物理化学课件.ppt

合集下载

物理化学(机材类第四版,ppt课件)2.9 热力学基本关系式

物理化学(机材类第四版,ppt课件)2.9 热力学基本关系式
适用条件:组成不变,W′= 0 的封闭系统或 封闭系统,W′= 0,可逆过程。
4
2、热力学函数的基本关系式
由热力学基本方程
热力学恒等式
dU = TdS- pdV dH = TdS + Vdp
U T ; U p
S V
V S
H T; S p
H p
S
V
dA = -SdT- pdV dG = -SdT + Vdp
再将dU = TdS – pdV 式代入得到 dH = TdS +Vdp
(c) A=U-TS 微分,并用上式代入得到
dA = -SdT- pdV
(d) G = H – T S微分,并用上式代入得到 dG = -SdT + Vdp
3
四个热力学基本方程
dU = TdS- pdV dH = TdS + Vdp dA = -SdT- pdV dG = -SdT + Vdp
G p3 p2 p1
p3>p2>p1
T Tm
T
26
(1)求U随V的变化关系 (2)求H随p的变化关系 (3)求S与Cp的变化关系 (4)求G或Δr G与温度的关系 (5)求G随p的变化关系
27
关于U,H, S, G,A与T、p、V的关系
(一定量、一定组成的单相系统)
➢理想气体 U、H 只是T 的函数,与p、V 无关;S与T、p、V 均有关。
-p -S
G T p
麦克斯韦关系式中不含熵与温度的偏微商。
问题
S T p
S T V
Cp/T CV/T
10
思考题
1、对于只作膨胀功的封闭系统 ()
A T
V

《物理化学概论》PPT课件

《物理化学概论》PPT课件


0.3 物理化学的建立与发展
十八世纪开始萌芽:从燃素说到能量守恒与转化
定律。俄国科学家罗蒙诺
索夫最早使用“物理化学
”这
一术语。
上一内容 下一内容 回主目录
返回
2020/11/7
0.3 物理化学的建立与发展
十九世纪中叶形成:1887年俄国科学家W.Ostwald (1853~1932)和荷兰科学家 J.H.van’t Hoff (1852~1911) 合办了第一本“物理化学杂志” (德文)。
2020/11/7
化学学科的发展趋势
(5)从研究平衡态到研究非平衡态 经典热力 学只研究平衡态和封闭体系或孤立体系,然 而对处于非平衡态的开放体系的研究更具有 实际意义,自1960年以来,逐渐形成了非平 衡态热力学这个学科分支。
上一内容 下一内容 回主目录
返回
2020/11/7
0.5 物理化学课程的学习方法
譿諭才愩鹗刭織薒瑄泽瞓瑵裘乊
諺蕵綔廸伔瘻筆曰騏櫨汐韁懢檪
釥瀤捡鐌长銷糘炼颙诀鼧饃滭缗
貳饣蕡嵐倉櫸倭珢畅洏侂祾済穭
員•• 12颯诨嬚樀卝贺鯺薇妋禾鯿吴会 黓• 3膆崁禱女敆嫝力皴蚤覦嶇蹨齸 穚•• 45醒靿鋐裥滹啑賛蝾濅熑鏦桗屮 稬•• 67男古罱女古塣男怪男怪鎸女古古疳怪啐怪个鳩蠪傢榎邇艛吊鷊 鍵• 8v飩vvv樃vvv塎踘怔殂祤燒鞦芒鱭粩癆 婥•• 9鋇鱗甚齌嫚褕朸淂紽頛落鍭鑝
0.1 物理化学的目的和内容
物理化学 从研究化学现象和物理现象之间 的相互联系入手,从而探求化学变化中具有普 遍性的基本规律。在实验方法上主要采用物理 学中的方法。
上一内容 下一内容 回主目录
返回
2020/11/7
0.1 物理化学的目的和内容

