直线电机基本概念

合集下载

直线电机技术手册

直线电机技术手册

直线电机技术手册直线电机是一种将电能转换为直线机械运动的电机。

它具有结构简单、体积小、可调速、低噪音、高效率等优点,被广泛应用于自动化设备、机器人、医疗器械等领域。

本技术手册将介绍直线电机的基本原理、分类、工作原理、应用以及性能参数等内容。

第一篇:直线电机的基本原理直线电机是由电力驱动产生直线运动的装置。

它主要由定子和活子构成,其中定子固定在机械结构上,活子则与定子直接相连接并作为可移动部分。

根据运动方式的不同,直线电机可分为平面直线电机和圆柱直线电机两种。

平面直线电机主要用于平面直线运动,而圆柱直线电机则用于圆柱直线运动。

第二篇:直线电机的分类直线电机根据工作方式的不同可分为直线感应电机、直线同步电机、直线步进电机等。

直线感应电机是利用电磁感应原理工作的,它通过交流电产生的感应电磁场来产生运动。

直线同步电机则是利用电磁场和永磁体之间的作用力来进行直线运动。

直线步进电机则是利用电磁铁和永磁铁之间的吸引力和排斥力来产生直线运动。

第三篇:直线电机的工作原理直线电机的工作原理与旋转电机类似,都是利用电磁感应或者磁场作用力来产生直线运动。

直线电机通过一个交流电源来产生电磁感应场或者磁场,然后利用电磁感应场或者磁场和永磁场之间的作用力来进行直线运动。

直线电机的运动速度可以通过改变电源频率或者改变磁场强度来调节。

第四篇:直线电机的应用直线电机具有结构简单、体积小、可调速、低噪音、高效率等优点,因此被广泛应用于自动化设备、机器人、医疗器械等领域。

在工业自动化领域,直线电机通常用于驱动输送带、自动检测设备、机械臂等。

在医疗器械领域,直线电机通常用于驱动高精度位置调整系统、手术机器人等。

第五篇:直线电机的性能参数直线电机的性能参数包括最大力矩、最大速度、加速度、精度等。

最大力矩是指直线电机产生的最大驱动力;最大速度是指直线电机能够达到的最大运动速度;加速度是指直线电机的加速能力;精度是指直线电机能够实现的运动精度。

直线电机是怎么样的

直线电机是怎么样的

直线电机是怎么样的直线电机是一种利用电磁力作用于直线导轨上的电动机。

与传统旋转电机相比,直线电机具有结构简单、运动平稳、高速高加速度、高精度、机械效率高、没有机械磨损等优点。

因此,直线电机广泛应用于自动化生产线、半导体设备、医疗器械、航空航天等领域。

直线电机的工作原理直线电机基本上是由电源、电容器、电感线圈、输出杆和导轨组成。

运用电磁感应定律,直线电机可以将电能转化为机械能,实现在导轨上的直线运动。

具体地,当直线电机加电后,直线电机上的导轨将受到电磁力的作用,导轨中的输出杆在电磁力的推动下会沿着导轨方向前进。

具有导体的电磁线圈内通以定电流,线圈内部将会产生电磁场,从而形成磁极对,并对相关元件施加力,最终实现直线运动。

直线电机的分类在不同的工作原理和结构上,直线电机可以分为多种类型,如下所述:1.电磁直线电机电磁直线电机是运用电磁感应原理实现直线运动的一种电动机,在导轨上由交变磁场、游动子和定子组成,通常应用于高速高精度等场合。

2.贴片直线电机贴片直线电机又称为盘式直线电机,它是采用线性运动的原理,通过电磁原理来驱动,运动部件是由一个滑块和一个直线电机来组成的,应用广泛于机床、慢放线等领域。

3.电声直线电机电声直线电机是利用电磁感应原理来实现振动运动的直线电机,通常应用于扬声器、无线电等领域。

它具有高精度、低噪音、快速响应、线性性能好等特点。

直线电机的应用直线电机广泛应用于各种需要直线运动的场合,在工业自动化领域可以实现机械自动化和智能化,可以用于各种运输、分拣、加工、生产和包装等设备。

在医疗器械领域中,直线电机可应用于医用机器人、病床运动部件等。

在航空航天领域中,直线电机可以用于伺服系统、导引系统、位移系统等,为航空航天领域提供了方便和重要的支持。

直线电机的未来发展随着科技的发展和人们对科技应用的需求增长,直线电机正在为我们创造出更多的可能,未来直线电机将越来越小巧、智能、节能、环保,将有更广泛的应用前景和市场空间。

第12章 直线电机

第12章 直线电机

第12章直线电机12.1 概述12.2 直线感应电动机12.3 直线直流电动机12.4 直线自整角机12.5 直线和平面步进电动机12.1 概述直线电机是近年来国内外积极研究发展的新型电机之一。

它是一种不需要中间转换装置,而能直接作直线运动的电动机械。

过去,在各种工程技术中需要直线运动时,一般是用旋转电机通过曲柄连杆或蜗轮蜗杆等传动机构来获得的。

但是,这种传动形式往往会带来结构复杂,重量重,体积大,啮合精度差且工作不可靠等缺点。

近十几年来,科学技术的发展推动了直线电机的研究和生产,目前在交通运输、机械工业和仪器仪表工业中,直线电机已得到推广和应用。

在自动控制系统中,采用直线电机作为驱动、指示和信号元件也更加广泛,例如在快速记录仪中,伺服电动机改用直线电机后,可以提高仪器的精度和频带宽度;在雷达系统中,用直线自整角机代替电位器进行直线测量可提高精度,简化结构;在电磁流速计中,可用直线测速机来量测导电液体在磁场中的流速;另外,在录音磁头和各种记录装置中,也常用直线电机传动。

与旋转电机传动相比,直线电机传动主要具有下列优点:(1) 直线电机由于不需要中间传动机械,因而使整个机械得到简化,提高了精度,减少了振动和噪音;(2) 快速响应:用直线电机驱动时,由于不存在中间传动机构的惯量和阻力矩的影响,因而加速和减速时间短,可实现快速启动和正反向运行;(3) 仪表用的直线电机,可以省去电刷和换向器等易损零件,提高可靠性,延长使用寿命;(4) 直线电机由于散热面积大,容易冷却,所以允许较高的电磁负荷,可提高电机的容量定额;(5) 装配灵活性大,往往可将电机和其它机件合成一体。

