离散数学答案 第八章 代数系统
离散数学(屈婉玲)答案
第一章部分课后习题参考答案16 设p、q的真值为0;r、s的真值为1,求下列各命题公式的真值。
(1)p∨(q∧r)⇔0∨(0∧1) ⇔0(2)(p↔r)∧(﹁q∨s) ⇔(0↔1)∧(1∨1) ⇔0∧1⇔0.(3)(⌝p∧⌝q∧r)↔(p∧q∧﹁r) ⇔(1∧1∧1)↔ (0∧0∧0)⇔0(4)(⌝r∧s)→(p∧⌝q) ⇔(0∧1)→(1∧0) ⇔0→0⇔117.判断下面一段论述是否为真:“π是无理数。
并且,如果3是无理数,则2也是无理数。
另外6能被2整除,6才能被4整除。
”答:p: π是无理数 1q: 3是无理数0r: 2是无理数 1s:6能被2整除 1t: 6能被4整除0命题符号化为:p∧(q→r)∧(t→s)的真值为1,所以这一段的论述为真。
19.用真值表判断下列公式的类型:(4)(p→q) →(⌝q→⌝p)(5)(p∧r) ↔(⌝p∧⌝q)(6)((p→q) ∧(q→r)) →(p→r)答:(4)p q p→q ⌝q ⌝p ⌝q→⌝p (p→q)→(⌝q→⌝p)0 0 1 1 1 1 10 1 1 0 1 1 11 0 0 1 0 0 11 1 1 0 0 1 1所以公式类型为永真式//最后一列全为1(5)公式类型为可满足式(方法如上例)//最后一列至少有一个1(6)公式类型为永真式(方法如上例)//第二章部分课后习题参考答案3.用等值演算法判断下列公式的类型,对不是重言式的可满足式,再用真值表法求出成真赋值.(1) ⌝(p∧q→q)(2)(p→(p∨q))∨(p→r)(3)(p∨q)→(p∧r)答:(2)(p→(p∨q))∨(p→r)⇔(⌝p∨(p∨q))∨(⌝p∨r)⇔⌝p∨p∨q∨r⇔1所以公式类型为永真式(3)P q r p∨q p∧r (p∨q)→(p∧r)0 0 0 0 0 10 0 1 0 0 10 1 0 1 0 00 1 1 1 0 01 0 0 1 0 01 0 1 1 1 11 1 0 1 0 01 1 1 1 1 1所以公式类型为可满足式4.用等值演算法证明下面等值式:(2)(p→q)∧(p→r)⇔(p→(q∧r))(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨q) ∧⌝(p∧q)证明(2)(p→q)∧(p→r)⇔ (⌝p∨q)∧(⌝p∨r)⇔⌝p∨(q∧r))⇔p→(q∧r)(4)(p∧⌝q)∨(⌝p∧q)⇔(p∨(⌝p∧q)) ∧(⌝q∨(⌝p∧q) ⇔(p∨⌝p)∧(p∨q)∧(⌝q∨⌝p) ∧(⌝q∨q)⇔1∧(p∨q)∧⌝(p∧q)∧1⇔(p∨q)∧⌝(p∧q)5.求下列公式的主析取范式与主合取范式,并求成真赋值(1)(⌝p→q)→(⌝q∨p)(2)⌝(p→q)∧q∧r(3)(p∨(q∧r))→(p∨q∨r)解:(1)主析取范式(⌝p→q)→(⌝q∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔ (⌝p ∧⌝q)∨(⌝q ∧p)∨(⌝q ∧⌝p)∨(p ∧q)∨(p ∧⌝q)⇔ (⌝p ∧⌝q)∨(p ∧⌝q)∨(p ∧q)⇔320m m m ∨∨⇔∑(0,2,3)主合取范式:(⌝p →q)→(⌝q ∨p)⇔⌝(p ∨q)∨(⌝q ∨p)⇔(⌝p ∧⌝q)∨(⌝q ∨p)⇔(⌝p ∨(⌝q ∨p))∧(⌝q ∨(⌝q ∨p))⇔1∧(p ∨⌝q)⇔(p ∨⌝q) ⇔ M 1⇔∏(1)(2) 主合取范式为:⌝(p →q)∧q ∧r ⇔⌝(⌝p ∨q)∧q ∧r⇔(p ∧⌝q)∧q ∧r ⇔0所以该式为矛盾式.主合取范式为∏(0,1,2,3,4,5,6,7)矛盾式的主析取范式为 0(3)主合取范式为:(p ∨(q ∧r))→(p ∨q ∨r)⇔⌝(p ∨(q ∧r))→(p ∨q ∨r)⇔(⌝p ∧(⌝q ∨⌝r))∨(p ∨q ∨r)⇔(⌝p ∨(p ∨q ∨r))∧((⌝q ∨⌝r))∨(p ∨q ∨r))⇔1∧1⇔1所以该式为永真式.永真式的主合取范式为 1主析取范式为∑(0,1,2,3,4,5,6,7)第三章部分课后习题参考答案14. 在自然推理系统P中构造下面推理的证明:(2)前提:p→q,⌝(q∧r),r结论:⌝p(4)前提:q→p,q↔s,s↔t,t∧r结论:p∧q证明:(2)①⌝(q∧r) 前提引入②⌝q∨⌝r ①置换③q→⌝r ②蕴含等值式④r 前提引入⑤⌝q ③④拒取式⑥p→q 前提引入⑦¬p ⑤⑥拒取式证明(4):①t∧r 前提引入②t ①化简律③q↔s 前提引入④s↔t 前提引入⑤q↔t ③④等价三段论⑥(q→t)∧(t→q) ⑤置换⑦(q→t)⑥化简⑧q ②⑥假言推理⑨q→p 前提引入⑩p ⑧⑨假言推理(11)p∧q ⑧⑩合取15在自然推理系统P中用附加前提法证明下面各推理:(1)前提:p→(q→r),s→p,q结论:s→r证明①s 附加前提引入②s→p 前提引入③p ①②假言推理④p→(q→r) 前提引入⑤q→r ③④假言推理⑥q 前提引入⑦r ⑤⑥假言推理16在自然推理系统P中用归谬法证明下面各推理:(1)前提:p→⌝q,⌝r∨q,r∧⌝s结论:⌝p证明:①p 结论的否定引入②p→﹁q 前提引入③﹁q ①②假言推理④¬r∨q 前提引入⑤¬r ④化简律⑥r∧¬s 前提引入⑦r ⑥化简律⑧r∧﹁r ⑤⑦合取由于最后一步r∧﹁r 是矛盾式,所以推理正确.第四章部分课后习题参考答案3. 在一阶逻辑中将下面将下面命题符号化,并分别讨论个体域限制为(a),(b)条件时命题的真值:(1) 对于任意x,均有2=(x+)(x).(2) 存在x,使得x+5=9.其中(a)个体域为自然数集合.(b)个体域为实数集合.解: F(x): 2=(x+)(x ).G(x): x+5=9.(1)在两个个体域中都解释为)(x xF ∀,在(a )中为假命题,在(b)中为真命题。
离散数学第8,9章课后习题答案
第8章 习题参考答案1. 在一次10周年同学聚会上,想统计所有人握手的次数之和,应该如何建立该问题的图论模型?解:将每个同学分别作为一个节点,如果两个人握过一次手就在相应的两个节点之间画一条无向边,于是得到一个无向图。
一个人握手的次数就是这个节点与其他节点所连接的边的条数,进而可得出所有人握手的次数之和。
2. 在一个地方有3户人家,并且有3口井供他们使用。
