组合数学第五版答案

合集下载

组合数学第五版答案

组合数学第五版答案

组合数学第五版答案简介《组合数学第五版答案》是对组合数学第五版的习题答案进行整理和解答的参考资料。

组合数学是一门研究集合之间的组合方式和规律的数学科学。

它广泛应用于计算机科学、统计学、运筹学等领域,在算法设计、图论分析等方面有着重要的应用价值。

本文档包含了《组合数学第五版》中各章节的习题答案,主要内容涵盖了排列组合、图论、生成函数、递推关系、容斥原理等多个重要主题。

通过对这些习题的解答,可以帮助读者更好地理解组合数学的基本概念、方法和应用。

目录•第一章:基本概念和方法•第二章:排列组合•第三章:图论•第四章:生成函数•第五章:递推关系•第六章:容斥原理第一章:基本概念和方法1.习题1:证明排列的总数为n! (阶乘)。

2.习题2:计算组合数C(n, m)的值。

3.习题3:探究组合数的性质并给出证明。

第二章:排列组合1.习题1:计算排列数P(n, m)的值。

2.习题2:解决带有限制条件的排列问题。

第三章:图论1.习题1:证明图论中的握手定理。

2.习题2:解决图的着色问题。

第四章:生成函数1.习题1:利用生成函数求解递推关系。

2.习题2:应用生成函数解决组合数学问题。

第五章:递推关系1.习题1:求解递推关系的通项公式。

2.习题2:应用递推关系解决实际问题。

第六章:容斥原理1.习题1:理解容斥原理的基本思想并给出证明。

2.习题2:应用容斥原理解决计数问题。

结论通过对《组合数学第五版答案》中的习题进行解答,读者可以更好地掌握组合数学的基本概念和方法。

组合数学在计算机科学、统计学、运筹学等领域具有广泛的应用,通过学习和理解组合数学,读者可以提高解决实际问题的能力,并为进一步深入研究相关领域打下坚实的基础。

注:本文档中的习题答案仅供参考,请读者在独立思考和解答问题时加以思考和验证,以深入理解组合数学的核心概念和方法。

Richard组合数学第5版-第5章课后习题答案(英文版)

Richard组合数学第5版-第5章课后习题答案(英文版)

