清华大学自主招生试题数学
清华北大自主招生模拟试题(数学)
![清华北大自主招生模拟试题(数学)](https://img.taocdn.com/s3/m/4ec0e029192e45361066f5f6.png)
自主招生模拟试题--03一、选择题(本大题共6小题,每小题3分,共18分)1.设A 是整数集的一个非空子集,对于A k ∈,如果A k ∉-1,且A k ∉+1,那么称k 是A 的一个“孤立元”.给定}8,7,6,5,4,3,2,1{=S ,由S 的三个元素构成的所有集合中,不含“孤立元”的集合个数为【 】. A.5 B.6 C.7 D.82.若函数1463)(23+++=x x x x f ,且1)(=a f ,19)(=b f ,则=+b a 【 】. A.2- B.0 C.1 D.23.如果一条直线与一个平面垂直,那么称此直线与平面构成一个“正交线面对”.在一个正方体中,由两个顶点确定的直线与含有四个顶点的平面构成的“正交线面对”的个数是【 】.A.12B.18C.24D.364.某化工厂打算投入一条新的生产线,但需要经环保部门审批同意方可投入生产.已知该生产线连续生产n 年的累计产量为)12)(1(21)(++=n n n n f 吨,但如果年产量超过150吨,将会给环境造成危害.为保护环境,环保部门应给该厂这条生产线拟定最长的生产期限的年数为【 】.A.5B.6C.7D.8 5.若ABC ∆的内角A B C ,,所对的边,,a b c 成等比数列,则sin cot cos sin cot cos A C AB C B++的取值范围是【 】.A.(0,)+∞B.51(0,)2+ C.5151(,)22-+ D.51(,)2-+∞ 6.若设集合}10,,2,1{ =A ,则满足“每个子集至少有2个元素,且每个子集中任意两个元素之差的绝对值均大于1.”的A 的子集个数为【 】.A.55B.89C.109D.133 二、填空题(本大题共4小题,每小题3分,共12分) 7.函数424236131y x x x x x =--+--+的最大值为____________.8.若函数x x a y sin )3cos (2-=的最小值为3-,则实数a 的取值范围是____________.9.甲乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6 局时停止.设甲在每局中获胜的概率为23,乙在每局中获胜的概率为13,且各局胜负相互独立,则比赛停止时已打局数ξ的期望E ξ为____________.10.多面体上,位于同一条棱两端的顶点称为相邻的,如图,正方体的一个顶点A 在平面α内,其余顶点在α的同侧,正方体上与顶点A 相邻的三个顶点到α的距离分别为1,2和4,P 是正方体的其余四个顶点中的一个,则P 到平面α的距离可能是:①3; ②4; ③5; ④6; ⑤7以上结论正确的有______________.(写出所有正确结论的编号..) 三、解答题(本大题共5小题,每小题14分,共70分)11.设b x ax x f ++=4)(2)0(<a ,方程0)(=x f 的两实根为21,x x ,方程x x f =)(的两实根为βα,. (1)若1||=-βα,求b a ,的关系式;(2)若b a ,均为负整数,且1||=-βα,求)(x f 的解析式; (3)若21<<<βα,求证:7)1)(1(21<++x x .12.已知正实数12,,n a a a …,的和为1,求证:222211212231112n n n n n a a a a a a a a a a a a --++++≥++++…. 13.设AB 是抛物线px y 22=)0(>p 的一条过焦点的弦,且AB 与x 轴不垂直,点P 是y 轴上异于坐标原点O 的一点,且满足B A P O ,,,四点共圆,设B A P ,,的纵坐标依次为210,,y y y ,求210y y y +的值.14.在直角坐标平面内,设x 轴,y 轴正方向上的单位向量分别是i ,j,该坐标平面内的点n A ,n B 满足以下两个条件:①1OA j = ,且1+n n A A =i +j ;②i OB 31=,且1+n n B B =2()33n i ⨯.(1)求n OA 及n OB 的坐标;(2)若四边形11++n n n n A B B A 的面积是n a ,求n a 的表达式;(3)是否存在正整数M ,对*N n ∈都有n a <M 成立?若存在,求M 的最小值;若不存在,说明理由. 15.设ABC ∆的内切圆半径为1,三边长a BC =,b CA =,c AB =.若a ,b ,c 都是整数,求证:ABC ∆为直角三角形.自主招生模拟试题答题纸ABCDA 1B 1C 1D 1第10题图α一、选择题(本大题共6小题,每小题3分,共18分)题号 1 2 3 4 5 6 答案二、填空题(本大题共4小题,每小题3分,共12分)题号7 8 9 10 答案三、解答题(本大题共5小题,每小题14分,共70分)11.12.13.14.15.参考答案一、选择题(本大题共6小题,每小题3分,共18分)1.设A 是整数集的一个非空子集,对于A k ∈,如果A k ∉-1,且A k ∉+1,那么称k 是A 的一个“孤立元”.给定}8,7,6,5,4,3,2,1{=S ,由S 的三个元素构成的所有集合中,不含“孤立元”的集合个数为【 】. A.5 B.6 C.7 D.8解析:依题可知,由S 的3个元素构成的所有集合中,不含“孤立元”,这三个元素一定是相连的三个数.故这样的集合共有6个.答案:62.若函数1463)(23+++=x x x x f ,且1)(=a f ,19)(=b f ,则=+b a 【 】. A.2- B.0 C.1 D.2()()()()()()()()()()()()()()()()()()3323333222223223614=13110,3131101,1311019,11123613=06380365=0f x x x x x xg y y y g y f a a a f b b b g a g b g a a b a a a a b a ab b a b b b b a =+++++++=+=++++==++++=⇒++∴+⇒+=-⎧+++⎪⇒+-+++++=⎨++-⎪⎩- 法一:设,则为奇函数且为单调递增函数,且=-9,=9,=-9=g -b-1,法二:易得()()()22260,380,0.D ab b a b a b ++>++>∴+<选。
2020年北京海淀区清华大学自主招生数学试卷(强基计划)-学生用卷
![2020年北京海淀区清华大学自主招生数学试卷(强基计划)-学生用卷](https://img.taocdn.com/s3/m/629dcf47793e0912a21614791711cc7931b77886.png)
