工频变化量原理及应用分析
电力系统继电保护继电保护新原理
电端机 (发)
光端机 (发)
光 缆 光中
继器
光端机 (收)
电端机 (收)
光纤通信距离超过100KM就要设中继器。
光纤作导引线的数字式纵差动保护工作原理
理解上图关键:时刻与时间的区分
td =1/2((tr2-tq2)-tm) △t =tpi-(tr3-td)=td-(tr3-tpi ) t′P(i+1)=(tpi+Ts)-△t
1.测量量:
常规保护装置反应的是故障前 的工频分量和故障中的工频分量之 和;行波保护反应的是故障分量, 及故障分量中的工频成分和暂态成 份;工频变化量测量元件仅反应故 障分量中的工频成份。
2.工频变化量继电保护的优点:
常规保护装置可靠性高而动 作速度较慢,行波保护动作速 度快而可靠性较差。
工频变化量测量元件具有常 规保护的可靠性和行波保护的 快速性。
Arg Z1m Z set
180
综上所述:当正方向故障时,正方向元件的测量 角为180°;反方向元件的测量角为0°。当反方向 故障时,正方向元件的测量角为0°;反方向元件的 测量角为180°。
(2)工频变化量方向元件的工作原理
理论上,方向元件的动作条件可规 定为:180°,正向元件动作后开放保 护,反方向元件动作后闭锁保护。反 方向元件保证在反方向任何故障情况 下保护都能够有选择不动作,不存在 传统保护中的按相起动问题。
.
• Δ I ——工频变化量电流; • Z set ——整定阻抗。
分析工频率变化量阻抗保护
工作原理的电路图
∆U
Es k3
∆I
k1
k2
Es'
Zset
工频变化量阻抗继电器
工频变化量阻抗继电器工频变化量阻抗继电器是一种在电力系统中常用的保护和控制装置。
它的作用是在电流或电压超过一定限值时,能够及时将电路切断,保护电力设备和人员安全。
本文将分为以下几个方面进行论述,以使内容更加清晰。
首先,我将介绍工频变化量阻抗继电器的基本原理。
工频变化量阻抗继电器是通过测量电路中的电压和电流,并根据预设的电流和电压阈值来判断电路的状态。
当电流或电压超过设定的限制值时,继电器会迅速切断电路并发出报警信号,以保护电力设备和人员的安全。
其次,我将详细介绍工频变化量阻抗继电器的工作原理。
继电器通过测量电路中的电压和电流来计算电路的阻抗值。
当电路中的阻抗发生变化时,继电器会根据设定的阻抗变化范围来判断电路的状态。
一般来说,当电路的阻抗超过设定的范围时,继电器会切断电路并发出报警信号。
然后,我将讨论工频变化量阻抗继电器的应用领域。
工频变化量阻抗继电器常用于电力系统中的变压器保护和电力设备保护。
在变压器保护中,继电器可以监测变压器的阻抗变化,以及电压和电流之间的相位差,从而判断变压器是否正常工作。
在电力设备保护中,继电器可以监测设备的电流和电压,判断设备是否超载或过流,并及时切断电路保护设备。
最后,我将讨论工频变化量阻抗继电器的优点和不足。
工频变化量阻抗继电器具有响应速度快、可靠性高、可调节性强等优点。
但是,它也存在一些不足之处,例如在高频电路中可能会出现误报警情况,以及灵敏度可能会受到电力系统中其他因素的影响。
总之,工频变化量阻抗继电器是一种在电力系统中常用的保护和控制装置。
它通过测量电路中的电压和电流,根据预设的电流和电压阈值来判断电路的状态,并在超过限制值时切断电路。
它的应用领域广泛,并具有一定的优点和不足之处。
这些特点使得工频变化量阻抗继电器成为电力系统中不可或缺的一部分。
工频变化量(DPFC)的原理
⼯频变化量(DPFC)的原理
明天要和⼩⽇本讨论问题,望⽉太⽜逼,什么都知道,从⼀次到⼆次,从保护到监控。
可怜我刚刚毕业还处于蒙昧状态,他已经快退休。
今天看了下说明书,发现⼯频变化量距离保护我怎么也看不懂,推导公式怎么也不⾏啊,最好找了本书终于明⽩了。
1 具体的原理就是将故障的时候的电压和电流分解成正常量和故障分量。
⼯频变化量,顾名思义,肯定是取变化量。
2 动作⽅程是 |*Uop| > Uz;什么是*Uop,什么是Uz?慢慢细说。
3 Uz就是保护规定的值,但是在902/901等保护中只有⼀个定值,⼯频变化量阻抗Zzd(此值⼀般整定的时候不⼤于8欧姆),没有什么电压之类的值。
从图1看,Zzd就是保护中的定值。
图1的(A)和(B)其实是等效的,Zm是电源侧的阻抗。
图1
有了图1的介绍,那么可知在线路制定的位置Zzd处发⽣故障的时候,在保护安装处测到的故障电压时啥,这个电压其实就是Uz。
图1(B)中不难看出,Uz = (*E)=(*I)*(Zm+Z);*I 是电流变化量,Z是故障点的阻抗,此时,如果将故障点移到保护的规定长度上,那么保护安装处测到的电压时*Uop = (*I)*(Zm+Zzd),,由于在保护的长度之中,所以说,Z<Zzd; 可以得到结果*Uop>Uz。
4 从上⾯不难看出,保护所反映的电压是保护安装处的变化电压,刚刚开始考虑的时候是按照故障点的电压来考虑问题,所以百撕不得骑姐。
工频变化量方向继电器原理的研究
