单片机的工作过程 以及原理

合集下载

51单片机 原理

51单片机 原理

51单片机原理
51单片机,又称作8051单片机,是一种微控制器,广泛应用
于嵌入式系统中。

它是由英特尔公司在1980年推出的,并成
为了应用最广泛的单片机架构之一。

51单片机采用哈佛架构,具有8位数据总线和16位地址总线。

它内部集成了CPU、RAM、ROM、I/O口等组成部分。

在工
作时,通过外部时钟源供给给单片机提供时钟信号。

CPU是51单片机的核心部件,用于执行程序指令。

51单片机
的指令集支持多种操作,包括算术、逻辑、移位、跳转等。

数据的存储和处理则在RAM中进行,程序的存储则在ROM中。

RAM是51单片机的临时存储器,用于存储程序中的变量和计算结果。

ROM则是只读存储器,用于存储程序指令。

在单片
机启动时,ROM中的程序会被加载到RAM中,并由CPU执行。

I/O口是51单片机与外部设备进行交互的接口。

它可以被配置为输入或输出,用于连接各种传感器、执行器、显示器等外围设备。

通过I/O口,51单片机可以与外部世界进行数据交换和控制。

为了编程和调试51单片机,我们通常使用专用软件和编程器。

这些工具可以将用户编写的程序烧录到51单片机的ROM中,并通过与单片机的通信接口进行通信。

总的来说,51单片机是一种功能强大且应用广泛的微控制器。

它可以用于控制各种嵌入式系统,如家用电器、车辆电子、工业自动化等领域,为我们的生活和工作提供了便利。

单片机的工作过程以及原理

单片机的工作过程以及原理

单片机的工作过程以及原理单片机是一种专用的小型计算机芯片,它集成了处理器核心、存储器和各种外设接口等组成部分。

它广泛应用于嵌入式系统中,是现代电子产品中的重要组成部分。

本文将详细介绍单片机的工作过程和原理。

一、单片机的工作过程:1.初始化阶段:初始化是单片机启动的第一个阶段,其目的是准备单片机所需的各种资源。

在这个阶段,单片机会执行一系列预定义的操作,如清除寄存器、设置工作模式、配置外设接口等。

2.执行阶段:执行阶段是单片机进行计算、控制和通信等任务的阶段。

在这个阶段,单片机根据程序的指令和数据,通过寄存器、算术逻辑单元(ALU)和存储器等功能模块进行计算、存储和控制。

单片机的执行可以分为两个层次:指令层和操作层。

(1)指令层:指令层是单片机执行的最基本单位,包括指令的获取、解码和执行等过程。

指令的获取是指从存储器中读取指令,并将其送入指令寄存器中。

单片机采用顺序读取的方式获取指令,即按照指令的地址从存储器中读取指令,并将地址自动增加,以获取下一条指令。

指令的解码是指根据指令的格式和功能,将其解析成相应的操作。

单片机根据指令的操作码和操作数,通过控制逻辑单元将指令解码成相应的操作。

指令的执行是指根据指令的操作,进行计算、存储和控制等操作。

单片机根据指令的操作码和操作数,通过寄存器和算术逻辑单元进行相应的运算和存储,同时进行控制相关的外设接口。

(2)操作层:操作层是单片机执行的高级单位,包括各种操作的组合和执行过程。

在操作层,单片机根据程序的逻辑和需要,进行各种任务的操作。

例如,单片机可以进行算术运算、逻辑运算、移位运算、存储和读取数据等。

同时,单片机可以通过外设接口与外部设备进行通信和控制。

例如,单片机可以通过串口和计算机进行通信,通过IO口控制LED灯和蜂鸣器等外设。

3.终止阶段:终止阶段是单片机工作的最后阶段,其目的是释放已占用的资源,并保存必要的状态信息。

在这个阶段,单片机会执行一些清理工作,如关闭外设接口、保存相关寄存器的值等。

单片机原理及接口技术

单片机原理及接口技术

单片机原理及接口技术在当今数字化时代,单片机已经成为嵌入式系统设计中不可或缺的重要组成部分。

本文将介绍单片机的工作原理以及与外部设备进行通信的接口技术。

单片机工作原理单片机是一种集成了处理器、存储器和输入输出设备等功能模块的微型计算机系统。

它通常由中央处理器(CPU)、存储器(RAM和ROM)、计时器(Timer)、串行通信接口(UART)和引脚(Port)组成。

单片机的工作原理可以简要描述为以下几个步骤:1.初始化:单片机在上电时会执行初始化程序,设置各种工作模式、配置寄存器等。

2.执行程序:单片机会根据存储器中存储的程序指令序列来执行相应的操作,包括算术逻辑运算、控制流程等。

3.输入输出操作:单片机通过输入输出接口与外部设备进行通信,如传感器、执行器等。

4.中断处理:单片机可以在特定条件下触发中断请求,暂停当前执行的程序,转而执行中断服务程序,处理相应的事件或信号。

单片机接口技术单片机与外部设备的通信主要依赖于接口技术,包括数字输入输出接口、模拟输入输出接口以及通信接口等。

数字输入输出接口数字输入输出接口用于与二进制设备进行通信,通过配置相应的引脚工作在输入或输出模式,实现信号的采集与输出。

常用的数字输入输出方式包括GPIO口、SPI接口、I2C接口等。

模拟输入输出接口模拟输入输出接口用于处理模拟信号,包括模拟输入端口和模拟输出端口。

模拟输入端口通过模数转换器将模拟信号转换为数字信号,模拟输出端口则通过数模转换器将数字信号转换为模拟信号。

通信接口通信接口是单片机与外部设备进行数据交换的重要手段,主要有串行通信接口(UART)、并行通信接口(Parallel)、CAN接口等。

通过这些通信接口,单片机可以实现与其他设备的数据交换与通信。

结语单片机原理及接口技术是嵌入式系统设计的基础知识,通过深入了解单片机的工作原理和接口技术,可以更好地应用单片机进行系统设计与开发。

希望本文对读者有所帮助,谢谢!以上是关于单片机原理及接口技术的简要介绍,希望能对读者有所启发。

单片机bootloader原理

单片机bootloader原理

单片机bootloader原理一、引言单片机是一种集成了微处理器核心、存储器和输入输出接口的微型计算机系统。

在单片机的开发过程中,bootloader(引导程序)被广泛应用,其作用是在系统上电或复位时,负责加载和启动应用程序。

本文将介绍单片机bootloader的原理和工作流程。

二、bootloader的作用bootloader是单片机系统的第一个运行的程序,其主要作用如下:1. 初始化系统的硬件资源,如时钟、中断等。

2. 加载和运行应用程序。

3. 支持固件更新,可以通过串口或其他接口加载新的应用程序。

4. 提供调试和故障排除的功能。

三、bootloader的原理bootloader的原理可以简要概括为以下几个步骤:1. 系统上电或复位后,单片机会从固定的地址开始执行代码,这个地址就是bootloader的入口地址。