由于土质和气候的关系,有些井中的水常常干枯,因此各户人家要到有水的井去打水。
不久,这3户人家成了冤家,于是决定各自修一条路通往水井,打算使得他们在去水井的路上不会相遇。
试建立解决此问题的图论模型。
解:将3户人家分别看做3个节点且将3口井分别看做另外3个节点,若1户人家与1口井之间有一条路,则在该户人家与该口井对应的节点之间连一条无向边,这样就得到一个无向图。
3. 某人挑一担菜并带一条狼和一只羊要从河的一岸到对岸去。
由于船太小,只能带狼、菜、羊中的一种过河。
由于明显的原因,当人不在场时,狼要吃羊,羊要吃菜。
通过建立图论模型给出问题答案。
解:不妨认为从北岸到南岸,则在北岸可能出现的状态为24=16种,其中安全状态有下面10种:(人,狼,羊,菜),(人,狼,羊),(人,狼,菜),(人,羊,菜),(Φ),(人,羊),(菜),(羊),(狼),(狼,菜);不安全的状态有下面6种:(人)(人,菜)(人,狼)(狼,羊,菜)(狼,羊)(羊,菜)。
线将北岸的10种安全状态看做10个节点,而渡河的过程则是状态之间的转移,这样就得到一个无向图,如图8-1所示。
图8-1从上述无向图可以得出安全的渡河方案有两种:第1种:(人,狼,羊,菜)→(狼,菜)→(人,狼,菜)→(狼)→(人,狼,羊)→(羊)→(人,羊)→(Φ)。
(人,狼,羊,菜)(人,狼,羊)(人,狼,菜)(人,羊,菜)(人,羊) (狼,菜) (羊) (狼) (菜) (Φ)第2中:(人,狼,羊,菜)→(狼,菜)→(人,狼,菜)→(菜)→(人,羊,菜)→(羊)→(人,羊)→(Φ)。
离散数学第二版答案(6-7章)
离散数学第二版答案(6-7章)LT第六章 代数系统6.1第129页1. 证明:任取,x y I ∈,(,)*(,)g y x y x y x yx x y xy g x y ==+-=+-=,因此,二元运算*是可交换的; 任取,,x y z I ∈,(,(,))*(*)*()()g x g y z x y z x y z yz x y z yz x y z yz x y z xy xz yz xyz==+-=++--+-=++---+((,),)(*)*()*()(,(,))g g x y z x y z x y xy zx y xy z x y xy z x y z xy xz yz xyz g x g y z ==+-=+-+-+-=++---+=因此,运算*是可结合的。
该运算的么元是0,0的逆元是0,2的逆元是2,其余元素没有逆元。
2.证明:任取,,x y N x y ∈≠,由*,*x y x y x y x ==≠知,**y x x y ≠,*运算不是可交换的。
任取,,x y z N ∈,由(*)**x y z x z x ==,*(*)*x y z x y x ==知,(*)**(*)x y z x y z =,*运算是可结合的。
任取x N ∈,*x x x =,可知N 中的所有元素都是等幂的。
*运算有右么元,任取,x y N ∈,*x y x =,知N 中的所有元素都是右么元。
*运算没有左么元。
证明:采用反证法。
假定e 为*运算的左么元,取,b N b e ∈≠,由*的运算公式知*e b e =,由么元的性质知,*e b b =,得e b =,这与b e ≠相矛盾,因此,*运算没有左么元。
3.解: ① 任取y x I y x ≠∈,,的最小公倍数和y x y x =*的最小公倍数和的最小公倍数和y x x y x y ==*因此对于任意的y x I y x ≠∈,,都有x y y x **=,即二元运算*是可交换的。
离散数学8-代数系统基础
第八章 代数系统基础
第八章 代数系统基础
8.1 代数系统概念 8.2 半群与独异点 8.3 群的基本定义与性质 8.4 子群与陪集 8.5 循环群和置换群 8.6 环和域
2
一、基本概念
定义1: 设A是个非空集合且函数f:A*A→A,则称f为 A上的二元运算。
二元运算的两个重要特点: 一是运算封闭性,集合内任意两个元素都可以运算,运算后仍在同
主要包括运算所具有的算律和特殊元素 算律主要:结合律、交换律、分配律、吸收律和消去律 特殊元素:等幂元、幺元、零元和逆元。
9
1.结合律
定义3: 设代数系统<A,*>,对于A中任意元素a,b,c, (ab)c=a(bc),都称运算满足结合律,或是可结合的 。
实数集合上的加法和乘法满足结合律。幂集P(A)上的交、并和对称差 都满足结合律。矩阵的加法和乘法满足结合律。代数系统(Nk,+k)和 (Nk, ×k)中的+k和×k都满足结合律。
例设<A,*>是一个代数系统,其中*定义为a*b=a,证明运算是不可交 换的。
11
3.幂等律
定义5: 设代数系统<A,*>,对于A中任意元素有 x*x=x,则称运算*在A上满足幂等律。
设A为集合,<P(A), ∩>和<P(A), ∪>中的∩和换律、结合律和幂等律。
则称<A,*>是群。
如果<A,>是独异点且每个元素存在逆元,则称<A,>是群。 (R,+),(Z,+)都是群,幺元为零,x -1 = -x;(R-{0},×)是群,幺
元为1,x -1 =1/x ;<Q,>不是群,1是幺元,而0是无逆元。
《离散数学》题库及标准答案
《离散数学》题库及标准答案《离散数学》题库及答案————————————————————————————————作者:————————————————————————————————日期:《离散数学》题库与答案一、选择或填空(数理逻辑部分)1、下列哪些公式为永真蕴含式?( )(1)?Q=>Q→P (2)?Q=>P→Q (3)P=>P→Q (4)?P∧(P∨Q)=>?P答:在第三章里面有公式(1)是附加律,(4)可以由第二章的蕴含等值式求出(注意与吸收律区别)2、下列公式中哪些是永真式?( )(1)(┐P∧Q)→(Q→?R) (2)P→(Q→Q) (3)(P∧Q)→P (4)P→(P∨Q)答:(2),(3),(4)可用蕴含等值式证明3、设有下列公式,请问哪几个是永真蕴涵式?( )(1)P=>P∧Q (2) P∧Q=>P (3) P∧Q=>P∨Q(4)P∧(P→Q)=>Q (5) ?(P→Q)=>P (6) ?P∧(P∨Q)=>?P答:(2)是第三章的化简律,(3)类似附加律,(4)是假言推理,(3),(5),(6)都可以用蕴含等值式来证明出是永真蕴含式4、公式?x((A(x)→B(y,x))∧?z C(y,z))→D(x)中,自由变元是( ),约束变元是( )。