工频变化量方向继电器原理的研究继电器是电气控制系统中常见的一种电器元件,在工业自动化、电力系统、交通运输、航空航天等领域都有广泛的应用。
工频变化量方向继电器是一种特殊的继电器,它能够实现对交流电源电流或电压的检测和控制,其中变化量方向的判断是其核心原理之一。
工频变化量方向继电器的工作原理是基于电流或电压的变化量方向来进行判断。
在交流电路中,电流或电压的变化方向是由正向和反向两种状态来表示的。
利用这一特性,工频变化量方向继电器可以通过对电流或电压的采样和比较,来实现对变化量方向的判断。
在实际应用中,工频变化量方向继电器通常由采样电路、比较电路和控制电路三部分组成。
采样电路用于对电流或电压进行采样,一般采用电流互感器或电压互感器来实现。
比较电路则用于对采样信号进行比较,一般采用比较器或运算放大器等电子元件来实现。
控制电路则用于通过比较电路的输出信号来控制继电器的动作,一般采用触发器、计数器等电子元件来实现。
通过这三部分电路的协同作用,可以实现对工频变化量方向的判断和控制。
工频变化量方向继电器的应用范围广泛,主要包括电力系统、电气控制系统、自动化设备等领域。
在电力系统中,工频变化量方向继电器可以用于断路器的保护,实现对电力设备的安全控制。
在电气控制系统中,工频变化量方向继电器可以用于控制电机的正反转,实现对机械设备的控制。
在自动化设备中,工频变化量方向继电器可以用于实现对机器人的控制,实现自动化生产。
工频变化量方向继电器是一种特殊的继电器,它通过对电流或电压的变化量方向的判断来实现对电气设备的控制和保护。
随着电气自动化技术的不断发展,工频变化量方向继电器将在更广泛的领域得到应用,并为人们的生产和生活带来更多的便利和安全。
RCS-931线路工频变化量距离保护原理及零序保护原理
工频变化量阻抗继电器实验方法
《LFP-900系列超高压线路成套快速保护装置检验 规程》规定的方法。
模拟单相接地时校验时,故障前空载,模拟故障 电流固定(一般I=In),模拟故障前电压为额定电 压,故障电压为 U=(1+K)IZset+(11.05m)Un , m应在1.1时可靠动,m=0.9时不动; m=1.2时测保护动作时间。
⑶ 保留纵联工频变化量方向保护。但工频变化 量方向继电器内的补偿阻抗自动退出。此时工 频变化量方向继电器在再发生短路时还能正确 工作。退出可防止在反方向发生短路时元件的 误动。
⑷ 纵联零序方向保护退出。因为保护用自产的 电压,在TV断线下再发生短路时,自产的电压 相位可能错误,造成零序方向继电器动作行为 不正确。因此纵联零序方向保护应退出。
当三相电压恢复正常后, 经10秒延时TV断线信号 自动复归,保护自动恢复正常。
TA断线的判别与对保护的处理
当TA二次回路断线时或者电流的采样通 道故障时,装置认为交流电流断线。此时电 流的采样值将出现错误并导致出现自产的零 序电流,从而对零序电流保护产生影响。
此外在断线和不断线两种情况下系统发 生短路时由于零序电流的相位不同将可能导 致零序方向继电器在断线下发生短路时的不 正确动作。因此相应的保护要采取一些措施。
RCS-931线路工频变化量距 离保护原理及零序保护原理
装置起动元件
电流变化量起动 IMAX 1.25IT IZD
IMAX 是相间电流的半波积分的最大值; I ZD 为可整定的固定门坎;
倍I可T 保为证浮门动坎门始坎终,略随高着于变不化平量衡的输变出化。而自动调整,取1.25
该元件动作并展宽7秒,去开放出口继电器正电源。 零序过流元件起动
工频变化量保护原理
工频变化量保护原理工频变化量保护是电力系统中常用的一种保护手段,其原理是通过监测电力系统中的工频电压和电流的变化量,以判断系统是否存在异常情况,并及时采取相应的保护措施。
首先,我们来了解一下为什么需要工频变化量保护。
在电力系统运行过程中,由于各种原因可能会出现电网故障、设备故障等异常情况,这些异常情况会导致工频电压和电流的变化。
如果这些变化超过了正常范围,就可能对电力系统的稳定运行造成危害。
因此,采用工频变化量保护来监测这些变化,并及时做出相应的响应措施,对于保障电力系统的安全运行具有重要意义。
工频变化量保护的原理可以简单概括为:通过对工频电压和电流的采集,计算相邻采样点之间的变化量,并根据设定的阈值进行判断。
当变化量超过设定的阈值时,就会触发保护装置,并通过断路器等控制手段,将异常区域从电力系统中隔离,以避免异常扩大和对系统造成损害。
其中,阈值的设定需要根据具体情况进行分析,可以考虑电力系统的稳定性要求、设备能承受的极限值等因素。
工频变化量保护的指导意义体现在以下几个方面:1. 及时发现异常情况:工频变化量保护能够实时监测电压和电流的变化情况,一旦发现异常,就能够及时作出响应。
这样能够避免异常情况扩大,保护电力系统的安全运行。
2. 规避故障风险:通过对工频变化量的监测,可以判断电力系统是否存在潜在的故障风险。
一旦发现潜在风险,就可以采取预防性措施,避免故障的发生,保障电力系统的连续供电。