2020年北京海淀区清华大学自主招生数学试卷(强基计划)-学生用卷1、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第1题 2020~2021学年北京海淀区高三单元测试 已知x 2+y 2⩽1,求x 2+xy −y 2的最值.2、【来源】设a ,b ,c 均为大于零的实数,若一元二次方程ax 2+bx +c =0有实根,则( ). A. max {a,b,c }⩾12(a +b +c) B. max {a,b,c }⩾49(a +b +c) C. min {a,b,c }⩽14(a +b +c) D. min {a,b,c }⩽13(a +b +c)3、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第13题 2020~2021学年北京海淀区高三单元测试|a →|⩽1,|b →|⩽1,|a →+2b →+c →|=|a →−2b →|,则|c →|的最值为( ) A. 最大值为4√2 B. 最大值为2√5 C. 最小值为0 D. 最小值为24、【来源】在△ABC 中,AC =1, BC =√3,AB =2,M 为AB 的中点,将△BCM 沿CM 折起,使得三棱锥B −ACM 的体积为√212,则折起后AB 的长可以为( ).A. 1B. √2C. √3D. 25、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第5题2020~2021学年北京海淀区高三单元测试P为椭圆x24+y23=1上一点,A(1,0),B(1,1),求|PA|+|PB|的取值范围.6、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第7题2020~2021学年北京海淀区高三单元测试P为双曲线x24−y2=1上一点,A(−2,0),B(2,0),令∠PAB=α,∠PBA=β,下列为定值的是()A. tanαtanβB. tanα2tanβ2C. S△PAB tan(α+β)D. S△PAB cot(α+β)7、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第2题2020~2021学年北京海淀区高三单元测试非等边三角形ABC中,BC=AC,O,P分别为△ABC的外心和内心,D在BC上,OD⊥BP,下列选项正确的是()A. BODP四点共圆B. OD//ACC. OD//ABD. DP//AC8、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第3题已知集合A,B,C⊆{1,2,3,⋯,2020},且A⊆C,B⊆C,则有序集合组(A,B,C)的个数是().A. 22020B. 32020C. 42020D. 520209、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第4题已知数列{a n }满足a 0=1,|a i+1|=|a i +1|(i ∈N ),则A =|∑a k 20k=1|的值可能是( ). A. 0B. 2C. 10D. 1210、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第6题 已知△ABC 的三条边长均为整数,且面积为有理数,则|AB |的值可能是( ). A. 1B. 2C. 3D. 411、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第8题甲、乙、丙三人一起做同一道题,甲说:“我做错了.”,乙说:“甲做对了.”,丙说:“我做错了.”,而事实上仅有一人做对题目且仅有一人说谎了,那么谁可能做对了题目( ). A. 甲 B. 乙 C. 丙 D. 没有人12、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第9题 2020~2021学年北京海淀区高三单元测试Rt △ABC 中,∠ABC =90°,AB =√3,BC =1,PA→|PA →|+PB →|PB →|+PC →|PC →|=0→,以下正确的是( ).A. ∠APB =120°B. ∠BPC =120°C. 2BP =PCD. AP =2PC13、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第10题2020~2021学年北京海淀区高三单元测试 lim n→∞∑arctan n k=12k 2=( )A. 34π B. π C. 3π2D. 7π314、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第11题从0∼9这十个数中任取五个数组成一个为五位数ABCDE (A 可以为0),则396|ABCDE 的概率是( ). A.1396B.1324C.1315D.121015、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第12题随机变量X (=1,2,3,⋯),Y (=0,1,2),满足P (X =k )=12k 且Y ≡X (mod3),则E (Y )=( ). A. 47B. 87C. 127D. 16716、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第14题若存在x ,y ∈N ∗,使得x 2+ky ,y 2+kx 均为完全平方数,则正整数k 可能是( ). A. 2B. 4C. 5D. 617、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第15题 求值:sin(arctan1+arccos√10+arcsin√5)=( ).A. 0B. 12C. √22D. 118、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第16题已知正四棱锥中,相邻两侧面构成的二面角为α,侧棱和底面夹角为β,则().A. cosα+tan2β=1B. secα+tan2β=−1C. cosα+2tan2β=1D. secα+2tan2β=−119、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第17题2020~2021学年北京海淀区高三单元测试已知f(x)=2e xe x+e−x+sinx,x∈[−2,2],则f(x)上下界之和为.20、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第18题已知函数f(x)的图象如图所示,记y=f(x),x=a,x=t(a<t<c)及x轴围成的曲边梯形面积为S(t),则下列说法正确的是().A. S(t)⩽cf(b)B. S′(t)⩽f(a)C. S′(t)⩽f(b)D. S′(t)⩽f(c)21、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第19题 2020~2021学年北京海淀区高三单元测试定义数列{a n },若∀n ∈N ∗,∃m ∈N ∗,使得S n =a m ,则称数列{a n }为“某数列”,以下正确的是( )A. a n ={1,n =12n−2,n ⩾2,数列{a n }为“某数列”B. a n =kn ,k 为常数,则{a n }为“某数列”C. 存在任意两项均不相同的某数列a n ,且对于任意n ∈N ∗,|a n |<√nD. 对任意等差数列{a n },存在“某数列”{b n }和{c n },使得a n =b n +c n22、【来源】 2020年北京海淀区清华大学自主招生(强基计划)第20题求值:∫sin 2xsin 4x+cos 4x2πdx =( ).A. πB. √2πC. 2πD. √5π23、【来源】已知f(z)=z 10+z −10+12(z 5+z −5),则( ). A. f(z)=0存在实数解B. f(z)=0共有20个不同的复数解C. f(z)=0复数解的模长都等于1D. f(z)=0存在模长大于1的复数解24、【来源】设多项式f(x)的各项系数都是非负实数,且f(1)=f ′(1)=f ′′(1)=f ′′′(1)=1,则f(x)的常数项的最小值为( ). A. 12B. 13C. 14D. 1525、【来源】《红楼梦》《三国演义》《水浒》《西游记》四部书分列在只有四层架子的书柜的不同层上,小赵、小钱、小孙,小李分别借阅了四部书中的一部,现已知:小钱借阅了第一层的书籍,小赵借阅了第二层的书籍,小孙借阅的是《红楼梦》,《三国演义》陈列在第四层,则().A. 《水浒》一定陈列在第二层B. 《西游记》一定陈列在第一层C. 小孙借阅的一定是第三层的书籍D. 