、绝缘介质破损等原因造成的;外部短路则是指将变压器高低压绕组的导体直接短接在一起,通常会导致电流过大,引起设备损坏。
2.绕组断线故障:由于绕组的振动或受力过大,会导致绕组内部的导线断裂。
绕组断线故障通常由于工作条件不良、电流过载等原因引起,会影响变压器的正常运行。
3.绝缘老化故障:绝缘老化故障主要是由于使用时间较长、环境条件恶劣、维护不当等原因导致的。
绝缘老化会降低绝缘性能,容易导致绕组短路和绝缘击穿等故障。
4.冷却系统故障:冷却系统故障主要包括冷却水泄漏、冷却水循环不畅等问题。
如果冷却系统故障,会导致变压器温度升高,从而影响正常运行,甚至引发火灾等事故。
面对以上故障,我们可以采取以下处理措施:1.短路故障处理:-对于内部短路,可以通过检查绕组绝缘状况,修复或更换受损绝缘,加强绝缘维护管理,定期进行绝缘试验等方式来解决。
-对于外部短路,要找到导致短路的原因,及时修复或更换故障设备,并增加保护装置,防止类似故障再次发生。
2.绕组断线故障处理:-对于绕组断线,可以通过检测绕组导线的连接状态,修复或重新焊接断线处,注意绕组的振动和受力情况,减少电流过载等方式来防止此类故障。
3.绝缘老化故障处理:-对于绝缘老化,可以定期进行绝缘试验,及时更换老化绝缘材料,增加绝缘强度,加强绝缘材料的保护,提高设备的绝缘性能。
4.冷却系统故障处理:-对于冷却系统故障,要定期检查冷却系统的运行状态,检测冷却水的流量和温度,修复泄漏,清洗管道,确保冷却系统的正常运行。
此外,对于电力变压器的故障,还需要注意以下几点:-做好设备的定期检修和维护,及时发现潜在故障并加以处理;-加强绝缘保护,保持绝缘状况的良好;-增加防护装置,如差动保护装置、过流保护装置等,以保护设备安全运行;-对于严重故障,如变压器的主绕组短路或绝缘击穿等,在确保安全的前提下,进行及时维修或更换。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力变压器故障分析与诊断摘要:电力变压器是电力系统中最关键的设备之一,它承担着电压变换,电能分配和传输,并提供电力服务。
因此,变压器的正常运行是对电力系统安全、可靠、优质、经济运行的重要保证,必须最大限度地防止和减少变压器故障和事故的发生。
但由于变压器长期运行,故障和事故总不可能完全避免,且引发故障和事故又出于众多方面的原因。
如外力的破坏和影响,不可抗拒的自然灾害,安装、检修、维护中存在的问题和制造过程中遗留的设备缺陷等事故隐患,特别是电力变压器长期运行后造成的绝缘老化、材质劣化及预期寿命的影响,已成为发生故障的主要因素。
同时,部分工作人员业务素质不高、技术水平不够或违章作业等,都会造成事故或导致事故的扩大,从而危及电力系统的安全运行……关键词:电力变压器故障电力系统分析诊断第一章变压器故障油浸电力变压器的故障常被分为内部故障和外部故障两种。
内部故障为变压器油箱内发生的各种故障,其主要类型有:各相绕组之间发生的相问短路、绕组的线匝之间发生的匝问短路、绕组或引出线通过外壳发生的接地故障等。
外部故障为变压器油箱外部绝缘套管及其引出线上发生的各种故障,其主要类型有:绝缘套管闪络或破碎而发生的接地由于变压器故障涉及面较广,具体类型的划分方式较多,如从回路划分主要有电路故障、磁路故障和油路故障。
若从变压器的主体结构划分,可分为绕组故障、铁心故障、油质故障和附件故障。
同时习惯上对变压器故障的类型一般是根据常见的故障易发区位划分,如绝缘故障、铁心故障、分接开关故障等。
而对变压器本身影响最严重、目前发生机率最高的又是变压器出口短路故障,同时还存在变压器渗漏故障、油流带电故障、保护误动故障等等。
所有这些不同类型的故障,有的可能反映的是热故障,有的可能反映的是电故障,有的可能既反映过热故障同时又存在放电故障,而变压器渗漏故障在一般情况下可能不存在热或电故障的特征。
因此,很难以某一范畴规范划分变压器故障的类型,本书采用了比较普遍和常见的变压器短路故障、放电故障、绝缘故障、铁心故障、分接开关故障、渗漏油气故障、油流带电故障、保护误动故障等八个方面,按各自故障的成因、影响、判断方法及应采取的相应技术措施等,分别进行描述。