Richard组合数学第5版-第5章课后习题答案(英⽂版)Math475Text:Brualdi,Introductory Combinatorics5th Ed. Prof:Paul TerwilligerSelected solutions for Chapter51.For an integer k and a real number n,we shown k=n?1k?1+n?1k.First assume k≤?1.Then each side equals0.Next assume k=0.Then each side equals 1.Next assume k≥1.RecallP(n,k)=n(n?1)(n?2)···(n?k+1).We haven k=P(n,k)k!=nP(n?1,k?1)k!.n?1 k?1=P(n?1,k?1)(k?1)!=kP(n?1,k?1)k!.n?1k(n?k)P(n?1,k?1)k!.The result follows.2.Pascal’s triangle begins111121133114641151010511615201561172135352171182856705628811936841261268436911104512021025221012045101···13.Let Z denote the set of integers.For nonnegative n∈Z de?ne F(n)=k∈Zn?kk.The sum is well de?ned since?nitely many summands are nonzero.We have F(0)=1and F(1)=1.We show F(n)=F(n?1)+F(n?2)for n≥2.Let n be /doc/6215673729.htmling Pascal’s formula and a change of variables k=h+1,F(n)=k∈Zn?kk=k∈Zn?k?1k?1=k∈Zn?k?1k+h∈Zn?h?2h=F(n?1)+F(n?2).Thus F(n)is the n th Fibonacci number.4.We have(x+y)5=x5+5x4y+10x3y2+10x2y3+5xy4+y5and(x+y)6=x6+6x5y+15x4y2+20x3y3+15x2y4+6xy5+y6.5.We have(2x?y)7=7k=07k27?k(?1)k x7?k y k.6.The coe?cient of x5y13is35(?2)13 185.The coe?cient of x8y9is0since8+9=18./doc/6215673729.htmling the binomial theorem,3n=(1+2)n=nk=0nSimilarly,for any real number r,(1+r)n=nk=0nkr k./doc/6215673729.htmling the binomial theorem,2n=(3?1)n=nk=0(?1)knk3n?k.29.We haven k =0(?1)k nk 10k =(?1)n n k =0(?1)n ?k n k 10k =(?1)n (10?1)n =(?1)n 9n .The sum is 9n for n even and ?9n for n odd.10.Given integers 1≤k ≤n we showk n k =n n ?1k ?1.Let S denote the set of ordered pairs (x,y )such that x is a k -subset of {1,2,...,n }and yis an element of x .We compute |S |in two ways.(i)To obtain an element (x,y )of S there are n k choices for x ,and for each x there are k choices for y .Therefore |S |=k n k .(ii)Toobtain an element (x,y )of S there are n choices for y ,and for each y there are n ?1k ?1 choices for x .Therefore |S |=n n ?1k ?1.The result follows.11.Given integers n ≥3and 1≤k ≤n .We shown k ? n ?3k = n ?1k ?1 + n ?2k ?1 + n ?3k ?1.Let S denote the set of k -subsets of {1,2,...,n }.Let S 1consist of the elements in S thatcontain 1.Let S 2consist of the elements in S that contain 2but not 1.Let S 3consist of the elements in S that contain 3but not 1or 2.Let S 4consist of the elements in S that do|S |= n k ,|S 1|= n ?1k ?1 ,|S 2|= n ?2k ?1 ,|S 3|= n ?3k ?1 ,|S 4|= n ?3k .The result follows.12.We evaluate the sumnk =0(?1)k nk 2.First assume that n =2m +1is odd.Then for 0≤k ≤m the k -summand and the (n ?k )-summand are opposite.Therefore the sum equals 0.Next assume that n =2m is even.Toevaluate the sum in this case we compute in two ways the the coe?cient of x n in (1?x 2)n .(i)By the binomial theorem this coe?cient is (?1)m 2m m .(ii)Observe (1?x 2)=(1+x )(1?x ).We have(1+x )n =n k =0n k x k,(1?x )n =n k =0nk (?1)k x k .3By these comments the coe?cient of x n in(1?x2)n isn k=0nn?k(?1)knk=nk=0(?1)knk2.2=(?1)m2mm.13.We show that the given sum is equal ton+3k .The above binomial coe?cient is in row n+3of Pascal’s /doc/6215673729.htmling Pascal’s formula, write the above binomial coe?cient as a sum of two binomial coe?ents in row n+2of Pascal’s triangle.Write each of these as a sum of two binomial coe?ents in row n+1of Pascal’s triangle.Write each of these as a sum of two binomial coe?ents in row n of Pascal’s triangle.The resulting sum isn k+3nk?1+3nk?2+nk?3.14.Given a real number r and integer k such that r=k.We showr k=rr?kr?1k.First assume that k≤?1.Then each side is0.Next assume that k=0.Then each side is 1.Next assume that k≥1.ObserverP(r?1,k?1)k!,andr?1k=P(r?1,k)k!=(r?k)P(r?1,k?1)k!.The result follows.15.For a variable x consider(1?x)n=nk=0nk(?1)k x k.4Take the derivative with respect to x and obtain n(1x)n1=nk=0nk(?1)k kx k?1.Now set x=1to get(?1)k k.The result follows.16.For a variable x consider(1+x)n=nk=0nkx k.Integrate with respect to x and obtain(1+x)n+1 n+1=nk=0nkx k+1k+1+Cfor a constant C.Set x=0to?nd C=1/(n+1).Thus (1+x)n+1?1n+1=nk=0nkx k+1k+1.Now set x=1to get2n+1?1 n+1=k+1.17.Routine.18.For a variable x consider(x?1)n=nk=0nk(?1)n?k x k.Integrate with respect to x and obtain(x?1)n+1 n+1=nk=0nk(?1)n?kx k+1k+1+Cfor a constant C.Set x=0to?nd C=(?1)n+1/(n+1).Thus (x?1)n+1?(?1)n+1n+1=nk=0nk(?1)n?kx k+1k+1Now set x =1to get(?1)n n +1=n k =0n k(?1)n ?k 1k +1.Therefore1n +1=n k =0 n k (?1)k 1k +1 .19.One readily checks2 m 2 + m 1=m (m ?1)+m =m 2.Therefore n k =1k 2=nk =0k 2=2nk =0 k 2 +n k =0k1=2 n +13 +n +12 =(n +1)n (2n +1)6.20.One readily checksm 3=6 m 3 +6 m 2 + m1.Thereforen k =1k3=n=6nk =0 k3+6n k =0 k2 +n k =0k1 =6 n +14 +6 n +13 +n +12 =(n +1)2n 24= n +12 2.621.Given a real number r and an integer k .We showrk=(?1)kr +k ?1k .First assume that k <0.Then each side is zero.Next assume that k ≥0.Observe r k =(r )(r 1)···(r k +1)k !=(?1)kr (r +1)···(r +k ?1)k !=(?1)kr +k ?1k.22.Given a real number r and integers k,m .We showr m m k = r k r ?km ?k.First assume that mObserver m m k =r (r ?1)···(r ?m +1)m !m !k !(m ?k )!=r (r ?1)···(r ?k +1)k !(r ?k )(r ?k ?1)···(r ?m +1)(m ?k )!= r k r ?k m ?k .23.(a) 2410.(b) 94 156.(c) 949363.(d)94156949363.24.The number of walks of length 45is equal to the number of words of length 45involving10x ’s,15y ’s,and 20z ’s.This number is45!10!×15!×20!.725.Given integers m 1,m 2,n ≥0.Shown k =0m 1k m 2n ?k = m 1+m 2n .Let A denote a set with cardinality m 1+m 2.Partition A into subsets A 1,A 2with cardinalitiesm 1and m 2respectively.Let S denote the set of n -subsets of A .We compute |S |in two ways.(i)By construction|S |= m 1+m 2n .(ii)For 0≤k ≤n let the set S k consist of the elements in S whose intersection with A 1has cardinality k .The sets {S k }n k =0partition S ,so |S |= nk =0|S k |.For 0≤k ≤n we now compute |S k |.To do this we construct an element x ∈S k via the following 2-stage procedure: stage to do #choices 1pick x ∩A 1 m 1k2The number |S k |is the product of the entries in the right-most column above,which comes to m 1k m 2n ?k .By these comments |S |=n k =0m 1k m 2n ?k .The result follows.26.For an integer n ≥1shown k =1 n k n k ?1 =12 2n +2n +1 ? 2n n .Using Problem 25,n k =1 n k nk ?1 =n k =0n k n k ?1 =n k =0n k nn +1?k =2n n +1 =12 2n n ?1 +12 2n n +1.8It remains to show12 2nn ?1 +12 2n n +1 =12 2n +2n +1 ? 2n n.This holds since2n n ?1 +2 2n n + 2n n +1 = 2n +1n +2n +1n +1= 2n +2n +1.27.Given an integer n ≥1.We shown (n +1)2n ?2=nk =1Let S denote the set of 3-tuples (s,x,y )such that s is a nonempty subset of {1,2,...,n }and x,y are elements (not necessarily distinct)in s .We compute |S |in two ways.(i)Call an element (s,x,y )of S degenerate whenever x =y .Partition S into subsets S +,S ?with S +(resp.S ?)consisting of the degenerate (resp.nondegenerate)elements of S .So |S |=|S +|+|S ?|.We compute |S +|.To obtain an element (s,x,x )of S +there are n choices for x ,and given x there are 2n ?1choices for s .Therefore |S +|=n 2n ?1.We compute |S ?|.To obtain an element (s,x,y )of S ?there are n choices for x,and given x there are n ?1choices for y ,and given x,y there are 2n ?2choices for s .Therefore |S ?|=n (n ?1)2n ?2.By these comments|S |=n 2n ?1+n (n ?1)2n ?2=n (n +1)2n ?2.(ii)For 1≤k ≤n let S k denote the set of elements (s,x,y )in S such that |s |=k .Thesets {S k }nk =1give a partition of S ,so |S |= n k =1|S k |.For 1≤k ≤n we compute |S k |.To obtain an element (s,x,y )of S k there are n k choices for s ,and given s there are k 2ways to choose the pair x,y .Therefore |S k |=k 2 nk .By these comments|S |=n k =1k 2 n k .The result follows.28.Given an integer n ≥1.We shown k =1k n k 2=n 2n ?1n ?1 .Let S denote the set of ordered pairs (s,x )such that s is a subset of {±1,±2,...,±n }andx is a positive element of s .We compute |S |in two ways.(i)To obtain an element (s,x )of S There are n choices for x ,and given x there are 2n ?1n ?1 choices for s .Therefore|S |=n 2n ?1n ?1.9(ii)For1≤k≤n let S k denote the set of elements(s,x)in S such that s contains exactlyk positive elements.The sets{S k}nk=1partition S,so|S|=nk=1|S k|.For1≤k≤nwe compute|S k|.To obtain an element(s,x)of S k there are nkways to pick the positiveelements of s and nn?kways to pick the negative elements of s.Given s there are kways to pick x.Therefore|S k|=k nk2.By these comments |S|=nk=1knk2.The result follows.29.The given sum is equal tom2+m2+m3n .To see this,compute the coe?cient of x n in each side of(1+x)m1(1+x)m2(1+x)m3=(1+x)m1+m2+m3.In this computation use the binomial theorem.30,31,32.We refer to the proof of Theorem5.3.3in the text.Let A denote an antichain such that|A|=nn/2.For0≤k≤n letαk denote the number of elements in A that have size k.Sonk=0αk=|A|=nn/2.As shown in the proof of Theorem5.3.3,≤1,with equality if and only if each maximal chain contains an element of A.By the above commentsnk=0αknn/2nknk≤0,with equality if and only if each maximal chain contains an element of A.The above sum is nonpositive but each summand is nonnegative.Therefore each summand is zero and the sum is zero.Consequently(a)each maximal chain contains an element of A;(b)for0≤k≤n eitherαk is zero or its coe?cient is zero.We now consider two cases.10Case:n is even.We show that for0≤k≤n,αk=0if k=n/2.Observe that for0≤k≤n, if k=n/2then the coe?cient ofαk isnonzero,soαk=0.Case:n is odd.We show that for0≤k≤n,eitherαk=0if k=(n?1)/2orαk=0 if k=(n+1)/2.Observe that for0≤k≤n,if k=(n±1)/2then the coe?cient ofαk is nonzero,soαk=0.We now show thatαk=0for k=(n?1)/2or k=(n+1)/2. To do this,we assume thatαk=0for both k=(n±1)/2and get a contradiction.By assumption A contains an element x of size(n+1)/2and an element y of size(n?1)/2. De? ne s=|x∩y|.Choose x,y such that s is maximal.By construction0≤s≤(n?1)/2. Suppose s=(n?1)/2.Then y=x∩y?x,contradicting the fact that x,y are incomparable. So s≤(n?3)/2.Let y denote a subset of x that contains x∩y and has size(n?1)/2. Let x denote a subset of y ∪y that contains y and has size(n+1)/2.By construction |x ∩y|=s+1.Observe y is not in A since x,y are comparable.Also x is not in A by the maximality of s.By construction x covers y so they are together contained in a maximal chain.This chain does not contain an element of A,for a contradiction.33.De?ne a poset(X,≤)as follows.The set X consists of the subsets of{1,2,...,n}. For x,y∈X de?ne x≤y whenever x?y.Forn=3,4,5we display a symmetric chain decomposition of this poset.We use the inductive procedure from the text.For n=3,,1,12,1232,233,13.For n=4,,1,12,123,12344,14,1242,23,23424,For n=5,,1,12,123,1234,123455,15,125,12354,14,124,124545,1452,23,234,234525,23524,2453,13,134,134535,13534,345.1134.For 0≤k ≤ n/2 there are exactlyn kn k ?1symmetric chains of length n ?2k +1.35.Let S denote the set of 10jokes.Each night the talk show host picks a subset of S for his repertoire.It is required that these subsets form an antichain.By Corollary 5.3.2each antichain has size at most 105 ,which is equal to 252.Therefore the talk show host can continue for 252nights./doc/6215673729.htmlpute the coe?cient of x n in either side of(1+x )m 1(1+x )m 2=(1+x )m 1+m 2,In this computation use the binomial theorem.37.In the multinomial theorem (Theorem 5.4.1)set x i =1for 1≤i ≤t .38.(x 1+x 2+x 3)4is equal tox 41+x 42+x 43+4(x 31x 2+x 31x 3+x 1x 32+x 32x 3+x 1x 33+x 2x 33)+6(x 21x 22+x 21x 23+x 22x 23)+12(x 21x 2x 3+x 1x 22x 3+x 1x 2x 23).39.The coe?cient is10!3!×1!×4!×0!×2!which comes to 12600.40.The coe?cient is9!3!×3!×1!×2!41.One routinely obtains the multinomial theorem (Theorem 5.4.1)with t =3.42.Given an integer t ≥2and positive integers n 1,n 2,...,n t .De?ne n = ti =1n i .We shownn 1n 2···n t=t k =1n ?1n 1···n k ?1n k ?1n k +1···n t.Consider the multiset{n 1·x 1,n 2·x 2,...,n t ·x t }.Let P denote the set of permutations of this multiset.We compute |P |in two ways.(i)We saw earlier that |P |=n !n 1!×n 2!×···×n t != n n 1n 2···n t.12(ii)For1≤k≤t let P k denote the set of elements in P that have?rst coordinate x k.Thesets{P k}tk=1partition P,so|P|=tk=1|P k|.For1≤k≤t we compute|P k|.Observe that|P k|is the number of permutations of the multiset{n1·x1,...,n k?1·x k?1,(n k?1)·x k,n k+1·x k+1,...,n t·x t}. Therefore|P k|=n?1n1···n k?1n k?1n k+1···n t.By these comments|P|=tn1···n k?1n k?1n k+1···n t.The result follows.43.Given an integer n≥1.Show by induction on n that1 (1?z)n =∞k=0n+k?1kz k,|z|<1.The base case n=1is assumed to hold.We show that the above identity holds with n replaced by n+1,provided that it holds for n.Thus we show1(1?z)n+1=∞=0n+z ,|z|<1.Observe1(1?z)n+1=1(1?z)n11?z=∞k=0n+k?1kz k∞h=0z h=0c zwherec =n?1+n1+n+12+···+n+ ?1=n+.The result follows.1344.(Problem statement contains typo)The given sum is equal to (?3)n .Observe (?3)n =(?1?1?1)n=n 1+n 2+n 3=nnn 1n 2n 3(?1)n 1+n 2+n 3=n 1+n 2+n 3=nnn 1+n 2+n 3=nnn 1n 2n 3(?1)n 2.45.(Problem statement contains typo)The given sum is equal to (?4)n .Observe (?4)n =(?1?1?1?1)n=n 1+n 2+n 3+n 4=nnn 1n 2n 3n 4(?1)n 1+n 2+n 3+n 4=n 1+n 2+n 3+n 4=nnn 1n 2n 3n 4(?1)n 1?n 2+n 3?n 4.Also0=(1?1+1?1)n= n 1+n 2+n 3+n 4=nnn 1n 2n 3n 4(?1)n 2+n 4.46.Observe√30=5=5∞ k =01/2k z k.For n =0,1,2,...the n th approximation to √30isa n =5n k =0 1/2k 5?k.We have14n a n051 5.52 5.4753 5.47754 5.47718755 5.477231256 5.4772246887 5.4772257198 5.4772255519 5.477225579 47.Observe101/3=21081/3=2(1+z)1/3z=1/4,=2∞k=01/3kz k.For n=0,1,2,...the n th approximation to101/3isnk=01/3k4?k.We haven a n021 2.1666666672 2.1527777783 2.1547067904 2.1543852885 2.1544442306 2.1544327697 2.1544350898 2.1544346059 2.15443470848.We show that a poset with mn+1elements has a chain of size m+1or an antichain of size n+1.Our strategy is to assume the result is false,and get a contradiction.By assumption each chain has size at most m and each antichain has size at most n.Let r denote the size of the longest chain.So r≤m.By Theorem5.6.1the elements of the posetcan be partitioned into r antichains{A i}ri=1.We have|A i|≤n for1≤i≤r.Thereforemn+1=ri=1|A i|≤rn≤mn, 15for a contradiction.Therefore,the poset has a chain of size m+1or an antichain of size n+1.49.We are given a sequence of mn+1real numbers,denoted{a i}mni=0.Let X denote the setof ordered pairs{(i,a i)|0≤i≤mn}.Observe|X|=mn+1.De?ne a partial order≤on X as follows:for distinct x=(i,a i)and y=(j,a j)in X,declare xof{a i}mni=0,and the antichains correspond to the(strictly)decreasing subsequences of{a i}mni=0sequence{a i}mni=0has a(weakly)increasing subsequence of size m+1or a(strictly)decreasingsubsequence of size n+1.50.(i)Here is a chain of size four:1,2,4,8.Here is a partition of X into four antichains:8,124,6,9,102,3,5,7,111Therefore four is both the largest size of a chain,and the smallest number of antichains that partition X. (ii)Here is an antichain of size six:7,8,9,10,11,12.Here is a partition of X into six chains:1,2,4,83,6,1295,10711Therefore six is both the largest size of an antichain,and the smallest number of chains that partition X.51.There exists a chain x116。