直线电机有多种型式,原则上对于每一种旋转电机都有其相应的直线电机。

一般,按照工作原理来区分,可分为直线感应电机、直线直流电机和直线同步电机(包括直线步进电机)三种。

在伺服系统中,和传统元件相应,也可制成直线运动形式的信号和执行元件。

由于直线电机与旋转电机在原理上基本相同,所以下面不一一罗列各种电机,而只介绍其中典型的几种,使大家对这类电机有个基本的了解。

直线电机文档

直线电机文档

直线电机简介直线电机是一种特殊的电机,与传统的旋转电机不同,直线电机将转动运动转化为直线运动。

它的工作原理是利用电磁力在线性定子和直线电磁体之间产生相互作用,从而实现直线运动。

直线电机具有结构简单、效率高、响应快等优点,在现代工业生产中得到了广泛的应用。

工作原理直线电机的工作原理可以简单描述为:通过施加电流到定子上,定子产生的电磁力将直线电磁体推动在定子上直线运动。

这种电磁力的产生主要依靠磁场和电流之间的相互作用。

直线电机的定子和直线电磁体之间有多个电磁铁柱,通过这些铁柱,直线电机可以施加不同的力和速度来实现不同的运动需求。

直线电机的定子由包含线圈的铁柱组成,当电流通过线圈时,产生的磁场将影响铁柱上的直线电磁体。

直线电磁体由包含磁铁的铁柱组成,当直线电磁体运动时,就会在定子上产生电流,从而形成闭环。

优点直线电机相较于传统的旋转电机有多个优点:1.结构简单:直线电机的结构相对简单,由定子和直线电磁体组成,没有传统电机的转子和机械传动部分。

2.效率高:由于没有机械传动损耗,直线电机的效率相对较高,能够将电能有效地转化为直线运动。

3.响应快:直线电机的启停和反向运动非常快速,响应时间短。

4.精度高:直线电机的定位精度较高,能够实现对位置的准确控制。

5.可调节性强:通过改变电流大小和方向,可以调节直线电机的力和速度,适应不同的应用需求。

应用领域直线电机在工业生产中有着广泛的应用,特别是在需要进行直线运动、定位和控制的场景。

以下是直线电机的几个主要应用领域:1.自动化生产线:直线电机可以用于自动化生产线上的物料搬运、定位和组装。

2.机械加工:直线电机可以用于机械加工设备上的切割、切割和打磨等工序,实现精确的定位和控制。

3.包装机械:直线电机可以用于包装机械上的拨盘、送料和定位等控制任务,提高包装效率和精度。

4.输送系统:直线电机可以用于输送系统上的物料搬运和定位,如物流仓储系统中的货物输送和分拣等。

5.医疗设备:直线电机可以应用于医疗设备上的医疗机器人、X光机和CT扫描仪等,实现精确的定位和控制。

直线电机

直线电机

直线电机一、结构直线电机中,相当于旋转电机定子的,叫初级;相当于旋转电机转子的,叫次级,初级中通以交流,次级就在电磁力的作用下沿着初级做直线运动。

二、工作原理直线电机是一种将电能直接转换成直线运动机械能,而不需要任何中间转换机构的传动装置。

它可以看成是一台旋转电机按径向剖开,并展成平面而成。

对应旋转电机定子的部分叫初级,对应转子的部分叫次级。

在初级绕组中通多相交流电,便产生一个平移交变磁场称为行波磁场。

在行波磁场与次级永磁体的作用下产生驱动力,从而实现运动部件的直线运动。

三、特点:1、结构简单,由于直线电机不需要把旋转运动变成直线运动的附加装置,因而使得系统本身的结构大为简化,重量和体积大大地下降;2、定位精度高,在需要直线运动的地方,直线电机可以实现直接传动,因而可以消除中间环节所带来的各种定位误差,故定位精度高,如采用微机控制,则还可以大大地提高整个系统的定位精度;3、反应速度快、灵敏度高,随动性好。

直线电机容易做到其动子用磁悬浮支撑,因而使得动子和定子之间始终保持一定的空气隙而不接触,这就消除了定、动子间的接触摩擦阻力,因而大大地提高了系统的灵敏度、快速性和随动性;4、工作安全可靠、寿命长。

直线电机可以实现无接触传递力,机械摩擦损耗几乎为零,所以故障少,免维修,因而工作安全可靠、寿命长。

5、高速度。

直线电机通过直接驱动负载的方式,可以实现从高速到低速等不同范围的高精度位置定位控制。

直线电机的动子(初级)和定子(次级)之间无直接接触,定子及动子均为刚性部件,从而保证直线电机运动的静音性以及整体机构核心运动部件的高刚性。

直线电机的行程可通过拼接定子来实现行程的无限制,同时也可以通过在同一个定子上配置多个动子来实现同一个轴向的多个独立运动控制。

直线电机驱动的机构可以通过增强机构以及反馈元件的刚性以及精度,辅之以恒温控制等措施来实现超精密运动控制。

四、应用:1.在工业与自动化中的应用由于直线电机有其自身独特的优点,因此在机械设备和机床中的机电一体化方面得到广泛应用,如直线电机驱动的冲床,电磁锤、螺旋压力机、电磁打箔机、压铸机和型材轧制牵引机等。

直线电机

直线电机

直线电机1、直线电机介绍:直线电机也称线性电机,线性马达,直线马达,推杆马达,在实际工业应用中的稳定增长,证明直线电机可以放心的使用。

上图直线电机明确显示动子的内部绕组、磁鉄和磁轨。

动子是用环氧材料把线圈压成的,而且,磁轨是把磁铁固定在钢上。

直线电机在过去的10年,经实践上引人注目的增长和工业应用的显著受益才真正成熟。

2、直线电机的原理:直线电机经常简单描述为旋转电机被展平,而工作原理相同。

动子是用环氧材料把线圈压缩在一起制成的,而且,磁轨是把磁铁(通常是高能量的稀土磁铁)固定在钢上。

电机的动子包括线圈绕组、霍尔元件电路板、电热调节器(温度传感器监控温度)和电子接口。

在旋转电机中,动子和定子需要旋转轴承支撑动子以保证相对运动部分的气隙,同样的,直线电机需要直线导轨来保持动子在磁轨产生的磁场中的位置。

和旋转伺服电机的编码器安装在轴上反馈位置一样,直线电机需要反馈直线位置的反馈装置--直线编码器,它可以直接测量负载的位置从而提高负载的位置精度。

直线电机的控制和旋转电机一样。

像无刷旋转电机,动子和定子无机械连接(无刷),不像旋转电机的方面,动子和定子位置保持固定,直线电机系统可以是磁轨运动或者推力线圈运动(大部分定位系统应用是磁轨固定,推力线圈运动)。

