人教版七年级数学上册 角度的计算习题练习 (附答案)

合集下载

新人教版七年级数学上册专题训练:角的计算(含答案)

新人教版七年级数学上册专题训练:角的计算(含答案)

专题训练角的计算类型1利用角度的和、差关系找出待求的角与已知角的和、差关系,根据角度和、差来计算.1.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD的度数.解:因为∠AOC=75°,∠BOC=30°,所以∠AO B=∠AOC-∠BOC=75°-30°=45°.又因为∠BOD=75°,所以∠AOD=∠AOB+∠BOD=45°+75°=120°.2.将一副三角板的两个顶点重叠放在一起.(两个三角板中的锐角分别为45°、45°和30°、60°)(1)如图1所示,在此种情形下,当∠DAC=4∠BAD时,求∠CAE的度数;(2)如图2所示,在此种情形下,当∠ACE=3∠BCD时,求∠ACD的度数.解:(1)因为∠BAD+∠DAC=90°,∠DAC=4∠B AD,所以5∠BAD=90°,即∠BAD=18°.所以∠DAC=4×18°=72°.因为∠DAE=90°,所以∠CAE=∠DAE-∠DAC=18°.(2)因为∠BCE=∠DCE-∠BCD=60°-∠BCD,∠ACE=3∠BCD,所以∠ACB=∠ACE+∠BCE=3∠BCD+60°-∠BCD=90°.解得∠BCD=15°.所以∠ACD=∠ACB+∠BCD=90°+15°=105°.类型2利用角平分线的性质角的平分线将角分成两个相等的角,利用角平分线的这个性质,再结合角的和、差关系进行计算.3.如图,点A,O,E在同一直线上,∠AOB=40°,∠EOD=28°46′,OD平分∠COE,求∠COB的度数.解:因为∠EOD=28°46′,OD 平分∠COE,所以∠COE=2∠EOD=2×28°46′=57°32′.又因为∠AOB=40°,所以∠COB=180°-∠AOB-∠COE=180°-40°-57°32′=82°28′.4.已知∠AOB=40°,OD 是∠BOC 的平分线.(1)如图1,当∠AOB 与∠BOC 互补时,求∠COD 的度数;(2)如图2,当∠AOB 与∠BOC 互余时,求∠COD 的度数.解:(1)因为∠AOB 与∠BOC 互补,所以∠AOB+∠BOC =180°.又因为∠AOB=40°,所以∠BOC=180°-40°=140°.因为OD 是∠BOC 的平分线,所以∠COD=12∠BOC=70°. (2)因为∠AOB 与∠BOC 互余,所以∠AOB+∠BOC=90°.又因为∠AOB=40°,所以∠BOC=90°-40°=50°.因为OD 是∠BOC 的平分线,所以∠COD=12∠BOC=25°.类型3 利用方程思想求解在解决有关余角、补角,角的比例关系或倍分关系问题时,常利用方程思想来求解,即通过设未知数,建立方程,通过解方程使问题得以解决.5.一个角的余角比它的补角的23还少40°,求这个角的度数. 解:设这个角的度数为x °,根据题意,得90-x =23(180-x)-40. 解得x =30.所以这个角的度数是30°.6.如图,已知∠AOE 是平角,∠DOE =20°,OB 平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC 的度数.解:设∠COD=2x °,则∠BOC=3x °.因为OB 平分∠AOC,所以∠AOB=3x °.所以2x +3x +3x +20=180.解得x =20.所以∠BOC=3×20°=60°.7.如图,已知∠AOB=12∠BOC,∠COD =∠AOD=3∠AOB ,求∠AOB 和∠COD 的度数.解:设∠AOB=x °,则∠COD=∠AOD=3∠AOB=3x °.因为∠AOB=12∠BOC, 所以∠BOC=2x °.所以3x +3x +2x +x =360.解得x =40.所以∠AOB=40°,∠COD =120°.类型4 利用分类讨论思想求解在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性.8.已知∠AOB=75°,∠AOC =23∠AOB,OD 平分∠AOC,求∠BOD 的大小. 解:因为∠AOB=75°,∠AOC =23∠AOB, 所以∠AOC=23×75°=50°.所以∠AOD=∠COD=25°.如图1,∠BOD =75°+25°=100°;如图2,∠BOD =75°-25°=50°.9.已知:如图,OC 是∠AOB 的平分线.(1)当∠AOB=60°时,求∠AOC 的度数;(2)在(1)的条件下,∠EOC =90°,请在图中补全图形,并求∠AOE 的度数;(3)当∠AOB=α时,∠EOC =90°,直接写出∠AO E 的度数.(用含α的代数式表示)解:(1)因为OC 是∠AOB 的平分线,所以∠AOC=12∠AOB. 因为∠AOB=60°,所以∠AOC=30°.(2)如图1,∠AOE =∠EOC+∠AOC=90°+30°=120°;如图2,∠AOE =∠EOC-∠AOC=90°-30°=60°.(3)90°+α2 或90°-α2.专题训练 整式的加减运算计算:(1)(钦南期末)a 2b +3ab 2-a 2b ;解:原式=3ab 2.(2)2(a -1)-(2a -3)+3;解:原式=4.(3)2(2a 2+9b)+3(-5a 2-4b);解:原式=-11a 2+6b.(4)3(x 3+2x 2-1)-(3x 3+4x 2-2);解:原式=2x 2-1.(5)(钦南期末)(2x 2-12+3x)-4(x -x 2+12); 解:原式=2x 2-12+3x -4x +4x 2-2 =6x 2-x -52.(6)3(x2-x2y-2x2y2)-2(-x2+2x2y-3);解:原式=3x2-3x2y-6x2y2+2x2-4x2y+6=5x2-7x2y-6x2y2+6.(7)-(2x2+3xy-1)+(3x2-3xy+x-3);解:原式=-2x2-3xy+1+3x2-3xy+x-3=x2-6xy+x-2.(8)(4ab-b2)-2(a2+2ab-b2);解:原式=4ab-b2-2a2-4ab+2b2=-2a2+b2.(9)-3(2x2-xy)+4(x2+xy-6);解:原式=-6x2+3xy+4x2+4xy-24=-2x2+7xy-24.(10)(钦州期中)2a2-[-5ab+(ab-a2)]-2ab. 解:原式=2a2+5ab-ab+a2-2ab=3a2+2ab.。

初一上角度计算专题(含答案)

初一上角度计算专题(含答案)

角度计算能力专项练习1.已知:如图示,∠AOB是直角,∠AOC=40°,ON是∠AOC的平分线,OM是∠BOC的平分线.(1)求∠MON的大小;(2)当锐角∠AOC的大小发生改变时,∠MON的大小是否发生改变?为什么?2.如图示,已知∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.(1)求∠EOF的度数;(2)若将条件“∠AOB是直角,∠BOC=60°”改为:∠AOB=x°,∠EOF=y°,其它条件不变.①则请用x的代数式来表示y;②如果∠AOB+∠EOF=156°.则∠EOF是多少度?3.如图,∠AOB=90°,∠BOC=30°,射线OM平分∠AOC,ON平分∠BOC.(1)求∠MON的度数;(2)如果(1)中,∠AOB=α,其他条件不变,求∠MON的度数;(3)如果(1)中,∠BOC=β(β为锐角),其他条件不变,求∠MON的度数;(4)从(1)、(2)、(3)的结果中,你能看出什么规律?4.(1)如图所示,已知∠AOB=90°,∠BOC=30°,OM平分∠AOC,ON平分∠BOC,求∠MON的度数;(2)如(1)中的∠AOB=α,∠BOC=β,其它条件不变,请用求α或β来表示∠MON的度数.5.如图所示,O为直线AB上一点,∠AOC=50°,OD平分∠AOC,∠DOE=90°.(1)求∠BOD的度数;(2)试判断∠BOE和∠COE有怎样的数量关系,说说你的理由.6.如图所示,O是直线AB上一点,∠COD是直角,OE平分∠BOC.(1)若∠AOC=120°,则∠DOE=;若∠AOC=140°,则∠DOE=;(2)若∠AOC=α,则∠DOE=(用含α的式子表示),请说明理由;(3)在∠AOC的内部有一条射线OF,满足∠AOC﹣3∠AOF=2∠BOE+∠AOF,试确定∠AOF与∠DOE 的度数之间的关系,并说明理由.7.如图所示,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB=90°,∠BOC=60°时,∠MON的度数是多少?为什么?(2)如图2,当∠AOB=70°,∠BOC=60°时,∠MON=(直接写出结果).(3)如图3,当∠AOB=α,∠BOC=β时,猜想:∠MON=(直接写出结果).8.已知∠AOB内部有三条射线,其中,OE平分∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=90°,∠AOC=30°,求∠EOF的度数;(2)如图2,若∠AOB=α,求∠EOF的度数(用含α的式子表示);(3)若将题中的“平分”的条件改为“∠EOB=∠COB,∠COF=∠COA”,且∠AOB=α,用含α的式子表示∠EOF的度数为.9.在学习了角的相关知识后,老师给张萌留了道作业题,请你帮助张萌做完这道题.作业题已知∠MON=100°,在∠MON的外部画∠AON,OB,BO分别是∠MOA和∠BON的平分线.(题中所有的角都是小于平角的角)(1)如图1,若∠AON=40°,求∠COA的度数;(2)如图2,若∠AON=120°,求∠COA的度数.10.已知∠AOB内部有三条射线,其中OE平分∠BOC,OF平分∠AOC.(1)如图1,若∠AOB=90°,∠AOC=30°,求EOF的度数;(2)如图2,若∠AOB=α,求∠EOF的度数(用含α的式子表示);(3)若将题中的“OE平分∠BOC,OF平分∠AOC”的条件改为“∠EOB=∠BOC,∠COF=∠AOC”,且∠AOB=α,求∠EOF的度数(用含α的式子表示)11.如图,OM是∠AOC的平分线,ON是∠BOC的平分线.(1)如图1,当∠AOB是直角,∠BOC=60°时,∠MON的度数是多少?(2)如图2,当∠AOB=α,∠BOC=60°时,猜想∠MON与α的数量关系;(3)如图3,当∠AOB=α,∠BOC=β时,猜想∠MON与α、β有数量关系吗?如果有,指出结论并说明理由.12.已知∠AOB=160°,∠COE=80°,OF平分∠AOE.(1)如图1,若∠COF=14°,则∠BOE=;若∠COF=n°,则∠BOE=,∠BOE与∠COF的数量关系为;(2)当射线OE绕点O逆时针旋转到如图2的位置时,(1)中∠BOE与∠COF的数量关系是否仍然成立?请说明理由;(3)在(2)的条件下,如图3,在∠BOE的内部是否存在一条射线OD,使得∠BOD为直角,且∠DOF=3∠DOE?若存在,请求出∠COF的度数;若不存在,请说明理由.13.问题引入:(1)如图①,在△ABC中,点O是∠ABC和∠ACB平分线的交点,若∠A=α,则∠BOC=(用α表示);如图②,∠CBO=∠ABC,∠BCO=∠ACB,∠A=α,则∠BOC=(用α表示)拓展研究:(2)如图③,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC=(用α表示),并说明理由.类比研究:(3)BO、CO分别是△ABC的外角∠DBC、∠ECB的n等分线,它们交于点O,∠CBO=∠DBC,∠BCO=∠ECB,∠A=α,请猜想∠BOC=.14.如图(a),将两块直角三角尺的直角顶点C叠放在一起.(1)若∠DCE=25°,∠ACB=;若∠ACB=130°,则∠DCE=;(2)猜想∠ACB与∠DCE大大小有何特殊关系,并说明理由;(3)如图(b),若是两个同样的三角尺60°锐角的顶点A重合在一起,则∠DAB与∠CAE的大小有何关系,请说明理由;(4)已知∠AOB=α,∠COD=β(α、β都是锐角),如图(c),若把它们的顶点O重合在一起,则∠AOD 与∠BOC的大小有何关系,请说明理由.15.点O为直线AB上一点,过点O作射线OC,使∠BOC=65°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则∠MOC=;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是∠MOB的角平分线,求旋转角∠BON和∠CON的度数;(3)将三角板MON绕点O逆时针旋转至图③时,∠NOC=∠AOM,求∠NOB的度数.北师版初一上角度提升参考答案与试题解析一.解答题(共15小题)1.解:(1)∠MON=∠MOC﹣∠NOC=65°﹣20°=45°,(2)当锐角∠AOC的大小发生改变时,∠MON的大小不发生改变.∵=,又∠AOB是直角,∴.2.解:(1)∵∠AOB是直角,∠BOC=60°,OE平分∠AOC,OF平分∠BOC.∴∠EOF=∠EOC﹣∠FOC=∠AOC﹣∠BOC=(∠AOB+∠BOC)﹣∠BOC=∠AOB=45°;(2)①∵∠AOB=x°,∠EOF=y°.y=x.②∵∠AOB+∠EOF=156°.则x+y=156°,y=52°.3.解:(1)∠MON=60°﹣15°=45°;(2)∠AOB=α,∠BOC=30°,∠MON=α+15°﹣15°=α.(3)∠AOB=90°,∠BOC=β,∴∠AOC=β+90°.∠MON=β+45°﹣β=45°.(4)根据(1)、(2)、(3)可知∠MON=∠BOC,与∠BOC的大小无关.4.解:(1)∠MON=∠MOC﹣∠NOC=60°﹣15°=45°,(2)∠MON=∠MOC﹣∠NOC=(α+β)﹣β=α.5.解:(1)∠BOD=180°﹣∠AOD=180°﹣25°=155°;(2)∠BOE=∠COE,理由如下:∠BOE=∠BOD﹣∠DOE=155°﹣90°=65°,∠COE=∠DOE﹣∠COD=90°﹣25°=65°.6.解:(1)60°;70°;(2)。