2. bootloader首先会进行硬件初始化,包括时钟设置、中断向量表的初始化等。

3. 然后,bootloader会检查是否存在新的固件更新。

如果有更新,bootloader会加载新的固件到指定的存储空间。

4. 如果没有固件更新,bootloader会加载应用程序到内存中,并跳转到应用程序的入口地址开始执行。

5. 应用程序执行完毕后,bootloader可以对系统进行复位或其他操作。

四、bootloader的工作流程下面以一个简单的bootloader工作流程来说明其原理:1. 单片机上电或复位后,开始执行bootloader的代码。

2. bootloader首先进行硬件初始化,设置时钟、中断等。

3. bootloader会检查是否存在固件更新的标志。

如果有标志,则执行固件更新操作。

4. 如果没有固件更新标志,bootloader会加载应用程序到内存中,并跳转到应用程序的入口地址开始执行。

5. 应用程序执行完毕后,bootloader可以对系统进行复位或其他操作。

五、bootloader的优点bootloader具有以下几个优点:1. 灵活性高:bootloader可以根据需求加载不同的应用程序,实现系统的灵活升级和更新。

单片机的工作原理是什么?

单片机的工作原理是什么?

单片机的工作原理是什么?一、单片机程序执行过程单片机的工作过程实质就是执行程序的过程,也就是我们常说的逐条执行指令的过程。

单片机每执行一条指令均可分为三个阶段:取出指令、分析(译码)指令、执行指令。

大多数8位单片机的取指、译码、执行这三步都是按照串行顺序依次进行的。

32位单片机的这三步也是必不可少的,但是它是采用预取指令的流水线方式操作,并采用精简指令集,每条指令都是单周期指令,所以它允许指令并行操作。

例如再取出第一条指令后,开始对这条指令译码的同时,取出第二条指令;在第一条指令执行时,第二条指令开始译码,然后取出第三条指令,第二条指令同时执行。

如此循环。

从而使CPU在同一时间对不同指令实现不同操作,这样就实现了指令的并行处理,大大加快指令的执行速度。

二、单片机执行指令的三个阶段下面分别说说单片机执行指令的三个阶段。

1、取指令阶段根据程序计数器PC的值,从程序存储器读出当前要执行的指令,并将该指令送到指令寄存器。

2、指令译码阶段取出指令寄存器中的指令操作码进行译码,解析出指令要实现那种操作。

(例如是执行数据传送还是进行数据的加减运算)3、执行指令阶段执行指令规定的操作。

(例如对于带操作数的指令,先取出操作码,再取出操作数,然后按照操作码的类型对操作数进行操作)三、单片机工作过程单片机采用“存储程序”的工作方式,即事先把程序加载到单片机的存储器中,当启动运行后,计算机便自动进行工作。