用推力线圈运动的电机,推力线圈的重量和负载比很小,然而,需要高柔性线缆及其管理系统。

用磁轨运动的电机,不仅要承受负载,还要承受磁轨的重力,但无需线缆管理系统。

直线和旋转电机上的机电原理是相似的,相同的电磁力在旋转电机上产生力矩作用在直线电机上产生直线推力。

因此,直线电机使用和旋转电机相同的控制和可编程配置。

直线电机的形状可以是平板式和U 型槽式,哪种构造最适合要看实际应用的规格要求和工作环境。

3、直线电机的优缺点:优点:直线电动机的特点在于直接产生直线运动,与间接产生直线运动的“旋转电动机,滚动丝杠”相比:(1)结构简单。

管型直线电机不需要经过中间转换机构而直接产生直线运动,使结构大大简化,运动惯量减少,动态响应性能和定位精度大大提高;同时也提高了可靠性,节约了成本,使制造和维护更加简便。

直线电机原理

直线电机原理
• 导轨:支撑动子并引导其运动
直线电机的分类与特点
直线电机的分类
• 扁平型直线电机
• 圆柱型直线电机
• 永磁同步直线电机
• 电磁感应直线电机
各类直线电机的特点
• 扁平型直线电机:结构紧凑,适用于短行程、高速运动
• 圆柱型直线电机:适用于长行程、高推力运动
• 永磁同步直线电机:效率高,适用于高速、高精度运动
• 加速度可达2g以上
高精度
• 定位精度可达±0.1μm
•达数百牛顿
• 可连续提供恒定推力
直线电机的优点

结构简单
• 无需中间转换装置,减少机械损耗
• 体积小,重量轻

高效率
• 能量转换效率高,可达**90%**以上
• 发热量低,散热效果好
⌛️
高响应
直线电机在其他领域的应用实例与前景
应用实例
应用前景
• 医疗器械:X射线机、心电图机等
• 拓展直线电机在其他领域的应用
• 太阳能设备:太阳能跟踪系统
• 提高直线电机性能,降低成本
• 汽车制造:发动机、座椅调节器等
• 促进直线电机技术的发展与创新
谢谢观看
THANK YOU FOR WATCHING
Docs
05
直线电机的应用实例与分析
直线电机在数控机床中的应用
应用实例
应用分析
• 工作台驱动
• 高速度、高精度、高效率
• 主轴驱动
• 减小机床体积,降低成本
• 刀库驱动
直线电机在自动化生产线中的应用
应用实例
• 机器人手臂驱动
• 输送系统驱动
• 装配设备驱动
应用分析
• 高速度、高精度、高效率

直线电机简介范文

直线电机简介范文

直线电机简介范文直线电机是一种将电能转换为机械能的设备,可以直接产生直线运动。

与传统的旋转电机不同,直线电机具有更高的有效力和速度,并且更加紧凑、高效和精确。

直线电机广泛应用于工业生产、交通运输、医疗设备和机器人等领域。

直线电机的工作原理是利用电磁原理产生直线运动。

直线电机通常由两个主要元素组成:定子和滑块。

定子是由一组线圈组成的,通过通电产生磁场。

滑块是在磁场中移动的磁铁,通过与磁场互作用来产生力和运动。

当电流通过定子线圈时,滑块会受到磁力的作用而运动。

直线电机有几种不同的类型,包括传统的感应直线电机、直线同步电机和直线步进电机。

感应直线电机是最常见的类型,它利用感应原理来产生磁场。

直线同步电机则利用同步原理,与外部磁场保持同步运动。

直线步进电机通过细分定位来实现非常精确的运动控制。

直线电机具有许多优点,使其成为很多应用中的理想选择。

首先,直线电机具有极高的加速度和速度,可以实现快速和精确的运动。

其次,直线电机没有传统旋转电机的机械传动部件,因此无需润滑和维护,并且可以避免机械传动中的摩擦和磨损问题。

此外,直线电机具有较高的效率和能量利用率,可以节约能源和降低成本。

直线电机在各个领域具有广泛的应用。

在工业生产中,直线电机可以用于自动化生产线上的物料搬运、装配和包装等任务。

在交通运输领域,直线电机可用于高速列车的磁悬浮系统和电动汽车的驱动系统,以实现更高的速度和能源效率。

在医疗设备中,直线电机可用于手术机器人、医疗成像设备和高精度治疗设备等。

在机器人领域,直线电机可用于各种类型的机器人,如工业机器人、服务机器人和医疗机器人等。

尽管直线电机具有许多优点,但也存在一些挑战和限制。

首先,直线电机的制造和维护成本较高,因为它们需要较大的线圈和磁体,并且通常需要精确的控制系统。

其次,直线电机需要较大的电源和电流,因此在一些应用中可能需要专门的电源和电路。

此外,直线电机的使用寿命可能受到材料耐久性、热量积累和磨损等因素的影响。

直线电机简介

直线电机简介

广州地铁四号线
广州地铁四号线作为全国首列采用直线电机的地铁列 车,相比一、二、三号线列车的旋转电机,四号线的 直线电机虽然安装时需要在轨道中间多设置一条由铝 钢复合材料构成的感应板,2000多元1米的感应板(四 号线全长46.6公里)看似增加了一笔不菲的成本,但因 为直线电机与轨道只有9毫米的间距,明显降低了列 车的高度,使得隧道直径从以往的5.4米缩短到2.8米 左右,从而直接减少了近1/3的土建成本,以后的维修 成本也大幅下降。总体看来,比起130多万美元一节 的普通旋转电机列车,这种直线电机列车只要120多 万美元。
直线电机
工作原理:直线电机为线性异步电动机的简称,其工 作原理与一般的旋转式感应电动机相似。它可看成是 将旋转电机沿半径方向剖开展平,定子部分在用硅钢 片叠压成扁平形状的铁心上,放入两层叠绕的三相线 圈构成,沿纵向固定安装于车辆底架下部或转向架构 架下部。而转子部分亦展平变为一条感应轨,铺设在 两走形轨之间,一般由铝板或铝合金制成的外壳和铁 芯组成。定子与转子感应轨之间应保持8mm~10mm 间隙,当通过交流电时,由于磁场的相互作用产生推 力,驱动车辆运行或制动。
机和轨道中间安装的感应板之间的电磁效应产生的推
力作为列车的牵引力或电制动力,与轮轨间的粘着无
关,因此,有着70‰以上的爬坡能力的直线电机,解
决了四号线许多现存的困难。
广州地铁四号线
车辆:广州轨道交通四号线首列车由日本川崎 公司与南车集团青岛四方机车车辆股份有限公 司合作制造。
广州地铁四号线
特点:一、爬坡能力强。 二、 转弯半径小。 三、噪声低,安静舒适 。
直线电机优点
一:结构简单。由于直线电机省去了一系列的传 动机构,降低了车辆的自重,简化了结构。有 可能采用小轮径,从而使车辆的轮廓尺寸减少, 由此可是地铁隧道的土建造价降低。

