电化学法研究金属防腐蚀新进展
电化学方法研究锌镍合金镀层耐腐蚀性能
电化学方法研究锌镍合金镀层耐腐蚀性能韩玉娟;郑凯【摘要】Zn-Ni alloy coating and Zn coating were prepared by electrodepositing in alkaline electrolyte respectively. They were handled into working electrodes. Platinum electrode and calomel electrode were chosen as counter electrode and reference electrode respectively. They were immersed into 5% NaCl solution simultaneously. The electrochemical workstation was utilized to measure the corrosion performance after 120 h. The test result indicated that the corrosion potentials of the Zn-Ni alloy and Zn coating were respectively -0. 778 and -0. 989 V, rate of corrosion on Zn-Ni alloy and zinc coating were 0. 0405 and 0. 301 g/( m2 ·h) , which indicated that the corrosion rate of Zinc coating was seven point four times of that of Zn-Ni alloy, their real part values within the low frequency range from 1 to 10 Hz were 250 and 900 Ω/cm2 respectively, the value of Zn-Ni was 3. 5 times than that of Zn coating.%碱性介质中制备锌镍合金镀层与镀锌层,并制备成工作电极,分别选择铂电极和饱和甘汞电极作为对电极和参比电极,5%氯化钠溶液为测量介质,采用电化学工作站测量工作电极电化学特性。
国内外管道腐蚀与防护研究进展
国内外管道腐蚀与防护研究进展国内外管道腐蚀与防护研究进展引言管道是现代工业中常见的输送装置,广泛应用于能源、化工、石油、天然气等领域。
然而,由于环境因素和长期使用带来的磨损,管道腐蚀问题已成为制约管道使用寿命和安全性的重要因素。
因此,对管道腐蚀及其防护技术的研究具有重要的现实意义和理论价值。
本文将综述国内外对管道腐蚀与防护的研究进展。
一、管道腐蚀的分类与机理1.1 管道腐蚀的分类管道腐蚀主要分为化学腐蚀和电化学腐蚀两大类。
化学腐蚀由介质中的化学物质对管道材料的直接损害引起,例如酸蚀、碱蚀等。
电化学腐蚀主要是通过电化学反应引起的,如金属的氧化腐蚀、电化学脱氧腐蚀等。
1.2 管道腐蚀的机理管道腐蚀的机理复杂多样,但一般可归结为金属表面与介质相互作用引起的化学反应。
导致管道腐蚀的因素有:介质的酸碱度、温度、流速、含氧量、盐度等。
金属材料自身的性质也会影响管道腐蚀,如金属的结构、化学成分、缺陷等。
二、管道腐蚀的评价方法2.1 传统评价方法传统上,对管道腐蚀程度的评价主要采用物理检测方法和化学分析方法。
物理检测方法包括金相分析、扫描电子显微镜等,化学分析方法则通过对介质中金属离子浓度、pH值等进行测试。
2.2 非破坏性评价方法近年来,非破坏性评价方法在管道腐蚀检测中得到了广泛应用。
例如,超声波检测技术可以通过测量超声波在材料中的传播时间和幅度来评估金属材料的腐蚀程度。
磁粉探伤技术则利用磁场特性检测金属材料中的缺陷或腐蚀情况。
三、管道腐蚀防护技术研究3.1 传统防护技术传统上,常用的管道腐蚀防护技术包括阴极保护、涂层防护和材料选择。
阴极保护通过引入外部电流或材料使金属处于负电位,从而减少电化学反应的发生。
涂层防护则是在金属表面涂覆一层能耐腐蚀介质的材料,以提供保护层。
材料选择则是选择对特定工况下介质具有良好抗腐蚀性能的金属材料。
3.2 新型防护技术随着科技的进步,新型管道腐蚀防护技术不断涌现。
例如,纳米涂层技术可以通过在传统涂层中添加纳米颗粒,增强涂层的抗腐蚀性能。
电化学方法测量钢铁锈层防腐性能
十 J “ ^L .
山 东 冶 金
S a d n Meal r y hnog tlu g
V0 -2 N03 13 -
J n 2 0 u e 01
{经验 1f1f1 ——牛 咕— 竹 竹 交流 } ] - 神
分别测 定不 同材料 无锈 和 带锈 情 况下的腐蚀规律是
切 实 可行 的 。
专业 。现为济南鲍德房地 产开发有限公司科长 、 工程师 , 事工程 从 管理工作。
原 理 可以将 运行过 程 分为 两个 阶段 , 据此 设置 两组
响 。 当下放 速度 变化 大时 , 置给 定 的 向上 的 力矩 装
用, 为锈 层 电阻控 制下 的轻微 腐蚀 。 3 结 语
c 带锈 试 样 及 无锈 试 样 , 01mo/ z 溶液 r 在 . l Na O L S
中的 阳极极 化 曲线 测试 。测 示仪 器采 用 I 2 H B恒 电
位 仪 , Z 8 字 电压表 , P一数 电解 池 ( t电极 和饱 和甘 P) 汞 电极 。试样在 溶 液 中均 自然稳 定 4 n 随之 第 0 mi ,
9 0mv扩 大到 1 0 0 0mV。从 以上特征 值表 明 , 3 耐候
分用硝基 清漆涂封 。
2 试验 方 法。 用恒 电位 步 阶法 测量 1Mn u ) 2 C—
钢 经 2a 大气暴露 以后 , 面生成较 致 密而稳 定的锈 表 层 , 自然腐蚀状 态几乎钝化 , 在 具有较 好 的防腐蚀作
探尺 运动反作 用的大 小。
环控 制 , 据现场 实际情况对 P 4 ( 根 6 4 主给 定值 的 源 )
进 行修 改 , 设置提 尺 时的速 度给 定值 。5 放 尺 时 引 )
涂层下金属腐蚀无损检测技术现状与进展
行 在线 无 损 检测 。 Байду номын сангаас
有 机 涂 层 下 金 属 腐 蚀 的 本 质 是 一 种 电 化 学 过 程 ,因此 电 化 学 技 术 是 现 场 检 测 涂 层 下 金 属 腐 蚀 的
主 要 方 法 。国 内外 对 电 化 学 阻抗 谱 ( lc oh m cl Eet c e ia r I e a c p crso y E S) 电 流 中 断 ( urn mp d n eS et c p , I 、 o C ret Itr pin C ) 电化 学 噪声 ( lcrc e c l os , ner t , I 、 u o Ee t h mi i o aN e
各 个 领 域 。 着 涂料 工 业 技 术水 平 的不 断进 步 , 现 随 涌 出种 类 繁 多 的 防腐 蚀 涂 料 产 品 。 中 , 境 友 好 、 其 环 低 表 面处 理 要 求 的长 效 防腐 蚀 涂 料 产 品 由于 具 有 绿 色 环保 、 施工 、 易 防护 期 限长 等 优 点 而 备 受 青 睐 。尽 管 这 类 涂 料 产 品初 期 投 入 较 高 , 如 果 综 合 考 虑 全 寿 但 命 周 期 成 本 , 技 术 优 势 十 分 明显 。例 如 , 于 海 洋 则 对 采 油 平 台 ,围外 已报 道 了 防 护 期 限超 过 5 的涂 料 0a 产 品 。再 如 , 洋 船 舶 水 线 以下 用 防 腐蚀 涂 料 、 载 海 压 水舱 防腐 蚀 涂料 也 普 遍 具备 了 1 0a以上 的 防护期 限 。
12电化 学噪 声技 术 . 电化 学 噪声 ( N) 指 电化 学 动力 系统 中电化 学 E 是
状 态 参 数 ( 电极 电位 、 测 电流 密度 等 ) 如 外 的随 机 非
防止金属腐蚀的电化学方法
防止金属腐蚀的电化学方法-概述说明以及解释1.引言1.1 概述金属腐蚀是指金属在与外界环境接触时,由于化学反应导致金属表面的物质损失的现象。
腐蚀不仅会造成金属的损坏和破坏,还会对各行业的生产设备、建筑物和基础设施等产生巨大的经济损失。
因此,探索有效的防腐蚀方法对于保护金属材料的使用寿命和安全性具有重要意义。
电化学防腐蚀是一种常用的防腐蚀方法,它利用电化学原理干预金属与环境之间的电化学反应,从而减缓或阻止金属腐蚀的过程。
其基本思想是在金属表面形成一层保护膜,阻隔金属与外界环境的直接接触。
电化学防腐蚀方法可以通过两种途径来实现。
一种是通过施加电流,使金属表面产生电化学反应,形成一层稳定的氧化膜或金属保护层,以防止金属进一步氧化和腐蚀。
另一种是利用金属表面发生的自然电化学反应,通过添加抑制剂或缓蚀剂,抑制或减少金属腐蚀的速率。
总之,电化学防腐蚀方法是一种可行且有效的手段,可以减缓或阻止金属腐蚀的过程,延长金属材料的使用寿命。
未来的研究应重点关注电化学防腐蚀方法的优化和创新,探索更具可持续性和环保性的防腐蚀技术,为各行业提供更好的保护方案。
文章结构是指文章的组织和次序安排。
一个良好的文章结构可以帮助读者更好地理解文章的内容,并确保文章的逻辑清晰和条理性强。
本文的文章结构如下:1. 引言1.1 概述在本部分,将介绍金属腐蚀的问题以及电化学方法在防止金属腐蚀方面的重要性。
1.2 文章结构本节将详细阐述文章的组织和次序安排,以帮助读者了解整篇文章的内容和结构。
1.3 目的介绍本文的研究目的和意义,阐明为什么需要研究防止金属腐蚀的电化学方法。
1.4 总结概括性总结本节的内容,为接下来的正文部分做好铺垫。
2. 正文2.1 电化学腐蚀的基本原理本部分将介绍金属腐蚀的基本原理,包括化学反应、电化学过程和腐蚀产物形成等方面的内容。
2.2 电化学防腐蚀的基本概念本部分将介绍电化学防腐蚀的基本概念,如阳极、阴极、电化学反应等,为后续的防腐蚀方法提供理论基础。
铜的腐蚀及防护研究进展_罗正贵