答:x,y, x,z(考察定义在公式?x A和?x A中,称x为指导变元,A为量词的辖域。
在?x A和?x A的辖域中,x的所有出现都称为约束出现,即称x为约束变元,A中不是约束出现的其他变项则称为自由变元。
于是A(x)、B(y,x)和?z C(y,z)中y为自由变元,x和z为约束变元,在D(x)中x为自由变元)5、判断下列语句是不是命题。
若是,给出命题的真值。
( )(1)北京是中华人民共和国的首都。
(2) 陕西师大是一座工厂。
(3) 你喜欢唱歌吗? (4) 若7+8>18,则三角形有4条边。
离散习题代数系统部分答案
《离散数学》代数系统1.以下集合和运算是否构成代数系统?如果构成,说明该系统是否满足结合律、交换律?求出该运算的幺元、零元和所有可逆元素的逆元.1)P(B)关于对称差运算⊕,其中P(B)为幂集.构成代数系统;满足结合律、交换律;幺元φ;无零元;逆元为自身。
2)A={a,b,c},*运算如下表所示:构成代数系统;满足结合律、交换律;无幺元;无逆元;零元b.2.设集合A={a,b},那么(1)在A上可以定义多少不同的二元运算?(2)在A上可以定义多少不同的具有交换律的二元运算?24个不同的二元运算;23个不同的具有交换律的二元运算3.设A={1,2},B是A上的等价关系的集合.1)列出B的元素.2元集合上只有2种划分,因此只有2个等价关系,即B={IA ,EA}2)给出代数系统V=<B,∩>的运算表.3)求出V的幺元、零元和所有可逆元素的逆元.幺元EA 、零元IA;只有EA可逆,其逆元为EA.4)说明V是否为半群、独异点和群?V是为半群、独异点,不是群4.设A={a,b,c},构造A上的二元运算*,使得a*b=c,c*b=b,且*运算满足幂等律、交换律.1)给出关于*运算的一个运算表.其中表中?位置可以是a、b、c。
2)*运算是否满足结合律,为什么?不满足结合律;a*(b*b)=c ≠(a*b)*b=b5.设<R,*>是一个代数系统。
*是R上的一个二元运算,使得对于R(实数集合)中的任意元素a,b都有a*b=a+b+a·b(·和+为数集上的乘法和加法).证明::<R,*> 是独异点.6.如果<S,*>是半群,且*是可交换的.证明:如果S中有元素a,b,使得a*a=a和b*b=b,则(a*b)*(a*b)=a*b.(a*b)*(a*b)= a*(b*a)*b 结合律= a*( a*b)*b 交换律= (a* a)*(b*b)= a*b.7.设<G,·,–1,e>是一个群,则a,b,c∈S。
离散数学(简答题)
1、设简单图G所有结点的度数之和为12,则G一定有_____条边。
问题反馈【教师释疑】正确答案:【6 】62、设X={a,b,c},Ix是X上恒等关系,要使Ix∪{〈a,b〉,〈b,c〉,〈c,a〉,〈b,a〉}∪R为X 上的等价关系,R应取_______. 问题反馈【教师释疑】正确答案:【{〈a,c〉,〈c,b〉} 】{〈a,c〉,〈c,b〉}3、命题公式的任意两个不同极小项的合取式一定为_________. 问题反馈【教师释疑】正确答案:【永假式】永假式4、一个公式在等价意义下,_______范式写法是唯一的。
问题反馈【教师释疑】正确答案:【主析取】主析取5、若P:他聪明;Q:他用功;则“他虽聪明,但不用功”,可符号化为_______ 问题反馈【教师释疑】正确答案:【P∧┐Q 】P∧┐Q6、设R是A上的二元关系,且RRR为R的子集,可以肯定R应是_____关系。
问题反馈【教师释疑】正确答案:【传递】传递7、设集合A={1, 2, 3, 4},A上的二元关系R={(1,1),(1,2),(2,3)}, S={(1,3),(2,3),(3,2)}。
则R×S =__________________, 问题反馈【教师释疑】正确答案:【{(1,3),(2,2)} 】{(1,3),(2,2)}8、设谓词的定义域为{a, b},将表达式"任意xR(x)→彐xS(x)"中量词消除,写成与之对应的命题公式是__________________. 问题反馈【教师释疑】正确答案:【(R(a)∧R(b))→(S(a)∨S(b)) 】(R(a)∧R(b))→(S(a)∨S(b))9、设集合A,B,其中A={1,2,3}, B= {1,2}, 则A - B=____________________; 问题反馈【教师释疑】正确答案:【{3} 】{3}10、设G是完全二叉树,G有7个点,其中4个叶点,则G的总度数为__________ 问题反馈【教师释疑】正确答案:【12 】1211、设A、B为两个集合, A= {1,2,4}, B = {3,4}, 则从A∩B=_________________________; 问题反馈【教师释疑】正确答案:【{4} 】{4}12、设A={a, b, {a, b}},B={a, b},则B-A =________ 问题反馈【教师释疑】正确答案:【Φ】Φ13、设G是具有8个顶点的树,则G中增加_________条边才能把G变成完全图。
离散数学智慧树知到答案章节测试2023年武汉科技大学
第一章测试1.若P:天下雨;Q:他来了;则“虽然天下雨,他还是来了”,可符号化为( )A:P∧QB:P→QC:P∨┐QD:P∨Q答案:A2.以下命题公式中,为永真式的是( )A:(Q∨┐P)→(P∧┐P)B:(P→┐P)→┐PC:┐(Q→Q∧P)D:P∧(P∨Q∨R)答案:B3.命题公式的能成真赋值的P,Q的值为()A:11B:01C:10D:00答案:ABD4.命题公式的能成假赋值的P,Q的值为()A:10B:00C:11D:01答案:ABD5.G=P→(P∧(Q→P))主析取范式中所含的极大极小项有()A:P∧QB:¬P∧¬QC:¬P∨QD:P∨QE:P∧¬QF:¬P∨¬QG:P∨¬QH:¬P∧QI:无答案:ABEH6.G=P→(P∧(Q→P))主合取范式中所含的极大极小项有()。
A:P∧QB:无C:¬P∧QD:此项必选E:P∨¬QF:P∧¬QG:¬P∨¬QH:¬P∨QI:P∨QJ:¬P∧¬Q答案:BD7.(P→Q)∧Q的主合取范式中所含的极大极小项有()。
A:¬P∧QB:P∨QC:P∧¬QD:¬P∨QE:无F:P∧QG:¬P∧¬QH:¬P∨¬QI:P∨¬Q答案:BD8.(P→Q)∧Q的主析取范式中所含的极大极小项有()。
