ANSYS命令:解题与后处理+
对ansys主要命令的解释
对ansys主要命令的解释1,/PREP7 ! 加载前处理模块2,/CLEAR,NOSTART ! 清除已有的数据, 不读入启动文件的设置(不加载初始化文件)初始化文件是用于记录用户和系统选项设置的文本文件/CLEAR, START !清除系统中的所有数据,读入启动文件的设置/FILENAME, EX10.5 ! 定义工程文件名称/TITLE, EX10.5 SOLID MODEL OF AN AXIAL BEARING ! 指定标题4,F,2,FY,-1000 ! 在2号节点上施加沿着-Y方向大小为1000N的集中力6,FINISH ! 退出模块命令7,/POST1 ! 加载后处理模块8,PLDISP,2 ! 显示结构变形图,参数“2”表示用虚线绘制出原来结构的轮廓9,ETABLE,STRS,LS,1 ! 用轴向应力SAXL的编号”LS,1”定义单元表STRSETABLE, MFORX,SMISC,1 ! 以杆单元的轴力为内容, 建立单元表MFORXETABLE, SAXL, LS, 1 ! 以杆单元的轴向应力为内容, 建立单元表SAXLETABLE, EPELAXL, LEPEL, 1 ! 以杆单元的轴向应变为内容, 建立单元表EPELAXLETABLE,STRS_ST,LS,1 !以杆件的轴向应力“LS,1”为内容定义单元表STRS_STETABLE, STRS_CO, LS,1 !以杆件的轴向应力“LS,1”定义单元表STRS_COETABLE,STRSX,S,X ! 定义X方向的应力为单元表STRSXETABLE,STRSY,S,Y ! 定义Y方向的应力为单元表STRSY*GET,STRSS_ST,ELEM,STEEL_E, ETAB, STRS_ST !从单元表STRS_ST中提取STEEL_E单元的应力结果,存入变量STRSS_ST;*GET, STRSS_CO,ELEM,COPPER_E,ETAB,STRS_CO”从单元表STRS_CO中提取COPPER_E单元的应力结果,存入变量STRSS_CO10 FINISH !退出以前的模块11, /CLEAR, START ! 清除系统中的所有数据,读入启动文件的设置12 /UNITS, SI !申明采用国际单位制14 /NUMBER, 2 !只显示编号, 不使用彩色/NUMBER, 0 ! 显示编号, 并使用彩色15 /SOLU ! 进入求解模块:定义力和位移边界条件,并求解ANTYPE, STATIC ! 申明分析类型是静力分析(STATIC或者0)OUTPR, BASIC, ALL ! 在输出结果中, 列出所有荷载步的基本计算结果OUTPR,BASIC,ALL !指定输出所有节点的基本数据OUTPR,BASIC,LAST ! 选择基本输出选项,直到最后一个荷载步OUTPR,,1 ! 输出第1个荷载步的基本计算结果OUTPR,BASIC,1 ! 选择第1荷载步的基本输出项目OUTPR,NLOAD,1 ! 指定输出第1荷载步的内容OUTRES,ALL,0 !设置将所有数据不记录到数据库。
ANSYS后处理(结果查看)
一、显示某个时间点的温度云图1、General Postproc →Read Result →By Time/Freq2、在跳出的窗口中输入时间点,点击OK按钮3、然后点Plot Results按下图操作3、然后点击plot →Replot即可显示该时刻的云图二、提取某个节点的数值1、首先通过下列命令,选择部分单元nsel,s,loc,x,0,0.025esln,all然后读取所需节点的编号。
2、点击时间历程后处理器TimeHist postproc弹出如箭头所指对话框。
点击图对话框左上角的绿色增加按钮弹出对话框点击ok按钮,在弹出的对话框中输入节点编号,或者鼠标点击选择节点即可将新的数据读入对话框中如下图所示然后即可通过窗口上的按钮对数据进行操作处理。
/POST1set,last !定义数据集从结果文件中读出,last表示读取最后的数据集plnsol,s,eqv !以连续的轮廓线形式显示结果,S表示应力,EQV表示等效应力查看某个截面的云图!-----------------选取节点结果/post1!seltol,1.0e-10set,,,,,2.5!nsel,s,loc,y,0.1,0.1nsel,s,loc,x,0.02/page,99999,132,99999,240!-------------------显示某个截面wprota,,,90wpoffs,,,0.02/CPLANE,1 !指定截面为WP/TYPE,1,5 !结果显示方式选项工作平面移回全局坐标原点WPCSYS,-1nsel,s,loc,x,0,0.025esln,,1,ACTIVE。
ANSYS后处理(结果查看)
一、显示某个时间点的温度云图1、General Postproc →Read Result →By Time/Freq2、在跳出的窗口中输入时间点,点击OK按钮3、然后点Plot Results按下图操作3、然后点击plot →Replot即可显示该时刻的云图二、提取某个节点的数值1、首先通过下列命令,选择部分单元nsel,s,loc,x,0,0.025esln,all然后读取所需节点的编号。
2、点击时间历程后处理器TimeHist postproc弹出如箭头所指对话框。
点击图对话框左上角的绿色增加按钮弹出对话框点击ok按钮,在弹出的对话框中输入节点编号,或者鼠标点击选择节点即可将新的数据读入对话框中如下图所示然后即可通过窗口上的按钮对数据进行操作处理。
/POST1set,last !定义数据集从结果文件中读出,last表示读取最后的数据集plnsol,s,eqv !以连续的轮廓线形式显示结果,S表示应力,EQV表示等效应力查看某个截面的云图!-----------------选取节点结果/post1!seltol,1.0e-10set,,,,,2.5!nsel,s,loc,y,0.1,0.1nsel,s,loc,x,0.02/page,99999,132,99999,240!-------------------显示某个截面wprota,,,90wpoffs,,,0.02/CPLANE,1 !指定截面为WP/TYPE,1,5 !结果显示方式选项工作平面移回全局坐标原点WPCSYS,-1nsel,s,loc,x,0,0.025esln,,1,ACTIVE。
Ansys命令流大全
Ansys命令流大全ANSYS是一款广泛应用于工程领域的仿真软件,它能够对复杂工程问题进行建模、分析和优化。
本文将提供一个包含常用ANSYS命令的大全,帮助读者快速了解和掌握ANSYS软件的使用。
一、前言ANSYS是一款功能强大的工程仿真软件,它提供了丰富的建模和分析工具,适用于多个领域的工程问题。
掌握ANSYS的命令流能够有效提高工程师的工作效率,快速完成复杂问题的仿真和分析。
二、ANSYS常用命令1. 创建几何模型由于ANSYS提供了多种创建几何模型的工具,我们可以使用命令流来进行几何模型的创建和编辑。
以下是一些常用的几何模型命令:(1)BLOCK:创建矩形或立方体体素模型。
(2)CYLIND:创建圆柱体模型。
(3)SWEEP:创建沿路径扫掠的模型。
2. 定义材料属性在进行仿真分析之前,需要定义材料的物理属性。
以下是一些常用的材料属性命令:(1)MP: 定义材料的参数,如密度、弹性模量、泊松比等。
(2)EX: 定义材料的弹性模量。
(3)DENS: 定义材料的密度。
3. 设定网格划分网格划分对于仿真分析的准确性和计算效率非常重要。
以下是一些常用的网格划分命令:(1)SIZE:设定初始网格尺寸。
(2)MESH:进行自动的网格划分。
(3)ESIZE:设定特定区域的网格尺寸。
4. 定义边界条件在进行仿真分析之前,需要定义边界条件以模拟实际工程环境。
以下是一些常用的边界条件命令:(1)D:定义位移边界条件。