第27卷第2期 武 汉 化 工 学 院 学 报 V o l.27 N o.22005年03月 J . W uhan Inst. Chem. Tech. M ar. 2005文章编号:10044736(2005)02001705铜的腐蚀及防护研究进展罗正贵,闻荻江(苏州大学材料工程学院,江苏苏州215021)摘 要:对铜腐蚀的分类、铜用缓蚀剂的种类和吸附机理进行了综述,介绍了近年来铜的腐蚀和保护的研究进展,分析了存在的问题,并针对应用情况提出了今后发展应加强研究的方向.关键词:铜;缓蚀剂;腐蚀;防护中图分类号:T G 174.42 文献标识码:A收稿日期:20040405作者简介:罗正贵(1968),男,四川隆昌人,硕士.研究方向:材料结构及其表面技术.0 引 言在有色金属的生产中,铜的产量仅次于铝,居第二位.在电化学顺序中,铜具有比氢更高的正电位(+0.35V SHE ),故铜有较高的热力学稳定性,不会发生氢的去极化作用,被列为耐腐蚀金属之一.但是在湿度较高、腐蚀性介质(如含二氧化硫的空气、含氧的水、氧化性酸以及在含有CN -、N H 4+等能与铜形成络合离子的液体)中,铜则发生较为严重的腐蚀.铜合金表现出比纯铜更高的耐腐蚀性,如:黄铜(CuZn 合金)耐冲击腐蚀性好;铜镍合金具有耐酸耐碱、耐海水的性能以及抗应力腐蚀开裂的特性;锡青铜合金可耐各种腐蚀;硅青铜合金机械强度高、耐应力腐蚀开裂性能好.为进一步提高铜抗腐蚀性能,除继续研制新型铜合金材料之外,自20世纪30年代以来,铜及铜合金缓蚀剂的研究和开发工作取得了较大的进展.应用实践表明,在各种腐蚀介质中,使用缓蚀剂抑制铜及其合金的腐蚀是经济有效的方法.1 铜的腐蚀铜的腐蚀按铜的使用环境可分为气相腐蚀和液相腐蚀,而液相腐蚀可按酸碱度进一步分为酸性液体、中性液体和碱性液体中的腐蚀.在过去的数十年里,人们对铜在酸性溶液中、碱性溶液中和中性盐类溶液中以及自来水供水系统中的腐蚀进行了深入广泛的研究.铜及其合金暴露在通常的中性大气环境中,在其表面可以生成氧化亚铜(低温)、氧化铜(高温)及碱式碳酸铜保护膜,但在含有腐蚀性气体的工业区大气中,则有明显腐蚀现象.SO 2会使铜表面生成碱式硫酸铜[CuSO 4·3Cu (O H )2][1],使铜表面受到破坏,SO 2浓度或空气的相对湿度越高,腐蚀速度越快.H 2S 能使铜表面生成硫化亚铜,然后进一步氧化成硫化铜.大气中的氨与铜作用生成铜氨化合物,当受到雨水的溶解冲洗,也会使铜腐蚀.J .Tidbald 等[2]对空气中的腐蚀性气体对铜的腐蚀机理和产物进行了深入研究.在沿海的大气中,含量较高的Cl -与铜反应,生成绿色晶状的碱式氯化铜[CuCl 2·3Cu (OH )2],接着会进一步腐蚀.Grant Skennerton 等[3]研究了空气中Cl -含量较高,而SO 2浓度较低的Heron Island(海岛)地区的铜的腐蚀情况.研究表明,铜的表面腐蚀产物主要是氧化铜及碱式氯化铜,由于SO 2浓度较低,因此没有碱式硫酸铜生成.铜在酸性液体中的腐蚀因介质的不同,存在较大差异.按介质分为氧化性酸和非氧化性酸介质引起的腐蚀.无论何种酸性介质,氧气在腐蚀过程中都起着重要的作用.铜在中性液体介质中的腐蚀,其介质可分为淡水、盐类溶液、海水溶液和有机试剂.铜在淡水中有较高的耐腐蚀性,但考虑到微量铜离子对人体的影响,人们对铜在饮用水系统中的腐蚀行为进行了大量的研究[4].在工业热交换水系统中,随二氧化碳、溶解氧含量的增加或pH 值的减小,铜的腐蚀速率增加[5].铜在海水及盐类溶液中的腐蚀情况大致相同,盐的存在使海水的导电性提高,溶解氧含量增高,这些因素为铜的电化学腐蚀提供了条件.Cl -的存在会加剧铜的腐蚀,使铜在溶液中发生溶解.研究结果一致表明[6,7],铜的阳极溶解只与Cl -浓度有关而与pH 值无关.当Cl -浓度小于1mol /L 时,铜的腐蚀机理如下: 阳极:Cu +Cl -CuCl +e- CuCl +Cl -CuCl 2+e-阴极:O 2+4e +2H 2O 4OH -当Cl -浓度大于1mol /L 时,将会有CuCl 32-和CuCl 43-的混合物形成.在碱性液体中,由于构成金属腐蚀的阴极反应的氧、氢的电极电位较低,与金属铜阳极溶解反应的平衡电位之间电位差较小,在常温条件下,铜的腐蚀速率较低.但随着环境温度升高,溶液浓度增加以及溶液中存在溶解氧时,对铜及其合金的腐蚀速率会加剧.2 铜的防护针对铜的广泛应用及在某些条件下容易受到腐蚀的特点,人们采用了很多方法来防护铜的腐蚀,其中最重要的是使用各种缓蚀剂.铜及铜合金的各种缓蚀剂主要在冷却水系统、海水及盐类液体、酸性液体、氨及铵盐类碱性液体、气相环境等方面使用.按照使用物质的种类不同,可以将铜的缓蚀剂分为天然类缓蚀剂、无机盐类缓蚀剂和有机化合物类缓蚀剂三大类.2.1 天然类缓蚀剂从天然植物中分离出的松脂和薰衣草油作为抑制酸液体中铜腐蚀的腐蚀剂是铜在酸液体的缓蚀剂的早期应用.后来发现一些胶体物质如阿拉伯胶、蛋白质、明胶、糊精和马铃薯淀粉对盐酸溶液中的铜具有较好的缓蚀效果.此外,采用涂覆润滑油脂的方法来防止腐蚀性气体反应或延缓腐蚀的发生.A.Y.Ele Etre [8]采用失重法和电化学技术研究了天然蜂蜜对铜的缓蚀作用.研究表明:天然蜂蜜对0.5mol /L 的NaCl 溶液中的铜具有良好的缓蚀效果,并且蜂蜜在铜表面的吸附遵从Langmiur 等温吸附规律,但由于蜂蜜的变质,缓蚀效果在几天后逐渐下降.2.2 无机盐类缓蚀剂无机盐类缓蚀剂主要用于铜在中性溶液中的缓蚀.从20世纪20年代起,砷的化合物作为铜系金属缓蚀剂开始使用.后来应用的有亚硫酸钠、硫化钠、铬酸钠等.为了保护铜不受海水和冷却水的腐蚀,也使用过硅酸盐、铬酸盐、六偏磷酸钠、偏磷酸钠和硝酸钠等作为铜系金属缓蚀剂.随着工业应用和研究的不断深入,相继出现磷酸盐系列、铁盐系列和无机复配系列缓蚀剂.正磷酸盐和偏磷酸盐混合使用可以有效抑制工业冷却水循环系统中铜的腐蚀.近年来,越来越多的研究[9]转移到无机盐有机物复配混合型缓蚀剂方面.2.3 有机化合物类缓蚀剂按照使用方式和化合物结构可将有机化合物类缓蚀剂进一步分为唑类缓蚀剂、聚合物膜型缓蚀剂和自组装膜型缓蚀剂三类.a .唑类缓蚀剂早在40年代,人们就已经发现巯基苯并噻唑(MB T)对铜系金属具有较好的缓蚀效果,但由于其水溶性差,应用受到一定的限制.20世纪50年代以后,人们发现苯并三唑(BT AH)在工业水及循环冷却水等中性介质中对铜系金属具有优异的缓蚀性能,并开始了对BT AH 的缓蚀机理的研究及其衍生物的开发应用[10~15].研究发现:BTAH 在铜表面生成的是多层膜,其组成为Cu /Cu 2O /Cu +·B TAH,其中大部分为Cu +·BT AH,与部分因空气氧化变成的Cu 2+·BT AH);BTAH 的缓蚀效果在pH 值为2~12时较好,在pH 值为4~10效果更好[16,17];BT AH 衍生物对铜具有优异的缓蚀性能:唑环上的氢被甲基取代后,缓蚀效果将大大降低,而苯环上引入烷基缓蚀效果将会增加[13].G .Brunoro 等[18]研究了5甲基1,2,3苯并三唑,5己基1,2,3苯并三唑,5辛基1,2,3苯并三唑和5甲氧基1,2,3苯并三唑对铜在中性或酸性雨中的缓蚀效果.研究表明,苯环上引入烷基缓蚀效果增强.R .B abi é等[19]合成了一种新的衍生物DBTO(见图1),并采用循环伏安法、电化学阻抗谱和表面增强拉曼光谱研究了其在pH= 5.8的醋酸钠溶液中对铜的缓蚀效果和缓蚀机理.结果表明:在铜表面形成的薄膜为Cu /Cu 2O /Cu +·DBTO 结构,缓蚀剂浓度为0.5mm ol /L 时,缓蚀效率就能达到95%以上,从0.5mmol /L 到5mmol /L 的变化过程中,缓蚀效率从95%逐渐接近100%.图1 DBT O 的结构Fig .1 Structure of D BTOBT AH 及其衍生物被证明是缓蚀效果最好的缓蚀剂之一,但BTAH 主要缺点是有一定的毒性,使用受到限制.故研究工作注意到具有环境亲和性的咪唑类衍生物,研究表明,咪唑类衍生物对18武汉化工学院学报第27卷大气和酸性条件下的铜具有优异的缓蚀性能,且具有环境亲和性[20~22].R.Gas parac等[23]对一系列咪唑类衍生物对中性氯化钠溶液中的铜缓蚀性能进行了研究.结果表明,咪唑类分子在铜表面是物理吸附,含有苯环和不含苯环的衍生物存在不同的缓蚀机理,前者主要通过抑制阳极电化学反应起到缓蚀的效果,而后者是通过抑制阴极的电化学反应起到缓蚀的效果;在所研究的咪唑类衍生物中,4甲基1苯基咪唑的缓蚀性能最为优异,且随着相对分子质量的增加,缓蚀效果逐渐增强.F.Zucchi等[24]研究了四唑类衍生物及其相应的盐类(5巯基1甲基四唑、5巯基钠1甲基四唑、5巯基1苯基四唑等)对在pH为4~8的0.1mol/L的NaCl溶液中的铜的缓蚀效果.结果表明,除5巯基1羧基四唑外,都有一定的缓蚀效果,其中,含有苯环的四唑缓蚀效果明显优于不含苯环的四唑.在热交换系统和循环水冷却水系统中,由于表面产生水垢和因腐蚀而形成的腐蚀产物,使热效率降低,所以常采用硫酸等定期进行清洗.酸洗过程中铜会被腐蚀,此时加入缓蚀剂是非常必要的.E.Stupnis ek Lisac等[25]研究了咪唑类衍生物的结构对硫酸溶液中铜的缓蚀性能的影响.结果表明,在所研究的四种咪唑化合物(咪唑,4甲基5羟甲基咪唑,1苯基4甲基咪唑和1对苯甲基4甲基咪唑)中,咪唑的缓蚀效率最低(50%).由于取代基的引入,4甲基5羟甲基咪唑的缓蚀效率增加到65%,而取代基为苯环的1苯基4甲基咪唑的缓蚀效率高达93%.尽管BT AH在中性和碱性条件下对铜具有优异的缓蚀性能,但其在酸性溶液中的缓蚀效率却急剧下降.铜在氧化性酸中极不稳定,很快会被腐蚀溶解.研究人员研究了铜在硝酸溶液中的溶解动力学,并相继开发出一系列缓蚀剂.由于早期的缓蚀剂不能长期使用,因此,研究重点转向开发新的缓蚀剂或利用协同效应采用复配技术以提高缓蚀效率.M.M.E.Naggar[26]开发出两种新的三唑类衍生物[双(4氨基5羟基1,2,4三唑)丁烷和双(4氨基5羟基1,2,4三唑)甲烷,结构式见图2,3],研究结果表明,两种化合物对硝酸溶液中的铜具有长期的缓蚀效果.b.聚合物膜型缓蚀剂聚合物膜型缓蚀剂是以高分子聚合物作缓蚀剂或通过缓蚀剂组分在界面反应形成聚合物膜而起到缓蚀效果的一类缓蚀剂,如聚乙烯吡啶、聚乙烯胺、聚乙烯哌啶、聚乙炔等.B.Trachli等[27]对2巯基苯并咪唑在铜表面电氧化聚合的动力学及聚合物膜层的缓蚀效果进行了研究.结果表明: 2巯基苯并咪唑首先吸附到铜的表面进而发生了阳极氧化聚合,然后溶液中更多的单体分子吸附到聚合物膜上发生阳极氧化聚合;电化学阻抗谱研究的结果表明铜表面形成的聚合物薄膜在0.5mol/L的NaCl溶液中的缓蚀效率为99%以上.A.Guenbour等[28]研究表明,聚氨基薄膜具有较好的缓蚀效果,BTAH的加入进一步增强了膜层的缓蚀效果.图2 双(4氨基5羟基1,2,4三唑)丁烷Fig.2 Str ucture of di(4amino5hy drox y1,2,4 triza lyl)buta ne图3 双(4氨基5羟基1,2,4三唑)甲烷Fig.3 Str ucture of di(4amino5hy drox y1,2,4 triza lyl)methanec.自组装膜型缓蚀剂(SAM S)自组装膜是分子通过化学键相互作用自发吸附在异相界面,形成取向和排列紧密的有序膜.采用自组装技术,在金属表面可以在比较温和的条件下制备紧密有序的单层及多层膜,这在金属防腐蚀方面具有广泛的应用前景.G.Kane Jennings等[29]研究了直链烷基硫醇类化合物对铜的缓蚀作用,结果表明直链烷基分子链越长缓蚀效果越好.Daiki Taneichi等[30]使用烷基三氯硅烷和烷基异氰酸酯对11巯基1十一醇在铜表面形成的自组装膜进行改性研究,结果表明改性后自组装膜的缓蚀效果更加优异,且由于后者分子结构中不含有氯离子,其缓蚀效果也更好.3 研究展望随着工业和科学技术的进步和发展,铜的腐蚀和保护的研究也日益引起人们更多的重视.综上所述,今后对铜的腐蚀和防护的工作中,开展新的缓蚀剂的研究重点主要是:a.利用现有缓蚀剂品种,研究缓蚀剂之间的协同缓蚀机理,以提高缓蚀效果和减少使用量.19第2期罗正贵等:铜的腐蚀及防护研究进展 b.加强缓蚀剂的无毒化研究,减少对环境造成污染的缓蚀剂的使用,以减少缓蚀剂对环境和生态造成的不良影响.c.利用现代先进的分析测试仪器和计算机技术,从分子和原子水平上研究缓蚀剂在铜表面上的行为及作用机理,开发出高效低毒的和具有环境亲和性的高分子型有机缓蚀剂.参考文献:[1] Brusic V,Frisch M A,Frankel G S.Copper cor rosionw ith and without inhibito rs[J].J Electrochem Soc,1991,138(8):22532259.[2] Tidblad J,Gra edel T E.Gildes model study ofaqueous chemistry.