广东省佛山市顺德区第一中学2020-2021学年高一下学期期中数学试卷(解析版)
2020-2021学年第一学期期中高一数学试卷及答案
高一级期中质量测试数学科试参考答案(第1页共4页)2020-2021学年度第一学期期中高中一年级质量测试数学科试卷参考答案题号123456789101112答案A C D A B D C A AB ABD AD BCD 三、13.1214.{x |x ≥−1且x ≠0}15.5≤4a −2b ≤1016.1516;0或1312.四、解答题17.解:(1)由图象观察可知f (x )的单调增区间为(0,2];……………………………………5分(2)函数f (x )的图象如图所示:……………………………………………7分f (x )<0的解集为(−∞,−4)∪(4,+∞).………………………………………………………10分18.解:因为A ∩B ={9},故9∈A 且9∈B ,………………………………………………1分所以2m −1=9,或者m 2=9,…………………………………………………………………3分解得m =5,或者=±3,…………………………………………………………………………5分当m =5时,A ={−4,9,25},B ={0,−4,9},A ∩B ={−4,9},不合题意;……………………7分当m =3时,B ={−2,−2,9},与集合元素的互异性矛盾;…………………………………9分当m=−3时,A={−4,−7,9},B={−8,4,9},A∩B={9},符合题意;……………………11分综上所述,m=−3.……………………………………………………………………………12分19.解:(1)已知x<2,∴x−2<0.……………………………………………………………1分∴4x+1x−2=4(x−2)+1x−2+8……………………………………………………………………2分∴−4(x−2)−1x−2≥4,……………………………………………………………………………3分当且仅当−4(x−2)=−1x−2,即x=32时等号成立.………………………………………………4分∴4(x−2)+1x−2≤−4……………………………………………………………………………5分∴4x+1x−2=4(x−2)+1x−2+8≤4∴4x+1x−2的最大值为4………………………………………………………………………6分(2)解:∵x+4y+xy=5,∴5−xy=x+4y≥24xy=4xy……………………………………………………………………7分当且仅当x=4y,x+4y+xy=5即x=2,y=12时,等号成立……………………………………………………………………8分∴xy+4xy−5≤0………………………………………………………………………………9分∴xy≤1………………………………………………………………………………………11分∴xy的最大值为1……………………………………………………………………………12分20.解:(1)f(x)为R上的奇函数,……………………………………………………………1分∴f(0)=0,得b=0,…………………………………………………………………………3分又f(1)=a+b2=12,∴a=1,…………………………………………………………………5分∴f(x)=xx2+1……………………………………………………………………………………6分高一级期中质量测试数学科试参考答案(第2页共4页)(2)f(x)在[1,+∞)上为减函数,……………………………………………………………7分证明如下:在[1,+∞)上任取x1和x2,且x1<x2,……………………………………………8分则f(x2)−f(x1)=x2x22+1−x1x21+1=(x21+1)x2-(x22+1)x1(x21+1)(x22+1)=x21x2-x22x1+x2-x1(x21+1)(x22+1)=(x1-x2)(x1x2-1)(x21+1)(x22+1)……………………9分∵x2>x1≥1,∴x1x2−1>0,x1−x2<0,…………………………………………………………10分∴f(x2)−f(x1)<0,即f(x2)<f(x1),………………………………………………………………11分∴f(x)在[1,+∞)上为减函数.…………………………………………………………………12分21.解:(1)由已知条件f(x)−g(x)=x+ax−2………………①………………………………1分①式中以−x代替x,得f(−x)−g(−x)=−x−ax−2………②………………………………2分因为f(x)是奇函数,g(x)是偶函数,故f(−x)=−f(x),g(−x)=g(x),②可化为−f(x)−g(x)=−x−ax−2………③…………………………………………………3分①−③,得2f(x)=2x+2ax,……………………………………………………………………4分故f(x)=x+ax,g(x)=2,x∈(−∞,0)∪(0,+∞);…………………………………………6分(2)由(1)知,f(x)+g(x)=x+ax+2,x∈[1,+∞),……………………………………………7分当a≥0时,函数f(x)+g(x)的值恒为正;……………………………………………………8分当a<0时,函数f(x)+g(x)=x+ax+2在[1,+∞)上为增函数,…………………………9分故当x=1时,f(x)有最小值3+a,故只需3+a>0,解得−3<a<0.………………………………………………………………11分综上所述,实数a的取值范围是(−3,+∞).………………………………………………12分高一级期中质量测试数学科试参考答案(第3页共4页)【法二:由(1)知,f(x)+g(x)=x+ax+2,……………………………………………………7分当x∈[1,+∞)时,f(x)+g(x)>0恒成立,等价于a>−(x2+2x),…………………………9分而二次函数y=−(x2+2x)=−(x+1)2+1在[1,+∞)上单调递减,………………………10分x=1时,y max=−3,.…………………………………………………………………………11分故a>−3………………………………………………………………………………………12分】22.解:(1)由题意知,y−x−(10+2p),…………………………………………2分将p=3−2x+1代入化简得y=16−4x+1−x(0≤x≤a).…………………………………………5分【注:没注明定义域,扣1分】(2)当a≥1时,y=17x+−24x+1×(x+1)=13,…………………………7分当且仅当4x+1=x+1,即x=1时,上式取等号.…………………………………………8分所以当a≥1时,促销费用投入1万元时,厂家的利润最大为13万元.…………………9分当0<a<1时,y=16−4x+1−x在(0,1)上单调递增,…………………………………………11分所以当0<a<1时,促销费用投入a万元时,厂家的利润最大为4161aa-万元………12分高一级期中质量测试数学科试参考答案(第4页共4页)。
2023-2024学年广东省佛山市顺德区部分学校高一下学期第二次联考化学试题+答案解析
2023-2024学年广东省佛山市顺德区部分学校高一下学期第二次联考化学试题一、单选题:本大题共16小题,共48分。
1.2022年,北京冬奥会吉祥物“冰墩墩”终于揭开神秘的面纱,冰是水的固态。
下列关于水处理的方法不正确的是()A.向水中通入,用以杀菌消毒B.向酸性废水中加入生石灰,将其中和C.向废水中加入,可将细小悬浮物凝聚D.向废水中加入,可将其中的、沉淀2.利用两步热化学循环制氢气系统如图所示,下列说法不正确的是()A.图中能量转化方式只有1种B.两步总反应为:C.氢能是一种清洁、高效、安全、可持续的新能源D.生产步骤反应为:3.下列关于和的叙述正确的是()A.均能用通式来表示B.与所有烷烃互为同分异构体C.它们物理、化学性质相同D.通常情况下前者是气体,后者是液体4.下列叙述正确的是()A.氨气遇到浓硫酸会发生反应产生白烟B.的氨水中含有C.具有还原性,一定条件下可被氧化D.氨气能使红色石蕊试纸变蓝5.下列说法正确的是()A.与可以直接化合生成硅酸B.C与反应,C过量生成CO、过量生成C.盛放氢氧化钠的试剂瓶瓶塞不能用玻璃塞,应用橡胶塞D.Si与NaOH溶液反应体现了Si的氧化性6.下列反应中,既属于离子反应又属于氧化还原反应的是()A.B.C.D.7.选用如图所示仪器中的两个或几个内含物质组装成实验装置,以验证木炭可被浓氧化成,下列说法正确的是()A.按气流从左向右流向,连接装置的正确顺序是B.丁中溶液褪色,乙中溶液变浑浊说明甲中生成C.丙中品红溶液褪色,乙中溶液变浑浊说明甲中生成D.丁和丙中溶液都褪色,乙中溶液变浑浊,说明甲中有生成8.两只敞口烧杯中分别发生如下反应:一只烧杯中反应为,反应温度为,另一只烧杯中反应为,反应温度为,,则两只烧杯中反应速率快慢为()A.前者快B.后者快C.一样快D.无法确定9.将纯锌片和纯铜片按如图方式插入同浓度的稀硫酸中一段时间,以下叙述正确的是()A.两烧杯中铜片表面均无气泡产生B.甲中铜片是正极,乙中铜片是负极C.两烧杯中均向铜片移动D.产生气泡的速率甲比乙快10.在一定条件下,将和两种气体通入1L 密闭容器中,发生反应:,2S 内的反应速率:V ,V,V则x 和y的值分别为()A.2和3B.3和2C.3和1D.1和311.下列说法不正确的是。
广东省佛山市顺德区第一中学西南学校2023-2034学年九年级上学期月考数学试题
广东省佛山市顺德区第一中学西南学校2023-2034学年九年级上学期月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A.AD BC=BA.125B.11010.如图.AB∥CD∥EF,AF、A.AD BCDF CE=B.AGGD二、填空题11.写出一个根为=1x-的一元二次方程,它可以是12.小明设计了一个魔术盒,当任意实数对(15.已知关于x 的一元二次方程()2323x m x m -+=-有两个不相等的实数根若22121270⋅--+=x x x x ,则m =.16.书籍开本指书刊幅面的规格大小.如图,将一张矩形印刷用纸对折后可以得到纸,再对折得到4开纸,以此类推,可以得到8开纸、16开纸……这些开本都是相似图形,我们所用的数学课本是16开本,有些图书是32开本,16开的纸和相似比是.17.如图,在Rt ABC △中,90C ∠=︒,3AC =cm ,4BC =cm ,D 是AB 上一点,于点E ,DF BC ⊥于点F ,连接EF ,则EF 的最小值为cm .三、解答题设游戏者从圈A起跳.(1)小明随机掷一次骰子,求落回到圈A的概率(2)小亮随机掷两次骰子,用列表或画树状图的方法求最后落回到圈与小明落回到圈A的可能性一样吗?21.如图,在▱ABCD中,以点A为圆心,B、F为圆心,大于1BF的相同长为半径画弧,两弧交于点2于点E,连接EF,则所得四边形ABEF是菱形.(1)根据以上尺规作图的过程,求证:四边形(2)若菱形ABEF的周长为16,AE=422.如图,在ABC中,AD是BC边上的中线,N.求证:12AN CN=.23.如图1,为美化校园环境,某校计划在一块长为修建一个长方形花圃,并将花圃四周余下的空地修建成同样宽的通道,(1)花圃的面积为2米(用含a(2)如果通道所占面积是整个长方形空地面积的(3)已知某园林公司修建通道、花圃的造价间的函数关系如图2所示,如果学校决定由该公司承建此项目,度不少于2米且不超过10米,那么通道宽为多少时,修建的通道和花圃的总造价为105920元问题探究(2)如图2,在四边形ACBD 中,90ACB ADB ∠=∠=︒,AC BC =,探究线段AD 、BD 、CD 之间的数量关系井写出解答过程.问题解决(3)如图3是某公园内“少儿活动中心”的设计示意图.已知四边形ACBD 中,90ACB ADB ∠=∠=︒,AC BC =,70m AB =,DC 平分ADB ∠交AB 于点P ,PE AD ⊥于点E ,PF BD ⊥于点F ,按设计要求,四边形PEDF 内部为室内活动区,阴影部分是户外活动区,若AP 的长为30m ,则阴影部分的面积为______________2m .。
2023-2024学年广东省佛山市顺德区部分学校人教版一年级上册期中测试数学试卷(含答案解析)
2023-2024学年广东省佛山市顺德区部分学校人教版一年级上册期中测试数学试卷学校:___________姓名:___________班级:___________考号:___________一、口算和估算1.口算题。
7+0=3+5=3+3=4+0=6-2=0+10=4+6=2+7=5+5=3+5=10-3=9-8=9-0=2+1=6-6=6+2=2+5=6+1=2+2=4+5=二、填空题每次多()个。
7.画一画,填一填。
8.比轻重:轻的画√,重的画○。
9.最长的画“√”,最短的画“〇”。
10.小的画“〇”,大的画“√”。
()()11.高的画“√”,矮的画“〇”。
()()三、作图题四、填空题,比多五、看图列式14.看图列式。
(个)15.看图列式。
(个)16.看图列式。
(颗)17.看图列式。
8-(个)18.一共有几个?(个)19.一共有8个。
(个)20.看图列式。
(个)21.看图列式。
(辆)(辆)参考答案:【点睛】跷跷板原理,轻的一方就被重的一方压上去了。
9.见详解【分析】在同样大小的柱子上缠绕绳子,缠绕圈数越多,说明绳子就越长;缠绕圈数越少,说明绳子就越短。
【详解】由题意分析得:10.○√【分析】由图片可知,左边的小,右边的大。
【详解】由题意分析得:○√11.√○【分析】通过比较可知,长颈鹿高,蚂蚱矮。
【详解】由题意分析得:√○12.〇〇〇〇【详解】有4个△,画〇,使△和〇同样多,所以应画4个。
4=4如图:〇〇〇〇13.⚪⚪⚪⚪⚪【分析】由题意可知,图中有3个,要求画的圆比多2个,即3+2=5,因此应画5个圆,据此解答即可。
【详解】()14.4+2+4=10【分析】用左边的苹果数量加上中间的苹果数量,求出和,再加上右边的苹果数量,求出结果,即可解决此题。
【详解】由题意分析得:4+2+4=6+4=10(个)15.6-2=4【分析】用气球原来的数量减去飞走的数量,求出差,就是剩下的气球数量。
【详解】由题意分析得:6-2=4(个)16.7-4=3【分析】用五角星的总数量减去圈出来的数量,求出差,就是剩下的数量。
广东省深圳市实验承翰学校2020-2021学年高一下学期期中模拟数学试题(三)(word版含答案)
绝密★启用前 试卷类型:A深圳实验承翰学校2020 ~ 2021学年度第二学期高一数学期中模拟(三)2021.05一、单项选择题:本题共8小题,每小题5分,共40分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数2i12iz +=-. 则在复平面内,z 对应的点的坐标是 A .()1,0 B .()0,1 C .54(,)33-- D .45(,)33--2.长方体的一个顶点上三条棱长分别是3,4,5,且它的8个顶点都在同一球面上,则这个球的表面积是A .25πB .50πC .125πD .都不对 3.向量,,a b c 在正方形网格中的位置如图所示.若向量λ+a b 与c 垂直,则实数λ=A .2-B .3-C .3D .24.设D 是ABC ∆所以平面内一点,3BC CD =,则AD =A .4133AB AC +B .4133AB AC - C .1433AB AC -D .1433AB AC -+5.如果一个水平放置的图形的斜二测直观图是一个底面为45︒,腰和上底均为1的等腰梯形,那么原平面图形的面积是A. 22+B. 122C. 222+ D. 12+6.已知圆柱的高为2,它的两个底面的圆周在同一个半径为2的球的球面上. 则球的体积与圆柱的体积的比值为A. 43B. 916C. 34D. 1697.某工厂生产A,B,C 三种不同型号的产品,其数量之比依次是3∶4∶7,现在用分层随机抽样的方法抽出样本容量为n 的样本,样本中A 型号产品有15件,那么n 等于( )(A)50 (B)60 (C)70 (D)808.总体由编号为01,02,…,49,50的50个个体组成,利用下面的随机数表选取6个个体,选取方法是从随机数表第6行的第9列开始从左到右依次选取两个数字,则选出的第3个个体的编号为( )附:第6行至第7行的随机数表2748 6198 7164 4148 7086 9888 8519 4120 7477 0111 1630 2404 2979 7991 9683 5125 (A)48 (B)41 (C)19 (D)20二、多项选择题:本题共4小题,每小题5分,共20分. 在每小题给出的选项中,有多项符合题目要求. 全部选对的得5分,部分选对的得2分,有选错的得0分. 9.用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体可能是A. 圆锥B. 圆柱C. 棱锥D. 正方体 10.已知复数z 的共轭复数为z ,且i 1i z =+,则下列结论正确的是A. 1z +=B. z 虚部为i -C. 202010102z =D. 2z z z +=11.在ABC ∆中,D ,E ,F 分别是边BC ,AC ,AB 的中点,下列说法正确的是A. AB AC AD +-=0B. DA EB FC ++=0C. 若3||||||AB AC ADAB AC AD +=,则BD 是BA 在BC 的投影向量 D. 若点P 是线段AD 上的动点,且满足BP BA BC λμ=+,则λμ的最大值为1812.对于ABC ∆,有如下命题,其中正确的有A .若sin 2sin 2AB =,则ABC ∆是等腰三角形B .若ABC ∆是锐角三角形,则不等式sin cos A B >恒成立 C .若222sin sin cos 1A B C ++<,则ABC ∆为锐角三角形 D .若2||AC AB AB ⋅>,则ABC ∆为钝角三角形 三.填空题:本题共4小题,每小题5分,共20分.13.已知向量(1,1)=-a ,(3,1)=b ,则b 在a 方向上的投影向量的模为________. 14.△ABC 的内角为A ,B,C 所对应的边分别为a ,b ,c ,已知a =2,c =,A =30°,则边长b = . 15.如图,在四边形ABCD 中,AB =3DC ,E 为边BC的中点,若AE =AB λ+AD μ,则λ+μ=_________.D CEAB16. 某校为了普及“一带一路”知识,举行了一次知识竞赛,满分10分,有10名同学代表班级参加比赛,已知学生得分均为整数,比赛结束后统计这10名同学得分情况如折线图所示,则这10名同学成绩的极差为 ,80%分位数是 .四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题共10分)已知复平面内的点A ,B 对应的复数分别为1i z m m =-,()222212i z m m =-+-(m ∈R ),设AB 对应的复数为z . (1)当实数m 取何值时,复数z 是纯虚数;(2)若复数z 在复平面上对应的点位于第四象限,求实数m 的取值范围.18.(本小题共12分)已知向量(1,2)=a ,(1,3)=-b ,(3,2)=-c . (1)求向量a 与2+a b 所成角的余弦值; (2)若(2)+a b //()k +b c ,求实数k 的值.19.(本小题共12分)在某中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.(1)求第二小组的频率,并补全这个频率分布直方图; (2)求这两个班参赛的学生人数是多少? (3)求这两个班参赛学生的成绩的中位数.20.(本小题共12分)已知 是圆锥的顶点,是圆锥底面的直径, 是底面圆周上一点,,,平面和平面将圆锥截去部分后的几何体如图所示. (1)求与底面所成的角;(2)求该几何体的体积; (3)求二面角的余弦值.21.(本小题共12分)在ABC ∆中,若a 、b 、c 分别是内角A 、B 、C 的对边,已知ABC ∆同时满足下列4个条件中的3个:①1sin22B =;②2220a b c ab +-+=;③ 23b =;④ 3c =.(1)请指出这3个条件,并说明理由; (2)求sin A .22.(本小题共12分)在ABC ∆中,内角AB C ,,的对边分别为a b c ,,, 已知cos cos 1sin sin sin A C A C B+=. (1)求角B 的取值范围;(2)若7sin B =,且32BA BC ⋅=,求||BA BC +的值.期中模拟(三)参考答案及评分标准 2021.05一、单项选择题(本题共8小题,每小题5分,共40分)1~4 BBDD 5~8 ADCC二.多项选择题(本题共4小题,每小题5分,共20分)9. ACD 10. AD 11. BCD 12. BD 三、填空题(本题共4小题,每小题5分,共20分)13.14.2或4 15.7616.7 8.5 四、解答题(本题共6小题,共70分)17. 解:点A ,B 对应的复数分别为()2212i,212i z m m z m m =-=-+-,AB ∴对应的复数为z ,222121(2)z z z m m m m i ∴=-=--++-.(1)复数z 是纯虚数,2221020m m m m ⎧--=∴⎨+-≠⎩, ··············· 3分解得11221m m m m ⎧=-=⎪⎨⎪≠-≠⎩或且,12m ∴=-. ················· 5分 (2)复数z 在复平面上对应的点坐标为22(21,2)m m m m --+-,位于第四象限,2221020m m m m ⎧-->∴⎨+-<⎩, ················· 7分即11221m m m ⎧<->⎪⎨⎪-<<⎩或,122m ∴-<<-. ··································································· 10分 18. 解:(1)因为(1,2)=a ,(1,3)=-b ,所以2+a b (1,8)=-.2分设向量a 与2+a b 所成角为θ,(2)cos |||2|13θ+===+a a b a a b . ·············································· 6分 (2)∵ 2+a b (1,8)=-,()k +b c (31,32)k k =--, ········································ 8分又 (2)+a b //()k +b c ,∴(1)(32)8(31)0k k -⨯---=,解得522k =. ···············································12分19. 解:(1)各小组的频率之和为 1.00,第一、三、四、五小组的频率分别是0.30,0.15,0.10,0.05,所以第二小组的频率为1.00-(0.30+0.15+0.10+0.05)=0.40.所以落在59.5~69.5的第二小组的小长方形的高为0.04.则补全的频率分布直方图如图所示.(2)设九年级两个班参赛的学生人数为x人.因为第二小组的频数为40人,频率为0.40,所以=0.40,解得x=100.所以九年级两个班参赛的学生人数为100人.(3)因为(0.03+0.04)×10>0.5,所以九年级两个班参赛学生的成绩的中位数应落在第二小组内.设中位数为x,则0.03×10+(x-59.5)×0.04=0.5,解得x=64.5.所以中位数为64.5.20.解:(1)设为的中点,连接,,则为与底面所成的角.由已知可得,所以为正三角形,.而,所以,故,所以与底面所成的角为.(2)由题设知.故的面积.底面半圆的面积.所以该几何体的体积.(3)取 的中点 ,连接 ,. 因为 , 所以 . 同理,, 则为二面角 的平面角. 因为 ,所以为正三角形,则,,, 所以 ,. 所以. 所以二面角的余弦值为 .21.解:(1)ABC ∆同时满足条件①,③,④. ································································· 1分 理由如下:若ABC ∆同时满足①,②. 因为1sin22B =,且(0,)22B π∈,所以=26B π,即3B π= ········································· 2分 因为2221cos 22a b c C ab +-==-,且(0,)C π∈,所以23C π= ······························· 4分所以B C π+=,矛盾······································································································ 5分 所以ABC ∆只能同时满足③,④.因为b c >,所以B C >,故ABC ∆不满足②故ABC ∆满足①,③,④ ································································································ 7分 (2)在ABC ∆中,23b =3c =,3B π=又由正弦定理知:sin sin b c B C =,所以sin 3sin 4c B C b == ····································· 9分 又因为B C >,所以(0,)2C π∈,7cos C = ························································· 10分所以3713321sin sin()sin()324248A B C C π+=+=+=+⨯= ···················· 12分22. 解:(1)因为cos cos cos sin cos sin sin sin sin sin A C A C C AA C A C++= sin()sin 1sin sin sin sin sin A C B A C A C B+===. ··········································································· 2分所以2sin sin sin A C B =由正弦定理可得,2b ac =. ························································································ 4分 因为2222cos 22cos b a c ac B ac ac B =+-≥-, 所以1cos 2B ≥,即03B π<≤ . ··············································································· 6分(2)因为sin 4B =,且2b ac =,所以B 不是最大角,所以3cos 4B ===. 所以33cos 24BA BC ac B ac ===,得2ac =.因而22b =. ··························· 8分 由余弦定理得2222cos b a c ac B =+-,所以225a c +=. ······························· 10分所以22222||22cos 8BC BA a c BC BA a c ac B +=++=+-= ,即||22BC BA +=······························································································· 12分。
2020-2021学年广东省实验中学高一(下)期中数学试卷