(2)S:定义约束条件。
(3)F:定义外部力或施加力。
5. 设置分析类型ANSYS提供了多种分析类型,如结构分析、热分析、流体分析等。
以下是一些常用的分析类型命令:(1)SOLVE:执行数值分析求解。
(2)ANTYPE:设定分析类型。
(3)FILE:设置解算文件名和保存路径。
6. 查看和后处理结果分析完成后,我们需要查看和后处理结果。
以下是一些常用的结果查看和后处理命令:(1)PLOT:绘制结果曲线或图像。
ANSYS分析结果的后处理(1)
轴正向一致,负值表示力
F,NODE,Lab, Vlaue,Vlaue2,MEND,NINC
的方向与坐标轴正向相反
GUI:…|Loads>Define Loads>Apply>Structural>Pressure>On On Keypoints
(或On Nodes) 参数说明:
KOPI、NODE-关键点、节点 Lab:=FX,FY,FZ(力)或MX,MY,MZ(力矩)
Load
❖ Tim4 e
第5章 ANSYS分析结果的后处理
中南大学
从时间的概念上讲,载荷步就是作用在给定时间间隔内的一系列
载荷;子步为载荷步中的时间点,并在这些点上求得中间解。
4.1.2 加载方式及其优缺点
在ANSYS程序中,用户可以把载荷施加在实体模型(关键点、 线、面、体等)上,也可以施加在有限元模型(结点、单元) 上。如果载荷施加在几何模型上,ANSYS在求解前先将载荷转化 到有限元模型上。这两种情况各有各自的优缺点。
GUI:….|Loads|Apply|Structual>Pressure>On Nodes
采用GUI操作,在弹出拾取对话框后,在模型上选取几个相连的节点(要施加分 布载荷的节点),单击OK按钮,弹出如下所示分布载荷大小设置对话框:
电场分析:电势(电压)、电流、电荷、电荷密度、无限表面等;
流体分析:流速、压力等
对不同学科的载荷而言,程序中的载荷可以分为六类:
(1) DOF constraint(DOF约束):定义节点的自由度值,也就是 将某个自由度赋予一个已知值。在结构分析中该约束被指定为 位移和对称边界条件;在热力分析中被指定为温度和热通量平 行的边界条件。
ANSYS求解后处理
连杆
后处理
说明 • 练习按查询和路径操作. • 检查误差量级, 重新划分网格并重新求解. 比较两组结果.
1. 以“conn-rod”为作业名,进入ANSYS。 2. 恢复数据库文件“conn-rod.db” :
– Utility Menu > File > Resume from … • 选择“conn-rod.db” 文件, 按 [OK]
9. 求解完成后, 进入通用后处理器,画von Mises 应力 (SEQV): – Main Menu > General Postproc > Plot Results > -Contour Plot- Nodal Solu … • 选择“Stress” 和“von Mises SEQV”, 按 [OK]
3. 进入求解器,在大孔的表面施加法向约束:
– Main Menu > Solution > -Loads- Apply > -Structural- Displacement > -Symmetry B.C.- On Areas + • 拾取孔的表面 (面号 8、 9), 按 [OK]
4. 在Y=0的所有表面上施加对称约束边界条件:
说明
• 在下图所示的三维支架上施加载荷,并用PCG迭代求解器求解. 模型已用20节点的 SOLID95 划分了网格, 杨氏模量为30e6 psi.
载荷
1. 用 “bracket-3d”作为作业名,进入ANSYS。 2. 恢复 “bracket-3d.db1”数据库文件 :
– Utility Menu > File > Resume from … • 选择 “bracket-3d.db1”数据库文件,按 [OK]
ansys通用后处理
• 通过画出结构能误差的等值线图,可显示误差较大的区域 -- 这些区 域需要网格加密。
• 画出所有单元的应力偏差图,可给出每个单元的应力误差值。 (平均 应力和非平均应力不同)
后处理
.误差估计
• 误差估计 仅在 POST1中有效且仅适用于 : – 线性静力结构分析和线性稳态热分析 – 实体单元 (2-D 和 3-D) 和壳单元 – 全图形模式 (非 PowerGraphics) 如果这些条件不能够满足, ANSYS 会自动关闭 误差估 计计算.
为缺省值.
后处理
.路径操作
2. 将数据映射到路径上 – General Postproc > Path Operations > Map onto Path… (或 PDEF
命令) • 选定需要的量, 诸如 SX. • 为选定的量加入一个用于绘图和列表的标签.
– 如果需要,您可以显示这一路径. • General Postproc > Path Operations > Plot Paths • (或键入命令 /PBC,PATH,1 续之以 NPLOT 或 EPLOT命令)
后处理
…结果坐标系
• 将结果坐标系变成不同的坐标系统, 使 用: – General Postproc > Options for Outp… – 或 RSYS 命令
后续的等值图, 列表, 查询拾取等,将显示该坐标系下的 结果值.
缺省 方位 RSYS,0
局部柱坐标系 RSYS,11
总体柱坐标系 RSYS,1
PowerGraphics 关闭
检查网格精度
ANSYS基本操作-加载求解结果后处理
individual entities by picking ANSYS基本选操处作项-理加只载删求解除结模果后型选定的载荷。
删除载荷(续)
当删除实体模型时, ANSYS 将自动删除其上所 有的载荷
删除线上的均 布压力
自动删除以线为边 界各单元均布压力
实体模型
FEA 模型l
ANSYS基本操作-加载求解结果后 处理
ANSYS基本操作-加载求解结果后 处理
加载面力载荷(续)
500
500
L3 VALI = 500
坡度压力载荷沿起始关键点(I) 线
1000
性变化到第二个关键点 (J)
500 L3
VALI = 500
如果加载后坡度的方向相反, 将 两个压力数值颠倒即可
VALJ = 1000
1000 500
L3 VALI = 1000 VAALNJS=YS5基00本操作-加载求解结果后
删除载荷(续)
两关键点的扩展位移约束载荷例外:
删除两点的约束
实体 模型
FEA 模ቤተ መጻሕፍቲ ባይዱl
只删除了两角点( CORNER )约束 , 而加载时扩展的 ( inside ) 节点 约束必须手工删除
ANSYS基本操作-加载求解结果后 处理
第二部分: 求 解
ANSYS基本操作-加载求解结果后 处理
求解过程
处理
将载荷转化到有限元模型上
下面将载荷转化到节点和单元上,不进行求解:
Main Menu: Solution > -Loads-Operate
这些选项出现的信息大致相同
ANSYS基本操作-加载求解结果后 处理
删除载荷
Main Menu: Solution > -Loads- Delete
ansys命令流----前后处理和求解常用命令之求解与后处理
AUTOS 由程序选择
off 不使用这些缺省值
key2: on 检查接触状态(此时key1为on)
此时时间步会以单元的接触状态(据keyopt(7)的假定)为基础
etlim:程序执行时间(秒)限制,缺省为无穷
cplim:cpu时间(秒)限制,缺省为无穷
u solcontrol ,key1, key2,key3,vtol 指定是否使用一些非线性求解缺省值
key1: on 激活一些优化缺省值(缺省)
CNVTOL Toler=0.5%Minref=0.01(对力和弯矩)
Node : 预加位移约束的节点号,如果为all,则所有选中节点全加约束,此时忽略nend和ninc.