1、单片机的模型机指令表下表是单片机的模型机指令表,我们以LDA 23这条指令为例,来说明单片机的指令执行过程。

2、执行一条指令的顺序单片机执行程序是一条指令一条指令执行的,执行一条指令的过程可分为两个阶段。

在单片机中,“存储程序”第一条指令的第一个字节一定是操作码。

这样,CPU首先进入取指阶段,从存储器中取出指令,并通过CPU译码后,转入执行指令阶段,在这期间,CPU执行指令指定的操作。

取指阶段是由一系列相同的操作组成的,因此,取指阶段的时间总是相同的。

单片机的结构及工作原理

单片机的结构及工作原理

单片机的结构及工作原理
单片机是一种集成电路芯片,它由CPU核心、存储器、I/O端口、定时器/计数器、中断控制器以及其他外围电路组成。

单片机的工作原理如下:
1. 开机复位:单片机通电后,会执行复位操作。

当复位信号触发时,CPU会跳转到预定的复位向量地址,开始执行复位操作。

2. 初始化:执行复位操作后,单片机会进行初始化。

这包括设置输入/输出端口的初始状态、初始化定时器和计数器等。

3. 执行指令:一旦初始化完成,单片机会开始执行存储器中的指令。

指令通常存储在Flash存储器中,单片机会按照程序计
数器(PC)的值逐条执行指令。

4. 控制流程:单片机执行程序时会根据条件跳转、循环、分支等控制流程操作来改变指令执行顺序。

5. 处理输入输出:单片机可以从外部设备(如传感器、键盘等)读取输入信号,并根据程序逻辑给出相应的输出信号。

6. 中断处理:单片机具有中断控制功能,可以在特定条件下立即中断当前程序,并执行中断服务程序。

中断通常用于及时响应外界事件。

7. 系统时钟:单片机需要一个时钟源来同步指令和数据的处理。

时钟源可以是外部晶振、内部振荡器或者其他时钟源,它们提供基准频率给单片机。

单片机的工作基于时钟信号和电压供应,控制执行指令、处理输入输出等任务。

通过程序设计和外部电路连接,单片机可以应用于各种领域,如家用电器、自动化控制、通信等。

单片机原理 发生额

单片机原理 发生额

单片机原理发生额单片机原理是指利用一块集成电路芯片来完成各种功能的原理。

单片机是一种集成了微处理器、存储器和各种输入输出接口的微型计算机系统。

它广泛应用于各种电子设备中,如家用电器、汽车电子、工业自动化等领域。

单片机的核心部件是微处理器,它是整个系统的大脑,负责执行程序指令、进行数据处理和控制各种外围设备。

单片机的存储器包括程序存储器和数据存储器,程序存储器用来存储程序指令,数据存储器用来存储程序运行时需要的数据。

单片机的输入输出接口用来和外部设备进行通信,实现控制和数据交换。

单片机的工作原理可以简单概括为:接收输入信号,经过处理后产生输出信号。

单片机通过输入接口接收外部传感器或设备的信号,经过程序处理后控制输出接口驱动执行器或显示器等设备。

例如,可以通过单片机控制电机的转速、温度的控制、光线的感应等。

单片机的优点是体积小、功耗低、成本低、集成度高、易于编程等,因此在各个领域得到了广泛应用。

通过编写程序,可以实现各种功能,如定时控制、温度监测、信号处理、通信传输等。

单片机的应用范围非常广泛,可以说是现代电子技术中不可或缺的一部分。

在单片机的设计和应用中,需要考虑很多因素,如系统的稳定性、实时性、功耗、成本等。

因此,单片机的设计需要根据具体的应用需求进行选择,选择合适的型号和外围器件,编写高效的程序,才能实现设计的要求。

总的来说,单片机原理是一种利用集成电路芯片完成各种功能的原理,通过程序控制输入输出接口实现各种功能。

单片机具有体积小、功耗低、成本低、易于编程等优点,在各个领域有着广泛的应用。

通过不断的技术创新和发展,单片机将会在未来发挥更加重要的作用,推动电子技术的进步和发展。

简述单片机的工作原理

简述单片机的工作原理

简述单片机的工作原理单片机是一种集成了微处理器核心、存储器和各种输入输出功能的微型计算机系统,它广泛应用于各种电子设备中,如家用电器、汽车电子、工业控制等领域。

那么,单片机是如何工作的呢?接下来,我们将简要介绍单片机的工作原理。

首先,单片机的工作原理可以分为两个方面,硬件和软件。

在硬件方面,单片机包括中央处理器(CPU)、存储器(ROM、RAM)、输入输出端口(I/O口)、定时器/计数器(Timer/Counter)等部分;在软件方面,单片机需要通过编程来实现各种功能。

在单片机的工作中,CPU扮演着核心的角色,它负责执行各种指令,控制整个系统的运行。

当单片机上电后,CPU会首先执行初始化程序,对系统进行初始化设置,然后开始执行用户程序。

用户程序通常存储在单片机的ROM或者Flash存储器中,CPU会按照程序中的指令顺序逐条执行,从而实现各种功能。

除了CPU外,存储器也是单片机不可或缺的部分。

ROM存储器用于存储程序代码和常量数据,而RAM存储器则用于存储运行时的临时数据。

在单片机工作时,CPU会不断地从存储器中读取指令和数据,并进行相应的处理。

此外,单片机还包括各种输入输出端口,用于与外部设备进行通信。

通过输入输出端口,单片机可以接收外部传感器的数据,控制执行器的运动,实现与外部设备的交互。

定时器/计数器是单片机中的另一个重要部分,它可以产生各种定时和计数信号,用于控制系统的时序和时钟,实现各种定时和计数功能。

在软件方面,单片机需要通过编程来实现各种功能。

编程可以使用汇编语言、C语言等高级语言来完成,通过编程,可以实现各种功能,如控制LED灯的闪烁、驱动电机的转动、采集传感器的数据等。

总的来说,单片机的工作原理是通过CPU执行程序指令,从存储器中读取数据,通过输入输出端口与外部设备进行通信,利用定时器/计数器实现定时和计数功能,通过编程实现各种功能。