2020-2021学年广东省实验中学高一(下)期中数学试卷试题数:22,总分:1501.(单选题,5分)设复数z满足z•(1+i)=2(i为虚数单位),则|z|=()A.1B. √2C.2D.32.(单选题,5分)已知向量a⃗=(3,4),b⃗⃗=(1−λ,2+λ),且a⃗⊥b⃗⃗,则λ=()A.-11B.-2C. 117D. −273.(单选题,5分)如图,平行四边形O'A'B'C'是水平放置的一个平面图形的直观图,其中O'A'=5,O'C'=2,∠A'O'C'=30°,则原图形的面积是()A.4B. 4√2C. 10√2D.64.(单选题,5分)如图,长方体ABCD-A1B1C1D1的棱所在直线与直线BA1为异面直线的条数是()A.4B.5C.6D.75.(单选题,5分)下列四个命题中正确的是()A.底面是多边形,其余各面是三角形的几何体是棱锥B.两两相交的三条直线必在同一平面内C.在空间中,四边相等的四边形是菱形D.不存在所有棱长都相等的正六棱锥6.(单选题,5分)已知P,Q是不同的点,l,m,n是不同的直线,α,β是不同的平面,则下列数学符号表示的不是基本事实(公理)的选项为()A.P∈l,Q∈l,P∈α,Q∈α⇒l⊂αB.P∈α,P∈β⇒存在唯一直线l,α∩β=l,且P∈lC.l || m,m || n⇒l || nD.m || n⇒确定一个平面γ且m⊂γ,n⊂γ7.(单选题,5分)已知三棱锥A-BCD中,CD=√2,BC=AC=BD=AD=1,则此几何体外接球的体积为()A.2πB. √2π3C. √2π6D.π⃗⃗⃗⃗⃗⃗•8.(单选题,5分)在△OAB中,OA=OB=2,AB=2√3,动点P位于直线OA上,当PA⃗⃗⃗⃗⃗⃗取得最小值时,∠PBA的正弦值为()PBA. 3√77B. 2√77C. √2114D. √2139.(多选题,5分)设z为复数,则下列命题中正确的是()A. |z|2=z•zB.z2=|z|2C.若|z|=1,则|z+i|的最小值为0D.若|z-1|=1,则0≤|z|≤210.(多选题,5分)如图,直角梯形ABCD中AB=2,CD=4,AD=2.则下列说法正确的是()A.以AD 所在直线为旋转轴,将此梯形旋转一周,所得旋转体的侧面积为 16√2πB.以CD 所在直线为旋转轴,将此梯形旋转一周,所得旋转体的体积为 32π3C.以AB 所在直线为旋转轴,将此梯形旋转一周,所得旋转体的全面积为 20π+4√2πD.以BC 所在直线为旋转轴,将此梯形旋转一周,所得旋转体的体积为 28√2π311.(多选题,5分)如图一个正四面体和一个正四棱锥的所有棱长都相等,将正四面体的一个面和正四棱锥的一个侧面紧贴重合在一起,得到一个新几何体.对于该几何体,则( )A.AF || CDB.2V 三棱锥F-ABC =V 四棱锥A-BCDEC.新几何体有7个面D.新几何体的六个顶点在同一个球面上12.(多选题,5分)在棱长为 3+√3 的正方体ABCD-A 1B 1C 1D 1中,球O 1同时与以B 为公共顶点的三个面相切,球O 2同时与以D 1为公共顶点的三个面相切,且两球相切于点E ,若球O 1,O 2的半径分别为r 1,r 2,则( )A.O 2,O 1,B ,D 1四点不共线B.r 1+r 2=3C.这两个球的体积之和的最小值是9πD.这两个球的表面积之和的最大值是18π13.(填空题,5分)设A={正方体},B={直平行六面体},C={正四棱柱},D={长方体},那么上述四个集合间正确的包含关系是___14.(填空题,5分)向量 a ⃗=(2,1) 在向量 b⃗⃗=(3,4) 方向上的投影向量的坐标为 ___ . 15.(填空题,5分)如图,在△ABC 中, BD ⃗⃗⃗⃗⃗⃗⃗=13BC ⃗⃗⃗⃗⃗⃗ ,点E 在线段AD 上移动(不含端点),若 AE ⃗⃗⃗⃗⃗⃗ =λ AB⃗⃗⃗⃗⃗⃗ +μ AC ⃗⃗⃗⃗⃗⃗ ,则 λμ =___ ,λ2-2μ的最小值是___ .16.(填空题,5分)正方体ABCD-A 1B 1C 1D 1为棱长为2,动点P ,Q分别在棱BC ,CC 1上,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,设BP=x ,CQ=y ,其中x ,y∈[0,2],下列命题正确的是___ .(写出所有正确命题的编号)① 当x=0时,S 为矩形,其面积最大为4;② 当x=y=1时,S的面积为92;③ 当x=1,y∈(1,2)时,设S与棱C1D1的交点为R,则RD1=4−4y;④ 当y=2时,以B1为顶点,S为底面的棱锥的体积为定值83.17.(问答题,10分)已知向量a⃗与b⃗⃗的夹角θ=2π3,且|a⃗ |=3,| b⃗⃗ |=2.(1)求a⃗•b⃗⃗,| a⃗ + b⃗⃗ |;(2)求向量a⃗与a⃗ + b⃗⃗的夹角的余弦值.18.(问答题,12分)(1)在△ABC中,a=1,b=2,cosC= 14,求cosA.(2)在△ABC中,已知a= 5√2,c=10,A=30°,求角B;19.(问答题,12分)已知棱长为1的正方体AC1,H、I、J、K、E、F分别相应棱的中点如图所示.(1)求证:H、I、J、K、E、F六点共面;(2)求证:BE、DF、CC1三线共点;(3)求几何体B1BE-D1DF的体积.20.(问答题,12分)已知正方体ABCD-A1B1C1D1中,P、Q分别为对角线BD、CD1上的点,且CQQD1 = BPPD= 23.(1)求证:PQ || 平面A1D1DA;(2)若R是CD上的点,当CRCD的值为多少时,能使平面PQR || 平面B1C1CB?请给出证明.21.(问答题,12分)若函数f(x)= √3 sinx+2cos2x,△ABC的角A,B,C的对边分别为a,2b,c,且f(A)=3.取最大值时,判断△ABC的形状;(1)当b+ca(2)在△ABC中,D为BC边的中点,且AD= √13,AC=2,求BC的长.22.(问答题,12分)已知向量m⃗⃗⃗=(cos2x+2√3sinx,1),n⃗⃗=(2,−a).(1)当a=0时,令f(x)=m⃗⃗⃗•n⃗⃗,求f(x)的最值;)上有6个不等的实根,求a的取值范围;(2)若关于x方程m⃗⃗⃗•n⃗⃗=0在x∈(0,5π2,求a的值.(3)当m⃗⃗⃗•n⃗⃗≥0对x∈[x1,x2]恒成立时,x2-x1的最大值为5π32020-2021学年广东省实验中学高一(下)期中数学试卷参考答案与试题解析试题数:22,总分:1501.(单选题,5分)设复数z满足z•(1+i)=2(i为虚数单位),则|z|=()A.1B. √2C.2D.3【正确答案】:B【解析】:先对复数进行化简,然后结合复数的模长公式可求.【解答】:解:由题意得z= 21+i = 2(1−i)(1+i)(1−i)=1-i,则|z|= √2.故选:B.【点评】:本题主要考查了复数的四则运算及复数的几何意义,属于基础题.2.(单选题,5分)已知向量a⃗=(3,4),b⃗⃗=(1−λ,2+λ),且a⃗⊥b⃗⃗,则λ=()A.-11B.-2C. 117D. −27【正确答案】:A【解析】:利用向量垂直的性质列方程,能求出λ.【解答】:解:∵向量a⃗=(3,4),b⃗⃗=(1−λ,2+λ),且a⃗⊥b⃗⃗,∴ a⃗•b⃗⃗ =3(1-λ)+4(2+λ)=0,解得λ=-11.故选:A.【点评】:本题考查实数值的求法,考查向量垂直的性质等基础知识,考查运算求解能力等数学核心素养,是基础题.3.(单选题,5分)如图,平行四边形O'A'B'C'是水平放置的一个平面图形的直观图,其中O'A'=5,O'C'=2,∠A'O'C'=30°,则原图形的面积是()A.4B. 4√2C. 10√2D.6【正确答案】:C【解析】:求出直观图的面积,再根据原平面图形的面积与直观图的面积比为2 √2:1,计算即可.【解答】:解:平行四边形O'A'B'C'中,O'A'=5,O'C'=2,∠A'O'C'=30°,=5,所以平行四边形O′A′B′C′的面积为S′=O′A′•O′C′•sin30°=5×2× 12所以原平面图形的面积是S=2 √2S′=2 √2 ×5=10 √2.故选:C.【点评】:本题考查了平面图形的直观图与原图形的面积比为1:2 √2的应用问题,是基础题.4.(单选题,5分)如图,长方体ABCD-A1B1C1D1的棱所在直线与直线BA1为异面直线的条数是()A.4B.5C.6D.7【正确答案】:C【解析】:直接利用异面直线的定义对正方体的棱逐一判断,得到与直线BA1异面的直线,即可得到答案.【解答】:解:根据异面直线的定义可得,与直线BA1为异面直线的棱有:AD,B1C1,CD,C1D1,CC1,DD1,共6条.故选:C.【点评】:本题考查了异面直线的判断,涉及了正方体几何性质的应用,解题的关键是掌握异面直线的定义,属于基础题.5.(单选题,5分)下列四个命题中正确的是()A.底面是多边形,其余各面是三角形的几何体是棱锥B.两两相交的三条直线必在同一平面内C.在空间中,四边相等的四边形是菱形D.不存在所有棱长都相等的正六棱锥【正确答案】:D【解析】:直接利用几何图形的定义和性质判断A、B、C、D的结论.【解答】:解:对于A:底面是多边形,其余各面是三角形的几何体是棱锥与锥体的定义矛盾,故A错误;对于B:两两相交的三条直线且不相交于同一点的直线必在同一平面内,故B错误;对于C:在空间中,四边相等的四边形沿一条对角线折叠,构成四面体,故C错误;对于D:不存在所有棱长都相等的正六棱锥,由于六个等边三角形正好360°,构成一个周角,故正确;故选:D.【点评】:本题考查的知识要点:几何图形的定义和性质,主要考查学生对基础知识的理解,属于基础题.6.(单选题,5分)已知P,Q是不同的点,l,m,n是不同的直线,α,β是不同的平面,则下列数学符号表示的不是基本事实(公理)的选项为()A.P∈l,Q∈l,P∈α,Q∈α⇒l⊂αB.P∈α,P∈β⇒存在唯一直线l,α∩β=l,且P∈lC.l || m,m || n⇒l || nD.m || n⇒确定一个平面γ且m⊂γ,n⊂γ【正确答案】:D【解析】:公理是不能被证明但确实是正确的结论,是客观规律,依据公理的定义,依次求解.【解答】:解:由公理一可知:如果一条直线上的两点在一个平面内,那么这条直线在此平面内,故A选项为公理,由公理三可知:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线,故B选项是公理,由平行公理得:平行于同一条直线的两条直线互相平行,故C选项是公理,不同的两直线平行,确定一个平面,且两直线在平面内,为判定定理,非公理,故D选项错误.故选:D.【点评】:本题考查了对公理的判断,需要学生熟练掌握公理的定义,属于基础题.7.(单选题,5分)已知三棱锥A-BCD中,CD=√2,BC=AC=BD=AD=1,则此几何体外接球的体积为()A.2πB. √2π3C. √2π6D.π【正确答案】:B【解析】:由已知结合勾股定理证明AC⊥AD,BC⊥BD,取CD中点O,则O为该几何体外接球的球心,求出半径,代入球的体积公式求解.【解答】:解:如图,由CD=√2,BC=AC=BD=AD=1,可得AC2+AD2=CD2,BC2+BD2=CD2,则AC⊥AD,BC⊥BD,取CD中点O,则OA=OC=OD=OB,∴O为该几何体外接球的球心,则半径为12CD=√22.∴此几何体外接球的体积为43π × (√22)3= √2π3.故选:B .【点评】:本题考查多面体外接球表面积的求法,考查空间想象能力与思维能力,考查运算求解能力,是基础题.8.(单选题,5分)在△OAB 中,OA=OB=2, AB =2√3 ,动点P 位于直线OA 上,当 PA⃗⃗⃗⃗⃗⃗•PB ⃗⃗⃗⃗⃗⃗ 取得最小值时,∠PBA 的正弦值为( )A.3√77 B. 2√77C. √2114D. √213 【正确答案】:C【解析】:建立平面直角坐标系,写出坐标表示出 PA⃗⃗⃗⃗⃗⃗ • PB ⃗⃗⃗⃗⃗⃗ ,利用二次函数求出有最小值时P 的坐标,再利用向量的夹角公式即可求出.【解答】:解:建立如图平面直角坐标系,则A (- √3 ,0),B ( √3 ,0),O (0,1),设P (x ,y ), 直线AO 的方程为y= √33 x+1,∵ PA⃗⃗⃗⃗⃗⃗ • PB ⃗⃗⃗⃗⃗⃗ =(- √3 -x ,-y )•( √3 -x ,-y )=x 2+y 2-3 =x 2+ (√33x +1)2 -3= 43 x 2+ 2√33 x-2= 43 (x +√34)2 - 94 , ∴当x=- √34 时, PA ⃗⃗⃗⃗⃗⃗ • PB ⃗⃗⃗⃗⃗⃗ 有最小值,此时P (- √34 , 34), ∴ BP ⃗⃗⃗⃗⃗⃗ =(- 5√34 , 34), BA ⃗⃗⃗⃗⃗⃗ =(-2 √3 ,0), ∴cos∠PBA= BP ⃗⃗⃗⃗⃗⃗•BA ⃗⃗⃗⃗⃗⃗|BP ⃗⃗⃗⃗⃗⃗|•|BA ⃗⃗⃗⃗⃗⃗| = 1522√3•√8416 = 5√714 , ∵∠PBA∈(0,π),∴sin∠PBA= √1−2528 = √2114 .故选:C.【点评】:本题考查向量的数量积、夹角公式等知识,考查运算求解能力,属于中档题.9.(多选题,5分)设z为复数,则下列命题中正确的是()A. |z|2=z•zB.z2=|z|2C.若|z|=1,则|z+i|的最小值为0D.若|z-1|=1,则0≤|z|≤2【正确答案】:ACD【解析】:直接利用复数的运算,复数的模,共轭,圆的方程,圆与圆的位置关系的应用判断A、B、C、D的结论.【解答】:解:由于z为复数,设z=a+bi(a,b∈R),对于A:|z|2=a2+b2= z•z,故A正确;对于B:z2=(a+bi)2=a2+2abi-b2,|z|2=a2+b2,故B错误;对于C:由于a2+b2=1,所以|z+i|=√a2+(b+1)2∈[0,2],故C正确;对于D:若|z-1|=1,即(a-1)2+b2=1,所以0=1−1≤√(a−0)2+(b−0)2≤1+1=2,故D正确;故选:ACD.【点评】:本题考查的知识要点:复数的运算,复数的模,共轭,圆的方程,圆与圆的位置关系,主要考查学生的运算能力和数学思维能力,属于基础题.10.(多选题,5分)如图,直角梯形ABCD中AB=2,CD=4,AD=2.则下列说法正确的是()A.以AD所在直线为旋转轴,将此梯形旋转一周,所得旋转体的侧面积为16√2πB.以CD所在直线为旋转轴,将此梯形旋转一周,所得旋转体的体积为32π3C.以AB所在直线为旋转轴,将此梯形旋转一周,所得旋转体的全面积为20π+4√2πD.以BC所在直线为旋转轴,将此梯形旋转一周,所得旋转体的体积为28√2π3【正确答案】:CD【解析】:旋直接利用切割法的应用分别利用体积和表面积公式的应用的应用求出圆锥和圆台的体积和表面积.【解答】:解:直角梯形ABCD中AB=2,CD=4,AD=2.则对于A:S侧=π(2+4)×2√2=12√2π,故A错误;对于B:V= V圆柱−V圆锥=π•22•4−13×π•22•2 = 40π3,故B正确;对于C:以AB所在直线为旋转轴,将此梯形旋转一周,所得旋转体的全面积为相当于一个圆柱挖去一个圆锥,如图所示:构成的表面积为4π+2•π•2•4+π•2√2•2 == 20π+4√2π,故C正确;对于D:以BC所在直线为旋转轴,将此梯形旋转一周,相当于一个圆锥的体积和一个圆台的体积的和切去一个小圆锥的体积,如图所示:即:13•π•(2√2)2•2√2+13•[π•(√2)2+√π(√2)2•π•(2√2)2+π•(2√2)2]×√2−13•π•(√2)2•√2=28√2π3.故D正确;故选:CD.【点评】:本题考查的知识要点:旋转体的体积公式,切割法,圆锥和圆台的体积公式,主要考查学生的运算能力和数学思维能力,属于中档题.11.(多选题,5分)如图一个正四面体和一个正四棱锥的所有棱长都相等,将正四面体的一个面和正四棱锥的一个侧面紧贴重合在一起,得到一个新几何体.对于该几何体,则()A.AF || CDB.2V三棱锥F-ABC=V四棱锥A-BCDEC.新几何体有7个面D.新几何体的六个顶点在同一个球面上【正确答案】:AB【解析】:根据空间直线和平面位置关系分别进行判断即可.【解答】:解:取BC的中点G,DE的中点H,连接FG,AH,GH,则FG⊥BC,BC⊥GH,AH⊥DE,则BC⊥平面FGH,DE⊥平面AGH,∵BC || DE,∴平面FGH与平面AGH重合,即AHGF为平面四边形,∵AF=CD=GH,∴四边形AHGF为平行四边形,∴AF || CD,故A正确,由于BE || CD,∴BE || 平面ADCF,∵V四棱锥A-BCDE=2V四棱锥A-BCD=2V四棱锥B-ACD,V四棱锥B-ACD=V四棱锥B-ACF=V三棱锥F-ABC,∴2V三棱锥F-ABC=V四棱锥A-BCDE,故B正确,由于平面ACF与平面ACD重合,平面ABF与平面ABE重合,∴该几何体有5个面,故C错误,由于该几何体为斜三棱柱,故不存在外接球,故D错误,故选:AB.【点评】:本题主要考查与空间立体几何有个的命题的真假判断,涉及空间直线位置关系,空间体积的判断,涉及知识点较多,综合性较强,属于中档题.12.(多选题,5分)在棱长为3+√3的正方体ABCD-A1B1C1D1中,球O1同时与以B为公共顶点的三个面相切,球O2同时与以D1为公共顶点的三个面相切,且两球相切于点E,若球O1,O2的半径分别为r1,r2,则()A.O2,O1,B,D1四点不共线B.r1+r2=3C.这两个球的体积之和的最小值是9πD.这两个球的表面积之和的最大值是18π【正确答案】:BC【解析】:由球与正方体的对称性判断A;画出过正方体对角面的截面图,由对角线长度相等求得r1+r2判断B;写出两球的体积与表面积之和,利用基本不等式求最值判断C与D.【解答】:解:由对称性作过正方体对角面的截面图如下,可得O2,O1,B,D1四点共线,故A错误;由题意可得O1B=√3r1,O2D1=√3r2,则(√3+1)r1+(√3+1)r2=BD1= √3 ×(3+ √3),从而r1+r2=3,故B正确;这两个球的体积之和为:43π(r13+r23)= 43π(r1+r2)(r12−r1r2+r22),∵r1+r2=3,∴(r1+r2)(r12−r1r2+r22)=3(9-3r1r2)≥3[9-3× (r1+r22)2]= 274,即43π(r13+r23)≥9π,当且仅当r1=r2= 32时等号成立,故C正确;这两个球的表面积之和S=4π(r12+r22)≥4π• (r1+r2)22=18π,当且仅当r1=r2= 32时等号成立,故D错误故选:BC.【点评】:本题主要考查了正方体的结构及其特征,球的表面积及体积公式,考查了空间想象能力与计算能力,属于中档题.13.(填空题,5分)设A={正方体},B={直平行六面体},C={正四棱柱},D={长方体},那么上述四个集合间正确的包含关系是___【正确答案】:[1]A⊆C⊆D⊆B.【解析】:根据正方体、直平行六面体、正四棱柱、长方体的定义以及结构特征进行分析判断即可.【解答】:解:在这4种图象中,包含元素最多的是直平行六面体,其次是长方体,最小的是正方体,其次是正四棱柱,故A⊆C⊆D⊆B.故答案为:A⊆C⊆D⊆B.【点评】:本题考查了四棱柱的结构特征的理解和应用,同时考查了集合之间关系的判断及应用,属于基础题.14.(填空题,5分)向量a⃗=(2,1)在向量b⃗⃗=(3,4)方向上的投影向量的坐标为 ___ .【正确答案】:[1](65,85)【解析】:求出向量a⃗,b⃗⃗的数量积和向量b的模,再由向量a⃗在向量b⃗⃗方向上的投影为a⃗⃗•b⃗⃗|b⃗⃗|,设向量a⃗在向量b⃗⃗方向上的投影向量m⃗⃗⃗ =(x,y),x>0,y>0,由m⃗⃗⃗与b⃗⃗共线,可得y=4x3,又x2+y2=22,解得x,y的值,即可得解.【解答】:解:因为a⃗=(2,1),b⃗⃗=(3,4),则 a⃗⃗⃗⃗• b⃗⃗ =2×3+1×4=10,| b⃗⃗ |= √32+42 =5,则向量a⃗在向量b⃗⃗方向上的投影为a⃗⃗•b⃗⃗|b⃗⃗| = 105=2,设向量a⃗在向量b⃗⃗方向上的投影向量m⃗⃗⃗ =(x,y),x>0,y>0,由于m⃗⃗⃗与b⃗⃗共线,可得 x3=y4,即y= 4x3,又x2+y2=22,解得x= 65,y= 85,所以向量a⃗=(2,1)在向量b⃗⃗=(3,4)方向上的投影向量的坐标为(65,85).故答案为:( 65 , 85 ).【点评】:本题考查平面向量的数量积的坐标表示和向量的模的公式,考查向量的投影定义,考查运算能力,属于中档题.15.(填空题,5分)如图,在△ABC 中, BD ⃗⃗⃗⃗⃗⃗⃗=13BC ⃗⃗⃗⃗⃗⃗ ,点E 在线段AD 上移动(不含端点),若 AE ⃗⃗⃗⃗⃗⃗ =λ AB ⃗⃗⃗⃗⃗⃗ +μ AC ⃗⃗⃗⃗⃗⃗ ,则 λμ =___ ,λ2-2μ的最小值是___ .【正确答案】:[1]2; [2] −14【解析】:由已知结合向量的线性表示及共线定理可以 AB ⃗⃗⃗⃗⃗⃗ , AC⃗⃗⃗⃗⃗⃗ 表示 AE ⃗⃗⃗⃗⃗⃗ ,然后结合平面向量基本定理可求 λμ,结合二次函数的性质可求λ2-2μ的最小值.【解答】:解:因为 BD⃗⃗⃗⃗⃗⃗⃗=13BC ⃗⃗⃗⃗⃗⃗ , 所以 AD ⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗ = 13 ( AC ⃗⃗⃗⃗⃗⃗−AB ⃗⃗⃗⃗⃗⃗ ),所以 AD ⃗⃗⃗⃗⃗⃗ = 13AC ⃗⃗⃗⃗⃗⃗+23AB ⃗⃗⃗⃗⃗⃗ , 因为E 在线段AD 上移动(不含端点), 所以 AE ⃗⃗⃗⃗⃗⃗ = xAD ⃗⃗⃗⃗⃗⃗ = x3AC ⃗⃗⃗⃗⃗⃗+2x3AB ⃗⃗⃗⃗⃗⃗ ,(0<x <1), 所以λ= 2x3 ,μ= x3 , λμ =2, λ2-2μ=4x 29−2x 3, 根据二次函数的性质知,当x= 34时取得最小值- 14. 故答案为:2,- 14 .【点评】:本题主要考查了向量的线性表示及平面向量基本定理,还考查了二次函数性质的应用,属于中档题.16.(填空题,5分)正方体ABCD-A 1B 1C 1D 1为棱长为2,动点P ,Q 分别在棱BC ,CC 1上,过点A ,P ,Q 的平面截该正方体所得的截面记为S ,设BP=x ,CQ=y ,其中x ,y∈[0,2],下列命题正确的是___ .(写出所有正确命题的编号) ① 当x=0时,S 为矩形,其面积最大为4; ② 当x=y=1时,S 的面积为 92 ;③ 当x=1,y∈(1,2)时,设S与棱C1D1的交点为R,则RD1=4−4y;④ 当y=2时,以B1为顶点,S为底面的棱锥的体积为定值83.【正确答案】:[1] ② ③ ④【解析】:由题意可知当x,y变化时,S为不同的图形,故可根据题意逐一判断即可.【解答】:解:当x=0时,点P与点B重合,∴AB⊥PQ,此时S为矩形,当点Q与点C1重合时,S的面积最大,S= 2×2√2 = 4√2.故① 错误;当x=1,y=1时,PQ为△BCC1的中位线,PQ || BC1,∵BC1 || AD1,∴AD1 || PQ,∴S为等腰梯形APQD1,过P作PE⊥AD1于E,PQ= √2,AD1=2 √2,∴ AE=√22,AP= √5,∴ PE=3√22,∴S梯形APQD1=12×3√2×3√22= 92,故② 正确;由图可设S与DD1交于点F,可得D1F || CC1,△C1QR∽△D1FR,C1RD1R =C1QFD1∵CQ=y,则C1Q=2-y,∴ RD1=4−4y,故③ 正确;当y=2时,以B1为定点,S为底面的棱锥为B1-APC1H,V B1−APC1H =2V P−B1C1H=2×13×12×2 × 2×2=83,故④ 正确;故答案为:② ③ ④ .【点评】:本题考查了立体几何的截面面积的相关知识点,以及棱锥体积公式.17.(问答题,10分)已知向量a⃗与b⃗⃗的夹角θ=2π3,且| a⃗ |=3,| b⃗⃗ |=2.(1)求a⃗•b⃗⃗,| a⃗ + b⃗⃗ |;(2)求向量a⃗与a⃗ + b⃗⃗的夹角的余弦值.【正确答案】:【解析】:(1)由已知结合向量数量积的定义及性质即可直接求解; (2)结合向量夹角公式即可直接求解.【解答】:解:(1) a ⃗•b ⃗⃗ =| a ⃗ || b ⃗⃗ |cos 2π3 =3× 2×(−12) =-3, | a ⃗+b ⃗⃗ |= √(a ⃗+b ⃗⃗)2= √a ⃗2+b ⃗⃗2+2a ⃗•b ⃗⃗ = √9+4−6 = √7 , (2)设向量 a ⃗ 与 a ⃗ + b ⃗⃗ 的夹角θ, 则cosθ= a ⃗⃗•(a ⃗⃗+b ⃗⃗)|a ⃗⃗||a ⃗⃗+b⃗⃗| = 3×√7 = 2√77 .【点评】:本题主要考查了向量数量的性质的综合应用,属于基础试题. 18.(问答题,12分)(1)在△ABC 中,a=1,b=2,cosC= 14,求cosA . (2)在△ABC 中,已知a= 5√2 ,c=10,A=30°,求角B ;【正确答案】:【解析】:(1)由已知结合余弦定理可求c ,然后结合余弦定理可求; (2)由正弦定理可求sinC ,进而求出C ,结合三角形内角和求出B .【解答】:解:(1)由余弦定理得c 2=a 2+b 2-2abcosC=1+4-2× 1×2×14 =4, 解得c=2, 再由余弦定理得cosA= b 2+c 2−a 22bc = 4+4−12×2×2 = 78 ;(2)由正弦定理得 asinA =csinC , 所以sinC= 10×125√2= √22 , 因为C 为三角形内角, 所以C=45°或C=135°, 当C=45°时,B=105°,C=135°时,B=15°.【点评】:本题主要考查了正弦定理,余弦定理在求解三角形中的应用,属于中档题.19.(问答题,12分)已知棱长为1的正方体AC1,H、I、J、K、E、F分别相应棱的中点如图所示.(1)求证:H、I、J、K、E、F六点共面;(2)求证:BE、DF、CC1三线共点;(3)求几何体B1BE-D1DF的体积.【正确答案】:【解析】:(1)连接C1D,AB1,推导出FJ || KH,设两线确定的平面为α,则点F,J,K,H∈α,在平面ADD1A1内延长JI交直线A1A于P点,推导出AP=DJ=12AA1,在平面ABB1A1内延长KH交直线A1A与Q点,推导出AQ=12AA1,由此能证明H、I、J、K、E、F 共面.(2)设BE∩DF=O,则O∈平面DC1,O∈平面BC1,由此能证明BE、DF、CC1三线共点;(3)由S△C1EF =18,S△CBD=12,求出V棱台C1EF−CBD=13(S△C1EF+S△CBD+√S△C1EF⋅S△CBD)⋅|CC1|=724,由此能求出几何体B1BE-D1DF的体积.【解答】:(1)证明:连接C1D,AB1,由已知FJ || C1D,KH || AB1,又C1D || AB1,∴FJ || KH,设两线确定的平面为α,即点F,J,K,H∈α,在平面ADD1A1内延长JI交直线A1A于P点,由△API与△DJI全等,可得AP=DJ=12AA1,在平面ABB1A1内延长KH交直线A1A与Q点,同理可得AQ=12AA1,∴P,Q重合,∴P∈α,∴I∈α同理可证E∈α,综上H、I、J、K、E、F共面.(2)证明:设BE∩DF=O,则O∈平面DC1,O∈平面BC1,∵平面DC1∩平面BC1=CC1,∴O∈CC1,∴BE、DF、CC1三线共点;(3)解:∵ S△C1EF =18,S△CBD=12,∴ V棱台C1EF−CBD =13(S△C1EF+S△CBD+√S△C1EF⋅S△CBD)⋅|CC1|=13×(18+12+14)=724,∴ V几何体B1BE−D1DF =12−724=524.【点评】:本题考查六点共面、三线共点的证明,考查几何体的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力、推理论证能力等数学核心素养,是中档题.20.(问答题,12分)已知正方体ABCD-A1B1C1D1中,P、Q分别为对角线BD、CD1上的点,且CQQD1 = BPPD= 23.(1)求证:PQ || 平面A1D1DA;(2)若R是CD上的点,当CRCD的值为多少时,能使平面PQR ||平面B1C1CB?请给出证明.【正确答案】:【解析】:(1)连接CP,并延长与DA的延长线交于M点,由三角形的相似和线面平行的判定定理,即可得证;(2)当CRCD =25时,能使平面PQR || 平面B l C l BC.由平行线的判定和性质,以及线面平行和面面平行的判定定理,即可得到结论.【解答】:(1)证明:连接CP,并延长与DA的延长线交于M点,因为四边形ABCD为正方形,所以BC || AD,故△PBC∽△PDM,所以CPPM =BPPD=23,又因为CQQD1=BPPD=23,所以CQQD1=CPPM=23,所以PQ || MD1.又MD1⊂平面A1D1DA,PQ⊄平面A1D1DA,故PQ || 平面A1D1DA.(2)当CRCD =25时,能使平面PQR || 平面B l C l CB.证明:因为CRCD =25,即有CRRD=23,故CQQD1=CRRD=23,所以QR || DD1.又∵DD1 || CC1,∴QR || CC1,又CC1⊂平面B l C l CB,QR⊄平面B l C l CB,所以QR || 平面B l C l CB,由CRRD =23=BPPD,得PR || BC,BC⊂平面B l C l CB,PR⊄平面B l C l CB,所以PR || 平面B l C l CB,又PR∩RQ=R,所以平面PQR || 平面B l C l CB.【点评】:本题考查线面平行和面面平行的判定定理,以及平行线的性质和三角形相似的性质,考查转化思想和运算能力,属于中档题.21.(问答题,12分)若函数f(x)= √3 sinx+2cos2x2,△A BC的角A,B,C的对边分别为a,b,c,且f(A)=3.(1)当b+ca取最大值时,判断△ABC的形状;(2)在△ABC中,D为BC边的中点,且AD= √13,AC=2,求BC的长.【正确答案】:【解析】:利用三角恒等变换化简f(x),由f(A)=3,可求得A的大小,(1)利用正弦定理以及三角恒等变换可求得b+ca取最大值时B的大小,即可求解△ABC的形状;(2)取AB边的中点E,连接DE,在△ADE中,利用余弦定理可求解AE,从而可得AB,在△ABC中,利用余弦定理即可求解BC.【解答】:解:因为f(x)= √3 sinx+2cos2x2 = √3 sinx+cosx+1=2sin(x+ π6)+1,所以f(A)=2sin(A+ π6)+1=3,即sin(A+ π6)=1,因为0<A<π,所以π6<A+ π6<7π6,所以A+ π6= π2,A= π3.(1)由正弦定理可得b+ca = sinB+sinCsinA= sinB+sin(2π3−B)√32=2sin(B+ π6),因为0<B<2π3,所以π6<B+ π6<5π6,所以当B= π3时,b+ca取得最大值,此时C= π3,所以A=B=C,所以△ABC是等边三角形.(2)解:取AB边的中点E,连接DE,则DE || AC,且DE= 12 AC=1,∠AED= 2π3,在△ADE中,由余弦定理得AD2=AE2+DE2-2AE•DE•cos 2π3=13,解得AE=3,AB=6,在△ABC中,由余弦定理可得BC2=AB2+AC2-2AB•AC•cosA=36+4-2×6×2× 12=28,所以BC=2 √7.【点评】:本题主要考查三角恒等变换,正、余弦定理在解三角形中的应用,考查转化思想与运算求解能力,属于中档题.22.(问答题,12分)已知向量m⃗⃗⃗=(cos2x+2√3sinx,1),n⃗⃗=(2,−a).(1)当a=0时,令f(x)=m⃗⃗⃗•n⃗⃗,求f(x)的最值;(2)若关于x方程m⃗⃗⃗•n⃗⃗=0在x∈(0,5π2)上有6个不等的实根,求a的取值范围;(3)当m⃗⃗⃗•n⃗⃗≥0对x∈[x1,x2]恒成立时,x2-x1的最大值为5π3,求a的值.【正确答案】:【解析】:(1)利用向量的数量积以及两角和与差的三角函数,转化求解幂函数的最值即可.(2)由 m ⃗⃗⃗⋅n ⃗⃗=0 , −4sin 2x +4√3sinx +2−a =0 令t=sinx , ℎ(t )=−4t 2+4√3t +2−a 结合函数的零点,转化求解a 的范围即可.(3)通过 m ⃗⃗⃗⋅n ⃗⃗≥0 ,推出 √3−√5−a ≤2sinx ≤√3+√5−a ,然后分类讨论推出a 的范围,转化求解即可.【解答】:解:(1)∵a=0, f (x )=m ⃗⃗⃗⋅n ⃗⃗=2cos2x +4√3sinx =2(1−2sin 2x )+4√3sinx =−4(sinx −√32)2 +5, 又|sinx|≤1,∴当sinx=-1时, f (x )min =−2−4√3 ;当 sinx =√32 时,f (x )max =5. (2)由 m ⃗⃗⃗⋅n ⃗⃗=0 , −4sin 2x +4√3sinx +2−a =0令t=sinx , ℎ(t )=−4t 2+4√3t +2−a由题意,结合函数t=sinx 在 x ∈(0,5π2) 上的图像可知: ℎ(t )=−4t 2+4√3t +2−a 在t∈(0,1)上有两个零点,∴Δ>0,16×3+16(2-a )>0,并且h (1)=-4+4 √3 +2-a <0,h (0)=2-a <0,解得 4√3−2<a <5 ,(3)∵ m ⃗⃗⃗⋅n ⃗⃗≥0 ,即: 4sin 2x −2+a −4√3sinx ≤0 ,即 (2sinx −√3)2≤5−a ,则5-a≥0,得a≤5,得 √3−√5−a ≤2sinx ≤√3+√5−a ,∵对x∈[x 1,x 2]恒成立时,x 2-x 1的最大值为 5π3 ,∴当 √3+√5−a >2 时,不妨 2sin (π2−12×5π3)=−√3=√3−√5−a ,得 2√3=√5−a ,得a=-7,当 √3−√5−a <−2 时,不妨 2sin (3π2−12×5π3)=√3=√3+√5−2 ,得 √5−a =0 ,得a=5,此时√3−√5−a<−2不成立,舍去,综上a=-7.【点评】:本题考查向量的数量积的应用,两角和与差的三角函数,函数的最值的求法,考查分析问题解决问题的能力,是难题.。