组合数学课后习题答案

组合数学课后习题答案

第一章答案1.(a) 45 ( {1,6},{2,7},{3,8},…,{45,50} )(b) 45⨯5+(4+3+2+1) = 235( 1→2~6, 2→3~7, 3→4~8, …,45→46~50, 46→47~50, 47→48~50, 49→50 ) 2.(a) 5!8!(b) 7! P(8,5) (c) 2 P(5,3) 8! 3. (a) n!P(n+1, m) (b) n!(m+1)!(c) 2!((m+n-2)+1)! 4. 2 P(24,5) 20!5. 2⨯5⨯P(8,2)+3⨯4⨯P(8,2)6. (n+1)!-17. 用数学归纳法易证。

8. 41⨯319. 设 n=p 1n 1p 2n 2…p kn k , 则n 2的除数个数为 ( 2p 1+1) (2p 2+1) …(2p k+1).10.1)用数学归纳法可证n 能表示成题中表达式的形式;2)如果某n 可以表示成题中表达式的形式,则等式两端除以2取余数,可以确定a 1;再对等式两端的商除以3取余数,又可得a 2;对等式两端的商除以4取余数,又可得a 3;…;这说明表达式是唯一的。

11.易用C(m,n)=m!/(n!(m-n)!)验证等式成立。

组合意义:右:从n 个不同元素中任取r+1个出来,再从这r+1个中取一个的全体组合的个数;左:上述组合中,先从n 个不同元素中任取1个出来,每一个相同的组合要生复 C(n-1,r) 次。

12.考虑,)1(,)1(101-=-=+=+=∑∑n nk k k n nnk kknx n x kC x x C 求导数后有令x=1, 即知.210-==∑n nk kn n kC13. 设此n 个不同的数由小到大排列后为a 1, a 2, …, a n 。

当第二组最大数为a k 时,第二组共有2k-1种不同的可能,第一组有2n-k -1种不同的可能。

故符合要求的不同分组共有12)2()12(21111+-=-----=∑n k n k n k n 种。

组合数学课后习题答案

组合数学课后习题答案

组合数学课后习题答案问题1求解以下组合数:(a)C(5, 2)(b)C(7, 3)(c)C(10, 5)解答:(a)C(5, 2) 表示从5个不同元素中选取2个的组合数。

根据组合数的定义,我们可以使用公式 C(n, k) = n! / (k! * (n-k)!) 来计算组合数。

计算 C(5, 2): C(5, 2) = 5! / (2! * (5-2)!) = 5! / (2! * 3!) = (5 * 4 * 3!) / (2! * 3!) = (5 * 4) / 2 = 10所以 C(5, 2) = 10。

(b)C(7, 3) 表示从7个不同元素中选取3个的组合数。

计算 C(7, 3): C(7, 3) = 7! / (3! * (7-3)!) = 7! / (3! * 4!) = (7 * 6 * 5 * 4!) / (3! * 4!) = (7 * 6 * 5) / 3 = 35 * 2 = 70所以 C(7, 3) = 70。

(c)C(10, 5) 表示从10个不同元素中选取5个的组合数。

计算 C(10, 5): C(10, 5) = 10! / (5! * (10-5)!) = 10! / (5! * 5!) = (10 * 9 * 8 * 7 * 6 * 5!) / (5! * 5!) = (10 * 9 * 8 * 7 * 6) / (5 * 4 * 3 * 2 * 1) = 252所以 C(10, 5) = 252。

问题2在一个集合 {a, b, c, d, e} 中,求解以下问题:(a)有多少种不同的3个元素的子集?(b)有多少种不同的4个元素的子集?(c)有多少种不同的空集合?(a)在一个集合 {a, b, c, d, e} 中选取3个元素的子集。

子集的元素个数为3,所以我们需要从5个元素中选取3个。

利用组合数的公式 C(n, k) = n! / (k! * (n-k)!),我们可以计算组合数。

最新组合数学习题答案(1-4章全)

最新组合数学习题答案(1-4章全)

第1章 排列与组合1.1 从{1,2,…,50}中找一双数{a,b},使其满足:()5;() 5.a ab b a b -=-≤[解] (a) 5=-b a将上式分解,得到55a b a b -=+⎧⎨-=-⎩a =b –5,a=1,2,…,45时,b =6,7,…,50。

满足a=b-5的点共50-5=45个点. a = b+5,a=5,6,…,50时,b =0,1,2,…,45。

满足a=b+5的点共45个点. 所以,共计2×45=90个点. (b) 5≤-b a(610)511(454)1651141531+⨯+⨯-=⨯+⨯=个点。

1.2 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列? (b) 女生两两不相邻有多少种不同的排列?(c) 两男生A 和B 之间正好有3个女生的排列是多少?[解] (a) 女生在一起当作一个人,先排列,然后将女生重新排列。

(7+1)!×5!=8!×5!=40320×120=4838400(b) 先将男生排列有7!种方案,共有8个空隙,将5个女生插入,故需从8个空中选5个空隙,有58C 种选择。