小李借阅的一定是第四层的书籍26、【来源】设数列{a n}的前n项和为S n=(−1)n a n+12n+n−3,且实数t满足(t−a n+1)(t−a n)<0,则t的取值范围是().A. (−34,11 4)B. (−34,11 5)C. (−35,11 4)D. (−35,11 5)27、【来源】已知实数a,b满足a3+b3+3ab=1,设a+b的所有可能取值构成的集合为M,则().A. M为单元素集B. M为有限集,但不是单元素集C. M为无限集,且有下界D. M为无限集,且无下界28、【来源】设A ,B 分别是x 轴,y 轴上的动点,若以AB 为直径的圆C 与直线2x +y −4=0相切,则圆C 面积的最小值为( ). A. π5B. 2π5C. 4π5D. π29、【来源】设α,β为锐角,且cos(α+β)=sin αsin β ,则tanα的最大值为( ). A. √24B. √33 C. 1 D. √230、【来源】设函数f(x)=e x +a(x −1)+b 在区间[1,3]上存在零点,则a 2+b 2的最小值为( ). A. e2 B. e C. e 22 D. e 231、【来源】设复数z 满足|3z −7i |=3,令z 1=z 2−2z+2z−1+i,则|z 1|的( ).A. 最大值为83B. 最大值为73C. 最小值为43D. 最小值为2332、【来源】在平面直角坐标系中,横坐标与纵坐标都是整数的点称为格点,所有顶点都是格点的多边形称为格点多边形.若一个格点多边形内部有8个格点,边界上有10个格点,则这个格点多边形的面积为( ). A. 10B. 11C. 12D. 1333、【来源】设实数x 1,x 2,⋯,x 21满足0⩽x i ⩽1(i =1,2,⋯,21),则∑21i=1∑|x i −x k |21k=1的最大值为( ). A. 110B. 120C. 220D. 24034、【来源】已知实数x ,y ,z 满足{ 19x 3−13y 2−y =119y 3−13z 2−z =119z 3−13x 2−x =1,则( ).A. (x,y,z)只有1组B. (x,y,z)有4组C. x ,y ,z 均为有理数D. x ,y ,z 均为无理数35、【来源】使得nsin1>1+5cos1成立的最小正整数n 的值为( ). A. 3B. 4C. 5D. 636、【来源】已知复数z 1,z 2在复平面内对应的点为Z 1,Z 2,O 为坐标原点,若|z 1|=1,5z 12−2z 1z 2+z 22=0,则△OZ 1Z 2的面积为( ).A. 1B. √3C. 2D. 2√31 、【答案】见解析;2 、【答案】 B;C;D;3 、【答案】 B;C;4 、【答案】 B;C;5 、【答案】[4−√5,4+√5];6 、【答案】 A;C;7 、【答案】 A;D;8 、【答案】 D;9 、【答案】 C;D;10 、【答案】 C;D;11 、【答案】 A;B;12 、【答案】 A;B;C;D;13 、【答案】 A;14 、【答案】 C;15 、【答案】 B;16 、【答案】 C;D;17 、【答案】 D;18 、【答案】 D;19 、【答案】 2;20 、【答案】 A;C;21 、【答案】 A;B;C;D;22 、【答案】 B;23 、【答案】 B;C;24 、【答案】 B;25 、【答案】 C;D;26 、【答案】 A;27 、【答案】 B;28 、【答案】 C;29 、【答案】 A;30 、【答案】 D;31 、【答案】 A;D;32 、【答案】 C;33 、【答案】 C;34 、【答案】 A;D;35 、【答案】 C;36 、【答案】 A;第11页,共11页。
近十年清华北大自主招生试题汇总
![近十年清华北大自主招生试题汇总](https://img.taocdn.com/s3/m/2286e50aa6c30c2259019ea1.png)
1.(2007清华)对于集合2M R ⊆(表示二维点集),称M 为开集,当且仅当0,0P M r ∀∈∃>,使得{}2P R PP r M ∈<⊆⎰。
判断集合{}(,)4250x y x y +->⎰与集合{}(,)0,0x y x y ≥>⎰是否为开集,并证明你的结论。
2,(2009北大)已知,cos cos 21x R a x b x ∀∈+≥-恒成立,求max ()a b +3,(2009清华)已知,,0x y z >,a 、b 、c 是x 、y 、z 的一个排列。
求证:3a b c x y z ++≥。
4,(2006清华)已知a ,b 为非负数,44M a b =+,a+b=1,求M 的最值。
5,(2008北大)实数(1,2,i i a i b i ==满足123a a a b b b ++=++,122313122313a a a a a a bb b b bb ++=++,123123min(,,)min(,,)a a a b b b ≤。
求证:12312m a x (,,)m a x (,,)a a a b b b ≤。
6,(2009清华)试求出一个整系数多项式110()n n n n f x a x a x a --=+++…,使得()0f x =有一根为7,(2009清华)x>0,y>0,x+y=1,n 为正整数,求证:222112n n n xy -+≥8,(2007北大) 已知22()5319653196f x x x x x =-++-+,求f(1)+f(2)+…+f(50)。
9,(2006清华)设正三角形1T 的边长为a ,1n T +是n T 的中点三角形,n A 为n T 除去1n T +后剩下三个三角形内切圆面积之和,求1lim n k n k A →∞=∑。
10,(2008北大)数列{}1n n a ∞=定义如下:1234561,2,3,a a a a a a ======……(1) 给定自然数n ,求使l a n =的L 的范围;(2) 令221m m l l b a ==∑,求3limm m b m →∞。
清华自主招生数学创新试题汇编
![清华自主招生数学创新试题汇编](https://img.taocdn.com/s3/m/5d0447bf998fcc22bcd10d7e.png)
1、(Ⅰ)已知函数:1()2()(),([0,),)n n n f x x a x a x n N -*=+-+∈+∞∈求函数()f x 的最小值;(Ⅱ)证明:()(0,0,)22n n n a b a b a b n N *++≥>>∈;(Ⅲ)定理:若123,,k a a a a 均为正数,则有123123()n n nnn k ka a a a a a a a kk++++++++≥成立(其中2,,)k k N k *≥∈为常数.请你构造一个函数()g x ,证明:当1231,,,,,k k a a a a a +均为正数时,12311231()11n n nn n k k a a a a a a a a k k ++++++++++≥++.解:(Ⅰ)令111'()2()0n n n f x nx n a x ---=-+=得11(2)()2n n x a x x a x x a --=+∴=+∴=…2分当0x a ≤≤时,2x x a <+ '()0f x ∴≤ 故()f x 在[0,]a 上递减.当,'()0x a f x >>故()f x 在(,)a +∞上递增.所以,当x a =时,()f x 的最小值为()0f a =.….4分(Ⅱ)由0b >,有()()0f b f a ≥= 即1()2()()0n n n n f b a b a b -=+-+≥故 ()(0,0,)22n n na b a b a b n N *++≥>>∈.