人教版七年级上册数学期末复习:角的计算综合 练习题汇编(含答案)

人教版七年级上册数学期末复习:角的计算综合 练习题汇编(含答案)

人教版七年级上册数学期末复习:角的计算综合练习题汇编1.如图所示,∠AOB是平角,OM、ON分别是∠AOC、∠BOD的平分线.(1)当∠BOC=140°时,求∠AOM的度数;(2)当∠AOC=30°,∠BOD=60°时,求∠MON的度数;(3)当∠COD=x度时,则∠MON=度.(请直接写出答案)2.如图所示,OC是∠AOD的平分线,OE是∠BOD的平分线,∠EOC=65°,∠DOC=25°,求∠AOB的度数.3.如图,已知射线OC在∠AOB内,OM和ON分别平分∠AOC和∠BOC.(1)若∠AOC=50°,∠BOC=30°,求∠MON的度数.(2)探究∠MON与∠AOB的数量关系.4.如图,已知A、O、B三点在一条直线上,OC平分∠AOD,∠AOC+∠EOB=90°.(1)求∠COE的度数;(2)判断∠DOE和∠EOB之间有怎样的关系,并说明理由.5.填空,完成下列说理过程.如图,点A、O、B在同一条直线上,OD,OE分别平分∠AOC和∠BOC.(1)求∠DOE的度数;(2)如果∠COD=65°,求∠AOE的度数.解:(1)如图,因为OD是∠AOC的平分线,所以∠COD=∠AOC因为OE是∠BOC的平分线,所以∠COE=所以∠DOE=∠COD+ =(∠AOC+∠BOC)=∠AOB=°(2)由(1)可知∠DOE=90°因为∠COD=65°所以=∠COD=65°则:∠AOE=∠AOD+ =°6.如图,O为直线AB上一点,∠BOE=80°,直线CD经过点O.。

人教版七年级数学上第四章几何图形初步知能素养小专题(六) 角度的计算习题课件

人教版七年级数学上第四章几何图形初步知能素养小专题(六) 角度的计算习题课件

七年级 数学 上册 人教版
类型四:分类讨论思想求角度 7.(辉县期末)在平面上,已知∠AOB=80°,∠BOC=50°,若 OM 平分 ∠AOB,ON 平分∠BOC,求∠MON 的度数.
七年级 数学 上册 人教版
解:分两种情况计算:
如图①,当 OC 落在∠AOB 的内部时,
因为 OM 平分∠AOB,
七年级 数学 上册 人教版
(2)因为 OC 平分∠AOD,∠COE=∠1+∠3=70°, 所以∠3=∠4=70°-∠1. 又因为∠1+∠2+∠3+∠4=180°, 所以∠1+∠2+2(70°-∠1)=180°, 所以∠2=40°+∠1, 因为∠2=3∠1,即 40°+∠1=3∠1,所以∠1=20°, 所以∠2=3∠1=3×20°=60°. 即∠2 的度数为 60°.
七年级 数学 上册 人教版
如答图①,当∠AOD 在∠AOB 外部时,
因为∠COD=∠AOC+∠AOD=60°,
OE 是∠COD 的平分线,
1
1
所以∠COE=2∠COD=2×60°=30°,
所以∠AOE=∠AOC-∠COE=10°;
答图①
七年级 数学 上册 人教版
如答图②,当∠AOD 在∠AOB 内部时, 因为∠COD=∠AOC-∠AOD=20°, OE 是∠COD 的平分线, 所以∠COE=12∠COD=12×20°=10°, 所以∠AOE=∠AOC-∠COE=30°. 所以∠AOE 的度数为 10°或 30°.
答图②
七年级 数学 上册 人教版
(3)若把“∠AOB=70°,∠BOC=30°”改为“∠AOB 是锐角,且∠AOB =n°,∠BOC=25n°”,(2)中的其余条件不变,请直接写出∠AOE 的度数 为________(用含 n 的式子表示).

人教版七年级数学上册第四章《角》课时练习题(含答案)

人教版七年级数学上册第四章《角》课时练习题(含答案)

人教版七年级数学上册第四章《4.3角》课时练习题(含答案)一、单选题1.下列各度数的角,能借助一副三角尺画出的是( )A .55°B .65°C .75°D .85°2.如图所示,正方形网格中有α∠和∠β,如果每个小正方形的边长都为1,估测α∠与∠β的大小关系为( )A .αβ∠<∠B .αβ∠=∠C .αβ∠>∠D .无法估测3.下列换算中,正确的是( )A .23123623.48'''︒=︒B .22.252215'︒=︒C .18183018.183'''︒=︒D .47.1147736︒︒'=''4.已知6032α'∠=︒,则α∠的余角是( )A .2928'︒B .2968'︒C .11928'︒D .11968'︒5.已知∠A =38°,则∠A 的补角的度数是( )A .52°B .62°C .142°D .162° 6.如图,在同一平面内,90AOB COD ∠=∠=︒,AOF DOF ∠=∠,点E 为OF 反向延长线上一点(图中所有角均指小于180︒的角).下列结论:①COE BOE ∠=∠;②180AOD BOC ∠+∠=︒;③90BOC AOD ∠-∠=︒;④180COE BOF ∠+∠=︒.其中正确结论的个数有( )A .1个B .2个C .3个D .4个7.如图,68AOB ∠=︒,OC 平分AOD ∠且15COD ∠=︒,则BOD ∠的度数为( ).A .28︒B .38︒C .48︒D .53︒8.一个角的补角为138︒,则这个角的余角为( )A .38︒B .42︒C .48︒D .132︒二、填空题9.如图,过直线AB 上一点O 作射线OC ,∠BOC =29°18′,则∠AOC 的度数为_____.10.如图,直线,AB CD 相交于O ,OE 平分,∠⊥AOC OF OE ,若46BOD ∠=︒,则DOF ∠的度数为______︒.11.已知,如图,A 、O 、B 在同一直线上,OF 平分AOB ∠,12∠=∠,3=4∠∠.(1)射线OD 是_______的角平分线;(2)AOC ∠的补角是_______;(3)AOC ∠的余角是_______;(4)_______是2∠的余角;(5)DOB ∠的补角是_______;(6)_______是COF ∠的补角.12.如图,若OC 、OD 三等分AOB ∠,则AOB ∠=_______AOC ∠=_______AOD ∠,COD ∠=_______AOB ∠,BOC ∠=∠_______.13.如图,已知∠AOB =90°,射线OC 在∠AOB 内部,OD 平分∠AOC ,OE 平分∠BOC ,则∠DOE =_____°.14.如图,将一副三角尺的两个锐角(30°角和45°角)的顶点P 叠放在一起,没有重叠的部分分别记作∠1和∠2,若∠1与∠2的和为61°,则∠APC 的度数是 _____.三、解答题15.如图,点P 是直线l 外一点,过点P 画直线P A ,PB ,PC ,…,分别交直线l 于点A ,B ,C ,….用量角器量出1∠,2∠,3∠的度数,并量出P A ,PB ,PC 的长度,你发现了什么?16.如图,两个直角三角形的直角顶点重合,∠AOC =40°,求∠BOD 的度数.结合图形,完成填空:解:因为∠AOC+∠COB = °,∠COB+∠BOD = ①所以∠AOC = .②因为∠AOC =40°,所以∠BOD = °.在上面①到②的推导过程中,理由依据是: .17.如图①,已知线段AB=18cm,CD=2cm,线段CD在线段AB上运动,E,F分别是AC,BD的中点.(1)若AC=4cm,则EF=cm;(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由.(3)a.我们发现角的很多规律和线段一样,如图②,已知∠COD在∠AOB内部转动,OE,OF分别平分∠AOC和∠BOD,若∠AOB=140°,∠COD=40°,求∠EOF.b.由此,你猜想∠EOF,∠AOB和∠COD会有怎样的数量关系.(直接写出猜想即可)18.如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°.将一块直角三角板的直角顶点放在点O处,边OM与射线OB重合,另一边ON位于直线AB的下方.(1)将图1的三角板绕点O逆时针旋转至图2,使边OM在∠BOC的内部,且恰好平分∠BOC,问:此时ON所在直线是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,设旋转时间为t秒,在旋转的过程中,ON所在直线或OM所在直线何时会恰好平分∠AOC?请求所有满足条件的t值;(3)将图1中的三角板绕点O顺时针旋转至图3,使边ON在∠AOC的内部,试探索在旋转过程中,∠AOM和∠CON的差是否会发生变化?若不变,请求出这个定值;若变化,请求出变化范围.19.已知:160AOD ∠=︒,OB 、OM 、ON 是AOD ∠内的射线.(1)如图1,若OM 平分AOB ∠,ON 平分BOD ∠.当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的度数.(2)OC 也是AOD ∠内的射线,如图2,若20BOC ∠=︒,OM 平分AOC ∠,ON 平分BOD ∠,当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的大小.20.【阅读理解】定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”.如图1,点P 在直线l 上,射线PR ,PS ,PT 位于直线l 同侧,若PS 平分∠RPT ,则有∠RPT =2∠RPS ,所以我们称射线PR 是射线PS ,PT 的“双倍和谐线”.【迁移运用】(1)如图1,射线PS(选填“是”或“不是”)射线PR,PT的“双倍和谐线”;射线PT(选填“是”或“不是”)射线PS,PR的“双倍和谐线”;(2)如图2,点O在直线MN上,OA MN,∠AOB=40°,射线OC从ON出发,绕点O以每秒4°的速度逆时针旋转,运动时间为t秒,当射线OC与射线OA重合时,运动停止.①当射线OA是射线OB,OC的“双倍和谐线”时,求t的值;②若在射线OC旋转的同时,∠AOB绕点O以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD平分∠AOB.当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,求∠CON的度数。

新人教版七年级数学上册专题训练:角的计算(含答案)

新人教版七年级数学上册专题训练:角的计算(含答案)

新人教版七年级数学上册专题训练:角的计算(含答案)专题训练角的计算类型1 利用角度的和、差关系要求求解的角与已知角之间有和、差关系,可以利用角度和、差来计算。

1.如图,已知 $\angle AOC=\angle BOD=75°$,$\angle BOC=30°$,求 $\angle AOD$ 的度数。

解:因为 $\angle AOC=75°$,$\angle BOC=30°$,所以$\angle AOB=\angle AOC-\angle BOC=75°-30°=45°$。