第一节短路故障变压器短路故障主要指变压器出口短路,以及内部引线或绕组间对地短路、及相与相之间发生的短路而导致的故障。
变压器正常运行中由于受出口短路故障的影响,遭受损坏的情况较为严重。
据有关资料统计,近年来,一些地区110kV及以上电压等级的变压器遭受短路故障电流冲击直接导致损坏的事故,约占全部事故的50%以上,与前几年统计相比呈大幅度上升的趋势。
这类故障的案例很多,特别是变压器低压出口短路时形成的故障一般要更换绕组,严重时可能要更换全部绕组,从而造成十分严重的后果和损失,因此,尤应引起足够的重视。
出口短路对变压器的影响,主要包括以下两个方面。
1.短路电流引起绝缘过热故障变压器突发短路时,其高、低压绕组可能同时通过为额定值数十倍的短路电流,它将产生很大的热量,使变压器严重发热。
当变压器承受短路电流的能力不够,热稳定性差,会使变压器绝缘材料严重受损,而形成变压器击穿及损毁事故。
变压器发生出口短路时,短路电流的绝对值表达式为(1-1)式中(n)——短路类型的角标;——比例系数,其值与短路类型有关;——所求短路类型的正序电流绝对值。
不同类型短路的正序电流绝对值表达式为(1-2)式中E——故障前相电压Xl——等值正序阻抗——附加阻抗。
变压器的出口短路主要包括:三相短路、两相短路、单相接地短路和两相接地短路等几种类型。
据资料统计表明,在中性点接地系统中,单相接地短路约占全部短路故障的65%,两相短路约占10%~15%,两相接地短路约占15%一20%,三相短路约占5%,其中以三相短路时的短路电流值最大,国标GBl094〃5--85中就是以三相短路电流为依据的。
忽略系统阻抗对短路电流的影响,则三相短路表达式为(1-3)式中/5;’I三相短路电流;U-变压器接人系统的额定电压Zt-变压器短路阻抗;IN-变压器额定电流;UN-变压器短路电压百分数。
对220kV三绕组变压罪而言,高压对中、低压的短路阻抗一般在10%一30%之间,中压对低压的短路阻抗一般在10%以下,因此变压器发生短路故障时,强大的短路电流致使变压器绝缘材料受热损坏。
2.短路电动力引起绕组变形故障变压器受短路冲击时,如果短路电流小,继电保护正确动作,绕组变形将是轻微的;如果短路电流大,继电保护延时动作甚至拒动,变形将会很严重,甚至造成绕组损坏。
对于轻微的变形,如果不及时检修,恢复垫块位臵,紧固绕组的压钉及铁轭的拉板、拉杆,加强引线的夹紧力,在多次短路冲击后,由于累积效应也会使变压器损坏。
因此诊断绕组变形程度、制订合理的变压器检修周期是提高变压器抗短路能力的一项重要措施。
绕组受力状态如图1—1、图1—2所示。
由于绕组中漏磁中。
的存在,载流导线在漏磁作用下受到电动力的作用,特别是在绕组突然短路时,电动力最严重。
漏磁通常可分解为纵轴分量月和横轴分量月,。
纵轴磁场月使绕组产生辐向力,而横轴磁场月〃使绕组受轴向力。
轴向力使整个绕组受到张力P1,在导线中产生拉伸应力。
而内绕组受到压缩力P2,导线受到挤压应力。
图1—1变压器绕组漏磁及受力示意图图l—2变压器绕组受力分析图轴向力的产生分为两部分,一部分是由于绕组端部漏磁弯曲部分的辐向分量与载流导体作用而产生。
它使内、外绕组都受压力:由于绕组端部磁场B’最大因而压力也最大,但中部几乎为零,绕组的另一端力的方向改变。
轴向力的另一部分是由于内外安匝不平衡所产生的辐向漏磁与载流导体作用而产生,该力使内绕组受压,外绕组受拉;安匝不平衡越大,该轴向力也越大。
因此,变压器绕组在出口短路时,将承受很大的轴向和辐向电动力。
轴向电动力使绕组向中间压缩,这种由电动力产生的机械应力,可能影响绕组匝间绝缘,对绕组的匝间绝缘造成损伤;而辐向电动力使绕组向外扩张,可能失去稳定性,造成相间绝缘损坏。
电动力过大,严重时可能造成绕组扭曲变形或导线断裂。
对于由变压器出口短路电动力造成的影响,判断主变压器绕组是否变形,过去只采取吊罩检查的方法,目前一些单位采用绕组变形测试仪进行分析判断,取得了一些现场经验,如有些地区选用TDT—1型变压器绕组变形测试仪进行现场测试检查,通过对主变压器的高、中、低压三相的九个绕组分别施加l0kHz至lkHz高频脉冲,由计算机记录脉冲波形曲线并储存。