将女生插入,有5!种方案。

故按乘法原理,有:7!×58C ×5!=33868800(种)方案。

(c) 先从5个女生中选3个女生放入A ,B 之间,有35C 种方案,在让3个女生排列,有3!种排列,将这5个人看作一个人,再与其余7个人一块排列,有(7+1)! = 8!由于A ,B 可交换,如图**A***B** 或 **B***A**故按乘法原理,有:2×35C ×3!×8!=4838400(种)1.3 m 个男生,n 个女生,排成一行,其中m ,n 都是正整数,若(a) 男生不相邻(m ≤n+1); (b) n 个女生形成一个整体; (c) 男生A 和女生B 排在一起; 分别讨论有多少种方案.[解] (a) 先将n 个女生排列,有n!种方法,共有n+1个空隙,选出m 个空隙,共有mn C 1+种方法,再插入男生,有m!种方法,按乘法原理,有:n!×mn C 1+×m!=n!×)!1(!)!1(m n m n -++×m!=)!1()!1(!m n n n -++种方案。

Richard组合数学第5版-第5章课后习题答案(英文版)

Richard组合数学第5版-第5章课后习题答案(英文版)

evaluate the sum in this case we compute in two ways the the coefficient of xn in (1−x2)n. (i)
By the binomial theorem this coefficient is (−1)m
2m m
.
(ii) Observe (1 − x2) = (1 + x)(1 − x).
5
Now set x = 1 to get Therefore
(−1)n n =
n (−1)n−k 1 .
n+1
k
k+1
k=0
1
n
=
n (−1)k 1 .
n+1
k
k+1
k=0
19. One readily checks
m 2
+
m
= m(m − 1) + m = m2.
2
1
Therefore
n
n
k2 =
not contain 1 or 2 or 3. Note that {Si}4i=1 partition S so |S| =
4 i=1
|Si|.
We
have
n
n−1
n−2
n−3
n−3
|S| =
, k
|S1| =
, k−1
|S2| =
, k−1
|S3| =
, k−1
|S4| =
. k
The result follows.
We have
n P (n, k) nP (n − 1, k − 1)
=

组合数学答案第五版期末答案.docx

组合数学答案第五版期末答案.docx

组合数学答案第五版期末答案问:仰韶文化不包括下列哪一项:()答:齐家文化问:仰韶文化出土文物上具有一种统一的“人面鸟纹”形象。

答:错问:仰韶文化处于华北地带,地质构造相对简单划一()。

答:正确问:仰韶文化的典型代表是西安的半坡遗址以及临潼的姜寨遗址。

答:正确问:仰韶文化的典型器物是:答:彩陶问:汉语的北方方言区不包括()。

答:上江官话问:汉语的被动不能省略,但是量词可以省略。

()答:错误问:汉语的词缀属于哪一种类型的词缀?答:自源型问:汉语的句例边界不清楚。

答:正确问:汉语的理解模式属于()。

答:上下文理解模式问:()提出了认同危机理论,把心理发展分为8个阶段。

答:埃里克逊问:()提出了三界唯心,万法唯识的观点。

答:佛家问:()提出了设计的十项原则。

答:迪特·拉姆斯问:()提出了生物发生定律,运用到数学教学即历史发生原理。

答:E·haeckel问:()提出了私人政府的法这一概念。

答:马考利问:郁达夫的小说《沉沦》与日本文学中的()有千丝万缕的联系。

答:私小说问:以下正确的是( ).答:按主方职务的高低站成一列,职务最高者站首位,与客方职务最高者先行握手话别。

主方职务最低的与客方职务最高的话别,最后才是主方职务最高的与客方职务最高的话别。

告别时主客双方职务最高者可以多寒暄几句,以表惜别之情。

问:小说《沉沦》发表之后,引起了轩然大波,有人支持其创作,也有人反对。

下列哪些作家是支持其创作的?()答:周作人郭沫若问:以下关于《沉沦》小说主人公的解读,正确的有:()答:这是一个青春忧郁症患者。

他的本我和超我都太强大,强大到无法调和,这导致了他最后的沉沦。

“灵与肉的冲突”是青春期的主人公面临的最大难题。

问:演讲时的肢体语言可以是()答:身体自然放松手势要多用掌问:辩论者需要将听、看、想三者相结合,才能获得对事物的准确认知。

()答:√问:麝猫后睾吸虫第二中间宿主是鲤科鱼类。

答:对问:弗兰西斯培根的方法论主要表现在:答:科学归纳法问:关于随机抽样,下列那一项说法是正确的()。

组合数学课后答案

组合数学课后答案

作业习题答案习题二2.1证明:在一个至少有2人的小组中.总存在两个人.他们在组内所认识的人数相同。

证明:假设没有人谁都不认识:那么每个人认识的人数都为[1,n-1].由鸽巢原理知.n个人认识的人数有n-1种.那么至少有2个人认识的人数相同。

假设有1人谁都不认识:那么其他n-1人认识的人数都为[1,n-2].由鸽巢原理知.n-1个人认识的人数有n-2种.那么至少有2个人认识的人数相同。

2.3证明:平面上任取5个坐标为整数的点.则其中至少有两个点.由它们所连线段的中点的坐标也是整数。

证明:方法一:有5个坐标.每个坐标只有4种可能的情况:(奇数.偶数);(奇数.奇数);(偶数.偶数);(偶数.奇数)。

由鸽巢原理知.至少有2个坐标的情况相同。

又要想使中点的坐标也是整数.则其两点连线的坐标之和为偶数。

因为奇数+奇数 = 偶数;偶数+偶数=偶数。

因此只需找以上2个情况相同的点。

而已证明:存在至少2个坐标的情况相同。

证明成立。

方法二:对于平面上的任意整数坐标的点而言.其坐标值对2取模后的可能取值只有4种情况.即:(0,0) ,(0,1) ,(1,0), (1,1).根据鸽巢原理5个点中必有2个点的坐标对2取模后是相同类型的.那么这两点的连线中点也必为整数。

2.4一次选秀活动.每个人表演后可能得到的结果分别为“通过”、“淘汰”和“待定”.至少有多少人参加才能保证必有100个人得到相同的结果?证明:根据推论2.2.1.若将3*(100-1)+1=298个人得到3种结果.必有100人得到相同结果。

2.9将一个矩形分成(m+1)行112mm+⎛⎫+⎪⎝⎭列的网格每个格子涂1种颜色.有m种颜色可以选择.证明:无论怎么涂色.其中必有一个由格子构成的矩形的4个角上的格子被涂上同一种颜色。

证明:(1)对每一列而言.有(m+1)行.m种颜色.有鸽巢原理.则必有两个单元格颜色相同。

(2)每列中两个单元格的不同位置组合有12m+⎛⎫⎪⎝⎭种.这样一列中两个同色单元格的位置组合共有12mm+⎛⎫⎪⎝⎭种情况(3)现在有112m m +⎛⎫+⎪⎝⎭列.根据鸽巢原理.必有两列相同。