又因为$\angle BOD=75°$,所以 $\angle AOD=\angle AOB+\angle BOD=45°+75°=120°$。

2.将一副三角板的两个顶点重叠放在一起(两个三角板中的锐角分别为45°、45°和30°、60°)。

1) 如图1所示,在此种情形下,当 $\angle DAC=4\angle BAD$ 时,求 $\angle CAE$ 的度数。

2) 如图2所示,在此种情形下,当 $\angle ACE=3\angle BCD$ 时,求 $\angle ACD$ 的度数。

解:(1) 因为 $\angle BAD+\angle DAC=90°$,$\angle DAC=4\angle BAD$,所以 $5\angle BAD=90°$,即 $\angle BAD=18°$。

所以 $\angle DAC=4\times18°=72°$。

因为 $\angle DAE=90°$,所以 $\angle CAE=\angle DAE-\angle DAC=18°$。

2) 因为 $\angle BCE=\angle DCE-\angle BCD=60°-\angle BCD$,$\angle ACE=3\angle BCD$,所以 $\angle ACB=\angle ACE+\angle BCE=3\angle BCD+60°-\angle BCD=90°$。

初一求角度的试题及答案

初一求角度的试题及答案

初一求角度的试题及答案一、选择题1. 在一个直角三角形中,一个锐角的度数是30°,那么另一个锐角的度数是多少?A. 30°B. 45°C. 60°D. 90°答案:C2. 如果一个角的补角是120°,那么这个角的度数是多少?A. 60°B. 30°C. 45°D. 90°答案:A二、填空题3. 一个角的余角是40°,那么这个角的度数是______。

答案:50°4. 已知一个角的度数是75°,那么它的补角的度数是______。

答案:105°三、计算题5. 已知一个角的度数是45°,求它的余角和补角的度数。

答案:余角是45°,补角是135°。

6. 如果一个角的度数比它的余角大20°,求这个角的度数。

答案:这个角的度数是60°。

四、解答题7. 一个角的度数是它的补角的一半,求这个角的度数。

答案:设这个角的度数为x°,则它的补角为180° - x°。

根据题意,有:x = 1/2(180° - x)解得:x = 60°8. 一个角的度数是它的余角的两倍,求这个角的度数。

答案:设这个角的度数为x°,则它的余角为90° - x°。

根据题意,有:x = 2(90° - x)解得:x = 60°。

人教版七年级上册数学 角度的计算专题解析及训练(word版,有答案)

人教版七年级上册数学  角度的计算专题解析及训练(word版,有答案)

专题6 角一、单选题1.(新人教版数学七年级上册第四章几何图形初步4.3.2《角的比较与运算》课时练习)如图所示,从点O出发的5条射线,可以组成的角的个数是().A. 4B. 6C. 8D. 10【答案】D2.北京时间上午8:30时,时钟上时针和分针之间的夹角(小于平角)是()A. 85°B. 75°C. 70°D. 60°【答案】B【解析】在钟面上,被12小时划分为12大格,每1大格对应的度数是30度,上午8:30的时候,时针指向8时和9时的中间位置,分针指向6时,两针之间刚好间隔2.5格,∴8:30时,时针和分针之间的夹角为:30° 2.5=75°.3.如图,下列说法错误的是()A. OA的方向是北偏东40°B. OB的方向是北偏西75°C. OC的方向是西南方向D. OD的方向是南偏东40°【答案】A【解析】A选项中,由图可知“OA的方向是北偏东50°”,所以本选项说法错误;B选项中,由图可知:“OB的方向是北偏西75°”是正确的;C选项中,由图可知;“OC的方向是西南方向”是正确的;D选项中,由图可知:“OD的方向是南偏东40°”是正确的;故选A.4.下列说法正确的是()A. A在B的南偏东30°的方向上,则B也在A的南偏东30°的方向上;B. A在B的南偏东30°的方向上,则B在A的南偏东60°的方向上;C. A在B的南偏东30°的方向上,则B在A的北偏西30°的方向上;D. A在B的南偏东30°的方向上,则B在A的北偏西60°的方向上【答案】C5.(北师大版数学七年级上册第四章基本平面图形4.3角同步测试题)一个角是70°18′,则这个角等于()A. 70.18° B. 70.3° C. 70.018° D. 70.03°【答案】B【解析】70°18′=70°+18′ 60=70°+0.3°=70.3°.故选B.6.如图,射线OC,OD分别在∠AOB的内部、外部,下列结论错误的是()A. ∠AOB<∠AODB. ∠BOC<∠AOBC. ∠COD>∠AODD. ∠AOB>∠AOC【答案】C【解析】观察图形可知:A.∠AOB<∠AOD正确;B.∠BOC<∠AOB正确;C.∠COD>∠AOD错误;D.∠AOB>∠AOC正确.故选C.7.(新人教版数学七年级上册第四章几何图形初步4.3.2《角的比较与运算》课时练)下列语句中,正确的是().A. 比直角大的角钝角; B. 比平角小的角是钝角C. 钝角的平分线把钝角分为两个锐角;D. 钝角与锐角的差是锐角【答案】C8.(新人教版数学七年级上册第四章几何图形初步4.3.1《角》课时练习)已知α 、β都是钝角,甲、乙、丙、丁四个同学的计算16(α +β)的结果依次为28°、48°、60°、88°,其中只有一个同学计算结果是正确的,则得到正确结果的同学是()A. 甲B. 乙C. 丙D. 丁【答案】B【解析】甲、乙、丙、丁四个同学的计算16(α +β)的结果依次为28°、48°、60°、88°,那么这四个同学计算α+β的结果依次为168°、288°、360°、528°,又因为两个钝角的和应大于180°且小于360°,所以只有乙同学的计算正确,故选B.9.(山东省东昌府区梁水镇中心中学2016-2017学年七年级下学期期中考试数学试题)如图,如果∠AOC=∠BOD,则∠AOB与∠DOC的大小关系是()A. ∠AOB>∠DOCB. ∠AOB<∠DOCC. ∠AOB=∠DOCD. 无法比较【答案】C【解析】∵∠AOC=∠BOD,∴∠AOC-∠BOC=∠BOD-∠BOC,∴∠AOB=∠DOC.故选C.10.如图,OB、OC是∠AOD的任意两条射线,OM平分∠AOB,ON平分∠COD,若∠MON=α,∠BOC=β,则表示∠AOD的代数式为( )。

七年级数学上册角同步练习含解析新版新人教版

七年级数学上册角同步练习含解析新版新人教版

角一. 选择题.1.钟表在1点30分时,它的时针和分针所成的角度是().A.135° B.125° C.145° D.115°【答案】A【分析】根据钟表上的指针确定出所求角度数即可,时针每分钟走0.5°,钟面每小格的角度为6°.【详解】根据题意得:钟表在1点30分时,它的时针和分针所成的角度是135°,故选:A.2. 12点15分,钟表上时针与分针所成的夹角的度数为.A.B.C.D.【答案】C【分析】:时针在钟面上每分钟转0.5°,分针每分钟转6°,所以钟表上12小时15分,求出时针与分针的夹角即可.【详解】12点15分时,时钟的时针与分针的夹角是6°×15−0.25×30°=82.5度.故选:C.【名师点睛】本题考查钟表时针与分针的夹角.在钟表问题中,常利用时针与分针转动的度数关系:分针每分钟转动6°,时针每小时转动30°,并且利用起点时间时针和分针的位置关系建立角的图形.3.已知,,则与的大小关系是A.B.C.D.无法确定【答案】A【解析】:分析:一度等于60′,知道分与度之间的转化,统一单位后比较大小即可求解.详解:∵∠α=21′,∠β=0.35°=21′,∴∠α=∠β.故选:A.4.如图,下列说法中不正确的是()A.∠1与∠AOB是同一个角B.∠AOC也可以用∠O表示C.∠β=∠BOC D.图中有三个角【答案】B【分析】:根据角的表示方法:角可以用一个大写字母表示,也可以用三个大写字母表示.其中顶点字母要写在中间,唯有在顶点处只有一个角的情况,才可用顶点处的一个字母来记这个角,否则分不清这个字母究竟表示哪个角.角还可以用一个希腊字母(如∠α,∠β,∠γ、…)表示,或用阿拉伯数字(∠1,∠2…)表示进行分析即可.【详解】A、∠1与∠AOB是同一个角,说法正确;B、∠AOC也可用∠O来表示,说法错误;C、∠β与∠BOC是同一个角,说法正确;D、图中共有三个角:∠AOB,∠AOC,∠BOC,说法正确;故选:B.5.如图所示,从O点出发的五条射线,可以组成小于平角的角的个数是 ( )A.4个B.8个C.9个D.10个【答案】D【分析】:先以OA为角的一边,最大角为∠AOB,依次得到以OD、OC、OE、OB为另一边的五个角;然后利用同样的方法得到其他角,最后计算所有角的和即可求解.【详解】点O出发的五条射线,可以组成的小于平角的角有:∠AOB,∠AOC,∠AOD,∠AOE,∠BOC,∠BOD,∠BOE,∠COD,∠COE,∠DOE.故答案选D.6.钟表4点30分时,时针与分针所成的角的度数为( )A.45°B.30°C.60°D.75°【答案】A【分析】钟表上按小时算分12个格,每个格对应的是30度,分针走一圈时针走一格,30分钟走半格,4点30分时针和分针的夹角是45度。

人教版七年级数学上册 角度的计算习题练习 (附答案)

人教版七年级数学上册  角度的计算习题练习 (附答案)

七年级上册数学角度的计算习题一、选择题1.如图,∠AOB是一直角,∠AOC=40°,OD平分∠BOC,则∠AOD等于()A. 65°B. 50°C. 40°D. 25°2.在15°、65°、75°、135°的角中,能用一副三角尺画出来的有()A. 1个B. 2个C. 3个D. 4个3.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()A . 90°B . 120°C . 160°D . 180°4.一个钝角与一个锐角的差是( )A . 锐角B . 钝角C . 直角D . 不能确定 5.如图,∠AOB 是直角,∠COD 也是直角,若∠AOC =α,则∠BOD 等于 ( ).A .90°+αB .90°-αC .180°+αD .180°-α6.如图,射线OB 、OC 将∠AOD 分成三部分,下列判断错误的是( )DABC OA.如果∠AOB=∠COD,那么∠AOC=∠BODB.如果∠AOB>∠COD,那么∠AOC>∠BODC.如果∠AOB<∠COD,那么∠AOC<∠BODD.如果∠AOB=∠BOC,那么∠AOC=∠BOD二、填空题7.比较两角大小的方法有:(1)法;(2)法.三、解答题8.如图,将一副三角尺的两个直角顶点O重合在一起,在同一平面内旋转其中一个三角尺.(1)如图1,若∠BOC=70°,求∠AOD的度数.(2)如图2,若∠BOC=50°,求∠AOD的度数.(3)如图1,请猜想∠BOC与∠AOD的关系,并写出理由.9.下面是小马虎解的一道题题目:在同一平面上,若∠BOA=70°,∠BOC=15°,求∠AOC的度数.解:根据题意可画出图∵∠AOC=∠BOA-∠BOC=70°-15°=55°∴∠AOC=55°若你是老师,会判小马虎满分吗?若会,说明理由.若不会,给出你认为正确的解法.10.把一副三角尺如图所示拼在一起.(1)写出图中∠A、∠B、∠BCD、∠D、∠AED的度数;(2)用小于号“<”将上述各角连接起来.11.如图所示,点O在直线AB上,并且∠AOC=∠BOC=90°,∠EOF=90°,试判断∠AOE 和∠COF,∠COE和∠BOF的大小关系.12.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD.答案解析1.【答案】A【解析】∵∠AOB是一直角,∠AOC=40°,∴∠COB=50°,∵OD平分∠BOC,∴∠COD=25°,∵∠AOD=∠AOC+∠COD,∴∠AOD=65°.故选A.2.【答案】C【解析】15°=45°-30°,65°不能画出,75°=30°+45°,135°=45°+90°,所以能用一副三角尺画出来的有15°、75°,135°共3个,故选C.3.【答案】D【解析】设∠AOD=a,∠AOC=90°+a,∠BOD=90°-a,所以∠AOC+∠BOD=90°+a+90°-a=180°.故选D.4.【答案】D【解析】一个钝角与一个锐角的差可能是锐角、直角也可能是钝角.故选D.5.【答案】B6.【答案】D【解析】A、如果∠AOB=∠COD,那么∠AOC=∠BOD,本选项正确;B、如果∠AOB>∠COD,那么∠AOC>∠BOD,本选项正确;C、如果∠AOB<∠COD,那么∠AOC<∠BOC,本选项正确;D、如果∠AOB=∠BOC,那么∠AOC=∠BOD,本选项错误.故选D.7.【答案】(1)度量;(2)叠合【解析】角的大小比较的两种方法:(1)度量法,即用量角器量角的度数,角的度数越大,角越大.(2)叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,另一边都不落在重合边的同侧,观察另一边的位置,据此判断即可.8.【答案】解:(1)∵∠BOC+∠BOD=90,∠BOC=70°,∴∠BOD=20°,∴∠AOD=∠AOB+∠BOD=110°.(2)∵∠AOB=∠DOC=90°,又∵∠AOB+∠AOD+∠DOC+∠BOC=360°,∴∠BOC+∠AOD=180°∵∠BOC=50°,∴∠AOD=180-∠BOC=130°.(3)结论:∠BOC+∠AOD=180°.理由:∵∠AOB=90°,∠COD=90°,∴∠BOC+∠AOD=(90°-∠AOC)+(90°+∠AOC)=90°-∠AOC+90°+∠AOC=180°,∴∠BOC+∠AOD=180°.【解析】(1)∠BOC和∠BOD互余,故∠BOD=20°,故可知∠AOD的度数.(2)利用∠BOC与∠AOD互补求∠AOD度数.(3)根据角的互补,叠和部分恰好为∠AOD的补角,故∠BOC和∠AOD的和始终等于180度.9.【答案】解:不会,如图,当OC在∠AOB的内部时,∠AOC=∠BOA-∠BOC=55°,当OC在∠AOB的外部时,∠AOC=∠BOA+∠BOC=85°,故∠AOC的度数是55°或85°.【解析】在同一平面内,∠BOA与∠BOC可能存在两种情况,即当OC在∠AOB的内部或OC在∠AOB的外部.10.【答案】解:(1)∠A=30°,∠B=90°,∠BCD=150°,∠D=45°,∠AED=135°;(2)∠A<∠D<∠B<∠AED<∠BCD.【解析】(1)一副三角尺一个是等腰直角三角形,另一个是一个角为30°的直角三角形,看图写出各个角的度数,(2)按角的大小顺序连接.11.【答案】解:因为∠EOF=∠COF+∠COE=90°,∠AOC=∠AOE+∠COE=90°,即∠AOE和∠COF都与∠COE互余,根据同角的余角相等得:∠AOE=∠COF,同理可得出:∠COE=∠BOF.【解析】根据已知得出∠AOE和∠COF都与∠COE互余,进而得出∠AOE=∠COF,即可得出:∠COE=∠BOF.12.【答案】解:∵∠AOC=75°,∠BOC=30°,∴∠AOB=∠AOC-∠BOC=75°-30°=45°,又∵∠BOD=75°,∴∠AOD=∠AOB+∠BOD=45°+75°=120°.故答案为120°.【解析】根据∠AOC=∠BOD=75°,∠BOC=30°,利用角的和差关系先求出∠AOB的度数,再求∠AOD.。