………………………………………5分(Ⅲ)证明:要证:12311231()11n n nn n k k a a a a a a a a k k ++++++++++≥++只要证:112311231(1)()()n n n n nn k k k a a a a a a a a -+++++++≥++++设()g x =1123123(1)()()n n n nn n k a a a x a a a x -+++++-++++…………………7分则11112'()(1)()n n n k g x k nx n a a a x ---=+⋅-++++令'()0g x =得12ka a a x k+++= (8)分当0x ≤≤12k a a a k+++时,1112'()[(]()n n k g x n kx x n a a a x --=+-++++≤111212()()0n n k k n a a a x n a a a x --++++-++++=故12()[0,]ka a a g x k+++在上递减,类似地可证12()(,)ka a a g x k++++∞在递增所以12()ka a a x g x k+++=当时,的最小值为12()ka a a g k+++………………10分而11212121212()(1)[()]()n n n n n nk k k k k a a a a a a a a a g k a a a a a a k k k-+++++++++=+++++-++++ =1121212(1)[()()(1)()]n n n nnn n k k k nk k a a a a a a k a a a k-++++++++-++++=11212(1)[()()]n n n n n n k k n k k a a a k a a a k -++++-+++=1112121(1)[()()]n n n n n n k kn k k a a a a a a k ---++++-+++ 由定理知: 11212()()0n n nnn k k k a a a a a a -+++-+++≥ 故12()0ka a a g k+++≥1211[0,)()()0kk k a a a a g a g k+++++∈+∞∴≥≥故112311231(1)()()n n n n nn k k k a a a a a a a a -+++++++≥++++即:12311231()11n n nn n k k a a a a a a a a k k ++++++++++≥++.…………………………..14分答案:5354321b b b b b b =∙∙∙∙3、10.定义一种运算“*”:对于自然数n 满足以下运算性质:(i )1*1=1,(ii )(n +1)*1=n *1+1,则n *1等于A .nB .n +1C .n -1D .2n 答案:D4、若)(n f 为*)(12N n n ∈+的各位数字之和,如:1971142=+,17791=++,则17)14(=f ;记=∈===+)8(*,)),(()(,)),(()(),()(20081121f N k n f f n f n f f n f n f n f k k 则 ____答案:55、下面的一组图形为某一四棱锥S-ABCD 的侧面与底面。
清华北大自主招生模拟试题(数学)
![清华北大自主招生模拟试题(数学)](https://img.taocdn.com/s3/m/05e0913931126edb6f1a10f6.png)
自主招生模拟试题--04说明:第1--4题每题15分,第5--6题每题20分,试卷总分为100分. 1.求最小的正实数k ,使得111()9ab bc ca k a b c+++++≥对所有的正实数,,a b c 都成立.2.如图,已知O 分别与等边三角形ABC 的三边,,AB BC CA 相切于点,,D E F ,设劣弧DF 上的点P 到三边,,AB BC CA 的距离依次为123,,d d d ,求证:132d d d +=.3.设定义在[1,1]-上的函数221()||33f x x bx c =-++的最大值为M ,求M 的最小值.4.如图,O 是边长为1的正六边形ABCDEF 的中心,一条路径是指从点O 出发,沿着线段又回到点O ,求长度为2013的路径条数.5.已知非直角三角形ABC 的最小边长为5,且tan tan tan [tan ][tan ][tan ]A B C A B C ++≤++,其中符号[]x 表示不超过实数x 的最大整数,求ABC ∆的面积?6.已知函数()bf x ax c x=++(0)a >的图像在点(1,(1))f 处的切线方程为1y x =-. (1)将,b c 用a 表示出来;(2)若()ln f x x ≥在[1,)+∞上恒成立,求a 的取值范围; (3)求证:对所有正整数n ,都有1111ln(1)232(1)n n n n ++++>+++ .OFABCEDd 1d 3d 2F DOE ABCP自主招生模拟试题答题纸1. 2.d 1d 3d 2FDOEABCP4.OFA B CE D参考答案1.求最小的正实数k ,使得111()9ab bc ca k a b c+++++≥对所有的正实数,,a b c 都成立. 解:首先令1a b c ===,则有2k ≥. 其次,证明:1112()9ab bc ca a b c+++++≥对所有的正实数,,a b c 都成立. 由于3111133ab ab a b a b++≥⋅⋅⋅=,同理可得:113bc b c ++≥,113ca c a ++≥.以上三式相加即得:1112()9ab bc ca a b c+++++≥. 综上可知,所求k 的最小值为2.2.如图,已知O 分别与等边三角形ABC 的三边,,AB BC CA 相切于点,,D E F ,设劣弧DF 上的点P 到三边,,AB BC CA 的距离依次为123,,d d d ,求证:132d d d +=.证明:如图,以O 为原点,OA 所在直线为y 轴建立坐标系,不妨设O 的半径为1,则点P 坐标为(cos ,sin )θθ(30150)θ︒≤≤︒,则由题意可得:直线AC 的方程为:cos30cos3010x y ︒+︒-=; 直线AB 的方程为:cos150cos15010x y ︒+︒-=; 直线BC 的方程为:01=+y .由点到直线的距离公式可得:13|cos cos30sin cos301||cos cos150sin cos1501|d d θθθθ+=︒+︒-+︒+︒-222sin (15)2sin (75)2[sin(15)sin(75)]2222θθθθ=-︒+-︒=-︒--︒2sin 12cos 2sin )2cos 2)(sin15sin 15(cos 2d =+=+=+︒-︒=θθθθθ.故,132d d d +=成立.3.设定义在[1,1]-上的函数221()||33f x x bx c =-++的最大值为M ,求M 的最小值. 解:由题意可知对任意的[1,1]x ∈-都有()f x M ≤,则: 21(1)|1|f b c M -=--+≤,1(0)||f c M =≤,21(1)|1|f b c M -=-++≤.y xd 1d 3d 2F DOEABCP故4(1)2(0)(1)M f f f ≥-++21121|1|2|||1|33333b c c b c =--+++-++21121|121|233333b c c b c ≥--+-⋅-++=. 即,12M ≥.事实上,当30,2b c ==时,21()||2f x x =-+在[1,1]-上的最大值为12.所以,实数M 的最小值为12. 4.如图,O 是边长为1的正六边形ABCDEF 的中心,一条路径是指从点O 出发,沿着线段又回到点O ,求长度为2013的路径条数. 解:由题意设从点O 出发沿着线段又回到点O ,且长度为n 的路径条数为n a ,从点A 出发沿着线段到点O ,且长度为n 的路径条数为n b ,则有11162n n n n n a b b a b ---=⎧⎨=+⎩1226n n n a a a --⇒=+.又由于6,021==a a ,故可求得1((77)(17)(77)(17))14n n n a =-⋅+++⋅-. 从而可得长度为2013的路径条数2013201320131((77)(17)(77)(17))14a =-⋅+++⋅-. 5.已知非直角三角形ABC 的最小边长为5,且tan tan tan [tan ][tan ][tan ]A B C A B C ++≤++,其中符号[]x 表示不超过实数x 的最大整数,求ABC ∆的面积?