直线电机原理及应用

直线电机原理及应用

直线电机原理及应用直线电机(Linear Motor)是一种将电能转化为机械能的装置,利用电磁力产生线性运动。

其工作原理与传统的旋转电机相似,都是基于洛伦兹力(Lorentz force)的作用。

直线电机通常由固定部分和可移动部分组成。

固定部分包括固定磁场和电磁线圈,可移动部分包括电磁激励体和传动机构。

当电流通过电磁线圈时,会产生电磁场,与磁场耦合的电磁激励体受到洛伦兹力的作用,从而产生直线运动。

直线电机的应用非常广泛。

以下是几个常见的应用领域:1.输送系统:直线电机可以用于物料输送、装卸运输线、自动化生产线等,以替代传统的传动机构和传送带。

它可以实现高速、高精度的输送,并且无需维护和保养。

2.交通运输:直线电机可以应用于高速列车、磁悬浮列车和地铁等交通工具的动力系统中,提供高速、平稳的运动。

相较于传统的转子电机,直线电机无需传递动力,减少了传动损耗和噪音。

3.机床:直线电机可用于数控机床、磨床和镗床等工具机的进给系统中。

它具有响应快、加速度高的特点,能够提高加工效率和加工质量。

4.半导体设备:直线电机可以用于半导体设备中的定位和移动系统。

它具有高精度、高稳定性的特点,适用于要求极高位置控制和清洁环境的应用。

5.医疗设备:直线电机可以用于医疗设备中的定位和推动系统。

例如,它可以用于手术机器人或医疗床的控制,提供精确的定位和平滑的运动。

直线电机相较于传统的机械传动系统具有许多优势。

首先,直线电机工作原理简单,结构紧凑,具有较高的功率密度。

其次,它可以实现高速、高精度的控制,具有良好的动态响应特性。

另外,直线电机无需传递动力,减少了传动损耗和噪音,提高了效率和可靠性。

此外,直线电机具有自整定、自动保护和自动检测等功能,可提高系统的智能化程度。

尽管直线电机有很多优点,但也存在一些局限性。

首先,直线电机的制造和维护成本较高,因为其结构较为复杂。

其次,直线电机在工作过程中会产生较大的磁场和电磁干扰,可能对周围设备和人员产生一定的影响。

直线电机

直线电机
内容提要
概述 基本结构 工作原理 应用
直线电动机与普通旋转电动机都是实现能量转换的 机械,普通旋转电动机将电能转换成旋转运动的机械能, 直线电动机将电能转换成直线运动的机械能。直线电动 机应用于要求直线运动的某些场合时,可以简化中间传 动机构,使运动系统的响应速度、稳定性、精度得以提 高。直线电动机在工业、交通运输等行业中的应用日益 广泛。 直线电动机可以由直流、同步、异步、步进等旋转 电动机演变而成,由异步电动机演变而成的直线异步电 动机使用最多。这里,我们只就直线异步电动机的结构 和工作原理做一些简单的介绍。
直线感应电动机 直线直流电动机 直 线 电 动 机
直线同步电动机
直线步进电动机
直线自整角机
直线电动机传动的特点
(1) 省去了把旋转运动转换为直线运动的中间转换 机构,节约了成本,缩小了体积。
(2) 不存在中间传动机构的惯量和阻力的影响,直 线电动机直接传动反应速度快,灵敏度高,随动性 好,准确度高。 (3) 直线电动机容易密封,不怕污染,适应性强。 由于电机本身结构简单,又可做到无接触运行,因 此容易密封,可在有毒气体、核辐射和液态物质中 使用。
(4) 直线电机散热条件好,温升低,因此线负荷和 电流密度可以取得较高,可提高电机的容量定额。 (5) 装配灵活性大,往往可以将电机与其他机件合 成一体。 (6) 某些特殊结构的直线电动机也存在一些缺点, 如大气隙导致功率因数和效率降低,存在单边磁拉 力等等。
直线感应电机的分类 扁平型(平板型) 圆筒型 圆弧型 圆盘型
2.直线电机的结构
平板形直线异步电动机可以看 做将普通鼠笼转子三相异步电动机 沿径向剖开后展平而成,如图所示。 对应于旋转电动机定子的一边嵌有 三相绕组,称为初级;对应于旋转 电动机转子的一边称为次级或滑子。 实际平板形直线异步电动机初级长 度和滑子长度并不相等,通常是滑 子较长。为了抵消初级磁场对滑子 的单边磁吸力,平板形直线异步电 动机通常采用双边结构,即有两个 初级将滑子夹在中间的结构形式。

什么叫做直线电机?

什么叫做直线电机?

什么叫做直线电机?说起直线电机,英⽂是linear servo motor。

说起来,在我们现在常见的马达,都是旋转电机。

电机的发展史,从电机的发展历史,来说电机的各类功能应⽤和优势。

从电磁感应的开始,电动机的发展就没有停⽌过。

全球第⼀台严格意义上⾯的电机是俄罗斯科学家发明Moritz Hermann Jacobi发明第⼀台可实⽤的整流电机。

从这开始之后的百年,电动机⼀直都是围绕感应式电机在发展,并且最终不断发展形成我们现在看到的绕线定⼦,卷绕型或⿏笼型电机。

后期在直流电机与交流电机的各类应⽤领域,逐步发展成为了极⼤⽅向。

1、直流⽆刷电机,空⼼杯电机。

2、交流步进电机,伺服电机,直线电机,以及⽬前在⼯业领域研发的U型电机。

在所有的电机发展历程中,我们基本能够看到这样⼀个趋势:扭矩不断增⼤,精度控制不断增加。

这⾥要详细说⼀下这两个特性。

我们常说的电机扭矩,反馈出来的就是电机的⼒有多⼤?⽐如说,玩具赛车的扭矩,可能只有0.2N/m,⼤型的电动汽车的扭矩可以达到250N/m—900N/m,反馈出来的就是电⼒输出的⼒很⼤。