《物理化学1气体》课件

《物理化学1气体》课件

04 气体反应动力学 与速率方程
气体反应速率的概念
反应速率
单位时间内反应物浓度减 少或产物浓度增加的量。
反应速率常数
反应速率与反应物浓度的 乘积,表示反应速率与浓 度的关系。
活化能
反应速率与温度的关系, 表示反应所需的最低能量 。
速率方程的建立与求解
质量作用定律
反应速率与反应物浓度的幂次方 成正比。
《物理化学1气体》ppt课 件
目 录
• 气体的基本性质 • 气体定律与热力学基础 • 气体混合物与分压定律 • 气体反应动力学与速率方程 • 气体化学反应平衡常数与计算
01 气体的基本性质
气体的定义与分类
总结词
气体的定义、分类及特性
详细描述
气体是物质的一种聚集状态,具有无固定形状和体积、流动性强等特性。根据气 体分子间相互作用力的不同,气体可分为理想气体和实际气体。理想气体忽略了 气体分子间的相互作用力,而实际气体则考虑了这种相互作用力。
理想气体定律
理想气体假设
理想气体状态方程,即PV=nRT,其 中P表示压强,V表示体积,n表示摩 尔数,R表示气体常数,T表示温度。
理想气体是一种假设的气体模型,其 分子之间没有相互作用力,分子本身 的体积可以忽略不计。
理想气体状态方程的应用
用于计算气体的压力、体积、温度等 物理量之间的关系,以及气体的热力 学性质。
热力学第一定律
热力学第一定律
01不
能消失,只能从一种形式转化为另一种形式。
内能和热量
02
内能是系统内部能量的总和,热量是系统与外界交换能量的量
度。
热力学第一定律的应用
03
用于计算系统的内能、热量、功等物理量之间的关系,以及系

物理化学幻灯片PPT课件

物理化学幻灯片PPT课件
大体而言,物理化学为化学诸分支中,最讲求数值精确和 理论解释的学科。
.
2
物理化学的形成
物质的化学运动形式和物理运动形式是相互联系的。早期的物理学家和化学家并没有 十分明确的分工。化学家波义耳在物理学上曾做出十分重要的贡献;而物理学家牛顿 在化学上虽然没有取得什么成就,但却全盘接受了波义耳的化学思想,他用在炼金术 和化学上的时间比用在物理学上的时间还多。既是物理学家又是化学家的罗蒙诺索夫 就曾使用过“物理化学”这一术语,还提出了这门学科的性质和研究范围。
1887年,阿累尼乌斯提出电解质稀溶液的电离理论
.
24
关于电化学
一个伽凡尼电池, 两个电极用盐桥连 接以传递离子。外 电路中产生电流。
.
25
科学家的故事
1800年,伏打用锌片与铜片夹以盐水浸湿的纸 片叠成电堆产生了电流,这个装置后来称为伏打电堆 ,他还把锌片和铜片放在盛有盐水或稀酸的杯中,放 多这样的小杯子中联起来,组成电池。他指出这种电 池“具有取之不尽,用之不完的电”,“不预先充电 也能给出电击”。
物理化学
PHYSICAL CHEMISTRY
胡泽伟 杨 靓
.1Leabharlann 物理化学是什么?物理化学是一门从物理学角度分析物质体系化学行为的原 理、规律和方法的学科,是近代化学的原理根基。
物理化学家关注于分子如何形成结构、动态变化、分子光 谱原理、平衡态等根本问题,涉及的物理学有静力学、动 力学、量子力学、统计力学等。
初步发现
1748年法国人诺勒发现渗透现象 1827年法国人杜特罗夏定量测定了渗透压
1877年德国浦菲弗发现 PV = KT(K 为常数)
进一步发展
1886年范霍夫建立起稀溶液理论
揭示出拉乌尔公式中常数的热力学意义