3. 提高系统可靠性:工频变化量保护能够在系统异常时及时切除故障区域,尽可能减小对整个系统的影响。
这样能够提高系统的可靠性,减少停电时间和经济损失。
4. 辅助故障诊断:工频变化量保护记录了电力系统中电压和电流的变化情况,这些数据对于故障的诊断和定位具有重要意义。
通过分析这些数据,可以帮助工程师快速准确地找出故障原因,并采取相应的修复措施。
总之,工频变化量保护是电力系统中一项非常重要的保护措施。
通过监测电压和电流的变化量,及时发现异常情况,规避故障风险,并提高系统可靠性。
工频变化量距离继电器原理分析
对工频变化量距离继电器的一点认识为了帮助大家对工频变化量距离继电器的理解,我从电压的角度来分析这个继电器。
看下图(以对称故障为例,继电器装在M侧):In△MN△Im、△In分别为正、反方向故障时与负荷电流无关的由故障引起的突变量电流。
正方向F1点故障时,故障前M侧母线电压:Um′﹦Em﹣I fh*Zs ,工作电压: Uop′﹦Um′﹣I fh*Zzd 。
故障后M侧母线电压: Um〞﹦Em﹣(△Im+I fh) *Zs ,工作电压: Uop〞﹦Um〞﹣(△Im+I fh) *Zzd。
F1点短路时工作电压的变化量:△Uop﹦Uop〞﹣Uop′﹦Um〞﹣Um′﹣(△Im+Ifh)*Zzd﹣(﹣Ifh*Zzd)﹦﹣△Im(Zzd+Zs)。
正方向F1点故障时,故障前F1点的电压:U k1′﹦Um′﹣I fh*Z k1,故障后F1点的电压: U k1〞﹦Um〞﹣(△Im+I fh) Z k1。
F1点的电压变化量:△U k1﹦U k1〞﹣U k1′﹦﹣△Im*( Z k1+Zs)。
比较︱△Uop︱与︱△U k1︱, 显然F1点故障时,Z k1﹤Zzd,︱△Uop︱﹥︱△U k1︱。
F3点故障时,由于Z k3﹥Zzd,︱△Uop︱﹤︱△U k3︱。
反方向F2点故障时,流进M侧CT的电流由对侧电源提供,分析时既以对侧电源为电源,故障前M侧母线电压:Um′﹦I fh*Zs′+En,工作电压: Uop′﹦Um′﹣I fh*Zzd 。
故障后M侧母线电压: Um〞﹦En+[(﹣△In)+I fh]* Zs′,工作电压:△Uop〞﹦Um〞﹣[(﹣△In)+I fh]* Zzd]。
△Uop﹦△Uop〞﹣△Uop′﹦Um〞﹣Um′﹣[(﹣△In)+I fh]* Zzd+I fh*Zzd﹦﹣△In(Zs′﹣Zzd)。
反方向F2故障时,故障前F2点的电压:U k2′﹦En+I fh*(Z k2+Zs′),F2故障点后: U k2〞﹦En+[(﹣△In)+I fh]*(Z k2+Zs′),F2点的电压变化量:△U k2﹦U k2〞﹣U k2′﹦﹣△In*(Z k2+Zs′)。
对工频变化量距离继电器的一点分析
U U OP OPK 2
EM 0
E N 0
U M
U U OP OPK 3
(D)
EM 0
U K3
E N 0
U M
(E)
U K4
U U U OP K4 OPK 4
图 2-1 线路区内、区外各点金属性故障时的突变量电压分布图 Fig.2-1 Distributing diagram of break Voltage of apiece dot metal quality malfunction of section intsite and section outsite of power system connection 对图 2-1 作两点解释,①假设故障前线路空载,系统各点电压一样(线路不空载的话, 就是再叠加一个负荷分量。前面分析过,工频变化量距离继电器只反映故障分量,所以假设
U MK 1 EM I K 1 Z S , U OPK 1 U MK 1 I K 1 Z ZD 。
K1 点短路时工作电压的变化量:
U OPK 1 U OPK 1 U OP 0 U MK 1 U M 0 ( I K 1 I fh ) Z ZD U MK 1 ( I K 1 I fh ) Z ZD
1.3 正方向区外 K 3 点故障时
。 换成 I 推导过程同上,只是把 I K1 K3
工作电压的变化量: 故障点电压的变化量:
U OPK 3 I K 3 ( Z S Z ZD ) 。 I (Z Z ) 。 U K3 K3 S K3
(1-4) (1-5)
U U K1 MK 1 I K 1 Z K 1 。
工频变化量距离保护原理
工频变化量距离保护原理嘿,朋友们!今天咱来聊聊工频变化量距离保护原理。
这玩意儿啊,就像是电力系统的忠诚卫士!你想啊,电力系统就像一条繁忙的大马路,电流啊电压啊就像来来往往的车辆。
而工频变化量距离保护原理呢,就是那个站在路口指挥交通的警察叔叔。
它时刻关注着电流电压的变化,一旦发现有啥不对劲,立马就采取行动。
它是怎么工作的呢?简单来说,就是通过检测工频变化量来判断故障的位置。
这就好比你在人群中,能通过一个人的特别举动一下子就发现他。