Lab: ux,uy,uz,rotx,roty,rotz,all
Value,value2: 自由度的数值(缺省为0)
Nend, ninc: 节点范围为:node-nend,编号间隔为ninc
Lab2-lab6: 将lab2-lab6以同样数值施加给所选节点。
注意:在节点坐标系中讨论
3.2 设置求解选项
u antype, status, ldstep, substep, action
antype: static or 1 静力分析
buckle or 2 屈曲分析
modal or 3 模态分析
value: 力大小
value2: 力的第二个大小(如果有复数荷载)
nend,ninc:在从node到nend的节点(增量为ninc)上施加同样的力
ansys后处理常用命令
结合自身经验,谈ANSYS中的APDL命令(一)发表时间:2009-4-7 作者: 倪欣来源: e-works关键字: ansys APDL 命令流在ANSYS中,命令流是由一条条ANSYS的命令组成的一个命令组合,这些命令按照一定顺序排布,能够完成一定的ANSYS功能,本文是作者结合自身经验所总结的一些命令。
在ANSYS中,命令流是由一条条ANSYS的命令组成的一个命令组合,这些命令按照一定顺序排布,能够完成一定的ANSYS功能,这些功能一般来说通过菜单操作也能够实现(而那些命令流能够实现,菜单操作实现不了的单个命令比较少见)。
以下命令是结合我自身经验,和前辈们的一些经验而总结出来的,希望对大家有帮助。
(1).Lsel, type, item, comp, vmin, vmax, vinc, kswp 选择线type: s 从全部线中选一组线r 从当前选中线中选一组线a 再选一部线附加给当前选中组aunoneu(unselect)inve: 反向选择item: line 线号loc 坐标length 线长comp: x,y,zkswp: 0 只选线1 选择线及相关关键点、节点和单元(2).Nsel, type, item, comp, vmin, vmax, vinc, kabs 选择一组节点type: S: 选择一组新节点(缺省)R: 在当前组中再选择A: 再选一组附加于当前组U: 在当前组中不选一部分All: 恢复为选中所有None: 全不选Inve: 反向选择Stat: 显示当前选择状态Item: loc: 坐标node: 节点号Comp: 分量Vmin,vmax,vinc: ITEM范围Kabs: “0”使用正负号“1”仅用绝对值(3).Esel, type, item, comp, vmin, vmax, vinc, kabs 选择一组单元type: S: 选择一组单元(缺省)R: 在当前组中再选一部分作为一组A: 为当前组附加单元U: 在当前组中不选一部分单元All: 选所有单元None: 全不选Inve: 反向选择当前组Stat: 显示当前选择状态Item:Elem: 单元号Type: 单元类型号Mat: 材料号Real: 实常数号Esys: 单元坐标系号(4). mp, lab, mat, co, c1,…….c4定义材料号及特性lab: 待定义的特性项目(ex,alpx,reft,prxy,nuxy,gxy,mu,dens)ex: 弹性模量nuxy: 小泊松比alpx: 热膨胀系数reft: 参考温度reft: 参考温度prxy: 主泊松比gxy: 剪切模量mu: 摩擦系数dens: 质量密度mat: 材料编号(缺省为当前材料号)c : 材料特性值,或材料之特性,温度曲线中的常数项c1-c4: 材料的特性-温度曲线中1次项,2次项,3次项,4次项的系数(5). 定义DP材料:首先要定义EX和泊松比:MP,EX,MAT,……MP,NUXY,MAT,……定义DP材料单元表(这里不考虑温度):TB,DP,MAT进入单元表并编辑添加单元表:TBDATA,1,CTBDATA,2,ψTBDATA,3,……如定义:EX=1E8,NUXY=0.3,C=27,ψ=45的命令如下:MP,EX,1,1E8MP,NUXY,1,0.3TB,DP,1TBDATA,1,27TBDATA,2,45这里要注意的是,在前处理的最初,要将角度单位转化到“度”,即命令:*afun,deg (6). 根据需要耦合某些节点自由度cp, nset, lab,,node1,node2,……node17nset: 耦合组编号lab: ux,uy,uz,rotx,roty,rotz ,allnode1-node17: 待耦合的节点号。
ANSYS后处理(结果查看)
ANSYS后处理(结果查看)⼀、显⽰某个时间点的温度云图1、General Postproc →Read Result →By Time/Freq2、在跳出的窗⼝中输⼊时间点,点击OK按钮3、然后点Plot Results按下图操作3、然后点击plot →Replot即可显⽰该时刻的云图⼆、提取某个节点的数值1、⾸先通过下列命令,选择部分单元nsel,s,loc,x,0,0.025esln,all然后读取所需节点的编号。
2、点击时间历程后处理器TimeHist postproc弹出如箭头所指对话框。
点击图对话框左上⾓的绿⾊增加按钮弹出对话框点击ok按钮,在弹出的对话框中输⼊节点编号,或者⿏标点击选择节点即可将新的数据读⼊对话框中如下图所⽰然后即可通过窗⼝上的按钮对数据进⾏操作处理。
/POST1set,last !定义数据集从结果⽂件中读出,last表⽰读取最后的数据集plnsol,s,eqv !以连续的轮廓线形式显⽰结果,S表⽰应⼒,EQV表⽰等效应⼒查看某个截⾯的云图!-----------------选取节点结果/post1!seltol,1.0e-10set,,,,,2.5!nsel,s,loc,y,0.1,0.1nsel,s,loc,x,0.02/page,99999,132,99999,240!-------------------显⽰某个截⾯wprota,,,90wpoffs,,,0.02/CPLANE,1 !指定截⾯为WP /TYPE,1,5 !结果显⽰⽅式选项⼯作平⾯移回全局坐标原点WPCSYS,-1nsel,s,loc,x,0,0.025 esln,,1,ACTIVE。
ansys命令流----前后处理和求解常用命令之求解与后处理
ansys命令流----前后处理和求解常用命令之求解与后处理The ANSYS command stream - before and after the treatment and solving common commands of solving and postprocessing of.Txt is a mountain fox, you told me what all, standing in the place nearest to you, look you smile to others, even if the heart is all the pain just to keep your eye out. The glare of the bottom of every act and every move white, let me understand what is pure damage. 3 /soluU /solu enters the solver3.1 plus boundary conditionsU, D, node, lab, value, Value2, nend, Ninc, lab2, lab3,...... LaB6 defines node displacement constraintsNode: the node number of the pre displacement constraint. If it is all, all selected nodes are fully bound, and nend and ninc. are ignored at this timeLab:, UX, uy, UZ, ROTx, ROTY, Rotz, allThe value of Value, value2: degrees of freedom (default 0)Nend, ninc: node range is: node-nend, the number interval is NincLab2-lab6: applies lab2-lab6 to the selected node with the same value.Note: discussed in the node coordinate system3.2 set the solution optionU, antype, status, ldstep, substep, actionStatic analysis of antype:, static and or 1Buckling analysis of buckle or 2Modal or 3 modal analysisTransient analysis of trans or 4Status: new reanalysis (default), which will be ignored later Rest reanalysis is valid only for static, full, and transionLdstep: specifies which load step to proceed from the analysis and defaults to the maximum runn number (the last step of the analysis point)Substep: specifies which sub step to proceed from the analysis. The default is the highest number of sub steps in the runn file in this directoryAction, continue: continues to analyze the specified ldstep, substepExplanation: there are two types of continuous analysis (interrupted for some reason)Singleframe restart: continues from the stop pointRequired file: jobname.db must be saved immediately after initial solutionJobname.emat cell matrixJobname.esav or.Osav: if.Esav is broken, change.Osav to.EsavResults file: is not necessary, but if so, the results of subsequent analysis will be well attached to itNote: if the initial analysis generates a.Rdb,.Ldhi, or rnnn file. Deletion must be followed by subsequent analysisStep: (1) enter ANASYS with the same job name(2) enter the solver and restore the database(3) antype, rest(4) additional