物理化学课件

物理化学课件
意义
热力学第一定律在物理学和化学 领域中具有重要地位,它为解释 许多自然现象提供了基础。
热力学第二定律
内容
热力学第二定律指出,热量总是从高 温物体传导到低温物体,而不能反过 来。也就是说,热量传递的方向总是 从高到低,不能反过来。
意义
热力学第二定律表明了自然界的某种 方向性,它限制了某些自然过程的进 行方式。
VS
详细描述
光化学第一定律指出,在一定温度和压力 下,光化学反应的速率与辐射能量成正比 。这个定律对于研究光化学过程和设计光 化学设备具有重要意义。
光化学第二定律
总结词
光化学第二定律是描述光化学过程中辐射能 量与化学反应途径关系的物理化学定律。
详细描述
光化学第二定律指出,在一定温度和压力下 ,一个光化学反应的速率与反应途径中各个 步骤的辐射能量差成正比。这个定律对于研 究光化学反应机理和设计光化学合成路线具 有重要意义。
化学平衡
内容
化学平衡是指化学反应中反应物和生成物之间的平衡状态。在一定条件下,反 应物和生成物之间的浓度不再发生变化,达到动态平衡。
意义
化学平衡是化学反应中一个重要的概念,它帮助我们了解反应进行的程度和方 向。
化学反应速率
内容
化学反应速率是指单位时间内反应物消耗或生成物产生的速率。通常用单位浓度 的变化量表示。
复杂系统与跨尺度研究
总结词
跨学科、多尺度研究
详细描述
物理化学在复杂系统和跨尺度研究方面具有独特的优势 。复杂系统研究涉及多个相互作用因素,需要综合运用 物理、化学和生物等学科的知识来理解和预测系统的行 为。跨尺度研究则要求科学家从原子、分子到纳米、宏 观等不同尺度上理解和控制化学过程,物理化学为解决 这些问题提供了有效的方法和工具。

物理变化和化学变化PPT课件

物理变化和化学变化PPT课件

性质和变化的区别:
变化
反映
两者关系:
性质
可燃性、稳定性、不 稳定性、金属活动 只在化学变 性、非金属活动性、 化中才能表 性质: 氧化性、还原性、 现出来的性 酸性、碱性、化合 质 价等
2
实验1
1、取1块硫酸铜晶体,观察它的形状、颜色。
形状规则、蓝色固体
2、向盛有硫酸铜晶体的试管中加水,观察晶体 能否溶解,水溶液颜色有什么变化。
能溶解,形成蓝色溶液。
二、性质和变化的区别与联系:
物质变化描述的是正在发生或已经发生的过程 物质性质是物质变化过程中所表现出来的属性
反映
两者关系: 变化
决定
性质
两者在叙述上的区别是:性质一般描述为“某物质 能(或“会”.“可以”.“易”“难”)怎样。而变化 的叙述中一般没有以上字眼。
① 常压下,水在100℃时能沸腾。 (物理性质) ② 镁条在空气中点燃可以燃烧。 (化学性质) ③ 水受热后沸腾变成水蒸气。 (物理变化)
的是( )
1、物质的变化在你周围处处存在,下列变化属于 物理变化的是( ) A、菜刀生锈 B、牛奶变酸 C、蜡烛燃烧 D、玻璃杯破碎 2、古诗词是古人为我们留下的宝贵财富,下列诗 句中涉及物理变化的是( ) A、野火烧不尽,春风吹又生 B、春蚕到死丝方尽,蜡炬成灰泪始干 C、只要功夫深,铁杵磨成针 D、爆竹声中一岁除,春风送暖入屠苏
4.下列叙述中一定发生了化学变化的 是( ) A.冰融化成水 B.常温下,氢气与氧气混合 C.铜棒投入到硫酸亚铁溶液中 D.二氧化碳气体通入到澄清石灰水 中
6.下列四个短语,其原意一定包含 化学变化的是( ) A.花香四溢 B.海市蜃楼 C.百炼成钢 D.木已成舟
下列变化中,属于物理变化的是( ) A.米饭变馊 B.火药爆炸 C.湿衣服晾干 D.铁锅生锈