Ⅲ.initia l SO2inducesa tmosph eric cor rosion of copper[J].Cor ro Sci,1996,38(12):22012224.[3] Grant Skennerton,Jaso n Nairn.Atmosphericco rrosion of copper a t Heron[J].Isla nd,M aterialLeters,1997,30(5):141146.[4] Feng Y,Teo W K,Sio w K S,et al.The co rrosionbehav eiour of copper in neutral ta p wa ter par t1:co rrosion mechanism[J].Co rro s Sci,1996,38(3):387395.[5] Sobue K,Sugaha ra A.Effect o f fr ee ca rbo n diox ideon cor riso n behav eior of copper in s imulated water[J].Sur face and Coa ting s T echology,2003,(1):169170,662665.[6] Barcia O E,M a ttos O R,Pebere N,et al.M asstranspo rt study fo r the electrodissolution of copper in1M hydrochlo ric acid solutio n by impedance[J].JElectro chem Soc,1993,140(10):28252833.[7] Cr undw ell F K.Anodic dissolutio n o f co pper inhy drochloric acid solutions[J].Electrocim Acta,1992,37(15):27072710.[8] Ele Etre A Y.Natural honey as cor rosion inhibitorfor meta ls and a lloy s.I.Copper in netural aqueo ussolutio ns[J].Co rro s S,1998,40(11):18451850. [9] 扈显琦,彭 乔,张明嘉.海水中铜的缓蚀剂研究[J].四川化工与腐蚀控制,1999,2(3):48.[10] El Taib Heakal F,Haruyama S.Impedance studiesof the inhibitiv e effect of benzo triazole o n thecor rosion of copper in sodium chloride medium[J].Cor ros Sci,1980,20(7):887898.[11] Kester J J,Furtak T E,Bev olo A J.Surfaceenhanced raman scat tering in cor rosion science:benzo tria zole on copper[J].J Electrochem Soc,1982,129(8):17161719.[12] Fleisch ma nn M,H ill I R,M ong oli G,et al.Synergetic effect of benzylamine on the cor rosioninhibitio n of copper by benzo triazole[J].Electrochim Acta,1983,28(10):13251333. [13] To rnkvist C,T hierr y D,Berg ma n J.Photoelectronand infra red reflectio n absorptio n spect roscopy ofbenzotria zole adso rbed on co pper and cupro us oxidesurfaces[J].J Electrochem Soc,1989,136(1):5864.[14] Brusic V,Frisch M A.Frankel G S.Coppercor rosion with and without inhibitors[J].JElectrochem Soc,1991,138(8):22532259. [15] No toya T,Poling G W.T opog raphies o f thick Cubenzo tria zolete films on copper[J].Co rro s Sci,1976,32(8):216223.[16] Alkire R,Cang ella ri A.Effect of benzotria zole o ndissolutio n o f co pper in the presence of fluid flo w:IEx perimental[J].J Electrochem Soc,1989,136(4):913919.[17] M odestov D,Zhou G D,W u Y T,et al.Study o f th eelectro chemical forma tion o f Cu(I)BT A films oncopper elect rodes and the mechanism of copperco rrosion inhibitio n in aqueous chlo ride/benzo triazole so lutions[J].Corr os Sci,1994,36(5):19311946.[18] Brunoro G,Frig nani A,Colledan nic films forpro tectio n of copper and bro nze ag ainst acid raino rro sio n[J].Cor ros Sci,2003,45(10):22192231.[19] BabiéR,M etikosœHukovic M.Spectroelectrochemica l studies of protective sur face films againstcopper cor rosio n[J].Thin Solid Films,2000,359(1):8894.[20] Stupnis ek Lisac E,Bozic E,Loncaric A.Lowtox icity copper co rrosion inhibito rs[J].Cor rosion,1998,54(9):713720.[21] Ma rtin C R,Stupnis ek Lisac E.In situ studies ofimida zole and its deriv ativ es as copper co rro sioninhibito rs I.Ac tiv atio n energies andther mody na mics of adsorptio n[J].J Electro chemSoc,2000,147(2):548551.[22] O tmaěic,Stupnis ek Lisac E.Copper co rro sio ninhibito rs in near neutral media[J].ElectrochimActa,2003,48(8):985991.[23] Gas parac R,Ma rtin C R,Stupnis ek Lisac E.In situstudies of imidazole and its deriva tiv es a s copperco rro s ion inhibitor s I.Activ ation energies andthermodynamics of adsor ptio n[J].J Electro chemSo c,2000,147(3):548552.[24] Zucchi F,T traba nelli G,Fo nsati M.Tetra zolederiva tiv es a s cor rosion inhibitors for co pper inchlo ride so lutions[J].Co rros Sci,1996,38(11):20192029.20武汉化工学院学报第27卷[25] Stupnis ekLisac E .Ev aluation of no ntoxicco rro s ion inhibito rs fo r copper in sulphuric acid [J].Elec trochim Ac ta ,2002,47(26):41894194.[26] ENag ga r M M .Bisaminoazoles cor rosioninhibitors fo r copper in 4.0M HN O 3solutio ns [J].Co rro s Sci,2000,42(5):773784.[27] Trachli B,Kedda m M.Pro tectiv e effect o felect ropo lymerized 2merca to benzimida zole uponco pper co rro s ion [J].Prog ress in Org anic Coating s,2002,44(1):1723.[28] Guenbour A ,Kacemi A ,Benbachir A .Cor rosion pro tection of copper by polyaminophenol films [J ].Prog ress in O rganic Coating s ,2000,39(3):151155.[29] Kane Jenning s G,Paul ibinis.Selfassembledmonolay ers o f alkanethiols on copper provide co rrosion resistance in aqueous enviro nm ents [J].Co lloids a nd Sur face,1996,116(12):105114.