load is specified(5) specify whether to use the existing matrix (jobname.trl) (default rebuild)Kuse: 1 uses an existing matrix(6) solvingMultiframe restart: continues from any result with no result(no need)U, PRED, sskey -- -- lskey... Whether to open the predictor in nonlinear analysisSskey: off does not make predictions (when the degree of freedom is rotated or when SOLID65 is used, default is off)The first step was to predict on (unless there is a rotational degree of freedom or when using the SOLID65 default is on)- - unused variable zoneLskey: off does not predict when crossing load steps (default)On predicts when crossing load steps (at this time sskey must be simultaneous on)Note: the default value for this command assumes that solcontrol is onDoes u autots and key use automatic time steps?Key:on: when solcontrol is on, the default is onOff: when solcontrol is off, the default is off1: records in the.Log file "1" by the program selection (when solcontrol is on and does not occur the autots command"Note: the step size predictor and the two step size are alsoused when using the automatic time stepU, NROPT, option -- -- adptky specifies the options for Newton Ralph Xun Fa's solutionOPTION: AUTO: program selectionFULL: completely Newton Ralph Xun FaMODI: revised by Newton Ralph Xun FaINIT: using the initial stiffness matrixUNSYM: complete Newton Ralph Xun Fa, and allows asymmetric stiffness matricesADPTKY:ON: uses adaptive drop factorOFF: no adaptive drop factor is usedU, NLGEOM, KEYKEY: OFF: does not include geometric nonlinearity (default)ON: including geometric nonlinearityU, ncnv, kstop, dlim, itlim, etlim, cplim, terminate the analysis optionsKstop: 0, if the solution is not convergent, does not terminate the analysis1 if the solution does not converge, terminate the analysis and the program (default)2 if the solution does not converge, terminate the analysis, but do not terminate the programDlim: maximum displacement limit, defaults to 1.0e6Itlim: cumulative iteration limit, default to infinityEtlim: program execution time (seconds) limit, the default is infiniteCplim:cpu time (seconds) limit, default to infinityThe U, solcontrol, key1, key2, Key3, and VTOL specify whether or not to use some nonlinear solutions for default valuesKey1: on activates some optimized default values (default)CNVTOL, Toler=0.5%Minref=0.01 (for force and moment)NEQIT the maximum number of iterations is set between 15~26 depending on the modelARCLEN uses the more advanced method of ansys5.3 than using the arc length rulePRED unless ROTx, y, Z, or SOLID65 are openedLNSRCH automatically opens when exposedCUTCONTROL, Plslimit=15%, npoint=13SSTIF opens when NLGEOM, onNROPT, adaptkey closes (unless the frictional contact exists; the unit 12,26,48,49,52 exists; when the plastic is present and there is a unit 20,23,24,60)AUTOS is chosen by the programOff does not use these default valuesKey2: on checks the contact state (key1 at on)At this point, the time step is based on the contact state of the unit (assuming keyopt (7))When keyopt (2) =on, the time step is guaranteed to be small enoughKey3: stress loading stiffness control, use default values as much as possibleNull: by default, certain units include stress loading, stiffening, and certain ones (excluding)Nopl: does not include stress stiffening for any elementIncp: for some elements including stress load stiffening(check)Vtol:U, outres, item, freq, and CNAME specify the solution information for writing to the databaseItem: all all the solutionsBasic only writes nsol, rsol, nload, STRsNsol node freedomRsol node acting loadNload nodal loads and input strain loads (?)STRs node stressIf n is freq:, it is written once every n step (including the last step)None: does not write entries in this load stepAll: writes every stepLast: writes only the last step (default when static or transient)3.3 define the load stepThe U, nsubst, nsbstp, nsbmx, nsbmn, and carry specify the number of sub steps for this load stepNsbstp: the number of sub steps of this load stepIf automatic time step using autots, the number of the first definition step length; if solcontrol is open, and 3D surface to surface contact element is used, the default is 1-20; if solcontrol is open, there is no 3D contact element, the default is 1 steps; if the solcontrol is closed, the default value is specified as before; not previously specified, the default is 1)Nsbmx, nsbmn: at most, the minimum number of steps (if the automatic time step is turned on)?U time, time specifies the end time of the load stepNote: the end of the first step shall not be "0""U F, node, lab, Ninc, value, Value2, nend, plus concentrated load at the specified nodeNode: node numberLab:, Fx, Fy, Fz, Mx, My, MzValue: force sizeThe second magnitude of the force of value2: (if there is a complex load)Nend, Ninc: apply the same force on the node from node to nend (increment Ninc)Note: (1) the nodal force is defined in the nodal