【初中数学】部编本2020-2021学年广东省佛山市顺德区七年级(上)期中数学模拟试卷(解析版)
广东省佛山市顺德区2020-2021学年七年级(上)期中数学模拟试题一、选择题(本大题共有8小题,每小题4分,共32分)1.下列各组数中,互为倒数的是()A.0.5和5 B.﹣1和|﹣1|C.5和D.﹣10和102.在﹣(+2),﹣(﹣8),﹣5,﹣|﹣3|,+(﹣4)中,负数的个数有()A.1个B.2个C.3个D.4个3.若a,b表示有理数,且a=﹣b,那么在数轴上表示a与数b的点到原点的距离()A.表示数a的点到原点的距离较远B.表示数b的点到原点的距离较远C.相等D.无法比较4.化简﹣(a﹣1)﹣(﹣a﹣2)+3的值是()A.4 B.6 C.0 D.无法计算5.在下列各数中:0,3.1415926,,π,15%,﹣2.363636…,正分数的个数是()A.2个B.3个C.4个D.5个6.甲乙两超市为了促销一种定价相同的商品,甲超市连续两次降价5%,乙超市一次性降价10%,在哪个超市购买这种商品合算?下列选项中正确的是()A.甲超市B.乙超市C.两个超市一样D.与商品的价格有关7.下列各式成立的是()A.﹣1>0 B.3>﹣2 C.﹣2<﹣5 D.1<﹣28.将正整数1,2,3,4…按以下方式排列根据排列规律,从2015到2020的箭头依次为()A.↓→ B.→↓ C.↑→ D.→↑二、填空题(本大题共有8小题,每空3分,共30分)9.﹣2.3的相反数的绝对值是,绝对值最小的有理数是.10.用科学记数法表示下列各数:①某水库的贮水量为3 281 400 m3=m3;②解放街小学有3 800名学生,今组织学生参观科技馆,门票7元,则解放街小学向科技馆支付人民币元;③某开发区工地有挖掘机26台,如果每台挖掘机每天平均挖土750 m3,则12天共挖土m3;④某学校图书馆的存书量为31 257册=册.11.如果3a=﹣3a,那么表示a的点在数轴上的位置.12.单项式﹣的系数是,多项式3x2y﹣xy3+5xy﹣1是次多项式.13.(1+)×(1+)×(1+)×(1+)×…×(1+)×(1+)=.14.若﹣x2y m+1与﹣x n y2是同类项,那么m=,n.15.若3x﹣2y=4,则5﹣y=.16.一个屋顶的某一斜面是等腰梯形,最上面一层铺了瓦片21块,往下每一层多铺一块,则第5层铺瓦块,第n层铺瓦块.三、解答题(本大题共有7题,共56分)17.(12分)一项工程,甲单独做5天可以完成全工程;如果乙,丙两队合作12天可以完成全工程;如果三队合作,多少天可以完成全工程?18.(6分)若﹣1<x<4,化简|x+1|+|4﹣x|.19.(10分)先合并同类项,再求值:(1)7x2﹣3+2x﹣6x2﹣5x+8,其中x=﹣2;(2)5a3﹣3b2﹣5a3+4b2+2ab,其中a=﹣1,b=.20.(6分)春节前夕,甲、乙两家大型商场同时推出“优惠大酬宾”活动.在甲商场购买大件家电,不论定价高低,一律优惠10%;在乙商场购买大件家电,1 000元以内不优惠,超过1 000元的部分优惠20%.小明家准备春节前夕购买一台较为实用的2 500元的大冰箱,请问他家到哪个商场购买比较合算?21.(6分)火车从北京站出发时车上有乘客(5a﹣2b)人,途中经过武汉站是下了一半人,但是又上车若干人,这时车上的人数为(10a﹣3b)人.(1)求在武汉站上车的人数;(2)当a=250,b=100时,在武汉站上车的有多少人?22.(8分)张大妈每天从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格出售,平常一天可平均售出b份报纸,双休日平均可多售出20%,剩余的以每份0.2元的价格退回报社.(1)张大妈一个月(30天,含4个双休日)可获利多少元(用代数式表示)?(提示:盈利=总销售额﹣总成本)(1)解:平常22天销售额:8天双休日的销售额:退回报社的收入:张大妈一个月(30天,含4个双休日)可获利(用代数式表示):(2)当a为120,b为90时,张大妈平均每月实际获利多少元?23.(10分)礼堂第1排有a个座位,后面每排都比前一排多一个座位.(1)第3排有多少个座位?(用含a的式子表示)(2)第n(n为正整数)排的座位数是多少?(用含a,n的式子表示)(3)若该礼堂共有20排,礼堂共有座位S个.①试用含a的式子表示S;②当s=990时,第10排拟安排给城南实中七年级(8)班54名学生就座,能否满足呢?广东省佛山市顺德区2020-2021学年七年级(上)期中数学模拟试题参考答案与试题解析一、选择题(本大题共有8小题,每小题4分,共32分)1.(4分)下列各组数中,互为倒数的是()A.0.5和5 B.﹣1和|﹣1|C.5和D.﹣10和10【分析】根据倒数的定义结合选项进行判断.【解答】解:A、0.5×5=2.5≠1,不合题意,故本选项错误;B、|﹣1|=1,1×(﹣1)=﹣1≠1,不合题意,故本选项错误;C、5×=1,互为倒数,故本选项正确;D、﹣10×10=﹣100≠1,不合题意,故本选项错误;故选C.【点评】本题考查了倒数的定义,解答本题的关键是掌握乘积是1的两数互为倒数.2.(4分)在﹣(+2),﹣(﹣8),﹣5,﹣|﹣3|,+(﹣4)中,负数的个数有()A.1个B.2个C.3个D.4个【分析】负数就是小于0的数,依据定义即可求解.【解答】解:在﹣(+2),﹣(﹣8),﹣5,﹣|﹣3|,+(﹣4)中,负数有在﹣(+2),﹣5,﹣|﹣3|,+(﹣4),一共4个.故选:D.【点评】考查了正数和负数,判断一个数是正数还是负数,要把它化简成最后形式再判断.3.(4分)若a,b表示有理数,且a=﹣b,那么在数轴上表示a与数b的点到原点的距离()A.表示数a的点到原点的距离较远B.表示数b的点到原点的距离较远C.相等D.无法比较【分析】利用相反数的定义判断即可.【解答】解:若a、b表示有理数,且a=﹣b,那么在数轴上表示数a与数b的点到原点的距离一样远,故选:C.【点评】此题考查了数轴,以及相反数,熟练掌握相反数的定义是解本题的关键.4.(4分)化简﹣(a﹣1)﹣(﹣a﹣2)+3的值是()A.4 B.6 C.0 D.无法计算【分析】根据去括号法则去掉括号,再根据合并同类项法则合并同类项:系数相加作为系数,字母和字母的指数不变,即可得解.【解答】解:﹣(a﹣1)﹣(﹣a﹣2)+3,=﹣a+1+a+2+3,=6.故选B.【点评】本题主要考查合并同类项的法则,去括号法则,即系数相加作为系数,字母和字母的指数不变.5.(4分)在下列各数中:0,3.1415926,,π,15%,﹣2.363636…,正分数的个数是()A.2个B.3个C.4个D.5个【分析】根据大于零的分数是正分数,可得答案.【解答】解:3.1415926,,15%是正分数,故选:B.【点评】本题考查了有理数,熟记分数的定义是解题关键.6.(4分)甲乙两超市为了促销一种定价相同的商品,甲超市连续两次降价5%,乙超市一次性降价10%,在哪个超市购买这种商品合算?下列选项中正确的是()A.甲超市B.乙超市C.两个超市一样D.与商品的价格有关【分析】根据题意,分别列出降价后在甲乙两个商场的购物价格,问题即可解决.【解答】解:设商品的定价为λ,则在甲超市购买这种商品价格为:=;在乙超市购买这种商品的价格为:=,∴在乙超市购买这种商品合算.故选B.【点评】该题考查了列代数式在现实生活中的应用问题;解题的关键是深刻把握题意,正确列出代数式,准确求解运算.7.(4分)下列各式成立的是()A.﹣1>0 B.3>﹣2 C.﹣2<﹣5 D.1<﹣2【分析】根据正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小,即可判定.【解答】解:A、错误.﹣1<0.B、正确.3>﹣2.C、错误.﹣2>﹣5.D、.错误.1>﹣2.故选B.【点评】本题考查有理数的比较大小、解题的关键是记住有理数大小的比较法则:正数都大于0,负数都小于0,正数大于一切负数.两个负数比较大小,绝对值大的反而小.8.(4分)将正整数1,2,3,4…按以下方式排列根据排列规律,从2015到2020的箭头依次为()A.↓→ B.→↓ C.↑→ D.→↑【分析】观察图中的数字与箭头,可知每四个数字为一组,重复循环.再用所给的数字除以4,求出对应的位置即可.【解答】解:2015÷4=503…3,应在3对应的位置上,所以从2015到2020的箭头依次为↑→,故选:C.【点评】本题主要考查数字的变化规律,通过观察,分析、归纳并发现其中的规律,并应用发现的规律解决问题.本题的规律是每四个数字为一组,重复循环.二、填空题(本大题共有8小题,每空3分,共30分)9.(6分)﹣2.3的相反数的绝对值是 2.3,绝对值最小的有理数是0.【分析】首先根据相反数的定义求出﹣2.3的相反数,根据绝对值的定义,得出结果,绝对值就是到原点的距离,距离为0最小.【解答】解:﹣2.3的相反数是2.3,2.3的绝对值是2.3;正数的绝对值是正数;负数的绝对值是正数;0的绝对值是0,正数大于0,所以绝对值最小的数是0;故答案为:2.3,0.【点评】本题主要考查相反数与绝对值的意义,绝对值规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.相反数的概念:只有符号不同的两个数叫做互为相反数.10.(3分)用科学记数法表示下列各数:①某水库的贮水量为3 281 400 m3= 3.2814×106m3;②解放街小学有3 800名学生,今组织学生参观科技馆,门票7元,则解放街小学向科技馆支付人民币 2.66×104元;③某开发区工地有挖掘机26台,如果每台挖掘机每天平均挖土750 m3,则12天共挖土 2.34×105m3;④某学校图书馆的存书量为31 257册= 3.1257×104册.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:①3 281 400 m3=3.281 4×106m3;②3 800×7=2.66×104元;③26×750×12=234 000=2.34×105m3;④31 257册=3.1257×104册.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.11.(3分)如果3a=﹣3a,那么表示a的点在数轴上的原点位置.【分析】根据a=﹣a,知2a=0,从而可作出判断.【解答】解:∵3a=﹣3a,∴a=﹣a,∴2a=0,∴表示a的点在数轴上的原点位置.故答案为:原点.【点评】本题考查了相反数与数轴的知识,属于基础题,注意如果一个数的相反数与其本身相等,则这个数为0.12.(6分)单项式﹣的系数是﹣,多项式3x2y﹣xy3+5xy﹣1是四次多项式.【分析】根据单项式系数的定义和多项式的定义可以解答本题.【解答】解:单项式﹣的系数是﹣,多项式3x2y﹣xy3+5xy﹣1是四次多项式,故答案为:﹣,四.【点评】本题考查多项式和单项式,解答本题的关键是明确单项式和多项式的定义.13.(3分)(1+)×(1+)×(1+)×(1+)×…×(1+)×(1+)=.【分析】根据题意得到1+=,原式利用此规律变形,约分即可得到结果.【解答】解:由题意得:1+==,则原式=×++…+×=2×=,故答案为:【点评】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.14.(3分)若﹣x2y m+1与﹣x n y2是同类项,那么m=1,n2.【分析】根据同类项的概念求解.【解答】解:∵﹣x2y m+1与﹣x n y2是同类项,∴n=2,m+1=2,∴m=1,n=2.故答案为:1,2.【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项定义中的两个“相同”:相同字母的指数相同.15.(3分)若3x﹣2y=4,则5﹣y=.【分析】把3x﹣2y=4,看作一个整体,进一步整理代数式整体代入求得答案即可.【解答】解:∵3x﹣2y=4,∴5﹣y=5﹣(3x﹣2y)=5﹣=.故答案为:.【点评】此题考查代数式求值,掌握整体代入的思想是解决问题的关键.16.(3分)一个屋顶的某一斜面是等腰梯形,最上面一层铺了瓦片21块,往下每一层多铺一块,则第5层铺瓦25块,第n层铺瓦n+20块.【分析】本题是一道关于数字猜想的问题,由题意得出规律:最上面一层铺了瓦片21块,往下每一层多铺一块,根据此规律求出第n层的瓦片数即可.【解答】解:由题意可得:第一层铺瓦的块数为21;第二层铺瓦的块数为22;第三层铺瓦的块数为23;第四层铺瓦的块数为24;第五层铺瓦的块数为25…进一步发现规律:第n层铺瓦的块数为21+(n﹣1)×1=21+(n﹣1)=n+20.所以,第5层铺瓦25块,第n层铺瓦21+(n﹣1)=n+20块.【点评】本题是一道关于数字猜想的问题,关键在于理解清楚题意,通过归纳与总结,找出规律求出普遍规律:第n层时铺瓦的块数即可.三、解答题(本大题共有7题,共56分)17.(12分)一项工程,甲单独做5天可以完成全工程;如果乙,丙两队合作12天可以完成全工程;如果三队合作,多少天可以完成全工程?【分析】把这项工程的工作总量看作单位“1”,甲的工作效率为,乙、丙两队的工作效率和为,进一步求得三个队的工作效率和,利用工作总量÷工作效率=工作时间列式解答即可.【解答】解:1÷(+)=1÷=(天)答:如果三队合作,天可以完成全工程.【点评】此题考查有理数的混合运算的实际运用,掌握工作效率、工作总量、工作时间三者之间的关系是解决问题的关键.18.(6分)若﹣1<x<4,化简|x+1|+|4﹣x|.【分析】先去掉绝对值符号,再合并即可.【解答】解:∵﹣1<x<4,∴|x+1|+|4﹣x|=1+x+4﹣x=5.【点评】本题考查了整式的混合运算的应用,能正确去掉绝对值符号是解此题的关键.19.(10分)先合并同类项,再求值:(1)7x2﹣3+2x﹣6x2﹣5x+8,其中x=﹣2;(2)5a3﹣3b2﹣5a3+4b2+2ab,其中a=﹣1,b=.【分析】(1)原式合并同类项得到最简结果,把x的值代入计算即可求出值;(2)原式合并同类项得到最简结果,把a与b的值代入计算即可求出值.【解答】解:(1)原式=x2﹣3x+5,当x=﹣2时,原式=4+6+5=15;(2)原式=b2+2ab,当a=﹣1,b=时,原式=﹣1=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(6分)春节前夕,甲、乙两家大型商场同时推出“优惠大酬宾”活动.在甲商场购买大件家电,不论定价高低,一律优惠10%;在乙商场购买大件家电,1 000元以内不优惠,超过1 000元的部分优惠20%.小明家准备春节前夕购买一台较为实用的2 500元的大冰箱,请问他家到哪个商场购买比较合算?【分析】分别算出在甲乙两家商场购买2500元的大冰箱所需的费用,再比较出其大小即可.【解答】解:∵在甲商场购买大件家电,不论定价高低,一律优惠10%,∴在甲商场购买2500元的大冰箱所需的费用为:2500×(1﹣10%)=2250(元);∵在乙商场购买大件家电,1 000元以内不优惠,超过1 000元的部分优惠20%,∴在甲商场购买2500元的大冰箱所需的费用为:100+(2500﹣1000)×20%=2200(元).∵2250>2200,∴小明家到乙商场购买这台冰箱比较合算.【点评】本题考查的是有理数的混合运算,熟知有理数混合运算的法则是解答此题的关键.21.(6分)火车从北京站出发时车上有乘客(5a﹣2b)人,途中经过武汉站是下了一半人,但是又上车若干人,这时车上的人数为(10a﹣3b)人.(1)求在武汉站上车的人数;(2)当a=250,b=100时,在武汉站上车的有多少人?【分析】(1)根据“车上的人数+上车的人数﹣下车的人数=车上剩余的人数”解答;(2)代入(1)中所列的代数式求值即可.【解答】解:(1)依题意得:(10a﹣3b)+(5a﹣2b)﹣(5a﹣2b)=a﹣2b;(2)把a=250,b=100代入(a﹣2b),得×250﹣2×100=1675(人).答:在武汉站上车的有1675人.【点评】本题考查了列代数式和代数式求值.解决问题的关键是读懂题意,找到所求的量的等量关系.22.(8分)张大妈每天从报社以每份0.4元的价格购进了a份报纸,以每份0.5元的价格出售,平常一天可平均售出b份报纸,双休日平均可多售出20%,剩余的以每份0.2元的价格退回报社.(1)张大妈一个月(30天,含4个双休日)可获利多少元(用代数式表示)?(提示:盈利=总销售额﹣总成本)(1)解:平常22天销售额:11b8天双休日的销售额: 4.8b退回报社的收入:6a﹣6.32b张大妈一个月(30天,含4个双休日)可获利(用代数式表示):9.48b﹣6a (2)当a为120,b为90时,张大妈平均每月实际获利多少元?【分析】(1)平常22天销售额=22×单价×份数;8天双休日的销售额=8×单价×份数,其中,份数=b×(1+20%);退回报社的收入=剩下的总份数×0.2;张大妈一个月可获利=总销售额﹣总成本,把相关数值代入即可求解;(2)把a=120,b=90代入(1)得到的总获利的式子求解即可.【解答】解:(1)平常22天销售额:22×0.5b=11b,8天双休日的销售额:8×1.2×0.5b=4.8b,退回报社的收入:0.2×[22(a﹣b)+8(a﹣1.2b)]=6a﹣6.32b,张大妈一个月(30天,含4个双休日)可获利(用代数式表示):11b+4.8b+(6a﹣6.32b)﹣30×0.4a=11b+4.8b+6a﹣6.32b﹣12a=9.48b﹣6a.(2)当a=120,b=90时,原式=9.48b﹣6a=9.48×90﹣6×120=133.2(元).即:张大妈平均每月实际获利133.2元.【点评】解决本题的关键是得到相应的销售收入;易错点是得到相应的卖出份数和剩下份数.23.(10分)礼堂第1排有a个座位,后面每排都比前一排多一个座位.(1)第3排有多少个座位?(用含a的式子表示)(2)第n(n为正整数)排的座位数是多少?(用含a,n的式子表示)(3)若该礼堂共有20排,礼堂共有座位S个.①试用含a的式子表示S;②当s=990时,第10排拟安排给城南实中七年级(8)班54名学生就座,能否满足呢?【分析】(1)(2)利用后面每排都比前一排多一个座位得出答案即可;(3)①表示出最后一排得座位数,类比梯形的面积计算方法得出答案即可;②代入s的数值,求得a,算出10排的座位数与54比较得出答案即可.【解答】解:(1)第3排有(a+2)个座位;(2)第n(n为正整数)排的座位数是a+n﹣1;(3)①S=×20(a+a+20﹣1)=10(2a+19);②当s=990时,10(2a+19)=990,解得:a=40,第10排的座位数40+10﹣1=49,49<54所以不能满足.【点评】此题考查列代数式,理解题意,找出排列的规律是解决问题的关键.。
2020-2021学年广东省深圳市高一(下)期末数学模拟练习试卷(一)
2020-2021学年广东省深圳市高一(下)期末数学模拟练习试卷(一)试题数:22,总分:1501.(单选题,5分)设集合P={x∈Z|(x+1)(x-4)≤0},Q={x|y=lgx},则()A.P⊆QB.P∩Q=[-1,4]C.P∪Q=PD.P∩Q={1,2,3,4}2.(单选题,5分)复数z=-2+i,则它的共轭复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(单选题,5分)已知某校高一、高二、高三年级的学生数分别为600,720,840,为调查学生对餐厅的满意度,拟采用分层抽样随机抽取一个容量为108的样本,则高二年级应抽取的学生数为()A.30B.36C.42D.484.(单选题,5分)设向量a⃗=(2,3),b⃗⃗=(4,−2),若(λa⃗+b⃗⃗)⊥b⃗⃗,则实数λ=()A.-10B.10C.-2D.25.(单选题,5分)已知点P(−1,√3)在角φ的终边上,若要得到函数y=sin(2x+φ)(0≤φ<2π)的图象,则需将函数y=sin2x的图象()个单位长度A.向左平移π3个单位长度B.向右平移π3个单位长度C.向左平移2π3D.向右平移2π个单位长度3=2,则tan2x=()6.(单选题,5分)若sinx−cosxsinx+cosxA. 43B. −43C. 34D. −347.(单选题,5分)设a>0,b>0,且a+b=1,则下列结论不一定成立的为()A.a b<1B.b a<1C.log a b+log b a≥2D.log a b-log b a≥28.(单选题,5分)已知球O在母线长为5,高为4的圆锥内部,则球O的表面积最大值为()A.12πB.9πC.8πD.6π9.(多选题,5分)下列说法正确的为()A.若x∈R,则“x2<1”是“x<1”充分不必要条件B.若x∈R,则“x<1”是“x2<1”充分不必要条件C.若命题p的否定为真命题,则命题p必为假命题D.命题“∃x0∈R,使得x02<2x0-1”的否定为“∀x∈R,x2>2x-1”10.(多选题,5分)如图,在边长为2的正方形ABCD中,E,F分别是BC,CD的中点.若分别以AE,AF,EF为折痕,将该正方形折成一个四面体Ω(使B,C,D三点重合),则下列结论正确的为()A.Ω的表面积为2B.Ω的体积为13C.Ω的外接球半径为√62D.Ω的外接球半径为√5211.(多选题,5分)若函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,则下列结论正确的为()A.实数ω有且仅有一个值B.实数φ可取两个不同的值C.f(x)的单调递增区间为(kπ−π3,kπ+π6)(k∈Z)D.若f(x1)=f(x2)(π6<x1<x2<π),则f(x1+x2)=√312.(多选题,5分)已知定义在R上的奇函数f(x),当x<0时,f(x)={ex+3,x<−1,e x−1,−1≤x<0,(其中常数e是自然对数的底数,e=2.71828⋅⋅⋅),函数g(x)=f(af(x)),则下列结论正确的为()A.∀x∈[-1,0],f(x)+f(x2)≤0恒成立B.当k∈N*时,方程f(x)+kx=0有唯一实数解C.当a=1时,函数g(x)的零点个数为7D.∃a∈R,使得函数g(x)恰有9个零点13.(填空题,5分)函数f(x)=ln(x+1)+√3x−1上的定义域为 ___ .14.(填空题,5分)某校从参加高一物理期末考试的学生中随机抽出60名,将其物理成绩(均为整数)分成六组:[40,50),[50,60),…,[90,100],并绘制成如下的频率分布直方图.由此估计此次高一物理期末考试成绩的第75百分位数为 ___ .)15.(填空题,5分)进行垃圾分类收集可减少垃圾处理量和处理设备,降低处理成本,减少土地资源的消耗,具有社会、经济、生态等多方面的效益.为普及垃圾分类知识,某校举行了垃圾分类知识考试,考试有且仅有两道试题.已知甲同学答对每道题的概率均为p ,乙同学答对每道题的概率均为q ,且在考试中每人各题的答题结果互不影响.若甲,乙同时答对第一题的概率为 12 ,且恰有一人答对第二题的概率为 512 ,则p+q=___ .16.(填空题,5分)设函数 f (x )=asin (x +π6)+√3bsin (x −π3) (a >0),若∀x∈R ,|f (x )|≤|f (0)|,则 1a −2b 的最小值为 ___ .17.(问答题,10分)已知i 为虚数单位,m∈R ,复数z 1=m+mi ,z 2=2m+2i ,z=z 1z 2. (1)若z 是纯虚数,求实数m 的值; (2)若|z|≤4,求|z 1-z 2|的取值范围.18.(问答题,12分)如图,在等腰梯形ABCD 中,AB || CD , |AB⃗⃗⃗⃗⃗⃗|=2|DC ⃗⃗⃗⃗⃗⃗|=2 , ∠BAD =π3,E 是BC 边的中点.(1)试用 AB ⃗⃗⃗⃗⃗⃗ , AD ⃗⃗⃗⃗⃗⃗ 表示 AC ⃗⃗⃗⃗⃗⃗ , AE ⃗⃗⃗⃗⃗⃗ ; (2)求 AE ⃗⃗⃗⃗⃗⃗•EC⃗⃗⃗⃗⃗⃗ 的值.19.(问答题,12分)随着电子产品的盛行,近年来青少年的眼睛健康不容忽视.某地欲举行中学生“用眼卫生健康知识竞赛”活动,规定每所学校均由3名学生组成代表队参加团体赛.某校为了选拔出代表队成员,共有120名学生参加了校内选拔赛,其竞赛成绩的频率分布表如下:竞赛成绩[50,60)[60,70)[70,80)[80,90)[90,100] 频数12 24 42 b a频率0.1 0.2 0.35 c 0.05 (1)求竞赛成绩的频率分布表中a,b,c的值,并计算这120名学生的竞赛成绩平均数及方差(同一组中的数据用该组区间的中点值作代表);(2)已知竞赛成绩不低于90分的学生中男、女人数之比为1:2,若从竞赛成绩不低于90分的学生中随机选取3人组成代表队,求代表队中女生人数多于男生人数的概率.20.(问答题,12分)设△ABC的内角A,B,C的对边分别为a,b,c,且a−ca+b +sinBsinA+sinC=0.(1)求C;(2)设点E,F是边AB(除端点外)上的动点,且AE<AF.若a=b=1,且∠ECF=π3,记∠ACE=θ,试用θ表示△CEF的面积S,并求S的最小值.21.(问答题,12分)如图,已知四边形ABCD为矩形,且AB=2AD,点E为AB的中点,将△ADE沿折痕DE折成△PDE.(1)若点M为PC的中点,证明:BM || 平面PDE;(2)若二面角D-PE-C为直二面角,求直线PC与平面DEC所成的角的正弦值.22.(问答题,12分)设函数g(x)的定义域为D,若x0∈D,且g(x0)=kx0(k∈Z),则称实数x0为g(x)的“k级好点”.已知函数f(x)=ln(e x+a).(其中常数e是自然对数的底数,e=2.71828⋅⋅⋅)(1)当a∈R时,讨论f(x)的“2级好点”个数;(2)若实数m为f(x)的“-1级好点”,证明:e2m+e−2m+m2>(a+1)m+1.22020-2021学年广东省深圳市高一(下)期末数学模拟练习试卷(一)参考答案与试题解析试题数:22,总分:1501.(单选题,5分)设集合P={x∈Z|(x+1)(x-4)≤0},Q={x|y=lgx},则()A.P⊆QB.P∩Q=[-1,4]C.P∪Q=PD.P∩Q={1,2,3,4}【正确答案】:D【解析】:由已知分别求出集合P,Q,对应各个选项即可求解.【解答】:解:由已知可得P={x∈Z|-1≤x≤4}={-1,0,1,2,3,4},Q={x|x>0},所以P∩Q={1,2,3,4},故选:D.【点评】:本题考查了集合间的包含关系,涉及到一元二次不等式的解法,属于基础题.2.(单选题,5分)复数z=-2+i,则它的共轭复数z在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【正确答案】:C【解析】:根据复数共轭的定义以及复数的几何意义,即可得到结论.【解答】:解:∵z=-2+i,∴它的共轭复数z =-2-i,对应的坐标为(-2,-1)位于第三象限,故选:C.【点评】:本题主要考查复数的几何意义,以及共轭复数的概念,比较基础.3.(单选题,5分)已知某校高一、高二、高三年级的学生数分别为600,720,840,为调查学生对餐厅的满意度,拟采用分层抽样随机抽取一个容量为108的样本,则高二年级应抽取的学生数为()A.30B.36C.42D.48【正确答案】:B【解析】:根据题意,先计算三个年级的学生总数,由分层抽样的定义分析可得答案.【解答】:解:根据题意,高一、高二、高三年级的学生数分别为600,720,840,共有600+720+840=2160人,拟采用分层抽样随机抽取一个容量为108的样本,×108=36,则高二年级应抽取的学生数为7202160故选:B.【点评】:本题考查分层抽样方法的应用,注意分层抽样的定义,属于基础题.4.(单选题,5分)设向量a⃗=(2,3),b⃗⃗=(4,−2),若(λa⃗+b⃗⃗)⊥b⃗⃗,则实数λ=()A.-10B.10C.-2D.2【正确答案】:A【解析】:根据题意,求出λ a⃗ + b⃗⃗的坐标,由数量积的计算公式可得(λa⃗+b⃗⃗)•b⃗⃗ =4(2λ+4)-2(3λ-2)=2λ+20=0,解可得λ的值,即可得答案.【解答】:解:根据题意,向量a⃗=(2,3),b⃗⃗=(4,−2),则λ a⃗ + b⃗⃗ =(2λ+4,3λ-2),若(λa⃗+b⃗⃗)⊥b⃗⃗,则(λa⃗+b⃗⃗)•b⃗⃗ =4(2λ+4)-2(3λ-2)=2λ+20=0,解可得λ=-10,故选:A.【点评】:本题考查向量数量积的计算,涉及向量的坐标计算,属于基础题.5.(单选题,5分)已知点P(−1,√3)在角φ的终边上,若要得到函数y=sin(2x+φ)(0≤φ<2π)的图象,则需将函数y=sin2x的图象()A.向左平移π3个单位长度B.向右平移π3个单位长度C.向左平移2π3个单位长度D.向右平移2π3个单位长度【正确答案】:A【解析】:由题意可得φ为第二象限角,利用任意角的三角函数的定义可求tanφ,结合范0≤φ<2π,可求φ的值,进而根据函数y=Asin(ωx+φ)的图象变换即可得解.【解答】:解:因为点P(−1,√3)在角φ的终边上,可得φ为第二象限角,所以tanφ=- √3,因为0≤φ<2π,所以φ= 2π3,所以若要得到函数y=sin(2x+ 2π3)=sin2(x+ π3)的图象,则需将函数y=sin2x的图象向左平移π3个单位长度即可得解.故选:A.【点评】:本题主要考查了任意角的三角函数的定义,函数y=Asin(ωx+φ)的图象变换的应用,考查了函数思想,属于基础题.6.(单选题,5分)若sinx−cosxsinx+cosx=2,则tan2x=()A. 43B. −43C. 34D. −34【正确答案】:C【解析】:由已知利用同角三角函数基本关系式可求tanx的值,进而根据二倍角的正切公式即可求解.【解答】:解:因为sinx−cosxsinx+cosx=2,所以tanx−1tanx+1=2,解得tanx=-3,则tan2x= 2tanx1−tan2x = 34.故选:C.【点评】:本题主要考查了同角三角函数基本关系式,二倍角的正切公式在三角函数求值中的应用,考查了计算能力和转化思想,属于基础题.7.(单选题,5分)设a>0,b>0,且a+b=1,则下列结论不一定成立的为()A.a b<1B.b a<1C.log a b+log b a≥2D.log a b-log b a≥2【正确答案】:D【解析】:由a>0,b>0,且a+b=1知0<a<1,0<b<1,又得log a b>0且log b a>0,根据函数单调性可判断AB;根据基本不等式可判断C,举例a=b= 12可判断D.