物理化学ppt课件

物理化学ppt课件

求 真 厚 德
I RF T I R ESR
NMR
达 ESCA 美
利用计算机还可以进行模拟放大和分子设计。
§0.2 物理化学的建立与发展
(5) 从单一学科到边缘学科
探 化学学科 广 内部及与其他
学科相互渗透、 索 相互结合,形 微 药学 成了许多极具 生命力的边缘 创 学科,如: 新
计算
计算 化学 药物 化学 天体 化学 材料 化学
探 广 索 微 创 新
热力学研究方法是从静态利用热力学函数判断
求 真 厚 德 达 美
变化的方向和限度,但无法给出变化的细节。 激光技术和分子束技术的出现,可以真正地研
究化学反应的动态问题。
分子反应动力学已成为非常活跃的学科。
§0.2 物理化学的建立与发展
(4) 从定性到定量
探 广 索 微 创 新
随着计算机技术的飞速发展,大大缩短了数 据处理的时间,并可进行自动记录和人工拟合。 使许多以前只能做定性研究的课题现在可进 行定量监测,做原位反应,如:
求 真 厚 德 达 美
恩格斯
• 恩格斯的论断反映了19世纪中叶
探 广 微 创 新
自然科学各学科的“成熟程度”。 求 真 表明各学科研究对象 物质运动 索 形式与规律 其复杂程度的差异厚
• 然而,百年来科技的发展使各学


达 科的“成熟程度”发生了巨大变 美
无机、有机化学在19世纪率先建立
冶金、建材工业推动了无机
检验
探 广 索 微 创 新
运用数学的多 求 真 少是一门科学成熟
程度的标志。
厚 德 达 美
马克思
探 广 索 微 创 新
数学的 应用: 在刚体 力学中是绝对的,在气体 力学中是近似的,在液体 力学中就已经比较困难了; 在物理学中是试验性的和 相对的;在化学中是最简 单的一次方程;在生物学 中等于零。

大学物理化学经典傅献彩ppt课件

大学物理化学经典傅献彩ppt课件

(1)
(2)
( 1 )Z n ( s ) │ Z n S O 4 ( a q ) │ C u S O 4 ( a q ) │ C u ( s )
( 2 )Z n ( s ) │ Z n S O 4 ( a q ) ‖ C u S O 4 ( a q ) │ C u ( s )
完整最新ppt
25
P t│ H 2 ( p ) │ H C l ( a ) │ A g C l ( s ) │ A g ( s )
( 2 )H 2 ( p 1 ) C l 2 ( p 2 ) 2 H + ( a H ) 2 C l ( a C l )
E1E1 RFTlnaa1 H2 2aaC 1l22
E2 E2
RTln a2a2 2F aH2 aCl2
E 1E 2
E 1E 2
r G m ( 1 ) E 1 F r G m ( 2 ) 2 E 2 F
Sn4(a1),Sn2(a2)|Pt S n4 (a 1)2 e S n2 (a 2)
Cu2(a1), Cu(a2)|Pt
C u2(a 1)e C u(a2)
完整最新ppt
13
§9.2 电动势的测定
对消法测电动势 标准电池
完整最新ppt
14
对消法测定电动势的原理图
Ew
A
H
E
s .c
K D
R
E(RoRi)I
CB
U RO I
G
U RO
E RO Ri
Ex
Ex
Es.c
AC AH
RO
E U
完整最新ppt
15
对消法测电动势的实验装置
标准电池 待测电池
工作电源

《物理化学》PPT课件

《物理化学》PPT课件

2
完整版课件ppt
3
OA 是气-液两相平衡线 即水的蒸气压曲线。它 不能任意延长,终止于临界点。临界点 T=647K, p=2.2×107Pa,这时气-液界面消失。高于临界温度, 不能用加压的方法使气体液化。
OB 是气-固两相平衡线 即冰的升华曲线,理论上可 延长至0 K附近。
OC 是液-固两相平衡线 当C点延长至压力大于
属于此类的体系有:H 2O-HN 3,H 2 O O-H等C。l在标 准压力下,H2O-HC的l 最高恒沸点温度为381.65 K, 含HCl 20.24,分析上完整常版课用件pp来t 作为标准溶液。 20
杠杆规则 Lever Rule
在p-x图的两相区,物系点O代表了体系总的 组成和温度。
通过O点作平行于横坐标 的等压线,与液相和气相线分 别交于M点和N点。MN线称 为等压连结线(tie line)。
如图所示,是对拉乌尔 定律发生正偏差的情况,虚 线为理论值,实线为实验值。 真实的蒸气压大于理论计算 值。
完整版课件ppt
15
如图所示,是 对拉乌尔定律发生 负偏差的情况,虚 线为理论值,实线 为实验值。真实的 蒸气压小于理论计 算值。
完整版课件ppt
16
2. p-x图 和 T-x图 对于二组分体系,K=2,f =4-Φ。φ至少为1,
完整版课件ppt
25
精馏
精馏是多次简单蒸馏的组合。
精馏塔底部是加热 区,温度最高;塔顶温 度最低。
精馏结果,塔顶 冷凝收集的是纯低沸 点组分,纯高沸点组 分则留在塔底。
精馏塔有多种类型,如图所示是泡罩式精馏
塔的示意图。
完整版课件ppt
26完整版课件ppt来自27体系自身确定。
H2O的三相点温度为 273.16 K,压力为