⽐较常见的重型电动机应⽤场景,例如:破碎机,港机起重机,⽯油抽油机等等。

以及超⼤型机床等等。

⼤型的扭矩都达到10多万N/M.同样的价格也极其昂贵。

新能源汽车电机结构精度控制,是对新场景应⽤的必然要求。

电机的精度控制,很多⼤众朋友接触的不多。

在⼯业领域极为常见。

例如我们需要起重机提升⼀个货柜10⽶⾼,那么就涉及到最简单的精度控制。

当今,⽐较常见的使⽤电机,进⾏精度控制的场景,是⼯业领域的传送带。

那么旋转电机是怎么进⾏精度控制的?通过在电机后端,链接电机的转⼦的编码器,通过旋变形式的编码器,或者光电形式的编码器实现转的⾓度测量。

⽤最通俗的话说,如果电机转动1°,对应的编码器就可以记录下来⼀次,那么换算出来,就可以得到直线的距离。

马上就说道直线电机了,别急!这种携带编码器控制的伺服电机,成本势必增⾼了。

第八章直线电机

第八章直线电机

第八章直线电机本章基本要求•掌握直线电动机的工作原理•理解直线电机在工程中的应用以工程应用背景为引导,掌握直线的基本知识!一直线电机的概述二直线感应电动机三直线直流电动机四直线步进电动机五应用举例六小结直线电机是一种将电能直接转换成直线运动机械能的电力传动装置。

•结构多样,可以根据需要制成扁平型、圆筒型或盘型等各种形式;•多电源工作,可以采用交流电源、直流电源或脉冲电源等各种电源进行工作;•满足多类需求,能满足高速、大推力的驱动要求,也能满足低速、精细的要求。

直线电机按其工作原理可分为直线电动机和直线驱动器直线电动机直线驱动器交流直线感应电动机(LIM)交流直线同步电动机(LSM)电磁式(EM)LSM永磁式(PM)LSM可变阻抗(VR)LSM混合式(HB)LSM超导体(SC)LSM 直线直流电动机(LDM)电磁式LDM永磁式LDM无刷LDMVR形LPMPM形LPM直线步进电动机(LPM)混合式直线电动机(LHM)直线振荡电动机(LOM)直线电磁螺线管电动机(LES)直线电磁泵(LEP)直线超声波电动机(LUM)直线发电机(LG)直线电机按其结构主要分为五类短初级短次级单边直线电动机双边直线电动机短次级短初级圆筒式结构从旋转电动机到圆筒式直线电动机的演化圆弧式直线电动机圆盘式直线电动机优点•省去了把旋转运动转换为直线运动的中间转换机构,节约了成本,缩小了体积。

•不存在中间传动机构的惯量和阻力的影响,直线电动机直接传动反应速度快,灵敏度高,准确度高。

•直线电动机容易密封,不怕污染,适应性强。

由于电机本身结构简单,又可做到无接触运行,因此容易密封,可在有毒气体、核辐射和液态物质中使用。

•直线电机散热条件好,温升低,因此线负荷和电流密度可以取得较高,可提高电机的容量定额。

•装配灵活性大,往往可以将电机与其他机件合成一体。

•大气隙导致功率因数和效率降低,功率因数和效率比同容量的旋转电机低;•启动推力受电源影响大,需要采取保护措施保证电源的稳定或改变电动机的有关特性来改善;缺点应用•军事领域:利用直线电机制成各种电磁炮,并试图将它用于导弹、火箭的发射;•交通运输业:利用直线电机制成时速达500km以上的磁悬浮列车;•工业领域:用于生产输送线,以及各种横向或垂直运动的机械设备中;•精密仪器设备:例如计算机的磁头驱动装置、照相机的快门、自动绘图仪、医疗仪器、航天航空仪器、各种自动化仪器设备等;•民用装置:如门、窗、桌、椅的移动,门锁、电动窗帘的开、闭等。

直线电机选型知识点总结

直线电机选型知识点总结

直线电机选型知识点总结一、直线电机的工作原理直线电机是一种利用电磁感应原理实现的线性运动型电机,工作原理和直流电动机相似,但是线性运动的特点使得直线电机具有更广泛的应用领域。

直线电机由定子和活动子两部分组成,通常定子是由线圈组成,而活动子则是由磁铁组成。

当通电时,定子线圈产生磁场,吸引或排斥活动子的磁铁,从而实现线性运动。

二、直线电机的分类1. 电磁直线电机:利用磁铁和电磁感应原理实现线性运动的电机,包括直线同步电机、直线步进电机等。

2. 永磁直线电机:利用永磁体和电流之间的相互作用实现线性运动的电机,包括直线同步永磁电机、直线步进永磁电机等。

3. 超导直线电机:利用超导材料的独特性质实现超导电磁体和磁场之间的相互作用,实现线性运动的电机。

三、直线电机选型的影响因素1. 负载要求:负载要求包括负载力大小、运动速度、加速度等,这些要求将影响直线电机的功率、扭矩和速度等性能参数的选取。

2. 运动模式:直线电机可以实现直线运动、往复运动、多自由度运动等不同的运动模式,根据具体的应用需求选择不同类型的直线电机。

3. 环境条件:包括工作温度、湿度、防尘防水等环境条件,好的直线电机应具有良好的耐高温、防尘防水等性能。

4. 机械结构:机械结构包括导轨、导向装置等,需要考虑直线电机与周围设备的机械匹配性,确保能够实现稳定的运动。

5. 控制系统:控制系统包括控制方式、控制精度、控制算法等,应根据具体应用场景选择合适的控制系统,确保直线电机的准确性和稳定性。

四、直线电机选型的方法1. 根据负载要求选取合适的型号:首先根据负载的大小、运动速度、加速度等要求选取合适的直线电机型号,通常可以通过查阅相关的技术手册或者咨询厂家进行选型。

2. 根据环境条件选取合适的材料和防护措施:根据具体的环境条件选取能够满足要求的材料和防护措施,例如高温工作环境可以选用耐高温材料,防水防尘环境需要选用防护等级较高的直线电机。