[30] DaikiTaneichi,ReikoHaneda,K unitsug uArama ki .A nov el modification of an alka nethiol self assembled mo no layer with alkylisocyanates to prepa re pro tectiv e films against co pper co rro sion [J ].Cor ros Sci ,2001,43(10):15891600.Research development of corrosion and protection for copperLUO Zhenggui ,W EN Dijiang(Schoo l of M aterial Engineering ,Suzhou U niv ersity ,Suzhou 215021,China)Abstract :The classification of copper corrosion,the category of corrosion inhibitors for copper and the adsorptio n m echanism hav e been review ed .The recent research developm ent of copper corrosion and protection has been introduced and the existing problems hav e been discussed.According to the situations of practical applicatio n,the study directions tha t need to be streng thened in the developm ent have also been presented .Key words:copper ;inhibito r ;corrosion ;protection 本文编辑:传一点☆(上接第16页)Study on the formulation and properties of cold pad batchpretreating auxiliary agentLIAO Hai xing 1,YU Ke xiong 1,ZHA NG Ai q ing2(1.Colleg e of Chemistry and Env io rnmental Enginerring ,Yang tze U niv ersity ,J ing zho u 434020,China;2.Colleg e of Chemistr y and Life Sciene ,SouthCentra l U niv er s ity for N atio nalities ,Wuhan 430074,China )Abstract :The auxiliary ag ent for cold padbatch pretreating of cotton knits is studied.In the use of Calato r cold pad batch dyeing machine for the pretreating at W uhan No .1Knitting Mill ,the qualities of semifinished products are most satisfactory.Meanwhile,a striking effect is achie v ed in the saving energ y.Key words :cold pad ba tch pretreating;cotton knittg oods;additiv e ag ent本文编辑:传一点21第2期罗正贵等:铜的腐蚀及防护研究进展。
电化学腐蚀实验探索金属的腐蚀现象
电化学腐蚀实验探索金属的腐蚀现象金属腐蚀一直是制约金属材料使用寿命和性能的主要问题。
为了深入理解金属腐蚀现象,电化学腐蚀实验成为一种重要的研究手段。
本文将探讨电化学腐蚀实验在揭示金属腐蚀本质方面的作用。
首先,我们需要了解电化学腐蚀的基本原理。
金属在电解质溶液中存在两种反应,即氧化反应和还原反应。
当金属表面存在缺陷引发了阳极反应时,金属就会发生腐蚀。
而电化学腐蚀实验通过模拟实际工况中的环境,制造特定的电化学条件,从而深入研究金属腐蚀机理。
在电化学腐蚀实验中,最常用的方法是极化曲线测量。
通过施加恒定电流或电压,观察电流或电压随时间的变化,可以获得极化曲线。
极化曲线是描述金属腐蚀行为的重要指标,包括阳极极化曲线和阴极极化曲线。
阳极极化曲线反映了金属的功率损失,而阴极极化曲线则反映了金属的保护性能。
除了极化曲线测量,电化学腐蚀实验还可以通过测量腐蚀电流密度、腐蚀速率和阻抗等参数来了解金属腐蚀的特征。
腐蚀电流密度是描述金属腐蚀速率的指标,一般通过电化学极化法测量得到。
腐蚀速率可以直接通过重量损失或体积损失来计算。
而阻抗则是评估金属膜层保护性能的重要参数,可通过交流阻抗谱法测量得到。
电化学腐蚀实验常常结合其他表征手段,如扫描电子显微镜(SEM)和能谱仪(EDS),来观察和分析金属腐蚀表面的微观结构和组成。
这些分析手段能够提供更详细的信息,揭示腐蚀过程中的细节变化。
通过电化学腐蚀实验,我们可以深入了解金属腐蚀的机制。
首先,我们可以研究金属腐蚀速率与环境条件的关系。
实验结果表明,环境中的温度、溶液酸碱度和氧浓度等都会对金属腐蚀速率产生影响。
此外,电化学实验还可以研究金属在不同金属耦合条件下的腐蚀行为。
例如,金属在不同电位下的腐蚀行为可以通过测量其极化曲线来研究。
这些实验结果为我们预测和控制金属腐蚀提供了重要的依据。
除了了解腐蚀机制,电化学腐蚀实验还可以通过设计和优化防腐蚀措施,从而减缓金属腐蚀过程。
例如,在电化学腐蚀实验中,我们可以通过添加抑制剂或电化学方法来提高金属的耐腐蚀性能。
电厂热力设备防腐蚀技术研究进展
电厂热力设备防腐蚀技术研究进展电厂热力设备是电力发电过程中不可或缺的重要设备,其安全稳定运行对电网安全稳定运行具有重要意义。
热力设备在长期高温、高压、腐蚀性介质等恶劣工况下,容易发生腐蚀现象,加速设备的磨损和老化,严重影响设备的安全运行和使用寿命。
热力设备防腐蚀技术的研究和应用显得尤为重要。
本文将对电厂热力设备防腐蚀技术的研究进展进行综述,旨在为相关领域的研究和应用提供参考。
一、热力设备腐蚀类型及机理热力设备的腐蚀主要包括化学腐蚀、电化学腐蚀和高温氧化等多种类型。
化学腐蚀是指金属在化学介质中发生腐蚀,电化学腐蚀是指在电化学条件下金属离子从金属表面脱落,同时金属表面形成氢气或氧化物的腐蚀方式,高温氧化则是指金属在高温氧化气氛中发生氧化反应而腐蚀。
热力设备的腐蚀机理主要包括金属离子的迁移、氧化还原反应、腐蚀产物的生成与脱落等过程。
二、防腐蚀技术研究进展1. 表面涂层技术表面涂层技术是通过在金属表面形成一层具有较高化学稳定性和耐腐蚀性能的外层,防止金属与环境介质的直接接触而起到防腐蚀作用。
常见的涂层材料包括镀层、喷涂涂层和涂漆等。
钛合金、镍基合金、金属陶瓷等高温涂层材料已广泛应用于燃气轮机叶片、锅炉管道等热力设备中,有效提高了设备的耐高温、耐腐蚀性能。
2. 材料优化设计材料优化设计是指通过合理选择和设计金属材料的组成、结构和形状等,以提高材料的耐腐蚀性能。
目前,一些新型合金材料如奥氏体不锈钢、镍基合金、钛合金等在电厂热力设备中被广泛应用,这些材料具有优良的抗氧化、耐腐蚀性能,能够在高温、高压的工作条件下保持稳定的性能。
表面改性技术是通过改变金属表面的物理、化学性质来提高金属的耐腐蚀性能。
目前,热热等离子表面合金化技术、激光熔覆技术、等离子喷涂技术等表面改性技术已经在热力设备中得到应用,能够显著改善金属表面的硬度、抗腐蚀性和耐磨损性能。
4. 材料防腐蚀涂层除了表面涂层技术外,现代材料科学还发展出一系列具有良好耐腐蚀性能的新型材料。
金属的电化学腐蚀与防护
新型防腐技术的研发与推广
新型防腐技术:包括 涂层保护、电化学保
护、缓蚀剂保护等
推广应用:在石油、 化工、船舶、电力等
领域的应用情况
研发进展:新型防腐 材料、新型涂层技术、 新型电化学保护技术
等
未来展望:新型防腐 技术的发展趋势和前
景
金属电化学腐蚀与防护的理论研究进展
金属腐蚀电化学原理:介 绍了金属腐蚀的电化学机 制,包括阳极反应和阴极
金属电化学腐蚀与防护的研究 进展
新型防腐材料的研究与应用
新型防腐材料的 种类:包括金属 氧化物、陶瓷、 高分子材料等
新型防腐材料的 性能特点:具有 良好的耐腐蚀、 抗氧化、抗疲劳 等性能
新型防腐材料的 应用领域:广泛 应用于石油、化 工、海洋工程、 航空航天等领域 的设备防腐
新型防腐材料的 发展趋势:高效、 环保、节能、低 成本等方向
金属电化学腐蚀产生有害物 质,污染环境
金属腐蚀导致资源浪费和环 境污染
腐蚀过程中可能产生有毒气 体和液体,对人类健康造成
威胁
பைடு நூலகம்
金属电化学腐蚀的防护措施
金属材料的选用与处理
选用耐腐蚀材料: 选择具有较高耐 腐蚀性能的材料, 如不锈钢、钛合 金等。
表面涂层处理: 在金属表面涂覆 防腐涂层,如油 漆、防锈油等, 以隔离金属与腐 蚀介质。
性能下降:腐蚀导致金属 性能如强度、塑性、韧性 等下降,影响正常使用。
安全隐患:腐蚀严重时可 能引发安全事故,如设备
突然断裂、爆炸等。
经济损失:金属腐蚀造成 设备维修、更换等额外费
用,影响生产效益。
设备的损坏
金属电化学腐蚀会导 致设备外观损坏,影 响美观和使用性能。
腐蚀会导致设备强度 降低,容易发生安全
铁在盐酸溶液中的腐蚀电化学之研究
铁在盐酸溶液中的腐蚀电化学之研究
铁是一种十分重要的金属材料,由于其良好的机械性能,它被广
泛用于建筑、结构和机械工业中。
近年来,随着环境污染,电化
学腐蚀成为影响铁表面性能的一个重要因素。
盐酸是一种相对常
见的酸性溶剂,它对金属表面有机会产生腐蚀。
旨在了解盐酸对铁的腐蚀影响,研究者们建立了一个实验室环境,使用电镀钢和不锈钢作为钢的原料,向盐酸中加入不同的电解质,测量电位变化和腐蚀率,以评估盐酸对不同类型的钢的腐蚀行为。
结果表明,当电位大于-0.7V时,铁在其中的腐蚀速度增加。
此外,当此溶液中加入含氯电解质时,腐蚀速率明显增加,而另外
一方面,用不锈钢作为材料,其腐蚀速率明显减少。
因此,研究对于有效抑制铁在盐酸中的腐蚀行为具有重要意义。
例如,在设计中,采用不锈钢作为材料会有助于减少铁表面腐蚀,另外,使用无腐蚀的电解质也可以防止腐蚀的发生。
它是一种可重复利用的绿色金属,也是防腐蚀的一种有效手段。
通过不断改善制备技术和测试方法,可以更好地抑制铁在盐酸溶液中的腐蚀,为人类在电化学环境中制造出经久耐用的部件,从而改善我们的生活。
导电聚合物材料在金属防腐涂料中的研究进展
管理及其他M anagement and other 导电聚合物材料在金属防腐涂料中的研究进展罗长虹摘要:导电高分子材料能起到阳极保护金属的效果。
现在,导电高分子材料已广泛应用于船舶,港口码头设备,军舰,混凝土钢,钢筋加固、化工设备、送变电设备、铁路桥梁等防腐工程已有良好的应用前景。
导电聚合物材料不仅同时具备导电聚合物良好的氧化还原特性,同时导电聚合物作为新材料,由于原料易得,合成工艺简单,环境友好等优点,已成为金属防腐领域的研究热点,进而其被广泛地应用于金属的腐蚀防护材料中。
本文首先简要介绍导电聚合物材料的特性,并简要介绍了导电聚合物材料的制作方法,包括电化学法、化学氧化聚合法与分散液混合法即化学气相沉积法等其他方法,并对导电聚合物材料在防腐涂料中的应用性能进行总结,最后对当前导电聚合物材料的研究进展、不足之处进行分析。
希望本文可以为导电聚合物材料在防腐涂料中的相关研究工作提供借鉴参考价值。
关键词:导电聚合物;金属;防腐涂料基于导电聚合物材料优良的防腐蚀性能,本文综述了近年来关于导电聚合物材料复合防腐蚀材料的制备方法、应用及性能,重点介绍了导电聚合物防腐蚀材料的制备方法,讨论了用电化学方法和化学氧化法制备导电聚合物材料的机制及其特性;同时,介绍了导电聚合物材料在防腐蚀领域的应用,总结了导电聚合物防腐蚀材料在金属表面直接成膜和借助成膜物成膜的涂层的防腐蚀性能。
1 导电聚合物材料简介导电聚合物是指在碳骨架中具有共轭电子体系的聚合物材料,可以通过自身的导电性或掺杂其他材料来实现其特有的导电功能。
通常情况下导电聚合物材料符合材料中的导电聚合物为聚苯胺(PANI)与聚吡咯(PPy)等,此类物质具有环境污染性小、合成便捷、成本低廉、导电性能强等特点,并且可以凭借自身的氧化还原反应,对金属基体表面进行钝化处理,从而提高金属材料表面的耐腐蚀性,被广泛地应用于金属防腐材料中。
导电聚合物由于其出色的物理化学性质,在腐蚀防护领域拥有值得深入研究的广阔前景。