coordinate system, and the positive and negative forces are in direct agreement with the nodal coordinate axisU, SFA, area, lkey, lab, value, and Value2 add loads on the specified surfaceArea: n surface numberAll all selected numbersLkey: if it is the surface of the body, ignore this itemLab: presValue: pressure valueU, SFBEAM, ELEM, LKEY, LAB, VALI, VALJ, VAL2I, VAL2J, IOFFST, JOFFSTApply line load to the beam elementThe ELEM: cell number can be ALL, that is, the selected cellLKEY: surface mounted type number, see unit introduction. For BEAM188, 1 is vertical; 2 is transverse; 3 is tangentialPressure values at VALI, VALJ:, I, and J nodesVAL2I, VAL2J: is useless for the momentIOFFST, JOFFST:, line distance, I, J node distanceU, lswrite, lsnum write the load and load options into the load fileLsnum: the suffix of the load step file name, that is, the number of loading stepsWhen the stat column shows the current step numberInit reset to "1""The default is to add 1 to the current step"3.3.1 attention1. add as much load as possible without focusing so as to avoid singularitiesThe tangential load on the 2. plane must depend on the surface element3.4 load stepsU, lssolve, lsmin, lsmax, lsinc read and solve multiple loading stepsLsmin, lsmax, lsinc: load step file range4 /post1 (general postprocessing)U, set, lstep, sbstep, fact, king, time, angle, and nset set the data read from the result fileLstep: load stepsSbstep: child steps and defaults to the last stepTime: point of time (if the arc length rule does not)Nset:data set numberU, dscale, WN, dmult display deformation ratioWn: window number (or all), defaults to 1Dmult, 0 or Auto: automatically make the maximum deformation picture 5% of the length of the componentU, pldisp, and Kund display the structure of deformationKund:0 only shows the structure after deformation1 shows the structure before deformation and after deformation2 shows the deformation structure and the edge of the undeformed structureU, *get, par, node, N, u, X (y, z) obtain the X (y, z) shift of node n to parameter parEquivalent to the function UX (n), uy (n), UZ (z)Node (x, y, z): get the (x, y, z) node numberArnode (x, y, z): get the surface connected to the node nNote: this command can also be used with the /solu moduleU, fsum, lab, item, summation of nodal forces and moments of a unitLab: empty sum in the whole DeCarr coordinate systemRsys sums up in the current active rsys coordinate systemItem: empty sum for all selected units (not including contact elements)Cont: only sum the contact nodesU, PRSSOL, ITEM, COMP, print BEAM188, BEAM189 cross section resultsDescription: only when the calculation has not yet exited the ANSYS can be used and re entered the ANSYS is not availableItem comp cross section data and component markStress components of S, COMP, X, XZ and YZPRIN, S1, S2, S3, principal stress, SINT stress intensity, and SEQV equivalent stressEPTO COMP total strainPRIN total principal strain, strain strength and equivalent strainEPPL COMP plastic strain componentPRIN principal plastic strain, plastic strain strength, and equivalent plastic strainU, plnsol, item, comp, Kund, fact draw nodes, resulting in a continuous contour lineItem: project (see table below)Comp: componentKund: 0 does not display an undeformed structure1 deformation and deformation overlap2 deformation contours and undeformed edgesFact:'s coefficient of proportionality for exposure to 2D displays defaults to 1Item comp discriptionU, x, y, Z, sum shiftRot, x, y, Z, sum cornersS, x, y, Z, XY, YZ, XZ stress components1, 2, 3 principal stressesInt, EQV stress, intensity, equivalent stressEPEO, x, y, Z, XY, YZ, XZ total displacement components 1,2,3 principal strainInt, EQV strain, intensity, equivalent strainEPEL, x, y, Z, XY, YZ, and XZ elastic strain components 1, 2, 3 elastic principal strainInt, EQV, elastic intensity, elastic equivalent strain EPPL, x, y, Z, XY, YZ, XZ plastic strain componentsU PRNSOL, item, comp print select the node results Item: project (see above)Comp: componentU, PRETAB, LAB1, LAB2,...... Plotting unit table data along the length of units along LAB9LABn: null: column names specified by all ETABLE commandsColumn name: the column name specified by any ETABLE commandU, PLLS, LABI, LABJ, FACT, KUND, drawing unit table data along the unit length directionUnit table name of LABI: node IUnit table name of LABJ: node JFACT: display scale, default to 1Kund: 0 does not display an undeformed structure1 deformation and deformation overlap2 deformation contours and undeformed edges5 /post26 (time course postprocessing)U, nsol, NVAR, node, item, comp, nameIn the time course, the ordinal number of the node variable is defined in the processorNVAR: variable number (from 2 to NV (defined by numvar))Node: node numberItem compU, x, y, ZRot, x, y, ZU, ESOL, NVAR, ELEM, NODE, ITEM, COMP, and NAME store the results into variablesNVAR: variable number, more than 2ELEM: unit numberNODE: the node number of the unit