物理化学ppt课件

物理化学ppt课件

热力学第二定律与熵增原理
总结词
热力学第二定律是指在一个封闭系统中,熵(即系统的混乱度)永远不会减少,只能增加或保持不变 。
详细描述
热力学第二定律是热力学的另一个基本定律,它表明在一个封闭系统中,熵(即系统的混乱度)永远 不会减少,只能增加或保持不变。这意味着能量转换总是伴随着熵的增加,这也是为什么我们的宇宙 正在朝着更加混乱和无序的方向发展。
03
化学平衡与相平衡
化学平衡条件与平衡常数
化学反应的平衡条件
当化学反应达到平衡状态时,正逆反 应速率相等,各组分浓度保持不变。
平衡常数
平衡常数表示在一定条件下,可逆反 应达到平衡状态时,生成物浓度系数 次幂的乘积与反应物浓度系数次幂的 乘积的比值。
相平衡条件与相图分析
相平衡条件
相平衡是指在一定温度和压力下 ,物质以不同相态(固态、液态 、气态)存在的平衡状态。
色谱分析技术
色谱法的原理
色谱法是一种基于不同物 质在固定相和移动相之间 的分配平衡,实现分离和 分析的方法。
色谱法的分类
根据固定相的不同,色谱 法可分为液相色谱、气相 色谱、凝胶色谱等。
色谱法的应用
色谱法在物理化学实验中 广泛应用于分析混合物中 的各组分含量、分离纯物 质等。
质谱分析技术
质谱法的原理
05
物理化学在环境中的应用
大气污染与治理
1 2 3
大气污染概述
大气污染是指人类活动向大气中排放大量污染物 ,导致空气质量恶化,对人类健康和生态环境造 成危害的现象。
主要污染物
大气中的主要污染物包括颗粒物、二氧化硫、氮 氧化物等,这些污染物会对人体健康和环境产生 严重影响。
治理措施
针对大气污染,采取了多种治理措施,包括工业 污染源控制、机动车污染控制、城市绿化等。

《物理化学》朱【文涛】教授课件 全套 830页

《物理化学》朱【文涛】教授课件 全套 830页
➢ 教材:
朱文涛.《物理化学》 朱文涛.《物理化学中的公式与概念》
➢ 参考书:
傅献彩等.《物理化学》 天津大学.《物理化学》 胡英.《物理化学》 Ira. N. Levine . Physical Chemistry P. W. Atkins . Physical Chemistry
第一章 气 体 Chapter 1 Gas
例如:
水蒸气, p T=const. 水
➢ 是液体的性质:表示液体挥发的难易。其大小决 定于液体所处的状态(主要决定于温度)。
➢ 沸点:蒸气压=外压时的温度,通常是指蒸气压= 101325 Pa,称(正常)沸点。
(2) 临界参数和临界点: ➢ 定义:
Tc——利用加压手段使气体液化的最高温度 pc——在临界温度时使气体液化所需的最小压力 Vc——在临界温度和临界压力时气体的摩尔体积
Tr=1 pr=1.5
Z=0.25
110×101325 Pa·Vm=0.25×8.314 J·K-1·mol-1×304K 解得: Vm=5.67×10-5 m3·mol-1
本章小结:
理想气体状态方程 气体计算方法 实际气体状态方程
压缩因子图
第二章 热力学第一定律 Chapter 2 The First Law of Thermodynamics
pB xB p
pB xB p pxB p
B
B
B
∴ pB代表组分气体B对气体混合物压力的贡献。
2. 分压定律: 对理想气体混合物
pB
pxB
nRT V
xB
(nxB )RT V
nBRT V
∴ 在理想气体混合物中,任意组
分气体的分压等于同温下该气体 在容器中单独存在时的压力