人教版七年级数学《角度换算》计算题专项练习(含答案)

人教版七年级数学《角度换算》计算题专项练习(含答案)

人教版七年级数学《角度换算》计算题专项练习学校:班级:姓名:得分:1.计算:13°58′+28°37′×2.2.计算(结果用度、分、秒表示):22°18′20″×5﹣28°52′46″.3.计算:(1)90°﹣36°12'15″(2)32°17'53“+42°42'7″(3)25°12'35“×5;(4)53°÷6.5.计算:(1)27°26′+53°48′(2)90°﹣79°18′6″.6.计算(1)25°34′48″﹣15°26′37″(2)105°18′48″+35.285°.7.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.8.计算:180°﹣48°39′40″.9.计算:26°21′30″+42°38′30″.10.(1)180°﹣(34°55′+21°33′);(2)(180°﹣91°31′24″)÷2.11.计算:72°35′÷2+18°33′×4.12.计算:48°39′+67°41′.13.计算:18°20′32″+30°15′22″.14.计算:180°﹣22°18′×5.15.计算:56°31′+29°43′×6.16.计算:49°28′52″÷4.人教版七年级数学《角度换算》计算题专项练习参考答案1.计算:13°58′+28°37′×2.【解答】解:13°58′+28°37′×2,=13°58′+57°14′,=71°12′.2.计算(结果用度、分、秒表示)22°18′20″×5﹣28°52′46″.【解答】解:22°18'20''×5﹣28°52'46''=110°90'100''﹣28°52'46''=82°38'54''.3.计算:(1)90°﹣36°12'15″(2)32°17'53“+42°42'7″(3)25°12'35“×5;(4)53°÷6.【解答】解:(1)90°﹣36°12'15″=53°′45″;(2)32°17'53“+42°42'7″=74°59′60″=75°(3)25°12'35“×5=125°60′175″=126°2′55″;(4)53°÷6=8°50′.4.计算:(1)27°26′+53°48′(2)90°﹣79°18′6″.【解答】解:(1)原式=80°74′=81°14′;(2)原式=89°59′60″﹣79°18′6″=10°41′54″.5.计算(1)25°34′48″﹣15°26′37″(2)105°18′48″+35.285°.【解答】解:(1)25°34′48″﹣15°26′37″=10°8′11″;(2)105°18′48″+35.285°=105°18′48″+35°17′6″=140°35′54″.6.计算:(1)40°26′+30°30′30″÷6;(2)13°53′×3﹣32°5′31″.【解答】解:(1)40°26′+30°30′30″÷6=40°26′+5°5′5″=45°31′5″;(2)13°53′×3﹣32°5′31″=41°39′﹣32°5′31″=9°33′29″.7.计算:180°﹣48°39′40″.【解答】解:180°﹣48°39′40″=179°59′60″﹣48°39′40″=131°20′20″8.计算:26°21′30″+42°38′30″.【解答】解:26°21′30″+42°38′30″=68°59′60″=69°.9.(1)180°﹣(34°55′+21°33′);(2)(180°﹣91°31′24″)÷2.【解答】解:(1)原式=180°﹣55°88′=179°60′﹣56°28′=123°32′;(2)原式=(179°59′60″﹣91°31′24″)÷2=88°28′36″÷2=44°14′18″.10.计算:72°35′÷2+18°33′×4.【解答】解:原式=36° 17′30″+74° 12′=110° 29′30″.11.计算:48°39′+67°41′.【解答】解:48°39′+67°41′=115°80′=116°20′.12.计算:18°20′32″+30°15′22″.【解答】解:原式=48°35'54″.(4分)13.计算:180°﹣22°18′×5.【解答】解:原式=180°﹣110°90′=179°60′﹣111°30′=68°30′.14.计算:56°31′+29°43′×6.【解答】解;原式=56°31′+174°258′=230°289′=234°49′.15.计算:49°28′52″÷4.【解答】解:49°28′52″÷4=12°22′13″.。

人教版数学七年级上册 4.3 角的度量 同步练习(含答案)

人教版数学七年级上册 4.3 角的度量 同步练习(含答案)

ABC 4.3 角的度量一、选择:1.下列关于角的说法正确的个数是( )①角是由两条射线组成的图形;②角的边越长,角越大; ③在角一边延长线上取一点D;④角可以看作由一条射线绕着它的端点旋转而形成的图形. A.1个 B.2个 C.3个 D.4个2.下列4个图形中,能用∠1,∠AOB,∠O 三种方法表示同一角的图形是( )AA1BO BA1B OCA B OCDA 1BOD3.图中,小于平角的角有( )A.5个B.6个C.7个D.8个 二、填空:4.将一个周角分成360份,其中每一份是______°的角, 直角等于____°,平角等于______°.5.30.6°=_____°_____′=_______′;30°6′=_______′______°. 三、解答题:6.计算:(1)49°38′+66°22′; (2)180°-79°19′; (2)22°16′×5; (4)182°36′÷4.7.根据下列语句画图: (1)画∠AOB=100°;(2)在∠AOB的内部画射线OC,使∠BOC=50°;(3)在∠AOB的外部画射线OD,使∠DOA=40°;(4)在射线OD上取E点,在射线OA上取F,使∠OEF=90°.8.任意画一个三角形,估计其中三个角的度数,再用量角器检验你的估计是否准确.9.分别确定四个城市相应钟表上时针与分钟所成的角的度数.10.九点20分时,时钟上时钟与分钟的夹角a等于多少度?11.马路上铺的地砖有很多种图案,如图所示的图案是某街面方砖铺设的示意图,请你用量角器量一下其中出现的所有的角度?12.如图,在∠AOB的内部引一条射线OC,可得几个小于平角的角? 引两条射线OC、OD呢?引三条射线OC、OD、OE呢?若引十条射线一共会有多少个角?ABO13.请用直线、线段、角等图形设计成表示客观事物的图画,如图, 并为你的图画命名.一盏吊灯一帆风顺答案:1.A2.B3.D4.1,90,1805.30,36,1836;1806,30.16.(1)116°;(2)100°41′;(3)111°20′;(4)45°39′.9.30°;0°;120°;90°10.160°12. 引1条射线有2+1=3个角;引2条射线有3+2+1=6个角;引3条射线有4+3+2+1=10个角;引10条射线有11+10+9+……+3+2+1=66个角.。

新人教版七年级数学上册专题训练:角的计算(含答案).优选

新人教版七年级数学上册专题训练:角的计算(含答案).优选
因为∠AOB=2∠BOC, 所以∠BOC=2x°. 所以 3x+3x+2x+x=360. 解得 x=40. 所以∠AOB=40°,∠COD=120°.
类型 4 利用分类讨论思想求解 在角度计算中,如果题目中无图,或补全图形时,常需分类讨论,确保答案的完整性. 2
8.已知∠AOB=75°,∠AOC=3∠AOB,OD 平分∠AOC,求∠BOD 的大小. 2
专题训练 角的计算
类型 1 利用角度的和、差关系 找出待求的角与已知角的和、差关系,根据角度和、差来计算.
1.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD 的度数.
解:因为∠AOC=75°,∠BOC=30°, 所以∠AO B=∠AOC-∠BOC=75°-30°=45°. 又因为∠BOD=75°, 所以∠AOD=∠AOB+∠BOD=45°+75°=120°.
数,建立方程,通过解方程使问题得以解决. 2
5.一个角的余角比它的补角的3还少 40°,求这个角的度数. 解:设这个角的度数为 x°,根据题意,得 2 90-x=3(180-x)-40. 解得 x=30. 所以这个角的度数是 30°.
6.如图,已知∠AOE是平角 ,∠DOE=20°,OB 平分∠AOC,且∠COD∶∠BOC=2∶3,求∠BOC的度数.
专题训练 整式的加减运算
计算 : (1)(钦南期末)a2b+3ab2-a2b; 解:原式=3ab2.
(2)2(a-1)-(2a-3)+3; 解:原式=4.
(3)2(2a2+9b)+3(-5a2-4b); 解:原式=-11a2+6b.
(4)3(x3+2x2-1)-(3x3+4x2-2); 解:原式=2x2- 1.
解:(1)因为 OC 是∠AOB 的平分线, 1

七年级数学角度的计算(专题)(含答案)

七年级数学角度的计算(专题)(含答案)