【解答】:解:由a>0,b>0,且a+b=1知0<a<1,0<b<1,又得log a b>0且log b a>0,∴a b<a0=1,b a<b0=1,∴AB成立,不选AB;log a b+log b a=log a b+ 1log a b ≥2 √log a b•1log a b=2,当且仅当a=b= 12时,“=”成立,∴C对,不选C;当a=b= 12时,log a b-log b a=0,∴D错,选D.故选:D.【点评】:本题考查不等式与基本不等式,考查数学运算能力及推理能力,属于基础题.8.(单选题,5分)已知球O在母线长为5,高为4的圆锥内部,则球O的表面积最大值为()A.12πB.9πC.8πD.6π【正确答案】:B【解析】:由题意,可得当球O的轴截面是圆锥的轴截面的内切圆时,内切球等体积最大,求出轴截面的内切圆的半径,进而求出球O表面积的最大值.【解答】:解:设圆锥的轴截面为等腰△SAB,则球O的面积最大时,球O的轴截面是△SAB 的内切圆,所以S△SAB= 12AB•SO′= 12SA+SB+AB)•r,解得r= 32,所以球O的表面积的最大值为4πr2=4 π×94=9π.故选:B.【点评】:本题考查圆锥的内切球的半径的求法及球的体积公式,属于基础题.9.(多选题,5分)下列说法正确的为()A.若x∈R,则“x2<1”是“x<1”充分不必要条件B.若x∈R,则“x<1”是“x2<1”充分不必要条件C.若命题p的否定为真命题,则命题p必为假命题D.命题“∃x0∈R,使得x02<2x0-1”的否定为“∀x∈R,x2>2x-1”【正确答案】:AC【解析】:直接利用充分条件和必要条件,命题的否定,真值表的应用判断A、B、C、D的结论.【解答】:解:对于A:若“x2<1”整理出-1<x<1,故{x|-1<x<1}⊂{x|x<1},故“x2<1”是“x <1”充分不必要条件,故A正确;对于B:若“x2<1”整理出-1<x<1,故{x|-1<x<1}⊂{x|x<1},故“x2<1”是“x<1”充分不必要条件,则“x<1”是“x2<1”必要不充分条件,故B错误;对于C:若命题p的否定为真命题,则命题p必为假命题,故C正确;对于D:命题“∃x0∈R,使得x02<2x0-1”的否定为“∀x∈R,x2≥2x-1”故D错误.【点评】:本题考查的知识要点:充分条件和必要条件,命题的否定,真值表,主要考查学生的运算能力和数学思维能力,属于基础题.10.(多选题,5分)如图,在边长为2的正方形ABCD中,E,F分别是BC,CD的中点.若分别以AE,AF,EF为折痕,将该正方形折成一个四面体Ω(使B,C,D三点重合),则下列结论正确的为()A.Ω的表面积为2B.Ω的体积为13C.Ω的外接球半径为√62D.Ω的外接球半径为√52【正确答案】:BC【解析】:利用Ω的表面积即为正方形的面积,即可判断选项A,由翻折前后不变的量,得到翻折后的三棱锥,求解体积即可判断选项B,利用Ω的外接球即为以PA,PE,PF为长、宽、高的长方体的外接球,求解半径即可判断选项C,D.【解答】:解:对于A,由题意可知,Ω的表面积即为正方形的面积,所以Ω的表面积为2×2=4,故选项A错误;对于B,翻折前,AE=AF= √5,EF= √2,AB=AD=2,BE=EC=DF=1,翻折后,AP=2,EP=PF=1,AE=AF= √5,EF= √2,且AP⊥PF,AP⊥PE,PE⊥PF,则AP⊥平面PEF,所以Ω的体积为13×12×1×1×2 = 13,故选项B正确;Ω的外接球即为以PA,PE,PF为长、宽、高的长方体的外接球,则Ω的外接球的直径为2R= √12+12+22=√6,所以Ω的外接球半径为√62,故选项C正确,选项D错误.【点评】:本题考查了翻折问题,棱锥的体积公式的应用,表面积的求解以及外接球的理解,解题的关键是弄起翻折前后不变的量,考查了逻辑推理能力、空间想象能力、化简运算能力,属于中档题.11.(多选题,5分)若函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)的部分图象如图所示,则下列结论正确的为()A.实数ω有且仅有一个值B.实数φ可取两个不同的值C.f(x)的单调递增区间为(kπ−π3,kπ+π6)(k∈Z)D.若f(x1)=f(x2)(π6<x1<x2<π),则f(x1+x2)=√3【正确答案】:AD【解析】:先由图解函数f(x)解析式,再利用单调性、对称性等性质判断选项是否正确.【解答】:解:由图知,A=2,f(0)= √3,即2sinφ= √3,sinφ= √32,∴φ= π3+2kπ,k∈Z,又0<φ<π,∴φ= π3.ω与周期T有关,又π3−0 =2π32π•T = 13T,∴T=π,∴ω=2.∴f(x)=2sin(2x+ π3).A,因为周期一定,所以ω确定,且ω=2.故A对.B,∵(0,√3)是单调递增区间上的值,∴φ只能等于π3+2kπ,k∈Z,又0<φ<π,∴φ= π3.即只有一个值,故B错.C,∵f(x)=2sin(2x+ π3),∴满足2x+ π3∈[2kπ- π2,2kπ+ π2],k∈Z时,f(x)单调递增,解得x∈[kπ- 5π12,kπ+ π12],k∈Z,故C错;D,∵f(x1)=f(x2),且π6<x1<x2<π,∴x1,x2关于x= 7π12对称,∴x1+x2=2× 7π12= 7π6,∴f(x1+x2)=2sin(2× 7π6 + π3)=2sin 8π3=2sin 2π3= √3.故D对.故选:AD.【点评】:该题考查正弦函数的图象及单调性、对称性等性质,属于中等题型.12.(多选题,5分)已知定义在R上的奇函数f(x),当x<0时,f(x)={ex+3,x<−1,e x−1,−1≤x<0,(其中常数e是自然对数的底数,e=2.71828⋅⋅⋅),函数g(x)=f(af(x)),则下列结论正确的为()A.∀x∈[-1,0],f(x)+f(x2)≤0恒成立B.当k∈N*时,方程f(x)+kx=0有唯一实数解C.当a=1时,函数g(x)的零点个数为7D.∃a∈R,使得函数g(x)恰有9个零点【正确答案】:AD【解析】:根据题意作出f(x)的图象,结合图象,逐个判断每个选项,即可得出答案.【解答】:解:根据题意作出f(x)的图象:对于A :由图可知f (x )在(-1,1)上单调递增, 因为x∈[-1,0],则x 2∈[0,1], 又f (x )=-f (-x ),且-x∈[0,1], 且-x≥x 2,所以f (-x )≥f (x 2), 即-f (x )≥f (x 2),所以f (x )+f (x 2)≤0,故A 正确;对于B :当k∈N*时,方程f (x )+kx=0的根为f (x )=-kx 的根, 即y=f (x )与y=-kx 的交点的横坐标,结合图象可得交点可能有1个或三个,故B 错误; 对于C :a=1时,g (x )=f (f (x )),令g (x )=0,结合图象可得f (x )=0或f (x )=- 3e 或f (x )= 3e , 当f (x )=0时,x=0或- 3e 或 3e , 当f (x )=- 3e 时,x 有唯一的解, 当f (x )= 3e 时,x 有唯一的解,综上,当a=1时,g (x )的零点有5个,故C 错误; 对于D :令g (x )=f (af (x ))=0, 得af (x )=0或af (x )=- 3e 或af (x )= 3e , 当a≠0时,f (x )=0或f (x )=- 3ae或f (x )= 3ae, 当f (x )=0时,x=0或- 3e 或 3e ,若e-3<- 3ae <0时,f (x )=- 3ae 有3个解,f (x )= 3ae 有3个解, 综上,存在a∈R ,使得g (x )恰有9个交点,故D 正确. 故选:AD .【点评】:本题考查函数的零点,解题中注意转化思想的应用,属于中档题. 13.(填空题,5分)函数 f (x )=ln (x +1)+√3x−1 上的定义域为 ___ . 【正确答案】:[1](0,3]【解析】:根据题意,由函数的解析式可得 {x +1>03x −1≥0 ,解可得x 的取值范围,即可得答案.【解答】:解:根据题意,函数 f (x )=ln (x +1)+√3x−1 , 必有 {x +1>03x−1≥0,解可得0<x≤3,即函数的定义域为(0,3]; 故答案为:(0,3].【点评】:本题考查函数定义域的计算,涉及不等式的解法,属于基础题.14.(填空题,5分)某校从参加高一物理期末考试的学生中随机抽出60名,将其物理成绩(均为整数)分成六组:[40,50),[50,60),…,[90,100],并绘制成如下的频率分布直方图.由此估计此次高一物理期末考试成绩的第75百分位数为 ___ . )【正确答案】:[1]82【解析】:根据题意,高一物理期末考试成绩的第75百分位数,即成绩从低到高的第60×75%=45位同学,分别求出前4组小矩形对应的人数,前5组小矩形对应的人数,再按比例确定高一物理期末考试成绩的第75百分位数,即可求解.【解答】:解:高一物理期末考试成绩的第75百分位数,即成绩从低到高的第60×75%=45位同学,∵前4组的小矩形的面积和为0.01+0.15×2+0.03=0.07, 又∵样本的容量为60,∴前4组的小矩形对应的学生人数为60×0.07=42,∵前5组的小矩形的面积和为0.01+0.15×2+0.03+0.25=0.95, 又∵样本的容量为60,∴前5组的小矩形对应的学生人数为60×0.95=57, ∵分数在[80,90)的人数为0.025×10×60=15,∴此次高一物理期末考试成绩的第75百分位数为80+10×45−4215=82.故答案为:82.【点评】:本题考查由频数分布表、直方图求频数、频率,考查频率公式,以及百分位数的应用,属于基础题.15.(填空题,5分)进行垃圾分类收集可减少垃圾处理量和处理设备,降低处理成本,减少土地资源的消耗,具有社会、经济、生态等多方面的效益.为普及垃圾分类知识,某校举行了垃圾分类知识考试,考试有且仅有两道试题.已知甲同学答对每道题的概率均为p,乙同学答对每道题的概率均为q,且在考试中每人各题的答题结果互不影响.若甲,乙同时答对第一题的概率为12,且恰有一人答对第二题的概率为512,则p+q=___ .【正确答案】:[1] 1712【解析】:利用相互独立事件的概率乘法公式列出方程组即可求解.【解答】:解:由题意,得{pq=12p(1−q)+q(1−p)=512,解得p+q= 1712.故答案为:1712.【点评】:本题主要考查相互独立事件的概率乘法公式,属于基础题.16.(填空题,5分)设函数f(x)=asin(x+π6)+√3bsin(x−π3)(a>0),若∀x∈R,|f(x)|≤|f(0)|,则1a−2b的最小值为 ___ .【正确答案】:[1] 2√2【解析】:先利用诱导公式以及辅助角公式化简f(x)的解析式,然后由已知条件,得到f (0)为函数f(x)的最值,求出φ的值,由tanφ求出a与b的关系,然后由基本不等式求解最值即可.【解答】:解:函数f(x)=asin(x+π6)+√3bsin(x−π3)= asin(x+π6)−√3bcos(x+π6)= √a2+3b2sin(x+π6−φ),其中tanφ=√3ba,a>0,因为∀x∈R,|f(x)|≤|f(0)|,所以f(0)为函数f(x)的最值,则有0+π6−φ=π2+kπ,k∈Z,故φ=−π3−kπ,k∈Z,所以tanφ=tan(−π3−kπ)=tan(−π3)=−√3,故√3ba=−√3,所以b=-a,a>0,故1a −2b = 1a+2a≥2√1a•2a = 2√2,当且仅当1a =2a,即a= √22时取等号,所以1a−2b的最小值为2√2.故答案为:2√2.【点评】:本题考查了诱导公式以及辅助角公式的应用,三角函数最值的应用以及特殊角的三角函数值的运用,基本不等式求解最值的运用,考查了逻辑推理能力、化简运算能力与转化化归能力,属于中档题.17.(问答题,10分)已知i为虚数单位,m∈R,复数z1=m+mi,z2=2m+2i,z=z1z2.(1)若z是纯虚数,求实数m的值;(2)若|z|≤4,求|z1-z2|的取值范围.【正确答案】:【解析】:z=z1z2=(m+mi)(2m+2i)=2m2-2m+(2m2+2m)i.(1)由2m2-2m=0且2m2+2m≠0可解决此问题;(2)|z|≤4⇔|z|2≤42可求得m范围,然后可求得|z1-z2|的取值范围.【解答】:解:z=z1z2=(m+mi)(2m+2i)=2m2-2m+(2m2+2m)i.(1)∵z是纯虚数,∴2m2-2m=0且2m2+2m≠0,解得m=1;(2)|z|≤4⇔|z|2≤42,可得(2m2-2m)2+(2m2+2m)2≤16,解得-1≤m≤1.∴|z1-z2|=|-m+(m-2)i|= √(−m)2+(m−2)2 = √2m2−4m+4 = √2(m−1)2+2,∵-1≤m≤1,∴0≤(m-1)2≤4,∴0≤2(m-1)2≤8,∴2≤2(m-1)2+2≤10,∴ √2(m −1)2+2 ∈[ √2 , √10 ], ∴|z 1-z 2|∈[ √2 , √10 ].【点评】:本题考查复数代数形式、复数的模、不等式的解法,考查数学运算能力,属于中档题.18.(问答题,12分)如图,在等腰梯形ABCD 中,AB || CD , |AB⃗⃗⃗⃗⃗⃗|=2|DC ⃗⃗⃗⃗⃗⃗|=2 , ∠BAD =π3,E 是BC 边的中点.(1)试用 AB ⃗⃗⃗⃗⃗⃗ , AD ⃗⃗⃗⃗⃗⃗ 表示 AC ⃗⃗⃗⃗⃗⃗ , AE ⃗⃗⃗⃗⃗⃗ ; (2)求 AE ⃗⃗⃗⃗⃗⃗•EC⃗⃗⃗⃗⃗⃗ 的值.【正确答案】:【解析】:(1)根据向量的线性运算求解;(2)把 AE ⃗⃗⃗⃗⃗⃗ 和 AC ⃗⃗⃗⃗⃗⃗ 都用 AB ⃗⃗⃗⃗⃗⃗ , AD ⃗⃗⃗⃗⃗⃗ 表示,进而可求出 AE ⃗⃗⃗⃗⃗⃗•EC ⃗⃗⃗⃗⃗⃗ 的值.【解答】:解:(1)因为AB || CD ,且 |AB ⃗⃗⃗⃗⃗⃗|=2|DC ⃗⃗⃗⃗⃗⃗|=2 ,则 DC ⃗⃗⃗⃗⃗⃗=12AB ⃗⃗⃗⃗⃗⃗ , 所以 AC ⃗⃗⃗⃗⃗⃗=AD ⃗⃗⃗⃗⃗⃗+DC ⃗⃗⃗⃗⃗⃗=AD ⃗⃗⃗⃗⃗⃗+12AB ⃗⃗⃗⃗⃗⃗ ,因为E 是BC 边的中点,所以 AE ⃗⃗⃗⃗⃗⃗=AC ⃗⃗⃗⃗⃗⃗+CE ⃗⃗⃗⃗⃗⃗=AC ⃗⃗⃗⃗⃗⃗+12CB ⃗⃗⃗⃗⃗⃗=AC ⃗⃗⃗⃗⃗⃗+12(CD ⃗⃗⃗⃗⃗⃗+DA ⃗⃗⃗⃗⃗⃗+AB ⃗⃗⃗⃗⃗⃗) = AD ⃗⃗⃗⃗⃗⃗+12AB ⃗⃗⃗⃗⃗⃗+12(−12AB ⃗⃗⃗⃗⃗⃗−AD ⃗⃗⃗⃗⃗⃗+AB ⃗⃗⃗⃗⃗⃗)=12AD ⃗⃗⃗⃗⃗⃗+34AB ⃗⃗⃗⃗⃗⃗ .(2) EC ⃗⃗⃗⃗⃗⃗=AC ⃗⃗⃗⃗⃗⃗−AE ⃗⃗⃗⃗⃗⃗=(AD ⃗⃗⃗⃗⃗⃗+12AB ⃗⃗⃗⃗⃗⃗)−(12AD ⃗⃗⃗⃗⃗⃗+34AB ⃗⃗⃗⃗⃗⃗)=12AD ⃗⃗⃗⃗⃗⃗−14AB ⃗⃗⃗⃗⃗⃗ , 又因为 AD =AB−DC2cosπ3=1 ,所以 AE ⃗⃗⃗⃗⃗⃗⋅EC ⃗⃗⃗⃗⃗⃗=(12AD ⃗⃗⃗⃗⃗⃗+34AB ⃗⃗⃗⃗⃗⃗)⋅(12AD ⃗⃗⃗⃗⃗⃗−14AB ⃗⃗⃗⃗⃗⃗) = 14AD ⃗⃗⃗⃗⃗⃗2+14AB ⃗⃗⃗⃗⃗⃗⋅AD ⃗⃗⃗⃗⃗⃗−316AB ⃗⃗⃗⃗⃗⃗2= 14×12+12⋅1⋅2⋅cos60°−316×22=−14.【点评】:本题考查平面向量的线性运算和数量积运算,考查数学抽象和直观想象的核心素养,属于基础题.19.(问答题,12分)随着电子产品的盛行,近年来青少年的眼睛健康不容忽视.某地欲举行中学生“用眼卫生健康知识竞赛”活动,规定每所学校均由3名学生组成代表队参加团体赛.某校为了选拔出代表队成员,共有120名学生参加了校内选拔赛,其竞赛成绩的频率分布表如下:差(同一组中的数据用该组区间的中点值作代表);(2)已知竞赛成绩不低于90分的学生中男、女人数之比为1:2,若从竞赛成绩不低于90分的学生中随机选取3人组成代表队,求代表队中女生人数多于男生人数的概率.【正确答案】:【解析】:(1)利用频数的计算公式求a,b,由频率之和为1求b,利用平均数以及方差的计算公式求解平均数与方差即可;(2)先分别求出6人中,男生和女生的人数,然后用分类计数原理以及古典概型的概率公式求解即可.【解答】:解:(1)由题意可知,a=120×0.05=6,c=1-(0.1+0.2+0.35+0.05)=0.3,b=120×0.3=36,这120名学生的竞赛成绩平均数为55×0.1+65×0.2+75×0.35+85×0.3+0.05×95=75,方差为0.1×202+0.2×102+0.35×02+0.3×102+0.05×202=110;(2)竞赛成绩不低于90分的学生共有120×0.05=6人,因为竞赛成绩不低于90分的学生中男、女人数之比为1:2,故抽取的6人中有男生2人,女生4人,则抽取3人组成代表队,女生人数大于男生人数有2种抽法,① 女生2人,男生1人,则概率为P=C42C21C63 = 35;② 女生3人,则概率为P′=C43C62 = 15.故所求概率为35+15= 45.【点评】:本题考查了频率分布表的应用,频率之和为1的应用,频率、频数、样本容量之间关系的运用,古典概型概率公式的运用,考查了逻辑推理能力,属于基础题.20.(问答题,12分)设△ABC的内角A,B,C的对边分别为a,b,c,且a−ca+b +sinBsinA+sinC=0.(1)求C;(2)设点E,F是边AB(除端点外)上的动点,且AE<AF.若a=b=1,且∠ECF=π3,记∠ACE=θ,试用θ表示△CEF的面积S,并求S的最小值.【正确答案】:【解析】:(1)利用正弦定理将角化为边,由余弦定理的变形式求解即可得到答案;(2)利用正弦定理分别求出CE,CF,由三角形的面积公式表示出S,再利用三角恒等变换进行化简变形,然后由三角函数的性质求解最值即可.【解答】:解:(1)因为a−ca+b +sinBsinA+sinC=0,由正弦定理可得,a−ca+b +ba+c=0,化简整理可得a2+b2-c2=-ab,由余弦定理的变形式可得,cosC=a 2+b2−c22ab=−12,又0<C<π,故C=2π3;(2)因为a=b=1,所以△ABC为等腰三角形,则A=B=π−C2=π6,作出图象如图所示,因为∠ACE=θ,则∠AEC=π-A-∠ACE= 5π6−θ,由正弦定理可得,ACsin∠AEC =CEsinA=1sin(5π6−θ),所以CE=12sin(5π6−θ),因为∠FCB=C-∠ECF-∠ACE= π3−θ,则∠CFB= π2+θ,由正弦定理可得,BCsin∠CFB =CFsinB=1sin(π2+θ),所以CF=12sin(π2+θ),故△CEF的面积S= 12•CE•CF•sin∠ECF= √316×1cosθsin(π6+θ)= √316×112cos2θ+√32sinθcosθ,= √316×114(cos2θ+1)+√34sin2θ= √316×112sin(2θ+π6)+14= √38sin(2θ+π6)+4,所以当2θ+π6=π2,即θ=π6时,S取得最小值为√312.【点评】:本题考查了解三角形问题,主要考查了正弦定理和余弦定理的应用,三角恒等变换的应用,三角形面积公式的应用,考查了逻辑推理能力与化简运算能力,属于中档题.21.(问答题,12分)如图,已知四边形ABCD为矩形,且AB=2AD,点E为AB的中点,将△ADE沿折痕DE折成△PDE.(1)若点M为PC的中点,证明:BM || 平面PDE;(2)若二面角D-PE-C为直二面角,求直线PC与平面DEC所成的角的正弦值.【正确答案】:【解析】:(1)取PD中点N,证明四边形MNEB为平行四边形,证出NE || BM,利用线面平行判定即可;(2)没有平面DEC的垂线,所以等体积转化,求出点P到面DEC的距离h,求解.利用线面角的正弦值为ℎPC【解答】:解:(1)如图,取PD中点为N,连接NM,NE,∵M,N分别为PC,PD的中点,∴MN || DC,MN= 1DC,2AB,∵E为AB的中点,∴EB= 12∵四边形ABCD为矩形,∴AB || CD,AB=CD,∴MN || BE,MN=BE,∴四边形MNEB为平行四边形,∴NE || BM,∵NE⊂平面PED,BM⊄平面PED,∴BM || 平面PDE.(2)如图,由二面角D-PE-C为直二面角,可知平面DPE⊥平面CPE,∵平面DPE∩平面CPE=PE,DP⊥PE,DP⊂平面DPE,∴DP⊥平面CPE,∵PC⊂平面CPE,∴DP⊥PC,∵DC=2,PD=1,∴ PC=√22−12=√3,∵PE=1,EC= √12+12=√2,∴PC2=PE2+EC2,∴PE⊥EC,∵DE= √12+12=√2,EC= √12+12=√2,DC=2,∴DC2=DE2+EC2,∴DE⊥EC,设点P到平面DEC的距离为h,由题可知,V P-DCE=V D-PCE,即13•S DEC•ℎ=13•S PEC•DP,即13×12×DE×EC×ℎ=13×12×EC×PE×DP,即13×12×√2×√2×ℎ=13×12×√2×1×1,解得ℎ=√22,∴直线PC与平面DEC所成的角的正弦值为ℎPC =√22√3= √66.【点评】:本题考查线面平行的证明和线面成角,属于中档题.22.(问答题,12分)设函数g(x)的定义域为D,若x0∈D,且g(x0)=kx0(k∈Z),则称实数x0为g(x)的“k级好点”.已知函数f(x)=ln(e x+a).(其中常数e是自然对数的底数,e=2.71828⋅⋅⋅)(1)当a∈R时,讨论f(x)的“2级好点”个数;(2)若实数m为f(x)的“-1级好点”,证明:e2m+e−2m+m22>(a+1)m+1.【正确答案】:【解析】:(1)利用“k级好点”的概念,将问题转化为函数零点个数问题,然后根据零点的个数确定f(x)的“2级好点”个数即可;(2)根据条件,可知e2m+e−2m+m22>(a+1)m+1等价于证明a2+2+m22>(a+1)m+1成立,利用分析法和放缩法证明不等式即可.【解答】:解:(1)f(x)的“2级好点”个数等价于方程“f(x)=2x”的解的个数,即讨论方程ln(e x+a)=2x的解的个数.方程ln(e x+a)=2x等价于a=e2x-e x,令t=e x,等价于讨论方程a=t2-t在(0,+∞)上的解的个数.作出函数y=t2-t,t∈(0,+∞)的图象,}∪[0,+∞)时,有1个“2级好点”;根据图象,可知当a∈{−14时,没有“2级好点”;当a<−14当a∈(−1,0)时,有2个“2级好点”;4(2)由条件有f(m)=-m,即ln(e m+a)=-m,a=e-m-e m,所以e2m+e-2m=a2+2;>(a+1)m+1成立,等价于证明(a-m)2+a2-2m+2>0;故等价于证明a2+2+m22因为a2-2m+2=e2m+e-2m-2m,又由不等式e x>x,可得a2-2m+2>0;又(a-m)2≥0,所以(a-m)2+a2-2m+2>0成立,故原不等式成立.【点评】:本题以新概念为背景进行命题,重点考查函数零点、分析法证明不等式,属中档题.。
广东省佛山市第一中学2020-2021学年高二上学期期中考试 历史(选考)
佛山一中2020-2021学年上学期高二级期中考试题历史(选考)命题人:曹涛雪审题人:辛晓燕2020年11月本试卷共9页,53小题,满分100分,考试时间100分钟。
注意事项:1.答题前,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名、考号填写在答题卷上。
2.每小题选出答案后,用2B铅笔把答题卷上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
3.作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
第一部分选择题(共50分)一、单选题(每题1分,共50分)1. 孔子说,君子在与他人保持和谐友善的同时还能坚持独立思想而不苟同于人,小人习惯于附和苟同别人的观点,但内心深处却并不友善。
后世儒者经常以此诫勉君臣,这体现出儒学A. 具有调节政治关系的功能B. 具有维护社会秩序的作用C. 倡导与人为善、社会和谐D. 重视人格独立和思想自由2.相传孔子编写了鲁国的历史《春秋》,曾有人说:“孔子作《春秋》,乱臣贼子惧”。
孔子还有一个原则:“为尊者讳,为贤者讳”。
据此可推知孔子作史的标准是A. 忽视事实专注统治需要B. 天人合一凸显君权神授C. 价值观念重于历史事实D. 史以相传颂扬尊者贤能3.A. 各学派均关注人与自然B. 民众对社会安定的渴望C. 各学派的主张渐趋一致D. 思想服务于统治的需要4.成书于战国末期的《吕氏春秋》,用拼凑式的做法把诸子百家思想综合起来,并不追求一个内在的思想系统,成为“兼儒墨,合名法”“于百家之道无不贯通”的“杂家”代表作。
这A. 反映了学术创新的停滞B. 重振了百家争鸣的气象C. 体现了政治统一的趋势D. 阻碍了社会经济的转型5.清华大学教授刘桂生指出,汉武帝“罢黜百家,独尊儒术”,其用意只在于确立儒学在官学与朝廷政治中的地位,不许其他学派分沾。
广东佛山顺德区2020-2021学年七上期末考试数学试卷(解析版)
2020-2021学年广东省佛山市顺德区七年级(上)期末数学试卷参考答案与试题解析一、选择题(10个题,每题3分,共30分)1.的倒数是()A.﹣2B.﹣C.2D.【分析】根据倒数的定义,直接解答即可.【解答】解:的倒数是﹣2.故选:A.2.以下调查方式比较合理的是()A.了解全国学生周末使用网络情况,采用普查的方式B.了解全国七年级学生节约用水的情况,采用抽样调查的方式C.了解一沓钞票中有没有假钞,采用抽样调查的方式D.了解全国中学生心理健康现状,采用普查的方式【分析】根据全面调查和抽样调查的意义,结合实际需要进行判断即可.【解答】解:A.了解全国学生周末使用网络情况,由于数量较大,且没有必要,因此采用抽样调查的方式较好,因此A不符合题意;B.了解全国七年级学生节约用水的情况,采用抽样调查的方式较好,因此B符合题意;C.了解一沓钞票中有没有假钞,必须每一种都要检查,因此采用全面调查的方式较好,因此C不符合题意;D.了解全国中学生心理健康现状,由于个体较多,且没有必要全面调查,采用抽样调查的方式较好,因此D不符合题意;故选:B.3.如图,能用∠1、∠ABC、∠B三种方法,表示同一个角的是()A.B.C.D.【分析】当角的顶点处只有一个角时,可以用一个大写字母表示这个角,也可以用三个大写字母表示这个角.【解答】解:A、顶点B处有四个角,不能用∠B表示,错误;B、顶点B处有一个角,能同时用∠ABC,∠B,∠1表示,正确;C、顶点B处有三个角,不能用∠B表示,错误;D、顶点B处有四个角,不能用∠B表示,错误.故选:B.4.下列变形正确的是()A.若a=b,则a+1=b+2B.将a+1=0移项得a=1C.若a=b,则﹣3a=﹣3bD.将a+1=0去分母得a+1=0【分析】根据等式的性质即可求出答案.【解答】解:A、在等式a=b的两边都加上1得a+1=b+1,原变形错误,故此选项不符合题意;B、在等式a=b的两边都减去1,得a=﹣1,原变形错误,故此选项不符合题意;C、在等式a=b的两边都乘以﹣3,即﹣3a=﹣3b,原变形正确,故此选项符合题意;D、将a+1=0去分母得3a+3=0,原变形错误,故此选项不符合题意;故选:C.5.计算:1800′=()A.10°B.18°C.20°D.30°【分析】利用1°=60′,1′=60″进行计算即可.【解答】解:1800′=(1800÷60)°=30°,故选:D.6.下列哪个图形经过折叠可以围成棱柱是()A.B.C.D.【分析】根据棱柱的特点作答.【解答】解:A是圆柱,B比棱柱缺少一个侧面的长方形,D比三棱柱的侧面多出一个长方形,故选:C.7.下列说法正确的是()A.﹣3mn的系数是3B.多项式m2+m﹣3的次数是3C.3m3n中n的指数是0D.多项式a2b﹣3ab+5的项分别为a2b、﹣3ab和5【分析】根据单项式中的数字因数叫做单项式的系数判断A,根据多项式的次数判断B,根据字母的指定判断C,根据多项式的项即是组成多项式的每一个单项式判断D.【解答】解:A、单项式﹣3mn的系数是﹣3,故原题说法错误;B、多项式m2+m﹣3的次数是2,故原题说法错误;C、单项式3m3n中n的指数是1,故原题说法错误;D、多项式a2b﹣3ab+5的项分别为a2b、﹣3ab和5,故原题说法正确;故选:D.8.如图,一副三角板(直角顶点重合)摆放在桌面上,若∠AOD=160°,则∠BOC等于()A.20°B.30°C.40°D.50°【分析】如图可以看出,∠BOC的度数正好是两直角相加减去∠AOD的度数,从而问题可解.【解答】解:∵∠AOB=∠COD=90°,∠AOD=160°∴∠BOC=∠AOB+∠COD﹣∠AOD=90°+90°﹣160°=20°.故选:A.9.下列各式一定成立的是()A.(﹣a)2=a2B.(﹣a)3=a3C.|﹣a2|=﹣a2D.|a3|=a3【分析】直接利用有理数的乘方以及绝对值的性质分别化简得出答案.【解答】解:A、(﹣a)2=a2,一定成立,符合题意;B、(﹣a)3=﹣a3,原式不成立,不合题意;C、|﹣a2|=a2,原式不成立,不合题意;D、|a3|,a的符号不确定,不能直接化简,故此选项错误;故选:A.10.关于代数式a2+的值,以下结论不正确的是()A.当a取互为相反数的值时,a2+的值相等B.当a取互为倒数的值时,a2+的值相等C.当|a|>1时,|a|越大,a2+的值就越大D.当0<|a|<1时,|a|越大,a2+的值就越大【分析】根据倒数、相反数的定义以及不等式的性质来解决代数式的值.【解答】解:A、当a取互为相反数的值时,即取m和﹣m,当a=m时,a2+=m2+①.当a=﹣m时,a2+=(﹣m)2+=m2+②.此时①=②,故本选项不符合题意.B、当a取互为倒数的值时,即取m和,当a=m时,a2+=m2+①.当a=时,a2+=+m2②.此时①=②,故本选项不符合题意.C、可举例判断,当|a|>1时,取a=2,3(2<3),则22+=4+<32+=9+.故本选项不符合题意.D、可举例判断,当0<|a|<1时,取a=,().则()2+=4+<()2+=9+.故本选项符合题意.故选:D.二、填空题(7个题,每题4分,共28分)11.(4分)计算:|﹣2|=2.【分析】根据绝对值定义去掉这个绝对值的符号.【解答】解:∵﹣2<0,∴|﹣2|=2.故答案为:2.12.(4分)用科学记数法表示水星的半径24400000m为 2.44×107m.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数数;当原数的绝对值<1时,n是负整数数.【解答】解:24400000=2.44×107.