A:P∨¬QB:¬P∧QC:¬P∨¬QD:P∧QE:P∧¬QF:无G:¬P∨QH:¬P∧¬QI:P∨Q答案:BD9.设前提集合Γ={P∨Q, R∧S, ┐Q},公式G=P∧S,,证明Γ=>G。
证明:(1)┐Q P(2)P∨Q P(3) T,1),2),I (4)R∧S P(5) T,4),I(6)P∧S T,3),5),I 按顺序选出(3)和(5)处应该填的内容()A:¬PB:SC:RD:P答案:BD10.使用演绎法构造下列推理的证明。
离散数学复习(08)
等价关系与等价类及其性质
偏序关系,哈斯图,极大元,极小元,最大元, 偏序关系,哈斯图,极大元,极小元,最大元, 最小元,上界,下界,上确界, 最小元,上界,下界,上确界,下确界
序关系
1,设R是集合 上的一个自反关系.则R是对称和传递的,当 , 是集合X上的一个自反关系 是对称和传递的, 是集合 上的一个自反关系. 是对称和传递的 且仅当<a,b>∈R∧<a,c>∈R,有<b,c>在R之中. 且仅当 ∈ ∧ ∈ , 在 之中. 之中 2,若关系 和S在集合 上是等价的,证明 在集合X上是等价的 也是等价的. ,若关系R和 在集合 上是等价的,证明R∩S也是等价的. 也是等价的 3,如果关系 在集合 上是等价的,证明 c也是等价的. 如果关系R在集合 上是等价的, 如果关系 在集合X上是等价的 证明R 也是等价的. 4,设R是集合 上的等价关系,则对于所有 是集合A上的等价关系 , 是集合 上的等价关系,则对于所有a,b ∈A ,或者 [a]R=[b]R或者 R ∩[b]R= . 或者[a] 5,设集合A有一个划分 ,设集合 有一个划分S={S1,S2,…,Sm},试由此划分确定一 , 有一个划分 个等价关系. 个等价关系. 6,设S是X上的二元关系,S是传递的当且仅当 S S. 上的二元关系, 是传递的当且仅当 是传递的当且仅当S , 是 上的二元关系 . 7,设R是X上的二元关系,则: 上的二元关系, , 是 上的二元关系 a)R是对称的,当且仅当 是对称的, ) 是对称的 当且仅当R=Rc b)R是反对称的,当且仅当 ∩ R c Ix 是反对称的, ) 是反对称的 当且仅当R
证明a是 的逆元 的逆元? 证明 是b的逆元 a * b= b * a =e 例如: 例如:(a * b)-1=b-1 * a-1 群中满足消去律 群中不可能有零元. 群中不可能有零元. 任何一个循环群必定是阿贝尔群. 任何一个循环群必定是阿贝尔群. 中的幺元. 群<G,*>中的幺元 e 必定也是其子群<S,*>中的幺元. 中的幺元 必定也是其子群 中的幺元 子群的判定定理: 有限集: 在 子群的判定定理:当S是有限集: *在S上封闭 无限集: , ∈ , 当S是无限集: a,b∈S, 有a*b-1∈S 任何质数阶的群必定是循环群. 任何质数阶的群必定是循环群.
离散数学-代数系统
代数系统
环的性质
• 设〈A,+, • 〉是一个环,则对任意的 • a, b,c∈A, 有 (1) a • θ= θ • a= θ(加法的幺元是乘法的零元) (2) a •(-b)=(-a) •b=-(a •b) (3) (-a) •(-b)=a •b (4) a •(b-c)=a •b-a •c (5) (b-c) •a=b •a-c •a 其中, θ是加法幺元,-a是a的加法逆元,并记 a+(-b)为a-b.
拉格朗日定理
• 设〈H,*〉是群〈G,*〉的一个子群, 那么 (1)R={〈a, b〉| a∈G, b∈G, a-1*b∈H} 是G中的一个等价关系;而且由R所确定 的等价类[a]R=aH。 (2) 如果G是有限集,|G|=n, |H|=m, 则 m|n (m整除n)。
代数系统
具有两个二元运算的代数系统
代数系统
代数系统的引入
• 设 f1, f2, …, fk 是在非空集合A上定义的运 算,这些运算与集合组成一个代数系统, 记作 <A, f1, f2, …, fk >. • 当运算只有一种时,通常写作<A, f>, • 而运算 f 通常表示成 *,•, ★, △, ◇, ⊕, ⊙等。
代数系统
封闭性与唯一性
代数系统
等幂性
• *是集合A上的一个二元运算,如果对于 任意的 x∈A, 都有 x*x=x, 则称运算*是等 幂的。
代数系统
运算表
• *是定义在集合A上的二元运算,A是有 限集,A={x1, x2, …, xn},那么对于任意的 xi, xj∈A, xi* xj 的结果放在以 xi 为行、xj 为列所组成的一个表格内。 • 例如
代数系统
子群
离散数学几个典型的代数系统
{ a, b, c, e, f }是 L2的子格, 并且同构于五角格;
{ a, c, b, e, f }是 L3的子格, 也同构于钻石格.
25
全上界与全下界
定义 设L是格, 若存在 a∈L 使得 x∈L 有 a ≼ x, 则称 a 为 L 的全 下界; 若存在 b∈L 使得 x∈L 有 x ≼ b, 则称 b 为 L 的全 上界. 说明:
对偶原理 交换律、结合律、幂等律、吸收律
格的等价定义 子格 格的同构 特殊的格:分配格、有界格、有补格、布尔格
10
格的定义
定义 设<S, ≼>是偏序集,如果x,y≼S,{x,y}都有 最小上界和最大下界,则称S关于偏序≼作成一个
格. 由于最小上界和最大下界的惟一性,可以把求{x,y} 的最小上界和最大下界看成 x 与 y 的二元运算∨和 ∧,即 x∨y 和 x∧y 分别表示 x 与 y 的最小上界和 最大下界. 注意:这里出现的∨和∧符号只代表格中的运算, 而不再有其他的含义.
由 a ≼ a, a∧b ≼ a 可得 a∨(a∧b) ≼ a (VI)
由式 (V) 和 (VI) 可得 a∨(a∧b) = a 根据对偶原理, a∧(a∨b) = a 得证.
18
格作为代数系统的定义
定理 设<S,∗, >是具有两个二元运算的代数系统, 若对于∗和运算适合交换律、结合律、吸收律, 则 可以适当定义S中的偏序≼,使得<S, ≼>构成格, 且 a,b∈S有 a∧b = a∗b, a∨b = ab.
4
零因子的定义与存在条件
设<R,+,>是环,若存在 ab =0, 且 a0, b0, 称 a 为左零因子,b为右零因子,环 R 不是无零因子 环. 实例 <Z6,,>,其中 23=0,2 和 3 都是零因 子.