3. 根据机械结构进行匹配:根据直线电机与周围设备的机械匹配性进行选型,确保直线电机能够稳定运行。

直线电动机的介绍

直线电动机的介绍
与旋转电机相比,直线电机主要有以下优点: 1)由于不需要中间传动机构,整个系统得到简化,精度 提高,振动和噪音减小; 2)由于不存在中间传动机构的惯量和阻力矩的影响,电 机加速和减速的时间短,可实现快速起动和正反向运行;
-1-
特种电机
3)普通旋转电机由于受到离心力的作用,其圆周速度有所 限制, 而直线电机运行时, 其部件不受离心力的影响,因而它 的直线速度可以不受限制;
直线电动机的介绍
一、概述
直线电动机是一种做直线运动的电机,早在十八世纪就有 人提出用直线电机驱动织布机的梭子,也有人想用它作为列车 的动力,但只是停留在试验论证阶段。直到十九世纪五十年代 随着新型控制元件的出现,直线电机的研究和应用才得到逐步 发展。 特别是最近二十多年来, 直线电机广泛应用于工件传 送、 开关阀门、 开闭窗帘及门户、 平面绘图仪、笔式记录仪、 磁分离器、磁浮列车等方面。
就沿着行波磁场行进的方向作直线运动。若次级移动的速度用v
表示,则滑差率
s vs v vs
(11-6)
次级移动速度
v (1 s)vs
(11-7)
上式表明直线感应电动机的速度与电源频率以及电机极距成正 比,因此改变极距或电源频率都可改变电机的速度。
与旋转电机一样,改变直线电机初级绕组的通电次序,可 改变电机运动的方向,因而可使直线电机作往复直线运动。在 实际应用中,我们也可将次级固定不动,而让初级运动。
vs 2 f
(11-5)
式中,f 为电源频率, 为极距。
次级
v
vs YC X B Z A
初级
图11-23 直线电动机原理图
-5-
特种电机
在行波磁场切割下,次级中的导条将产生感应电动势和电
流, 所有导条的电流和气隙磁场相互作用, 产生切向电磁力

直线电机原理及应用

直线电机原理及应用
✓ 单边型直线电机产 生法向吸力 ✓ 在钢次级时约为推 力的10倍左右 ✓ 双边型直线电机抵 消法向吸力
信号检测与数字控制技术
• 提高直线电机的运动精度
✓ PID控制模块 (比例-积分-微分控制器) ✓ 驱动器 ✓ 电动 ✓ 按修正表 输入反馈信号 ✓ 相当于反向力,降低了系统波动的程度
信号检测与数字控制技术
信号检测与数字控制技术
• 直线电机的往复运动
三相绕组的相序相反,行波磁场的移动方向 就相反了,运动方向也会反过来。周期:
信号检测与数字控制技术
• 直线电机的往复运动
信号检测与数字控制技术
• 单边型直线电机
✓ 短初级长次级 ✓ 长初级短次级 ✓ 一般采用短初 级长次级
信号检测与数字控制技术
• 双边型直线电机
• 什么是直线电机
直线电机是一种能将电信号直接转换 成为直线位移的电机。无需转换机构即 可直接获得直线运动,没有传动机械的 磨损,并且噪音低、结构简单、操作维 护方便。
目前直线电机主要应用的机型有直 流直线电机、交流直线电机以及直线步 进电机等,在实际中应用较多的是交流 直线电机。
信号检测与数字控制技术
边端效应:开断的铁芯和安装在其槽中的绕组在两端不连续,三相电流在各相绕组中 也将产生不对称的电流,使得边端气隙中的磁通密度发生畸变,出现了附加损耗。
信号检测与数字控制技术
• 直线电机的应用——磁悬浮列车
✓ 长次级、短初级式 ✓ 长初级、短次级式
直线电机的推进原理是:当初级线圈接通电流后, 产生磁场,沿轨道方向平行移动,次级线圈切割磁 场产生的电流(或给次级线圈通电流),电磁力作 用使初级和次级间产生相对直线运动。推进力的大 小取决于初级磁场的强度、次级线圈的电流以及线 圈的长度。

直线电机简介

直线电机简介

磁悬浮列车是一种现代高科技轨道交通 工具,它通过电磁力实现列车与轨道之 间的无接触的悬浮和导向,再利用直线 电机产生的电磁力牵引列车运行。
德国的TR型磁悬浮列车无接触式的牵引技术要求采用长定子同 步直线电机驱动电机定子铁心由015mm厚的电工钢片叠压而成, 被固定在导轨的下部;定子三相绕组由防护电缆组成,预先成形, 并由敷线车将其嵌放在导轨两侧的定子槽中。定子三相绕组通 电后,产生一个移行磁场,与布置在车辆上的悬浮(励磁)磁铁 相互作用,实现牵引。其工作原理如图所示 一般的列车,由于车轮和铁轨之间存在摩擦,限制了速度的 提高,它所能达到的最高运行速度不超过300km/n.磁悬浮 列车是将列车用磁力悬浮起来,使列车与导轨脱离接触,以 减小摩擦,提高车速。列车由直线电机牵引.直线电机的一 个级固定于地面,跟导轨一起延伸到远处;另一个级安装在 列车上.初级通以交流,列车就沿导轨前进.列车上装有磁 体(有的就是兼用直线电机的线圈),磁体随列车运动时, 使设在地面上的线圈(或金属板)中产生感应电流,感应电 流的磁场和列车上的磁体(或线圈)之间的电磁力把列车悬 浮起来.悬浮列车的优点是运行平稳,没有颠簸,噪声小, 所需的牵引力很小,只要几千kw的功率就能使悬浮列车的速 度达到550km/h.悬浮列车减速的时候,磁场的变化减小, 感应电流也减小,磁场减弱,造成悬浮力下降.悬浮列车也 配备了车轮装置,它的车轮像飞机一样,在行进时能及时收 入列车,停靠时可以放下来,支持列车.
Thanks !
在电机的三相绕组中通入三相对称正弦电流后,在初级 和次级间产生气隙磁场,气隙磁场的分布情况与旋转电 机相似,沿展开的直线方向呈正弦分布。当三相电流随 时问变化时,使气隙磁场按定向相序沿直线移动,这个 气隙磁场称为行波磁场。当次级的感应电流和气隙磁场 相互作用便产生了电磁推力,如果初级是固定不动的, 次级就能沿着行波磁场运动的方向做直线运动。

直线电机简介介绍

直线电机简介介绍

05
直线电机的选型与考虑因 素
直线电机的选型与考虑因素
• 直线电机是一种将电能直接转换成直线运动机械能 的电力传动装置。它在许多领域都有广泛的应用, 如自动化设备、数控机床、印刷机械、纺织机械、 包装机械等。下面我们将介绍直线电机的选型及需 要考虑的因素。
THANKS
感谢观看
直线电机简介介 绍
汇报人: 日期:
目录
• 直线电机概述 • 直线电机的特点与优势 • 直线电机的应用领域 • 直线电机的发展趋势与挑战 • 直线电机的选型与考虑因素
01
直线电机概述
直线电机的定义
定义
直线电机是一种将电能直接转换 成直线运动机械能的电力传动装 置。
基本构成
初级(绕组)和次级(永磁体或 者电磁铁)两部分组成。
直线电机的分类
按照结构形式分类
可分为单边扁平型、双边扁平型、圆 盘型、圆筒型(或称为管型)等。
按照工作原理分类
可分为直流直线电机、交流直线电机 、步进直线电机、永磁直线同步电机 、直线感应电机、压电直线电机等。
02
直线电机的特点与优势
直线电机的特点与优势
• 直线电机是一种将电能直接转换成直线运动机械能的电力传动 装置。它具有结构简单、定位精度高、反应速度快、灵敏度高 、随动性好、工作安全可靠、寿命长等众多优点。以下是直线 电机的一些主要特点与优势。
直线电机的工作原理
工作原理
当初级绕组通入交流电后,在气隙中产生行波磁场,次级在行波磁场切割下,将 感应出电动势并产生电流,该电流与气隙中的磁场相作用就产生电磁推力。如果 初级固定,则次级在推力作用下做直线运动;反之,则初级做直线运动。
工作特点
直线电机无需经过中间转换机构而直接产生直线运动,使结构大大简化,运动惯 量减少,动态响应性能和定位精度大大提高。