组合数学【第5版】(英文版)第3章答案

组合数学【第5版】(英文版)第3章答案

Math475Text:Brualdi,Introductory Combinatorics5th Ed. Prof:Paul TerwilligerSelected solutions for Chapter31.For1≤k≤22we show that there exists a succession of consecutive days during which the grandmaster plays exactly k games.For1≤i≤77let b i denote the number of gamesplayed on day i.Consider the numbers{b1+b2+···+b i+k}76i=0∪{b1+b2+···+b j}77j=1.There are154numbers in the list,all among1,2,...,153.Therefore the numbers{b1+b2+···+b i+k}76i=0∪{b1+b2+···+b j}77j=1.are not distinct.Therefore there exist integers i,j(0≤i<j≤77)such that b i+1+···+b j=k.During the days i+1,...,j the grandmaster plays exactly k games.2.Let S denote a set of100integers chosen from1,2,...,200such that i does not divide j for all distinct i,j∈S.We show that i∈S for1≤i≤15.Certainly1∈S since 1divides every integer.By construction the odd parts of the elements in S are mutually distinct and at most199.There are100numbers in the list1,3,5,...,199.Therefore each of 1,3,5,...,199is the odd part of an element of S.We have3×5×13=195∈S.Therefore none of3,5,13,15are in S.We have33×7=189∈S.Therefore neither of7,9is in S.We have11×17=187∈S.Therefore11∈S.We have shown that none of1,3,5,7,9,11,13,15 is in S.We show neither of6,14is in S.Recall33×7=189∈S.Therefore32×7=63∈S. Therefore2×32×7=126∈S.Therefore2×3=6∈S and2×7=14∈S.We show10∈S. Recall3×5×13=195∈S.Therefore5×13=65∈S.Therefore2×5×13=130∈S. Therefore2×5=10∈S.We now show that none of2,4,8,12are in S.Below we list the integers of the form2r3s that are at most200:1,2,4,8,16,32,64,128,3,6,12,24,48,96,192,9,18,36,72,144,27,54,108,81,162.In the above array each element divides everything that lies to the southeast.Also,each row contains exactly one element of S.For1≤i≤5let r i denote the element of row i that is contained in S,and let c i denote the number of the column that contains r i.We must have c i<c i−1for2≤i≤5.Therefore c i≥6−i for1≤i≤5.In particular c1≥5so r1≥16,and c2≥4so r2≥24.We have shown that none of2,4,8,12is in S.By the above comments i∈S for1≤i≤15.3.See the course notes.4,5,6.Given integers n≥1and k≥2suppose that n+1distinct elements are chosen from{1,2,...,kn}.We show that there exist two that differ by less than k.Partition{1,2,...,nk}=∪ni=1S i where S i={ki,ki−1,ki−2,...,ki−k+1}.Among our n+1chosen elements,there exist two in the same S i.These two differ by less than k.17.Partition the set{0,1,...,99}=∪50i=0S i where S0={0},S i={i,100−i}for1≤i≤49,S50={50}.For each of the given52integers,divide by100and consider the remainder. The remainder is contained in S i for a unique i.By the pigeonhole principle,there exist two of the52integers for which these remainders lie in the same S i.For these two integers the sum or difference is divisible by100.8.For positive integers m,n we consider the rational number m/n.For0≤i≤n divide the integer10i m by n,and call the remainder r i.By construction0≤r i≤n−1.By the pigeonhole principle there exist integers i,j(0≤i<j≤n)such that r i=r j.The integer n divides10j m−10i m.For notational convenience define =j−i.Then there exists a positive integer q such that nq=10i(10 −1)m.Divide q by10 −1and call the remainder r. So0≤r≤10 −2.By construction there exists an integer b≥0such that q=(10 −1)b+r. Writingθ=m/n we have10iθ=b+r 10 −1=b+r10+r102+r103+···Since the integer r is in the range0≤r≤10 −2this yields a repeating decimal expansion forθ.9.Consider the set of10people.The number of subsets is210=1024.For each subset consider the sum of the ages of its members.This sum is among0,1,...,600.By the pigeonhole principle the1024sums are not distinct.The result follows.Now suppose we consider at set of9people.Then the number of subsets is29=512<600.Therefore we cannot invoke the pigeonhole principle.10.For1≤i≤49let b i denote the number of hours the child watches TV on day i.Consider the numbers{b1+b2+···+b i+20}48i=0∪{b1+b2+···+b j}49j=1.There are98numbers in the list,all among1,2,...,96.By the pigeonhole principle the numbers{b1+b2+···+b i+20}48i=0∪{b1+b2+···+b j}49j=1.are not distinct.Therefore there existintegers i,j(0≤i<j≤49)such that b i+1+···+b j=20.During the days i+1,...,j the child watches TV for exactly20hours.11.For1≤i≤37let b i denote the number of hours the student studies on day i.Considerthe numbers{b1+b2+···+b i+13}36i=0∪{b1+b2+···+b j}37j=1.There are74numbers in the list,all among1,2,...,72.By the pigeonhole principle the numbers{b1+b2+···+b i+13}36i=0∪{b1+b2+···+b j}37j=1are not distinct.Therefore there exist integers i,j(0≤i<j≤37)such that b i+1+···+b j=13.During the days i+1,...,j the student will have studied exactly13hours.12.Take m=4and n=6.Pick a among0,1,2,3and b among0,1,2,3,4,5such that a+b is odd.Suppose that there exists a positive integer x that yields a remainder of a(resp.b) when divided by4(resp.by6).Then there exist integers r,s such that x=4r+a and x=6s+bining these equations we obtain2x−4r−6s=a+b.In this equation the2left-hand side is even and the right-hand side is odd,for a contradiction.Therefore x does not exist.13.Since r (3,3)=6there exists a K 3subgraph of K 6that is red or blue.We assume that this K 3subgraph is unique,and get a contradiction.Without loss we may assume that the above K 3subgraph is red.Let x denote one of the vertices of this K 3subgraph,and let {x i }5i =1denote the remaining five vertices of K 6.Consider the K 5subgraph with vertices{x i }5i =1.By assumption this subgraph has no K 3subgraph that is red or blue.The only edge coloring of K 5with this feature is shown in figure 3.2of the text.Therefore we may assume that the vertices {x i }5i =1are labelled such that for distinct i,j (1≤i,j ≤5)the edge connecting x i ,x j is red (resp.blue)if i −j =±1modulo 5(resp.i −j =±2modulo5).By construction and without loss of generality,we may assume that each of x 1,x 2is connected to x by a red edge.Thus the vertices x,x 1,x 2give a red K 3subgraph.Now the edge connecting x and x 3is blue;otherwise the vertices x,x 2,x 3give a second red K 3subgraph.Similarly the edge connecting x and x 5is blue;otherwise the vertices x,x 1,x 5give a second red K 3subgraph.Now the vertices x,x 3,x 5give a blue K 3subgraph.14.After n minutes we have removed n pieces of fruit from the bag.Suppose that among the removed fruit there are at most 11pieces for each of the four kinds.Then our total n must be at most 4×11=44.After n =45minutes we will have picked at least a dozen pieces of fruit of the same kind.15.For 1≤i ≤n +1divide a i by n and call the reminder r i .By construction 0≤r i ≤n −1.By the pigeonhole principle there exist distinct integers i,j among 1,2,...,n +1such that r i =r j .Now n divides a i −a j .bel the people 1,2,...,n .For 1≤i ≤n let a i denote the number of people aquainted with person i .By construction 0≤a i ≤n −1.Suppose the numbers {a i }n i =1are mutually distinct.Then for 0≤j ≤n −1there exists a unique integer i (1≤i ≤n )such that a i =j .Taking j =0and j =n −1,we see that there exists a person aquainted with nobody else,and a person aquainted with everybody else.These people are distinct since n ≥2.These two people know each other and do not know each other,for a contradiction.Therefore the numbers {a i }n i =1are not mutually distinct.17.We assume that the conclusion is false and get a bel the people 1,2,...,100.For 1≤i ≤100let a i denote the number of people aquainted with person i .By construction 0≤a i ≤99.By assumption a i is even.Therefore a i is among 0,2,4,...,98.In this list there are 50numbers.Now by our initial assumption,for each even integer j (0≤j ≤98)there exists a unique pair of integers (r,s )(1≤r <s ≤100)such that a r =j and a s =j .Taking j =0and j =98,we see that there exist two people who know nobody else,and two people who know everybody else except one.This is a contradiction.18.Divide the 2×2square into four 1×1squares.By the pigeonhole principle there exists a 1×1square that contains at least two of the five points.For these two points the distance apart is at most √2.319.Divide the equilateral triangle into a grid,with each piece an equilateral triangle of side length1/n.In this grid there are1+3+5+···+2n−1=n2pieces.Suppose we place m n=n2+1points within the equilateral triangle.Then by the pigeonhole principle there exists a piece that contains two or more points.For these two points the distance apart is at most1/n.20.Color the edges of K17red or blue or green.We show that there exists a K3subgraph of K17that is red or blue or green.Pick a vertex x of K17.In K17there are16edges that contain x.By the pigeonhole principle,at least6of these are the same color(let us say red).Pick distinct vertices{x i}6i=1of K17that are connected to x via a red edge.Consider theK6subgraph with vertices{x i}6i=1.If this K6subgraph contains a red edge,then the twovertices involved together with x form the vertex set of a red K3subgraph.On the other hand,if the K6subgraph does not contain a red edge,then since r(3,3)=6,it contains a K3subgraph that is blue or green.We have shown that K17has a K3subgraph that is red or blue or green.21.Let X denote the set of sequences(a1,a2,a3,a4,a5)such that a i∈{1,−1}for1≤i≤5 and a1a2a3a4a5=1.Note that|X|=16.Consider the complete graph K16with vertex set X.We display an edge coloring of K16with colors red,blue,green such that no K3 subgraph is red or blue or green.For distinct x,y in X consider the edge connecting x and y.Color this edge red(resp.blue)(resp.green)whenever the sequences x,y differ in exactly 4coordinates(resp.differ in exactly2coordinates i,j with i−j=±1modulo5)(resp. differ in exactly2coordinates i,j with i−j=±2modulo5).Each edge of K16is now colored red or blue or green.For this edge coloring of K16there is no K3subgraph that is red or blue or green.22.For an integer k≥2abbreviate r k=r(3,3,...,3)(k3’s).We show that r k+1≤(k+1)(r k−1)+2.Define n=r k and m=(k+1)(n−1)+2.Color the edges of K m with k+1colors C1,C2,...,C k+1.We show that there exists a K3subgraph with all edges the same color.Pick a vertex x of K m.In K m there are m−1edges that contain x.By the pigeonhole principle,at least n of these are the same color(which we may assume is C1).Pick distinct vertices{x i}ni=1of K m that are connected to x by an edge colored C1.Considerthe K n subgraph with vertices{x i}ni=1.If this K n subgraph contains an edge colored C1,then the two vertices involved together with x give a K3subgraph that is colored C1.On the other hand,if the K n subgraph does not contain an edge colored C1,then since r k=n, it contains a K3subgraph that is colored C i for some i(2≤i≤k+1).In all cases K m hasa K3subgraph that is colored C i for some i(1≤i≤k+1).Therefore r k≤m.23.We proved earlier thatr(m,n)≤m+n−2n−1.Applying this result with m=3and n=4we obtain r(3,4)≤10.24.We show that r t(t,t,q3)=q3.By construction r t(t,t,q3)≥q3.To show the reverse inequality,consider the complete graph with q3vertices.Let X denote the vertex set of this4graph.Color the t -element subsets of X red or blue or green.Then either (i)there exists a t -element subset of X that is red,or (ii)there exists a t -element subset of X that is blue,or (iii)every t -element subset of X is green.Therefore r t (t,t,q 3)≤q 3so r t (t,t,q 3)=q 3.25.Abbreviate N =r t (m,m,...,m )(k m ’s).We show r t (q 1,q 2,...,q k )≤N .Consider the complete graph K N with vertex set X .Color each t -element subset of X with k colors C 1,C 2,...,C k .By definition there exists a K m subgraph all of whose t -element subsets are colored C i for some i (1≤i ≤k ).Since q i ≤m there exists a subgraph of that K m with q i vertices.For this subgraph every t -element subset is colored C i .26.In the m ×n array assume the rows (resp.columns)are indexed in increasing order from front to back (resp.left to right).Consider two adjacent columns j −1and j .A person in column j −1and a person in column j are called matched if they occupy the same row of the original formation.Thus a person in column j is taller than their match in column j −1.Now consider the adjusted formation.Let L and R denote adjacent people in some row i ,with L in column j −1and R in column j .We show that R is taller than L.We assume that L is at least as tall as R,and get a contradiction.In column j −1,the people in rows i,i +1,...,m are at least as tall as L.In column j ,the people in rows 1,2,...,i are at most as tall as R.Therefore everyone in rows i,i +1,...,m of column j −1is at least as tall as anyone in rows 1,2,...,i of column j .Now for the people in rows 1,2,...,i of column j their match stands among rows 1,2,...,i −1of column j −1.This contradicts the pigeonhole principle,so L is shorter than R.27.Let s 1,s 2,...,s k denote the subsets in the collection.By assumption these subsets are mutually distinct.Consider their complements s 1,s 2,...,s k .These complements are mutu-ally distinct.Also,none of these complements are in the collection.Therefore s 1,s 2,...,s k ,s 1,s 2,...,s k are mutually distinct.Therefore 2k ≤2n so k ≤2n −1.There are at most 2n −1subsets in the collection.28.The answer is 1620.Note that 1620=81×20.First assume that 100i =1a i <1620.We show that no matter how the dance lists are selected,there exists a group of 20men that cannot be paired with the 20women.Let the dance lists be bel the women 1,2,...,20.For 1≤j ≤20let b j denote the number of men among the 100that listed woman j .Note that 20j =1b j = 100i =1a i so ( 20j =1b j )/20<81.By the pigeonhole principle there exists an integer j (1≤j ≤20)such that b j ≤80.We have 100−b j ≥20.Therefore there exist at least 20men that did not list woman j .This group of 20men cannot be paired with the 20women.Consider the following selection of dance lists.For 1≤i ≤20man i lists woman i and no one else.For 21≤i ≤100man i lists all 20women.Thus a i =1for 1≤i ≤20and a i =20for 21≤i ≤100.Note that 100i =1a i =20+80×20=1620.Note also that every group of 20men can be paired with the 20women.29.Without loss we may assume |B 1|≤|B 2|≤···≤|B n |and |B ∗1|≤|B ∗2|≤···≤|B ∗n +1|.By assumption |B ∗1|is positive.Let N denote the total number of objects.Thus N = n i =1|B i |and N = n +1i =1|B ∗i |.For 0≤i ≤n define∆i =|B ∗1|+|B ∗2|+···+|B ∗i +1|−|B 1|−|B 2|−···−|B i |.5We have∆0=|B∗1|>0and∆n=N−N=0.Therefore there exists an integer r(1≤r≤n)such that∆r−1>0and∆r≤0.Now0<∆r−1−∆r=|B r|−|B∗r+1|so|B∗r+1|<|B r|.So far we have|B∗1|≤|B∗2|≤···≤|B∗r+1|<|B r|≤|B r+1|≤···≤|B n|.Thus|B∗i|<|B j|for1≤i≤r+1and r≤j≤n.Defineθ=|(B∗1∪B∗2∪···∪B∗r+1)∩(B r∪B r+1∪···∪B n)|.We showθ≥ing∆r−1>0we have|B∗1|+|B∗2|+···+|B∗r|>|B1|+|B2|+···+|B r−1|=|B1∪B2∪···∪B r−1|≥|(B1∪B2∪···∪B r−1)∩(B∗1∪B∗2∪···∪B∗r+1)|=|B∗1∪B∗2∪···∪B∗r+1|−θ=|B∗1|+|B∗2|+···+|B∗r+1|−θ≥|B∗1|+|B∗2|+···+|B∗r|+1−θ.Thereforeθ>1soθ≥2.6。