通过对单片机工作原理的深入了解,我们可以更好地应用单片机技术,设计和开发各种电子产品。

单片机工作原理

单片机工作原理

单片机工作原理标题:单片机工作原理引言概述:单片机是一种集成为了微处理器、存储器、输入/输出接口和定时器等功能于一体的微型计算机系统。

它广泛应用于各种电子设备中,如家用电器、汽车电子系统、工业控制等领域。

本文将详细介绍单片机的工作原理。

一、单片机的基本组成1.1 微处理器:单片机的核心部份,负责执行指令和控制整个系统。

1.2 存储器:用于存储程序指令和数据,包括ROM(只读存储器)和RAM (随机存储器)。

1.3 输入/输出接口:用于与外部设备进行数据交换,包括通用输入输出引脚、串行通信接口等。

二、单片机的工作流程2.1 程序存储器中存储的程序指令被微处理器读取并执行。

2.2 微处理器根据程序指令控制输入/输出接口与外部设备通信。

2.3 微处理器根据程序指令的逻辑和算术运算来处理数据。

三、单片机的时钟系统3.1 单片机内部集成为了时钟电路,用于产生时钟信号来控制微处理器的工作节奏。

3.2 时钟信号的频率决定了单片机的运行速度。

3.3 时钟信号还用于控制定时器和计数器等功能模块的工作。

四、单片机的中断系统4.1 中断是单片机响应外部事件的一种机制,可以暂停当前程序执行,转而执行中断服务程序。

4.2 中断可以分为外部中断和内部中断,外部中断是由外部设备触发,内部中断是由单片机内部模块触发。

4.3 中断可以提高单片机的响应速度和系统的实时性。

五、单片机的编程方法5.1 单片机的程序通常使用汇编语言或者高级语言(如C语言)编写。

5.2 程序编写包括程序设计、调试和下载等步骤。

5.3 程序下载到单片机后,可以通过调试工具进行调试和运行。

总结:单片机作为一种集成为了微处理器、存储器、输入/输出接口和定时器等功能于一体的微型计算机系统,在各种电子设备中发挥着重要作用。

了解单片机的工作原理有助于我们更好地设计和应用电子产品。

单片机的工作过程 以及原理

单片机的工作过程 以及原理

单片机的工作过程以及原理单片机的工作过程及原理单片机(Microcontroller)是一种集成电路芯片,具备微处理器、存储器、输入输出接口等功能。

它广泛应用于各种电子产品中,如家电、汽车、工业控制系统等。

本文将介绍单片机的工作过程及原理。

一、单片机的结构单片机的主要结构包括CPU(Central Processing Unit)、存储器、输入输出接口、定时器计数器、中断系统以及时钟系统等。

1. CPU:单片机的核心部分,负责执行各种指令,处理数据和控制系统的操作。

2. 存储器:单片机中的存储器主要包括ROM(Read-Only Memory)和RAM(Random Access Memory)。

ROM用于存储程序代码和固定数据,而RAM用于存储变量和临时数据。

3. 输入输出接口:单片机通过输入输出接口与外部设备进行交互,如获取输入信号、输出控制信号、读写外部存储器等。

4. 定时器计数器:用于产生精确的时间延迟,实现对时间的计量和控制。

可以用于生成各种信号、脉冲或者频率。

5. 中断系统:接收和处理外部事件,例如按键触发、外部中断信号等。

通过中断,单片机可以在执行其他任务的同时对多个事件进行响应。

6. 时钟系统:提供单片机的时钟信号,用于同步CPU的工作,控制指令的执行速度。

二、单片机的工作过程单片机的工作过程可以概括为初始化、执行程序、监控外部事件和中断处理四个步骤。

1. 初始化:在开始执行程序之前,单片机需要进行初始化工作,包括设置输入输出接口、定时器计数器、中断系统等,以及初始化全局变量和寄存器。

2. 执行程序:单片机按照存储器中的指令序列一条一条地执行。

CPU从存储器中读取指令,并根据指令的操作码和操作数进行相应的操作,如算术运算、逻辑运算、存储数据等。

3. 监控外部事件:单片机通过输入输出接口和中断系统监控外部事件的发生。

例如,当外部按键被按下时,可以通过中断处理程序响应,并执行相应的操作。

单片机—百度百科

单片机—百度百科
单片机是一种集成在电路芯片,是采用超大规模集成电路技术把具有数据处理能力的中央处理器CPU随机存储器RAM、只读存储器ROM、多种I/O口和中断系统、定时器/计时器等功能(可能还包括显示驱动电路、脉宽调制电路、模拟多路转换器、A/D转换器等电路)集成到一块硅片上构成的一个小而完善的计算机系统。
单片机也被称为微控制器(Microcontroller),是因为它最早被用在工业控制领域。单片机由芯片内仅有CPU的专用处理器发展而来。最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。 早期的单片机都是8位或4位的。其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。此后在8031上发展出了MCS51系列单片机系统。基于这一系统的单片机系统直到现在还在广泛使用。随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端[1]的型号也只有10美元。当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。 单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。事实上单片机是世界上数量最多的计算机。现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。而个人电脑中也会有为数不少的单片机在工作。汽车上一般配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作!单片机的数量不仅远超过PC机和其他计算的总和,甚至比人类的数量还要多。 单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。概括的讲:一块芯片就成了一台计算机。它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。同时,学习使用单片机是了解计算机原理与结构的最佳选择。 单片机内部也用和电脑功能类似的模块,比如CPU,内存,并行总线,还有和硬盘作用相同的存储器件,不同的是它的这些部件性能都相对我们的家用电脑弱很多,不过价钱也是低的,一般不超过10元即可......用它来做一些控制电器一类不是很复杂的工作足矣了。我们现在用的全自动滚筒洗衣机、排烟罩、VCD等等的家电里面都可以看到它的身影!......它主要是作为控制部分的核心部件。 它是一种在线式实时控制计算机,在线式就是现场控制,需要的是有较强的抗干扰能力,较低的成本,这也是和离线式计算机的(比如家用PC)的主要区别。单片机芯片单片机是靠程序运行的,并且可以修改。通过不同的程序实现不同的功能,尤其是特殊的独特的一些功能,这是别的器件需要费很大力气才能做到的,有些则是花大力气也很难做到的。一个不是很复杂的功能要是用美国50年代开发的74系列,或者60年代的CD4000系列这些纯硬件来搞定的话,电路一定是一块大PCB板!但是如果要是用美国70年代成功投放市场的系列单片机,结果就会有天壤之别!只因为单片机的通过你编写的程序可以实现高智能,高效率,以及高可靠性! 由于单片机对成本是敏感的,所以目前占统治地位的软件还是最低级汇编语言,它是除了二进制机器码以上最低级的语言了,既然这么低级为什么还要用呢?很多高级的语言已经达到了可视化编程的水平为什么不用呢?原因很简单,就是单片机没有家用计算机那样的CPU,也没有像硬盘那样的海量存储设备。一个可视化高级语言编写的小程序里面即使只有一个按钮,也会达到几十K的尺寸!对于家用PC的硬盘来讲没什么,可是对于单片机来讲是不能接受的。 单片机在硬件资源方面的利用率必须很高才行,所以汇编虽然原始却还是在大量使用。一样的道理,如果把巨型计算机上的操作系统和应用软件拿到家用PC上来运行,家用PC的也是承受不了的。 可以说,二十世纪跨越了三个“电”的时代,即电气时代、电子时代和现已进入的电脑时代。不过,这种电脑,通常是指个人计算机,简称PC机。它由主机、键盘、显示器等组成。还有一类计算机,大多数人却不怎么熟悉。这种计算机就是把智能赋予各种机械的单片机(亦称微控制器)。顾名思义,这种计算机的最小系统只用了一片集成电路,即可进行简单运算和控制。因为它体积小,通常都藏在被控机械的“肚子”里。它在整个装置中,起着有如人类头脑的作用,它出了毛病,整个装置就瘫痪了。现在,这种单片机的使用领域已十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等。各种产品一旦用上了单片机,就能起到使产品升级换代的功效,常在产品名称前冠以形容词——“智能型”,如智能型洗衣机等。现在有些工厂的技术人员或其它业余电子开发者搞出来的某些产品,不是电路太复杂,就是功能太简单且极易被仿制。究其原因,可能就卡在产品未使用单片机或其它可编程逻辑器件上。

51单片机工作原理

51单片机工作原理

51单片机工作原理51单片机是一种常见的微控制器,它在各种电子设备中都有着广泛的应用。

要理解51单片机的工作原理,首先需要了解它的基本结构和工作原理。

51单片机由中央处理器(CPU)、存储器、输入输出端口和定时器等部分组成。

其中,CPU是单片机的核心部分,它负责执行程序指令和控制整个系统的工作。

存储器用于存储程序和数据,输入输出端口用于与外部设备进行通信,定时器用于产生精确的时间基准。

在51单片机工作时,首先需要将程序代码下载到单片机的存储器中。

然后,CPU按照程序指令的顺序逐条执行,完成各种操作。

在执行过程中,CPU会不断地从存储器中读取指令和数据,并根据需要进行运算和逻辑判断。

同时,输入输出端口可以与外部设备进行数据交换,实现与外部世界的通信。

在实际应用中,定时器也扮演着非常重要的角色。

它可以产生各种精确的时间信号,用于控制系统的时序和节拍。

通过定时器,我们可以实现各种精密的定时和计数功能,从而满足不同应用场景的需求。

除了硬件结构外,51单片机的工作原理还与其内部的指令集和编程语言密切相关。

51单片机的指令集非常丰富,可以实现各种复杂的操作和算法。

同时,它支持多种编程语言,如汇编语言和C语言,开发人员可以根据实际需求选择合适的编程方式。

总的来说,51单片机的工作原理涉及到硬件结构、指令集和编程语言等多个方面。

只有深入理解这些内容,才能真正掌握51单片机的工作原理,并能够灵活应用于各种实际项目中。

希望通过本文的介绍,读者能够对51单片机的工作原理有一个初步的了解,同时也能够对其在实际应用中的重要性有所认识。

当然,要真正掌握51单片机,还需要进一步的学习和实践。

希望大家能够在学习和工作中不断积累经验,不断提升自己的技术水平。

这样才能更好地应用51单片机,为电子设备的开发和应用做出更大的贡献。

单片机原理及应用 实验

单片机原理及应用 实验

单片机原理及应用实验
单片机是指一种集成了微处理器核心、存储器、输入输出功能和系统时钟等组件的微型计算机系统。

它通常由中央处理器(CPU)、存储器、输入输出设备和系统总线等组成。

单片机的工作原理是通过执行储存在存储器中的程序指令来完成特定的计算和操作。

单片机的应用非常广泛,可以应用于各种电子设备中。

以下是一些典型的单片机应用:
1. 控制系统:单片机可以用于工业控制系统、家庭自动化系统等场景中,通过接收输入信号并根据预设的逻辑程序来控制输出设备的状态,实现各种控制功能。