离散数学第四版课后答案(第8章)
第8 章 习题解答8.1 图8.6 中,(1)所示的图为,3,1K (2) 所示的图为,3,2K (3)所示的图为,2,2K 它们分别各有不同的同构形式.8.2 若G 为零图,用一种颜色就够了,若G 是非零图的二部图,用两种颜色就够了.分析 根据二部图的定义可知,n 阶零图(无边的图)是三部图(含平凡图),对n 阶零图的每个顶点都用同一种颜色染色,因为无边,所以,不会出现相邻顶点染同色,因而一种颜色就够用了.8.3 完全二部图,,s r K 中的边数rs m =.分析 设完全二部图s r K ,的顶点集为V, 则∅==2121,V V V V V ,且,||,||21s V r V ==s r K ,是简单图,且1V 中每个顶点与2V 中所有顶点相邻,而且1V 中任何两个不同顶点关联的边互不相同,所以,边数rs m =.8.4 完全二部图s r K ,中匹配数},m in{1s r =β,即1β等于s r ,中的小者.分析 不妨设,s r ≤且二部图s r K ,中,,||,||21s V r V ==由Hall 定理可知,图中存在1V 到2V 的完备匹配,设M 为一个完备匹配,则1V 中顶点全为M 饱和点,所以,.1r =β8.5 能安排多种方案,使每个工人去完成一项他们各自能胜任的任务.分析 设},,{1丙乙甲=V ,则1V 为工人集合, },,{2c b a V =,则2V为任务集合.令}|),{(,21y x y x E V V V 能胜任== ,得无向图>=<E V G ,,则G 为二部图,见图8.7 所示.本题是求图中完美匹配问题. 给图中一个完美匹配就对应一个分配方案.图8.7 满足Hall 定理中的相异性条件,所以,存在完备匹配,又因为,3||||21==V V 所以,完备匹配也为完美匹配.其实,从图上,可以找到多个完美匹配. 取)},(),,(),,{(1c b a M 丙乙甲=此匹配对应的方案为甲完成a,乙完成b, 丙完成c,见图中粗边所示的匹配.)},(),,(),,{(2c a b M 丙乙甲=2M 对应的分配方案为甲完成b,乙完成a,丙完成c.请读者再找出其余的分配方案.8.6 本题的答案太多,如果不限定画出的图为简单图,非常容易地给出4族图分别满足要求.(1) n (n 为偶数,且2≥n )阶圈都是偶数个顶点,偶数条边的欧拉图.(2) n (n 为奇数,且1≥n )阶圈都是奇数个顶点,奇数条边的欧拉图.(3) 在(1) 中的圈上任选一个顶点,在此顶点处加一个环,所得图为偶数个顶点,奇数条边的欧拉图.(4)在(2) 中的圈上任选一个顶点,在此顶点处加一个环,所得图为奇数个顶点,偶数条边的欧拉图.分析 上面给出的4族图都是连通的,并且所有顶点的度数都是偶数,所以,都是欧拉图.并且(1),(2) 中的图都是简单图.而(3),(4)中的图都带环,因而都是非简单图. 于是,如果要求所给出的图必须是简单图,则(3),(4)中的图不满足要求.其实,欧拉图是若干个边不重的图的并,由这种性质,同样可以得到满足(3),(4)中要求的简单欧拉图.设k G G G ,,,21 是长度大于等于3的k 个奇圈(长度为奇数的圈称为奇圈),其中k 为偶数,将1G 中某个顶点与2G 中的某顶点重合,但边不重合, 2G 中某顶点与3G 中某顶点重合,但边不重合,继续地,最后将1-k G 中某顶点与k G 中某顶点重合,边不重合,设最后得连通图为G,则G 中有奇数个顶点,偶数条边,且所有顶点度数均为偶数,所以,这样的一族图满足(4)的要求,其中一个特例为图8.8中(1)所示.在以上各图中,若k G G G ,,,21 中有一个偶圈,其他条件不变,构造方法同上,则所得图G 为偶数个顶点,奇数条边的简单欧拉图,满足(3)的要求,图8.8中(2)所示为一个特殊的情况.8.7 本题的讨论类似于8.6题,只是将所有无向圈全变成有向圈即可,请读者自己画出满足要求的一些特殊有向欧拉图.8.8 本题的答案也是很多的,这里给出满足要求的最简单一些图案,而且全为简单图.(1) n (3≥n )阶圈,它们都是欧拉图,又都是哈密尔顿图.(2) 给定k (2≥k )个长度大于等于3的初级回路,即圈k G G G ,,,21 ,用8.6题方法构造的图G 均为欧拉图,但都不是哈密尔顿图,图8.8给出的两个图是这里的特例.(3)n (4≥n )阶圈中,找两个不相邻的顶点,在它们之间加一条边,所得图均为哈密尔顿图,但都不是欧拉图.(4) 在(2)中的图中,设存在长度大于等于4的圈,比如说1G ,在1G 中找两个不相邻的相邻顶点,在它们之间加一条新边,然后用8.6题方法构造图G,则G 既不是欧拉图,也不是哈密尔顿图,见图8.9所示的图.分析 (1) 中图满足要求是显然的.(2) 中构造的图G 是连通的,并且各顶点度数均为偶数,所以,都是欧拉图,但因为G 中存在割点,将割点从G 中删除,所得图至少有两个连通分支,这破坏了哈密尔顿图的必要条件,所以,G不是哈密尔顿图.(3) 中构造的图中,所有顶点都排在一个圈上,所以,图中存在哈密尔顿回路,因而为哈密尔顿图,但因图中有奇度顶点(度数为奇数的顶点),所以,不是欧拉图. 由以上讨论可知,(4) 中图既不是欧拉图,也不是哈密尔顿图.其实,读者可以找许多族图,分别满足题中的要求.8.9 请读者自己讨论.8.10 其逆命题不真.分析若D是强连通的有向图,则D中任何两个顶点都是相互可达的,但并没有要求D中每个顶点的入度都等于出度. 在图8.2 所示的3个强连通的有向图都不是欧拉图.8.11 除K不是哈密尔顿图之外, n K(3≥n)全是哈密尔2顿图.K(n为奇数)为欧拉图. 规定1K(平凡图)既是欧拉图, n又是哈密尔顿图.分析从哈密尔顿图的定义不难看出,n阶图G是否为哈密尔顿图,就看是否能将G中的所有顶点排在G中的一个长为n的初级回路,即圈上.K(3≥n)中存在多个这样的生成n圈(含所有顶点的图), 所以K(3≥n)都是哈密尔顿图.n在完全图K中,各顶点的度数均为n-1,若n K为欧拉图,n则必有1-n为偶数,即n为奇数,于是,当n为奇数时,K连通n且无度顶点,所以,K(n为奇数) 都是欧拉图.当n为偶数时,n各顶点的度数均为奇数,当然不是欧拉图.8.12 有割点的图也可以为欧拉图.分析 无向图G 为欧拉图当且仅当G 连通且没有奇度顶点.只要G 连通且无奇度顶点(割点的度数也为偶数),G 就是欧拉图.图8.8所示的两个图都有割点,但它们都是欧拉图.8.13 将7个人排座在圆桌周围,其排法为.abdfgeca 分析 做无向图>=<E V G ,,其中,},,,,,,{g f e d c b a V =},|),{(有共同语言与且v u V v u v u E ∈=图G 为图8.10所示.