组合数学第五版第七章解答

组合数学第五版第七章解答

5. Consider the Fibonacci sequence f0, f1, . . .0
11
1
21
1
32
2
43
3
5 5 −2
68
1
7 13 −1
8 21
0
9 34 −1
··
·
··
·
The table shows that modulo 7 the Fibonacci sequence will repeat with period 16. The pattern of zero/nonzero entries shows that fn is divisible by 7 if and only if n is divisible by 8.
n fn
factorization
00
0
11
1
21
1
32
2
43
3
55
5
68
23
7 13
13
8 21
3×7
9 34
2 × 17
10 55
5 × 11
11 89
89
12 144
24 × 32
13 233
233
14 377
13 × 29
15 610
2 × 5 × 61
16 987
3 × 7 × 47
17 1597
fn = 5fn−4 + 3fn−5.
2
Therefore fn = 3fn−5 (mod 5). Consequently fn = 0 (mod 5) if and only if fn−5 = 0 (mod 5). This together with the initial conditions f0 = 0, f1 = 1, f2 = 1, f3 = 2, f4 = 3 shows that fn = 0 (mod 5) if and only if n is divisible by 5.

组合数学 课后答案 PDF 版

组合数学 课后答案 PDF 版

3.1 某甲参加一种会议,会上有6位朋友,某甲和其中每一个人在会上各相遇12次,每两人各相遇6次,每3人各相遇4次,每4人各相遇3次,每5人各相遇2次,每6人各相遇1次,1人也没遇见的有5次,问某甲共参加几次会议?解:设A 为甲与第i 个朋友相遇的会议集.i=1,2,3,4,5,6.则 │∪A i │=12*C(6,1)-6*C(6,2)+4*C(6,3)-3*(6,4)+2*(6,5)-C(6,6) =28甲参加的会议数为 28+5=333.2:求从1到500的整数中被3和5整除但是不能被7整除的数的个数。

解:设 A 3:被3整除的数的集合A 5:被5整除的数的集合 A 7:被7整除的数的集合 所以 ||=||-||=-=33-4=29 3.3 n 个代表参加会议,试证其中至少有2个人各自的朋友数相等解:每个人的朋友数只能取0,1,…,n -1.但若有人的朋友数为0,即此人和其 他人都不认识,则其他人的最大取数不超过n -2.故这n 个人的朋友数的实际取数只 有n -1种可能.,根据鸽巢原理所以至少有2人的朋友数相等.3.4试给出下列等式的组合意义0j j 0(1)=(1), 1n-m-j+1(2)(1)1 j 1(3)...(1) 1 12m l l n m l n m m n l n k m n k l k l n m l n m l m l m l m l m l m l m m m m m l =-=--⎛⎫⎛⎫⎛⎫-≥≥ ⎪ ⎪⎪-⎝⎭⎝⎭⎝⎭---⎛⎫⎛⎫⎛⎫=- ⎪ ⎪⎪--⎝⎭⎝⎭⎝⎭+-++++⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=-+-+- ⎪ ⎪ ⎪ ⎪ ⎪-+++⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭∑∑ 证明:(1)从n 个不同元素中取k ,使得其中必含有m 个特定元素的方案数为)()(kn mn m k mn --=--。

设这m 个元素为a 1,a 2,…,a m , Ai 为包含a i 的组合(子集),i=1,…,m.1212|...|(...)12 =(...(1))1 2 =(1) m m m l n A A A A A A k n m n m n m n m k k k m k m n l l k ⎛⎫=- ⎪⎝⎭---⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++- ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭-⎛⎫⎛- ⎪⎝⎭ 0ml =⎫ ⎪⎝⎭∑ (2)把l 个无区别的球放到n 个不同的盒子,但有m 个空盒子的方案数为11n l m n m -⎛⎫⎛⎫⎪⎪--⎝⎭⎝⎭令k=n-m ,设A i 为第i 个盒子有球,i=1,2,…k12k 121|...|(...)1k 11211 =(...(1)) 1 2 k k k l A A A A A A k k l k l k k l k k k l k l l k l +-⎛⎫=- ⎪⎝⎭+--+--+--+-⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫--++- ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭ kj j 0k k-j+1 =(1)j l l =-⎛⎫⎛⎫- ⎪⎪⎝⎭⎝⎭∑ (3)设A i 为m+l 个元素中去m+i 个,含特定元素a 的方案集;N i 为m+l 个元素中取m+i 个的方案数。