角度的计算(专题)一、单选题(共10道,每道10分)1.如图,∠AOC=∠BOD=90°,若∠AOB=150°,则∠DOC的度数为( )A.30°B.40°C.50°D.60°答案:A解题思路:∵∠AOB=150°,∠AOC=90°,∴∠BOC=∠AOB-∠AOC=150°-90°=60°.∵∠BOD=90°,∴∠DOC=∠BOD-∠BOC=90°-60°=30°.故选A.试题难度:三颗星知识点:余角2.如图,已知直线AB,CD相交于点O,OA平分∠EOC,且∠EOC=110°,则∠AOC的度数为( )A.25°B.35°C.45°D.55°答案:D解题思路:.故选D.试题难度:三颗星知识点:角平分线3.如图,已知∠COD为平角,OA⊥OE,且,则∠DOE的度数为( )A.30°B.45°C.60°D.75°答案:A解题思路:∵∠COD为平角∴∠COD=180°,即∠AOC+∠AOE+∠DOE=180°.∵OA⊥OE∴∠AOE=90°.∴∠AOC+∠DOE=180°-∠AOE=180°-90°=90°.∴∠AOC=2∠DOE,∴2∠DOE+∠DOE=3∠DOE=90°,∴∠DOE=30°.故选A.试题难度:三颗星知识点:平角的定义4.如图,直线AB与EO相交于点O,∠EOB=90°,∠FOD=90°,如果∠AOD=140°,那么∠EOF 的度数为( )A.60°B.50°C.40°D.30°答案:C解题思路:∵∠AOD=140°∴∠BOD=40°∵∠EOB=90°∴∠EOD+∠BOD=90°∵∠FOD=90°∴∠FOE+∠EOD=90°∴∠FOE=∠BOD=40°故选C.试题难度:三颗星知识点:平角5.已知∠AOB=70°,以O端点作射线OC,使∠AOC=28°,则∠BOC的度数为( )A.42°B.98°C.42或98°D.82°答案:C解题思路:如图,当点C与点C1重合时,∠BOC=∠AOB-∠AOC=70°-28°=42°当点C与点C2重合时,∠BOC=∠AOB+∠AOC=70°+28°=98°故选C.试题难度:三颗星知识点:角度的计算6.已知从点O出发的三条射线OA,OB,OC,若∠AOB=50°,∠AOC=30°,则∠BOC的度数为( )A.80°或20°B.40°或10°C.40°或20°D.80°或10°答案:A解题思路:分析:根据题意,先作∠AOB,因为射线OC的位置不确定,且∠AOC∠AOB,故需分以下两种情况:①射线OC在射线OA的右边,如图1,求∠BOC,设计方案:∠BOC=∠AOB+∠AOC=50°+30°=80°②射线OC在射线OA的左边,如图2,求∠BOC的度数,设计方案:∠BOC=∠AOB-∠AOC=50°-30°=20°综上,∠BOC的度数为80°或20°.故选A.试题难度:三颗星知识点:角度的计算7.已知∠AOB为直角,∠AOC=40°,若OM平分∠AOB,则∠MOC的度数为( )A.65°或25°B.65°或85°C.5°或65°D.5°或85°答案:D解题思路:分析:根据题意,先作∠AOB,因为射线OC的位置不确定,且∠AOB∠AOC,故需分以下两种情况:①射线OC在射线OA的左边,如图1,求∠MOC的度数,设计方案:②射线OC在射线OA的右边,如图2,求∠MOC的度数,设计方案:综上,∠MOC的度数为5°或85°.故选D.试题难度:三颗星知识点:角平分线8.已知∠AOB=60°,∠AOC=4∠BOC,则∠AOC的度数为( )A.12°或20°B.12°或48°C.48°或80°D.20°或80°答案:C解题思路:由题意,射线OC的位置不确定,需要分类讨论.因为∠AOC=4∠BOC,所以∠AOC∠BOC,则射线OC只能在射线OA的右边,分以下两种情况.①当射线OC在∠AOB的内部时,如图1所示,求∠AOC的度数,设计方案:设∠BOC=x,则∠AOC=4x,依题意得x+4x=60°,解得x=12°,所以∠AOC=4×12°=48°.①当射线OC在∠AOB的外部时,如图2所示,求∠AOC的度数,设计方案:设∠BOC=x,则∠AOC=4x,依题意得4x-x=60°,解得x=20°,所以∠AOC=4×20°=80°.综上所述,∠AOC的度数为48°或80°.故选C.试题难度:三颗星知识点:角度的计算9.已知∠AOB=54°,∠AOC=2∠BOC,OM平分∠AOB,则∠MOC的度数为( )A.9°或81°B.72°或54°C.9°或18°D.81°或18°答案:A解题思路:由题意,射线OC的位置不确定,因此需要分类讨论.①当射线OC在∠AOB的内部时,如图1所示,由∠AOB=54°,∠AOC=2∠BOC,得∠BOC=18°,所以.②当射线OC在∠AOB的外部时,如图2所示,求∠MOC的度数,设计方案:由∠AOB=54°,∠AOC=2∠BOC,得∠BOC=54°,所以.综上所述,∠MOC的度数为9°或81°.故选A.试题难度:三颗星知识点:角度的计算10.已知∠AOB=20°,∠AOC=4∠AOB,且∠BOC∠AOC,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数为( )A.30°或50°B.20°或60°C.30°D.50°答案:C解题思路:分析知射线OC的位置不确定,需要分类讨论,又因为∠BOC∠AOC,所以符合题意的只有一种情况.如下图所示,由∠AOB=20°,∠AOC=4∠AOB,得∠AOC=80°,所以.综上所述,∠MOD的度数为30°.故选C.试题难度:三颗星知识点:角度的计算。