故答案为:2.44×107.13.(4分)比较大小:<.【分析】先计算|﹣|==,|﹣|==,然后根据负数的绝对值越大,这个数越小进行大小比较.【解答】解:∵|﹣|==,|﹣|==,∴﹣<﹣.故答案为<.14.(4分)化简:2a+1﹣(1﹣a)=3a.【分析】直接去括号进而合并同类项得出答案.【解答】解:原式=2a+1﹣1+a=3a.故答案为:3a.15.(4分)若单项式﹣2x2y n与3x m y是同类项,则m﹣n=1.【分析】根据所含字母相同,并且相同字母的指数也相同,这样的项叫做同类项,得出m,n的值,进而得出答案.【解答】解:∵﹣2x2y n与3x m y是同类项,∴m=2,n=1,∴m﹣n=2﹣1=1.故答案为:1.16.(4分)如图,OG是∠BOE的角平分线,若∠AOE=48°,则∠BOG的度数是66°.【分析】根据补角的定义求出∠BOE的度数,再根据角平分线的定义计算即可.【解答】解:因为∠AOE=48°,所以∠BOE=180°﹣∠AOE=132°,因为OG是∠BOE的角平分线,所以∠BOG===66°.故答案为:66°.17.(4分)如图,在3×3幻方中,填入9个数字,使得每行、每列、每条对角线上的三个数之和都相等.按以上规则填成的幻方中,x的值为3.【分析】首先根据题意,可得:4x+(x+7)=x+19;然后根据解一元一次方程的方法,求出x的值为多少即可.【解答】解:根据题意,可得:4x+(x+7)=x+19,去括号,可得:4x+x+7=x+19,移项,可得:4x+x﹣x=19﹣7,合并同类项,可得:4x=12,系数化为1,可得:x=3.故答案为:3.三、解答题(一)(3个题,每题6分,共18分)18.(6分)计算:5×(﹣3+2)÷(﹣)3.【分析】先算乘方,再算乘除,最后算加法;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.【解答】解:5×(﹣3+2)÷(﹣)3=5×(﹣1)÷(﹣)=﹣5÷(﹣)=40.19.(6分)先化简,后求值:2(a2b+ab2)﹣2(a2b﹣1)﹣2,其中a=2,b=﹣2.【分析】原式去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:2(a2b+ab2)﹣2(a2b﹣1)﹣2=2a2b+2ab2﹣2a2b+2﹣2=2ab2,当a=2,b=﹣2时,原式=2×2×(﹣2)2=16.20.(6分)解方程:﹣=1.【分析】方程去分母,去括号,移项,合并同类项,把x系数化为1,即可求出解.【解答】解:去分母得:2(2x+1)﹣3(5x﹣1)=6,去括号得:4x+2﹣15x+3=6,移项得:4x﹣15x=6﹣2﹣3,合并得:﹣11x=1,解得:x=﹣.四、解答题(二)(3个题,每题8分,共24分)21.(8分)已知线段m、n(其中m>n).(1)尺规作图:作线段AC=m﹣n,其中AB=m,BC=n(保留作图痕迹,不用写作法);(2)在(1)的条件下,点M是AB的中点,点N是BC的中点,当m=3、n=1时,求线段MN的长.【分析】(1)根据线段定义即可作线段AC=m﹣n,其中AB=m,BC=n;(2)根据点M是AB的中点,点N是BC的中点,当m=3、n=1时,即可求线段MN 的长.【解答】解:(1)如图,线段AC即为所求;(2)如图,∵点M是AB的中点,点N是BC的中点,∴AM=BM=AB,CN=BN=BC,∵AB=m=3、BC=n=1,∴BM=,BN=,∴MN=BM﹣BN=﹣=1,答:线段MN的长为1.22.(8分)每天锻炼1小时,健康生活一辈子.为增强学生体质,某学校随机抽取部分学生对“我最喜爱课间活动”进行抽样调查,分别从跳绳、踢毽子、打羽毛球、打篮球、踢足球5个方面进行问卷调查(每人只能选一项),根据调查结果绘制了统计图.结合图中信息,解答下列问题:(1)本次调查共抽取300名学生,喜欢打羽毛球的人数是45;(2)在扇形统计图中,踢足球的人数所占总数的百分比是25%,踢毽子所在扇形的圆心角度数是36°;(3)若学校共有3600名学生,请你估计参加打篮球的学生有多少人?【分析】(1)根据跳绳的人数和所占的百分比求出本次调查共抽取的总人数,用总人数减去其他活动项目的人数,求出喜欢打羽毛球的人数;(2)用踢足球的人数除以总人数求出踢足球的人数所占总数的百分比;用360°乘以踢毽子的人数所占的百分比即可得出踢毽子所在扇形的圆心角度数;(3)用该校的总人数乘以打篮球的学生所占的百分比即可.【解答】解:(1)本次调查共抽取的学生数是:60÷20%=300(名);喜欢打羽毛球的人数是:300﹣60﹣30﹣90﹣75=45(人).故答案为:300,45;(2)踢足球的人数所占总数的百分比是×100%=25%;踢毽子所在扇形的圆心角度数是:360°×=36°.故答案为:25%,36°;(3)根据题意得:3600×=1080(人),答:参加打篮球的学生有1080人.23.(8分)某学校组织学生义卖书籍活动,A、B两种书的单价分别是5元、8元.(1)若两种书共卖了1000本,得6650元,求每种书各卖了多少本?(2)卖1000本书时可能是5500元吗?请说明理由.【分析】(1)可根据总价来得到相应的等量关系:单价5元的书的总价+单价8元的书的总价=6650,把相关数值代入求解即可;(2)设单价为5元的书卖了y本,则单价为8元的书卖了(1000﹣y)本,根据一共付款5500元列出方程,如果方程的解是正整数,那么可能,否则不可能.【解答】解:(1)设A种书卖了x本,则B种书卖了(1000﹣x)本,依题意,得5x+8×(1000﹣x)=6650,解得x=450,则1000﹣450=650,答:A种书卖了450本,B种书卖了650本;(2)卖1000本书时不可能是5500元.理由如下:设单价为5元的书卖了y本,则单价为8元的书卖了(1000﹣y)本,依题意,得5y+8×(1000﹣y)=5500,解得y=833,833是分数,不合题意舍去.故卖1000本书时不可能是5500元.五、解答题(三)(2个题,每题10分,共20分)24.(10分)已知数轴上两点A、B对应的数分别为﹣1、3,点P从A出发,以每秒2个单位长度的速度沿数轴向正方向匀速运动,设P的运动时间为t秒.(1)AB=4;(2)求t为何值时,BP=2;(3)若Q点同时从B出发,以每秒1个单位长度的速度沿数轴向正方向匀速运动,求t 为何值时,PQ=AB?【分析】(1)根据两点间的距离公式即可求解;(2)先表示出运动t秒时P点表示的数,再根据BP=2列方程,求解即可;(3)先表示出运动t秒时P、Q两点表示的数,再根据PQ=AB列方程,求解即可.【解答】解:(1)∵数轴上两点A、B对应的数分别为﹣1、3,∴AB=3﹣(﹣1)=4.故答案为:4;(2)t秒后,点P表示的数﹣1+2t,∵BP=2,∴|﹣1+2t﹣3|=2,解得t=1或3,故t为1或3时,BP=2;(3)∵t秒后,点P表示的数﹣1+2t,点Q表示的数为3+t,∴PQ=|(3+t)﹣(﹣1+2t)|=|4﹣t|,又∵PQ=AB=2,∴|4﹣t|=2,解得:t=2或6,∴当t为2或6时,PQ=AB;25.(10分)对于有理数a、b,定义了一种新运算“※”为:a※b=如:5※3=2×5﹣3=7,1※3=1﹣×3=﹣1.(1)计算:①2※(﹣1)=5;②(﹣4)※(﹣3)=﹣2;(2)若3※m=﹣1+3x是关于x的一元一次方程,且方程的解为x=2,求m的值;(3)若A=﹣x3+4x2﹣x+1,B=﹣x3+6x2﹣x+2,且A※B=﹣3,求2x3+2x的值.【分析】(1)根据新运算“※”法则列式计算;(2)根据新运算“※”法则列方程计算;(3)根据新运算“※”法则列方程计算.【解答】解:(1)①2※(﹣1)=2×2﹣(﹣1)=5;②(﹣4)※(﹣3)=﹣4﹣×(﹣3)=﹣2.故答案是:①5;②﹣2;(2)当3≥m时,2×3﹣m=﹣1+3×2,此时m=1;当3<m时,3﹣m=﹣1+3×2,此时m=﹣3,舍去;纵上所述,m的值是1;(3)当A≥B时,A﹣B≥0,即﹣x3+4x2﹣x+1﹣(﹣x3+6x2﹣x+2)≥0.解得x2≤﹣,不合题意,舍去.所以A<B.所以由A※B=﹣3,得A﹣B=﹣3,即﹣x3+4x2﹣x+1﹣(﹣x3+6x2﹣x+2)=﹣3,整理,得x3+x=8,所以2x3+2x=2(x3+x)=2×8=16.。
2021年广东省佛山市顺德区中考数学一模试卷(含解析)
2021年广东省佛山市顺德区中考数学一模试卷一、选择题(共10小题).1.2020年,我国脱贫攻坚战取得了全面胜利,现行标准下的9899万农村贫困人口全部脱贫,其中9899万用科学记数法表示为()A.989.9×105B.98.99×106C.9.899×107D.0.9899×108 2.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.3.下列运算正确的是()A.a5÷a2=a3B.3a2+a=3a3C.(a2)3=a5D.a(a+1)=a2+14.为了估计某地区梅花鹿的数量,先捕捉20只梅花鹿做上标记,然后放走,待有标记的梅花鹿完全混合于鹿群后,第二次捕捉100只梅花鹿,发现其中5只有标记.估计这个地区的梅花鹿的数量约有()只.A.200B.300C.400D.5005.已知a=+1介于两个连续自然数之间,则下列结论正确的是()A.1<a<2B.2<a<3C.3<a<4D.4<a<56.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为()A.60°B.85°C.75°D.90°7.如图,E是平行四边形ABCD边AD延长线上一点,且DE=AD,连接BE、CE、BD.若AB=BE,则四边形BCED是()A.平行四边形B.矩形C.菱形D.正方形8.如图,一次函数y=x+1的图象与反比例函数y=的图象的一个交点为A(2,m),则不等式>3的解集是()A.x>2B.0<x<2C.x>0D.x<﹣3或0<x<29.如图,AB为⊙O的直径,C、D为⊙O上两点,∠BCD=30°,BD=2,则AB的长度为()A.3B.4C.5D.610.若关于x的不等式组有且只有8个整数解,关于y的方程=1的解为非负数,则满足条件的整数a的值为()A.﹣8B.﹣10C.﹣8或﹣10D.﹣8或﹣9或﹣10二、填空题(7个题,每题4分,共28分)11.因式分解:x2﹣16=.12.若关于x的一元二次方程x2﹣2x+c=0没有实数根.则实数c取值范围是.13.一个正多边形的每个内角都是144°,则这个多边形的内角和为.14.在边长为2的正方形ABCD中,点E是AB的中点,EF⊥BD于点F,则EF的长度.15.某校组织了一次初三科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品.C班提供的参赛作品的获奖率为50%,其它几个班的参赛作品情况及获奖情况绘制在图1和图2两幅尚不完整的统计图中,则获奖率最高的班级是.16.如图,在A点有一个热气球,由于受西风的影响,以20米/分的速度沿与地面成75°角的方向飞行,10分钟后到达C处,此时热气球上的人测得地面上的B点俯角为30°,则A、B两点间的距离为米.17.如图,在四边形ABCD中,AB=CB,AD=CD.若∠ABD=∠ACD=30°,AD=1,则△ABC的内切圆面积(结果保留π).三、解答题(一)(3个题,每题6分,共18分)18.计算:2cos30°﹣()﹣2++|1﹣|.19.先化简,再计算:(+)÷,其中x满足x2﹣2x+2=0.20.如图,M是⊙O的半径OA的中点,弦BC⊥AO于点M,过点C作CD⊥BA交BA的延长线于点D,连接AC.(1)求∠OAC的值;(2)求证:CD是⊙O的切线.四、解答题(二)(3个题,每题8分,共24分)21.某历史文化街区需要加装一批垃圾分类提示牌和垃箱.根据需求,提示牌比垃圾箱多5个,且提示牌和垃圾箱的个数之和不少于100个,则至少购买垃圾箱多少个?22.如图,在直角三角形ABC中,∠C=90°,AC=40,BC=30,作△ABC的内接矩形CDEF.设DE=x,求x取何值时矩形的面积最大?23.如图,点A在反比例函数y=(其中k>0)图象上,OA=2,以点A为圆心,OA 长为半径画弧交x轴正半轴于点B.(1)当OB=4时,求k的值;(2)过点B作BC⊥OB交反比例函数的图象于点C,连接OC交AB于点D,求的值.五、解答题(三)(2个题,每题10分,共20分)24.已知抛物线C1:y=﹣x2﹣x+4交x轴于点A、B,顶点为M,A、B、M关于原点的对称点分别是E、F、N.(1)求点A、B的坐标;(2)求出经过E、且以N为顶点的抛物线C2的表达式;(3)抛物线C2与y轴交点为D,点P是抛物线C2在第四象限部分上一动点,点Q是y 轴上一动点,求出一组P、Q的值,使得以点D、P、Q为顶点的三角形与△EFD相似.25.在△ABC中,AC=BC=10,AB=12,点D是AB边上的一点.(1)如图1,过点D作DM⊥AC于点M,DN⊥BC于点N,求DM+DN的值;(2)将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A、C重合),折痕交BC边于点E;①如图2,当点D是AB的中点时,求AP的长度;②如图3,设AD=a,若存在两次不同的折痕,使点B落在AC边上两个不同的位置,求a的取值范围.参考答案一、选择题(10个题,每题3分,共30分)1.2020年,我国脱贫攻坚战取得了全面胜利,现行标准下的9899万农村贫困人口全部脱贫,其中9899万用科学记数法表示为()A.989.9×105B.98.99×106C.9.899×107D.0.9899×108【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数;当原数的绝对值<1时,n是负整数.解:9899万=98990000=9.899×107,故选:C.2.如图所示的几何体是由几个大小相同的小正方体搭成的,其俯视图是()A.B.C.D.【分析】根据俯视图是从上面看到的图形,从上面看有两层,上层有4个正方形,下层有一个正方形且位于左二的位置.解:从上面看,得到的视图是:,故选:A.3.下列运算正确的是()A.a5÷a2=a3B.3a2+a=3a3C.(a2)3=a5D.a(a+1)=a2+1【分析】各式利用同底数幂的除法,合并同类项法则,幂的乘方运算法则,以及单项式乘以多项式法则判断即可.解:A、原式=a3,此选项计算正确;B、原式不能合并,此选项计算错误;C、原式=a6,此选项计算错误;D、原式=a2+a,此选项计算错误.故选:A.4.为了估计某地区梅花鹿的数量,先捕捉20只梅花鹿做上标记,然后放走,待有标记的梅花鹿完全混合于鹿群后,第二次捕捉100只梅花鹿,发现其中5只有标记.估计这个地区的梅花鹿的数量约有()只.A.200B.300C.400D.500【分析】设这个地区的梅花鹿的数量约有x只,根据做标记的梅花鹿熟练所占比例等于捕捉100只梅花鹿中有标记的只数所占比例列出方程,解之即可.解:设这个地区的梅花鹿的数量约有x只,根据题意,得:=,解得x=400,经检验:x=400是分式方程的解,所以这个地区的梅花鹿的数量约400只,故选:C.5.已知a=+1介于两个连续自然数之间,则下列结论正确的是()A.1<a<2B.2<a<3C.3<a<4D.4<a<5【分析】估算确定出的大小范围,进而确定出所求即可.解:∵9<13<16,∴3<<4,即4<+1<5,则4<a<5.故选:D.6.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE,若∠CAE=65°,∠E=70°,且AD⊥BC,则∠BAC的度数为()A.60°B.85°C.75°D.90°【分析】先根据旋转的性质得∠C=∠E=70°,∠BAC=∠DAE,再根据垂直的定义得∠AFC=90°,则利用互余计算出∠CAF=90°﹣∠C=20°,所以∠DAE=∠CAF+∠EAC=85°,于是得到∠BAC=85°.解:∵△ABC绕点A逆时针旋转得到△ADE,∴∠C=∠E=70°,∠BAC=∠DAE,∵AD⊥BC,∴∠AFC=90°,∴∠CAF=90°﹣∠C=90°﹣70°=20°,∴∠DAE=∠CAF+∠EAC=20°+65°=85°,∴∠BAC=∠DAE=85°.故选:B.7.如图,E是平行四边形ABCD边AD延长线上一点,且DE=AD,连接BE、CE、BD.若AB=BE,则四边形BCED是()A.平行四边形B.矩形C.菱形D.正方形【分析】由平行四边形的性质得到AD∥BC,AD=BC,AB=DC,继而证得四边形BCED 是平行四边形,再证得BE=DC,根据矩形的判定即可证得▱BCED是矩形.解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,AB=DC,∴DE∥BC,∵DE=AD,∴DE=BC,∴四边形BCED是平行四边形,∵AB=BE,∴BE=DC,∴▱BCED是矩形,故选:B.8.如图,一次函数y=x+1的图象与反比例函数y=的图象的一个交点为A(2,m),则不等式>3的解集是()A.x>2B.0<x<2C.x>0D.x<﹣3或0<x<2【分析】由点A在一次函数图象上利用一次函数图象上点的坐标特征即可求出点A的坐标,根据图象即可求得.解:∵点A在一次函数y=x+1的图象上,∴m=2+1=3,∴点A的坐标为(2,3).由图象可知,不等式>3的解集是0<x<2,故选:B.9.如图,AB为⊙O的直径,C、D为⊙O上两点,∠BCD=30°,BD=2,则AB的长度为()A.3B.4C.5D.6【分析】构造直角三角形,利用直角三角形30度角的性质解决问题即可.解:如图,连接AD.∵AB是直径,∴∠ADB=90°,∵∠A=∠DCB=30°,BD=2,∴AB=2BD=4,故选:B.10.若关于x的不等式组有且只有8个整数解,关于y的方程=1的解为非负数,则满足条件的整数a的值为()A.﹣8B.﹣10C.﹣8或﹣10D.﹣8或﹣9或﹣10【分析】解不等式组,得到不等式组的解集,根据整数解的个数判断a的取值范围,解分式方程,用含有a的式子表示y,根据解的非负性求出a的取值范围,确定符合条件的整数a,相加即可.解:不等式组,解①得x≤5,解②得x>,∴不等式组的解集为<x≤5;∵不等式组有且只有8个整数解,∴﹣3≤<﹣2,解得﹣10≤a<﹣7;解分式方程=1得y=﹣a﹣1(a≠8);∵方程的解为非负数,∴﹣a﹣1≥0即a≤﹣1;综上可知:﹣10≤a<﹣7;∵a是整数,∴a=﹣8或﹣9或﹣10.故选:D.二、填空题(7个题,每题4分,共28分)11.因式分解:x2﹣16=(x+4)(x﹣4).【分析】直接利用平方差公式分解因式得出答案.解:x2﹣16=(x+4)(x﹣4).故答案为:(x+4)(x﹣4).12.若关于x的一元二次方程x2﹣2x+c=0没有实数根.则实数c取值范围是c>1.【分析】利用判别式的意义得到△=(﹣2)2﹣4c<0,然后解不等式即可.解:根据题意得△=(﹣2)2﹣4c<0,解得c>1.故答案为c>1.13.一个正多边形的每个内角都是144°,则这个多边形的内角和为1440°.【分析】首先根据内角的度数可得外角的度数,再根据外角和为360°可得边数,利用内角和公式可得答案.解:∵一个正多边形的每个内角都是144°,∴它的每一个外角都是:180°﹣144°=36°,∴它的边数为:360°÷36=10,∴这个多边形的内角和为:180°(10﹣2)=1440°,故答案为:1440°.14.在边长为2的正方形ABCD中,点E是AB的中点,EF⊥BD于点F,则EF的长度.【分析】根据正方形的性质和等腰直角三角形的性质即可得到结论.解:∵四边形ABCD是正方形,∴∠ABD=45°,∵AB=2,点E是AB的中点,∴BE=AB=1,∵EF⊥BD,∴∠EFB=90°,∴EF=BE=,故答案为:.15.某校组织了一次初三科技小制作比赛,有A、B、C、D四个班共提供了100件参赛作品.C班提供的参赛作品的获奖率为50%,其它几个班的参赛作品情况及获奖情况绘制在图1和图2两幅尚不完整的统计图中,则获奖率最高的班级是C班.【分析】根据题意和统计图中的数据,可以计算各个班的获奖率,从而可以得到哪个班的获奖率最高.解:由统计图可得,A班的获奖率为:14÷(100×35%)×100%=40%,B班的获奖率为:11÷[100×(1﹣35%﹣20%﹣20%)]×100%=44%,C班的获奖率为50%,D班的获奖率为:8÷(100×20%)×100%=40%,由上可得,获奖率最高的班级是C班,故答案为:C班.16.如图,在A点有一个热气球,由于受西风的影响,以20米/分的速度沿与地面成75°角的方向飞行,10分钟后到达C处,此时热气球上的人测得地面上的B点俯角为30°,则A、B两点间的距离为200米.【分析】作AD⊥BC于D,根据速度和时间先求得AC的长,在Rt△ACD中,求得∠ACD 的度数,再求得AD的长度,然后根据∠B=30°求出AB的长.解:如图,过点A作AD⊥BC,垂足为D,在Rt△ACD中,∠ACD=75°﹣30°=45°,AC=20×10=200(米),∴AD=AC•sin45°=100(米).在Rt△ABD中,∵∠B=30°,∴AB=2AD=200(米).故答案为:200.17.如图,在四边形ABCD中,AB=CB,AD=CD.若∠ABD=∠ACD=30°,AD=1,则△ABC的内切圆面积(结果保留π).【分析】根据AB=CB,AD=CD,得出BD为AC的垂直平分线;利用等腰三角形的三线合一可得∠ABC=60°,进而得出△ABC为等边三角形;利用∠ACD=30°,得出△BCD为直角三角形,解直角三角形,求得等边三角形ABC的边长,再利用内心的性质求出圆的半径,圆的面积可求.解:如图,设AC与BD交于点F,△ABC的内心为O,连接OA.∵AB=CB,AD=CD,∴BD是线段AC的垂直平分线.∴AC⊥BD,AF=FC.∵AB=BC,BF⊥AC,∴∠ABF=∠CBF=30°.∴∠ABC=60°.∴△ABC为等边三角形.∴∠BAC=∠ACB=60°.∵∠ACD=30°,∴∠BCD=∠ACD+∠ACB=30°+60°=90°.∵CD=AD=1,∴BC=.∴AB=BC=AC=.∵AB=BC,BF⊥AC,∴AF=AC=.∵O为,△ABC的内心,∴∠OAF=∠BAC=30°.∴OF=AF•tan30°=.∴△ABC的内切圆面积为π•=.故答案为.三、解答题(一)(3个题,每题6分,共18分)18.计算:2cos30°﹣()﹣2++|1﹣|.【分析】原式利用特殊角的三角函数值,负整数指数幂法则,立方根定义,以及绝对值的代数意义计算即可求出值.解:原式=2×﹣4﹣2+﹣1=﹣4﹣2+﹣1=2﹣7.19.先化简,再计算:(+)÷,其中x满足x2﹣2x+2=0.【分析】根据分式的混合运算法则把原式化简,整体代入计算,得到答案.解:原式=(﹣)×=×=,∵x2﹣2x+2=0,∴x2﹣2x=﹣2,∴原式==﹣1.20.如图,M是⊙O的半径OA的中点,弦BC⊥AO于点M,过点C作CD⊥BA交BA的延长线于点D,连接AC.(1)求∠OAC的值;(2)求证:CD是⊙O的切线.【分析】(1)如图,连接OB,OC,构造菱形ABOC,利用菱形的性质和圆的性质推知△AOC是等边三角形,则∠OAC=60°;(2)想证明CD是⊙O的切线,只需推知OC⊥CD即可.【解答】(1)解:如图,连接OB,OC,∵弦BC⊥AO于点M,AO是半径,∴点M是BC的中点.又∵点M是AO的中点,∴四边形ABOC是菱形.∴AC=OC.又∵OA=OC,∴AC=OC=OA.∴△AOC是等边三角形,∴∠OAC=60°;(2)证明:由(1)知,四边形ABOC是菱形,△AOC是等边三角形.∴∠ABO=∠ACO=60°.∴∠ABC=∠ABO=30°,∠OCB=∠ACO=30°.∵CD⊥BA,∴∠D=90°.∴∠BCD=60°.∴∠OCD=∠OCB+∠BCD=90°,即OC⊥CD.又∵OC是半径,∴CD是⊙O的切线.四、解答题(二)(3个题,每题8分,共24分)21.某历史文化街区需要加装一批垃圾分类提示牌和垃箱.根据需求,提示牌比垃圾箱多5个,且提示牌和垃圾箱的个数之和不少于100个,则至少购买垃圾箱多少个?【分析】设购买x个垃圾箱,则购买(x+5)个提示牌,根据提示牌和垃圾箱的个数之和不少于100个,即可得出关于x的一元一次不等式,解之取其中的最小整数值即可得出结论.解:设购买x个垃圾箱,则购买(x+5)个提示牌,依题意得:(x+5)+x≥100,解得:x≥.又∵x为整数,∴x的最小值为48.答:至少购买垃圾箱48个.22.如图,在直角三角形ABC中,∠C=90°,AC=40,BC=30,作△ABC的内接矩形CDEF.设DE=x,求x取何值时矩形的面积最大?【分析】设矩形CDEF为S,证明△ADE∽△ACB,利用相似比得到x:30=(40﹣CD):40,则用x表示出CD,再利用矩形的面积公式得到S=x•,然后利用二次函数的性质解决问题.解:设矩形CDEF为S,∵四边形CDEF为矩形,∴DE∥BC,∴△ADE∽△ACB,∴DE:BC=AD:AC,即x:30=(40﹣CD):40,∴CD=,∴S=x•=﹣(x﹣15)2+300,当x=15时,S有最大值,最大值为300.即x取15时矩形的面积最大.23.如图,点A在反比例函数y=(其中k>0)图象上,OA=2,以点A为圆心,OA 长为半径画弧交x轴正半轴于点B.(1)当OB=4时,求k的值;(2)过点B作BC⊥OB交反比例函数的图象于点C,连接OC交AB于点D,求的值.【分析】(1)过A点作x轴垂线段,即可得到A点坐标,进而可求k值;(2)利用图中相似三角形的性质可求比值.解:(1)作AF⊥x轴于F,交OC于E.∵OA=AB,由等腰三角形三线合一性质可得OF=BF=OB=2.∴AF==4.∴点A的坐标为(2,4).故k=xy=2×4=8.(2∵点A、C在反比例函数图象上,由反比例函数图象上点的性质可得OF•AF=OB•BC.∵OF=.∴AF=2BC.由∠EFO=∠CBO=90°,∠EOF=∠COB.∴△OEF∽△OCB,∴.∴EF=.AE=AF﹣EF=2BC﹣=.又由AF∥CB,∴∠AED=∠BCD,∴△AED∽△BCD.∴.故.五、解答题(三)(2个题,每题10分,共20分)24.已知抛物线C1:y=﹣x2﹣x+4交x轴于点A、B,顶点为M,A、B、M关于原点的对称点分别是E、F、N.(1)求点A、B的坐标;(2)求出经过E、且以N为顶点的抛物线C2的表达式;(3)抛物线C2与y轴交点为D,点P是抛物线C2在第四象限部分上一动点,点Q是y 轴上一动点,求出一组P、Q的值,使得以点D、P、Q为顶点的三角形与△EFD相似.【分析】(1)令y=0,由﹣x2﹣x+4=0求得的解就是点A、B的横坐标;(2)由(1)得到点A、B、M关于原点的对称点的坐标,然后利用顶点式求得抛物线C2的表达式;(3)先结合图形的特点,构造出与△EFD相似且顶点分别在y轴上和抛物线上的三解形,再利用相似三角形的性质求解.解:(1)当y=0时,由﹣x2﹣x+4=0,得x1=﹣4,x2=3,∴A(﹣4,0)、B(3,0).(2)由y=﹣x2﹣x+4=﹣(x)2+,得抛物线C1的顶点M(,+),∵点E、F、N分别与点A、B、M关于原点对称,∴E(4,0)、F(﹣3,0)、N(,);设经过点E且顶点为N的抛物线C2的解析式为y=a(x﹣)2,则(4﹣)2a=0,解得a=,∴抛物线C2的解析式为y=x2﹣x﹣4.(3)如图,作DP⊥AD交抛物线C2于点P,作PR⊥y轴于点R,在点R上方的y轴上取一点Q,使RQ=RP,则∠PQD=∠QPR=45°;由y=x2﹣x﹣4,得D(0,﹣4).∴OD=OB=4,∠DEF=∠EDQ=45°,又∵∠PDQ=90°﹣∠FDH=∠DFE,∴△QDP∽△EFD.作FH∥PD交y轴于点H,则∠DFH=90°;∵∠HFO=90°﹣∠OAD=∠ADO,∴=tan∠ADO=,∴OH=×3=.设直线FH的解析式为y=kx+,则﹣3k+=0,解得k=,∴y=x+,∴直线DP的解析式为y=x﹣4;由,得,(不符合题意,舍去).∴P(,);∵QR=PR=,∴点Q的纵坐标为+=,∴Q(0,).综上所述,P(,),Q(0,).25.在△ABC中,AC=BC=10,AB=12,点D是AB边上的一点.(1)如图1,过点D作DM⊥AC于点M,DN⊥BC于点N,求DM+DN的值;(2)将∠B沿着过点D的直线折叠,使点B落在AC边的点P处(不与点A、C重合),折痕交BC边于点E;①如图2,当点D是AB的中点时,求AP的长度;②如图3,设AD=a,若存在两次不同的折痕,使点B落在AC边上两个不同的位置,求a的取值范围.【分析】(1)如图1中,连接CD,过点B作BE⊥AC于E,过点C作CH⊥AB于H.利用勾股定理求出CH,再利用面积法求出DM+DN的值.(2)①如图2中,连接PB,CD.证明PB⊥AC,CD⊥AB,利用面积法求出PB,可得结论.②如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.求出DP=DB时AD的值,结合图形即可判断.解:(1)如图1中,连接CD,过点B作BE⊥AC于E,过点C作CH⊥AB于H.∵CA=CB,CH⊥AB,∴AH=HB=6,∵S△ABC=S△ACD+S△BCD,DM⊥AC,DN⊥BC,∴•AB•CH=•AC•DM+•BC•DN,∴×12×8=×10×DM+×10×DN,∴DM+DN=.(2)①如图2中,连接PB,CD.∵CA=CB,AD=DB,∴CD⊥AB,由(1)可知,CD=8,∵DP=DA=DB,∴∠APB=90°,即BP⊥AC,∵•AB•CD=•AC•BP,∴BP=,∴AP===.②如图3中,过点C作CH⊥AB于H,过点D作DP⊥AC于P.∵CA=CB,CH⊥AB,∴AH=HB=6,∴CH===8,当DB=DP时,设BD=PD=x,则AD=12﹣x,∵sin A==,∴=,∴x=,∴AD=AB﹣BD=,观察图形可知当6<a<时,存在两次不同的折叠,使点B落在AC边上两个不同的位置.。
【北师大高一下】广东省佛山市顺德区第一中学2021-2022学年高一下学期期中英语试题(解析版)
Spend a relaxing day at Las Caletas Beach. The use of diving gear, canoe, and stand-up paddle boards is all available, as well as a scenic nature walk and admission to Kids' Adventure Park for the young ones. Away from the beach, you can seek out plenty of other fun activities including cooking classes and jungle walks.