解:由题意知对所有实数x ,都有[]x x ≤,故tan tan tan [tan ][tan ][tan ]A B C A B C ++≥++.结合题目条件可知tan tan tan [tan ][tan ][tan ]A B C A B C ++=++,其中tan ,tan ,tan A B C 均为整数.不妨设tan ,tan ,tan A x B y C z ===(,,x y z 均为非零整数,且x y z ≤≤),则由tan tan()C A B =-+可得xyz x y z =++,而,,A B C 中最多一个钝角,即,y z 必为正整数,03xyz x y z z <=++≤,故3xy ≤,从而1,1x y ==,或1,2x y ==,或1,3x y ==.当1,1x y ==时,由xyz x y z =++知无解; 当1,2x y ==时,由xyz x y z =++知3z =;当1,3x y ==时,由xyz x y z =++知2z =,这与x y z ≤≤不符.故,在ABC ∆中,tan 1,tan 2,tan 3A B C ===,且5BC =.过点B 作高BD ,则在Rt BCD ∆中可求得DBACOFA BCE D1021,1023==CD BD ,在Rt ABD ∆中可求得3102AD =,故210AC =,故ABC ∆的面积为15. 6.已知函数()bf x ax c x=++(0)a >的图像在点(1,(1))f 处的切线方程为1y x =-.(1)将,b c 用a 表示出来;(2)若()ln f x x ≥在[1,)+∞上恒成立,求a 的取值范围; (3)求证:对所有正整数n ,都有1111ln(1)232(1)nn n n ++++>+++ . 解:(1)求导得2'()bf x a x =-,再由题意得'(1)1(1)0f a b f a b c =-=⎧⎨=++=⎩,解得112b a c a=-⎧⎨=-⎩(0)a >. (2)由(1)可知1()12a f x ax a x-=++-(0)a >. 令1()()ln 12ln a g x f x x ax a x x -=-=++--,[1,)x ∈+∞,则21(1)()'()aa x x a g x x ---=.当102a <<时,11a a ->,若1(1,)a x a-∈,则'()0g x <,故()g x 在区间1(1,)aa -上单调递减.所以,当1(1,)ax a -∈时,()(1)0g x g <=,即()ln f x x <,不合题意. 当12a ≥时,11aa-≤,若1x ≥,则'()0g x ≥,故()g x 在区间(1,)+∞上单调递增.所以,当[1,)x ∈+∞时,()(1)0g x g ≥=,即()ln f x x ≥,符合题意.综上可知,实数a 的取值范围为1[,)2+∞.(3)由(2)的结论知:当12a ≥时,()ln f x x ≥在[1,)+∞上恒成立. 取12a =时有11()()ln 2f x x x x =-≥在[1,)+∞上恒成立,当1x >时,11()()ln 2f x x x x=->.依次令2341,,,,123n x n += 可得:212111ln ln 20()(1)121222=-<-=+;3132111ln ln 3ln 2()()2223223=-<-=+;4143111ln ln 4ln 3()()3234234=-<-=+;……111111lnln(1)ln ()()2121n n n n n n n n n n ++=+-<-=+++.将以上n 个等式相加,整理可得:1111ln(1)232(1)nn n n ++++>+++ .。
清华大学自主招生试题数学
![清华大学自主招生试题数学](https://img.taocdn.com/s3/m/dc8e5e76f56527d3240c844769eae009581ba237.png)
2021年自主招生华约数学试题一、选择题(1) 设复数z满足|z|<1且15||2zz+=那么|z| = ( )4321 A B C D 5432解:由15||2zz+=得25||1||2z z+=,已经转化为一个实数的方程。
解得|z| =2〔舍去〕,12 。
(2) 在正四棱锥P-ABCD中,M、N分别为PA、PB的中点,且侧面与底面所成二面角。
那么异面直线DM与AN所成角的余弦为( )1111A B C D36812[分析]此题有许多条件,可以用“求解法〞,即假设题中的一局部要素为,利用这些条件来确定其余的要素。
此题中可假设底面边长为〔不妨设为2〕,利用侧面与底面所成二面角可确定其他要素,如正四棱锥的高等。
然后我们用两种方法,一种是建立坐标系,另一种是平移其中一条线段与另一条在一起。
解法一:如图,设底面边长为2,。
如图建立坐标系,那么A(1,-1,0),B(1,1,0),C(-1,1,0),D(-1,-1,0),P(0,),那么1111(,,),(,,222222M N-,31213(,,),(,,222222DM AN=-=-。
设所成的角为θ,那么1 cos6DM ANDM ANθ==。
解法二:如图,设底面边长为2,。
平移DM 与AN 在一起。
即M 移到N ,D 移到CD 的中点Q 。
于是QN = DM = AN 。
而PA = PB = AB = 2,所以QN = AN= AQ= ,容易算出等腰ΔAQN 的顶角1cos 6ANQ ∠=。
解法三:也可以平移AN 与DM 在一起。
即A 移到M ,N 移到PN 的中点Q 。
以下略。
(3)过点(-1, 1)的直线l 与曲线相切,且(-1, 1)不是切点,那么直线l 的斜率为 ( )A 2B1C 1D 2 - -此题有误,原题丢了,待重新找找。
(4)假设222cos cos 3A B A B π+=+,则的最小值和最大值分别为 () 3131A1,B ,C1D ,122222222--+ + [分析]首先尽可能化简结论中的表达式22cos cos A B +,沿着两个方向:①降次:把三角函数的平方去掉;②去角:原来含两个角,去掉一个。
清华大学自主招生试题 数学 Word版含解析
![清华大学自主招生试题 数学 Word版含解析](https://img.taocdn.com/s3/m/e99a68e4b9f3f90f76c61bce.png)
一、选择题1.设复数z=cos 23π+isin 23π,则2111-1z z +-=( ) (A)0 (B)1 (C)12 (D)322.设数列{}n a 为等差数列,p,q,k,l 为正整数,则“p+q>k+l ”是“p q k l a a a a +>+”的( )条件(A)充分不必要 (B)必要不充分 (C)充要 (D)既不充分也不必要 3.设A 、B 是抛物线y=2x 上两点,O 是坐标原点,若OA ⊥OB,则( )(A)|OA|·|OB|≥2 (B)|OA|+|OB|≥22(C)直线AB 过抛物线y=2x 的焦点 (D)O 到直线AB 的距离小于等于14.设函数()f x 的定义域为(-1,1),且满足:①()f x >0,x ∈(-1,0);②()f x +()f y =()1x yf xy++,x 、y ∈(-1,1),则()f x 为 (A)奇函数 (B)偶函数 (C)减函数 (D)有界函数5.如图,已知直线y=kx+m 与曲线y=f (x)相切于两点,则F(x)=f (x)−kx 有( )(A)2个极大值点 (B)3个极大值点 (C)2个极小值点 (D)3个极小值点 6.△ABC 的三边分别为a 、b 、c .若c=2,∠C=3π,且sinC+sin(B −A)−2sin2A=0,则有( ) (A)b=2a (B)△ABC 的周长为3 (C)△ABC 的面积为33(D)△ABC 的外接圆半径为337.设函数2()(3)xf x x e =-,则( )(A)()f x 有极小值,但无最小值 (B) ()f x 有极大值,但无最大值 (C)若方程()f x =b 恰有一个实根,则b>36e(D)若方程()f x =b 恰有三个不同实根,则0<b<36e 8.