组合数学第五版第七章答案

组合数学第五版第七章答案

1
0
1
9 34
0
1
2
··
·
·
·
··
·
·
·
The sequence repeats with period 3 (resp. 8) (resp. 6) if m = 2 (resp. m = 3) (resp. m = 4). The result follows.
4. For an integer n ≥ 5 we have
8. By construction h0 = 1 and h1 = 2. We now find hn for n ≥ 2. Consider a coloring of the 1 × n chessboard. The first square is colored red or blue. If it is blue, then there are hn−1 ways to color the remaining n − 1 squares. If it is red, then the second square is blue, and there are hn−2 ways to color the remaining n − 2 squares. Therefore hn = hn−1 + hn−2. Comparing the above data with the Fibonacci sequence we find hn = fn+2.
m = qn + r
1 ≤ r ≤ n − 1.
Observe that
GCD(n, r) = GCD(m, n) = d.
By induction and since r ≤ n − 1,

Richard组合数学第5版-第4章课后习题答案(英文版)

Richard组合数学第5版-第4章课后习题答案(英文版)
5. The integer k is equal to the total number of inversions for the given permutation. Any switch of adjacent terms ab → ba either decreases this total by one (if a > b) or increases this total by one (if a < b). Therefore we cannot bring the given permutation to 12 · · · n by fewer than k successive switches of adjacent terms.
7365 412
73658412
8. (a) For a permutation of {1, 2, 3, 4, 5, 6} the corresponding inversion sequence
(b1, b2, b3, b4, b5, b6) satisfies 0 ≤ bi ≤ 6 − i for 1 ≤ i ≤ 6. The total number of inversions is
←− ←− ←− ←− ←− 12534 ←− ←− →− ←− ←− 12543 ←− ←− ←− ←− ←− 14523 ←−4 ←−1 →−5 ←−2 ←−3 →−4 ←−1 ←−5 ←−3 ←−2 ←−1 →−4 →−5 ←−3 ←−2 ←− ←− ←− →− ←− 13542 ←− ←− →− ←− →− 13524 ←− ←− ←− ←− ←− 31524 ←−3 ←−1 →−5 ←−4 ←−2
(c) The set {x6} corresponds to coordinate 7 6 5 4 3 2 1 0 entry 0 1 0 0 0 0 0 0

组合数学答案6-8

组合数学答案6-8

Let A be the set of xi is nonnegative integer and xi 0 (i 1 ,2 ,3 and 4) ,
then
14 4 1 17
A
14


14


680
.
Let Ai be the set of xi is nonnegative integer and xi 8 (i 1,2,3 or 4) ,
|������| = 3
9 42
1
=
1260
|������1| = 4
7 2
1
= 105
|������2| = 3
6 2
1
= 60
|������3| = 4
8 3
1
= 280
We can also get that
Thus,
|������1 ∩ ������2| = *'aaa' , 'bbbb' , 2∙c, 1∙d+ |������1 ∩ ������3| = *'aaa' , 4∙b, 'cc' , 1∙d+ |������2 ∩ ������3| = *3∙a, 'bbbb' , 'cc' , 1∙d+
������3 = *3∙a, 4∙b, 'cc' , 1∙d+ ������1 is the set that consisting all the permutations of S which three a is consecutively.������2is the set that consisting the all the permutations of S which four b is consecutively. ������3 is the set that consisting all the permutations of S which two c is consecutively.

组合数学答案2-5

组合数学答案2-5

2. Prove that for any n+1 integers a1, a2, …, an+1 there exist two of the integers ai and aj with i ≠ j such that ai - aj is divisible by n.
Proof: Suppose that we divide all the integers by n, the remainders are {0, 1, …, n-1}.不是 1 到 n-1. According to Pigeonhole Principal, for n+1 integers, there exit two integers have the same remainders when divided by n. Assume that they are ai and aj, it is obvious that ai - aj is divisible by n, because they have the same remainder.
第一次作业 第二章 鸽巢原理
1. Show that if n+1 integers are chosen from the set {1, 2, …, 3n}, then there are always two which differ by 1 or 2.
Proof: Suppose that we partition set {1, 2, …, 3n} into {1, 2, 3}, {4, 5, 6}, …, {3n-2, 3n-1, 3n} and choose n+1 integers from the n sets. According to the Pigeonhole Principal, there are at least two integers from the same set. And elements in the same set differ by 1 or 2. Therefore, we concluded t hat if n+1 integers are chosen from the set {1, 2, …, 3n}, there are always two which differ by 1 or 2.

组合数学第五版答案

组合数学第五版答案

组合数学第五版答案【篇一:组合数学参考答案(卢开澄第四版)60页】使其满足(1)|a-b|=5;(2)|a-b|?5;解:(1):由|a-b|=5?a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。

当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。

所以这样的序列有90对。

(2):由题意知,|a-b|?5?|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0;由上题知当|a-b|=5时有90对序列。

当|a-b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。

当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对,当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生a和b之间正好有3个女生的排列是多少?所以总的排列数为上述6种情况之和。

1.3题 m个男生,n个女生,排成一行,其中m,n都是正整数,若(a)男生不相邻(m?n?1); (b)n个女生形成一个整体;(c)男生a和女生b排在一起;分别讨论有多少种方案。

解:(a) 可以考虑插空的方法。

n个女生先排成一排,形成n+1个空。

因为m?n?1正好m个男生可以插在n+1个空中,形成不相邻的关系。

则男生不相邻的排列个数为ppnnn?1m(b) n个女生形成一个整体有n!种可能,把它看作一个整体和m个男生排在一起,则排列数有(m+1)!种可能。

因此,共有n!?(m?1)!种可能。

(c)男生a和女生b排在一起,因为男生和女生可以交换位置,因此有2!种可能,a、b组合在一起和剩下的学生组成排列有(m+n-1)! (这里实际上是m+n-2个学生和ab的组合形成的)种可能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

组合数学第五版答案【篇一:组合数学参考答案(卢开澄第四版)60页】使其满足(1)|a-b|=5;(2)|a-b|?5;解:(1):由|a-b|=5?a-b=5或者a-b=-5,由列举法得出,当a-b=5时,两数的序列为(6,1)(7,2)……(50,45),共有45对。

当a-b=-5时,两数的序列为(1,6),(2,7)……(45,50)也有45对。

所以这样的序列有90对。

(2):由题意知,|a-b|?5?|a-b|=1或|a-b|=2或|a-b|=3或|a-b|=4或|a-b|=5或|a-b|=0;由上题知当|a-b|=5时有90对序列。

当|a-b|=1时两数的序列有(1,2),(3,4),(2,1)(1,2)…(49,50),(50,49)这样的序列有49*2=98对。

当此类推当|a-b|=2,序列有48*2=96对,当|a-b|=3时,序列有47*2=94对,当|a-b|=4时,序列有46*2=92对,当|a-b|=0时有50对所以总的序列数=90+98+96+94+92+50=5201.2题 5个女生,7个男生进行排列,(a) 若女生在一起有多少种不同的排列?(b) 女生两两不相邻有多少种不同的排列?(c) 两男生a和b之间正好有3个女生的排列是多少?所以总的排列数为上述6种情况之和。

1.3题 m个男生,n个女生,排成一行,其中m,n都是正整数,若(a)男生不相邻(m?n?1); (b)n个女生形成一个整体;(c)男生a和女生b排在一起;分别讨论有多少种方案。

解:(a) 可以考虑插空的方法。

n个女生先排成一排,形成n+1个空。

因为m?n?1正好m个男生可以插在n+1个空中,形成不相邻的关系。

则男生不相邻的排列个数为ppnnn?1m(b) n个女生形成一个整体有n!种可能,把它看作一个整体和m个男生排在一起,则排列数有(m+1)!种可能。

因此,共有n!?(m?1)!种可能。

(c)男生a和女生b排在一起,因为男生和女生可以交换位置,因此有2!种可能,a、b组合在一起和剩下的学生组成排列有(m+n-1)! (这里实际上是m+n-2个学生和ab的组合形成的)种可能。

共有组合数为2!?(m?n?1)! 1.4题 26个英文字母进行排列,求x和y之间有5个字母的排列数解:c(24,5)*13!1.5题求3000到8000之间的奇整数的数目,而且没有相同的数字。

n1.7题试证:(n?1)(n?2)?(2n)被2除尽。

n证明:因(2n)!?2n!(2n?1)!!(n?1)(n?2)?(2n)n!(n?1)(n?2)?(2n)(2n)!(2n?1)!! nnn2n!2n!2因为(2n-1)!!是整数所以(n?1)(n?2)?(2n)能被2n除尽。