determines which amount to store the unit and, if empty, gives the average valueITEM:COMP:NAME: 8 character variable name, defaults to ITEM plus COMPU, rforce, NVAR, node, item, comp, and name specify the node force data to be storedNvar: variable numberNode: node numberItem compF, x, y.zM, x, y, ZName: gives this variable a name, 8 charactersU, add, IR, IA, IB, IC, name, - - - -, facta, factb, factc Add the IA, IB, and IC variables to the IR variableIR, IA, IB, IC: variable numberThe name of the name: variableU, /grid, keyKey: "0" or "off" without network"1" or "on" XY network"2" or "X" is only X-ray"3" or "Y" has only y linesU, xvar, nN: "0" or "1" takes the X axis as the time axis"N" represents the X axis variable "n"""-1"?U, /axlab, axis, lab define the axis of the markAxis: "X" or "Y""The lab: flag can be up to 30 characters longU, plvar, NVAR, nvar2,...... Nvar10 draws the variable to be displayed (as a ordinate)U, prvar, nvar1,...... Nvar6 lists the variables to display6 PLOTCONTROL menu commandU, PBC, ilem,...... The key, min, Max, and ABS display symbols and values on the displayThe displacement constraint added by item: uRot corner constraintKey: 0 does not display symbols1 display symbols2 display symbols and valuesThe U, /SHOW, FNAME, EXT, VECT, and NCPL determine the graphicaldisplay of the device and other parametersFNAME: X11: screenFile name: each graphic will generate a series of graphic filesEach of the JPEG: graphics generates a series of JPEG graphics filesDescription: there is no need to use this command, graphics files need to be calculated and then output7 parametric design languageU, *do, par, ival, Fval, and inc define the beginning of a do loopPar: loop control variablesIval, Fval, Inc: start value, final value, step size (positive, negative)U *enddo defines the end of a do loopU, *if, val1, oper, val2, base: conditional statementsVal1 (val2:), the value to be compared (also characters, enclosed in quotes)Oper: logical operation (when the real number is compared, the error is 1e-10)EQ, NE, lt, GT, Le, Ge, ablt, abgtBase: behavior when the oper result is a logical truthLable: user defined line labelsStop: will jump out of ANASYSExit: jumps out of the current do loopCycle: jumps to the end of the current do loopThen: makes up the If-Then-Else structureNote: not allowed to jump out of, jump into a do, if loop to label sentence8 theoretical manualSolution of 1. equations: (1) direct solution; (2) iterative solution(1) direct solution: A. sparse matrix method and B. wave front methodA. sparse matrix method: accounting for large memory, but the number of operations less; by changing the order of stiffness matrix, so that non-zero elements minimumB. wavefront method: small memoryWavefront is the number of equations activated when no cell has been solved(2) iterative solution: JCG method, PCG method, ICCG methodJCG method: solvable real numbers, symmetric and unsymmetric matricesPCG method: efficient solution of various matrices (including morbid state), but only the real and symmetric matrixICCG: similar to JCG, but stronger2. strain density, equivalent strain, stress density, equivalent stress(1) strain density (strain, intensity);Strain densityAre the three principal strains(2) equivalent strainEffective Poisson's ratio: the user is set by the avprin command;0 (if not set)(3) stress density (stress, intensity);Stress density(4) equivalent stressEquivalent stress or if there is (elastic state)。
【干货】ANSYS后处理操作技巧与各类问题良心大总结
【⼲货】ANSYS后处理操作技巧与各类问题良⼼⼤总结本⽂详细整理了关于ANSYS后处理的各种技巧和⽅法,适合收藏阅读。
1.ANSYS后处理时如何按灰度输出云图?1)你可以到utilitymenu-plotctrls-style-colors-windowcolors试试2)直接utilitymenu-plotctrls-redirect plots2 将云图输出为JPG菜单->PlotCtrls->Redirect Plots->To JPEG Files3.怎么在计算结果实体云图中切⾯?命令流/cplane/type图形界⾯操作<><2.plotctrls-->Style-->Hidden line Options将[/TYPE]选项选为section将[/CPLANE]选项选为working plane2.plotctrls-->4.⾮线性计算过程中收敛曲线实时显⽰solution>load step opts>output ctrls>grph solu track>on5.运⽤命令流进⾏计算时,⼀个良好的习惯是: 使⽤SELECT COMMEND后.........其后再加上ALLSEL.........6.应⼒图中左侧的⽂字中,SMX与SMN分别代表最⼤值和最⼩值如你plnsolv,s,eqv则 SMX与SMN分别代表最⼤值等效应⼒和最⼩值等效应⼒如你要看的是plnsolv,u则SMX与SMN分别代表位移最⼤值和位移最⼩值不要被S迷惑mx(max)mn(min)7.在⾮线性分析中,如何根据ansys的跟踪显⽰来判断收敛?在ansys output windows 有 force convergenge valu 值和 criterion 值当前者⼩于后者时,就完成⼀次收敛你⾃⼰可以查看两条线的意思分别是:F L2:不平衡⼒的2范数F CRIT:不平衡⼒的收敛容差,如果前者⼤于后者说明没有收敛,要继续计算当然如果你以弯矩M为收敛准则那么就对应 M L2 和 M CRIT8.两个单元建成公共节点,就成了刚性连接,不是接触问题了。
使用ANSYS命令
使用ANSYS命令1. 基本命令ANSYS基本命令包括以下几大类:(1)会话与数据库命令(Session and database commands)(2) APDL命令(3)前处理建模命令(4)前处理网格划分命令(5)求解命令(6)后处理命令1.1 会话与数据库命令1.2 APDL命令另见附录1.3 前处理建模命令1.4 前处理网格划分命令1.5 求解命令1.6 后处理命令1.7 ANSYS操作符1.8 ANSYS函数1.9 定义参数假定要定义USRPRM参数,值为22,有两种定义方式: *SET, USRPRM, 22 USRPRM=22建立如下的模型:/PREP7 !ENTER PREPROCESSOR*AFUN,DEG ! SWITCH TO DEGREESW=2 ! WIDTHH=4 ! HEIGHTA=l ! Y-COORDINATE OF MATERIAL!INTERFACE AT LEFT EDGE THETA=30 ! INCLINATION ANGLEB= W*TAN(THETA) ! CREATE KEYPOINTSK,1,0,0K,2,W,0K,3,0,AK,4,W,A+BK,5,0,HK,6,W,H! CREATE LINESL,l,2L,2,4L,4,3L,l,3L,4,6L,6,5L,3,5! CREATE AREASAL,1,2,3,4AL,3,5,6,7将上述命令存为“example.txt”文件,读入后可执行:Utility Menu > File > Read Input from或者用/INPUT命令/INPUT, EXAMPLE, TXT练习:修改w=5, h=5, a=2, theta=15,以及w=1, h=5, a=2, theta=60。