比如说,正常情况下大家都在慢慢走,突然有个人开始狂奔,那肯定有情况呀!它特别厉害的一点就是反应迅速。
就像你看到危险,下意识地就会做出反应一样。
而且啊,它还很准确,不会轻易误判。
这可不是随便说说的,这可是经过无数次实践和考验的呢!你说要是没有它,那电力系统不就乱套啦?就像马路上没有交警,那还不得堵成一锅粥啊!所以说啊,它的存在真的太重要啦!咱再打个比方,它就像是家里的防盗门。
平时你可能感觉不到它的重要性,但是一旦有小偷想进来,它就能立刻发挥作用,保护家里的安全。
工频变化量距离保护原理也是这样,平时默默守护着电力系统,关键时刻绝不掉链子。
你想想,要是没有它,突然来个故障,那得造成多大的损失啊!工厂可能停产,家里可能停电,那可真是麻烦大了!但有了它在,咱就放心多啦,它就像一个可靠的伙伴,一直守护在那里。
它的工作原理其实也不复杂,就是通过一些巧妙的计算和监测,把那些可能的危险都扼杀在摇篮里。
这就需要很高的技术和智慧啦,可不是随便谁都能做到的哦!总之呢,工频变化量距离保护原理就是电力系统的保护神!它让我们的生活更加稳定、更加可靠。
难道我们不应该为它点个赞吗?难道我们不应该好好珍惜它的存在吗?让我们一起感谢这个默默守护我们的“卫士”吧!。
1工频变化量距离继电器
微机保护是用微型计算机构成的继电保护,是电力系统继电保护的发展方向(现已基本实现,尚需发展),它具有高可靠性,高选择性,高灵敏度。
微机保护装置硬件包括微处理器(单片机)为核心,配以输入、输出通道,人机接口和通讯接口等.该系统广泛应用于电力、石化、矿山冶炼、铁路以及民用建筑等。
微机的硬件是通用的,而保护的性能和功能是由软件决定。
微机保护装置的数字核心一般由CPU、存储器、定时器/计数器、Watchdog等组成。
目前数字核心的主流为嵌入式微控制器(MCU),即通常所说的单片机;输入输出通道包括模拟量输入通道(模拟量输入变换回路(将CT、PT所测量的量转换成更低的适合内部A/D转换的电压量,±2.5V、±5V或±10V)、低通滤波器及采样、A/D转换)和数字量输入输出通道(人机接口和各种告警信号、跳闸信号及电度脉冲等)。
工频变化量距离继电器距离继电器的工作方式是比较测量阻抗Z J与整定值Z zd的大小.但是保护装置是无法直接得到Z J,需要对所测电压和电流进行计算,也就是说,可以把比较阻抗的方程转化为比较故障时候的极化电压Up和工作电压Uop的方法。
极化电压:故障点在故障前的电压,是保护的记忆量;工作电压:工作电压的公司是保护选取采用的公式,该公式能在保护计算中能很好的区分出区内故障和区外故障。
工作电压的公式:Uop=U-Z zd*I下面分析工频变化量距离继电器的工作原理正常运行时,输电线路忽略线路阻抗的情况下线路电压Uz 处处相等。
如图3.1在线路K 点发生金属性接地短路,故障点电压为零,相当于在图3.1的K 点增加了一个反方向的电压Uz 。
如图3.2根据电路的叠加原理,就可以将图3.2分解为正常运行的网络(图3.1)与故障分量网络(图3.3)。
故障分量网络就是工频变化量分析的对象。
图3.3只有一个附加电势Uz ,它的值就是故障前的母线电压,这里选作极化量。
一、作出区内故障阻抗图。
工频变化量原理及应用分析
工频变化量原理及应用分析发表时间:2019-08-22T13:38:16.657Z 来源:《河南电力》2018年24期作者:冯家堃[导读] 本文系统地分析了工频变化量的技术原理及其在各种保护装置中的实际应用,并总结了这些保护装置的自身独有优点。
冯家堃(中电(四会)热电有限责任公司)摘要:本文系统地分析了工频变化量的技术原理及其在各种保护装置中的实际应用,并总结了这些保护装置的自身独有优点。
关键词:工频变化量;原理;微机保护在中国电力系统继电保护领域,南瑞继保公司无疑是在技术和市场方面处于领先地位。
这一辉煌成就与中国工程院院士沈国荣创立的“工频变化量”理论有着密切的关系。
由于工频变化量的原理,促使保护装置各个方面得到了较大的提升,例如灵敏度、安全性、选择性以及快速性等。
然而,传统的教科书中并没有具体的理论,制造商的手册也不详细。
下面将从原理和实际应用方面进行具体分析。
1 工频变化量原理分析工频变化理论是基于叠加原理的,简单说倘若电力系统出现故障状态,在过渡电阻的作用下,它可以看作是金属性短路点,即从这个点到系统中性点的电压为零。
结果表明,该金属性短路点到中性点中有两个串联电压源,它们大小一致,相位是相对的,点与点之间的电压仍为零。
见图 1。
图1 短路后的情况图(ES:保护背后的电源,ER:保护对侧的电源) “短路后情况”可以看作是正常负载情况和短路附加情况的叠加。
见图 2、图 3。
图2 正常负荷情况图图3 短路附加情况图“叠加”具有两个概念:第一个概念是短路后任何一点的电压,例如从M点到中性点的电压(即M母线保护装置的电压)的问题。
向上箭头表示电位较高,M总线为正,中性点为负值。
等于两种状态中对应点的电压之和。
第二个概念是短路后的支路的电流,如流过保护的电流,等于两种状态中相应支路的电流之和。