已知A={(x,y)∣222x y r +=},B={(x,y)∣222()()x a y b r -+-=,已知A∩B={(11,x y ),(22,x y )},则( )(A)0<22a b +<22r (B)1212()(y )0a x x b y -+-= (C)12x x +=a ,12y y +=b (D)22a b +=1122ax by +9.已知非负实数x,y,z 满足22244x y z +++2z=3,则5x+4y+3z 的最小值为( ) (A)1 (B)2 (C)3 (D)410.设数列{n a }的前n 项和为n S ,若对任意正整数n ,总存在正整数m ,使得n S =m a ,则( )(A ){n a }可能为等差数列 (B ){n a }可能为等比数列(C ){n a }的任意一项均可写成{n a }的两项之差(D)对任意正整数n ,总存在正整数m ,使得n a =m S11.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测:3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能获得第一名.比赛后发现没有并列名次,且甲、乙、丙、丁中只有1人猜对比赛结果,此人是( ) (A)甲 (B)乙 (C)丙 (D)丁12.长方体ABCD −1111A B C D 中,AB=2,AD=A 1A =1,则A 到平面1A BD 的距离为( )(A)13 (B)23(C)22 (D)6313.设不等式组||||22(1)x y y k x +≤⎧⎨+≤+⎩所表示的区域为D ,其面积为S ,则( )(A)若S=4,则k 的值唯一 (B)若S=12,则k 的值有2个(C)若D 为三角形,则0<k ≤23(D)若D 为五边形,则k>4 14.△ABC 的三边长是2,3,4,其外心为O ,则OA AB OB BC OC CA ⋅+⋅+⋅=( ) (A)0 (B)−15 (C)−212(D)−29215.设随机事件A 与B 互相独立,且P(B)=0.5,P(A −B)=0.2,则( )(A)P(A)=0.4 (B)P(B −A)=0.3 (C)P(AB)=0.2 (D)P(A+B)=0.916.过△ABC 的重心作直线将△ABC 分成两部分,则这两部分的面积之比的( ) (A)最小值为34 (B)最小值为45 (C)最大值为43 (D 最大值为5417.从正15边形的顶点中选出3个构成钝角三角形,则不同的选法有( )(A)105种 (B)225种 (C)315种 (D)420种18.已知存在实数r ,使得圆周222x y r +=上恰好有n 个整点,则n 可以等于( ) (A)4 (B)6 (C)8 (D)12 19.设复数z 满足2|z|≤|z −1|,则( ) (A)|z|的最大值为1 (B)|z|的最小值为13 (C)z 的虚部的最大值为23(D)z 的实部的最大值为1320.设m,n 是大于零的实数,a =(mcosα,msinα),b =(ncosβ,nsinβ),其中α,β∈[0,2π)α,β∈[0,2π).定义向量12a =(2m α2m α),12b =(2n β2n β),记θ=α−β,则( )(A)12a ·12a =a (B)1122a b ⋅=2mn θ(C)112222||44a b mn θ-≥(D)112222||44a b mn θ+≥21.设数列{n a }满足:1a =6,13n n n a a n++=,则( ) (A)∀n ∈N ∗,n a <3(1)n + (B)∀n ∈N ∗,n a ≠2015 (C)∃n ∈N ∗,n a 为完全平方数 (D)∃n ∈N ∗, n a 为完全立方数 22.在极坐标系中,下列方程表示的图形是椭圆的有( ) (A )ρ=1cos sin θθ+ (B )ρ=12sin θ+ (C )ρ=12cos θ- (D )ρ=112sin θ+23.设函数2sin ()1xf x x x π=-+,则( )(A )()f x ≤43(B)|()f x |≤5|x| (C)曲线y=()f x 存在对称轴 (D)曲线y=()f x 存在对称中心24.△ABC 的三边分别为a ,b,c ,若△ABC 为锐角三角形,则( ) (A)sinA>cosB (B)tanA>cotB (C)222a b c +> (D)333a b c +>25.设函数()f x 的定义域是(−1,1),若(0)f =(0)f '=1,则存在实数δ∈(0,1),使得( ) (A)()f x >0,x ∈(−δ,δ) (B)()f x 在(−δ,δ)上单调递增 (C)()f x >1,x ∈(0,δ) (D)()f x >1,x ∈(−δ,0)26.在直角坐标系中,已知A(−1,0),B(1,0).若对于y 轴上的任意n 个不同的点k P (k=1,2,…,n),总存在两个不同的点i P ,j P ,使得|sin ∠A i P B −sin ∠A j P B|≤13,则n 的最小值为( )(A)3 (B)4 (C)5 (D)627.设非负实数x,y 满足2x+y=1,则22x y + )(A)最小值为45 (B)最小值为25(C)最大值为1 (D)最大值为12328.对于50个黑球和49个白球的任意排列(从左到右排成一行),则( )(A)存在一个黑球,它右侧的白球和黑球一样多 (B)存在一个白球,它右侧的白球和黑球一样多(C)存在一个黑球,它右侧的白球比黑球少一个 (D)存在一个白球,它右侧的白球比黑球少一个29.从1,2,3,4,5中挑出三个不同数字组成五位数,其中有两个数字各用两次,例如12231,则能得到的不同的五位数有( ) (A)300个 (B)450个 (C)900个 (D)1800个30.设曲线L 的方程为42242(22)(2)y x y x x +++-=0,则( ) (A)L 是轴对称图形 (B)L 是中心对称图形 (C)L ⊂{(x,y)∣22x y +≤1} (D)L ⊂{(x,y)∣−12≤y ≤12} ##Answer## 1.【解析】2111-1z z +-=211-zz z zz z +-=11-z z z z +-=22cos sin 1332221-cos sin 2sin 333i i i πππππ-+--=212sin 2sincos333i πππ-⋅-22cos()sin()333(cossin )22i i ππππ-+-+ =cos 0sin 02sin [cos()sin()]366i i πππ+-+-77)sin()]663i ππ-+- 31sin )6623i i ππ+=1,选B2.【简解】 ()p q k l a a a a +-+=[(p+q)-(k+l)]d ,与公差d 的符号有关,选D3.【解析】设A(211,x x ),B(222,x x ),OA OB ⋅=1212(1)x x x x +=0⇒211x x =-答案(A),||||OA OB ⋅2211221111(1)(1)x x x x ++2121111x x +++11122||||x x +⋅=2,正确;答案(B),|OA|+|OB|≥2||||OA OB ⋅22,正确;答案(C),直线AB 的斜率为222121x x x x --=21x x +=111x x - 方程为y-21x =(111x x -)(x-1x ),焦点(0,14)不满足方程,错误;答案(D),原点到直线AB :(111x x -)x-y+1=0的距离2111()1x x -+1,正确。
2023年清华大学自强计划数学试题
![2023年清华大学自强计划数学试题](https://img.taocdn.com/s3/m/f6f28dc9f605cc1755270722192e453610665b08.png)
2023年清华大学自强计划数学测试题
1.已知22cos sin 77z i ππ=+,求43
234111z z z z z z +++++的值。
2.已知Re 1z ≥,求min
11i z ++的值。
3.