直线电机基本概念

直线电机基本概念

直线电机基本概念直线电机可以看作旋转电机结构上的一种演变,它可以看作将一台旋转电机沿径向剖开,然后将电机的圆周展开成直线。

直线电机可分为:交流直线感应电动机(LIM),交流直线同步电动机(LSM)、直流直线电动机(LDM)、直线步进电动机(LPM)、混合式直线电动机(LHM)、微特直线电动机。

其中交流直线同步电动机又分电磁式(EM)、永磁式(PM)、可变电阻(VR)、混合式(HB)、超导体(SC);直线直流电动机分为电磁式、永磁式、无刷;直线步进电动机分为可变电阻型和永磁型。

同步直线电动机的原理:直线同步电动机与直线异步电动机一样也是由旋转电机演化来的,其工作原理与旋转电机一样。

直线同步电动机的磁极一般有直流励磁绕组励磁,或有永磁体励磁。

在定子绕组产生的气隙行波磁场与磁极磁场的共同作用下,气隙磁场对磁极动子产生电磁推力。

在这个电磁推力的作用下,如果初级是固定不动的,那么次级就沿着行波磁场的运动方向做直线运动。

磁极运动的速度v就与行波磁场的移动速度一致,且v=2f t单位(m/s),t为极距。

同步直线电机与异步直线电机在性能、使用范畴上有何区别:直线异步电动机具有:成本低,相同容量的异步电动机的体积是同容量的同步电动机的6倍左右,常用变频器做速度控制,用于精度要求不是很高的场合。

直线同步电动机具有更大的驱动力,其控制性能,位置精度更好,体积小,重量轻,且具有发电制动功能。

永磁直线同步电动机可应用于各种精密加工设备上。

但是成本相对较高。

永磁体性能的提高和价格的下降,以及由永磁取代绕线式转子中的励磁绕组所带来的一系列优点:如转子无发热问题、控制系统简单、具有较高的运行效率和较高的运行速度等等。

动圈式直线电机与动磁式直线电机:永磁直线电动机可以做成动磁型,也可以做成动圈型。

只要使永磁体产生的磁通由绕组通入直流电励磁产生,任何一种永磁式直线电动机都可以改为电磁式(动磁)直线电动机。

动圈型结构具有体积小,成本低和效率高等优点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

直线电机基本概念
直线电机可以看作旋转电机结构上的一种演变,它可以看作将一台旋转电机沿径向剖开,然后将电机的圆周展开成直线。

直线电机可分为:交流直线感应电动机(lim),交
流直线同步电动机(lsm)、直流直线电动机(ldm)、直线步进电动机(lpm)、混合式
直线电动机(lhm)、微特直线电动机。

其中交流直线同步电动机又分电磁式(em)、永
磁式(pm)、可变电阻(vr)、混合式(hb)、超导体(sc);直线直流电动机分为电磁式、永磁式、无刷;直线步进电动机分为可变电阻型和永磁型。

同步直线电机原理:与直线异步电机一样,直线同步电机也是由旋转电机演变而来,
其工作原理与旋转电机相同。

直线同步电动机的磁极一般由直流励磁绕组或永磁体励磁。

在定子绕组产生的气隙行波磁场和磁极磁场的共同作用下,气隙磁场对磁极移动器产生电
磁推力。

在这种电磁推力的作用下,如果初级固定,次级将沿着行波磁场的移动方向直线
移动。

磁极运动的速度V与行波磁场的速度V一致,V=2ft单位(M/s),t为极距。

同步直线电机与异步直线电机在性能、使用范畴上有何区别:直线异步电动机具有:
成本低,相同容量的异步电动机的体积是同容量的同步电动机的6倍左右,常用变频器做
速度控制,用于精度要求不是很高的场合。

直线同步电动机具有更大的驱动力,其控制性能,位置精度更好,体积小,重量轻,且具有发电制动功能。

永磁直线同步电动机可应用
于各种精密加工设备上。

但是成本相对较高。

永磁体性能的提高和价格的下降,以及由永
磁取代绕线式转子中的励磁绕组所带来的一系列优点:如转子无发热问题、控制系统简单、具有较高的运行效率和较高的运行速度等等。

动圈式直线电机和动磁式直线电机:永磁式直线电机可制成动磁式或动圈式。

只要永
磁体产生的磁通量由通过绕组的直流电流激励,任何一种永磁直线电机都可以变为电磁
(动磁)直线电机。

该动圈结构具有体积小、成本低、效率高等优点。

用于计算机硬盘驱
动器的音圈电机是一种动圈式永磁直线直流电机。

动磁直线电机无线圈端,电枢绕组得到
充分利用;气隙均匀,以消除电枢和磁极之间的吸力。

动圈直线电机转子惯性小,响应快;由于电线连接,冲程通常较小。

动态磁性类型与上述正好相反。

圆筒型直线电机和平板型直线电机的本质区别:直线电机是从普通旋转电机演变来的,如果将普通旋转电机的圆筒型定子,转子剖开拉直,就成了平板型结构的直线电机,如果
再把这种扁平的初级,次级卷绕在一根与磁场运动方向平行的轴上,即可得到一种与平板
型直线电机完全不同的圆筒型直线电机。

圆筒型直线电机的工作原理与直线电机的原理相似,当在初级绕组通入交流电源时,便在气隙中产生行波磁场,次级在行波磁场切割下,
将感应电动势并产生电流,该电流与气隙中的磁场相互作用就产生电磁推力。