2. 电子设备:单片机可以应用于各种电子设备中,如电视机、音响、空调等。

它可以接收远程控制信号,并根据信号进行相关功能的操作。

3. 信息处理:单片机可以用于数据处理和信息传输领域,如数据采集和传输、数据处理和分析等。

4. 通信系统:单片机可以用于各种通信系统中,如电话、传真机、无线通信设备等。

它可以通过与外部设备的通信来实现相应的通信功能。

5. 汽车电子系统:单片机可以应用于汽车电子系统中,如发动机控制单元(ECU)、车载娱乐系统、车载导航系统等。

它可
以控制汽车各个系统的运行和协调。

6. 医疗设备:单片机可以应用于各种医疗设备中,如心电图机、血压计、血糖仪等。

它可以接收生理信号,并进行相应的处理和分析。

总之,单片机在电子领域有着广泛的应用,可以实现各种控制、处理和通信功能。

它为电子设备的智能化和自动化提供了重要的支持。

单片机主程序流程

单片机主程序流程

单片机主程序流程1.初始化部分:单片机在执行主程序之前需要进行一些初始化操作,包括配置端口和寄存器的初始状态,设置中断和定时器,初始化外设等。

首先需要确定单片机的时钟源和时钟频率,并根据需要配置相应的时钟模块。

然后需要配置定时器和中断源,使得单片机能够在指定的时间间隔内执行特定的代码。

接下来需要初始化各个外设模块,包括ADC模块、串口模块、PWM模块等。

通过设置相应的寄存器标志位,使得外设能够正常工作。

这些初始化过程需要根据具体的单片机型号和外设模块进行操作。

2.循环部分:初始化完成后,单片机进入主循环部分。

主循环是单片机最重要的部分,其中包含了系统的核心功能和业务逻辑。

首先读取输入设备,例如检测按键的按下情况、读取传感器的数据等。

通过读取输入设备,可以获取外部环境的信息,并根据这些信息进行判断和处理。

然后进行数据处理和控制操作。

根据读取到的输入数据,进行算法运算、数据转换和逻辑判断等操作。

然后根据处理结果控制其他设备的状态,例如控制LED灯的亮灭、电机的运转等。

在循环过程中,可能还需要进行一些通信操作,例如与其他设备进行数据交换或通信。

需要根据具体的通信协议和通信方式进行配置和操作。

3.中断处理部分:除了主循环部分,单片机还需要处理各种中断事件,以及相应的中断服务程序。

这些中断事件通常是由外部的触发信号引起的。

例如,外部中断信号、定时器中断、串口接收中断等。

当发生中断事件时,单片机会在合适的时机中断主循环的执行,转而执行中断服务程序。

中断服务程序是一段特殊的代码,用来处理中断事件并响应。

执行完中断服务程序后,单片机会恢复到原来的位置继续执行主循环。

在中断服务程序中,通常需要保存现场、处理中断事件、清除中断标志位、恢复现场等。

需要根据中断源和中断向量表进行配置和编写相应的中断服务程序。

4.总结部分:在单片机主程序的末尾,通常需要进行总结和清理工作。

总结部分可以对程序的运行结果进行统计和分析,例如输出统计信息、保存运行数据等。

51单片机原理范文

51单片机原理范文

51单片机原理范文单片机是一种集成了微处理器、存储器和输入输出端口等功能单元的微型计算机系统。

它具有体积小、功耗低、性能稳定等特点,因此被广泛应用于嵌入式系统中,如家用电器、工业控制、汽车电子等领域。

本文将介绍单片机的原理及其工作过程。

一、单片机的组成及原理单片机通常由中央处理器(CPU)、存储器、输入输出端口、时钟电路等组成。

中央处理器是单片机的核心,负责执行指令、数据处理等任务;存储器用于存储程序和数据;输入输出端口用于与外部设备进行通信;时钟电路用于提供时钟信号,使单片机按照时序要求进行工作。