Signature Taco Day Tour
To avoid tourist traps and dive deeper into Mexican culture, our Signature Taco Tour is for you! Our Foodie Guides will show you the best Mexican cuisine, tell you the best stories, and do their very best to keep you eating until you explode. Not only will you go “behind the scenes” and see the deliciousness made for tourists, you'll also learn about Mexican culture and history, plusextras like.
广东省佛山市第一中学2020-2021学年高二(上)期中物理试题(学考)(解析版)
佛山一中2020-2021学年第一学期高二级期中考试题物理(学考)注意事项:1、答题前,考生务必用黑色笔迹的钢笔或签字笔将自己的姓名、考号填写在答题卷上。
2、每小题选出答案后,用2B铅笔把答题卷上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案,答案不能答在试卷上。
非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。
不按以上要求作答的答案无效。
3、作答选做题时,请先用2B铅笔填涂选做题的题组号对应的信息点,再作答。
漏涂、错涂、多涂的,答案无效。
第一部分选择题(共60分)一、选择题(每题2分,共60分。
每个小题给出的四个选项中,只有一个是正确的。
)1. 如图所示,将一束塑料包扎带一端打结,另一端撕成细条后,用手迅速捋细条,观察到细条散开了,则产生这种现象的原因是( )A. 细条之间相互感应起电,相互排斥散开B. 撕成细条后,所受重力减小,细条自然松散C. 搓成细条后,由于空气浮力作用,细条散开D. 由于摩擦起电,细条带同种电荷,相互排斥散开【答案】D【解析】【详解】塑料捆扎绳与手摩擦带电,塑料捆扎绳上带的是同种电荷,同种电荷相互排斥,所以塑料绳会向四周散开;捋的次数越多,塑料绳带电越多,排斥力越多,下端散开的就越大。
故选D。
2. 在绝缘光滑的水平面上,如图所示有相隔一定距离的两个带同种电荷的小球。
让它们从静止开始释放,则两个球的加速度和速度随时间的变化情况是()A. 速度、加速度都变大B. 速度、加速度都变小C. 速度变小、加速度变大D. 速度变大、加速度变小【答案】D【解析】 【详解】由于同种电荷间存在相互作用的排斥力,两球将相互远离,距离增大,根据库仑定律得知,相互作用力减小;由牛顿第二定律得知它们的加速度变小。
随着两球间距离增大,电场力做功正功,总动能增加,所以速度增加。
广东省佛山市顺德区乐从第一实验学校2024-2025学年九年级上学期期中考试数学试卷
广东省佛山市顺德区乐从第一实验学校2024-2025学年九年级上学期期中考试数学试卷一、单选题1.若m 是一元二次方程2410x x --=的根,则代数式24m m -的值为()A .1B .-1C .2D .-222.如图所示,将长方形纸片ABCD 折叠,使点D 与点B 重合,点C 落在点C'处,折痕为EF ,若20ABE ∠=︒,那么EFC ∠的度数为()A .115︒B .120︒C .125︒D .130︒3.某初中毕业班的第一个同学都将自己的相片向全班其他同学各送一张表示留念,全班共送了2550张照片,如果全班有x 名学生,根据题意,列出方程为()A .()12550x x +=B .()12550x x -=C .()212550x x +=D .()125502x x -=⨯4.如图,在ΔA 中,12,AB AC AD BC ==⊥于点D ,点E 在AD 上,且2DE AE =,连接BE 并延长交AC 于点F ,则线段AF 长为()A .4B .3C .2.4D .2.85.某小组做“用频率估计概率”的试验时,统计了某结果出现的频率,绘制了如图的折线统计图,则符合这一结果的试验最有可能的是()A .在“石头、剪刀、布”的游戏中,随机出的是“剪刀”B .掷一个质地均匀的正六面体骰子,向上的面点数是偶数C .袋子中有1个红球和2个黄球,除颜色外均相同,从中任取一球是黄球D .洗匀后的1张红桃,2张黑桃牌,从中随机抽取一张牌是黑桃6.下列说法正确的是()A .对角线相等的平行四边形是菱形B .两条对角线互相垂直且平分的四边形是正方形C .等边三角形都是相似三角形D .矩形都是相似图形7.如图所示,一架投影机插入胶片后图像可投到屏幕上.已知胶片与屏幕平行,A 点为光源,与胶片BC 的距离为0.1米,胶片的高BC 为0.038米,若需要投影后的图像DE 高1.9米,则投影机光源离屏幕大约为()A .6米B .5米C .4米D .3米8.如图,在菱形ABCD 中,4cm AB =,120ADC ∠=︒,点E ,F 同时由A ,C 两点出发,分别沿AB ,CB 方向向点B 匀速移动(到点B 为止),点E 的速度为1cm /s ,点F 的速度为2cm /s ,经过t 秒DEF 为等边三角形,则t 的值为()A .1B .13C .12D .439..以3、4为两边长的三角形的第三边长是方程x 2-13x +40=0的根,则这个三角形的周长为()A .15或12B .12C .15D .以上都不对10.如图,已知▱ABCD 中,E 是边AD 的中点,BE 交对角线AC 于点F ,那么S △AFE :S 四边形FCDE 为()A .1:3B .1:4C .1:5D .1:611.如图,在ABC V 中、90C ∠=︒,4AC BC ==,D 是AB 的中点,点E 、F 分别在AC 、BC 边上运动(点E 不与点A 、C 重合),且保持AE CF =,连接DE 、DF 、EF ,在此运动变化的过程中,有下列结论:①DFE △是等腰直角三角形,②四边形CEDF 不可能为正方形;③四边形CEDF 的面积随点E 位置的发改变而发生变化;④点C 到线段EF 的大距离为.其中正确结论的个数是()A .1个B .2个C .3个D .4个二、填空题12.已知75ab =,则a b b -=.13.某电冰箱厂4月份的产量为1000台,由于市场需求量不断增大,6月份的产量提高到1210台,则该厂电冰箱产量从4月份到6月份的月平均增长率为.14.已知线段AB 的长度为12cm ,点P 为线段AB 的黄金分割点,则线段AP 的长是cm .15.如图,在ABC V 中,90ACB ∠=︒,16cm BC =,12cm AC =,点P 从点B 出发,以2cm/s 的速度向点C 移动,同时点Q 从点C 出发,以1cm/s 的速度向点A 移动,设运动时间为t 秒,当t =秒时,CPQ 与ABC V 相似.16.在平面直角坐标系中放置了5个如图所示的正方形,点1B 在y 轴上且坐标是0,2,点1122343,,,,,,C E E C E E C 在x 轴上,1C 的坐标是1,0,112233B C B C B C ∥∥,以此继续下去,则点2024A 到x 轴距离是.三、解答题17.解方程(1)22320x x --=;(2)()()3112x x -+=.18.一个不透明的布袋里装有4个大小、质地都相同的乒乓球,球面上分别标有数字1,2,3,4,小明先从布袋中随机摸出一个乒乓球,不放回去,再从剩下的3个球中随机摸出第二个乒乓球.(1)求小明第一次摸出的乒乓球所标数字是偶数的概率;(2)请用树状图或列表的方法求两次摸出的乒乓球球面上数字的积为偶数的概率.19.商场某种商品平均每天可销售30件,每件盈利50元,为了减少库存,商场决定采取适当的降价措施,但每件商品盈利不得低于32元,经调查发现,每件商品每降价1元,商场每天可多售出2件.问每件商品降价多少元时,商场每天盈利可达2100元?20.如图,在矩形ABCD 中,E 是BC 的中点,DF AE ⊥,垂足为F .(1)求证:ABE DFA ∆∆∽;(2)若6AB =,4BC =,求DF 的长.21.▱ABCD 中,点E 、F 分别在AB 、AD 上,∠EAF =∠B =60°,AD =nAB .(1)当n =1时,求证:△AEF 为等边三角形;(2)当n =12时,求证:∠AFE =90°;(3)当CE =CF ,DF =4,BE =3时,直接写出线段EF 的长为.22.如图1,在Rt AOB 中,90AOB ∠=︒,30OAB ∠=︒,点C 在线段OB 上,2OC BC =,AO 边上的一点D 满足30OCD ∠=︒.将OCD 绕点O 逆时针旋转α度()90180α︒<<︒得到OC D '' ,C ,D 两点的对应点分别为点C ',D ¢,连接AC ',BD ',取AC '的中点M ,连接OM .(1)如图2,C D AB ''∥时,α=______°,此时OM 和BD '之间的位置关系为______;(2)画图探究线段OM 和BD '之间的关系,并加以证明.。
广东省佛山市顺德区容山中学2024-2025学年高一上学期10月月考数学试题(含解析)
2024-2025学年第一学期高一数学十月月考2024本试卷共4页,19小题,满分150分,考试时间120分钟注意事项:1.答卷前,考生务必将自己的姓名和考生号、班级、座位号填写在答题卡,并用2B 铅笔在答题卡上的相应位置填涂考生号.2.回答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,写在本试卷上无效.3.回答填空题和解答题时,将答案写在答题卡相应位置上,写在本试卷上无效.4.考试结束后,将答题卡交回.一、单项选择题(共8小题,每小题5分,共40分)1.已知集合,,则( )A .B .C .D .2.命题“,”的否定是( )A .,B .,C .,D .,3.下列关系中正确的个数是( )①;②;③;④;⑤;A .1B .2C .3D .44.若,,则下列不等式成立的是( )A .B .C .D .5.已知,,且,则的最大值为( )A .1B .C .D .6.“关于的不等式的解集为”的一个必要不充分条件是( )A .B .C .D .7.当时,不等式恒成立,则实数可取的最大整数值是( )A .4B .5C .6D .78.已知实数,关于的不等式的解集为,则实数、、、从小到大的排列是( )A .B .C .D .{}25A x x =∈-≤≤N {}2,4,6B =A B = {}0,1,2,3,4,5,6{}1,2,3,4,5,6{}2,4{}26x x -≤≤1x ∀>20x x ->01x ∃≤2000x x -≤1x ∀>20x x -≤01x ∃>2000x x -≤1x ∀≤20x x ->π∈R {}0φ⊆{}{}0,1,21,2,0⊆(){}(){}0,10,1⊆(){}(){}1,00,1=,,a b c ∈R a b >11a b <22a b <a c b c >2211a bc c >++0a >0b >344a b +=ab 132312x 220x ax a -+>R 01a <<00.9a <<103a <<01a ≤<0x >280x mx -+≥m ab <x ()210x a b x ab -+++<()12,x x a b 1x 2x 12a x x b<<<12x a b x <<<12a xb x <<<12x a x b<<<二、多项选择题(本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分)9.已知全集,集合,是的子集,且,则下列结论中正确的是( )A .B .C .D .10.若正实数,满足,则下列结论中正确的有( )A .的最大值为1B .的最小值为2C的最小值为2D 的最小值为211.下列说法正确的是()A .“”是“”的必要不充分条件B .若是的必要不充分条件,是的充要条件,则是的充分不必要条件C .方程有唯一解的充要条件是D .表示不超过的最大整数,表示不小于的最小整数,则“”是“”的充要条件三、填空题(共3小题,每小题5分,共15分)12.若,则的所有可能取值为______.13.已知集合,,则实数的取值范围是______.14.若正数,满足,则的取值范围是______.四、解答题(共5个大题,共77分,解答应写出文字说明、证明过程或演算步骤)15.(13分)已知集合,,求下列集合:(1);(2);(3);(4)16.(15分)已知集合,其中为常数,且.(1)若中至少有一个元素,求的取值范围;(2)若中至多有一个元素,求的取值范围.17.(15分)设集合,集合.(1)若“”是“”的必要条件,求实数的取值范围;(2)若中只有一个整数,求实数的取值范围.18.(17分)某货轮匀速行驶在相距300海里的甲、乙两地间运输货物,运输成本由燃料费用和其他费用组成.已知该货轮每小时的燃料费用与其航行速度的平方成正比(即,其中为比例系数);当U A B U A B B = A B A = U U B A ⊆ðð()U B A φ= ð()()U U UA B = ðða b 2a b +=ab 11a b+22a b +x A ∈x A B ∈ p q p r q r 20ax x a ++=12a =±[]x x x x []a b =a b ≥{}21,2,x x ∈x {}A x x a =<{}2320B x x x =-+<()R A B =R ða a b 3ab a b =++ab {}11P x x =-<<{}220Q x x x =-<P Q P Q ()R P Q ð()()R R P Qðð{}2320A x ax x =-+=a a ∈R A a A a {}220A x x x =--≤{}21B x m x =<<x A ∈x B ∈m ()R A B ðm w x 2w kx =k航行速度为30海里/小时时,每小时的燃料费用为450元,其他费用为每小时800元,且该货轮的最大航行速度为50海里/小时.(1)将从甲地到乙地的运输成本(元)表示为航行速度(海里/小时)的函数;(2)要使从甲地到乙地的运输成本最少,该货轮应以多大的航行速度行驶?19.(17分)已知关于的不等式.(1)若的解集为,求实数,的值;(2)当时,求关于的不等式的解集.y x x ()2320ax x a ++>∈R 2320ax x ++>{}1x b x <<a b 0a >x 2321ax x ax -+>-2023-2024学年第一学期高一数学月考(1)参考答案题号1234567891011答案ACCDBDBAACABDAB12.2或0 13. 14.1.解:,,故.故选A .2.解:命题为全称命题,则命题的否定为,,故选:C .3.解:①是实数,,故①正确.②是任何集合的子集,故②正确.③集合中元素有无序性,所以,所以,故③正确.④与表示两个不同的点,故④不正确.⑤集合有两个元素,集合只有一个元素(表示一个点),故⑤不正确.故选:C .4.解:由,A .取,时不成立;B .取,时不成立;C .取时不成立;D .,可得恒成立.故选:D .5.解:,当且仅当,时,等号成立.故选:B .6.解:关于的不等式的解集为,则,解得,所以“关于的不等式的解集为”的一个必要不充分条件是.故选:D .7解:当时,不等式恒成立,则恒成立,又由,可得,即所以,则实数可取的最大整数值是5.故选:B .8.解:由题可得:,.由,,设,则.所以,所以,.又,所以,所以.故,.又,故,故选:A .9.解:因为,所以,A :,正确;B :,B 错误;C :,C 正确;2a ≥9ab ≥{}{}250,1,2,3,4,5A x x =∈-≤≤=N {}2,4,6B ={}0,1,2,3,4,5,6A B = 01x ∃>2000x x -≤π π∴∈R φ{}{}0,1,21,2,0={}{}0,1,21,2,0⊆()1,0()0,1{}0,1(){}0,1a b >1a =-2b =-1a =2b =-0c =210c +> 2211a bc c >++434a b =+≥13ab ≤23a =12b =x 220x ax a -+>R ()2224440a a a a ∆=--=-<01a <<x 220x ax a -+>R 01a ≤<0x >280x mx -+≥288x m x x x+≤=+0x >8x x +≥=8x x=x =m ≤m 12x x a b +=+121x x ab =+a b <12x x <1x a m =+2x b m =-()()()2121x x a m b m ab m b a m ab =+-=+--=+()21m b a m --=21m m b a+=-a b <0b a ->0m >1x a >2x b <12x x <12a x x b <<<A B B = B A ⊆A B A = U U A B ⊆ðð()U B A φ= ðD :,D 错误. 故选:AC .10.解:对于A 项,因为,当且仅当时取等号,则的最大值为1,故A 项正确;对于B项,因为,当且仅当时取等号,所以的最小值为2,故B 项正确;对于C 项,当且仅当时取等号,所,当且仅当的最大值为2,故C 项错误;对于D 项,因为,当且仅当时取等号,所以的最小值为2,故D 项正确.故选:ABD .11.解:对于A ,“”是“”的必要条件,但不是充分条件,故A 正确;对于B ,若是的必要不充分条件,则,;若是充要条件,则,;则有,,即是的充分不必要条件,故B 正确;对于C ,当时,方程可化为,也满足唯一解的条件,故C 错误;对于D ,依题意,得,,所以“”“”,即充分性成立;反之不成立,如,,,不能推出“”,即必要性不成立,故D 错误.故选:AB .12.解:①当时,,此时不满足元素的互异性,舍去,②当时,,此时集合为,符合题意,③当时,或1,若,,此时不满足元素的互异性,舍去,若,此时集合为,综上所述的可能值为2或0.13.解:,或,要使,则.故答案为:()()()U U U U B A B B A == ðððð212a b ab +⎛⎫≤= ⎪⎝⎭1a b ==ab ()1111112222a b a b a b ⎛⎛⎫+=++=+= ⎪ ⎝⎭⎝1a b ==11a b+()22242a ba b a b a b ++=++≤++⨯=+=1a b ==2≤1a b ==()2222424212a b a b ab ab +=+-=-≥-⨯=1a b ==22a b +x A ∈x A B ∈ p q q p ⇒p q ⇒p r p r ⇒r p ⇒q r ⇒r q ⇒q r 0a =20ax x a ++=0x =[]a a ≥b b ≥[]a b =⇒a b ≥3.1 1.5≥[]3.13= 1.52=[]3.1 1.5=1x =21x =2x =24x ={}1,2,42x x =0x =1x =21x =0x ={}1,2,0x {}12B x x =<< {R 2B x x ∴=≥ð}1x ≤()R A B R = ð2a ≥.14.解:由于,所以有,即.15.解:(1);;(2);(3)或;;(4)或;或16.解:(1)①时,由,解得,满足题意,因此②时,中至少有一个元素,,解得,综上可得:的取值范围是(2)①时,由,解得,满足题意,因此②时,中至多有一个元素,,解得综上可得:的取值范围是或17.解:(1)集合.由“”是“”的必要条件,得, ①当时,,解得,满足,则,②当时,,解得,所以实数的取值范围为.(2)依题意,,或,由中只有一个整数知.从而得中仅有一个整数, 因此有,即,所以实数的取值范围为.{}2a a ≥33ab a b =++≥+230--≥)310+≥39ab ≥⇒≥{}02Q x x =<<{}01P Q x x =<< {}12P Q x x =-<< {R 1P x x =≤-ð}1x ≥(){}R 12P Q x x =≤< ð{R 0Q x x =≤ð}2x ≥()(){R R 0P Q x x =≤ ðð}1x ≥0a =320x -+=23x =0a =0a ≠A 980a ∴∆=-≥98a ≤0a ≠a 98a ≤0a =320x -+=23x =0a =0a ≠A 980a ∴∆=-≤98a ≥a 98a ≥0a ={}12A x x =-≤≤x A ∈x B ∈B A ⊆B =∅21m ≥12m ≥B A ⊆12m ≥B =∅2121m m <⎧⎨≥-⎩1122m -≤<m 1,2⎡⎫-+∞⎪⎢⎣⎭{R 1A x x =<-ð}2x >()R A B ðB =∅()()()R ,12,1A B m =-∞- ð2-322m -≤<-312m -≤<-m 3,12⎡⎫--⎪⎢⎣⎭18.解:(1)由题意,每小时的燃料费用为,当时,,解得.从甲地到乙地所用的时间为小时,则从甲地到乙地的运输成本.故所求的函数为.(不写定义域扣一分)(2)由(1)得:,当且仅当,即时取等号.故当货轮航行速度为40海里/小时时,能使该货轮运输成本最少.19.解:(1)根据题意,的解集为,则1,是方程的解,则有,解得:,(不合,舍去);(2)根据题意,,则有, 又由,分3种情况讨论:①当时,不等式的解集为或,②当时,不等式的解集为,③当时,不等式的解集为或.2w kx =30x =900450k =0.5k =300x23003000.5800y x x x=⋅+⋅()1600150,050y x x x ⎛⎫=+<≤ ⎪⎝⎭160015015012000y x x ⎛⎫=+≥⨯= ⎪⎝⎭1600x x=40x =2320ax x ++>{}1x b x <<b 2320ax x ++=2320320a ab b ++=⎧⎨++=⎩5a =-25b =-1b =2321ax x ax -+>-()()310ax x -->0a >03a <<3x x a⎧>⎨⎩}1x <3a ={}1x x ≠3a >3x x a⎧<⎨⎩}1x >。
广东省佛山市顺德区第一中学2023-2024学年高一下学期期中考试数学试题(含简单答案)
顺德区第一中学2023-2024学年高一下学期期中考试数学试题一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1. 若复数为纯虚数,则实数的值为( )A. 2B. 2或C.D. 2. 在矩形ABCD 中,,,则( )A. 6B. 8C. 10D. 123. 为了得到图像,需要把函数的图象向右平移的单位数是( )A.B.C.D.4. 设,则=A. 2B.C.D. 15. 在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,,边,则( )A.B.C. D. 6化简( )A.B.C.D.7. 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c,已知,,且,则b 的值为( )A. B. C.D.8. 已知向量均为单位向量,且.向量与向量的夹角为,则的最大值为( )A.B. 1C.D. 2的.()242iz aa =-+-a 2-2-4-3AB =4=AD AB AC AD ++=1πcos 227y x ⎛⎫=- ⎪⎝⎭21cos 2y x =-π14π76π713π143i12iz -=+z π6B ∠=BC cos A =1212-1︒=sin40cos10︒︒1cos40︒cos40sin10︒︒1sin80︒30B ∠=︒6ac =()sin sin 2sin A C A C +=+4+4-11+,a b12a b ⋅= - a c b c - π6a c -二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多个选项符合题目要求,全部选对得6分,部分选对按比例给分,错选不给分.9. 设复数,其中是虚数单位,下列判断中正确的是( )A. B. 在复平面内对应的点在第一象限C. 是方程一个根 D. 若复数z满足,则最大值为210. 已知,且,,则( )A. B. C. D. 11. 在中,角、、所对的边分别为、、,且,则下列说法正确是( )A. 若,则周长的最大值为B. 若,且只有一解,则的取值范围为C. 若为锐角三角形,且,则的取值范围为D. 若的外心为,则三、填空题:本题共3小题,每小题5分,共15分.12. 已知向量,若,则_________.13. 在中,、、分别是角、、的对边,若,则___________.14. 函数()在上单调,且在上存在对称轴,则的取值范围是___________.四、解答题:本题共5小题,共77分,第15题13分,16、17题15分;18、19题17分.解答时应写出文字说明、解答过程或演算步骤.15. 如图,在方格纸(每个小方格边长为1)上有A ,B ,C 三点,已知向量以A 为始点.的的012z =+i 0012z z ⋅=-0z 0z 210x x -+=01z z -=z 0παβ<<<4cos 5α=()sin 1βα-=24sin 225α=4sin 5β=4cos 5β=-()24cos 25αβ+=-ABC V A B C a b c 2cos cos c B b C a +=π3A =ABC V 3π4A =ABC V b (]0,1ABC V 2C A =c ABC V O 12BC BO ⋅=()()2,5,,4a b λ== //a b r r λ=ABC V a b c A B C sin cos sin a b cA B B==A ∠=()πsin 3f x x ω⎛⎫=+ ⎪⎝⎭0ω>π,π2⎛⎫ ⎪⎝⎭π0,3⎛⎫⎪⎝⎭ωa(1)试以B 为始点画出向量,使在方向上的投影向量为,且的值(2)设点D 是线段上的动点,求的最大值.16. 已知,,(1)求的值;(2)若,且,求的值.17. 设函数,.(1)求函数单调递减区间;(2)若函数在区间上有最小值,求实数m 的取值范围.18. 如图,在中,内角A 、B 、C 的对边分别为a 、b 、c 已知,且为边上的中线,为的角平分线.(1)求线段的长;(2)求的面积.19. 如图,A 、B 是单位圆上的相异两定点(O 为圆心),且.点C 为单位圆上的动点,线段AC 交线段OB 于点M .的b b a 2ab = a b ⋅ AC BD CD ⋅()0,πα∈4sin 25α=-sin α<tan απ,π2β⎛⎫∈⎪⎝⎭cos β=αβ+()π2sin 3f x x ⎛⎫=-⎪⎝⎭()ππ66g x f x f x ⎛⎫⎛⎫=-⋅+ ⎪ ⎪⎝⎭⎝⎭()f x ()g x []0,m 1-ABC V 3,6,sin 2sin b c C B ===AD BC AE BAC ∠BC ADE V 60AOB ∠=︒(1)设,求的取值范围;(2)设(),求的取值范围.BOC α∠=CA CB ⋅OM tOB =01t <<COM BMAS S∆∆顺德区第一中学2023-2024学年高一下学期期中考试数学试题简要答案一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.【1题答案】【答案】C【2题答案】【答案】C【3题答案】【答案】A【4题答案】【答案】C【5题答案】【答案】D【6题答案】【答案】B【7题答案】【答案】D【8题答案】【答案】D二、多选题:本题共3小题,共18分.在每小题给出的选项中,有多个选项符合题目要求,全部选对得6分,部分选对按比例给分,错选不给分.【9题答案】【答案】BCD【10题答案】【答案】ABD【11题答案】【答案】ACD三、填空题:本题共3小题,每小题5分,共15分.【12题答案】【答案】【13题答案】【答案】【14题答案】【答案】.四、解答题:本题共5小题,共77分,第15题13分,16、17题15分;18、19题17分.解答时应写出文字说明、解答过程或演算步骤.【15题答案】【答案】(1)作图略,; (2)4.【16题答案】【答案】(1); (2).【17题答案】【答案】(1);(2).【18题答案】【答案】(1)6 (2【19题答案】【答案】(1) (2)85π217,26⎛⎤⎥⎝⎦8a b ⋅=12-7π45π11π2π,2π,66k k k ⎡⎤++∈⎢⎥⎣⎦Z π,3∞⎡⎫+⎪⎢⎣⎭[]0,3()0,2。
2020-2021学年广东省广州市白云区、海珠区高一(下)期末数学试卷(解析版)