从正常负载情况和短路附加情况的叠加原理来说,可以取任何值,不需要△UF要求。
但在保护装置中,△UF在短路前先取电压,ES、ER为电源电位,短路前后不会发生任何变化。
发电机工频变化量
发电机工频变化量发电机工频变化量是指发电机在正常运行过程中,输出电压或电流的频率发生变化的情况。
这种变化量对于电力系统的稳定运行和电气设备的正常工作具有重要影响。
发电机工频变化量的原因主要有两个方面:一是负荷变化,二是发电机自身特性引起的变化。
负荷变化是指电力系统中负荷的增减或负荷特性的变化,如电力消耗的增加或减少、负荷的突变等。
当负荷发生变化时,电力系统需要调整发电机的输出,保持电力平衡。
这种调整会导致发电机的工频发生变化,即发电机工频变化量。
负荷的增加会导致发电机输出电压降低,使得电力系统频率下降;而负荷的减少则会导致发电机输出电压升高,使得电力系统频率上升。
因此,负荷变化是引起发电机工频变化量的主要原因之一。
发电机自身特性引起的变化是指发电机在运行过程中由于其特性造成的频率变化。
发电机的特性主要包括磁通变化、电机参数变化等。
磁通变化是指发电机中的磁场强度发生变化,这会导致发电机输出电压的变化,进而引起频率的变化。
电机参数变化是指发电机内部电机参数的变化,如电阻、电感、电容等参数的变化,这也会对发电机的输出频率产生影响。
发电机工频变化量的影响主要体现在以下几个方面:1. 电力系统稳定性:发电机工频变化量会影响电力系统的频率稳定性。
当频率变化较大时,会导致电力系统的负荷不平衡,进而引起电力系统的不稳定运行,甚至引发电力系统的故障。
2. 电气设备的正常工作:发电机工频变化量会对电气设备的正常工作产生影响。
许多电气设备,特别是一些精密仪器和电子设备,对电源的频率要求较高。
当发电机的频率发生变化时,可能会导致这些设备无法正常工作,甚至损坏设备。
3. 发电机寿命:频繁的工频变化量会对发电机的寿命产生影响。
由于发电机在频率变化过程中需要不断调整输出,这会增加发电机的负荷,加速发电机的磨损,降低其使用寿命。
针对发电机工频变化量的影响,需要采取一系列的措施来降低其影响:1. 加强电力系统的负荷管理,合理规划负荷分布,避免负荷突变,减少发电机工频变化量。
工频变化量继电保护原理
工频变化量继电保护原理工频变化量继电保护是电力系统中常用的一种保护装置,它主要用来检测电网中的电压、电流等参数的变化情况,以保证电力系统的正常运行。
本文将介绍工频变化量继电保护的原理和作用。
工频变化量继电保护的原理是基于电力系统中的频率和幅值的变化来进行判断和保护的。
在电力系统中,电压、电流等参数的频率和幅值都是有一定范围的,当这些参数的变化超出了设定的范围时,就会触发继电保护装置进行动作,以保护电力系统的安全运行。
工频变化量继电保护需要检测电网中的频率变化情况。
在电力系统中,频率是指电压或电流的周期性变化的次数,单位是赫兹(Hz)。
正常情况下,电网的频率是比较稳定的,一般在50Hz或60Hz左右。
当电网的频率超出了设定的范围,如低于47Hz或高于53Hz,就会触发继电保护装置进行动作。
这种情况可能是由于电网负荷变化、发电机故障或电网故障等原因引起的,继电保护装置的动作将及时切断电力系统与电网的连接,以防止故障扩大或对电力设备造成损坏。
工频变化量继电保护还需要检测电网中的幅值变化情况。
在电力系统中,幅值是指电压或电流的最大值,单位是伏特(V)或安培(A)。
正常情况下,电网的幅值也是比较稳定的,一般在设定的范围内变化。
当电网的幅值超出了设定的范围,如低于90%或高于110%,就会触发继电保护装置进行动作。
这种情况可能是由于电网负荷过大、设备故障或电网故障等原因引起的,继电保护装置的动作将及时切断电力系统与电网的连接,以保护电力设备不受损坏。
工频变化量继电保护是一种基于电力系统中频率和幅值变化的保护装置。
通过检测电网中的频率和幅值的变化情况,继电保护装置可以及时切断电力系统与电网的连接,以保护电力系统的安全运行。
在实际应用中,工频变化量继电保护通常与其他保护装置相结合,共同保障电力系统的稳定性和可靠性。
同时,为了保证继电保护装置的准确性和可靠性,还需要定期对其进行检测和校准,以确保其正常工作和保护功能的可靠性。
工频变化量方向元件判别的相角
工频变化量方向元件判别的相角
在电力系统中,相角是一个非常重要的参数。
相角是指两个交流电信号之间的相位差,通常用度数或弧度来表示。
在电力系统中,相角的变化会影响电压、电流、功率等参数的变化,因此相角的准确测量和判别非常重要。
工频变化量方向元件是一种用于测量相角的元件。
它是一种基于电磁感应原理的元件,可以测量电流和电压之间的相位差。
工频变化量方向元件的工作原理是利用电磁感应的原理,当电流通过线圈时,会产生磁场,磁场的变化会引起线圈中的电动势,从而实现电流的测量。
在电力系统中,工频变化量方向元件通常用于测量电流和电压之间的相位差。