已知lg lg lg lg lg lg 5,X
Y Z Y Z X X
Y Z X Y Z ==求XYZ 的可能取值。
4.已知4x y +整除4y x +,则y x ()A.所有的和为14.5
B.所有的和为15.5
C.可能4组取值
D.可能5组取值5.已知2023可以拆分为几个正整数之和,所有整数中的最大值和最小值相差不超过1有多少种可能()
A.2024
B.2023
C.2022
D.20216.已知椭圆22:143x y C +=,过右顶点A 作斜率为12的直线交y 轴于P ,交C 于B ,过点P 作斜率大于12的直线交C 于M N ,且MP MN <,求:APN PBM S S ∆∆.7.已知3210(0)ax bx x a +++=<恰有两个零点,求a b +的取值范围.
8.已知21,220,z zx zx z =++=的虚部可能为()
A.4
B.4-
C.1
D.09.已知2
(1)(1)(1)24162n n i i i i I =++++ ,求n I .10.已知567n ++++ 是完全平方数,则()
A.n 的取值有无数个
B.n 的最小值小于15
C.n 为奇数
D.4(mod9)
n ≡11.已知24,(2,2)x y M =,过M 点的直线交抛物线于,A B 两点,过,A B 两点作抛物线的切线交与点P ,求ABP S ∆的最小值和P 的轨迹。
2020年北京海淀区清华大学自主招生数学试卷(1月)(TDA)-学生用卷
![2020年北京海淀区清华大学自主招生数学试卷(1月)(TDA)-学生用卷](https://img.taocdn.com/s3/m/6fa38f39fe00bed5b9f3f90f76c66137ee064fca.png)
2020年北京海淀区清华大学自主招生数学试卷(1月)(TDA)-学生用卷一、单项选择题(本大题共8小题,每小题5分,共40分)1、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA)第1题5分2019~2020学年10月浙江高三上学期月考(十校联盟)第1题4分2019~2020学年1月北京海淀区清华大学月考理科第1题5分若集合A={x|−1<x<2},B={−2,0,1,2},则A∩B=().A. ∅B. {0,1}C. {0,1,2}D. {−2,0,1,2}2、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA)第2题5分若(2+i)z=5,则z的虚部为().A. −1B. 1C. −iD. i3、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA)第3题5分2019~2020学年10月浙江高三上学期月考(十校联考)第2题4分2019~2020学年10月浙江高三上学期月考(十校联盟)第2题4分2019~2020学年1月北京海淀区清华大学月考理科第3题5分已知双曲线x 22−y2b2=1(b>0)的两条渐近线互相垂直,则b=().A. 1B. √2C. √3D. 24、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA)第4题5分函数f(x)=(x2−2x)e x的图象可能是().A.B.C.D.5、【来源】 2019~2020学年1月北京海淀区清华大学月考理科第6题5分2019~2020学年10月浙江高三上学期月考(杭二,学军,杭高、嘉兴一中、宁波效实五校联考)第5题4分2019~2020学年10月浙江高三上学期月考(五校联考)第5题4分2020~2021学年湖北武汉江岸区武汉市第二中学高一上学期单元测试《一元二次函数、方程和不等式》第1题已知关于x的不等式ax2−2x+3a<0在(0,2]上有解,则实数a的取值范围是().)A. (−∞,√33)B. (−∞,47,+∞)C. (√33,+∞)D. (476、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA )第6题5分2019~2020学年10月浙江高三上学期月考(五校联考)第6题4分已知a ,b 为实数,则0<b <a <1,是log a b >log b a 的( ).A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件7、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA )第7题5分2019~2020学年10月浙江高三上学期月考(十校联考)第9题4分2019~2020学年10月浙江高三上学期月考(十校联盟)第9题4分2019~2020学年1月北京海淀区清华大学月考理科第9题5分在△ABC ,若AB →⋅BC →=BC →⋅CA →=2CA →⋅AB →,则|AB →||BC →|=( ).A. 1B. √22C. √32D. √628、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA )第8题5分2019~2020学年1月北京海淀区清华大学月考理科第10题5分2020~2021学年5月广东深圳南山区北京师范大学南山附属学校高三下学期周测A 卷第8题5分 在矩形ABCD 中,已知AB =3,AD =4,E 是边BC 上的点,EC =1,EF//CD ,将平面EFDC 绕EF 旋转90°后记为平面α,直线AB 绕AE 旋转一周,则旋转过程中直线AB 与平面α相交形成的点的轨迹是( ).A. 圆B. 双曲线C. 椭圆D. 抛物线二、多项选择题(本大题共4小题,每小题5分,共20分)9、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA )第9题5分已知函数f(x)=(lnx −1)(x −2)i −m(i =1,2),e 是自然对数的底数,存在m ∈R ( ).A. 当i =1时,f(x)零点个数可能有2个B. 当i =1时,f(x)零点个数可能有4个C. 当i =2时,f(x)零点个数可能有3个D. 当i =2时,f(x)零点个数可能有4个10、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA )第10题5分已知A ,B 是圆C 1:x 2+y 2=1上的动点,AB =√3,P 是圆C 2:(x −3)2+(y −4)2=1上的动点,下列命题中正确的是( ).A. 线段AB 的中点M 的轨迹方程为x 2+y 2=12B. 线段AB 的中点M 的轨迹方程为x 2+y 2=14C. |PA →+PB →|的取值范围是[7,13]D. |PA →+PB →|的取值范围是[5,7]11、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA)第11题5分2020~2021学年4月广东深圳福田区深圳市红岭中学高二下学期月考(特优班)第9题5分2020~2021学年广东深圳南山区北大附中深圳南山分校高二下学期期中第11题5分下列说法中,正确的命题是().A. 已知随机变量ξ服从正态分布N(2,δ2),P(ξ<4)=0.84,则P(2<ξ<4)=0.16.B. 以模型y=ce kx去拟合一组数据时,为了求出回归方程,设z=lny,将其变换后得到线性方程z=0.3x+4,则c,k的值分别是e4和0.3.C. 已知两个变量具有线性相关关系,其回归直线方程为y=a+bx,若b=2,x=1,y=3,则a=1.D. 若样本数据x1,x2,⋯,x10的方差为2,则数据2x1−1,2x2−1,⋯,2x10−1的方差为16.12、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA)第12题5分已知数列{a n}的前n项和为S n,且满足a n(2S n−a n)=1,则下列结论正确的是().A. 