1.8题求10和20的公因数数目。

404040403010306030402030解:因为10?2*5?2*5*520?2*5?2*2*54030它们最大公因子为2*5转化为求最大公因子能除尽的整数个数,能除尽它的整数是ab2*5,0??a??40,0??b??30根据乘法法则,能除尽它的数个数为41*31=127121.9题试证n的正除数的数目是奇数。

22证明:设有0?a?n,n?b?n, 则一定有表达式n?a?b,则可知符合范围的a和b必成对出现,所以为偶数。

22又当a=b=n时,表达式n=a?b仍然成立。

所以n的正除数的数目是―偶数?1‖为奇数。

1.10题证任一正整数n可唯一地表成如下形式:证:对n用归纳法。

,0≤ai≤i,i=1,2,…。

4030由假设对n-k!,命题成立,设,其中ak≤k-1,,命题成立。

再证表示的唯一性:设, 不妨设aj>bj,令j=max{i|ai≠bi}(aj?bj)?j(bi?ai)?i!?ji?ibi?ai?i(bi?ai)?i! 矛盾,命题成立。

1.11题证明nc(n-1,r)= (r+1)c(n,r+1),并给予组合解释.证:nc(n?1,r)?n(n?1)!(r?1)?n!(r?1)?n!(r?1)c(n,r?1)r!?(n?r?1)!(r?1)?r!?(n?r?1)!(r?1)!?(n?r?1)!所以左边等于右边组合意义:等式左边:n个不同的球,先任取出1个,再从余下的n-1个中取r个;等式右边:n个不同球中任意取出r+1个,并指定其中任意一个为第一个。

所以两种方案数相同。

1.12题证明等式:kc(n,k)n2k?1nn?1nn?1?n?1n?1?n?1?n?1?n?n?nc(n?1,0)?c(n?1,1)?l?c(n?1, n?1)?n2?右边 ?? 证明:等式左边??nk?1k?1sk?1??k?1??s?0??n1.13题有n个不同的整数,从中间取出两组来,要求第1组的最小数大于另一组的最大数。

解题思路:(取法由大到小)第1步:从n个数由大到小取一个数做为第一组,其它n-1个数为第二组,组合数为:c(n,1)*{c(n-1,1)+c(n-1,2)-…+c(n-1,n-1)}第2步:从n个数由大到小取两个数做为第一组,其它n-2个数为第二组,组合数为:c(n,2)*{c(n-2,1)+c(n-2,2)-…+c(n-2,n-2)} …第n-2步:从n个数由大到小取n-2个数做为第一组,其它2个数为第二组,组合数为:c(n,n-2)*{c(2,1)} 第n-1步:从n个数由大到小取n-1个数做为第一组,其它1个数为第二组,组合数为:c (n,n-1)*{c(1,1} 总的组合数为:c(n,1)?{c(n?1,1)?c(n?1,2)c(n?1,n?1)}?c(n,2)?{c(n?2,1)?c(n? 2,2)c(n?2,n?2)}c(n,n?2)?{c(2,1)?c(n,n?1)?c(1,1)}1.14 题 6个引擎分列两排,要求引擎的点火顺序两排交错开来,试求从特定一引擎开始有多少种方案?解:第1步从特定引擎对面的3个中取1个有c(3,1)种取法,第2步从特定引擎一边的2个中取1个有c(2,1)种取法,第3步从特定引擎对面的2个中取1个有c(2,1)中取法,剩下的每边1个取法固定。

所以共有c(3,1)?c(2,1)?c(2,1)=12种方案。

1.15题求1至1000000中0出现的次数。

解:当第一位为0时,后面6位组成的数可以从1-100000,共100000个0;当第二位为0时,当第一位取0-9时,后面5位可以取1-9999,此外当第一位取0时,后面5位还可以取为10000,这样共有9999*10+1=99991个0;同理第三位为0时,共有99901个0;第四位为0时,共有99001个0;第五位为0时,共有90001个0;第六位为0时,只有1个0;这样总共的0数为:100000+99991+99901+99001+90001+1=488895。

1.16题n个相同的球放到r个不同的盒子里,且每个盒子里不空的放法。

解:如果用―o‖表示球,用―|‖表示分界线,就相当于用r-1个―|‖把n个―o‖分成r份,要求是每份至少有一个球。

如下图所示:00|00000000|00000000|00000|000000……对于第一个分界线,它有n-1种选择,对于第二个分界线只有n-2个选择,(因为分界线不能相临,如果相临它们之间就没有了球,这不合要求),依次第r-1个分界线只有n-(r-1)种选择。

但是这样的分法中存在重复,重复度为(r-1)!,所以总得放法为:(n-1)*(n-2)*…*(n-r+1)/(r-1)!=c(n-1,r-1)。

1.18题 8个盒子排成一列,5个有标志的球放到盒子中,每盒最多放一个球,要求空盒不相邻,问有多少种排列方案?5解:要求空盒不相邻,这样球的位置共有8种。

而不同标志的球的排列有p5?5!。

所以共有8*5!种排列。

8种排列如下两类。

因为要求空盒不相邻,途中1代表球a)1 111b) 1 111在a)中剩下的一个球有四种位置,b)中剩下的一个球也有四种位置,两者合起来一共有8种 1.17题 n和r都是正整数,而且r?n,试证下列等式:(a)p?nprnn?1r?1(b)1pr(nr1)pr!r(p11(c)n?1r?1pnn?rpn?1r,r?n(d)pn?1rp?rp(e)pn?1plprr?1)解:(a) npn?1r?1nn(n?1)!n!(n?r)!(n?r)!?(n?r?1)?p等式成立。

nn!n!pr?1pr等式成立。

(n?r?1)!(n?r)!n?1nnn(n?1)!n!(c) p等式成立。

prn?rrn?r(n?r?1)!(n?r)!(b) (n?r?1)(d)prp1n!n!n!(n?r?1)n!(n?1)!?n!?r?r?n!(n?1)!rr(nr)!(nr1)!(nr1)!(nr1)!(nr1)!(n1r)! pn?1r(e)利用(d)的结论可证明本题。

r!?r(p1pn?1r?1lprr?1)?pprprprpprprplrr?1r?1rrrr?1r?1r?1r?1rr?1r?1r?2r?1rrpnrpn?1lrpr?2r?1rr?1n?1r?1lrpn?1r?1rp1n1rrprp1p1.19题 n+m位由m个0,n个1组成的符号串,其中n≤m+1,试问不存在两个1相邻的符号串的数目。

解:m个0进行排列,留出m+1个空挡,任选n 个空挡放1,共有c(m+1,n)种方案.1.21题一个盒子里有7个无区别的白球,5个无区别的黑球,每次从中随机取走一个球,已知前面取走6个,其中3个是白的,试问取第6个球是白球的概率。

解:c(6,2)*c(5,2)*c(5,3)/c(5,3)c(7,3)c(6,3)=3/141.20 题甲单位有10个男同志,4个女同志,乙单位有15个男同志,10个女同志,由他们产生一个7人的代表团,要求其中甲单位占4人,而且7人中男同志占5人,试问有多少中方案?解:1.甲单位出4个男同志,乙单位出1个男同志,从乙单位出2个女同志c(10,4)*c(15,1)*c(10,2)=141750 2. .甲单位出3个男同志,乙单位出2个男同志,从甲单位出1个女同志,从乙单位出1个女同志。

c(10,3)*c(15,2)*c(4.1)*c(10,1)=5040003. .甲单位出2个男同志,乙单位出3个男同志,从甲单位出2个女同志. c(10,2)*c(15,3)*c(4,2)=122850 1+2+3即为所求,总的方案数为768600 1.22题求图1-22中从o到p的路经数: (a) 路径必须经过a点; (b) 路径必须过道路ab; (c) 路径必须过a和c(d) 道路ab封锁(但a,b两点开放) 解: (a)分两步走o(0,0)→a(3,2) a(3,2)→p(8,5),根据乘法法则: ?3?2??3?5?n2??35603?2??4?3?(b)分两步走o(0,0)→a(3,2), b(4,2)→p(8,5),根据乘法法则:n?? ??2?3???3503?2??3?1??2?2?(c)分三步走: o(0,0)→a(3,2), a(3,2)→c(6,3), c(6,3)→p(8,5), 根据乘法法则: n?? ??2?1?2???240(d)ab封锁路径数加必经ab路径数即o(0,0)→p(8,5)的所有路径数有加法法则可得:583243n5??2??31287?350?9371.23题令s={1,2,…,n+1},n≥2,t={(x,y,z)|x,y,z∈s, xz, yz}, 试证 :|t|? n1n12k??2 k?1?2??3?n证明:要确定x,y,z的取值,有两种方法,222kk?1n2种可能。

相关文档
最新文档