防腐蚀涂层失效行为研究中的电化学方法
tc ro i n,ee to he ia a s io r so lcr c m c lme n
很 难 应 用 ,缺 乏 原 位 信 息 测 量 技 术 一 直 是 制 约 大 气 腐 蚀 研 究与应用 的重要 因素 。这 几年 发展起 来 的扫描 K ln探针 ei v
0 前
言
技术是研究大气腐蚀 的有 力工 具之 一 ,但在 我 国尚未 获得
局部 发 生 的原 因 ,使 得 其 得 到 阻 抗 数 据 缺 乏 较 好 的 可 重 现 性 ,因 此 在 这 种 情 况 下 ES数 据 常 常 难 于 解 析 ” I 。 另 外
ES提供 的信 息 与 有 机涂 层 下 基 材 剥 离之 间 的确 切 关 系 仍 不 I
学组 分 对 剥 离 速 率 有 着 重 要 的 影 响 。其 中氧 的 分 压 控 制 着 界面处局部阴极反 应的 电位及变 化 ;空气 中的酸性组 分对 金 属 表 面 涂 层 剥 离 速 度 有 着 重 要 影 响 , 空气 中 的 C 以 O可 通过 在 涂 层 / 锌 钢 界 面 处 形 成 碳 酸 锌 薄 层 延 长 剥 离 孕 育 时 镀
1 电化 学 噪声 技术 ( N E M)
电化学 噪声技术是 通过 测量 工作 电极 和参 比电极 之间 或 两 个 相 同 电极 之 间 自发 产 生 的 电 流 和 ( ) 或 电压 的 波 动 来
分 析 、评 价 涂 装 金 属 防 腐 性 能 的 技 术 。所 谓 电 化 学 噪 声 指 的是 电学 状 态参 量 ( 如 电 极 电位 、外 测 电 流 密 度 ) 非 平 例 的 衡 随 机 波 动 状 态 。 由 于 降 解 作 用 会 在 涂 覆 于 金 属 表 面 的 涂 层 上 形 成 缺 陷 ,例 如 微 裂 纹 扩 展 、 漆 膜 起 泡 、漆 泡 破 裂 等 , 这些破坏都会引 起体 系 电学 参量 变化 ,因此对 体 系进 行 电
电化学技术在金属腐蚀预防中的应用
电化学技术在金属腐蚀预防中的应用金属腐蚀是指金属与环境中的其他物质产生的化学反应所致的损失。
这种损失是不可逆转的,严重影响到工业生产、设施维护和装备保养等方面。
因此,防止和预防金属腐蚀是非常重要的任务。
在此背景下,电化学技术成为了解决金属腐蚀问题的一种有效手段。
本文将探讨电化学技术在金属腐蚀预防中的应用。
一、电化学技术概述电化学技术是基于电化学原理研究电极反应规律的理论与技术。
其中最常见的是电化学腐蚀和防腐蚀技术。
电化学腐蚀技术是通过破坏腐蚀电池中的电位差或电化学反应使金属不发生腐蚀的方法。
而电化学防腐蚀技术则是利用电化学方法,对金属进行保护或修复。
二、电化学防腐蚀技术的原理电化学防腐蚀技术适用于丝纳斯型、萨文斯型和由水腐蚀所引起的金属腐蚀。
当金属表面出现腐蚀时,通过将一个电极(阳极)与金属连接,使该金属接受电流保护。
阳极接收电流,形成铁的氢氧化物,并与金属上的氧气形成氧化物和氢氧化物。
阴极接收电流,活性金属与水形成氢气和相应的氢氧化物,即电化学还原反应。
三、电化学防腐蚀技术的应用电化学防腐蚀技术在工业和实验中的应用非常广泛。
以下是几个常见的应用:1.阳极保护:在阳极保护技术中,阳极将直接或间接地提供保护电流,使被保护的金属成为阴极。
发动机、锅炉等工业设备、船只、海底管道、输油管道等都可以使用阳极保护技术。
2.阴极保护:在阴极保护技术中,外加电流直接使金属负极成为阴极,该方法在钢铁混凝土中得到广泛应用。
3.阴阳保护:这种方法是阳极和阴极保护方法的组合应用。
在这种组合中,阴极保护用于保护地下水池、锅炉、水处理设施等设备,而阳极保护用于保护管道、海洋等设备。
四、结论从上述可以看出,电化学技术在金属腐蚀预防中具有重要意义。
通过对阳极和阴极的保护措施,可以保护金属不受腐蚀。
此外,电化学技术还可以应用于化学分析和提纯、电沉积和电镀、腐蚀监测和电解加工等方面。
随着电化学技术的不断发展,其应用将会越来越广泛。
前沿光电化学阴极保护的原理及研究进展
引言概述:光电化学阴极保护技术是一种前沿的防腐蚀方法,可以通过光电化学反应来保护金属阴极表面不受腐蚀。
本文将介绍前沿光电化学阴极保护技术的原理和研究进展。
正文内容:一、光电化学阴极保护的基本原理1.光电化学阴极保护的概念和意义2.光电化学反应的原理2.1光电催化的基本原理2.2光生电流的形成机制2.3光电化学阴极保护的典型反应示例二、光电化学阴极保护的关键技术1.光电催化剂的选择和设计1.1催化剂的种类和特点1.2催化剂的设计原则1.3催化剂的合成方法和表征技术2.光电阴极的构建与优化2.1光电阴极的材料选择2.2光电阴极的结构设计2.3光电阴极的加工工艺3.光电化学反应的调控和控制3.1光照强度的控制方法3.2光电流密度的调控方法3.3反应环境的控制方法4.电解液体系的优化与改进4.1电解液组成的优化4.2电解液酸碱度的调控4.3电解液添加剂的使用5.腐蚀机制的研究和分析5.1光电化学阴极保护的腐蚀机制5.2腐蚀反应的动力学分析5.3腐蚀产物的结构和性质分析结论:本文概述了前沿光电化学阴极保护技术的原理和研究进展。
通过理解光电化学反应的基本原理和关键技术,可以更好地设计和优化光电化学阴极保护体系,实现金属阴极的有效保护。
未来的研究应聚焦于光电催化剂的开发与应用、光电阴极的构建与改进、反应条件的调控等方面,以进一步提升光电化学阴极保护技术的效率和可靠性,推动其在实际工程中的应用。
引言概述:前沿光电化学阴极保护是一种新兴的保护技术,通过结合光电化学和阴极保护的原理,可以提供可靠的阴极保护效果。
本文旨在探讨前沿光电化学阴极保护的原理以及最新的研究进展。
将介绍光电化学和阴极保护的基本概念和原理。
然后,将详细阐述前沿光电化学阴极保护的五个主要方面:光电化学反应机理、电化学缺陷修复、光电极材料选择、光电极设计以及实际应用案例。
通过对已有研究的总结,提出一些未来研究方向和挑战。
正文内容:1.光电化学反应机理1.1光电化学反应的基本原理1.2光电化学反应在阴极保护中的作用1.3光电化学反应机理的研究方法和技术1.4光电化学反应机理与阴极保护的关系2.电化学缺陷修复2.1电化学缺陷的成因与特点2.2电化学缺陷修复的原理和方法2.3光电化学反应在电化学缺陷修复中的应用2.4电化学缺陷修复与阴极保护的协同效应3.光电极材料选择3.1光电极材料的分类与特性3.2光电极材料的选取原则和要求3.3光电极材料的合成和性能表征方法3.4光电极材料的应用案例与结果分析4.光电极设计4.1光电极设计的基本原则和步骤4.2光电极材料的组合与优化4.3光电极结构的优化与改进4.4光电极设计中的仿真和实验方法5.实际应用案例5.1光电化学阴极保护在海洋环境中的应用5.2光电化学阴极保护在化学工业中的应用5.3光电化学阴极保护在电化学能源存储中的应用5.4光电化学阴极保护在航天航空中的应用5.5光电化学阴极保护在建筑与文化遗产保护中的应用总结:前沿光电化学阴极保护技术通过结合光电化学和阴极保护的原理,为阴极保护提供了新的思路和方法。
金属的光电化学方法防腐蚀原理及研究进展
定稿日期:2005212210基金项目:国家自然科学基金(20373062)作者简介:张鉴清,1948年生,男,博士生导师,研究方向为电化学金属的光电化学方法防腐蚀原理及研究进展张鉴清1,2 冷文华1 程小芳1 刘东坡1(11浙江大学化学系杭州310027;21金属腐蚀与防护国家重点实验室沈阳110016)摘要:自上世纪70年代以来,半导体特别是TiO 2光电催化反应在诸多领域应用引起了广泛研究.近年来研究表明它可用于金属的阴极保护.文中对金属的光电化学方法防腐蚀的化学原理及研究现状进行了简要介绍.关键词:光电化学 半导体 阴极保护 腐蚀中图分类号:X78 文献标识码:A 文章编号:100524537(2006)03201882051前言金属腐蚀是指其在各种环境条件下发生的破坏和变质.在常温下,绝大部分的金属腐蚀是通过电化学腐蚀的途径进行的[1].金属腐蚀遍及国民经济各部门,给国家经济带来巨大损失.因此,积极探索材料防腐蚀新方法,做好腐蚀与防护工作,是一个具有重要现实意义的课题.在许多金属或合金如不锈钢表面通常会形成一层不超过几十个纳米厚的具有半导体性质的钝化膜[2],在一定的程度上它可起到耐蚀作用.但这种半导体氧化膜在一定的条件下如碱性介质中是光活性的,易发生光腐蚀.最近Ohko 等[3]报道了利用紫外光照不锈钢表面的TiO 2,使其电位负移,当该电位比金属腐蚀电位更负时,就像采用阴极保护一样,使不锈钢更具耐蚀性,而且光生电压在很长时间内不会完全消失.研究表明采用类似的方法,其它金属如碳钢[4~6]、Cu [7~10]在一定的条件下也可实现光致阴极保护.由于半导体涂层如TiO 2化学稳定性好,不易发生光腐蚀;与Zn 等牺牲阳极不同的是在光阴极防腐蚀过程中并不牺牲,理论上具有很长的使用寿命,而且涂层价格比较低廉,故该方法具有潜在的应用前景.尽管人们对半导体光电化学进行了多年的研究并取得了很大的进展,但它用于光阴极保护是近年来才开始研究的.最近,沈嘉年等[11]很好地综述了TiO 2薄膜的光电效应在金属防腐蚀中的应用,但他们对其光电化学叙述较少.本文结合光电化学的最新研究进展,对金属的光电化学防腐蚀原理、影响因素及研究现状进行了简要介绍,旨在为从事该交叉领域的研究工作者提供借鉴.2金属的光电化学防腐蚀原理当用能量高于半导体吸收阈值的光照射半导体时,半导体的价带电子发生带间跃迁,即从价带跃迁到导带,从而产生电子e -和空穴h +(图1a ).光生电子—空穴对在空间电荷层电场的作用下,空穴被迁移到半导体粒子表面与溶液中的电子供体发生氧化反应[12,13],而电子向电极基底运动并通过外电路到达金属对电极,从而使金属的腐蚀电位负移,自腐蚀电流密度减小,实现阴极保护.光激发产生的电子和空穴至少经历以下途径:载流子的扩散、俘获、复合和界面电荷的传递.其中最主要的是捕获和复合两个相互竞争的过程.从动力学的观点来看,上述各步骤快慢不尽相同.一般认为,电极表面空穴转移速率为快步骤,光生电子在向基底输送过程中至少发生体相复合(J br )、空间电荷层复合(J dr )、表面态复合(J ss )、直接电荷转移(J et )和隧道转移(J tun )等过程(图1b ).总的复合电流(J 0)等于单个步骤电流之和,即J 0=J et +J tun +J ss +J dr +J br .光照时,由于光生载流子的复合而降低了外电流输出.值得指出的是,当光电极为纳米多孔时,由于颗粒内外电位差很小,能带是不弯曲的(图1c ),光生载流子分离效率主要依赖于其界面电荷转移速率差决定[14].3影响光电化学方法防腐蚀的因素311半导体种类和性质[12,14,15]通常以n 型半导体为催化剂,包括TiO 2、ZnO 、CdS 、WO 3和Fe 2O 3等.