图G 是连通图,于是,能否将这7个人排座在圆桌周围,使得每个人能与两边的人交谈,就转化成了图G 中是否存在哈密尔顿回路(也就是G 是否为哈密尔顿图).通过观察发现G 中存在哈密尔顿回路, abdfgeca 就是其中的一条哈密尔顿回路.8.14 用i v 表示颜色.6,,2,1, =i i 做无向图>=<E V G ,,其中 },,,,,,{654321v v v v v v V =}.,,|),{(能搭配与并且且v u v u V v u v u E ≠∈=对于任意的)(,v d V v ∈表示顶点v 与别的能搭配的颜色个数,易知G 是简单图,且对于任意的V v u ∈,,均有633)()(=+≥+v d u d ,由定理8.9可知,G 为哈密尔顿图,因而G 中存在哈密尔顿回路,不妨设1654321i i i i i i i v v v v v v v 为其中的一条,在这种回路上,每个顶点工表的颜色都能与它相邻顶点代表的颜色相.于是,让1i v 与2i v ,3i v 与4i v ,5i v 与6i v 所代表的颜色相搭配就能织出3种双色布,包含了6种颜色.8.15∑=⨯======300321,10220)deg(.12)deg(,3)deg(,1)deg(,4)deg(i i R R R R R 而本图边数m=10.分析 平面图(平面嵌入)的面i R 的次数等于包围它的边界的回路的长度,这里所说回路,可能是初级的,可能是简单的,也可能是复杂的,还可能由若干个回路组成.图8.1所示图中,321,,R R R 的边界都是初级回路,而0R 的边界为复杂回路(有的边在回路中重复出现),即432110987654321e e e e e e e e e e e e e e ,长度为12,其中边65,e e 在其中各出现两次.8.16 图8.11中,实线边所示的图为图8.1中图G,虚线边,实心点图为它的对偶图的顶点数*n ,边数*m ,面数*r 分别为4,10和8,于是有分析 从图8.11还可以发现,G 的每个顶点位于的一个面中,且的每个面只含G 的一个顶点,所以,这是连通平面图G 是具有k 个连通分支的平面图2≥k ,则应有1*+-=k n r .读者自己给出一个非连通的平面图,求出它的对偶图来验证这个结论.另外,用图8.1还可以验证,对于任意的*v (*G 中的顶点),若它处于G 的面i R 中,则应有)deg()(*i R v d =.8.17 不能与G 同构.分析 任意平面图的对偶图都是连通的,因而与都是连通图,而G 是具有3个连通分支的非连通图,连通图与非连通图显然是不能同构的.图 8.12 中, 这线边图为图8.2中的图G,虚线边图为G 的对偶图,带小杠的边组成的图是*G 的对偶图,显然.~**G G ≠ 8.18 因为彼得森图中有长度为奇数的圈,根据定理8.1可知它不是二部图.图中每个顶点的度数均为3,由定8.5可知它不是欧拉图.又因为它可以收缩成5K ,由库拉图期基定理可知它也不是平面图.其实,彼得森图也不是哈密尔顿图图,这里就不给出证明了.8.19 将图8.4重画在图8.13中,并且将顶点标定.图中afbdcea 为图中哈密尔顿回路,见图中粗边所示,所以,该图为哈密尔顿图.将图中边),(),,(),,(d f f e e d 三条去掉,所得图为原来图的子图,它为3,3K ,可取},,{1c b a V =},,{2f e d V =,由库拉图期基定理可知,该图不是平面图.8.20 图8.14所示图为图8.25所示图的平面嵌入.分析 该图为极大平面图.此图G 中,顶点数9=n ,边数.12=m 若G 是不是极大平面图,则应该存在不相邻的顶点,,v u 在它们之间再加一条边所得'G 还应该是简单平面图, 'G 的顶点数131,6''=+===n m n n ,于是会有.126313''=->=n m这与定理8.16矛盾,所以,G 为极大平面图.其实,n ( 3≥n )阶简单平面图G 为极大平面图当且仅当G 的每个面的次数均为3.由图8.14可知,G 的每个面的次数均为3,所以,G 为极大平面图.8.21 答案 A,B,C,D 全为②分析 (1) 只有n 为奇数时命题为真,见8.11的解答与分析.(2) 2≠n 时,命题为真,见8.11的解答与分析.(3) 只有m n ,都是偶数时,m n K ,中才无奇度数顶点,因而m n K ,为欧拉图,其他情况下,即m n ,中至少有一个是奇数,这时m n K ,中必有奇度顶点,因而不是欧拉图.(4) 只有m n =时, m n K ,中存在哈密尔顿回路,因而为哈密尔顿图.当m n ≠时,不妨设m n <,并且在二部图m n K ,中,m V n V ==||,||21,则n V m V G p =>=-||)(11,这与定理8.8矛盾. 所以, m n ≠时, m n K ,不是哈密尔顿图.8.22 答案 A:②;B ②;C ②.分析图8.15中,两个实边图是同构的,但它们的对偶力(虚边图)是不同构的.(2) 任何平面图的对偶图都是连通图.设G 是非连通的平面图,显然有.**~G G ≠(3) 当G 是非连通的平面图时,,1*+-=k n r 其中k 为G 的连通分支数.8.23 答案 A:④;B ②;C ②.分析 根据库期基定理可知,所求的图必含有5K 或3,3K 同胚子图,或含可收缩成5K 或3,3K 的子图.由于顶点数和边数均已限定,因而由3,3K 加2条边的图可满足要求,由5K 增加一个顶点,一条边的图可满足要求,将所有的非同构的简单图画出来,共有4个,其中由K产生的有2个,由5K产生的有2个.3,3见图8.16所示.。
(完整word版)离散数学习题解+代数系统
离散数学习题解代数系统习题四 第四章代数系统1.设I 为整数集合。
判断下面的二元关系是否是I 上的二元运算a )+={(x ,y ),z|x ,y ,zI 且z=x+y}b )-={((x ,y ),z )|x,y ,zI 且z=x -y}c )×={((x,y),z )|x ,y ,zI 且z=x ×y}d )/={((x ,y),z)|x ,y ,zI 且z=x/y }e )R={((x,y ),z)|x,y,zI 且z=x y}f )={((x ,y),z )|x ,y ,zI 且z=yx }g)min = {((x ,y ),z )|x ,y ,zI 且z=max (x ,y)} h )min = {((x,y ),z)|x,y,zI 且z=min (x ,y )} i )GCD = {((x ,y ),z )|x ,y ,zI 且z= GCD(x ,y )} j )LCM={((x ,y ),z )|x ,y ,z ∈I 且z= LCM (x ,y )}[解] a )是。