单片机的工作原理可以简单描述为:当单片机上电后,中央处理器会从存储器中读取程序,并根据程序指令执行相应的操作。

同时,中央处理器还会处理输入输出设备发送过来的数据,通过输入输出端口与外部设备进行通信。

整个过程是在时钟信号的控制下按照一定的时序顺序进行的。

二、单片机的工作过程1.系统上电初始化:当单片机上电后,首先会进行系统初始化的操作。

这包括清除寄存器、初始化中央处理器、设置时钟频率等步骤。

2.程序执行过程:单片机会按照程序的指令逐条执行操作。

具体步骤包括:从存储器中读取指令、解码指令、执行指令。

在执行指令过程中,中央处理器可能需要访问存储器中的数据,将执行结果保存到寄存器中。

3.输入输出过程:单片机还会处理外部设备发送过来的数据,通过输入输出端口与外部设备进行通信。

这包括从外部设备接收数据、发送数据给外部设备等操作。

4.时钟信号控制:时钟信号的作用是为单片机提供一个统一的时序基准,使处理器和外设按照确定的时间顺序进行工作。

时钟信号的频率决定了单片机的运行速度。

5.中断响应:当出现特定的事件或条件时,单片机可以响应外部中断请求。

中断是一种机制,能够在程序执行过程中暂停当前任务,进行其他任务处理,然后返回到原程序继续执行。

6.系统停机:当程序执行完成或出现故障时,单片机会停止工作,等待下一次启动。

三、单片机的应用场景单片机在嵌入式系统中有着广泛的应用场景。

单片机的工作过程

单片机的工作过程

单片机的工作过程
单片机是一种微型计算机,可以用来控制各种电子设备和系统。

其工作过程可以分为五个主要步骤:输入、存储、处理、输出和反馈。

第一步是输入。

单片机通过各种输入设备,如按键、传感器等,接收外部信号。

这些信号可以是数字信号、模拟信号或者脉冲信号。

单片机将收到的信号转换为数字信号,以便进行处理。

第二步是存储。

单片机有内部的存储器,可以将输入的数字信号存储起来。

这些存储器包括RAM(随机存储器)和ROM(只读存储器)。

RAM用于暂时存储数据,而ROM则用于存储程序代码和常量数据。

第三步是处理。

单片机将存储的数据和程序代码进行处理,以得出所需的结果。

处理过程包括算术运算、逻辑运算、移位运算、比较运算等。

第四步是输出。

单片机将处理结果输出到外部设备,如LED灯、数码管、LCD显示屏等。

输出信号可以是数字信号或者模拟信号。

第五步是反馈。

单片机可以通过反馈信号来控制输入信号。

例如,当单片机控制一个温度控制器时,它可以通过读取温度传感器的信号来调整输出信号,从而控制温度在设定范围内。

总的来说,单片机的工作过程就是接收输入信号、存储数据、进行
处理、输出结果和反馈控制。

这个过程需要程序员编写程序代码,并将其烧录到单片机的ROM中。

程序代码包括初始化代码、中断服务程序、主程序等。

程序员需要根据具体的应用场景,选择合适的单片机型号和外围器件,进行系统设计和调试。

单片机原理 同化

单片机原理 同化

单片机原理同化
单片机原理是指通过集成电路技术将微处理器的中央处理器(CPU)、存储器、输入输出接口等功能电路集成在一块芯片上的电子元器件。

在现代电子产品中,单片机广泛应用于各种领域,如家电控制、工业自动化、汽车电子等,其原理和工作方式对于理解和设计电子产品至关重要。

单片机的核心是中央处理器(CPU),它负责执行指令、控制程序流程和数据处理。

单片机中的存储器包括程序存储器(ROM)和数据存储器(RAM),ROM用于存储程序代码和常量数据,RAM用于临时存储运行时数据。

单片机的输入输出接口连接外部传感器、执行器等设备,通过这些接口实现与外部世界的通信和控制。

单片机通过时钟信号控制内部各个部件的协同工作,时钟信号用于同步数据传输和指令执行。

单片机的工作流程包括取指、译码、执行和写回四个阶段,不同指令在这四个阶段依次执行,完成特定的功能。

单片机的指令集包括数据传送、算术运算、逻辑运算、控制转移等多种指令,程序员可以根据需求编写程序,实现各种功能。

在单片机的设计和开发过程中,需要考虑如何优化程序代码、节约资源、提高性能和稳定性。

程序员需要熟悉单片机的指令集和硬件接口,合理设计程序结构和算法。

此外,单片机的外围电路设计也至关重要,包括电源管理、时钟电路、输入输出接口等,这些电路直接影响单片机的稳定性和可靠性。

总的来说,单片机原理是现代电子技术的基础,掌握单片机原理可以帮助我们更好地理解和设计各种电子产品。

通过深入研究单片机原理,我们可以提高电子产品的性能、降低成本、缩短开发周期,为人类社会的进步和发展做出贡献。

希望未来能有更多人深入研究单片机原理,推动电子技术的发展,造福人类社会。

单片机adc工作原理

单片机adc工作原理

单片机adc工作原理
单片机(单片微型计算机)的ADC(模数转换器)工作原理是将模
拟信号转换为相应的数字信号。

在单片机中,ADC接口通常
由一个或多个模数转换器组成,用于将模拟输入信号转换为数字量。

工作流程如下:
1. 选择输入通道:单片机的ADC接口通常具有多个输入通道,可以选择其中一个通道连接模拟信号源。

通过设置特定的寄存器或引脚配置,选择所需的输入通道。

2. 采样保持:在ADC转换之前,需要对输入信号进行采样保
持操作。

这是为了在转换过程中保持输入信号的稳定性。

采样保持电路的作用是在转换过程中将模拟信号锁定在一个固定的值上。

3. 开始转换:一旦输入信号被采样并保持,开始转换操作。

在单片机中,可以通过设置特定的寄存器或写入特定的命令来触发转换过程。

4. 转换过程:ADC会将输入信号与参考电压进行比较,并将
其转换为相应的数字值。

转换的精度取决于ADC的分辨率,
即转换结果的位数。

较高的分辨率可以提供更精确的转换结果。

5. 转换完成:一旦转换完成,单片机可以通过读取相应的寄存器来获取转换结果。

转换结果通常以数字形式表示,并用于后续的数据处理和系统控制。

需要注意的是,ADC的工作原理可能会因单片机的型号和厂家而有所差异,具体的实现细节可以参考相应的单片机型号的数据手册和参考资料。

单片机的工作过程

单片机的工作过程

单片机的工作过程单片机是现代电子技术中的重要组成部分,其工作过程主要包括芯片架构、指令执行、存储与输入输出等方面。

本文将详细介绍单片机的工作过程,以及其在各个领域中的广泛应用。

一、芯片架构单片机是一种集成了处理器、内存和输入输出设备的微型计算机系统。

它的核心部分是中央处理器(CPU),其内部结构包括运算器、控制器和寄存器等功能单元。

运算器负责执行算术和逻辑运算,控制器则负责解析和执行指令,寄存器用于存储临时数据。

二、指令执行单片机通过指令集来执行各种任务。

指令是一组二进制代码,由操作码和操作数组成。

操作码表示要执行的操作类型,操作数则提供操作所需的数据。

在执行指令时,单片机会按照指令的顺序从存储器中读取指令,并将其解析成相应的操作。

三、存储器单片机内部包含不同类型的存储器,用于存储指令、数据和程序。

其中,只读存储器(ROM)用于存储固定的指令和常量数据,不可被修改;随机存储器(RAM)用于存储临时数据和变量;闪存存储器(Flash)则支持可编程功能,允许程序和数据的更新。

四、输入输出单片机通过输入输出接口与外部设备进行数据交互。

常见的输入设备包括开关、传感器和键盘等,而输出设备则包括显示器、蜂鸣器和电机等。

单片机会通过输入输出引脚接口与外部设备相连,并通过读写信号进行数据传输。

五、工作过程在单片机的工作过程中,首先需要加载程序到存储器中,并设置好相应的输入输出引脚。

接下来,单片机会按照指令集中的顺序一条一条地执行指令。

在执行过程中,它会读取输入设备的数据,进行相应的处理,并将结果输出到指定的输出设备。

六、应用领域单片机由于其体积小、功耗低和成本低等优势,被广泛应用于各个领域。

在工业控制方面,单片机可用于自动化系统、机器人控制和传感器网络等;在通信领域,单片机可用于手机、无线传输和网络设备;在家电领域,单片机可用于智能家居、电子锁和家电控制等。