合适的光催化剂必须满足以下几个方面的条件:首先是半导体表面能带边缘的相对位置,对价带来说,它必须至少能促使水或OH -的氧化,故其标准电位应高于+2185V (相对标准氢电位);对导带来说,它必须比氧还原标准电第26卷第3期2006年6月 中国腐蚀与防护学报Journal of Chinese Society for Corrosion and Protection Vol 126No 13J un 12006Fig.1(a)Schematic diagram of semiconductor photoelectrochemical anticorrosion of metal and(b)various types of recombination pathways for an n-type semiconductor/liquid junction.J et is the current caused by electron transfer over the potential barrier from the semiconductor to the redox acce ptors in the solution.J tun describes the majority carrier tunneling current through the potential barrier.Recombination due to the surface states near the interface results in J ss,while recombination in the de pletion and bulk regions produces J dr and J br,respectively.Both J et and J tun are currents requiring injection of majority carriers from the semiconductor,hence majority carrier recombination currents.On the other hand,J ss,J dr and J br are currents due to minority carrier recombination process,since holes are injected into the semiconductor for the recombination to occur and(c)schematic di2 agram of the energy band in nanoporous semiconductor thin film位更负(如果氧是电子受体的话),这样才能使氧化还原反应有效进行;其次是半导体必须稳定,即不会发生光腐蚀;另外从实际应用角度考虑,它的成本低廉.理论分析和大量实验表明,目前能满足上述要求的催化剂只有少数半导体(如TiO2).正是由于TiO2的高活性和光化学性质均十分稳定,且无毒价廉、货源充足,故成为光催化领域中的常用催化剂.光催化剂的性能是半导体表面光学特性和表面化学状态耦合的结果.TiO2的光催化性能主要由以下几个方面决定:(1)催化剂的粒径.催化剂粒子越小,体系的比表面大,反应面积就大,反应速率和效率就大;粒径越小,光生载流子容易迁移到粒子表面,电子与空穴的简单复合几率就越小,光催化活性就越高.当半导体颗粒达到几个至几十个纳米时,半导体的载流子限制在一个小尺寸的势阱中,在此条件下,导带和价带能级变成分离的能级,因而能带隙增大,吸收光谱阈值向短波方向移动,出现尺寸量子效应,此时粒子称为量子化粒子.由于尺寸量子效应,使半导体导带移向更负的电位而价带移向更正的电位,这势必加强半导体光催化剂的氧化还原能力,提高光催化剂活性;同时空穴的氧化速率增大,可减小表面空穴的积累,光阳极腐蚀减少,催化剂的稳定性增大.由于尺寸效应能通过调节半导体的粒径来控制半导体的能隙大小和能带的位置,它将对光催化反应带来重大的影响.(2)催化剂的表面状态.表面应有一定数量的羟基基团,通过该基团可有效捕获光生空穴,从而可抑制光生载流子的简单复合.(3)催化剂的晶型.TiO2粉末晶体结构有金红石、锐钛型、板钛矿和无定型4种.用来光催化反应的主要是锐钛型和金红石两种晶型.通常情况下,金红石的比表面积小,反应物在其表面吸附亦较少,锐钛型催化活性优于金红石型.实验证明,具有高光催化活性的TiO2多数为两种晶型的混合物(不是简单的混合),如Degussa P-25就是由两种晶型组成.其它如孔隙率、表面水合状态、退火预处理等都是影响光催化剂活性的因素.312溶液组成[12,15~18]溶液p H的改变将使TiO2表面荷电及能带边缘位置,例如升高p H值通常使氧化物半导体平带电位和导带边缘负移,能带弯曲程度增大;同时可能使一些溶液的氧化还原电位发生变化,改变了电荷转移的驱动力.另外溶液p H值还可能会影响有机物的吸附,改变电极表面状态,从而影响反应速率.文献中研究了在304不锈钢表面涂覆TiO2膜的试样在不同p H值溶液中的电极电位,结果表明随着p H值增大,光电压负移,对金属的防腐蚀效果会增强;p H值对碳钢/TiO2涂层和Cu/TiO2涂层体系的光电压也有相似影响.所以溶液p H值是光电化学反应的一个重要控制参量.如果溶液中存在电子受体特别是溶解氧,它可能捕获光生电子(参见图1b,J et),抑制光生载流子的复合,但输出光电流减小.313光强用于半导体载流子激发的光子能量必需大于半9813期张鉴清等:金属的光电化学方法防腐蚀原理及研究进展 导体的禁带宽度E g,锐钛型TiO2的E g为312eV,所需入射光的最大波长为38715nm,金红石由于禁带宽度略小,为310eV,所需最大波长为413nm[15].实验研究中一般采用波长为300nm~400nm的光,高压灯、黑光灯、紫外杀菌灯和氙灯等均能满足要求.太阳光到达地面的紫外光不到10%,从能量利用角度来看,利用太阳能实现材料的光电化学防腐蚀具有非常诱人的前景.入射光的强度和半导体的光吸收直接影响光生电子数,光强越高,光电子数越多,电极准费米能级越高,光电压愈高,同时光生载流子的复合速率可能更大.换句话说,光强大,并不一定都有效,所以实际应用中应考虑光强(光电流)与金属的腐蚀电流密度相匹配问题.4提高半导体光电转换效率的途径[13,15~19]光生载流子的分离效率是光催化技术的关键部分,它们的高低决定了光催化技术效率的高低.所以从光催化出现以来,人们在提高催化剂效率方面做了大量的工作并取得了明显的进展.提高半导体催化效率的途径有很多,其中用得较为普遍的有半导体改性和复合半导体等.411半导体改性在光催化剂表面担载高活性的贵金属、金属和金属氧化物如Pt、Au、Pd、Ru等,可有效防止电子—空穴的简单复合.其中表面载铂研究最多.当半导体表面和金属接触时可形成肖特基势垒,它成为俘获光生电子的有效陷阱,延长了载流子的复合寿命;此外,贵金属还起到降低还原反应的超电势,从而可提高光催化活性.实验研究发现只有一些特定的金属离子掺杂有利于提高光量子效率,多数金属离子的掺杂反而是有害的.总的说来,对于其作用机理分析还欠缺,研究还处于一个试探阶段.从化学观点看,金属离子掺杂可能在半导体晶格中引入了缺陷位置或改变结晶度等,从而影响电子—空穴对的复合,如成为电子或空穴的陷阱而延长其寿命,或成为电子—空穴的复合中心而加快了复合.目前采用非金属如N[20]、C[21]和F[22]掺杂受到重视,主要是用来拓宽催化剂的光谱响应范围.412复合半导体将两种不同的半导体粒子联结起来就成为一种夹心结构的半导体胶体,一边为能带隙较小的半导体,一边为能带隙较大的半导体.70年代就提出了半导体-半导体复合概念,但直至90年代才应用到光催化领域.由于复合半导体更有利于光生载流子的分离,因而,近年来对复合半导体尤其是二元半导体类型进行了许多研究,如TiO2-SnO2、TiO2-WO3等.这些复合半导体几乎都表现出高于单个半导体的光催化性质.二元半导体活性的提高可归因于不同能级半导体之间光生载流子的输运和分离.以TiO2-SnO2复合体系为例(图2),当用足够能量的光照射时,TiO2和SnO2同时发生带间跃迁,由于导带和价带能级的差异,SnO2的带隙E g=318eV, TiO2的带隙E g=312eV,在p H=7时,SnO2的导带E CB=0V(vs N HE),低于TiO2的导带E CB= -015V(vs N HE),所以光生电子聚集在TiO2的导带,而空穴则聚集在SnO2的价带,光生载流子得到分离,从而提高了量子效率.另一方面,当光量子能较小时,只有TiO2发生带间跃迁,TiO2中产生的激发电子输运至SnO2的导带而使得光生载流子分离[23].值得注意的是,只有两种半导体耦合起来才能表现出上述性质,如果是相互包裹,如TiO2包裹SnO2,则完全不会产生电荷分离效率的提高.此外,复合半导体如TiO2/CdS激发波长可延伸至较大范围[24],从而可充分利用光能.这也使得复合半导体具有更大的应用前景.5光电化学方法防腐蚀的研究现状511阴极材料光催化技术是当今研究热点之一,近年来半导体光催化技术开始用于金属的光电化学防腐蚀.日本在这方面研究较早.总体来说该领域还主要处于探索阶段,即探讨常见金属的光致阴极保护的可行性,对光阳极的筛选研究较少,主要局限于TiO2光催化剂.下面就这两方面情况作一以简要介绍.上世纪90年代中期Tsujikawa等较早报道了Fig.2Diagram illustrating the principle of charge separation in a TiO2/SnO2coupled semiconductor091中国腐蚀与防护学报第26卷TiO2涂层在紫外光照下可阴极保护金属Cu[7]、不锈钢[25]和碳钢[26,27].随后有人报道了TiO2在紫外光或γ射线的照射下可实现不锈钢的光致阴极保护[3].Leng等采用镍载TiO2光催化降解有机污染物的同时无意中发现了载体镍不易腐蚀[16].2001年Fujishima研究组对它的机理作了详细解释,实验证明TiO2涂层对304不锈钢不仅具有较好的防腐蚀效果,而且具有自洁净功能[3].这对于户外不锈钢材料的装饰效果具有吸引力.值得一提的是,Choi 等[6]详细研究了TiO2对碳钢光电化学防腐蚀的影响因素和机理.他们还发现即使没有有机物的情况,水作为电子供体可以实现碳钢防腐蚀.他们还提出利用催化剂阳极-金属阴极耦合可能实现地下金属的远程光保护,不过并未实验证明.国内沈嘉年等发现采用阳极氧化法制备的氧化钛亦可光致阴极保护碳钢,同时发现无紫外光照时,氧化钛-碳钢耦合体系加速了碳钢的腐蚀[28].总之,目前金属的光致阴极保护还局限在腐蚀电位比较正,腐蚀电流密度比较小的金属材料上,我们曾尝试X70管线钢光阴极保护,有一定的效果,但实验条件比较苛刻,详细结果正在探索中.512光阳极选择如前所述,光阳极的选择主要还局限于TiO2光催化剂.这可能与其效率和稳定性较高有关.最近有人尝试采用SnO2[8]、ZnO[6]和Sr TiO3[4]等宽禁带半导体为光阳极并取得了较好的结果.从热力学的角度看,宽禁带半导体特别是导带边缘电位比较负的催化剂有望对腐蚀电位比较负的金属实现光保护.复合半导体如SnO2-TiO2可提高光电转换效率.Subasri等发现采用SnO2-TiO2=1∶1时具有较佳的光电流,并且复合半导体具有光致储能效果,即使在光照停止数小时后对Cu还具有保护作用[10]. TiO2-WO3电极在光照停止一定时间后对金属也具有缓蚀作用[29].这种储能作用对于金属即使在无光照条件下也可实现缓蚀具有重要的意义.6结束语尽管半导体光电化学研究进行了数十多年的研究,但该技术用于金属的光致阴极保护是近几年才受到重视的.该技术的最大特点是在常温和常压下,只利用催化剂、光、空气和水就能实现,而且从长远的观点来看,它将可利用取之不尽的太阳光能.因而,在腐蚀与防护领域显示出非常诱人的应用前景.该技术的关键部分是阳极,即其光生载流子的分离效率问题,但与传统的光催化在环境领域的应用具有很多不同之处,需要进一步系统深入研究.宽禁带半导体只能吸收紫外光,而太阳光中这部分光能却不到5%,所以如何扩展催化剂的光谱利用范围并以太阳能为光源在自然环境条件下实现户外不锈钢等金属的防腐必将具有重要的理论和实践意义.可以预见,提高光电转换效率及拓宽催化剂的光谱响应范围是该技术走向实用化的关键.