部编数学七年级上册专题27和三角板有关的角度计算(解析版)含答案

部编数学七年级上册专题27和三角板有关的角度计算(解析版)含答案

专题27 和三角板有关的角度计算1.如图,直线EF与MN相交于点O,30MOEÐ=°,将一直角三角尺的直角顶点与O重合,直角边OA与MN重合,OB在NOEÐ内部.操作:将三角尺绕点O以每秒3°的速度沿顺时针方向旋转一周,设运动时间为()t s.(1)当t为何值时,直角边OB恰好平分NOEÐ?此时OA是否平分MOEÐ?请说明理由;(2)若在三角尺转动的同时,直线EF也绕点O以每秒9°的速度顺时针方向旋转一周,当一方先完成旋转一周时,另一方同时停止转动.①当t为何值时,EF平分AOBÐ?②EF能否平分NOBÐ?若能请直接写出t的值;若不能,请说明理由.【解答】解:(1)Q当直角边OB恰好平分NOEÐ时,11(18030)7522NOB NOEÐ=Ð=°-°=°,90375t\°-°=°,解得:5t=.此时135152MOA MOE Ð=°´=°=Ð,\此时OA平分MOEÐ.(2)①OE平分AOBÐ,依题意有3093902t t°+°-°=°¸,解得 2.5t=;OF平分AOBÐ,依题意有3093180902t t°+°-°=°+°¸,解得32.5t=.故当t为2.5s或32.5s时,EF平分AOBÐ②OB在MN上面,依题意有180309(903)2t t°-°-°=°-°¸,解得14t=;OB在MN下面,依题意有9(36030)(390)2t t-°-°=°-°¸,解得38t=.故EF能平分NOBÐ,t的值为14或38s.2.点O为直线AB上一点,过点O作射线OC,使65BOCÐ=°,将一直角三角板的直角顶点放在点O处.(1)如图①,将三角板MON的一边ON与射线OB重合时,则MOCÐ= 25° ;(2)如图②,将三角板MON绕点O逆时针旋转一定角度,此时OC是MOBÐ的角平分线,求旋转角BONÐ和CONÐ的度数;(3)将三角板MON绕点O逆时针旋转至图③时,14NOC AOMÐ=Ð,求NOBÐ的度数.【解答】解:(1)90MONÐ=°Q,65BOCÐ=°,906525 MOC MON BOC\Ð=Ð-Ð=°-°=°.故答案为:25°.(2)65BOCÐ=°Q,OC是MOBÐ的角平分线,2130MOB BOC\Ð=Ð=°.BON MOB MON\Ð=Ð-Ð13090=°-°40=°.CON COB BONÐ=Ð-Ð6540=°-°25=°.即40BONÐ=°,25CONÐ=°;(3)14NOC AOMÐ=ÐQ,4AOM NOC\Ð=Ð.65BOCÐ=°Q,AOC AOB BOC\Ð=Ð-Ð18065=°-115=°.90MON Ð=°Q ,AOM NOC AOC MON\Ð+Ð=Ð-Ð11590=°-°25=°.425NOC NOC \Ð+Ð=°.5NOC \Ð=°.70NOB NOC BOC \Ð=Ð+Ð=°.3.将一副三角板ABC 和三角板(90,60)BDE ACB DBE ABC Ð=Ð=°Ð=°按不同的位置摆放.(1)如图1,若边BD 、BA 在同一直线上,则EBC Ð= 150° ;(2)如图2,若165EBC Ð=°,那么ABD Ð= ;(3)如图3,若120EBC Ð=°,求ABD Ð的度数.【解答】解:(1)9060150EBC DBE ABC Ð=Ð+Ð=°+°=°;故答案为:150°;(2)165906015ABD CBE ABC DBE Ð=Ð-Ð-Ð=°-°-°=°;故答案为:15°;(3)906012030ABD ABC DBE EBC Ð=Ð+Ð-Ð=°+°-°=°.ABD \Ð的度数为:30°.4.已知将一副三角板(直角三角板OAB 和直角板OCD ,90AOB Ð=°,45ABO Ð=°,90CDO Ð=°,30)COD Ð=°(1)如图1摆放,点O 、A 、C 在一条直线上,BOD Ð的度数是 60° ;(2)如图2,变化摆放位置将直角三角板COD 绕点O 逆时针方向转动,若要OB 恰好平分COD Ð,则AOC Ð的度数是 ;(3)如图3,当三角板OCD 摆放在AOB Ð内部时,作射线OM 平分AOC Ð.射线ON 平分BOD Ð,如果三角板OCD 在AOB Ð内绕点O 任意转动,MON Ð的度数是否发生变化?如果不变,求其值;如果变化,说明理由.【解答】解:(1)90AOB Ð=°Q ,30COD Ð=°,60BOD AOB COD \Ð=Ð-Ð=°,故答案为:60°;(2)OB Q 恰好平分COD Ð,11301522COB COD \Ð=Ð=´°=°,901575AOC AOB COB \Ð=Ð-Ð=°-°=°;故答案为:75°;(3)MON Ð的度数不发生变化,60MON Ð=°.理由如下:OM Q 平分AOC Ð,ON 平分BOD Ð,12DON BOD \Ð=Ð,12COM AOC Ð=Ð,11()()22DON COM BOD AOC AOB COD \Ð+Ð=Ð+Ð=Ð-Ð,11()(9030)6022MON DON COM COD AOB COD \Ð=Ð+Ð+Ð=Ð+Ð=´°+°=°.5.如图1,点O 为直线AB 上一点,过O 点作射线OC ,使:1:2AOC BOC ÐÐ=,将一直角三角板的直角顶点放在点O 处,一边OM 在射线OB 上,另一边ON 在直线AB 的下方.(1)将图1中的三角板绕点O 按逆时针方向旋转至图2的位置,使得ON 落在射线OB 上,此时三角板旋转的角度为 90 度;(2)继续将图2中的三角板绕点O 按逆时针方向旋转至图3的位置,使得ON 在AOC Ð的内部.试探究AOMÐ之间满足什么等量关系,并说明理由;Ð与NOC(3)在上述直角三角板从图1开始绕点O按30°每秒的速度逆时针旋转270°的过程中,是否存在Ð中的一个角,ON所在直线平分另一个角?若存在,直接写出旋Ð和AOCOM所在直线平分BOC转时间t,若不存在,说明理由.【解答】解:(1)根据旋转的性质可知:旋转角为90Ð=°.MON故答案为90.(2)如图3:30Ð-Ð=°,理由如下:AOM NOCQ,Ð+Ð=°AOC BOC180ÐÐ=,AOC BOC:1:2AOC AOC\Ð+Ð=°,2180\Ð=°,AOC60\Ð+=°,①AON CON60Q,Ð=°MON90AOM AON\Ð+Ð=°,②90②-①,得30Ð-Ð=°.AOM CON(3)如图4,当OM平分BOCÐ,Ð时,ON所在直线平分AOC60Ð=°,BOM\三角板绕点O逆时针旋转60°,此时60302t=¸=(秒);如图5,当ON 平分AOC Ð时,OM 所在直线平分BOC Ð,30CON Ð=°,\三角板绕点O 逆时针旋转240°,此时240308t =¸=(秒).当OM 旋转150度时也符合要求,此时旋转了5秒.答:旋转时间为2秒或5秒或8秒.6.将一副三角板按图1摆放在直线MN 上,AF 平分BAD Ð,AG 平分BAE Ð.(1)BAD Ð= 105° ;FAG Ð= ;(2)如图2,若将三角板ABC 绕A 点以5/°秒的速度顺时针旋转t 秒(21)t <,求FAG Ð的度数;(3)如图3,三角板ABC 绕A 点以/m °秒的速度顺时针旋转,同时,三角板ADE 绕A 点以/n °秒的速度逆时针旋转,当AD 与AB 边首次重合时两三角板都停止运动,若运行t 秒时,有56MAD CAE Ð=Ð成立,试求此时m 与n 的关系.【解答】解:(1)如图1.1801804530105BAD BAC DAE Ð=°-Ð-Ð=°-°-°=°;AF Q 平分BAD Ð,AG 平分BAE Ð,152.52BAF BAD \Ð=Ð=°,11(18045)67.522BAG BAE Ð=Ð=°-°=°,67.552.515FAG BAG BAF \Ð=Ð-Ð=°-°=°.故答案为105°;15°;(2)如图2,由题意可知:180180453051055BAD BAC DAE CAM t t Ð=°-Ð-Ð-Ð=°-°-°-=°-;1801804551355BAE BAC CAM t t Ð=°-Ð-Ð=°-°-=°-;AF Q 平分BAD Ð,AG 平分BAE Ð,11(1055)22BAF BAD t \Ð=Ð=°-,11(1355)22BAG BAE t Ð=Ð=°-,11(1355)(1055)1522FAG BAG BAF t t \Ð=Ð-Ð=°--°-=°;(3)如图3.180********MAD DAE EAN nt nt Ð=-Ð-Ð=°-°-=°-,180180CAE MAC EAN mt nt Ð=°-Ð-Ð=°--.当56MAD CAE Ð=Ð时,有5150(180)6nt mt nt °-=°--,解得5n m =.即当5n m =时,有56MAD CAE Ð=Ð成立.7.如图,将一副三角尺的两个直角顶点O 重合在一起,在同一平面内旋转其中一个三角尺.(1)如图1,若70BOC Ð=°,则AOD Ð= 110° .(2)如图2,若50BOC Ð=°,则AOD Ð= .(3)如图1,请猜想BOC Ð与AOD Ð的关系,并写出理由.【解答】解:(1)90BOC BOD Ð+Ð=Q ,70BOC Ð=°,20BOD \Ð=°,110AOD AOB BOD \Ð=Ð+Ð=°.故答案为110°.(2)90AOB DOC Ð=Ð=°Q ,又360AOB AOD DOC BOC Ð+Ð+Ð+Ð=°Q ,180BOC AOD \Ð+Ð=°40BOD Ð=°Q ,180130AOD BOC \Ð=-Ð=°.故答案为130°.(3)结论:180BOC AODÐ+Ð=°.理由:90AOBÐ=°Q,90CODÐ=°,(90)(90)9090180BOC AOD AOC AOC AOC AOC\Ð+Ð=°-Ð+°+Ð=°-Ð+°+Ð=°,180BOC AOD\Ð+Ð=°.8.如图,两个形状.大小完全相同的含有30°、60°的三角板如图放置,PA、PB与直线MN重合,且三角板PAC,三角板PBD均可以绕点P逆时针旋转.(1)试说明:90DPCÐ=°;(2)如图,若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定角度,PF平分APDÐ,PE平分CPDÐ,求EPFÐ;(3)如图,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3/°秒,同时三角板PBD 的边PB从PM处开始绕点P逆时针旋转,转速为2/°秒,在两个三角板旋转过程中(PC转到与PM 重合时,两三角板都停止转动).设两个三角板旋转时间为t秒,则BPNÐ= 1802t- ,CPDÐ= (用含有t的代数式表示,并化简);以下两个结论:①CPDBPNÐÐ为定值;②BPN CPDÐ+Ð为定值,正确的是 (填写你认为正确结论的对应序号).【解答】解:(1)180DPC CPA DPBÐ=°-Ð-ÐQ,60CPAÐ=°,30DPBÐ=°,180306090DPC\Ð=°-°-°=°;(2)设CPE DPE xÐ=Ð=,CPF yÐ=,则2APF DPF x yÐ=Ð=+,60CPAÐ=°Q,260y x y\++=°,30x y\+=°30EPF x y\Ð=+=°(3)①正确.设运动时间为t秒,则2BPM tÐ=,1802BPN t\Ð=-,Q运动之前90CPDÐ=°,两个三角板运动的速度差为1/°秒90CPD t\Ð=-.\90118022 CPD tBPN tÐ-==Ð-.②1802902703BPN CPD t t tÐ+Ð=-+-=-,可以看出BPN CPDÐ+Ð随着时间在变化,不为定值,结论错误.故答案为:1802t-;90t-;①.9.将一副三角板中的两块直角三角尺的直角顶点C按如图方式叠放在一起:(1)若35DCEÐ=°,则ACBÐ的度数为 145° ;(2)若140ACBÐ=°,求DCEÐ的度数;(3)猜想ACBÐ与DCEÐ的大小关系,并说明理由;(4)三角尺ACD不动,将三角尺BCE的CE边与CA边重合,然后绕点C按顺时针或逆时针.方向任意转动一个角度,当(090)ACE ACEа<Ð<°等于多少度时,这两块三角尺各有一条边互相垂直,直接写出ACEÐ角度所有可能的值,不用说明理由.【解答】解:(1)90ACD ECBÐ=Ð=°Q,18035145ACB\Ð=°-°=°.(2)90ACD ECBÐ=Ð=°Q,18014040DCE\Ð=°-°=°.(3)180ACE ECD DCB ECDÐ+Ð+Ð+Ð=Q.ACE ECD DCB ACBQ,Ð+Ð+Ð=ÐÐ与DCE\Ð+Ð=°,即ACBÐ互补.ACB DCE180(4)30°、45°、60°、75°.10.将一副三角尺的两个直角顶点O重合在一起,如图那样摆放.(1)如果重叠在一起时,70BOCÐ= 110 度;Ð=°,则AOD(2)如果重叠在一起时,50Ð= 度;BOCÐ=°,则AOD(3)请猜想:不论旋转道何种位置,只要重叠在一起(重叠部分的角度大于0°且小于90)°,BOCÐ和AODÐ的和始终等于 度,并试说明理由.【解答】解:(1)因为BOCÐ和BODBOCÐ=°,Ð互余,且70故20AOD AOB BODÐ=Ð+Ð=°;Ð=°,所以110BOD(2)同(1),40Ð=Ð+Ð=°;AOD AOB BODBODÐ=°,130(3)180°;理由:90CODÐ=°,Q,90Ð=°AOB\Ð+Ð=°,AOB COD180Q,Ð=°-ÐAOD BOC180\Ð+Ð=°BOC AOD18011.如图1,直线DE上有一点O,过点O在直线DE上方作射线OC.