物理化学完整ppt课件

物理化学完整ppt课件

数称为(独立)组分数。 S:物种数
CSRR'
R:独立的化学平衡数 R′独立限制条件数
说明:★独立限制条件数只有在同一相中才能起作用
CaCO3(s)=CaO(s)+CO2(g) R′= 0 ★独立的化学平衡数:指物质间构成的化学平衡是相互独立的
C+H2O=CO+H2 C+CO2=2CO CO+H2O=CO2+H2 R=2 S=5 C=5-2=3
(1)因外压增加,使凝固点下降 0.00748K (2)因水中溶有空气,使凝固点下降 0.00241K
可编辑课件
16
例:如图为CO2的相图,试问: (1)将CO2在25℃液化,最小需加多大压力? (2)打开CO2灭火机阀门时,为什么会出现少量白色固体(俗称于冰)?
解:(1)根据相图,当温度为25℃ 液一气平衡时,压力应为67大气压, 在25℃时最小需要67大气压才能使 CO2液化。
2、水的相图
可编辑课件
13
◎组分数
S:物种数
CSRR'
R:独立的化学平衡数 R′独立限制条件数
总结1
说明:★独立限制条件数只有在同一相中才能起作用 ★独立的化学平衡数:指物质间构成的化学平衡是相互独立的
◎相律
◎单组分系统相图 F=C-P十2=3-P
单组分系统最多三相共存 单组分系统是双变量系统
可编辑课件
可编辑课件
7
杠杆规则还可以表示为:
(1)
m() 1 wB() wB 1
m( )
wB wB ()
m() m() wB() wB wB wB()
m( )
wB wB ()
m() wB wB() m wB() wB()
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3、相律的推导 相律:只受温度和压力影响的平衡系统的自由度数,等于系统的组分数
减去相数再加上二。
4、几点说明 ①相律只适用平衡系统
②相律F=C-P+2中的“2”表 示
系统整体的温度、压力皆相同 只考虑温度、压力对系统相平衡的影响
③当考虑其它因素(如电场、磁场、重力场等因素)对系统相平衡的影响
时,则相律为
三相点与冰点的区别
★三相点是物质自身的特性,不能加以 改变,如H2O的三相点
T 273.16 K , p 610.62 Pa .
★冰点是在大气压力下,水、冰、气 三相共存。
当大气压力为 103Pa 时, 冰点温度为 273.15K,
改变外压,冰点随之改变
★冰点温度比三相点温度低0.01K,是由两种因素造成的:
2、水的相图
◎组分数 C S R R'
S:物种数 R:独立的化学平衡数 R′独立限制条件数
总结1
说明:★独立限制条件数只有在同一相中才能起作用 ★独立的化学平衡数:指物质间构成的化学平衡是相互独立的
◎相律
◎单组分系统相图 F=C-P十2=3-P
单组分系统最多三相共存 单组分系统是双变量系统
2、水的相图 ▲面(三个单相区)
(1)因外压增加,使凝固点下降 0.00748K (2)因水中溶有空气,使凝固点下降 0.00241K
例:如图为CO2的相图,试问: (1)将CO2在25℃液化,最小需加多大压力? (2)打开CO2灭火机阀门时,为什么会出现少量白色固体(俗称于冰)?
解:(1)根据相图,当温度为25℃ 液一气平衡时,压力应为67大气压, 在25℃时最小需要67大气压才能使 CO2液化。
OB 是气-固两相平衡线,即冰的升华曲线,理论上可延长至0 K附近。
OC 是液-固两相平衡线,当C点延长至压力大于2×108Pa时,相图变得 复杂,有不同结构的冰生成。
▲点 O点是三相点气-液-固三相共存,三相点的温度和压力皆由体系自定 P=3 F=3-1+2=0
H2O的三相点温度为273.16 K,压力为610.62 Pa。
杠杆规则
杠杆规则表明:当组成以质量分 数表示时,两相的质量反比于系 统点到两个相点线段的长度。
杠杆规则还可以表示为:
(1)