另外开发光致储能电极也是一个重要课题.参考文献:[1]Cao C N.Corrosion Electrochemistry[M].Beijing:Chemical Indus2try Press,1994(曹楚南.腐蚀电化学[M].北京:化学工业出版社,1994)[2]Lin Z H.Application of photocurrent spectrum technology in the re2search of metal oxide[J].Mater.Prot.,1990,23(11):4-7(林仲华.光电流谱技术在金属氧化膜研究中的应用[J].材料保护,1990,23(11):4-7)[3]Ohko Y,Saitoh S,Tatsuma T,et al.Photoelectrochemical anticor2rosion and self-cleaning effects of a TiO2coating for type304 stainless steel[J].J.Electrochem.Soc.,2001,148(1):B24-B28 [4]Ohko Y,Saitoh S,Tatsuma T,et al.Photoelectrochemical anticor2rosion effect of Sr TiO3for carbon steel[J].Electrochem.Solid State Lett.,2002,5(2):B9-B12[5]Huang J,Shinohara T,Tsujikawa S.Effects of interracial iron ox2ides on corrosion protection of carbon steel by TiO2coating under il2 lumination[J].Zairyo-to-K ankyo,1997,46:651-661[6]Hyunwoong P,Kyoo-Y oung K,Wonyong C.Photoelectrochemicalapproach for metal corrosion prevention using a semiconductor pho2 toanode[J].J.Phys.Chem.B,2002,106:4775-4781[7]Yuan J,Tsujikawa S.Characterization of so1-gel derived TiO2coating and their photoeffects on copper substrates[J].J.Elec2 trochem.Soc.,1995,142(10):3444-3450[8]Subasri R,Shimohara T.The applicability of SnO2coating for cor2rosion protection of metals[J].Electrochem.Solid State Lett., 2004,7(7):B17-B20[9]Subasri R,Shimohara T,Mori K.TiO2-based photoanodes for ca2thodic protection of copper[J].J.Electrochem.Soc.,2005,152(3):B105-B110[10]Subasri R,Shimohara T.Investigation on SnO2-TiO2compositephotoelectrodes for corrosion protection[J]2 mun.,2003,5:897-902[11]Wu P F,Li M C,Xiao M Q,Liu D,Shen J N.Application of pho2toelectric effect of TiO2films for corrosion prevention of metals [J].Corros.Sci.Prot.Technol.,2005,17(2):104-106(武朋飞,李谋成,肖美群,刘冬,沈嘉年.TiO2薄膜的光电效应在金属防腐蚀中的应用[J].腐蚀科学与防护技术,2005,17(2):104-106)[12]Hoffman M R,Martin S T,Choi W,et al.Environmental applica2tion of semiconductor photocatalysis[J].Chem.Rev.,1995,95:69 -96[13]Peter L M.Dynamics aspects of semiconductor photoelec21913期张鉴清等:金属的光电化学方法防腐蚀原理及研究进展 trochemistry[J].Chem.Rev.,1990,90:753-769[14]Hagfeldt A,Graetzel M.Light-induced redox reactions innanocrystalline systems[J].Chem.Rev.,1995,95:49-68 [15]Leng W H.Photocatalytic and synergetic photoelectrocatalyticdegradation of two aromatic amines over immobilized titanium dioxide[D].Hangzhou:Zhejiang University,2000(冷文华.固定态二氧化钛光催化和光电协同催化降解两种芳香胺[D].杭州:浙江大学,2000)[16]Leng W H,Liu H,Cheng S A,et al.K inetics of photocatalyticdegradation of aniline in water over TiO2supported on porous nickel[J].J.Photochem.Photobiol A:Chem.,2000,131:125-132[17]Leng W H,Zhang Z,Zhang J Q.Photoelectrocatalytic degradationof aniline over rutile TiO2/Ti electrode thermally formed at600℃[J].J.Mol.Catal A:Chem.,2003,206:239-252[18]Leng W H,Zhang Z,Zhang J Q,Cao C N.Investigation of the ki2netics of TiO2photoelectrocatalytic reaction involving charge trans2 fer and recombination through surface states by electrochemical impedance spectroscopy[J].J.Phys.Chem.B,2005,109:15008-15023[19]Shen P,Cao J L,Leng W H,Wang J M.Preparation,microstruc2ture and photoelectrochemical properties of Co doped titanium ox2 ide electrodes[J].Chin.J.Chem.Phy.,2003,16(4):307-311(谌攀,曹江林,冷文华,王建明.掺钴氧化钛电极的制备、表征及其光电性能[J].化学物理学报,2003,16(4):307-311) [20]Asahi R,Morikawa T,Ohwaki T,et al.Visible-light photocataly2sis in nitrogen-doped titanium oxides[J].Science,2001,293:269 -271[21]Shahed U,Khan M,Al-Shahry M,et al.Efficient photochemicalwater splitting by a chemical modified n-TiO2[J].Science,2002,297:2243-2245[22]Yu J C,Yu J G,Ho W K,Jiang Z T,Zhang L Z.Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2powders[J].Chem.Mater.,2002,14(9): 3808-3816[23]Shi J Y,Leng W H,Cheng X F,et al.Photocatalytic oxidation ofmethyl red by TiO2in a photoelectrochemical cell[J].Acta Phys.Chin.Sin.,2005,21(9):971-976(施晶莹,冷文华,程小芳等.TiO2光电化学电池催化氧化甲基红[J].物理化学学报,2005,21(9):971-976)[24]G opidas K R,Bohorquez M,K amat P V.Photophysical and photo2chemical aspects of coupled semiconductors:charge-transfer pro2 cesses in colloidal cadmium sulfide-titania and cadmium sulfide-silver(I)iodide systems[J].J.Phys.Chem.,1990,94(16):6435 -6440[25]Fujisawa R,Tsujikawa S.Photo-protection of304stainless steelwith TiO2coating[J].Mater.Sci.Forum.,1995,185-188:1075 -1081[26]Yuan J,Tsujikawa S.Photo-effect of sol-gel derived TiO2coat2ing on carbon steel in alkaline solution[J].Zairyo-to-K ankyo, 1995,44:534-542[27]Huang J,Shinohara T,Tsujikawa S.Protection of carbon steel fromatmospheric corrosion by TiO2coating[J].Zairyo-to-K ankyo, 1999,48:575-582[28]Li M C,Lou S Z,Wu P F,Shen J N.Photocathodic protection ef2fect of TiO2films for carbon steel in3%NaCl solutions[J].Elec2 trochim.Acta,2005,50:3401-3406[29]Tatsuma T,Saitoh S,Ohko Y,et al.TiO2-WO3photoelec2trochemical anticorrosion system with an energy storage ability [J].Chem.Mater.,2001,13:2838-2842PRINCIPL ES OF PH OT OE L ECTR OCHEMICAL APPR OACHFOR METAL ANTICORR OSION AN D CURRENT STATUSZHAN G Jianqing1,2,L EN G Wenhua1,CHEN G Xiaofang1,L IU Dongpo1(11Depart ment of Chemist ry,Zhejiang U niversity,Hangz hou310027;21S tate Key L aboratory f or Corrosion and Protection,S henyang110016)Abstract:There have been widely investigated on the application of semiconductor photoelectrochemical reaction since1972,particularly TiO2photocatalysis.In recent years it has been demonstrated that it can apply to the ca2 thodic protection for metal.In this paper the principles of photoelectrochemical approach for metal anticorrosion are briefly presented and it current status are reviewed.K ey w ords:photoelectrochemistry,semiconductor,cathodic protection,corrosion291中国腐蚀与防护学报第26卷。