由于两个整数之和仍为整数,且结果唯一,故知+:I 2→I 是I 上的一个二元运算. b )是。
由于两个整数之差仍为整数,且结果唯一,故知一:I 2→I 是I 上的一个二元运算。
c )是.由于两个整数这积仍为整数,且结果唯一,故知x :I 2→I 是I 上的一个二元运算。
d )不是:例如若x=5,y=6,则z=x/y=5/6∉I;当y=0时z=x|y=x/0无定义. e )不是。
例如若x=2,y= —2,则z=x y=2–2=221=I 41∉;若x=y=0,则z=x y=0,则z=I 2x ∉=χ; g )是。
由于两个整数中最大者仍为整数,且结果唯一。
故知max :I 2→I 是I 上的一个二元运算。
h )是。
由于两个整数中最小者仍为整数,且结果唯一。
故知min :I 2→I 是I 上的一个二元运算。
离散数学答案 第八章 代数系统
第八章 代数系统习题8.11.解 ⑴是,⑵不是,⑶是,⑷不是。
2.解 若﹡对 是可分配的,则有任意a,b,c ∈*I,均有a ﹡(b c)=(a ﹡b) (a ﹡c)= a b ac =( a b ⋅ a c )= a b+c而a ﹡(b c)=a ﹡(b ⋅c)= a b ⋅c ≠a b+c 故﹡对 是不可分配的。
3.解 ⑴对于任意A ∈P(S), 因为A ⊆S ,所以,A ⋃S =S ,因此,S 是关于⋃运算的零元; ⑵对于任意A ∈P(S), 因为A ⊆S ,所以,A ⋂S = A ,因此,S 是关于⋃运算的零元单。
4.解 ⑴①因为x*y=xy-2x-2y+6,则y*x=yx-2y-2x+6= x*y ,满足交换律; ②任意x,y,z ∈R 有x*(y*z)=x*(yz-2y-2 z +6)=x(yz-2y-2 z +6)-2x-2(yz-2y-2z+6)+6 =xyz-2xy-2xz+6x-2x -2yz+4y+4z-12+6= xyz-2xy-2xz-2yz+4x+4y+4z-6. (x*y)*z=(xy-2x-2y+6) *z =(xy-2x-2y+6)z-2(xy-2x-2y+6)-2z+6 =xyz-2xz-2yz+6z-2xy+4x+4y-2z-6=x*(y*z). 故满足结合律。
(2) ①设任意a ∈R,存在e ∈R,要e*a= ea-2e-2a+6=a ,由于a 的任意性则e=3。
因此e=3是其单位元;②设任意b ∈R, z ∈R ,要有z*b= zb-2 z-2b+6= z ,由于b 的任意性则z=2,因此 z=2是其零元。
(3)因为*是满足交换律,对于x ∈R ,要存在1-x ∈R ,须有x*1-x= x 1-x-2x-21-x+6= e=3, 当x ≠2时,2321--=-x x x。
即对于任意的x ,当x ≠2时x 都是可逆的,且2321--=-x x x。
5.解 f 1,f 2,f 3都满足交换律,f 4满足等幂率,f 2有单位元a ,f 1有零元a ,f 3有零元b 。
离散数学第八章布尔代数
对于一个具体的逻辑电路,我们可以使用布尔代数进行化简。首先,将电路中的逻辑门表示为相应的布尔表达式,然后利用布尔代数的性质和定理进行化简,最终得到最简的布尔表达式。
答案部分
THANKS
定理
在布尔代数中,定理是经过证明的数学命题,可以用于证明其他命题或解决特定问题。
公式与定理
逻辑推理
逻辑推理
在布尔代数中,逻辑推理是一种基于已知命题推导出新命题的推理过程。它使用逻辑规则和已知事实来得出结论。
推理规则
在逻辑推理中,常用的推理规则包括析取三段论、合取三段论、假言推理等。这些规则用于从已知事实推导出新的事实或结论。
在电路设计中的应用
计算机的内部工作原理是基于逻辑运算的。布尔代数是计算机逻辑设计的基础,用于描述计算机中的各种逻辑关系和运算。例如,计算机中的指令集、指令编码、指令执行等都涉及到布尔代数的应用。
计算机逻辑设计
在数据压缩和加密算法中,布尔代数也发挥了重要作用。通过利用布尔代数的性质和运算,可以实现高效的压缩算法和安全的加密算法。
变量
在布尔代数中,常量表示一个固定的值,通常用于表示逻辑上的“真”或“假”。
常量
变量与常量
函数
在布尔代数中,函数是一种将输入映射到输出的规则。对于每个输入,函数都有一个确定的输出。
运算
布尔代数中的运算包括逻辑与、逻辑或、逻辑非等基本运算。这些运算用于组合变量的值以产生新的输出。
常量、函数和运算符组成的数学表达式。
逻辑电路设计
逻辑函数的优化准则
逻辑函数的优化准则包括最小化使用的最小项数量、减少最大项的个数、减少最大项的复杂度等。这些准则有助于简化逻辑函数的表示和实现,提高电路的性能。
逻辑函数的优化方法
离散数学屈婉玲第八章.
函数复合与函数性质
定理8.2 设f:A→B, g:B→C (1) 如果 f:A→B, g:B→C是满射的, 则 fg:A→C也是满射的 (2) 如果 f:A→B, g:B→C是单射的, 则 fg:A→C也是单射的 (3) 如果 f:A→B, g:B→C是双射的, 则 fg:A→C也是双射的 A={a1,a2}, B={b1,b2,b3},C={c1,c2}. f={<a1,b1>,<a2,b2>}, g={<b1,c1>,<b2,c2>,<b3,c2>} f g={<a1,c1>,<a2,c2>} f:A→B 和 f g:A→C是单射的, 但g:B→C不是单射的. A={a1,a2,a3}, B={b1,b2,b3}, C={c1,c2}. f={<a1,b1>,<a2,b2>,<a3,b2>}, g={<b1,c1>,<b2,c2>,<b3,c2>} f g={<a1,c1>,<a2,c2>,<a3,c2>} g:B→C 和 f g:A→C是满射的, 但 f:A→B不是满射的.
2
函数定义
定义8.1 设 F 为二元关系, 若x∈domF 都存在唯一的 y∈ranF 使 xFy 成立, 则称 F 为函数 对于函数F, 如果有 xFy, 则记作 y=F(x), 并称 y 为F 在 x 的值. 例 F1={<x1,y1>,<x2,y2>,<x3,y2>} F2={<x1,y1>,<x1,y2>} F1是函数, F2不是函数 定义8.2 设F, G 为函数, 则 F=G FG∧GF 如果两个函数F 和 G 相等, 一定满足下面两个条件: (1) domF=domG (2) x∈domF=domG 都有F(x)=G(x) 函数F(x)=(x21)/(x+1), G(x)=x1不相等, 因为 domFdomG.