2020-2021学年广东省广州市白云区、海珠区高一(下)期末数学试卷一、选择题(共8小题,每小题5分,共40分).1.若复数z=(i为虚数单位),则|z|=()A.B.1C.5D.2.已知向量=(2,3),=(x,﹣6),且⊥,则x=()A.﹣9B.9C.﹣4D.43.高一年级有男生510人,女生490人,小明按男女比例进行分层随机抽样,总样本量为100.则在男生中抽取的样本量为()A.48B.51C.50D.494.如图,△A'B'C'是水平放置的△ABC的斜二测直观图,△A'B′C′为等腰直角三角形,其中O′与A′重合,A'B′=6,则△ABC的面积是()A.9B.9C.18D.185.已知||=6,||=4,与的夹角为60°,则(+2)•(﹣3)=()A.﹣72B.72C.84D.﹣846.某学校开展“学党史,颂党恩,跟党走“学习活动,刘老师去购书中心购买了一批书籍作为阅读学习之用,其中一类是4本不同的红色经典小说类书籍,另一类是2本不同的党史类书籍,两类书籍合计共6本.现刘老师从这6本书中随机抽取2本阅读,则这两本书恰好来自同一类书籍的概率是()A.B.C.D.7.如图,已知=,=,任意点M关于点A的对称点为S,点M关于点B的对称点为N,则向量=()A.(+)B.2(+)C.(﹣)D.2(﹣)8.已知图1是棱长为1的正六边形ABCDEF,将其沿直线FC折叠成如图2的空间图形F′A′E′﹣C′B′D′,其中A′E′=,则空间几何体F'A'E'﹣CB'D'的体积为()A.B.C.D.二、选择题:本题共4小题,每小题5分,共20分在每小题给出的选项中,有多项符合题目要求全部选对的得5分,有选错的得0分,部分选对的得2分.9.某士官参加军区射击比赛,打了6发子弹,报靶数据如下:7,8,9,10,6,8,(单位:环),下列说法正确的有()A.这组数据的平均数是8B.这组数据的极差是4C.这组数据的中位数是8.5D.这组数据的方差是210.已知复数z=cosα+(sinα)i(α∈R)(i为虚数单位),下列说法正确的有()A.当α=﹣时,复平面内表示复数z的点位于第二象限B.当α=时,z为纯虚数C.|z|最大值为D.z的共轭复数为=﹣cosα+(sinα)i(α∈R)11.某班级到一工厂参加社会实践劳动,加工出如图所示的圆台O1O2,在轴截面ABCD中,AB=AD=BC=2cm,且CD=2AB,下列说法正确的有()A.该圆台轴截面ABCD面积为3cm2B.该圆台的体积为cm3C.该圆台的母线AD与下底面所成的角为30°D.沿着该圆台表面,从点C到AD中点的最短距离为5cm12.在△ABC中,角A,B,C所对的边分别为a,b,c,点O为△ABC所在平面内点,满足x+y+z=0,下列说法正确的有()A.若x=y=z=1,则点O为△ABC的重心B.若x=y=z=1,则点O为△ABC的外心C.若x=a,y=b,z=c,则点O为△ABC的内心D.若x=a,y=b,z=c,则点O为△ABC的垂心三、填空题:本题共4小题,每小题5分,共20分.13.有10种不同的零食,每100克可食部分包含的能量(单位:k)如下:100,120,125,165,430,190,175,234,425,310这10种零食每100克可食部分的能量的第60百分位数为.14.天气预报元旦假期甲地的降雨概率是0.2,乙地的降雨概率是0.3,假定在这段时间内两地是否降雨相互之间没有影响,则在这段时间内甲,乙两地只有一个地方降雨的概率是.15.如图,在三棱锥V﹣ABC中,VA=VB=AB=AC=BC=4,VC=2,则二面角A﹣VC﹣B的余弦值为.16.如图,△ABC是边长为1的正三角形,M,N分别为线段AC,AB上一点,满足AM:MC=1:2,AN:NB=1:3,CN与BM的交点为P,则线段AP的长度为.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.现有两个红球(记为R1,R2),两个白球(记为W1,W2),采用不放回简单随机抽样从中任意抽取两球.(1)写出试验的样本空间;(2)求恰好抽到一个红球一个白球的概率.18.已知角A是△ABC的内角,若=(sin A,cos A),=(1,﹣1).(1)若,求角A的值;(2)设f(x)=,当f(x)取最大值时,求在上的投影向量(用坐标表示).19.如图,直三棱柱ABC﹣A'B'C'中,D是AB的中点.(1)求证:直线BC′∥平面A'CD;(2)若AC=CB,求异面直线AB'与CD所成角的大小.20.2021年五一假期,各高速公路车流量大,交管部门在某高速公路区间测速路段随机抽取40辆汽车进行车速调查,将这40辆汽车在该区间测速路段的平均车速(km/h)分成六段[90,95),[95,100),[100,105),[105,110),[110,115),[115,120],得到如图的频率分布直方图.(1)根据频率分布直方图估计出这40辆汽车的平均车速的中位数;(2)现从平均车速在区间[90,100)的车辆中任意抽取2辆汽车,求抽取的2辆汽车的平均车速都在区间[95,100)上的概率;(3)出于安全考虑,测速系统对平均车速在区间[115,120]的汽车以实时短信形式对车主进行安全提醒,确保行车安全.假设每辆在此区间测速路段行驶的汽车平均车速相互不受影响,以此次调查的样本频率估计总体概率,求连续2辆汽车都收到短信提醒的概率?21.如图,PA垂直于⊙O所在的平面,AC为⊙O的直径,AB=3,BC=4,PA=3,AE ⊥PB,点F为线段BC上一动点.(1)证明:平面AEF⊥平面PBC;(2)当点F移动到C点时,求PB与平面AEF所成角的正弦值.22.为响应国家“乡村振兴”号召,农民王大伯拟将自家一块直角三角形地按如图规划成3个功能区:△BNC区域为荔枝林和放养走地鸡,△CMA区域规划为“民宿”供游客住宿及餐饮,△MNC区域规划为小型鱼塘养鱼供休闲垂钓.为安全起见,在鱼塘△MNC周围筑起护栏.已知AC=40m,BC=40m,AC⊥BC,∠MCN=30°(1)若AM=20m时,求护栏的长度(△MNC的周长);(2)若鱼塘△MNC的面积是“民宿”△CMA的面积的倍,求∠ACM;(3)当∠ACM为何值时,鱼塘△MNC的面积最小,最小面积是多少?参考答案一、选择题(共8小题,每小题5分,共40分).1.若复数z=(i为虚数单位),则|z|=()A.B.1C.5D.解:∵z=,∴|z|=||=,故选:A.2.已知向量=(2,3),=(x,﹣6),且⊥,则x=()A.﹣9B.9C.﹣4D.4解:∵,∴,解得x=9.故选:B.3.高一年级有男生510人,女生490人,小明按男女比例进行分层随机抽样,总样本量为100.则在男生中抽取的样本量为()A.48B.51C.50D.49解:高一年级共有510+490=1000人,所以男生抽取的人数为人.故选:B.4.如图,△A'B'C'是水平放置的△ABC的斜二测直观图,△A'B′C′为等腰直角三角形,其中O′与A′重合,A'B′=6,则△ABC的面积是()A.9B.9C.18D.18解:在斜二测直观图中,由△A'B′C′为等腰直角三角形,A'B′=6,可得A'C′=,还原原图形如图:则AB=6,AC=6,则=.故选:D.5.已知||=6,||=4,与的夹角为60°,则(+2)•(﹣3)=()A.﹣72B.72C.84D.﹣84解:∵||=6,||=4,与的夹角为60°,∴=,则(+2)•(﹣3)==36﹣12﹣6×16=﹣72.故选:A.6.某学校开展“学党史,颂党恩,跟党走“学习活动,刘老师去购书中心购买了一批书籍作为阅读学习之用,其中一类是4本不同的红色经典小说类书籍,另一类是2本不同的党史类书籍,两类书籍合计共6本.现刘老师从这6本书中随机抽取2本阅读,则这两本书恰好来自同一类书籍的概率是()A.B.C.D.解:从6本书中随机抽取2本,共有种取法,若两本书来自同一类书籍则有种取法,所以两本书恰好来自同一类书籍的概率是.故选:C.7.如图,已知=,=,任意点M关于点A的对称点为S,点M关于点B的对称点为N,则向量=()A.(+)B.2(+)C.(﹣)D.2(﹣)解:∵=,=,任意点M关于点A的对称点为S,点M关于点B的对称点为N,∴AB是△MNS的中位线,∴=2=2(﹣)=2(﹣).故选:D.8.已知图1是棱长为1的正六边形ABCDEF,将其沿直线FC折叠成如图2的空间图形F′A′E′﹣C′B′D′,其中A′E′=,则空间几何体F'A'E'﹣CB'D'的体积为()A.B.C.D.解:如图,过A′作A′G⊥C′F′,垂足为G,连接E′G,则E′G⊥C′F′,过B′作B′H⊥C′F′,垂足为H,连接D′H,则D′H⊥C′F′,可得平面A′GE′∥平面B′HD′,即三棱柱A′GE′﹣B′HD′为直三棱柱.∵A′F′=1,∠A′F′G=60°,可得,,同理求得,,又A′E′=,∴A′G2+E′G2=A′E′2,∴空间几何体F'A'E'﹣CB'D'的体积为V==.故选:C.二、选择题:本题共4小题,每小题5分,共20分在每小题给出的选项中,有多项符合题目要求全部选对的得5分,有选错的得0分,部分选对的得2分.9.某士官参加军区射击比赛,打了6发子弹,报靶数据如下:7,8,9,10,6,8,(单位:环),下列说法正确的有()A.这组数据的平均数是8B.这组数据的极差是4C.这组数据的中位数是8.5D.这组数据的方差是2解:对于A,这组数据的平均数是(7+8+9+10+6+8)=8,故A正确;对于B,这组数据的极差是10﹣6=4,故B正确;对于C,这组数据从小到大为6,7,8,8,9,10,∴这组数据的中位数是8,故C错误;对于D,这组数据的方差是S2=[(7﹣8)2+(8﹣8)2+(9﹣8)2+(10﹣8)2+(6﹣8)2+(8﹣8)2]=,故D错误.故选:AB.10.已知复数z=cosα+(sinα)i(α∈R)(i为虚数单位),下列说法正确的有()A.当α=﹣时,复平面内表示复数z的点位于第二象限B.当α=时,z为纯虚数C.|z|最大值为D.z的共轭复数为=﹣cosα+(sinα)i(α∈R)解:对于A,当α=﹣时,z=cos()+[sin()]i=﹣,复平面内表示复数z的点位于第四象限,故A错误;对于B,当α=时,z=cos+(sin)i=,为纯虚数,故B正确;对于C,,最大值为,故C正确;对于D,z的共轭复数为=cosα﹣(sinα)i,故D错误.故选:BC.11.某班级到一工厂参加社会实践劳动,加工出如图所示的圆台O1O2,在轴截面ABCD中,AB=AD=BC=2cm,且CD=2AB,下列说法正确的有()A.该圆台轴截面ABCD面积为3cm2B.该圆台的体积为cm3C.该圆台的母线AD与下底面所成的角为30°D.沿着该圆台表面,从点C到AD中点的最短距离为5cm解:由AB=AD=BC=2cm,且CD=2AB,可得CD=4,高O1O2==,则圆台轴截面ABCD面积为(2+4)×=3cm2,故A正确;圆台的体积为V=π(1+4+2)×=πcm3,故B正确;圆台的母线AD与下底面所成的角为∠ADO1,其正弦值为,所以∠ADO1=60°,故C错误;由圆台补成圆锥,可得大圆锥的母线长为4cm,底面半径为2cm,侧面展开图的圆心角为θ==π,设AD的中点为P,连接CP,可得∠COP=90°,OC=4,OP=2+1=3,则CP==5,所以沿着该圆台表面,从点C到AD中点的最短距离为5cm,故D正确.故选:ABD.12.在△ABC中,角A,B,C所对的边分别为a,b,c,点O为△ABC所在平面内点,满足x+y+z=0,下列说法正确的有()A.若x=y=z=1,则点O为△ABC的重心B.若x=y=z=1,则点O为△ABC的外心C.若x=a,y=b,z=c,则点O为△ABC的内心D.若x=a,y=b,z=c,则点O为△ABC的垂心解:若x=y=z=1则,∴.取AC中点D,连接OD,∴.∴O在△ABC的中线BD上,同理可得O在其它两边的中线上,∴O是△ABC的重心.若x=a,y=b,z=c,则有,延长CO交AB于D,则,,∴a()+b()+c=,设=k,则(ka+kb+c)+(a+b)=,∵与共线,与,不共线,∴ka+kb+c=0,a+b=,∴,∴CD为∠ACB的平分线,同理可证其它的两条也是角平分线.∴O是△ABC的内心.故选:AC.三、填空题:本题共4小题,每小题5分,共20分.13.有10种不同的零食,每100克可食部分包含的能量(单位:k)如下:100,120,125,165,430,190,175,234,425,310这10种零食每100克可食部分的能量的第60百分位数为212.解:根据题意,将10个数据从小到大排列:100,120,125,165,175,190,234,310,425,430;10×60%=6,则该组数据的第60百分位数为=212,故答案为:212.14.天气预报元旦假期甲地的降雨概率是0.2,乙地的降雨概率是0.3,假定在这段时间内两地是否降雨相互之间没有影响,则在这段时间内甲,乙两地只有一个地方降雨的概率是0.38.解:根据题意,设事件A表示甲地下雨,事件B表示乙地下雨,P(A)=0.2,P(B)=0.3,甲,乙两地只有一个地方降雨的概率P=P(A)+P(B)=0.2×(1﹣0.3)+(1﹣0.2)×0.3=0.38;故答案为:0.38.15.如图,在三棱锥V﹣ABC中,VA=VB=AB=AC=BC=4,VC=2,则二面角A﹣VC﹣B的余弦值为.解:取VC的中点D,连接AD、BD,因为VA=VB=AC=BC=4,所以AD⊥VC,BD⊥VC,所以∠ADB即为二面角A﹣VC﹣B的平面角,因为VA=VB=AC=BC=4,VC=2,所以AD=BD=,而AB=4,在△ABD中,由余弦定理可得cos∠ADB==,故答案为:.16.如图,△ABC是边长为1的正三角形,M,N分别为线段AC,AB上一点,满足AM:MC=1:2,AN:NB=1:3,CN与BM的交点为P,则线段AP的长度为.解:以A为原点,AB为x轴,建立如图所示的平面直角坐标系,则A(0,0),B(1,0),C(,),M(,),N(,0),所以直线BM的方程为y=(x﹣1),即x+5y﹣=0,直线CN的方程为y=(x﹣),即4x﹣4y﹣=0,联立,解得,即P(,),所以AP==.故答案为:.四、解答题:本题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤. 17.现有两个红球(记为R1,R2),两个白球(记为W1,W2),采用不放回简单随机抽样从中任意抽取两球.(1)写出试验的样本空间;(2)求恰好抽到一个红球一个白球的概率.解:(1)两个红球(记为R1,R2),两个白球(记为W1,W2),采用不放回简单随机抽样从中任意抽取两球,则试验的样本空间Ω={(R1,R2),(R1,W1),(R1,W2),(R2,W1),(R2,W2),(W1,W2)}.(2)试验的样本空间Ω={(R1,R2),(R1,W1),(R1,W2),(R2,W1),(R2,W2),(W1,W2)},包含6个样本点,其中恰好抽到一个红球一个白球包含4个样本点,∴恰好抽到一个红球一个白球的概率P==.18.已知角A是△ABC的内角,若=(sin A,cos A),=(1,﹣1).(1)若,求角A的值;(2)设f(x)=,当f(x)取最大值时,求在上的投影向量(用坐标表示).解:(1)∵角A是△ABC的内角,∴0<A<π,又=(sin A,cos A),=(1,﹣1)且,∴﹣,即2(sin A+)=0,∴sin(A+)=0,∵0<A<π,∴<A+<,则A+=π,即A=;(2)f(x)===,∵<A﹣<,∴要使f(x)取得最大值,则,即A=.∴=(,cos)=(,﹣),∴在上的投影向量为=•(1,﹣1)=(2,﹣2).19.如图,直三棱柱ABC﹣A'B'C'中,D是AB的中点.(1)求证:直线BC′∥平面A'CD;(2)若AC=CB,求异面直线AB'与CD所成角的大小.解:(1)证明:连接AC′,交AC于点O,连接DO,∵直三棱柱ABC﹣A'B'C'中,ACC′A′是矩形,∴O是AC′中点,∵D是AB的中点,∴OD∥BC′,∵BC′⊄平面A'CD,OD⊂平面A'CD,∴直线BC′∥平面A'CD;(2)解法一:∵AC=CB,D是AB的中点,∴CD⊥AB,∵直三棱柱ABC﹣A'B'C'中,AA′⊥平面ABC,∴CD⊂平面ABC,∴AA′⊥CD,∵AB∩AA′=A,∴CD⊥平面ABB′A′,∵AB′⊂平面ABB′A′,∴AB′⊥CD,∴异面直线AB'与CD所成角的大小为90°.解法二:∵AC=CB,D是AB的中点,∴CD⊥AB,以D为原点,DB为x轴,DC为y轴,过D作平面ABC的垂线为z轴,建立空间直角坐标系,设CD=c,AB=a,AA′=b,则A(﹣,0,0),B′(,0,b),C(0,c,0),D(0,0,0),=(a,0,b),=(0,﹣c,0),∵•=0,∴AB′⊥CD,∴异面直线AB'与CD所成角的大小为90°.20.2021年五一假期,各高速公路车流量大,交管部门在某高速公路区间测速路段随机抽取40辆汽车进行车速调查,将这40辆汽车在该区间测速路段的平均车速(km/h)分成六段[90,95),[95,100),[100,105),[105,110),[110,115),[115,120],得到如图的频率分布直方图.(1)根据频率分布直方图估计出这40辆汽车的平均车速的中位数;(2)现从平均车速在区间[90,100)的车辆中任意抽取2辆汽车,求抽取的2辆汽车的平均车速都在区间[95,100)上的概率;(3)出于安全考虑,测速系统对平均车速在区间[115,120]的汽车以实时短信形式对车主进行安全提醒,确保行车安全.假设每辆在此区间测速路段行驶的汽车平均车速相互不受影响,以此次调查的样本频率估计总体概率,求连续2辆汽车都收到短信提醒的概率?解:(1)设平均车速的中位数的估值为x,则0.01×5+0.02×5+0.04×5+0.06×(x﹣105.0)=0.5x=107.5故平均车速的中位数为107.5.(2)车速在[90,95)内的有0.01×40×5=2,车速在[95,100)的有0.02×40×5=4,故抽取的2辆汽车的平均车速都在区间[95,100)上的概率.(3)设事件A为“汽车收到短信提醒”,则,∵汽车的速度不受影响,∴连续两辆汽车都收到短信体现的概率P=.21.如图,PA垂直于⊙O所在的平面,AC为⊙O的直径,AB=3,BC=4,PA=3,AE ⊥PB,点F为线段BC上一动点.(1)证明:平面AEF⊥平面PBC;(2)当点F移动到C点时,求PB与平面AEF所成角的正弦值.【解答】(1)证明:因为PA垂直于⊙O所在的平面,即PA⊥平面ABC,BC⊂平面ABC,所以PA⊥BC,又AC为⊙O的直径,所以AB⊥BC,因为PA∩AB=A,所以BC⊥平面PAB,又AE⊂平面PAB,所以BC⊥AE,因为AE⊥PB,BC∩PB=B,所以AE⊥平面PBC,又AE⊂平面AEF,所以平面AEF⊥平面PBC.(2)解:因为AB=3,PA=3,所以PB==3,又AE⊥PB,所以AE==,由AB2=BE•PB,可得BE=,如图,过点E作EG∥PA交AB于点G,则=,可得EG=,又BC=4,所以EC==,所以S△ABC=AB•BC=6,S△AEC=AE•EC=,设点B到平面AEC的距离为h,由V E﹣ABC=V B﹣AEC,可得S△ABC•EG=S△AEC•h,解得h=,所以当点F移动到C点时,PB与平面AEF所成角的正弦值为=.22.为响应国家“乡村振兴”号召,农民王大伯拟将自家一块直角三角形地按如图规划成3个功能区:△BNC区域为荔枝林和放养走地鸡,△CMA区域规划为“民宿”供游客住宿及餐饮,△MNC区域规划为小型鱼塘养鱼供休闲垂钓.为安全起见,在鱼塘△MNC周围筑起护栏.已知AC=40m,BC=40m,AC⊥BC,∠MCN=30°(1)若AM=20m时,求护栏的长度(△MNC的周长);(2)若鱼塘△MNC的面积是“民宿”△CMA的面积的倍,求∠ACM;(3)当∠ACM为何值时,鱼塘△MNC的面积最小,最小面积是多少?解:(1)∵AC=40m,BC=40m,AC⊥BC,∴tan B==,∴B=30°,∴A=60°,∴AB=2AC=80,在△ACM中,由余弦定理可得CM2=AC2+AM2﹣2AC•AM•cos A=1600+400﹣2×40×20×=1200,则CM=20,∴AC2=AM2+CM2,∴CM⊥AB,∵∠MCN=30°,∴MN=CM tan30°=20,∴CN=2MN=40,∴护栏的长度(△MNC的周长)为20+40+20=60+20;(2)设∠ACM=θ(0°<θ<60°),因为鱼塘△MNC的面积是“民宿”△CMA的面积的倍,所以,即CN=40sinθ,…在△CAN中,由,得CN=,…从而40sinθ=,即sin2θ=,由0°<2θ<120°,得2θ=45°,所以θ=22.5°,即∠ACM=22.5°.…(3)设∠ACM=θ(0°<θ<60°),由(2)知CN=,又在△ACM中,由,得CM=,…所以S△CMN==,…所以当且仅当2θ+60°=90°,即θ=15°时,△CMN的面积取最小值为km2.…(16分)。
2020-2021学年广东省深圳高级中学高一(上)期中数学试卷(附答案详解)
2020-2021学年广东省深圳高级中学高一(上)期中数学试卷一、单选题(本大题共8小题,共40.0分)1. 已知集合A ={x ∈R|3x +2>0},B ={x ∈R|(x +1)(x −3)>0},则A ∩B =( )A. (−∞,−1)B. (−1,−23)C. ﹙−23,3﹚D. (3,+∞)2. 如果a <b <0,那么下列各式一定成立的是( )A. |a|<|b|B. a 2<b 2C. a 3<b 3D. 1a <1b3. 德国数学家秋利克在1837年时提出“如果对于x 的每一个值,y 总有一个完全确定的值与之对应,则y 是x 的函数,“这个定义较清楚地说明了函数的内涵,只要有一个法则,使得取值范围中的每一个值,有一个确定的y 和它对应就行了,不管这个对应的法则是公式、图象、表格还是其它形式.已知函数f(x)由如表给出,则f(f(2020))的值为( )A. 1B. 2C. 3D. 20184. 若命题“∃x 0∈R ,使得x 02+mx 0+2m −3<0”为假命题,则实数m 的取值范围是( )A. [2,6]B. [−6,−2]C. (2,6)D. (−6,−2)5. 设a =0.60.3,b =0.30.6,c =0.30.3,则a ,b ,c 的大小关系为( )A. b <a <cB. a <c <bC. b <c <aD. c <b <a6. 若实数a ,b 满足1a +4b =√ab ,则ab 的最小值为( )A. √2B. 2C. 2√2D. 47. 已知函数f(x)={2x ,x ≥2(x −1)2,x <2,若关于x 的方程f(x)=k 有三个不同的实根,则数k 的取值范围是( )A. (0,1)B. (1,2)C. (0,2)D. (1,3)8. 已知函数f(x)=2+x2+|x|,x ∈R ,则不等式f(x 2−2x)<f(2x −3)的解集为( )A. (1,2)B. (1,3)C. (0,2)D. (1,32]二、多选题(本大题共4小题,共20.0分)9.下列函数中,最小值是2的是()A. y=a2−2a+2a−1(a>1) B. y=√x2+2+1√x2+2C. y=x2+1x2D. y=x2+2x10.下列四个结论中正确的是()A. 命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”B. 命题“至少有一个整数n,n2+1是4的倍数”是真命题C. “a>5且b>−5”是“a+b>0”的充要条件D. 当α<0时,幂函数y=xα在区间(0,+∞)上单调递减11.如图1是某条公共汽车线路收支差额y与乘客量x的图象(收支差额=车票收入−支出费用).由于目前本条线路亏损,公司有关人员将图1变为图2与图3,从而提出了扭亏为盈的两种建议.下面有4种说法中正确的是()A. 图2的建议是:减少支出,提高票价B. 图2的建议是:减少支出,票价不变C. 图3的建议是:减少支出,提高票价D. 图3的建议是:支出不变,提高票价12.对∀x∈R,[x]表示不超过x的最大整数.十八世纪,y=[x]被“数学王子”高斯采用,因此得名为高斯函数,人们更习惯称为“取整函数”,则下列命题中的真命题是()A. ∃x∈R,x≥[x]+1B. ∀x,y∈R,[x]+[y]≤[x+y]C. 函数y=x−[x](x∈R)的值域为[0,1)D. 若∃t∈R,使得[t3]=1,[t4]=2,[t5]=3…,[t n]=n−2同时成立,则正整数n的最大值是5三、单空题(本大题共4小题,共20.0分)13.已知函数f(x)=a x−2−4(a>0,a≠1)的图象恒过定点A,则A的坐标为.14.若函数f(x)=ax2+2ax+1在[1,2]上有最大值4,则a的值为.15.y=f(x)是定义域R上的单调递增函数,则y=f(3−x2)的单调递减区间为.16.对于函数f(x),若在定义域存在实数x,满足f(−x)=−f(x),则称f(x)为“局部奇函数”.若函数f(x)=4x−m⋅2x−3是定义在R上的“局部奇函数”,则实数m 的取值范围为.四、解答题(本大题共6小题,共70.0分)17.化简求值:(1)0.064−13−(−18)0+1634+0.2512(2)12lg25+lg2+(13)log32−log29×log32.18.设函数y=√−x2+7x−12的定义域为集合A,不等式1x−2≥1的解集为集合B.(1)求集合A∩B;(2)设p:x∈A,q:x>a,且p是q的充分不必要条件,求实数a的取值范围.19.已知函数f(x)=a x(a>0且a≠1)在区间[1,2]上的最大值与最小值的和为6.(1)求函数f(x)解析式;(2)求函数g(x)=f(2x)−8f(x)在[1,m](m>1)上的最小值.20.已知函数f(x)是R上的偶函数,当x≥0时,f(x)=x3.(1)求x<0时f(x)的解析式;(2)解关于x的不等式f(x+1)≥8f(x).21.为了研究某种药物,用小白鼠进行试验,发现药物在血液内的浓度与时间的关系因使用方式的不同而不同.若使用注射方式给药,则在注射后的3小时内,药物在白鼠血液内的浓度y1与时间t满足关系式:y1=4−at(0<a<43,a为常数),若使用口服方式给药,则药物在白鼠血液内的浓度y2与时间t满足关系式:y2={√t,0<t<13−2t,1≤t≤3,现对小白鼠同时进行注射和口服该种药物,且注射药物和口服药物的吸收与代谢互不干扰.(1)若a=1,求3小时内,该小白鼠何时血液中药物的浓度最高,并求出最大值?(2)若使小白鼠在用药后3小时内血液中的药物浓度不低于4,求正数a的取值范围.22. 定义在R 上的函数g(x)和二次函数ℎ(x)满足:g(x)+2g(−x)=e x +2e x −9,ℎ(−2)=ℎ(0)=1,ℎ(−3)=−2. (1)求g(x)和ℎ(x)的解析式;(2)若对于x 1,x 2∈[−1,1],均有ℎ(x 1)+ax 1+5≥g(x 2)+3−e 成立,求a 的取值范围;(3)设f(x)={g(x),x >0ℎ(x),x ≤0,在(2)的条件下,讨论方程f[f(x)]=a +5的解的个数.答案和解析1.【答案】D【解析】【分析】本题考查一元二次不等式的解法,交集及其运算,考查计算能力,属于基础题.先求出集合B和A,然后利用交集运算求解A∩B.【解答】解:因为B={x∈R|(x+1)(x−3)>0}={x|x<−1或x>3},},又集合A={x∈R|3x+2>0}={x|x>−23}∩{x|x<−1或x>3}={x|x>3},所以A∩B={x|x>−23故选:D.2.【答案】C【解析】【分析】本题考查了不等式的基本性质,属基础题.根据条件取特殊值a=−2,b=−1,即可排除ABD;由不等式的基本性质,即可判断C.【解答】解:由a<b<0,取a=−2,b=−1,则可排除ABD;由a<b<0,根据不等式的基本性质可知C成立.故选:C.3.【答案】C【解析】【分析】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.先求出f(2020)=2018,从而f(f(2020))=f(2018),由此能求出结果.【解答】解:由题意知:f(2020)=2018,f(f(2020))=f(2018)=3.故选:C.4.【答案】A【解析】【分析】本题考查存在量词命题的真假,二次不等式恒成立,考查转化思想.先写出原命题的否定,再根据原命题为假,其否定一定为真,利用不等式对应的是二次函数,结合二次函数的图象与性质建立不等关系,即可求出实数m的取值范围.【解答】解:命题“∃x0∈R,使得x02+mx0+2m−3<0”的否定为:“∀x∈R,都有x2+mx+2m−3≥0”,由于命题“∃x0∈R,使得x02+mx0+2m−3<0”为假命题,则其否定为真命题,∴Δ=m2−4(2m−3)≤0,解得2≤m≤6.则实数m的取值范围是[2,6].故选:A.5.【答案】C【解析】【分析】本题主要考查了幂函数和指数函数的性质,是基础题.利用幂函数y=x0.3在(0,+∞)上单调递增,比较出a,c的大小,再利用指数函数y=0.3x 在R上单调递减,比较出b,c的大小,从而得到a,b,c的大小关系.【解答】解:∵幂函数y=x0.3在(0,+∞)上单调递增,且0.6>0.3,∴0.60.3>0.30.3,即a>c,∵指数函数y=0.3x在R上单调递减,且0.6>0.3,∴0.30.6<0.30.3,即b<c,∴b<c<a,故选:C.6.【答案】D【解析】【分析】本题考查了利用基本不等式求最值,属于基础题.由已知得a,b>0,利用√ab=1a +4b≥2√1a⋅4b即可得出ab≥4,验证等号成立的条件.【解答】解:实数a,b满足1a +4b=√ab,则a,b>0.∴√ab=1a +4b≥2√1a⋅4b,可得ab≥4,当且仅当1a =4b,a=1,b=4时取等号.则ab的最小值为4.故选:D.7.【答案】A【解析】【分析】本题考查函数零点与方程根的关系,考查数形结合思想,属于中档题.题目等价于函数y=f(x)的图象与直线y=k有3个交点,作出图象,数形结合即可【解答】解:作出函数f(x)的图象如图:若关于x 的方程f(x)=k 有三个不同的实根,即函数y =f(x)的图象与直线y =k 有三个交点,根据图象可知,k ∈(0,1). 故选:A .8.【答案】A【解析】 【分析】本题考查分段函数的性质以及应用,注意将函数解析式写出分段函数的形式,属于中档题.根据题意,将函数的解析式写出分段函数的形式,据此作出函数的大致图象,据此可得原不等式等价于{x 2−2x <0x 2−2x <2x −3,解可得x 的取值范围,即可得答案.【解答】解:根据题意,函数f(x)=2+x2+|x|={−4x−2−1,x <01,x ≥0,其图象大致为:若f(x 2−2x)<f(2x −3),则有{x 2−2x <0x 2−2x <2x −3,解可得:1<x <2,即不等式的解集为(1,2);故选:A.9.【答案】AC【解析】【分析】本题考查了基本不等式的应用,关键掌握应用基本不等式的基本条件,一正二定三相等,属于基础题.根据应用基本不等式的基本条件,分别判断即可求出.【解答】解:对于A:a−1>0,y=a2−2a+2a−1=(a−1)2+1a−1=(a−1)+1a+1≥2√(a−1)⋅1a−1=2,当且仅当a−1=1a−1,即a=2时取等号,故A正确;对于B:y=√x2+2√x2+2≥2,当且仅当√x2+2=√x2+2,即x2=−1时取等号,显然不成立,故B错误;对于C:y=x2+1x2≥2√x2⋅1x2=2,当且仅当x=±1时取等号,故C正确;对于D:当x<0时,无最小值,故D错误.故选:AC.10.【答案】AD【解析】【分析】本题考查命题的真假的判断,考查充要条件,命题的否定,幂函数的性质等知识的应用,是基本知识的考查.利用命题的否定判断A;令n=2k和n=2k+1,k∈Z分析n2+1是不是4的倍数判断B;根据充要条件判断C;由幂函数的性质判断D即可.