电化学法研究金属防腐蚀新进展
电化学法研究金属防腐的新进展白煜磊(201450039)摘要:金属腐蚀是指在各种环境条件下发生的破坏和变质。
腐蚀问题带来巨额经济损失,阻碍国民经济的发展,金属腐蚀的防治工作始终占居着电化学领域重要位置。
本文简单介绍金属的电化学腐蚀主要类型机理,并针对不同的机理归纳出国内外电化学法研究金属腐蚀的新进展。
关键词:电化学;金属防腐;新进展Research Progress of New Techniques on Zinc PlatingBai Y ulei(201450039)Abstract:Because of the simple process,low price and obvious anti-corrosion effect,zinc plating is widely used as a well protective coating.The production account for 60-70 percent of the whole electroplating industry.In this essay,zinc plating bath are divided into two parts,acid zinc plating bath and base zinc plating bath.The essay is also given a progress of the new techniques on zinc plating in recent years and described the advantages disadvantages of it.Keywords :zinc ; electroplating ; new techniques1.前言金属材料的腐蚀,是指金属材料和周围介质接触时发生化学或电化学作用而引起的一种破坏现象。
从热力学的观点来看,除了少数贵金属(如金、铂等)外,各种金属都有转变成离子的趋势[1]。
金属钛的腐蚀电化学研究的开题报告
金属钛的腐蚀电化学研究的开题报告一、选题背景金属钛是一种高强度、低密度、优异的耐腐蚀金属材料,被广泛应用于化学工业、航空航天、医疗器械等领域。
然而,由于钛材料的腐蚀性能受到多种因素的影响,如介质、温度、压力、氧化等,因此深入研究钛材料的腐蚀机理,以及开发高效的钛材料腐蚀防护技术是当前钛材料研究的重要课题。
二、研究目的本研究旨在通过腐蚀电化学分析等方法,系统地研究金属钛在不同介质中的腐蚀过程和机制,探索一种高效的防腐蚀技术,为钛材料的应用提供技术支持和保障。
三、研究内容1. 收集不同介质中金属钛的腐蚀数据,分析其腐蚀速率和腐蚀机理;2. 基于腐蚀电化学理论,采用电化学测试方法,研究金属钛在不同介质下的电化学反应过程;3. 探索一种高效的腐蚀防护技术,如金属钛表面涂层、阳极保护、电化学抛光等;4. 利用表征技术对金属钛的化学成分和微观结构进行分析,揭示其腐蚀机理和防护效果。
四、研究意义通过对金属钛腐蚀电化学性质的研究,可以深入了解其腐蚀机理,寻找一种可行的腐蚀防护技术,从而提高其耐腐蚀性能,延长其使用寿命。
同时,本研究也可为其他金属材料的腐蚀防护提供参考和借鉴。
五、参考文献1. 杨光, 王俊, 杨飞,等. 钛材料腐蚀研究进展[J]. 腐蚀科学与防护技术, 2018, 30(5): 1-10.2. 王燕, 王知伦, 李光,等. 钛及钛合金材料在不同介质中的耐蚀性研究进展[J]. 材料工程, 2020, 48(4): 15-22.3. 赵丽, 张恒, 张伟,等. 钛合金的防腐措施及其研究进展[J]. 化工新型材料, 2019, 47(12): 143-146.。
《2024年几种典型富锌涂层电化学特性研究》范文
《几种典型富锌涂层电化学特性研究》篇一一、引言富锌涂层在防腐蚀领域具有广泛应用,其通过提供有效的阴极保护机制,对基底材料提供持久保护。
本篇论文旨在探讨几种典型富锌涂层的电化学特性,分析其防腐机理、性能差异及适用环境。
通过研究其电化学行为,以期为富锌涂层在实际工程中的应用提供理论依据。
二、富锌涂层概述富锌涂层主要由锌粉、树脂及添加剂等组成,其中锌粉含量较高。
由于其具有良好的阴极保护作用和优异的防腐性能,广泛应用于桥梁、船舶、石油化工设备等金属结构保护。
三、几种典型富锌涂层介绍1. 纯锌涂层:主要由纯锌粉组成,具有优异的防腐蚀性能和良好的电导性。
2. 铝-锌混合涂层:以铝和锌为主要成分,通过特定工艺制备而成,具有较高的耐腐蚀性和优异的机械性能。
3. 含硅富锌涂层:在传统富锌涂层基础上添加硅元素,提高了涂层的硬度和耐磨损性能。
四、电化学特性研究1. 开路电位测试:通过测试不同涂层的开路电位,分析其防腐蚀性能和阴极保护效果。
结果显示,纯锌涂层和铝-锌混合涂层具有较低的开路电位,能够为基底材料提供良好的阴极保护。
2. 极化曲线测试:通过极化曲线测试,分析不同涂层的极化行为和腐蚀速率。
结果表明,含硅富锌涂层具有较高的耐腐蚀性能和较低的腐蚀速率。
3. 交流阻抗谱测试:通过交流阻抗谱测试,研究涂层的电阻和电容等电学性能。
结果表明,铝-锌混合涂层具有较高的电阻和良好的电荷传递性能。
4. 腐蚀形态观察:利用扫描电子显微镜等手段观察涂层的腐蚀形态和破坏程度。
研究发现,含硅富锌涂层具有较好的耐磨损性能和抗划痕性能。
五、结论通过对几种典型富锌涂层的电化学特性研究,我们发现纯锌涂层和铝-锌混合涂层具有良好的防腐蚀性能和阴极保护效果。
其中,含硅富锌涂层因其优异的耐磨损性能和抗划痕性能,在特定环境下具有较好的应用前景。
此外,不同涂层的电学性能和腐蚀形态也为我们提供了更多关于其防腐机理和适用环境的认识。
六、建议与展望针对富锌涂层的电化学特性研究,我们建议在今后工作中进一步探索新型富锌涂层的制备工艺和性能优化方法。
金属的电化学防腐蚀处理技术实验报告数据处理
金属的电化学防腐蚀处理技术实验报告数据处理金属材料的腐蚀与防护关键词:腐蚀,防护,化学腐蚀,电化学腐蚀,阻化剂,析氢腐蚀,吸氧腐蚀。
摘要:当金属与周围介质接触时,由于发生化学作用或电化学作用而引起的材料性能的退化与破坏叫做金属的腐蚀。
金属腐蚀可分为化学腐蚀和电化学腐蚀,化学腐蚀使金属表面逾期提货非电解质溶液接触发生化学作用而引起的腐蚀:而电化学腐蚀使由于金属及其合金在周围介质的电化作用下而引起的腐蚀,实质上由于金属表面形成许多微小的短路原电池的结果。
影响金属电化学腐蚀的因素较多,包括金属的活泼性,金属在特定介质中的电极电势及环境的酸度。
避免发生电化学腐蚀的方法很多:可以隔绝金属与周围介质的接触,即避免腐蚀原电池的形成。
意义:腐蚀会给人类带来危害,引起惊人的损害。
但也可以利用其为人类造福。
例如,工程技术中常利用腐蚀原理进行材料加工,“化学蚀剂”方法就是利用其进行金属定域“切削”的加工方法。
学习本试验可以了解金属腐蚀的基本原理以及金属材料放腐蚀的方法试验过程:金属腐蚀可按产生的机理分为化学腐蚀、电化学腐蚀和物理腐蚀。
化学腐蚀是指材料与周围介质直接发生化学反应,但反应过程中不产生电流的腐蚀过程;电化学腐蚀是指金属与离子导电性介质发生电化学反应,反应过程中有电流产生的腐蚀过程;物理腐蚀是指由于单纯的物理溶解而产生的腐蚀。
针对金属腐蚀的不同种类,对金属的防护有以下几种方法:改变金属内部结构、保护层法、电化学保护法、对腐蚀介质进行处理、电化学保护法。
1. 微电池的显示法。
取10ml0.01mol/dm3NaCl,0.3ml1%K3[Fe(CN)6],1%酚酞0.5ml,白明胶适量(一平匙)制成铁锈指示剂。
将铁锈指示剂加热成粘稠状,放置。
待凝固前,涂在去锈的铁片上。
10分钟以后观察。
2. 阴阳极防腐蚀镀层。
取一镀锡、镀锌的铁片,用锉刀划破表面镀层,在划痕上分别滴几滴稀硫酸和一滴铁氰化钾,观察。
3 .阻化剂。
取一铁片放入20% 的盐酸溶液中,加热到60~70℃,观察;然后加入六次甲基四胺,观察。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电化学法研究金属防腐蚀新进展
电化学法是一种研究金属防腐蚀的重要方法,通过使用电化学技术来
改善金属材料的防腐蚀性能。
近年来,人们在电化学法研究金属防腐蚀方
面取得了许多新进展。
本文将着重介绍几种主要的新兴电化学方法。
首先,阳极保护法是一种常用的电化学防腐蚀方法。
它通过在金属表
面形成一个保护性的氧化层,从而阻止金属与环境介质接触,达到防腐蚀
的目的。
然而,传统的阳极保护方法存在一些问题,比如其效果受到介质pH值的限制。
近年来,研究人员发展了基于光催化材料的阳极保护方法,通过光照激发材料表面的光催化活性,提高阳极保护效果。
这种方法可以
扩大阳极保护的适用范围,提高防腐蚀效果。
其次,电解封闭法是一种有效的电化学防腐蚀方法。
它通过在金属表
面形成一个密封的保护性层,阻止氧、水等腐蚀介质的侵蚀。
传统的电解
封闭方法主要使用高浓度的硅酸铝溶液,但是其操作过程复杂,有一定的
环境污染风险。
近年来,研究人员开发了新的电解封闭技术,使用环境友
好的有机溶剂作为电解液,并且通过控制电解参数和添加适量的添加剂来
提高封闭层的性能。
这些新技术使电解封闭法更加安全可靠,可以广泛应
用于金属防腐蚀领域。
此外,电沉积法也是一种常用的电化学防腐蚀方法。
它通过在金属表
面沉积一层保护性的金属或合金层,增加金属的耐腐蚀性。
传统的电沉积
方法主要使用直流电源,但是其效率较低,容易导致沉积物质的不均匀。
近年来,研究人员发展了脉冲电沉积技术,通过在沉积过程中改变电流的
脉冲形式和大小,可以得到更加均匀、致密的沉积层。
这种新技术具有高效、高质量的特点,可以提高金属的防腐蚀性能。
综上所述,电化学法在金属防腐蚀研究领域取得了不少新进展。
新兴
电化学方法不仅扩大了防腐蚀技术的适用范围,提高了防腐蚀效果,同时
也更加安全可靠、环境友好。
然而,还有许多问题需要进一步研究和解决,例如新方法的实际应用效果、经济性和可持续性等方面的问题。
希望通过
继续深入研究,能够进一步提高电化学法在金属防腐蚀领域的应用和发展。