通过测量电流和电压之间的相位差,可以计算出电力系统中的功率、电能等参数。
因此,工频变化量方向元件在电力系统中具有非常重要的作用。
在使用工频变化量方向元件进行相角测量时,需要注意一些问题。
首先,需要选择合适的工频变化量方向元件,不同的元件适用于不同的电路。
其次,需要正确连接工频变化量方向元件,保证测量的准确性。
最后,需要根据测量结果进行相应的分析和处理,以得出正确的结论。
工频变化量方向元件是一种非常重要的电力测量元件,可以用于测
量电流和电压之间的相位差,从而计算出电力系统中的功率、电能等参数。
在使用工频变化量方向元件进行相角测量时,需要注意一些问题,以保证测量的准确性和可靠性。
工频变化量阻抗继电器原理介绍
270 0
• 该动作方程对应的动作特性是以 2ZR Zset
和 Zset 两点连线为直径的圆。
反向短路动作特性
• 当 ZK 在圆内时继电器 动作。
• 反向短路时 ZK 落在第 Ⅲ象限,进入不了圆内。 因而继电器不会误动。而 有良好的方向性。
jX 2ZR ZSET
Z SET
R
ZK
南京南瑞继保电气有限公司
工频变化量阻抗继电器原理 介绍
工频变化量阻抗继电器
重叠原理的应用
ES M Z I
N
ER
ZK
UF
U
UF
ES M Il
N
ER
Ul
UF
短路后状态
M I
N
U
UF
短路附加状态
正常负荷状态
U U Ul I I Il
工频变化量继电器的基本关系式
正向短路基本关系式
M I
ZS ZK
90 o
arg
ZK
ZK
2ZR Z
Z SET
SET
270 o
谢谢!
U F IZS Z K
• 正向区内短路 Z K Z set S
UOP UF • 正向区外短路 Z K Z set S
UOP UF
F UF
Y
R
UOP
YF R
UOP UF
工频变化量阻抗继电器工作原理
• 反向短路
UOP U IZset IZR IZset I Z R Z set
反向短路动作特性
• 反向短路时
UOP U IZset IZR IZset I Z R Z set
U F I Z R Z K I Z R Z K
工频变化量阻抗继电器原理及检验方法
以图 2为例 分析 正方 向故 障 时的动 作特 性 图 ,保 护安 装 处感 受 到 的 测量 阻 抗 五为短 路 点 F 保 护 安装 处 的阻 抗 和 过渡 电 到
阻 的 附加 阻抗 z之和 。则 : d
U U T 一 I z ’ 一 z I z
同样取 △ ! 5 / . 、了 , 当 <2 0 则 J
(. 东电力设计院, 1 华 上海 2 0 0 : . 0 0 1 2上海 电气输配 电工程成 套有限公司 , 上海 2 0 5 ) 0 0 0
摘
要: 分析 了工 频变化 量阻抗继电器的原理 , 推导 出其校验 公式, 并通过实例介绍 了工频变化量 阻抗继 电器在 正方 向区 内、 区外及反方 向
lst  ̄ e
< 2 o。 7
图 2 正方 向故 障后附加网络图
电力系 统可 以近 似看 作线 性 系统 ,因此 故 障 时 电气 量 可 以分 解 为 故障 前正 常运 行状 态及 故障 后 附加 状态 的叠 加 。工频 变化 量 就 是利 用故 障后 附加 状态 的工频 电气 量构 成 的过 电压 继 电器 。其
式中,
、 、 ; 为零 序补 偿 系数 。 B 线路 参 数 等误 差 ,取 A f1 5 ,则 当 U . 0 < 1K 十 卜1 5 时, (+ ) ( . ) 0 工频变化量继 电器动作。为了简化
校验 方法 , 据 规程 , 设故 障相 电压为 : 根 可
£ l2 (一 . m 、 3已 , 互 + 1 1 5 ) / d O
端 电压 的变化 量 。△ 为极化 电压 , 物理 概 念 为短 路前 短 路 点 F 2 工 频 变 化 量 阻 抗 继 电 器 校 验 公 式 其
工频变化量
工频变化量
工频变化量是指工频电压或电流在一定时间内的变化量。
它通常用于描述电力系统中电压或电流的快速变化情况,是电力系统保护和控制中的重要参数。
工频变化量的大小和方向可以反映电力系统中故障的类型和位置。
例如,在短路故障发生时,工频变化量会突然增大,并且方向与正常情况下相反。
因此,通过检测工频变化量,可以快速地识别故障,并采取相应的保护措施。
在电力系统保护和控制中,工频变化量通常用于实现快速保护和故障定位。
例如,距离保护、差动保护等快速保护装置都可以利用工频变化量来实现快速动作。
此外,工频变化量也可以用于故障录波和电能质量监测等方面。
工频变化量是电力系统保护和控制中的重要参数,它可以反映电力系统中故障的类型和位置,并且在实现快速保护和故障定位方面具有重要作用。
工频变化量阻抗继电器原理介绍ppt课件
U F IZS Z K
• 正向区内短路 Z K Z set S
UOP UF • 正向区外短路 Z K Z set S
UOP UF
F UF
Y
R
UOP
Y
UOP
FR
UF
7
工频变化量阻抗继电器工作原理
• 反向短路