总结单片机的工作过程包括芯片架构、指令执行、存储与输入输出等方面。

单片机工作原理

单片机工作原理

单片机工作原理标题:单片机工作原理引言概述:单片机是一种集成电路,具有微处理器核心、存储器、输入输出接口和定时器等功能。

它被广泛应用于各种电子设备中,如家电、汽车电子、医疗设备等。

本文将详细介绍单片机的工作原理,包括指令执行、存储器管理、输入输出控制等方面。

一、指令执行1.1 指令译码:单片机通过指令译码器将存储器中的指令转化为可执行的操作码,以便处理器核心执行。

1.2 指令执行过程:单片机按照指令的不同类型,执行相应的操作,如算术运算、逻辑运算、数据传输等。

1.3 指令周期:单片机的工作以指令周期为单位,每个指令周期包括取指、译码、执行、访存等阶段。

二、存储器管理2.1 寄存器:单片机内部包含多个寄存器,用于存储临时数据、地址等信息,如通用寄存器、程序计数器、状态寄存器等。

2.2 内部存储器:单片机内部集成了存储器,包括RAM(随机存取存储器)和ROM(只读存储器),用于存储程序、数据等。

2.3 外部存储器:单片机还可以通过外部接口连接外部存储器,扩展存储容量,如闪存、EEPROM等。

三、输入输出控制3.1 输入控制:单片机通过引脚接口接收外部信号,如按键、传感器等,并将其转化为数字信号供处理器核心处理。

3.2 输出控制:单片机通过引脚接口输出数字信号,控制外部设备的工作,如LED灯、电机等。

3.3 中断控制:单片机支持中断功能,当外部事件发生时,可以中断当前的程序执行,处理相应的中断服务程序。

四、时钟控制4.1 系统时钟:单片机内部有一个时钟发生器,用于提供系统时钟信号,控制单片机的工作频率。

4.2 定时器:单片机内部集成了定时器,可以用于实现定时、计数等功能,如延时控制、PWM输出等。

4.3 外部时钟:单片机还可以通过外部接口连接外部时钟源,提供更高的时钟频率。

五、中央处理器核心5.1 ALU(算术逻辑单元):单片机的核心部分是ALU,负责执行各种算术和逻辑运算。

5.2 控制单元:单片机的控制单元负责指令的执行和控制,包括指令译码、时序控制等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

单片机的工作过程以及原理单片机自动完成赋予它的任务的过程,也就是单片机执行程序的过程,即一条条执行的指令的过程,所谓指令就是把要求单片机执行的各种操作用的命令的形式写下来,这是在设计人员赋予它的指令系统所决定的,一条指令对应着一种基本操作;单片机所能执行的全部指令,就是该单片机的指令系统,不同种类的单片机,其指令系统亦不同。

为使单片机能自动完成某一特定任务,必须把要解决的问题编成一系列指令(这些指令必须是选定单片机能识别和执行的指令),这一系列指令的集合就成为程序,程序需要预先存放在具有存储功能的部件--存储器中。

存储器由许多存储单元(最小的存储单位)组成,就像大楼房有许多房间组成一样,指令就存放在这些单元里,单元里的指令取出并执行就像大楼房的每个房间的被分配到了唯一一个房间号一样,每一个存储单元也必须被分配到唯一的地址号,该地址号称为存储单元的地址,这样只要知道了存储单元的地址,就可以找到这个存储单元,其中存储的指令就可以被取出,然后再被执行。

程序通常是顺序执行的,所以程序中的指令也是一条条顺序存放的,单片机在执行程序时要能把这些指令一条条取出并加以执行,必须有一个部件能追踪指令所在的地址,这一部件就是程序计数器PC(包含在CPU中),在开始执行程序时,给PC赋以程序中第一条指令所在的地址,然后取得每一条要执行的命令,PC在中的内容就会自动增加,增加量由本条指令长度决定,可能是1、2或3,以指向下一条指令的起始地址,保证指令顺序执行。

单片机介绍单片微型计算机简称单片机,是典型的嵌入式微控制器(Microcontroller Unit),常用英文字母的缩写MCU表示单片机,它最早是被用在工业控制领域。

单片机由芯片内仅有CPU的专用处理器发展而来。

最早的设计理念是通过将大量外围设备和CPU集成在一个芯片中,使计算机系统更小,更容易集成进复杂的而对体积要求严格的控制设备当中。

INTEL的Z80是最早按照这种思想设计出的处理器,从此以后,单片机和专用处理器的发展便分道扬镳。

早期的单片机都是8位或4位的。

其中最成功的是INTEL的8031,因为简单可靠而性能不错获得了很大的好评。

此后在8031上发展出了MCS51系列单片机系统。

基于这一系统的单片机系统直到现在还在广泛使用。

随着工业控制领域要求的提高,开始出现了16位单片机,但因为性价比不理想并未得到很广泛的应用。

90年代后随着消费电子产品大发展,单片机技术得到了巨大提高。

随着INTEL i960系列特别是后来的ARM系列的广泛应用,32位单片机迅速取代16位单片机的高端地位,并且进入主流市场。

而传统的8位单片机的性能也得到了飞速提高,处理能力比起80年代提高了数百倍。

目前,高端的32位单片机主频已经超过300MHz,性能直追90年代中期的专用处理器,而普通的型号出厂价格跌落至1美元,最高端[1]的型号也只有10美元。

当代单片机系统已经不再只在裸机环境下开发和使用,大量专用的嵌入式操作系统被广泛应用在全系列的单片机上。

而在作为掌上电脑和手机核心处理的高端单片机甚至可以直接使用专用的Windows和Linux操作系统。

单片机比专用处理器更适合应用于嵌入式系统,因此它得到了最多的应用。

事实上单片机是世界上数量最多的计算机。

现代人类生活中所用的几乎每件电子和机械产品中都会集成有单片机。

手机、电话、计算器、家用电器、电子玩具、掌上电脑以及鼠标等电脑配件中都配有1-2部单片机。

而个人电脑中也会有为数不少的单片机在工作。

汽车上一般配备40多部单片机,复杂的工业控制系统上甚至可能有数百台单片机在同时工作!单片机的数量不仅远超过PC机和其他计算的总和,甚至比人类的数量还要多。

单片机又称单片微控制器,它不是完成某一个逻辑功能的芯片,而是把一个计算机系统集成到一个芯片上。

相当于一个微型的计算机,和计算机相比,单片机只缺少了I/O设备。

概括的讲:一块芯片就成了一台计算机。

它的体积小、质量轻、价格便宜、为学习、应用和开发提供了便利条件。

同时,学习使用单片机是了解计算机原理与结构的最佳选择。

单片机内部也用和电脑功能类似的模块,比如CPU,内存,并行总线,还有和硬盘作用相同的存储器件,不同的是它的这些部件性能都相对我们的家用电脑弱很多,不过价钱也是低的,一般不超过10元即可.用它来做一些控制电器一类不是很复杂的工作足矣了。