如果初级固定,则次级在推力的作用下做直线运动。

反之,则初级作直线运动。

它把电能直接转变为
直线运动的机械能而无中间变换装置。

圆筒型直线电机也可分为同步式和感应式两类(也
有步进式)。

选择合适的电机
选择适当的电机
为了选择合适的电机,必须考虑几个因素。

例如,你选择线性运动还是旋转运动?以下是选择电机时应考虑的一些基本要求。

这将有助于确定是使用直线电机还是旋转电机。

直线电机
要求多大力?工作周期是多少?
所需的步长是多少?步进速率或线速度是多少?双极线圈还是单极线圈?线圈电压?
断电时螺杆能否自锁?是否有尺寸限制?
预期寿命要求是什么?工作环境温度是多少?固定轴还是贯穿轴?驱动器类型?
旋转电机
需要多少扭矩?占空比是多少?所需的步距角是多少?
步进速度或转速(rpm)是多少?双极性或单极性线圈?线圈电压?
定位扭矩或保持扭矩要求?有尺寸限制吗?
所期望的寿命要求是多少?工作坏境温度是多少?滑动轴承或滚珠轴承?径向载荷和轴向载荷?驱动器的类型?
双极式步进电机是指:有两个线圈和四根导线。

电流可以在两个线圈中前后流动,因此被称为双极性。

单极步进电机是指有两个线圈,但有五个或六个线,即,一个水龙头被添加在一个线圈的中间。

这五条线可视为六条线,两个线圈的两条中间线组合在一起。

因为在线圈的中间有一个抽头,电流可以在线圈的一半方向不同的方向上,但是此时只有一半的电机线圈被使用。

双极性步进电机和单极性步进电机的产生,是源于几十年前,因为步进电机驱动电路较贵,如果用双极性的驱动电路,比单极性的电路要贵很多,所以多年前,单极性的步进电机很多。

但是随着步进电机驱动电路成本越来越低,再加上一些很便宜的驱动芯片的出现,双极性电机的应用多了起来。

同时,双极电机的应用效率很高,因为正向和反向电流流过一个线圈,而单极电机的效率很低,因为电机大部分时间只使用一半的线圈。

然而,在一些成本要求严格的地方,单极电机仍然被广泛使用。

交流同步电机
步进电机也可以在交流电(AC)下运行。

然而,单相绕组必须由正确选择的电容器供电。

在这种情况下,电机仅限于一个同步速度。

例如,如果电源频率为60 Hz,则电源有120次反转或变化。

通过电容器通电的相位也会以偏移时间的顺序产生相同数量的变化。

电机已以相当于每秒240步的速度真正通电。

对于15°旋转电机,完成一次旋转(24spr)需要24个步骤。

这将成为一个600转/分的同步电机。

对于直线电机,所产生的线性速度取决于电机每步的步长。

例如,如果向0.001英寸
/步的电机通60赫兹的电源,则所获得的速度为0.240英寸/秒(240步/秒×0.001英寸/步)。

很多海顿?的步进电机可以被当成一个300或600rpm的交流同步电机。

混合式电机
简介
混合式直线步进电机技术综述
步进电机由旋转运动变为线性运动可用几种机械方法完成,包括齿条和齿轮传动及皮
带轮传动以及其他机械联动机械.所有这些设计都需要各种机械零件。

而完成这种转变的
最有效方法是在电机自身内部实现。

说明
基本步进电机通过与定子产生的脉动定子电磁场相互作用,由磁性转子铁芯旋转。


线电机把旋转运动变成直线运动。

完成这种转换的精度取决于转子的步进角和选择的方法。

线性步进电机,或称线性步进电机,最早出现在1968年的专利号3402308中,并颁发给
威廉·亨施克。

自那时以来,线性步进电机已被用于许多要求苛刻的领域,包括制造、精
密对准和精密流体测量。

使用螺纹的直线电机的精密度,取决于它的螺距。

在直线电机的转子中心安装一个螺母,相应地采用一根螺杆与此螺母啮合,为使螺杆轴向移动,必须用某种方法来防止螺杆
与转子组件一同转动。

由于螺杆转动受到制约,当转子旋转时,螺杆实现了线性运动。


论是在电机内部用固定螺纹轴组件还是在外部的螺纹轴上使用不能旋转但轴向可自由移动
的螺母,都是实现转动约束的典型方法。

为了简化设计,在电机中实现线性变换是很有意义的。

这种方法大大简化了设计,因
此在许多应用领域,直线电机可以直接用于精确的直线运动,而无需安装外部机械连杆。

最初的直线电机采用了一个滚珠螺母和丝杆的结合体。

滚珠丝杆提高达90%以上的效率,而根据螺纹条件,梯形螺纹提供的效率仅有20%-70%。

虽然滚珠丝杠是一种将旋转运动转换为线性运动的有效方法,但滚珠螺母的校准要求高、体积大、成本高。

因此,滚珠丝杠在大多数应用领域都不是一个实用的解决方案。

大多数设备设计人员对以混合式步进电机为基础的直线电机十分熟悉。

该产品已有多
年历史,与其它设备一样有其自身的长处和局限性。

设计简便、紧凑、无电刷(因此无火花)、惊人的机械优点、设计的实用性以及可靠性是它与生俱来的优点,然而在某些情况下,此直线电机不能用于某些设备,因为在没有日常维护的条件下它是不能保证其耐久性的。

然而,有几种方法可以克服这些障碍,使直线电机在无需维护的情况下具有更高的耐
久性。

由于步进电机采用无刷设计,导致磨损的唯一部件是转子轴承和由导螺杆/螺母组
成的螺纹接头。

近年来对滚珠轴承的改进提供了适用于直线运动的长寿命产品。

最近,导螺杆和螺母组合的寿命和耐久性也得到了提高。

提高耐用性
首先有必要了解电机的基本结构。

一个较好的研究实例size17电机,它属于混全式步进电机家庭中尺寸较小的。

习惯上,直线电机使用由一轴承级金属材料(如青铜)加工成的空心轴,该空心轴具有内螺纹然后与螺纹导杆连接。

空心轴沿转子轴线安装。

导杆材料通常为不锈钢,它具有相当的防腐蚀性能。

大多数零件所用的螺纹的型式是加工螺纹(如#10-32),此螺纹有单头或多头,这取决于电机所需的精度和速度。

加工螺纹一般选用“V”形螺纹,因为它易于加工,并且可以轧制。

虽然这更适合加工,但不利于电力传输。

相比之下,acme螺纹更适合以下原因:
acme螺纹的设计更加高效。

而从使用角度来看,低损耗(包括磨擦),就意味着磨损少和使用寿命长。

从螺纹的基本几何原理看就很容易理解其中的原因。

“v”形螺纹的相对面之间的角度为60度,而acme。

相关文档
最新文档