UOP U IZset IZR IZset I Z R Z set
uop为保护范围末端电压代表保护范围末端电压变化量大于时继电器动作则不动作
1
南京南瑞继保电气有限公司
工频变化量阻抗继电器原理 介绍
2
工频变化量阻抗继电器
重叠原理的应用
ES M Z I
N
ER
ZK
UF
U
UF
ES M Il
N
ER
Ul
UF
短路后状态
M I
N
U
UF
短路附加状态
正常负荷状态
U U Ul I I Il
端电压变化量大于 UOP时.M 继电器动作, 否则不动
作。
– 对相间阻抗继电器 UOP U I ZSET
– 对接地阻抗继电器 UOP U I K 3I0 ZSET
– UOP为.M 动作门槛,取故障前工作电压的记忆量。
6
工频变化量阻抗继电器工作原理
• 正向短路
UOP U IZset IZS IZset I ZS Zset
12
反向短路动作特性
• 反向短路时
UOP U IZset IZR IZset I Z R Z set
U F I Z R Z K I Z R Z K
• 代入动作方程,得到:
Z R Z set Z R Z K
工频变化量原理及应用分析
工频变化量原理及应用分析摘要:文章系统分析了“工频变化量”技术的理论基础和在各种保护装置中的实际应用,并总结了这些保护装置的独特优势。
关键词:工频变化量;原理;微机保护Abstract: The paper systematically analyzed theory basis of DPFC technology and its application in all kinds of protection devices, and then summed up the unique advantages of these devices.Key words: deviation of power frequency component; principle; microcomputer protection在我国电力系统继电保护领域,南瑞继保公司无疑是占尽技术优势和市场优势的领头羊。
之所以能够取得这样辉煌的成就,是与南瑞继保公司董事长、中国工程院院士沈国荣先生和他创立的“工频变化量”理论紧密联系在一起的。
基于这种原理的保护装置在安全性、快速性、灵敏性和选择性等各方面都有很大的提高,但是在传统的教科书中并没有具体的理论讲述,厂家的说明书也很不详细。
下面将从原理和实际应用方面进行具体地分析。
1 工频变化量Deviation of Power Frequency Component (DPFC)原理分析工频变化量的理论基础为叠加原理,即电力系统发生故障时,经过渡电阻短路,可认为是过渡电阻下面的一点金属性短路,即该点对系统中性点电压为零,可认为该点与中性点之间串联2个大小相等、相位相反的电压源,依然保持该点与中性点间电压为零,见图1。
“叠加”有2个含义:①短路后任一点的电压,如保护安装处M母线的电压(即M点到中性点电压,是我们关心的,箭头向上表示电位为升,M母线为正,中性点为负,),等于2个图中相应点的电压之和(二种状态)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
工频变化量原理及应用分析
来源:[]机电之家·机电行业电子商务平台!
在我国电力系统继电保护领域,南瑞继保公司无疑是占尽技术优势和市场优势的领头羊。
之所以能够取得这样辉煌的成就,是与南瑞继保公司董事长、中国工程院院士沈国荣先生和他创立的“工频变化量”理论紧密联系在一起的。
基于这种原理的保护装置在安全性、快速性、灵敏性和选择性等各方面都有很大的提高,但是在传统的教科书中并没有具体的理论讲述,厂家的说明书也很不详细。
下面将从原理和实际应用方面进行具体地分析。
1 工频变化量Deviation of Power Frequency Component (DPFC)原理分析
工频变化量的理论基础为叠加原理,即电力系统发生故障时,经过渡电阻短路,可认为是过渡电阻下面的一点金属性短路,即该点对系统中性点电压为零,可认为该点与中性点之间串联2个大小相等、相位相反的电压源,依然保持该点与中性点间电压为零,见图1。
“叠加”有2个含义:①短路后任一点的电压,如保护安装处M母线的电压(即M点到中性点电压,是我们关心的,箭头向上表示电位为升,M母线为正,中性点为负,),等于2个图中相
应点的电压之和(二种状态)。
②短路后某个支路的电流,如流过保护的电流,等于2图中相应支路的电流之和。
从重叠原理本身来说,对△UF没有要求,可以任意取值,但在保护装置里△UF取短路点短路以前的电压,Es、ER为电源电势,在短路前后不变,因此,图1称为正常负荷状态,图2称短路附加状态,目的就是凑出这二种状态。
与常规的稳态量保护装置不同,基于工频变化量原理的保护装置只是“考虑”短路附加状态的各种电气量,而不考虑正常负荷状态的各种电气量。