将一直角三角板Ð=°的直角顶点放在点O处,一条直角边OA在射线OD上,另一边OB在直线DE AOB OAB(30)上方.将直角三角板绕着点O按每秒10?的速度逆时针旋转一周,设旋转时间为t秒.(1)当直角三角板旋转到如图2的位置时,OA恰好平分CODÐ之间有Ð与BOEÐ,此时,BOC 何数量关系?并说明理由.(2)若射线OC的位置保持不变,且140Ð=°.COE①则当旋转时间t= 7或25 秒时,边AB所在的直线与OC平行?②在旋转的过程中,是否存在某个时刻,使得射线OA,OC与OD中的某一条射线是另两条射线所夹角的角平分线?若存在,请求出所有满足题意的t的取值.若不存在,请说明理由.③在旋转的过程中,当边AB与射线OE相交时(如图3),求AOC BOEÐ-Ð的值.【解答】解:(1)BOC BOEÐ=Ð,Ð=°Q,AOB90AOD BOEÐ+Ð=°,BOC AOC\Ð+Ð=°,9090Ð,Q平分CODOA\Ð=Ð,AOD AOC\Ð=Ð;BOC BOE(2)①140COEQ,Ð=°\Ð=°,40COD如图1,当AB在直线DE上方时,Q,AB OC//\Ð=Ð=°,AOC A30t=;\Ð=Ð+Ð=°,即7AOD AOC COD70如图2,当AB在直线DE下方时,//AB OC Q ,60COB B \Ð=Ð=°,20BOD BOC COD \Ð=Ð-Ð=°,则9020110AOD Ð=°+°=°,3601102510t °-°\==,故答案为:7或25;②当OA 平分COD Ð时,AOD AOC Ð=Ð,即1020t =,解得2t =;当OC 平分AOD Ð时,AOC COD Ð=Ð,即104040t -=,解得8t =;当OD 平分AOC Ð时,AOD COD Ð=Ð,即3601040t -=,解得:32t =;综上,t 的值为2、8、32;③140AOC COE AOE AOE Ð=Ð-Ð=°-ÐQ ,90BOE AOE Ð=°-Ð,(140)(90)50AOC BOE AOE AOE \Ð-Ð=°-Ð-°-Ð=°,AOC BOE \Ð-Ð的值为50°.12.如图1,点O 为直线AB 上一点,过O 点作射线OC ,使:1:3AOC BOC ÐÐ=,将一直角MON D 的直角顶点放在点O 处,边OM 在射线OB 上,另一边ON 在直线AB 的下方,绕点O 逆时针旋转MON D ,其中旋转的角度为(0360)a a <<°(1)将图1中的直角MON D 旋转至图2的位置,使得ON 落在射线OB 上,此时a 为 90 度.(2)将图1中的直角MON D 旋转至图3的位置,使得ON 在AOC Ð的内部,试探究AOM Ð与NOC Ð之间满足什么样的等量关系,并说明理由.(3)若直角MOND的直角边ON所在直线恰好D绕点O按每秒5°的速度顺时针旋转,当直角MON平分AOCD绕点O的运动时间t的值.Ð时,求此时直角MON【解答】解::1:3Ð+Ð=°,AOC BOCAOC BOCQ,180ÐÐ=Ð=°\Ð=°,135BOC45AOC(1)由ON落在射线OB上,可知旋转角为:90Ð=°;NOB故答案为90.(2)90Ð+Ð=Ð=°,AON NOC AOCÐ+Ð=°Q,45AOM AON\Ð-Ð=°;AOM NOC45(3)ONÐ,Q所在直线恰好平分AOC\Ð=и=°¸=°,AON AOC245222.5此时旋转角为:9022.5112.5°+°=°¸=(秒),112.5522.5+¸=(秒)或(112.5180)558.5所以直角MOND绕点O的运动时间是22.5秒或58.5秒.13.如图1,点O为直线AB上一点,过点O作射线OC,使:2:1AOC BOCÐÐ=,将直角三角板的直角顶点放在点O处,一边ON在射线OA上,另一边OM在直线AB的下方.(1)在图1中,AOCÐ= .Ð= 120° ,BOC(2)将图1中的三角板按图2的位置放置,使得OM在射线OA上,则CONÐ= ;(3)将上述直角三角板按图3的位置放置,使得OM在BOCÐ-Ð的度Ð的内部,求BON COM数.【解答】解:(1)Q点O为直线AB上一点,过点O作射线OC,使:2:1ÐÐ=,AOC BOCÐ+Ð=°,AOC BOC180120AOC\Ð=°,60BOCÐ=°故答案为:120°,60°;(2)Q由(1)可知:120AOCÐ=°,90MONÐ=°,AOC MON CONÐ=Ð+Ð,1209030CON AOC MON\Ð=Ð-Ð=°-°=°,故答案为:30°;(3)由图可知:60BOCÐ=°,90MONÐ=°,BON MON BOMÐ=Ð-Ð,COM BOC BOMÐ=Ð-Ð,则,90(60)30BON COM BOM BOMÐ-Ð=°-Ð-°-Ð=°,即BON COMÐ-Ð的度数是30°.14.如图,两个形状,大小完全相同的含有30°,60°的三角板如图①放置,PA,PB与直线MN重合,且三角板PAC与三角板PBD均可绕点P逆时针旋转.(1)试说明:90DPCÐ=°;(2)如图②,若三角板PAC的边PA从PN处开始绕点P逆时针旋转一定度数,PF平分APDÐ,PE平分CPDÐ,求EPFÐ.(3)如图③,若三角板PAC的边PA从PN处开始绕点P逆时针旋转,转速为3/s°.同时三角板PBD的边PB从PM处开始绕点P逆时针旋转,转速为2/s°,在两个三角板旋转过程中(PC转到与PM重合时,三角板都停止转运),问CPDBPNÐÐ的值是否变化?若不变,求出其值,若变化,说明理由.【解答】解:(1)180DPC CPA DPBÐ=°-Ð-ÐQ,60CPAÐ=°,30DPBÐ=°,180306090DPC\Ð=°-°-°=°;(2)设CPE DPE xÐ=Ð=,CPF yÐ=,则2APF DPF x yÐ=Ð=+,60CPAÐ=°Q,260y x y\++=°,30x y\+=°30EPF x y \Ð=+=°(3)不变.设运动时间为t 秒,则2BPM t Ð=,1802BPN t \Ð=-,3APN t Ð=.36090CPD DBP BPM CPA APN t \Ð=-Ð-Ð-Ð-Ð=-,\90118022CPD t BPN t Ð-==Ð-.15.如图1,O 为直线AB 上一点,过点O 作射线OC ,30AOC Ð=°,将一直角三角板(30)D Ð=°的直角顶点放在点O 处,一边OE 在射线OA 上,另一边OD 与OC 都在直线AB 的上方.(1)将图1中的三角板绕点O 以每秒5°的速度沿顺时针方向旋转一周,如图2,经过t 秒后,OD 恰好平分BOC Ð.①此时t 的值为 3 ;(直接填空)②此时OE 是否平分AOC Ð?请说明理由;(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒8°的速度沿顺时针方向旋转一周,如图3,那么经过多长时间OC 平分DOE Ð?请说明理由;(3)在(2)问的基础上,经过多长时间OC 平分DOB Ð?请画图并说明理由.【解答】解:(1)①30AOC Ð=°Q ,180AOB Ð=°,150BOC AOB AOC \Ð=Ð-Ð=°,OD Q 平分BOC Ð,1752BOD BOC \Ð=Ð=°,907535t °-°\==.②是,理由如下:Q 转动3秒,15AOE \Ð=°,15COE AOC AOE \Ð=Ð-Ð=°,COE AOE \Ð=Ð,即OE 平分AOC Ð.(2)三角板旋转一周所需的时间为360725==(秒),射线OC 绕O 点旋转一周所需的时间为360458=(秒),设经过x 秒时,OC 平分DOE Ð,由题意:①854530x x -=-,解得:5x =,②853603045x x -=-+,解得:12545x =>,不合题意,③Q 射线OC 绕O 点旋转一周所需的时间为360458=(秒),45秒后停止运动,\当OD 旋转到OC 的位置后再旋转45°时,OC 平分DOE Ð,此时OD 旋转了360(6045)345°-°-°=°,345695t \==(秒),综上所述,5t =秒或69秒时,OC 平分DOE Ð.(3)如图3中,由题意可知,OD 旋转到与OB 重合时,需要90518¸=(秒),OC 旋转到与OB 重合时,需要3(18030)8184-¸=(秒),所以OD 比OC 早与OB 重合,设经过x 秒时,OC 平分DOB Ð,由题意:18(18030)(590)2x x --=-,解得:21011x =,所以经21011秒时,OC 平分DOB Ð.16.如图1,点O为直线AB上一点,过点O作射线OC,使120Ð=°.将一直角三角板的直BOC角顶点放在点O处,一边OM在射线OB上,另一边ON在直线AB的下方.(1)将图1中的三角板绕点O逆时针旋转至图2,使一边OM在BOCÐ的内部,且恰好平分Ð?请说明理由.Ð.问:此时直线ON是否平分AOCBOC(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角AOCÐ,求t的值.(3)将图1中的三角板绕点O顺时针旋转至图3,使ON在AOCÐ的内部,试探索:在旋转过程中,Ð的差是否发生变化?若不变,请求出这个差值;若变化,请求出差的变化范围.AOMÐ与NOC【解答】解:(1)直线ON平分AOCÐ.理由:如图所示,设ON的反向延长线为OD.Ð,Q平分BOCOM\Ð=Ð.MOC MOB又OM ONQ,^90\Ð=Ð=°.MOD MON\Ð=Ð.COD BON又AOD BONQ(对顶角相等),Ð=ÐCOD AOD \Ð=Ð.OD \平分AOC Ð,即直线ON 平分AOC Ð.(2)120BOC Ð=°Q ,60AOC \Ð=°.30BON COD \Ð=Ð=°.即旋转60°或240°时直线ON 平分AOC Ð.由题意得,660t =或240.解得:10t =或40;(3)AOM NOC Ð-Ð的差不变.90MON Ð=°Q ,60AOC Ð=°,90AOM AON \Ð=°-Ð、60NOC AON Ð=°-Ð.(90)(60)30AOM NOC AON AON \Ð-Ð=°-Ð-°-Ð=°.17.如图1,O 为直线AB 上一点,过点O 作射线OC ,30AOC Ð=°,将一直角三角板(30)M Ð=°的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.(1)将图1中的三角板绕点O 以每秒3°的速度沿顺时针方向旋转一周.如图2,经过t 秒后OM 恰好平分BOC Ð,则t = 5秒或115秒 (直接写结果)(2)在(1)问的基础上,若三角板在转动的同时,射线OC 也绕O 点以每秒6°的速度沿顺时针方向旋转一周,如图3,那么经过多少秒后OC 平分MON Ð?请说明理由;(3)在(2)问的基础上,那么经过多少秒36MOC Ð=°?请说明理由.【解答】解:(1)90AON BOM Ð+Ð=°Q ,COM MOB Ð=Ð,30AOC Ð=°Q ,2150BOC COM \Ð=Ð=°,75COM \Ð=°,15CON \Ð=°,301515\Ð=Ð-Ð=°-°=°,AON AOC CON解得:1535t=°¸°=秒;(2)5秒或115秒时,OC平分角MON,理由如下:当OC运动时,Ð=Ð,Q,CON COMÐ+Ð=°90AON BOMÐ=°Q,MON90\Ð=Ð=°,CON COM45Q三角板绕点O以每秒3°的速度,射线OC也绕O点以每秒6°的速度旋转,设AON°+,Ð为306tÐ为3t,AOCÐ-Ð=°Q,45AOC AON可得:6315t t-=°,解得:5t=秒;Ð,OC停止运动,OM运动345°时,此时,OC也平分MONt=¸=(秒);3453115(3)当OC运动时,如上图:OC平分MOBÐOC可能在MOBÐ内侧也可能在外侧,由题意得:t t-=°-°=°,t t63543024-=°-°=°或631263096解得:8t=或32秒;当OC停止运动时,Ð=,MONMO运动到AO下方6°时,36t=-¸=(秒),(2706)388Ð=°,MO运动到AO下方6°时,36MOCt=++¸=(秒)(2703036)3112答:经过8或32秒或112秒或88秒.18.如图,点O为直线AB上一点,过点O作射线OC,使135Ð=°,将一个含45°角的直角BOC三角尺的一个顶点放在点O处,斜边OM与直线AB重合,另外两条直角边都在直线AB的下方.(1)将图1中的三角尺绕着点O逆时针旋转90°,如图2所示,此时BOMÐ= 90° ;在图2中,Ð?请说明理由;OM是否平分CON(2)紧接着将图2中的三角板绕点O逆时针继续旋转到图3的位置所示,使得ON在AOCÐ的内部,请探究:AOMÐ之间的数量关系,并说明理由;Ð与CON(3)将图1中的三角板绕点O按每秒5°的速度沿逆时针方向旋转一周,在旋转的过程中,第t秒时,直线ON恰好平分锐角AOCÐ,则t的值为 (直接写出结果).【解答】解:(1)如图2,90BOMÐ=°,Ð.理由如下:OM平分CONÐ=°Q,BOC135MOC\Ð=°-°=°,1359045而45Ð=°,MON\Ð=Ð;MOC MON故答案为90°;Ð.OM平分CON理由如下:Q三角尺绕着点O逆时针旋转90°得到OMND(如图2),\Ð=°,90BOM\Ð=Ð-Ð=°,COM BOC BOM45而45Ð=°,NOMÐ;\平分CONOM(2)AOM CONÐ=Ð.理由如下:如图3,Q,Ð=°45MON\Ð=°-Ð,45AOM AON45AOCÐ=°Q,45NOC AON\Ð=°-Ð,AOM CON\Ð=Ð;(3)1455 4.52T=´°¸°=(秒)或(18022.5)540.5t=°+°¸°=(秒).故答案为4.5秒或40.5秒.。