我们现在用的全自动滚筒洗衣机、排烟罩、VCD等等的家电里面都可以看到它的身影!.它主要是作为控制部分的核心部件。

它是一种在线式实时控制计算机,在线式就是现场控制,需要的是有较强的抗干扰能力,较低的成本,这也是和离线式计算机的(比如家用PC)的主要区别。

单片机芯片单片机是靠程序运行的,并且可以修改。

通过不同的程序实现不同的功能,尤其是特殊的独特的一些功能,这是别的器件需要费很大力气才能做到的,有些则是花大力气也很难做到的。

一个不是很复杂的功能要是用美国50年代开发的74系列,或者60年代的CD4000系列这些纯硬件来搞定的话,电路一定是一块大PCB板!但是如果要是用美国70年代成功投放市场的系列单片机,结果就会有天壤之别!只因为单片机的通过你编写的程序可以实现高智能,高效率,以及高可靠性!由于单片机对成本是敏感的,所以目前占统治地位的软件还是最低级汇编语言,它是除了二进制机器码以上最低级的语言了,既然这么低级为什么还要用呢?很多高级的语言已经达到了可视化编程的水平为什么不用呢?原因很简单,就是单片机没有家用计算机那样的CPU,也没有像硬盘那样的海量存储设备。

一个可视化高级语言编写的小程序里面即使只有一个按钮,也会达到几十K的尺寸!对于家用PC的硬盘来讲没什么,可是对于单片机来讲是不能接受的。

单片机在硬件资源方面的利用率必须很高才行,所以汇编虽然原始却还是在大量使用。

一样的道理,如果把巨型计算机上的操作系统和应用软件拿到家用PC上来运行,家用PC的也是承受不了的。

可以说,二十世纪跨越了三个"电"的时代,即电气时代、电子时代和现已进入的电脑时代。

不过,这种电脑,通常是指个人计算机,简称PC机。

它由主机、键盘、显示器等组成。

还有一类计算机,大多数人却不怎么熟悉。

这种计算机就是把智能赋予各种机械的单片机(亦称微控制器)。

顾名思义,这种计算机的最小系统只用了一片集成电路,即可进行简单运算和控制。

因为它体积小,通常都藏在被控机械的"肚子"里。

它在整个装置中,起着有如人类头脑的作用,它出了毛病,整个装置就瘫痪了。

现在,这种单片机的使用领域已十分广泛,如智能仪表、实时工控、通讯设备、导航系统、家用电器等。

各种产品一旦用上了单片机,就能起到使产品升级换代的功效,常在产品名称前冠以形容词--"智能型",如智能型洗衣机等。

现在有些工厂的技术人员或其它业余电子开发者搞出来的某些产品,不是电路太复杂,就是功能太简单且极易被仿制。

究其原因,可能就卡在产品未使用单片机或其它可编程逻辑器件上。

编辑本段单片机历史单片机诞生于20世纪70年代末,经历了SCM、MCU、SoC三大阶段。

单片机的基本结构单片机由运算器、控制器、存储器、输入输出设备构成起初模型1.SCM即单片微型计算机(Single Chip Microcomputer)阶段,主要是寻求最佳的单片形态嵌入式系统的最佳体系结构。

"创新模式"获得成功,奠定了SCM与通用计算机完全不同的发展道路。

在开创嵌入式系统独立发展道路上,Intel公司功不可没。

Micro Controller Unit 2.MCU即微控制器(Micro Controller Unit)阶段,主要的技术发展方向是:不断扩展满足嵌入式应用时,对象系统要求的各种外围电路与接口电路,突显其对象的智能化控制能力。

它所涉及的领域都与对象系统相关,因此,发展MCU的重任不可避免地落在电气、电子技术厂家。

从这一角度来看,Intel逐渐淡出MCU的发展也有其客观因素。

在发展MCU方面,最著名的厂家当数Philips公司。

Philips公司以其在嵌入式应用方面的巨大优势,将MCS-51从单片微型计算机迅速发展到微控制器。

因此,当我们回顾嵌入式系统发展道路时,不要忘记Intel和Philips的历史功绩。

嵌入式系统单片机是嵌入式系统的独立发展之路,向MCU阶段发展的重要因素,就是寻求应用系统在芯片上的最大化解决;因此,专用单片机的发展自然形成了SoC化趋势。

随着微电子技术、IC设计、EDA工具的发展,基于SoC的单片机应用系统设计会有较大的发展。

因此,对单片机的理解可以从单片微型计算机、单片微控制器延伸到单片应用系统。

单片机发展史[2]1971年intel公司研制出世界上第一个4位的微处理器;Intel公司的霍夫研制成功世界上第一块4位微处理器芯片Intel 4004,标志着第一代微处理器问世,微处理器和微机时代从此开始。

因发明微处理器,霍夫被英国《经济学家》杂志列为"二战以来最有影响力的7位科学家"之一。

1971年11月,Intel推出MCS-4微型计算机系统(包括4001 ROM芯片、4002 RAM芯片、4003移位寄存器芯片和4004微处理器)其中4004(下图)包含2300个晶体管,尺寸规格为3mm×4mm,计算性能远远超过当年的ENIAC,最初售价为200美元。

1972年4月,霍夫等人开发出第一个8位微处理器Intel 8008。

由于8008采用的是P沟道MOS微处理器,因此仍属第一代微处理器。

1973年intel公司研制出8位的微处理器8080;1973年8月,霍夫等人研制出8位微处理器Intel 8080,以N沟道MOS电路取代了P沟道,第二代微处理器就此诞生。

主频2MHz的8080芯片运算速度比8008快10倍,可存取64KB存储器,使用了基于6微米技术的6000个晶体管,处理速度为0.64MIPS(Million Instructions Per Second)。

1975年4月,MITS发布第一个通用型Altair 8800,售价375美元,带有1KB存储器。

这是世界上第一台微型计算机。

1976年intel公司研制出MCS-48系列8位的单片机,这也是单片机的问世。

Zilog公司于1976年开发的Z80微处理器,广泛用于微型计算机和工业自动控制设备。

当时,Zilog、Motorola和Intel在微处理器领域三足鼎立。

20世纪80年代初,Intel公司在MCS-48系列单片机的基础上,推出了MCS-51系列8位高档单片机。

MCS-51系列单片机无论是片内RAM容量,I/O口功能,系统扩展方面都有了很大的提高。

相关文档
最新文档