2. 选择操作选择命令的基本格式如下:KSEL, Type, Item, Comp, VMIN, VMAX, VINC, KABSLSEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWPASEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWPVSEL, Type, Item, Comp, VMIN, VMAX, VINC, KSWPNSEL, Type, Item, Comp, VMIN, VMAX, VINC, KABSESEL, Type, Item, Comp, VMIN, VMAX, VINC, KABS其中“Type”定义了选择方式:“Item”含义有多种,常见的有:(1)实体名称例如KP表示点,LINE表示线,AREA表示面,VOLU表示体,NODE表示结点,ELEM表示单元。
ANSYS命令详解(可编辑)
ANSYS 命令详解Fini 退出四大模块,回到BEGIN层/cle 清空内存,开始新的计算1.定义参数、数组,并赋值.2. /prep7 进入前处理定义几何图形:关键点、线、面、体定义几个所关心的节点,以备后处理时调用节点号。
设材料线弹性、非线性特性设置单元类型及相应KEYOPT设置实常数设置网格划分,划分网格根据需要耦合某些节点自由度定义单元表存盘3./solu加边界条件设置求解选项定义载荷步求解载荷步4./post1(通用后处理)5./post26 (时间历程后处理)6.PLOTCONTROL菜单命令7.参数化设计语言8.理论手册Fini 退出四大模块,回到BEGIN层/cle 清空内存,开始新的计算1 定义参数、数组,并赋值.u dim, par, type, i, j, k, var1, vae2, var3 定义数组par: 数组名type: array 数组,如同fortran,下标最小号为1,可以多达三维(缺省)char 字符串组(每个元素最多8个字符)tablei,j, k 各维的最大下标号var1,var2,var3 各维变量名,缺省为row,column,plane 当type 为table时2 /prep7 进入前处理2.1 定义几何图形:关键点、线、面、体u csys,kcnkcn , 0 迪卡尔zuobiaosi1 柱坐标2 球4 工作平面5 柱坐标系(以Y轴为轴心)n 已定义的局部坐标系u numstr, label, value 设置以下项目编号的开始nodeelemkplineareavolu注意:vclear, aclear, lclear, kclear 将自动设置节点、单元开始号为最高号,这时如需要自定义起始号,重发numstru K, npt, x,y,z, 定义关键点Npt:关键点号,如果赋0,则分配给最小号u Kgen,itime,Np1,Np2,Ninc,Dx,Dy,Dz,kinc,noelem,imoveItime:拷贝份数Np1,Np2,Ninc:所选关键点Dx,Dy,Dz:偏移坐标Kinc:每份之间节点号增量noelem: “0”如果附有节点及单元,则一起拷贝。
史上最全的ANSYS命令流大全
《史上最全的ANSYS命令流查询与解释》[1]*************************************************************************************对ansys主要命令的解释1, /PREP7 ! 加载前处理模块2, /CLEAR,NOSTART ! 清除已有的数据, 不读入启动文件的设置<不加载初始化文件>初始化文件是用于记录用户和系统选项设置的文本文件/CLEAR, START !清除系统中的所有数据,读入启动文件的设置/FILENAME, EX10.5 ! 定义工程文件名称/TITLE, EX10.5 SOLID MODEL OF AN AXIAL BEARING ! 指定标题4, F,2,FY,-1000 ! 在2号节点上施加沿着-Y方向大小为1000N的集中力6, FINISH ! 退出模块命令7, /POST1 ! 加载后处理模块8, PLDISP,2 ! 显示结构变形图,参数"2"表示用虚线绘制出原来结构的轮廓9, ETABLE,STRS,LS,1 ! 用轴向应力SAXL的编号"LS,1"定义单元表STRSETABLE, MFORX,SMISC,1 ! 以杆单元的轴力为内容, 建立单元表MFORXETABLE, SAXL, LS, 1 ! 以杆单元的轴向应力为内容, 建立单元表SAXLETABLE, EPELAXL, LEPEL, 1 ! 以杆单元的轴向应变为内容, 建立单元表EPELAXLETABLE,STRS_ST,LS,1 !以杆件的轴向应力"LS,1"为内容定义单元表STRS_STETABLE, STRS_CO, LS,1 !以杆件的轴向应力"LS,1"定义单元表STRS_COETABLE,STRSX,S,X ! 定义X方向的应力为单元表STRSXETABLE,STRSY,S,Y ! 定义Y方向的应力为单元表STRSY*GET,STRSS_ST,ELEM,STEEL_E, ETAB, STRS_ST !从单元表STRS_ST中提取STEEL_E单元的应力结果,存入变量STRSS_ST;*GET, STRSS_CO,ELEM,COPPER_E,ETAB,STRS_CO"从单元表STRS_CO中提取COPPER_E单元的应力结果,存入变量STRSS_CO10 FINISH !退出以前的模块11, /CLEAR, START ! 清除系统中的所有数据,读入启动文件的设置12 /UNITS, SI !申明采用国际单位制14 /NUMBER, 2 !只显示编号, 不使用彩色/NUMBER, 0 ! 显示编号, 并使用彩色15 /SOLU ! 进入求解模块:定义力和位移边界条件,并求解ANTYPE, STATIC ! 申明分析类型是静力分析<STA TIC或者0>OUTPR, BASIC, ALL ! 在输出结果中, 列出所有荷载步的基本计算结果OUTPR,BASIC,ALL !指定输出所有节点的基本数据OUTPR,BASIC,LAST ! 选择基本输出选项,直到最后一个荷载步OUTPR,,1 ! 输出第1个荷载步的基本计算结果OUTPR,BASIC,1 ! 选择第1荷载步的基本输出项目OUTPR,NLOAD,1 ! 指定输出第1荷载步的内容OUTRES,ALL,0 !设置将所有数据不记录到数据库。
ansys命令
【例2-1】考虑悬臂梁如图2-2,求x=L变形量。
已知条件:杨氏系数E=200E9;截面参数:t=0.01m, w=0.03m, A=3E-4,I=2.5E-9;几何参数:L=4m, a=2m, b=2m;边界外力F=2N,q=0.05N/m.使用ANSYS解决该问题的命令如下:/FILNAM,EX2-1 ! 定义文件名/TITLE,CANTILEVER BEAM DEFLECTION !定义分析的标题/UNITS,SI !定义单位制(注意观察输出窗口的单位)/PREP7 !进入前置处理ET,1,3 !定义元素类型为beam3MP,EX,1,200E9 ! 定义杨氏模量R,1,3E-4,2.5E-9,0.01 !定义实常数(要严格根据该元素类型的说明文档所给出的实常数格式)N,1,0,0 !定义第1号节点X坐标为0,Y坐标为0N,2,1,0 !定义第2号节点X坐标为1,Y坐标为0N,3,2,0 !定义第3号节点X坐标为2,Y坐标为0N,4,3,0 !定义第4号节点X坐标为3,Y坐标为0N,5,4,0 !定义第5号节点X坐标为4,Y坐标为0E,1,2 !把1、2号节点相连构成单元,系统将自定义为1号单元E,2,3 !把2、3号节点相连构成单元,系统将自定义为2号单元E,3,4 !把3、4号节点相连构成单元,系统将自定义为3号单元E,4,5 !把4、5号节点相连构成单元,系统将自定义为4号单元FINISH !退出该处理层/SOLU !进入求解处理器D,1,ALL,0 !对1节点施加约束使它X,Y向位移都为0F,3,FY,-2 !在3节点加集中外力向下2NSFBEAM,3,1,PRES,0.05!在3 号元素的第1个面上施加压力(beam3有四个面可通过命令help,beam3查看,任何一个命令都可以通过help,命令查看帮助文档)SFBEAM,4,1,PRES,0.05 !同上在4号元素的第1个面加压力SOLVE !计算求解FINISH !完成该处理层/POST1 !进入后处理SET,1,1!查看子步1,在有限元中复杂的载荷可以看做简单的载荷相互叠加,在ANSYS中每施加一类载荷都可以进行一次求解,可以查看它对结构的影响,称为子步。
ANSYS APDL命令流详解-13通用与时间历程后处理技术
ANSYS两个后处理器: ★通用后处理器POST1:
查看整个模型在各个时间点上的结果. ★时间历程后处理器POST26:
查看整个模型上的某一点结果随时间的变化曲线。 后处理可在求解完后直接进入,也可在重新进入 ANSYS后读入文件进入后处理。
5.1 通用后处理—读入结果文件
7. 控制壳或层壳单元数据的位置 命令:SHELL,Loc 其中LOC为壳(层)单元应力的位置控制参数,其值可取:
=TOP(缺省):壳(层)单元的顶面; =MID:壳(层)单元的中面; =BOT:壳(层)单元的底面。 缺省时中面应力采用底面和顶面应力的平均值,但对于单 元SHELL93/181/208/209可设置KEYOPT(8)=2或SHELL63设置 KEYOPT(11)=2直接从结果文件得到中面应力。此命令不仅影 响到应力,对应变等也起作用,影响到这些数据的排序、输出、 路径操作等。
置的结果进行平均; =4:除上述两个不连续位置外,对其它所有公共子网格
位置的结果进行平均; Opt---平均方式选项。
如为空,则仅对外单元面的结果进行平均; 如为FULL则对内外单元面的结果数据平均。
该命令对公共区域的结果数据进行平均,仅适用于PowerGraphics模式。 该命令会影响到等值线、节点结果和子网格结果的显示,尤其是在 /EFACET和/TYPE不同的设置时,但对节点自由度的结果没有影响。
5.1 通用后处理—结果输出控制选项
用于图形显示和列表显示,如导出结果的方式和显示比例等设置。
命令
功能
备注
AVPRIN
定义矢量和主轴的计算方法
用于计算主应力或主应变等时
AVRES
定义结果数据平均处理
ansys后处理命令及GUI操作
ansys后处理命令及GUI操作2009-07-16 13:57第12章创建几何模型结果显示12.1 利用GUI来显示几何模型结果在显示几何结果时,可以在模型单元的后处理显示中检查解结果。
几何结果的显示包括变形后形状、结果等值线(包括线单元"等值"线,例如力矩图)、向量(箭头)结果,(例如热流向量显示)。
仅在通用后处理器POST1中才可使用这些显示。
图12-1说明了一个典型的几何结果显示。
图12-1等值线结果显示图创建和控制几何结果显示最简便的方法是使用Utility Menu>Plot和utility Menu>Plotctrls中的允许功能。
另外,还可以用下节所述的图形作用和控制命令。