通过彩色喷墨打印,将波形绘制出图,显示正常波形与故障后波形变化的对比和分析,试验人员根据该仪器特有的频率和波形,能比较科学地准确判断主变压器绕组变形情况。
对于变压器的热稳定及动稳定,在给定的条件下,仍以设计计算值为检验的依据,但计算值与实际值究竟有无误差,尚缺少研究与分析,一般情况下是以设计值大于变压器实际承受能力为准的。
目前逐步开展的变压器突发短路试验,将为检验设计、工艺水平提供重要的依据。
变压器低压侧发生短路时,所承受的短路电流最大,而低压绕组的结构一般采用圆筒式或螺旋式多股导线并绕,为了提高绕组的动稳定能力,绕组内多采用绝缘纸筒支撑,但有些厂家仅考虑变压器的散热能力,对于其动稳定,则只要计算值能够满足要求,便将支撑取消,于是当变压器遭受出口短路时,由于动稳定能力不足,而使绕组变形甚至损坏。
3.绕组变形的特点通过检查发生故障或事故的变压器进行和事后分析,发现电力变压器绕组变形是诱发多种故障和事故的直接原因。
一旦变压器绕组已严重变形而未被诊断出来仍继续运行,则极有可能导致事故的发生,轻者造成停电,重者将可能烧毁变压器。
致使绕组变形的原因,主要是绕组机械结构强度不足、绕制工艺粗糙、承受正常容许的短路电流冲击能力和外部机械冲击能力差。
因此变压器绕组变形主要是受到内部电动力和外部机械力的影响,而电动力的影响最为突出,如变压器出口短路形成的短路冲击电流及产生的电动力将使绕组扭曲、变形甚至崩溃。
(1)受电动力影响的变形。
1)高压绕组处于外层,受轴向拉伸应力和辐向扩张应力,使绕组端部压钉松动、垫块飞出,严重时,铁轭夹件、拉板、紧固钢带都会弯曲变形,绕组松弛后使其高度增加。
2)中、低压绕组的位臵处于内柱或中间时,常受到轴向和辐向压缩力的影响,使绕组端部紧固压钉松动,垫块位移;匝间垫块位移,撑条倾斜,线饼在辐向上呈多边形扭曲。
若变形较轻,如35kv线饼外圆无变形,而内圆周有扭曲,在辐向上向内突出,在绕组内衬是软纸筒时这种变形特别明显。
如果变压器受短路冲击时,继电保护延时动作超过2s,变形更加严重,线饼会有较大面积的内凹、上翘现象。
测量整个绕组时往往高度降低,如果变压器继续投运,变压器箱体振动将明显增大。
3)绕组分接区、纠接区线饼变形。
这是由于分接区和纠接区(一般在绕组首端)安匝不平衡,产生横向漏磁场,使短路时线饼受到的电动力痹积常区要大得多,所以易产生变形和损坏。
特别是分接区线饼,受到有载分接开关造成的分接段短路故障时,绕组会变形成波浪状,而影响绝缘和油道的通畅。
4)绕组引线位移扭曲。
这是变压器出口短路故障后常发生的情况,由于受电动力的影响,破坏了绕组引线布臵的绝缘距离。
如引线离箱壁距离太近,会造成放电,引线间距离太近,因摩擦而使绝缘受损,会形成潜伏性故障,并可能发展成短路事故。
(2)受机械力影响的变形。
变压器绕组整体位移变形。
这种变形主要是在运输途中,受到运输车辆的急刹车或运输船舶撞击晃动所致。
据有关报道,变压器器身受到大于3g(g为重力加速度)重力加速的冲击,将可能使线圈整体在辐向上向一个方向明显位移。
4.技术改进和降低短路事故的措施基于上述,为防止绕组变形,提高机械强度,降低短路事故率,些制造厂家和电力用户提出并采取了如下技术改进措施及减少短路事故的措施。
(1)技术改进措施。
1)电磁计算方面。
在保证性能指标、温升限值的前提下,综合考虑短路时的动态过程。
从保证绕组稳定性出发,合理选择撑条数、导线宽厚比及导线许用应力的控制值,在进行安匝平衡排列时根据额定分接和各级限分接情况整体优化,尽量减小不平衡安匝。
考虑到作用在内绕组上的轴向内力约为外绕组的两倍,因此尽可能使作用在内绕组上的轴向外力方向与轴向力的方向相反。
2)绕组结构方面。
绕组是产生电动力又直接承受电动力的结构部件,要保证绕组在短路时的稳定性,就要针对其受力情况,使绕组在各个方向有牢固的支撑。
具体做法如在内绕组内侧设臵硬绝缘筒,绕组外侧设臵外撑条,并保证外撑条可靠地压在线段上。
对单螺旋低压绕组首末端均端平一匝以减少端部漏磁场畸变。
对等效轴向电流大的低压和调压绕组,针对其相应的电动力,采取特殊措施固定绕组出头,并在出头位臵和换位处采用适形的垫块,以保证绕组稳定性。
3)器身结构方面。
器身绝缘是电动力传递的中介,要保证在电动力作用下,各方向均有牢固的支撑和减小相关部件受力时的压强。