屈婉玲高教版离散数学部分答案2[1]
第七章部分课后习题参考答案7.列出集合A={2,3,4}上的恒等关系I A ,全域关系E A ,小于或等于关系L A ,整除关系D A .解:I A ={<2,2>,<3,3>,<4,4>}E A ={<2,2>,<2,3>,<2,4>,<3,4>,<4,4>,<3,2>,<3,3>,<4,2>,<4,3>}L A ={<2,2>,<2,3>,<2,4>,<3,3>,<3,4>,<4,4>} D A ={<2,4>}13.设A={<1,2>,<2,4>,<3,3>} B={<1,3>,<2,4>,<4,2>}求A ⋃B,A ⋂B, domA, domB, dom(A ⋃B), ranA, ranB, ran(A ⋂B ), fld(A-B). 解:A ⋃B={<1,2>,<2,4>,<3,3>,<1,3>,<4,2>} A ⋂B={<2,4>}domA={1,2,3} domB={1,2,4} dom(A ∨B)={1,2,3,4}ranA={2,3,4} ranB={2,3,4} ran(A ⋂B)={4}A-B={<1,2>,<3,3>},fld(A-B)={1,2,3} 14.设R={<0,1><0,2>,<0,3>,<1,2>,<1,3>,<2,3>}求R R, R -1, R ↑{0,1,}, R[{1,2}] 解:R R={<0,2>,<0,3>,<1,3>}R -1,={<1,0>,<2,0>,<3,0>,<2,1>,<3,1>,<3,2>}R ↑{0,1}={<0,1>,<0,2>,<0,3>,<1,2>,<1,3>} R[{1,2}]=ran(R|{1,2})={2,3}16.设A={a,b,c,d},1R ,2R 为A 上的关系,其中1R ={},,,,,a a a b b d{}2,,,,,,,R a d b c b d c b=求23122112,,,R R R R R R 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第八章 代数系统
习题8.1
1.解 ⑴是,⑵不是,⑶是,⑷不是。
2.解 若﹡对 是可分配的,则有任意a,b,c ∈*
I
,均有
a ﹡(
b c)=(a ﹡b) (a ﹡c)= a b a
c =( a b ⋅ a c )= a b+c
而a ﹡(b c)=a ﹡(b ⋅c)= a b ⋅c ≠a b+c 故﹡对 是不可分配的。
3.解 ⑴对于任意A ∈P(S), 因为A ⊆S ,所以,A ⋃S =S ,因此,S 是关于⋃运算的零元; ⑵对于任意A ∈P(S), 因为A ⊆S ,所以,A ⋂S = A ,因此,S 是关于⋃运算的零元单。
4.解 ⑴①因为x*y=xy-2x-2y+6,则y*x=yx-2y-2x+6= x*y ,满足交换律; ②任意x,y,z ∈R 有
x*(y*z)=x*(yz-2y-2 z +6)=x(yz-2y-2 z +6)-2x-2(yz-2y-2z+6)+6 =xyz-2xy-2xz+6x-2x -2yz+4y+4z-12+6= xyz-2xy-2xz-2yz+4x+4y+4z-6. (x*y)*z=(xy-2x-2y+6) *z =(xy-2x-2y+6)z-2(xy-2x-2y+6)-2z+6 =xyz-2xz-2yz+6z-2xy+4x+4y-2z-6=x*(y*z). 故满足结合律。
(2) ①设任意a ∈R,存在e ∈R,要e*a= ea-2e-2a+6=a ,由于a 的任意性则e=3。
因此e=3是其单位元;
②设任意b ∈R, z ∈R ,要有z*b= zb-2 z-2b+6= z ,由于b 的任意性则z=2,因此 z=2是其零元。
(3)因为*是满足交换律,对于x ∈R ,要存在1
-x ∈R ,须有x*1
-x
= x 1
-x
-2x-21
-x
+6= e=3, 当x ≠2
时,2
321
--=
-x x x。
即对于任意的x ,当x ≠2时x 都是可逆的,且2
321
--=
-x x x。
5.解 f 1,f 2,f 3都满足交换律,f 4满足等幂率,f 2有单位元a ,f 1有零元a ,f 3有零元b 。
习题8.2
1.解 构成代数系统的运算有(2),(3),(4)。
2.解 >⊕<>⊕<>⊕<444},3,2,1,0{,},2,0{,},0{
1f b a
a a a a
b
a
2f b a b a
a b
b
a 3f
b a a b a a
b
a
4f b a b a b a
b
a
表8-2
习题8.3
1.证明 作函数f:{a,b,c}→{ , , },f(a)= ,f(b)= ,f(c)= .显然此映射是双射。
由表8-2可知对于任意的x,y ∈A 都有
有f(x *y)=f(x) ºf(y),故<A , *>≌<B , º>。
2.解 代数系统>+<>⨯<,,R R 与不可能同构。
因为,由同构的性质,如果两个代数系统同构,则两个系统的单位元对应,零元对应,而这里,代数系统<R,⨯>的零元是0,而<R,+>没有零元。
故代数系统>+<>⨯<,,R R 与不可能同构。
复习题八
1.解 ⑴有单位元e=<1,0>,因为,对于任意<a,b >∈S ,均有<>>=<+⋅⋅>=<<*><b a b a b a ,01,1,0,1,且,
>>=<+⋅⋅>=<<*><b a b a a b a ,0,10,1,,故<1,0>单位元
⑵对于<a,b >∈S ,要<a,b >有逆元,需要有<x,y >∈S 使得,<a,b >*<x,y >=<x,y >*<a,b >=<1,0>事实上, 即<1,0>=<a,b >*<x,y >=<ax,ay+b>,因此,ax=1,ay+b=0,当a ≠0时可解得a
b y a
x -
==
,1,且又有
>>=<<*>-
<
0,1,,1b a a
b a。
故当a ≠0时,形式的元素><a,b 都可逆,且
>-
=<
><-a
b a
b a ,1),(1。
2.解 因为a*b=b*a ⇒a=b ,则任意a ∈A ,而*是可结合的,则有a*(a*a)=(a*a)*a ,因此a*a=a ,即*满足等幂律.
3.证明 假设f: Q →Q-{0}是从<Q ,+>到<Q-{0},⨯>的同构,则两个系统的单位元对应,即有f(0)=1。
因为f 是从Q 到Q-{0}的满射,所以,对于任意一个素数p ∈Q -{0}必存在某个x ∈Q ,使得f(x)=p , 又由于f 是一个同构,因此有p=f(x)=f((x-1)+1)=f(x-1)⨯f(1) ,而在Q-{0}中有无穷多个素数,因此,总可以找到一个素数p ,使得x-1≠0,则f(x-1)不是1,这与p 是素数矛盾。
证毕。
4.证明 因为,a a a =*,)()()()(d b c a d c b a ***=***, 所以,)()()()()(c a b a c b a a c b a ***=***=**。
5.证明 对n 用数学归纳法。
当n=1时,由幂的定义则(a *b )1= a *b =(a 1)*(b 1),所以结论成立。
假设n=k 时结论成立,即(a *b )k =a k *b k ,下面考察n=k+1时, (a *b )k +1=(a *b )k *(a *b )=( a k *b k ) *(a *b )= ( a k * a ) *( b k * b ) =a k +1*b k +1。
a b a b a b b b (a )
表8-2
*
c
c c
b
c c c
α
αβ(b )
γαβββββ
γ
γ
γ
c γγ
即n=k+1时,结论也成立。
由归纳法原理,对于任意的正整数n , 都有(a *b )n =a n *b n 。
6.证明 任意n 1,n 2∈N ,只有如下的三种情况:①n 1,n 2都能表示成2的幂的形式,②n 1,n 2都不能表示成2的幂的形式,③一个能表示成2的幂的形式,而另一个不能。
下面就这三种情况分别考虑。
①设存在k 1,k 2∈N ,使得n 1=2k 1,n 2=2k 2,则n 1×n 2=2k 1×2k 2=2k 1+k 2 ∈N ,且f(n 1)= f(n 2)=1, 因此f(n 1×n 2)=f(2k 1+k 2)=1=f(n 1)×f(n 2) =f(2k 1)×f(2k 2);
②n 1,n 2都不能表示成2的幂的形式,则n 1×n 2也不能表示成2的幂的形式, 所以,f(n 1)= f(n 2)=0,因此f(n 1×n 2)=0=f(n 1)×f(n 2)。
③不妨设存在k ∈N ,使得n 1=2k ,,而n 2不能表示成2的幂的形式,则n 1×n 2也不能表示成2的幂的形式,
所以,f(n 1)= 1,f(n 2)=0,因此,f(n 1×n 2)=0=f(n 1)×f(n 2)。
综上所述,代数结构,N <⨯> 与{0,1},<⨯>同态。