在附加状态中,只有短路点有一个电压源,电气量全部为变化量用符号△表示。
微机保护中正在采样的U、I减去“历史”上采样出来的U、I,即为加在继电器上的△U、△I。
Zs为保护背后电源的等值阻抗,ZR为保护正方向的所有阻抗,S为保护背后中性点,由下图4、图5可得出2个基本关系式:
2 变压器的工频变化量比率差动保护
变压器有70%左右的故障是匝间短路,为了提高小匝间短路时差动保护的灵敏度,常规的比率制动特性差动保护中的起动电流往往整定得较小,例如整定成0.3~0.5倍的额定电流,而且初始部份没有制动特性,见下图6。
但运行实践证明这样的差动保护往往在区外短路或短路切除的恢复过程中由于各侧电流互感器暂态或稳态特性不一致或者2次回路时间常数的差异或者电流互感器饱和造成保护误动。
南瑞继保公司RCS978系列保护装置在传统的差动保护基础上另外又增加了工频变化量差动继电器,提高了变压器小匝数的匝间短路时的灵敏度,由于制动系数取得较高,在发生区外各种故障、功率倒方向、区外故障中出现TA饱和与TA暂态特性不一致等状态下也不会误动作。
使得保护的安全性与灵敏度同时得到了兼顾。
工频变化量比率差动保护的动作方程为:
理论上,工频变化量比率差动制动系数可取较高的数值,这样有利于防止区外故障时电流互感器饱和等因素所造成的差动保护误动。
变压器工频变化量比率差动继电器的动作特性见图7所示,阴影部分为动作区。
工频变化量比率差动继电器的特点:
(1)负荷电流对它没有影响。
对于稳态量的比率差动继电器,负荷电流是一个制动量,会影响内部短路的灵敏度。
随着内部故障严重程度的增大,其灵敏度会下降。
(2)受过渡电阻影响小。
(3)由于上述原因工频变化量比率差动继电器比较灵敏。
提高了小匝数的匝间短路时的灵敏度。
由于制动系数取得较高,在发生区外各种故障、功率倒方向、区外故障中出现TA饱和与TA暂态特性不一致等状态下也不会误动作。
使得保护的安全性与灵敏度同时得到了兼顾。
图8为变压器发生小匝间短路时的实际波形图,可以看出,当变压器C相发生1.5%的匝间短路故障时,常规差动保护(图中直线2)不会动作,而工频变化量差动保护(图中曲线1)要灵敏得多,会正确动作。
(4)不必输入定值。
从工频变化量的比率差动保护的动作方程式中可以看出,工频变化量比率差动保护中不必输入定值,其固定门槛与浮动门槛由其他公式得出,是公司的专利技术,在此不作讨论。
3 超高压输电线路保护中的工频变化量差动继电器和阻抗继电器
3.1 输电线路电流纵差保护的主要问题
当重负荷情况下线路内部经高电阻接地短路时,常规保护的灵敏度可能不够。
由于负荷电流是穿越性的电流,它只产生制动电流而不产生动作电流,而此时经高电阻短路,短路电流小而制动电流大,因此保护装置的灵敏度会下降。
采用工频变化量比率差动继电器可以有效地解决输电线路的这个老大难问题。
工频变化量分相差动继电器的构成:
工频变化量分相差动继电器的动作特性见下图9。
工频变化量差动继电器的特点:①不受负荷电流的影响。
因此负荷电流不会产生制动电流;②受过渡电阻的影响也较小;③在单侧电源线路上发生短路,只要短路前有负荷电流,短路后无电源侧的工频变化量电流也会形成动作电流;
由于上述原因该继电器很灵敏。
提高了重负荷线路上发生经高电阻短路时的灵敏度。
3.2 工频变化量阻抗继电器的构成:
用于构成快速的距离Ⅰ段
其动作方程为:
工频变化量阻抗继电器的特点:①保护过渡电阻的能力很强,该能力有很强的自适应能力。
②由于?驻?砖∑与?驻?砖相位相同,所以过渡电阻附加阻抗是纯阻性的。
因此区外短路不会超越。
③正向出口短路没有死区。
④正向出口短路动作速度很快。
保护背后运行方式越大,本线路越长,动作速度越快。
⑤系统振荡时不会误动,不必经振荡闭锁控制。
⑥适用于串补线路。
南瑞继保公司的RCS931系列保护装置中采用工频变化量距离继电器自适应能力的浮动门槛,对系统不平衡和干扰具有极强的预防能力,因而测量元件能在保证安全性的基础上达到特高速,起动元件有很高的灵敏度而不会频繁起动。
由于工频变化量距离继电器动作速度非常快,现场曾有3ms动作出口的记录,因而工频变化量距离I段与纵联电流差保护一起构成线路的主保护。
4 结论
工频变化量保护原理先进、构成简单,便于在微机保护中实现,而且不受负荷电流、非全相运行等方式影响,抗干扰性能非常突出、自适应能力极强,最突出的特点是动作灵敏可靠而速度非常快,在继电保护领域具有很强的竞争优势,是我国继电保护工作者智慧的结晶,体现了我国继电保护的独特风格和先进的技术水平。
参考文献:
[1]戴学安.继电保护原理的重大突破综论工频变化量继电器.新技术新产品,1995
[2]沈国荣.工频变化量方向继电器原理的研究.电力系统自动化,1983,7(1).
[3]陈松林,李海英,乔勇,等.RCS-978变压器成套保护装置.电力系统自动化,2000,24(22):
[4]李园园,郑玉平,沈国荣.串补电容对工频变化量距离保护的影响.电力系统自动化,2001,25(24):。