初一数学角度题30道

初一数学角度题30道

初一数学角度题30道1. 一个角的补角比这个角大30°,求这个角的度数。

- 咱设这个角是x度哦。

那它的补角就是180 - x度。

题目说补角比这个角大30°,那就可以列方程啦,180 - x=x + 30。

移项可得180 - 30 = x+x,也就是150 = 2x,解得x = 75度。

2. 已知∠A = 50°,它的余角是多少度呢?- 余角的定义就是两个角加起来等于90°嘛。

那∠A的余角就是90 - 50 = 40°,简单吧。

3. 一个角是它的余角的2倍,这个角是多少度?- 设这个角的余角是x度,那这个角就是2x度。

因为它们是余角关系,所以x+2x = 90。

3x = 90,解得x = 30度,那这个角就是2x = 60度。

4. 若∠α和∠β互为补角,且∠α - ∠β = 40°,求∠α和∠β的度数。

- 因为∠α和∠β互为补角,所以∠α+∠β = 180°。

又知道∠α - ∠β = 40°。

把这两个方程相加,就是2∠α=180 + 40 = 220°,所以∠α = 110°,那∠β = 180 - 110 = 70°。

5. 一个角的补角与这个角的余角的和是120°,求这个角。

- 设这个角是x度,它的补角是180 - x度,余角是90 - x度。

根据题意,(180 - x)+(90 - x)=120。

化简一下就是270 - 2x = 120,移项得到2x = 270 - 120 = 150,解得x = 75度。

6. 在一个直角三角形中,一个锐角是另一个锐角的3倍,求这两个锐角的度数。

- 直角三角形里,两个锐角和是90°。

设小的锐角是x度,那大的锐角就是3x度。

x + 3x = 90,4x = 90,解得x = 22.5度,3x = 67.5度。

7. 已知∠AOB = 80°,OC是∠AOB内的一条射线,∠AOC = 30°,求∠BOC的度数。

七上角度练习题

七上角度练习题

七上角度练习题1、如图,射线OB,OC为锐角∠AOD的三等分线,若图中所有锐角度数之和为200°,则∠AOC的度数为()A. 45°B. 40°C. 30°D. 20°2、已知∠α与∠β互余,下列说法:①∠α是锐角,∠β也一定是锐角;②若∠γ+∠α=180°,则∠β=∠y;③若∠1=2∠α,∠2=2∠β,则∠1与∠2互补.其中正确的个数是()A.0个B.1个C.2个D.3个3、如图,点O在直线AB上,射线OC、OD分别在AB两侧,∠COD=90°,OE、OF分别平分∠AOC和∠BOD,下列四个结论:①∠COE-∠BOF=45°;②∠EOF为定值;③ 2∠BOE-∠AOD=90°;④∠AOF+∠EOD=315°,其中正确的个数是()A.1 B.2 C.3 D.44、如图,OM平分∠AOB,ON平分∠AOC,∠AOB=40°,∠MON=50°,则∠BOC=___ .5、如图,∠AOB与∠COD互补,若∠AOC+∠BOD=40°,则∠COD=.6、如图,90°<∠AOB<180°,0°<∠COD<90°.若∠AOB+∠COD=150°,∠COD在平面内绕点O旋转,分别作∠AOC和∠BOD平分线OP、OQ,则∠POQ的度数为____________.7、如图,C为直线AB上一点,∠DCE为直角,CF平分∠ACD,CH平分∠BCD,CG平分∠BCE,各学习小组经过讨论后得到以下结论:①∠ACF与∠DCH互余;②∠HCG=50°;③∠ECF 与∠BCH互补;④∠ACF-∠BCG=45°.请写出正确结论的序号___________.8、如图,直线AB、CD相交于点O,OA平分∠EOC,∠BOD=38°,求∠EOD的度数;9、如图,AB、CD交于点O,∠AOE=4∠DOE,∠AOE的余角比∠DOE小10°(题中所说的角均是小于平角的角).(1)求∠AOE的度数;(2)请写出∠AOC在图中的所有补角;(3)从点O向直线AB的右侧引出一条射线OP,当∠COP=∠AOE+∠DOP时,求∠BOP的度数.10、如图,点O在直线AB上,∠COD=90°,射线OE,OF分别平分∠AOC和∠BOC:(1)若∠BOD=24°,求∠AOE的度数;(2)请写出图中所有与∠FOB互余的角,并说明理由.11、如图,AB、CD交于点O.(1)可得到结论:∠AOC=∠BOD,依据是:(直接填序号:①同角的补角相等,②同角的余角相等);(2)若∠AOE=4∠DOE,∠AOE的余角是∠DOE的2倍,求∠BOC;(3)在(2)的条件下,从点O引出一条射线OP,当∠COP=∠AOE+∠DOP时,∠BOP= .(直接写出结果)12、已知∠AOB=50°,∠COD=20°.(1)如图1,若∠AOD=80°,∠COD在OB的左侧,则∠BOC=_____________;(2)如图2,OP平分∠AOD,OQ平分∠BOC,求∠POQ.13、已知∠AOB =120°,过O 作射线OC ,设∠AOC =α.将射线OC 逆时针旋转一定的角度得到射线OD(1) 如图1,∠COD =60°(0<α<60°),则∠AOD +∠BOC =_______°(2) 如图2,∠COD =60°(60<α<120°)① 直接写出∠AOC 与∠BOD 之间的数量关系 ② 若OE 平分∠BOC ,求∠DOE 与∠AOC 的数量关系14、①若90,30AOB DOB ∠=︒∠=︒,射线OC 平分DOB ∠,射线OE 平分AOD ∠,求EOC ∠度数;②若,AOB DOB αβ∠=∠=,射线OC 平分DOB ∠,射线OE 平分AOD ∠,求EOC ∠的度数;(2)如图2,已知120AOD ∠=︒,射线OQ 从射线OA 开始,以每秒10°的速度顺时针向射线OD 旋转,同时射线OP 以每秒20°的速度,从射线OD 开始逆时针向射线OA 旋转,到达射线OA 之后又以同样的角速度顺时针返回,直到到达射线OD 时两条射线都停止运动,请问当过了多少秒时,12POQ AOQ ∠=∠15、已知,∠AOB=3∠COD,∠COD=α,OE,OF分别平分∠AOC和∠BOD,∠COD绕着点O 顺时针旋转.(1)若α=45°.①如图1,当∠COD旋转到OC与OB重合时,求∠EOF的度数;②如图2,当∠COD从图1的位置开始绕着点O顺时针旋转n°,其中0<n<45,求∠EO的度数;(2)若0°<α<60°,∠COD从图3的位置(OC与OB重合)开始绕着点O顺时针旋转一周,则∠EOF的度数为.16、已知∠COD在∠AOB的内部,∠AOB=150°,∠COD=20°.(1)如图1,求∠AOD+∠BOC 的大小;(2)如图2,OM平分∠BOC,ON平分∠AOD,求∠MON的大小;(3)如图3,若∠AOC =30°,射线OC绕点O以每秒10°的速度顺时针旋转,当与射线OB重合后,再以每秒15°的速度绕点O逆时针旋转;同时射线OD以每秒30°的速度绕点O顺时针旋转.设射线OD,OC运动的时间是t秒(0<t≤22),当∠COD=120°时,直接写出t的值.17、阅读材料并完成下面的问题:小华遇到这样的一个问题:如图(1),已知锐角∠AOB,画一条射线OC,使∠AOC与∠BOC互为余角.聪明的小华这样画出射线OC:①如图(2),先用直角三角板画出∠AOP=90°;②再用量角器画出∠BOP的角平分线OC,则∠AOC与∠BOC 互为余角.(1)当锐角∠AOB大小发生变化时,请证明∠AOC与∠BOC互为余角;(2)类比小华的画图方法,在图(3)中画所有符合条件的射线OD,使∠AOD与∠BOD互为补角(保留画图痕迹,不写画法);(3)若∠EOF+∠GOF=120°,射线OM平分∠EOF,ON平分∠GOF,若∠EOF=α,请直接写出∠MON的度数为(用含α的式子表示).18、如图,∠AOD=130°,∠BOC:∠COD=1:2,∠AOB是∠COD补角的三分之一.(1)∠COD=;(2)平面内射线OM满足∠AOM=2∠DOM,求∠AOM的大小;(3)将∠COD固定,并将射线OA,OB同时以2°/s的速度顺时针旋转,到OA与OD重合时停止.在旋转过程中,若射线OP为∠AOB的平分线,OQ为∠COD的平分线,当∠POQ+∠AOD=50°时,求旋转时间t(秒)的取值范围.19、如图1,OB、OC是∠AOD内部两条射线.(1)若∠AOD和∠BOC互为补角,且∠AOD=2∠BOC,求∠AOD及∠BOC的度数;(2)如图2,若∠AOD=2∠BOC,在∠AOD的外部分别作∠COD、∠AOB的余角∠DOM及∠AON,请写出∠DOM、∠AON、∠BOC之间的数量关系,并说明理由;(3)如图3,已知∠AOD=120°,射线OE平分∠AOD,若将OB绕O点从OA出发以每秒6°逆时针旋转,OC绕O点从OD出发以每秒5°顺时针旋转,OB、OC同时运动;当OC 运动一周回到OD时,OB、OC同时停止运动.若运动t(t>0)秒后,OE恰好是∠BOC的四等分线,则此时t的值为(直接写出答案).。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级上册数学角度的计算习题
一、选择题
1.如图,∠AOB是一直角,∠AOC=40°,OD平分∠BOC,则∠AOD等于()
A. 65°
B. 50°
C. 40°
D. 25°
2.在15°、65°、75°、135°的角中,能用一副三角尺画出来的有()
A. 1个
B. 2个
C. 3个
D. 4个
3.如图,将一副三角板叠放在一起,使直角的顶点重合于O,则∠AOC+∠DOB=()
A . 90°
B . 120°
C . 160°
D . 180°
4.一个钝角与一个锐角的差是( )
A . 锐角
B . 钝角
C . 直角
D . 不能确定 5.如图,∠AOB 是直角,∠COD 也是直角,若∠AOC =α,
则∠BOD 等于 ( ).
A .90°+α
B .90°-α
C .180°+α
D .180°-α
6.如图,射线OB 、OC 将∠AOD 分成三部分,下列判断错误的是( )
D
A
B
C O
A.如果∠AOB=∠COD,那么∠AOC=∠BOD
B.如果∠AOB>∠COD,那么∠AOC>∠BOD
C.如果∠AOB<∠COD,那么∠AOC<∠BOD
D.如果∠AOB=∠BOC,那么∠AOC=∠BOD
二、填空题
7.比较两角大小的方法有:(1)法;(2)法.
三、解答题
8.如图,将一副三角尺的两个直角顶点O重合在一起,在同一平面内旋转其中一个三角尺.
(1)如图1,若∠BOC=70°,求∠AOD的度数.
(2)如图2,若∠BOC=50°,求∠AOD的度数.
(3)如图1,请猜想∠BOC与∠AOD的关系,并写出理由.
9.下面是小马虎解的一道题
题目:在同一平面上,若∠BOA=70°,∠BOC=15°,求∠AOC的度数.
解:根据题意可画出图
∵∠AOC=∠BOA-∠BOC
=70°-15°
=55°
∴∠AOC=55°
若你是老师,会判小马虎满分吗?若会,说明理由.若不会,给出你认为正确的解法.10.把一副三角尺如图所示拼在一起.
(1)写出图中∠A、∠B、∠BCD、∠D、∠AED的度数;
(2)用小于号“<”将上述各角连接起来.
11.如图所示,点O在直线AB上,并且∠AOC=∠BOC=90°,∠EOF=90°,试判断∠AOE 和∠COF,∠COE和∠BOF的大小关系.
12.如图,已知∠AOC=∠BOD=75°,∠BOC=30°,求∠AOD.
答案解析
1.【答案】A
【解析】∵∠AOB是一直角,∠AOC=40°,
∴∠COB=50°,
∵OD平分∠BOC,
∴∠COD=25°,
∵∠AOD=∠AOC+∠COD,
∴∠AOD=65°.
故选A.
2.【答案】C
【解析】15°=45°-30°,
65°不能画出,
75°=30°+45°,
135°=45°+90°,
所以能用一副三角尺画出来的有15°、75°,135°共3个,故选C.
3.【答案】D
【解析】设∠AOD=a,∠AOC=90°+a,∠BOD=90°-a,
所以∠AOC+∠BOD=90°+a+90°-a=180°.
故选D.
4.【答案】D
【解析】一个钝角与一个锐角的差可能是锐角、直角也可能是钝角.
故选D.
5.【答案】B
6.【答案】D
【解析】A、如果∠AOB=∠COD,那么∠AOC=∠BOD,本选项正确;
B、如果∠AOB>∠COD,那么∠AOC>∠BOD,本选项正确;
C、如果∠AOB<∠COD,那么∠AOC<∠BOC,本选项正确;
D、如果∠AOB=∠BOC,那么∠AOC=∠BOD,本选项错误.
故选D.
7.【答案】(1)度量;(2)叠合
【解析】角的大小比较的两种方法:(1)度量法,即用量角器量角的度数,角的度数越大,角越大.(2)叠合法,即将两个角叠合在一起比较,使两个角的顶点及一边重合,另一边都不落在重合边的同侧,观察另一边的位置,据此判断即可.
8.【答案】解:(1)∵∠BOC+∠BOD=90,∠BOC=70°,
∴∠BOD=20°,
∴∠AOD=∠AOB+∠BOD=110°.
(2)∵∠AOB=∠DOC=90°,又∵∠AOB+∠AOD+∠DOC+∠BOC=360°,
∴∠BOC+∠AOD=180°
∵∠BOC=50°,
∴∠AOD=180-∠BOC=130°.
(3)结论:∠BOC+∠AOD=180°.
理由:
∵∠AOB=90°,∠COD=90°,
∴∠BOC+∠AOD=(90°-∠AOC)+(90°+∠AOC)=90°-∠AOC+90°+∠AOC=180°,
∴∠BOC+∠AOD=180°.
【解析】(1)∠BOC和∠BOD互余,故∠BOD=20°,故可知∠AOD的度数.
(2)利用∠BOC与∠AOD互补求∠AOD度数.
(3)根据角的互补,叠和部分恰好为∠AOD的补角,故∠BOC和∠AOD的和始终等于180度.
9.【答案】解:不会,如图,当OC在∠AOB的内部时,∠AOC=∠BOA-∠BOC=55°,
当OC在∠AOB的外部时,∠AOC=∠BOA+∠BOC=85°,
故∠AOC的度数是55°或85°.
【解析】在同一平面内,∠BOA与∠BOC可能存在两种情况,即当OC在∠AOB的内部或OC在∠AOB的外部.
10.【答案】解:(1)∠A=30°,∠B=90°,∠BCD=150°,∠D=45°,∠AED=135°;
(2)∠A<∠D<∠B<∠AED<∠BCD.
【解析】(1)一副三角尺一个是等腰直角三角形,另一个是一个角为30°的直角三角形,看图写出各个角的度数,(2)按角的大小顺序连接.
11.【答案】解:因为∠EOF=∠COF+∠COE=90°,
∠AOC=∠AOE+∠COE=90°,
即∠AOE和∠COF都与∠COE互余,
根据同角的余角相等得:∠AOE=∠COF,
同理可得出:∠COE=∠BOF.
【解析】根据已知得出∠AOE和∠COF都与∠COE互余,
进而得出∠AOE=∠COF,即可得出:∠COE=∠BOF.
12.【答案】解:∵∠AOC=75°,∠BOC=30°,
∴∠AOB=∠AOC-∠BOC=75°-30°=45°,
又∵∠BOD=75°,
∴∠AOD=∠AOB+∠BOD=45°+75°=120°.
故答案为120°.
【解析】根据∠AOC=∠BOD=75°,∠BOC=30°,利用角的和差关系先求出∠AOB的度数,再求∠AOD.。

相关文档
最新文档