m( ) 1 wB ( ) wB 1
m( )
wB wB ( )
m( ) m( ) wB ( ) wB wB wB ( )
m( )
wB wB ( )
m( ) wB wB ( ) m wB ( ) wB ( )
★独立的化学平衡数:指物质间构成的化学平衡是相互独立的
C+H2O=CO+H2 C+CO2=2CO CO+H2O=CO2+H2 R=2 S=5 C=5-2=3
解:
第六章 相平衡
§6.1 相律 1、物种数与组分数 (1)物种数S(化学物质数):系统中的物质数
(2)组分数C
在平衡体系所处的条件下,能够确保各相组成所需的最少独立物种
在气、液、固三个单相区内,温度和压 力独立地有限度地变化不会引起相的改变。
P=1 F=1-1+2=2 ▲线(三条两相平衡线 )
压力与温度只能改变一个,指定了压 力,则温度由体系自定。
P=2 F=2-1+2=1
OA 是气-液两相平衡线,即水的蒸气压曲线。它不能任意延长,终止于 临界点。临界点T=647K,p=2.2×107Pa,这时气-液界面消失。高于临界 温度,不能用加压的方法使气体液化。
(2)CO2的三相点压力为5.11大气 压,当外压小于5.11大气压时液相就 不能稳定存在。当打开阀门时,由于 压力迅速降到及大气压,液相不能稳 定存在,大量气化需吸收热量,使周 围温度迅速降低,在相图上该系统有 可能进入固相区,而出现固体CO2,
§6.2 杠杆规则
1、组成用组分的B的质量分数WB或摩尔分数表示
整个系统的组成WB,质量为m a 相的组成为WB(α),质量为m(α) β相的组成为WB(β),质量为m(β) 组分B在系统中的质量: mB = mWB = mB(α)+ mB(β)
= m(α)WB(α)+ m(β)WB(β) m = m(α)+ m(β) [m(α)+ m(β)] WB = m(α)WB(α)+ m(β)WB(β) 整理得:m(α)[WB -WB(α)] = m(β)[WB(β)-WB]
第六章 相平衡
§6.1 相律 1、物种数与组分数 (1)物种数S(化学物质数):系统中的物质数
(2)组分数C
在平衡体系所处的条件下,能够确保各相组成所需的最少独立物种
数称为(独立)组分数。 S:物种数
C S R R'
R:独立的化学平衡数 R′独立限制条件数
说明:★独立限制条件数只有在同一相中才能起作用 CaCO3(s)=CaO(s)+CO2(g) R′= 0
数称为(独立)组分数。 S:物制条件数
说明:★独立限制条件数只有在同一相中才能起作用 CaCO3(s)=CaO(s)+CO2(g) R′= 0
★独立的化学平衡数:指物质间构成的化学平衡是相互独立的
C+H2O=CO+H2 C+CO2=2CO CO+H2O=CO2+H2 R=2 S=5 C=5-2=3 2、自由度数F 确定平衡体系的状态所必须的独立变量的数目 3、相律的推导
(2)
2、组成用组分的B的摩尔分数xB表示
§6.3 单组分系统相图 对于单组分系统:C=1,据相律
F=C-P十2 =3一P
◆一般情况下F=0(最小),P=3相(最大) 单组分系统最多三相共存
◆一般情况下P=1(最小)F=2 即单组分系统是双变量系统,即温度和压力
1、水相平衡实验数据
从表中的实验数据可以看出: ①水与水蒸气平衡,蒸气压力随温度升高而增大; ②冰与水蒸气平衡,蒸气压力随温度升高而增大; ③冰与水平衡,压力增加,冰的熔点降低; ④在0.01℃和610 Pa下,冰、水和水蒸气同时共存,呈三相平衡状态。
F=C-P + n
④只由液相和固相形成的凝聚系统,忽略压力的影响,相律为
F=C-P+1
解:
(1)因为压力已固定为 pθ F = C-P + 1 当F=0 时,平衡相数P最多 0= 2-P+1 P=3
(2)因为温度已固定为30℃ F = C-P + 1 当F=0 时, 平衡相数P最多 0= 2-P+1 P=3
相关文档
最新文档