【解答】解:命题“∃x0∈R,sinx0+cosx0<1”的否定是“∀x∈R,sinx+cosx≥1”,满足命题的否定形式,所以A正确;令n=2k,k∈Z,则n2+1=4k2+1不是4的倍数,令n=2k+1,k∈Z,则n2+1=4k2+4k+2不是4的倍数,所以“至少有一个整数n,n2+1是4的倍数”是假命题,所以B不正确;“a>5且b>−5”推出“a+b>0”成立,反之不成立,如a=5,b=−4,满足a+ b>0,但是不满足a>5且b>−5,所以“a>5且b>−5”是“a+b>0”的充要条件不成立,所以C不正确.当α<0时,幂函数y=xα在区间(0,+∞)上单调递减,满足幂函数的性质,所以D正确;故选:AD.11.【答案】BD【解析】【分析】本题考查了用函数图象说明两个量之间的变化情况,主要根据实际意义进行判断,考查了读图能力和数形结合思想.根据题意知图象反应了收支差额y与乘客量x的变化情况,即直线的斜率说明票价问题;当x=0的点说明公司的支出情况,再结合图象进行说明.【解答】解:根据题意和图(2)知,两直线平行即票价不变,直线向上平移说明当乘客量为0时,收入是0但是支出的变少了,即说明了此建议是减少支出而保持票价不变;由图(3)看出,当乘客量为0时,支出不变,但是直线的倾斜角变大,即相同的乘客量时收入变大,即票价提高了,即说明了此建议是提高票价而保持支出不变,故选:BD.12.【答案】BCD【解析】【分析】本题考查函数新定义,正确理解新定义是解题基础,由新定义把问题转化不等关系是解题关键.由新定义得[x]≤x <[x]+1,可得函数f(x)=x −[x]值域判断C ;根据题意,若n ≥6,则不存在t 同时满足1≤t <√23,√46≤t <√56,n ≤5时,存在t ∈[√35,√23)满足题意,判断D . 【解答】解:∀x ∈R ,x <[x]+1,故A 错误;由“取整函数”定义可得,∀x ,y ∈R ,[x]≤x ,[y]≤y ,由不等式的性质可得[x]+[y]≤x +y ,所以[x]+[y]≤[x +y],B 正确;由定义得[x]≤x <[x]+1,所以0≤x −[x]<1,所以函数f(x)=x −[x]的值域是[0,1),C 正确;若∃t ∈R ,使得[t 3]=1,[t 4]=2,[t 5]=3,…[t n ]=n −2同时成立,则1≤t <√23,√24≤t <√34,√35≤t <√45,√46≤t <√56,…√n −2n ≤t <√n −1n ,因为√46=√23,若n ≥6,则不存在t 同时满足1≤t <√23,√46≤t <√56,只有n ≤5时,存在t ∈[√35,√23)满足题意,故选:BCD .13.【答案】(2,−3)【解析】 【分析】本题主要考查指数函数的性质,利用a 0=1的性质是解决本题的关键.比较基础. 根据指数函数的性质,令指数为0进行求解即可求出定点坐标. 【解答】解:由x −2=0得x =2,此时f(2)=a 0−4=1−4=−3, 即函数f(x)的图象过定点A(2,−3), 故答案为:(2,−3)14.【答案】38【解析】 【分析】口向上和向下两种情况判定函数值在何时取最大值,并根据最大值为4,即可求出对应的实数a的值【解答】解:当a=0时,f(x)=1,不符合题意,舍去.当a≠0时,f(x)的对称轴方程为x=−1,(1)若a<0,则函数图象开口向下,函数在[1,2]递减,当x=1时,函数取得最大值4,即f(1)=a+2a+1=4,解得a=1(舍).(2)若a>0,函数图象开口向上,函数在[1,2]递增,当x=2时,函数取得最大值4,即f(2)=4a+4a+1=4,解得a=3,8,综上可知,a=38.故答案为:3815.【答案】[0,+∞)【解析】【分析】本题考查了复合函数的单调性问题,考查二次函数的性质,属于中档题.根据复合函数单调性“同增异减”的原则,问题转化为求y=3−x2的单调递减区间,求出即可.【解答】解:根据复合函数单调性“同增异减”的原则,因为y=f(x)是定义域R上的单调递增函数,要求y=f(3−x2)的单调递减区间,即求y=3−x2的单调递减区间,而函数y=3−x2在[0,+∞)单调递减,故y=f(3−x2)的单调递减区间是[0,+∞),故答案为:[0,+∞).16.【答案】[−2,+∞)【分析】本题考查函数与方程的关系,关键是理解“局部奇函数”的定义,属于拔高题.根据“局部奇函数“的定义便知,若函数f(x)是定义在R上的“局部奇函数”,只需方程(2x+2−x)2−m(2x+2−x)−8=0有解.可设2x+2−x=t(t≥2),从而得出需方程t2−mt−8=0在t≥2时有解,从而设g(t)=t2−mt−8,由二次函数的性质分析可得答案.【解答】解:根据题意,由“局部奇函数”的定义可知:若函数f(x)=4x−m⋅2x−3是定义在R上的“局部奇函数”,则方程f(−x)=−f(x)有解;即4−x−m⋅2−x−3=−(4x−m⋅2x−3)有解;变形可得4x+4−x−m(2x+2−x)−6=0,即(2x+2−x)2−m(2x+2−x)−8=0有解即可;设2x+2−x=t(t≥2),则方程等价为t2−mt−8=0在t≥2时有解;设g(t)=t2−mt−8=0,必有g(2)=4−2m−8=−2m−4≤0,解可得:m≥−2,即m的取值范围为[−2,+∞);故答案为:[−2,+∞).17.【答案】解:(1)0.064−13−(−18)0+1634+0.2512=0.43×(−13)−1+24×34+0.52×12=2.5−1+8+0.5=10;(2)12lg25+lg2+(13)log32−log29×log32=lg5+lg2+3−log32−2(log23×log32)=1+12−2=−12.【解析】本题考查了指数幂和对数的运算的性质,属于基础题.(1)根据指数幂的运算性质计算即可;(2)根据对数的运算性质计算即可.18.【答案】解:由题意得:−x2+7x−12≥0,解得:3≤x≤4,故A=[3,4],∵1x−2≥1,∴x−3x−2≤0,解得:2<x≤3,故B=(2,3],(1)A∩B={3};(2)设p:x∈A,q:x>a,且p是q的充分不必要条件,即[3,4]⫋(a,+∞),故a<3,故a的取值范围是(−∞,3).【解析】本题考查了一元二次不等式的求解,集合的交集运算,考查了充分必要条件,考查了推理能力与计算能力,属于基础题.(1)分别求出集合A,B,求出A∩B即可;(2)根据集合的包含关系求出a的范围即可.19.【答案】解:(1)函数f(x)=a x(a>0且a≠1)在区间[1,2]上的最大值与最小值之和为6,则a+a2=6,即a2+a−6=0,解得a=2或a=−3(舍),故a=2,∴f(x)=2x;(2)g(x)=f(2x)−8f(x)=22x−8⋅2x,令2x=t,则原函数化为ℎ(t)=t2−8t,t∈[2,2m],其对称轴方程为t=4,当2m≤4,即1<m≤2时,函数最小值为(2m)2−8⋅2m=4m−8⋅2m;当2m>4,即m>2时,函数的最小值为42−8×4=−16.∴g(x)=f(2x)−8f(x)在[1,m](m>1)上的最小值为g(x)min={4m−8⋅2m,1<m≤2−16,m>2.【解析】本题考查指数函数的解析式、单调性与最值,二次函数的性质,是中档题.(1)根据指数函数的性质建立方程a+a2=6,即可求a的值,进一步得到函数解析式;(2)求出函数g(x)=f(2x)−8f(x)的解析式,换元后对m分类,利用二次函数的性质求最值.20.【答案】解:(1)根据题意,设x <0,则−x >0,则f(−x)=(−x)3=−x 3,又由f(x)为偶函数,则f(x)=f(−x)=−x 3, 故x <0时f(x)的解析式为f(x)=−x 3; (2)根据题意,f(x)为偶函数,则f(x)=f(|x|), 所以8f(x)=8f(|x|)=8×|x|3=(2|x|)3=f(2|x|), 又由当x ≥0时,f(x)=x 3,在[0,+∞)上为增函数;则f(x +1)≥8f(x)⇔f(|x +1|)≥f(|2x|)⇒|x +1|≥|2x|, 变形可得:3x 2−2x −1≤0,解可得:−13≤x ≤1,即不等式的解集为[−13,1].【解析】本题考查函数的奇偶性的性质以及应用,涉及绝对值不等式的解法,属于中档题.(1)根据题意,设x <0,则−x >0,由函数的解析式可得f(−x)=(−x)3=−x 3,结合函数的奇偶性分析可得答案;(2)根据题意,由函数的奇偶性以及解析式分析可得原不等式等价于|x +1|≥|2x|,解可得x 的取值范围,即可得答案.21.【答案】解:(1)当a =1时,药物在白鼠血液内的浓度y 与时间t 的关系为:y =y 1+y 2={−t +√t +4,0<t <17−(t +2t),1≤t ≤3; ①当0<t <1时,y =−t +√t +4=−(√t −12)2+174,所以当t =14时,y max =174;②当1≤t ≤3时,∵t +2t ≥2√2,当且仅当t =√2时取等号, 所以y max =7−2√2(当且仅当t =√2时取到),因为174>7−2√2, 故当t =14时,y max =174.(2)由题意y ={−at +√t +4(0<t <1)7−(at +2t )(1≤t ≤3) ① −at +√t +4≥4 ⇒ −at +√t ≥0 ⇒ a ≤√t ,又0<t <1,得出a ≤1;令u =1t ,则a ≤−2u 2+3u,u ∈[13,1],可得(−2u 2+3u )min =79 所以a ≤79, 综上可得0<a ≤79, 故a 的取值范围为(0,79].【解析】本题考查学生的函数思想,考查学生分段函数的基本思路,用好分类讨论思想,注意二次函数最值问题,基本不等式在求解该题中作用.恒成立问题的处理方法.用好分离变量法.(1)建立血液中药物的浓度与时间t 的函数关系是解决本题的关键,要根据得出的函数关系式采取合适的办法解决该浓度的最值问题;二次函数要注意对称轴和区间的关系、还要注意基本不等式的运用;(2)分段求解关于实数a 的范围问题,注意分离变量法的应用.22.【答案】解:(1)∵g(x)+2g(−x)=e x +2e x −9,∴g(−x)+2g(x)=e −x +2e x −9, 由以上两式联立可解得,g(x)=e x −3; ∵ℎ(−2)=ℎ(0)=1,∴二次函数的对称轴为x =−1,故设二次函数ℎ(x)=a(x +1)2+k , 则{a +k =14a +k =−2,解得{a =−1k =2,∴ℎ(x)=−(x +1)2+2=−x 2−2x +1;(2)由(1)知,g(x)=e x −3,其在[−1,1]上为增函数,故g(x)max =g(1)=e −3,∴ℎ(x 1)+ax 1+5≥e −3+3−e =0对任意x 1∈[−1,1]都成立,即x 12+(2−a)x 1−6≤0对任意x ∈[−1,1]都成立,∴{1−(2−a)−6≤01+(2−a)−6≤0,解得−3≤a ≤7, 故实数的a 的取值范围为[−3,7];(3)f(x)={e x −3,x >0−x 2−2x +1,x ≤0,作函数f(x)的图象如下,令t=f(x),a∈[−3,7],则f(t)=a+5∈[2,12],①当a=−3时,f(t)=2,由图象可知,此时方程f(t)=2有两个解,设为t1=−1,t2=ln5∈(1,2),则f(x)=−1有2个解,f(x)=ln5有3个解,故共5个解;②当−3<a<e2−8时,f(t)=a+5∈(2,e2−3),由图象可知,此时方程f(t)=a+5有一个正实数解,设为t3=ln(a+8)∈(ln5,2),则f(x)=t3=ln(a+8)有3个解,故共3个解;③当a=e2−8时,f(t)=a+5=e2−3,由图象可知,此时方程f(t)=a+5有一个解t4=2,则f(x)=t4=2有2个解,故共2个解;④当e2−8<a≤7时,f(t)=a+5∈(e2−3,12],由图象可知,此时方程f(t)=a+5有一个解t5=ln(a+8)∈(2,ln15],则f(x)=t5有1个解,故共1个解.【解析】本题考查函数解析式的求法,考查不等式的恒成立问题及函数零点与方程解的关系,旨在考查数形结合及分类讨论思想,属于中档题.(1)运用构造方程组法可求g(x),运用待定系数法可求ℎ(x);(2)原问题等价于x12+(2−a)x1−6≤0对任意x1∈[−1,1]都成立,进而求得实数a的取值范围;(3)作出函数f(x)的图象,结合图象讨论即可.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021学年广东省佛山市顺德一中高一(下)期中数学试卷一.单选题(共8小题,每小题5分,共40分).1.若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,﹣2B.3,2C.3,﹣3D.﹣1,42.设,是两个不共线的向量,若向量=﹣(k∈R)与向量=共线,则()A.k=0B.k=1C.k=2D.k=0.53.若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.4.已知向量=(m,2),=(3,﹣6),若|+|=|﹣|,则实数m的值是()A.﹣4B.﹣1C.1D.45.已知,则tan(α+β)的值为()A.B.C.D.16.在△ABC中,角A,B,C所对的边分别为a,b,c,若c<b cos A,则△ABC为()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形7.已知关于x的方程2sin2x﹣sin2x+m﹣1=0在(,π)上有两个不同的实数根,则m的取值范围是()A.(﹣1,﹣)B.(﹣2,2)C.(﹣2,﹣)D.(﹣2,﹣1)8.已知函数f(x)=sin x,若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥2,m∈N*),则m的最小值为()A.6B.7C.8D.9二、多选题(每小题5分,全部选对得5分,部分选对得2分,有选错得0分,共4小题,合计20分)9.某人用如图所示的纸片沿折痕折后粘成一个四棱锥形的“走马灯“,正方形做灯底,且有一个三角形面上写上了“年”字,当灯旋转时,正好看到“新年快乐”的字样,则在①、②、③处可依次写上()A.乐、新、快B.快、新、乐C.新、乐、快D.乐、快、新10.如图,要测量河对岸C,D两点间的距离,在河边一侧选定两点A,B,测出AB间的距离为20m,∠DAB=75°,∠CAB=30°,AB⊥BC,∠ABD=60°,则()A.BD=10(3+)m B.DC=10mC.DC=10m D.BC=10m11.用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体可能是()A.圆锥B.圆柱C.三棱锥D.正方体12.下列说法正确的是()A.若非零向量(+)=0,且=,则△ABC为等边三角形B.已知=,=,=,=,四边形ABCD为平行四边形,则+﹣﹣=C.已知正三角形ABC的边长为2,圆O是该三角形的内切圆,P是圆O上的任意一点,则的最大值为1D.已知向量=(2,0),=(2,2),=(cosα,sinα),则与夹角的范围是三、填空题(每小题5分,共4小题,合计20分)13.函数f(x)=sin(ωx+φ)(ω>0,|φ|)的部分图象如图所示,则f(x)的单调递增区间为.14.复数z满足z(+1)=1+i,其中i是虚数单位,则|z|=15.如图,菱形ABCD的边长为2,∠A=60°,M为DC的中点,P是以A为圆心2为半径的圆弧上的点,则•的范围为.16.若AB=2,AC=BC,则三角形ABC面积S△ABC的最大值为.四、解答题(共6小题,合计70分,解答应写出文字说明,证明过程或演算步骤)17.已知A、B、C三点的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),α∈(,).(1)若||=||,求角α的值;(2)若•=﹣1,求的值.18.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.19.如图,在四边形ABCD中,∠DAB=,AD:AB=2:3,BD=,AB⊥BC.(1)求sin∠ABD的值;(2)若∠BCD=,求CD的长.20.已知向量=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.21.如图,在△ABC中,角A,B,C的对边分别为a,b,c,a=b(sin C+cos C).(Ⅰ)求∠ABC;(Ⅱ)若∠A=,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.22.如图,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M,N(异于村庄A),要求PM=PN=MN=2(单位:千米).记∠AMN=θ.(1)将AN,AM用含θ的关系式表示出来;(2)如何设计(即AN,AM为多长时),使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离AP最大)?参考答案一.单选题(共8小题,每小题5分,共40分).1.若(1+i)+(2﹣3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,﹣2B.3,2C.3,﹣3D.﹣1,4解:由(1+i)+(2﹣3i)=3﹣2i=a+bi,得a=3,b=﹣2.故选:A.2.设,是两个不共线的向量,若向量=﹣(k∈R)与向量=共线,则()A.k=0B.k=1C.k=2D.k=0.5解:设,是两个不共线的向量,若向量=﹣(k∈R)与向量=共线,则:利用向量共线基本定理:k=,故选:D.3.若cosα=﹣,α是第三象限的角,则sin(α+)=()A.B.C.D.解:∵α是第三象限的角∴sinα=﹣=﹣,所以sin(α+)=sinαcos+cosαsin=﹣=﹣.故选:A.4.已知向量=(m,2),=(3,﹣6),若|+|=|﹣|,则实数m的值是()A.﹣4B.﹣1C.1D.4解:向量=(m,2),=(3,﹣6),∴+=(m+3,﹣4),﹣=(m﹣3,8),又|+|=|﹣|,∴=,化简得12m=48,解得m=4.故选:D.5.已知,则tan(α+β)的值为()A.B.C.D.1解:tan(α+β)=tan[(α﹣)+(+β)]===1,故选:D.6.在△ABC中,角A,B,C所对的边分别为a,b,c,若c<b cos A,则△ABC为()A.钝角三角形B.直角三角形C.锐角三角形D.等边三角形解:△ABC中,∵c<b cos A,∴sin C<sin B cos A,即sin(A+B)=sin A cos B+sin B cos A<sin B cos A,∴sin A cos B<0,sin A>0,∴cos B<0,B为钝角,∴△ABC为钝角三角形,故选:A.7.已知关于x的方程2sin2x﹣sin2x+m﹣1=0在(,π)上有两个不同的实数根,则m的取值范围是()A.(﹣1,﹣)B.(﹣2,2)C.(﹣2,﹣)D.(﹣2,﹣1)解:方程可转化为=,设,则问题可转化为和的图象有两个不同的交点,如图,由图象观察可知,,解得﹣2<m<﹣1.故选:D.8.已知函数f(x)=sin x,若存在x1,x2,…,x m满足0≤x1<x2<…<x m≤6π,且|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12(m≥2,m∈N*),则m的最小值为()A.6B.7C.8D.9解:∵y=sin x对任意x i,x j(i,j=1,2,3,…,m),都有|f(x i)﹣f(x j)|≤f(x)max﹣f(x)min=2,要使m取得最小值,尽可能多让x i(i=1,2,3,…,m)取得最高点,考虑0≤x1<x2<…<x m≤6π,|f(x1)﹣f(x2)|+|f(x2)﹣f(x3)|+…+|f(x m﹣1)﹣f(x m)|=12,按下图取值即可满足条件,∴m的最小值为8.故选:C.二、多选题(每小题5分,全部选对得5分,部分选对得2分,有选错得0分,共4小题,合计20分)9.某人用如图所示的纸片沿折痕折后粘成一个四棱锥形的“走马灯“,正方形做灯底,且有一个三角形面上写上了“年”字,当灯旋转时,正好看到“新年快乐”的字样,则在①、②、③处可依次写上()A.乐、新、快B.快、新、乐C.新、乐、快D.乐、快、新解:根据四棱锥图形,正好看到“新年快乐”的字样,可知顺序为②年①③,故选:B.10.如图,要测量河对岸C,D两点间的距离,在河边一侧选定两点A,B,测出AB间的距离为20m,∠DAB=75°,∠CAB=30°,AB⊥BC,∠ABD=60°,则()A.BD=10(3+)m B.DC=10mC.DC=10m D.BC=10m解:∵AB⊥BC,∴∠ABC=90°,∴在Rt△ABC中,∠CAB=30°,∠ABC=90°,AB=,∴,,在△ABD中,∠DAB=75°,∠ABD=60°,∠ADB=45°,,∴根据正弦定理得:,解得AD=,∵∠DAB=75°,∠CAB=30°,∴∠DAC=45°,∴在△ACD中,,根据余弦定理得:CD2=AD2+AC2﹣2AD•AC•cos45°1800+1600﹣2400=1000,∴,在△ABD中,∠DAB=75°,,∠ABD=60°,且,∴根据正弦定理得:,解得.故选:AC.11.用一个平面去截一个几何体,截面的形状是三角形,那么这个几何体可能是()A.圆锥B.圆柱C.三棱锥D.正方体解:用一个平面去截一个圆锥时,轴截面的形状是一个等腰三角形,所以A满足条件;用一个平面去截一个圆柱时,截面的形状不可能是一个三角形,所以B不满足条件;用一个平面去截一个三棱锥时,截面的形状是一个三角形,所以C满足条件;用一个平面去截一个正方体时,截面的形状可以是一个三角形,所以D满足条件.故选:ACD.12.下列说法正确的是()A.若非零向量(+)=0,且=,则△ABC为等边三角形B.已知=,=,=,=,四边形ABCD为平行四边形,则+﹣﹣=C.已知正三角形ABC的边长为2,圆O是该三角形的内切圆,P是圆O上的任意一点,则的最大值为1D.已知向量=(2,0),=(2,2),=(cosα,sinα),则与夹角的范围是解:对于A:在△ABC中,非零向量(+)=0,说明角A的平分线垂直于边BC,所以△ABC为等腰三角形,且满足,所以A=,故△ABC为等边三角形,故A正确;对于B:若O为四边形ABCD的中心,则+﹣﹣≠,若点O不为中心,则+﹣﹣=不一定成立,故B错误;对于C:如图所示,建立直角坐标系,设内切圆的半径为r,则r•3×2=×,解得r=1.设P(x,y),﹣1≤y≤1.则x2+y2=1.A(﹣,﹣1),B(,﹣1),则=(﹣﹣x,﹣1﹣y)•(﹣x,﹣1﹣y)=x2﹣3+(﹣1﹣y)2=2y﹣1≤1,因此C正确.对于D.向量=(2,0),=(2,2),=(cosα,sinα),∴=+=(cosα+2,sinα+2),点A(x,y)满足方程(x﹣2)2+(y﹣2)2=2.设直线OA方程为:y=kx,则≤,可得:2﹣≤k≤2+,设与夹角为θ,则2﹣≤tanθ≤2+,解得:≤θ≤,∴θ的取值范围是[,],因此D不正确.故选:AC.三、填空题(每小题5分,共4小题,合计20分)13.函数f(x)=sin(ωx+φ)(ω>0,|φ|)的部分图象如图所示,则f(x)的单调递增区间为[﹣3+8k,1+8k](k∈Z).解:由图可得,,则T=8,∴,由五点作图的第三点可得:φ=π,则φ=.∴函数解析式为f(x)=sin(x+).由,k∈Z,得﹣3+8k≤x≤1+8k,k∈Z.∴f(x)的单调递增区间为[﹣3+8k,1+8k](k∈Z).故答案为:[﹣3+8k,1+8k](k∈Z).14.复数z满足z(+1)=1+i,其中i是虚数单位,则|z|=1或解:设z=a+bi(a,b∈R),则=a﹣bi,∵z(+1)=1+i,∴(a+bi)(a+1﹣bi)=1+i,∴a2+b2+a+bi=1+i,∴,解得或,∴z=i或z=﹣1+i,∴|z|=1或,故答案为:1或.15.如图,菱形ABCD的边长为2,∠A=60°,M为DC的中点,P是以A为圆心2为半径的圆弧上的点,则•的范围为[﹣3,4﹣9].解:建立平面直角坐标系如图,∵菱形ABCD的边长为2,∠A=60°,∴A(0,0),D(1,),C(3,),M(2,),∵P是以A为圆心2为半径的圆弧上的点,∴设P(2cosθ,2sinθ),(0≤θ≤60°),则=(2cosθ﹣2,2sinθ﹣),=(3,),则•=3(2cosθ﹣2)+(2sinθ﹣)=6cosθ+2sinθ﹣9=4(cosθ+sinθ)﹣9=4sin(θ+60°)﹣9,∵0≤θ≤60°,∴60°≤θ+60°≤120°,∴sin(θ+60°)∈[,1],则4sin(θ+60°)∈[6,4],则4sin(θ+60°)﹣9∈[﹣3,4﹣9],即•的范围为[﹣3,4﹣9],故答案为:[﹣3,4﹣9]16.若AB=2,AC=BC,则三角形ABC面积S△ABC的最大值为2.解:如图所示,A(﹣1,0),B(1,0).设C(x,y)(y≠0).∵AC=BC,∴=,化为:(x﹣3)2+y2=8(y≠0).可知:当且仅当取C(3,±2),三角形ABC的面积的最大值=×2×2=2.故答案为:2.四、解答题(共6小题,合计70分,解答应写出文字说明,证明过程或演算步骤)17.已知A、B、C三点的坐标分别为A(3,0)、B(0,3)、C(cosα,sinα),α∈(,).(1)若||=||,求角α的值;(2)若•=﹣1,求的值.解:,.(1)∵,∴.化简得:sinα=cosα,∴tanα=1.又,故.(2)∵,∴(cosα﹣3)cosα+sinα(sinα﹣3)=﹣1,化简得:,两边平方得:,∴,故sinα﹣cosα>0,而,∴,18.设函数f(x)=sin(ωx﹣)+sin(ωx﹣),其中0<ω<3,已知f()=0.(Ⅰ)求ω;(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移个单位,得到函数y=g(x)的图象,求g(x)在[﹣,]上的最小值.解:(Ⅰ)函数f(x)=sin(ωx﹣)+sin(ωx﹣)=sinωx cos﹣cosωx sin﹣sin(﹣ωx)=sinωx﹣cosωx=sin(ωx﹣),又f()=sin(ω﹣)=0,∴ω﹣=kπ,k∈Z,解得ω=6k+2,又0<ω<3,∴ω=2;(Ⅱ)由(Ⅰ)知,f(x)=sin(2x﹣),将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数y =sin(x﹣)的图象;再将得到的图象向左平移个单位,得到y=sin(x+﹣)的图象,∴函数y=g(x)=sin(x﹣);当x∈[﹣,]时,x﹣∈[﹣,],∴sin(x﹣)∈[﹣,1],∴当x=﹣时,g(x)取得最小值是﹣×=﹣.19.如图,在四边形ABCD中,∠DAB=,AD:AB=2:3,BD=,AB⊥BC.(1)求sin∠ABD的值;(2)若∠BCD=,求CD的长.解:(1)设AD=2x,AB=3x,由余弦定理得:cos==,解得x=1,∴AD=2,AB=3,∴由正弦定理得:,解得sin∠ABD=.(2)sin(∠ABD+∠CBD)=sin,∴sin∠CBD=cos∠ABD,cos=,∴sin,由正弦定理得,解得CD=.20.已知向量=(cosα,sinα),=(cosβ,sinβ),0<β<α<π.(1)若|﹣|=,求证:⊥;(2)设=(0,1),若+=,求α,β的值.解:(1)证明:由|﹣|=,即(﹣)2=2﹣2•+2=2,又因为2=2=||2=||2=1.所以2﹣2•=2,即•=0,故⊥;(2)因为+=(cosα+cosβ,sinα+sinβ)=(0,1),所以,即,两边分别平方再相加得1=2﹣2sinβ,∴sinβ=,sinα=,又∵0<β<α<π,∴α=,β=.21.如图,在△ABC中,角A,B,C的对边分别为a,b,c,a=b(sin C+cos C).(Ⅰ)求∠ABC;(Ⅱ)若∠A=,D为△ABC外一点,DB=2,DC=1,求四边形ABDC面积的最大值.【解答】(本题满分为12分)解:(Ⅰ)在△ABC中,∵a=b(sin C+cos C),∴sin A=sin B(sin C+cos C),…(1分)∴sin(π﹣B﹣C)=sin B(sin C+cos C),∴sin(B+C)=sin B(sin C+cos C),…∴sin B cos C+cos B sin C=sin B sin C+sin B cos C,…∴cos B sin C=sin B sin C,又∵C∈(0,π),故sin C≠0,…∴cos B=sin B,即tan B=1.…又∵B∈(0,π),∴.…(Ⅱ)在△BCD中,DB=2,DC=1,∴BC2=12+22﹣2×1×2×cos D=5﹣4cos D.…又,由(Ⅰ)可知,∴△ABC为等腰直角三角形,…∴,…又∵,…∴.…∴当时,四边形ABDC的面积有最大值,最大值为.…22.如图,经过村庄A有两条夹角为60°的公路AB,AC,根据规划拟在两条公路之间的区域内建一工厂P,分别在两条公路边上建两个仓库M,N(异于村庄A),要求PM=PN=MN=2(单位:千米).记∠AMN=θ.(1)将AN,AM用含θ的关系式表示出来;(2)如何设计(即AN,AM为多长时),使得工厂产生的噪声对居民的影响最小(即工厂与村庄的距离AP最大)?解:(1)∠AMN=θ,在△AMN中,由正弦定理得:==所以AN=,AM=(2)AP2=AM2+MP2﹣2AM•MP•cos∠AMP=sin2(θ+60°)+4﹣sin(θ+60°)cos(θ+60°)=[1﹣cos(2θ+120°)]﹣sin(2θ+120°)+4=[sin(2θ+120°)+cos(2θ+120°)]+=﹣sin(2θ+150°),θ∈(0°,120°)(其中利用诱导公式可知sin(120°﹣θ)=sin(θ+60°))当且仅当2θ+150°=270°,即θ=60°时,工厂产生的噪声对居民的影响最小,此时AN=AM=2.故答案为:(1)AN=,AM=(2)AN=AM=2时,工厂产生的噪声对居民的影响最小.。