12.2 创建结果的几何显示下列命令在POST1中创建结果的几何显示表12-1创建结果的几何显示的命令在图12-2中,典型的结果的几何显示(在这个例子中,用PLNSOL命令创建)描述了包含在这样的显示中的信息类型图12-2一个典型的ANSYS结果显示12.3 改变POST1结果显示规范除了阅读下表所列出的信息外,还要参见第8章的通用图形说明,它可以应用于包含几何显示在内的各种显示。
12.3.1 控制变形后形状显示可以用两种方法控制变形后形状显示·重叠没有移位和发生移位的形状。
通过比较发生移位前后的形状,结构移位的形状显示将会更有意义。
可以用PLDISP命令中的KUND变元重叠没有移位和发生移位的形状。
·放大失真显示的位移:在大多数小变形结构分析中,产生位移后的形状难以舆没有产生位移前的形状分开,在这种情况下,软件会在结果显示上自动放大位移量,这样,效果将更加清晰。
可以用/DSCALE命令(UtilityMenu>Plotctrls>Style>Displacement Scaling)来调整放大因子。
软件把0作为缺省设置值(DMULT=0),这使位移量自动缩放到一个适合观察的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第7章ANSYS命令:解题与后处理Solution and Postprocessing本章介绍solution模块(/SOLU)及两个postprocessing模块(/POST1及/POST26)中所使用到的命令。
在solution模块中,我们把命令分成三类(Figure 5-2):指定loads、指定solution options,及执行solve的命令。
本章第1节介绍前一类,后两类则在第2节介绍。
第3节介绍general postprocessing(/POST1)的命令。
第4节则介绍time-history postprocessing(/POST26)的命令。
最后,第5节以一个综合性的练习题作为本章的结束。
第7.1节负载Loads前面提过[Sec. 5.1.2] loads可以指定在analysis model(即nodes、elements)上,或指定loads在solid model(即keypoints、lines、areas、volumes)上。
除此之外,针对动态的问题,必须指定initial conditions,亦即初始时间的边界条件。
这一节分别介绍loads on analysis model [Sec. 7.1.1]、loads on solid model [Sec. 7.1.2]、及initial conditions [Sec. 7.1.3] 的命令。
Loads虽然可以指定在solid model上,但是「解题」的对象是analysis model,所以那些指定在solid model上的loads终究必须「移转」(transfer)到analysis model上。
这种移转的工作可以让ANSYS自动去完成:ANSYS会在解题前先做负载移转的工作。
或者你也可以在解题之前利用诸如SBCTRAN [Sec. 7.1.2] 的命令去移转这些负载,因为有时侯你希望在解题之前自己检视一下analysis model 上的loads是否正确。
7.1.1 Loads on Analysis Model第7.1节指定负载167以上这些命令是用来指定loads在nodes或elements上。
第1、2、3行是指定degrees of freedom的量,譬如指定某一节点上x、y、z的displacements是多少,亦即已知解答;最常使用的是指定某些节点上的变位为0,亦即固定着这些节点。
D命令(第1行)是指定某些节点(NODE)上的某些自由度(Lab)的值。
Lab用来决定哪一个自由度,对结构来讲可能是变位(UX、UY、UZ、ROTX、ROTY、ROTZ)等;对热分析来讲则是温度(TEMP)等。
自由度的值则利用第3个参数(VALUE)输入;对结构来讲常常是0,代表被固定(或被限制住)的自由度,若不是0时则表示一个已知的变位负载;对热分析来讲,则常是一个固定的温度。
DSYM命令(第2行)是在指定一个对称或反对称的条件。
所谓对称(symmetric)是指结构的几何形状及负载都是对称的(因此它的反应也是对称的),而所谓反对称(antisymmetric)是指结构的几何形状是对称的而负载是反对称的(因此它的反应也是反对称的)。
无论是对称或是反对称,analysis model只要描述一半就可以了,但是你必须在对称面(或反对称面)上标注对称条件(或反对称条件)。
对称或反对称条件是我们必须善加应用的,因为除了可以节省modeling的人力外,输出数据也当然跟着减少,而最大的好处是解题的时间会大量减少。
注意,一个结构系统有时不只一个对称面(或反对称面)。
使用DSYM命令之前,你先选取对称面(或反对称面)上的nodes,然后再使用DSYM命令。
DSYM命令中的Lab可以选择SYMM(对称)或是ASYM(反对称);Normal是垂直于这个对称面(或反对称面)的方向(X、Y、或Z),坐标系统则是由KCN 决定的。
譬如KCN输入1时(圆柱坐标),对称方向是Y时,表示是沿着 方向对称的。
有关对称与反对称的更进一步的说明,请参阅Ref. 5, DSYM。
DCUM命令(第3行)的意义与FCUM命令(第5行)是平行的,我们留待后面一起解说。
168 第7章ANSYS命令:解题与后处理第4、5行是关于作用一个集中载重在一个node上。
F命令(第4行),读成force,是指定一个集中载重,作用在某些节点上(NODE)的某些方向(Lab可以选择FX、FY、FZ、MX、MY、MZ等),力的大小是VALUE(SI 单位是N或N-m)。
对热分析的问题而言,所谓「集中载重」是指通过一节点的heat flow,单位是每单位时间所流过的能量(SI单位是W或J/s)。
FCUM命令(第5行),读成force cumulation,是指输入的force是否与现有的值相加或取而代之。
譬如使用F命令作用了100 N后,当再使用一次F命令作用200 N时,后者是累加上去的(共是300 N)或是取代前者(变成200 N)。
前面所提到的DCUM命令(第3行)也是相似的用途。
第6、7、8、9行是有关分布载重有关的命令。
SF命令(第6行)读成surface force,对结构分析而言它是一个均布的压力(SI单位是Pa或N/m2)。
你先选取受压表面上的nodes后,再使用SF命令;参数Nlist唯一的选择是ALL (表示所有nodes所构成的surface);对结构问题而言,参数Lab唯一的选择是PRES;VALUE则输入均布压力的数值。
对热分析而言,surface force是指通过surface的convection、radiation、或heat flux(SI单位是W/m2)。
SFE命令(第7行),读成surface force on elements,是指定surface force在elements的表面上,至于是哪一个表面(一个element有好几个表面)则是由LKEY来决定。
譬如SFE命令使用在beam(譬如BEAM3)或shell(譬如SHELL63)时,你必须指定压力是作用在上表面(力量向下)还是下表面(力量向上)。
对热分析而言,有些「surface force」必须输入两个值,譬如convection条件需要film coefficient (又称为coefficient of heat transfer或convection coefficient)及远方的温度(bulk temperature),在SFE命令中你只能输入一个值,二者择一,KVAL就是在决定要输入哪一个,所以你需要使用两次的SFE命令;如果使用SF命令时,可以利用VALUE后面的参数VALUE2输入远方的温度。
SFBEAM命令(第8行),读成surface force on beam,是专为beam元素(譬如BEAM3)量身定做的命令,类似于SFE命令,但是参数VALI、VALJ是指梁元素上两端的压力,容许梁上的压力成线性分布。
SFCUM命令(第9行)则和FCUM(第5行)类似。
第7.1节指定负载169第10至17行是与body forces有关的命令。
Body force是指分布在body 内部的负载,对结构而言,包括inertia force、temperature loads等。
第10至15行命令是用来指定temperature loads,而第16、17行命令是用来指定inertia force的。
BF命令(第10行)读成body force,是指定某些nodes所涵盖的范围的温度被提高到某一数值(VAL1)。
注意,TREF命令(第14行)是在指定无应力状态下的温度(stress free temperature,或称为参考温度,内定值是0度),所以真正的温度变化(temperature changes)是最后温度减去这个参考温度。
辟如25度时是stress free的温度(TREF, 25),结构的温度被提升至200度(BF, ALL, TEMP, 100),则温度变化是175度。
BFE命令(第11行),读成body force on elements,是指定在某些elements 所涵盖的范围的温度被提高到某一数值。
BFUNIF命令(第12行)读成uniform body force,是指定整体结构的温度被均匀地提高到某一数值。
TUNIF命令(第13行)读成uniform temperature,对结构分析而言,其功能和BFUNIF完全一样,是指定整体结构的温度被均匀地提高到某一数值。
BFCUM命令(第15行)则类似于SFCUM、FCUM等。
第16、17行的命令是在指定inertia force,其中ACEL是指定直线accelerations。
假想Y代表向上的方向,结构承受一倍向下的重力时,相当于此结构往上面以一倍的重力加速度运动,亦即输入ACEL, 0, 9.81, 0其中9.81 m/s2是重力加速度。
OMEGA(第17行)是在输入旋转的角速度,ANSYS会自动计算所产生的离心力。
此外,有几点必须加以说明。
首先,其参数OMEGX、OMEGY、OMEGZ分别是对着Global CS的X、Y、Z轴旋转的角速度(angular velocities,SI单位是rad/s [Ref. 5, OMEGA])。
第二点是有关KSPIN 这个参数的意义。
结构体在旋转时(譬如旋转中的叶片)有一种效应,叫做spin softening:即当结构体在转动时,其刚度(stiffness),会有减少的现象[Ref. 7, Sec.3.4. Spin Softening],KSPIN这个参数是让你决定要不要考虑此效应。
当结构体在旋转时,与spin softening共同存在的另一个效应是stress170 第7章ANSYS命令:解题与后处理stiffening [Ref. 7, Sec. 3.3. Stress Stiffening]:因为离心力而产生的张应力会使结构的侧向刚度(垂直于张应力方向的刚度)增加。
Figure 7-1说明了此两个现象(本图片取材自Ref. 7, Sec. 3.4. Spin Softening):stress stiffening使得结构的自然频率增加(亦即刚度增加),spin softening使得结构的自然频率减少(亦即刚度减少),而两种效应同时考虑时,通常前者会稍大于后者。
Figure 7-1 Stress Stiffening and Spin Softening [Ref. 7]Stress stiffening的现象也存在任何受张力的材料上,譬如承受张力的吉他钢弦,其侧向刚度随着张力的增加而增加(声音越高)。