数列{S n2}是等差数列B. a n<2√nC. a n a n+1<1D. a n<S n三、填空题(本大题共4小题,每小题5分,共20分)13、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA)第13题5分2019~2020学年10月浙江高三上学期月考(十校联考)第15题4分2019~2020学年6月重庆南岸区重庆市第十一中学高二下学期月考第14题5分2019~2020学年1月北京海淀区清华大学月考理科第13题5分2019~2020学年10月浙江高三上学期月考(十校联盟)第15题4分1742年6月7日,哥德巴赫在给大数学家欧拉的信中提出:任一大于2的偶数都可写成两个质数的和.这就是著名的“哥德巴赫猜想”,可简记为“1+1”.1966年,我国数学家陈景润证明了“1+2”,获得了该研究的世界最优成果.若在不超过30的所有质数中,随机选取两个不同的数,则两数之和不超过30的概率是.14、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA)第14题5分2019~2020学年1月北京海淀区清华大学月考理科第15题5分2019~2020学年10月浙江高三上学期月考(十校联盟)第16题4分2019~2020学年10月浙江高三上学期月考(十校联考)第16题4分已知F是椭圆C:x 2a2+y2b2=1(a>b>0)的一个焦点,P是C上的任意一点,则|FP|称为椭圆C的焦半径.设C的左顶点与上顶点分别为A,B,若存在以A为圆心,|FP|为半径长的圆经过点B,则椭圆C的离心率的最小值为.15、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA)第15题5分如图矩形ABCD中,M为BC的中点,已知BC=2AB=2.将△ABM沿直线AM翻折成△AB1M,连接B1D,N为B1D的中点,则CN的长是;当三棱锥B1−AMD的体积最大时,三棱锥B1−AMD外接球的体积为.16、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA)第16题5分2019~2020学年浙江高三上学期开学考试名校协作体第16题4分2019~2020学年5月重庆渝中区重庆市巴蜀中学高一下学期周测C卷第14题4分2019~2020学年1月北京海淀区清华大学月考理科第14题5分已知△ABC的面积等于1,若BC=1,则当这个三角形的三条高的乘积取最大值时,sinA=.四、解答题(本大题共6小题,共70分)17、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA)第17题10分已知角α的顶点与原点O重合,始边与x轴的非负半轴重合,终边经过点P(−1,√3).(1) 求cos(α+π2)的值.(2) 求函数f(x)=sin2(x+α)−cos2(x−α)(x∈R)的最小正周期与单调递增区间.18、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA)第18题12分2019~2020学年浙江高三上学期开学考试第19题15分如图,ABCDEF是由两个全等的菱形ABEF和CDEF组成的空间图形,AB=2,∠BAF=∠ECD=60∘.(1) 求证:BD⊥DC.(2) 如果二面角B−EF−D的平面角为60∘,求直线BD与平面BCE所成角的正弦值.19、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA)第19题12分已知等比数列{a n}的公比q>1,且a1+a3+a5=42,a3+9是a1,a5的等差中项.数列{b n}的通项公式b n=n√a−1+√a−1,n∈N∗.(1) 求数列{a n}的通项公式.(2) 证明:b1+b2+⋯+b n<√2n+1−1,n∈N∗.20、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA)第20题12分已知抛物线C:x2=2py(p>0),焦点为F,准线与y轴交于点E.若点P在C上,横坐标为2,且满足:|PE|=√2|PF|.(1) 求抛物线C的方程.(2) 若直线PE交x轴于点Q,过点Q做直线l,与抛物线C有两个交点M,N(其中,点M在第一象限).若QM→=λMN→,当λ∈(1,2)时,求S△OMPS△ONP的取值范围.21、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA)第21题12分已知函数f(x)=(x+1)(e x−1).(1) 求f(x)在点(−1,f(−1))处的切线方程.(2) 若方程f(x)=b有两个实数根x1,x2,且x1<x2,证明:x2−x1⩽1+b+e+13e−1+ebe−1.22、【来源】 2020年北京海淀区清华大学自主招生(1月)(TDA)第22题12分某游戏公司对今年新开发的一些游戏进行评测,为了了解玩家对游戏的体验感,研究人员随机调查了300名玩家,对他们的游戏体验感进行测评,并将所得数据进行统计,如图所示,其中a−b=0.016.(1) 求这300名玩家测评分数的平均数.(2) 由于该公司近年来生产的游戏体验感较差,公司计划聘请3位游戏专家对游戏进行初测,如果3人中有2人或3人认为游戏需要改进,则公司将回收该款游戏进行改进;若3人中仅1人认为游戏需要改进,则公司将另外聘请2位专家二测,二测时,2人中至少有1人认为游戏需要改进的话,公司则将对该款游戏进行回收改进.已知该公司每款游戏被每位专家认为需要改进的概率为p(0<p<1),且每款游戏之间改进与否相互独立.①对该公司的任意一款游戏进行检测,求该款游戏需要改进的概率.②每款游戏聘请专家测试的费用均为300元/人,今年所有游戏的研发总费用为50万元,现对该公司今年研发的600款游戏都进行检测,假设公司的预算为110万元,判断这600款游戏所需的最高费用是否超过预算,并通过计算说明.(以聘请专家费用的期望为决策依据)1 、【答案】 B;2 、【答案】 A;3 、【答案】 B;4 、【答案】 B;5 、【答案】 A;6 、【答案】 A;7 、【答案】 C;8 、【答案】 D;9 、【答案】 A;C;10 、【答案】 B;C;11 、【答案】 B;C;12 、【答案】 A;B;C;13 、【答案】2;3;14 、【答案】√3−12;15 、【答案】√5;3;16 、【答案】81717 、【答案】 (1) −√32;(2) T=π,[kπ−π2,kπ](k∈Z) ;18 、【答案】 (1) 证明见解析.;(2) 2√77.;19 、【答案】 (1) a n=2n;(2) 见解析;20 、【答案】 (1) x2=4y;(2) (12,2 3 );21 、【答案】 (1) y=1−ee(x+1) ;(2) 见解析;22 、【答案】 (1) 76.;(2)①3p5+12p4−17p3+9p2.②超过,证明见解析.;。
清华大学自主招生试题含答案
![清华大学自主招生试题含答案](https://img.taocdn.com/s3/m/89d948b7844769eae009edc3.png)
、选择题2( )(A)充分不必要(B)必要不充分(C)充要(D)3.设A、B是抛物线y=x2上两点,0是坐标原点,若OAL 0B,则()(A)|OA| •|OB| > 2 (B)|OA|+|OB| (C)直线AB过抛物线y=x2的焦点(D)O至煩线AB的距离小于等于X yf (x) >0,x € (-1,0);② f (X) + f (y) = f ( ) , X、y €1 xy(-1,1),则f (x)为(A)奇函数(B)偶函数(C)减函数(D)有界函数5. 如图,已知直线y=kx+m与曲线y=f(x)相切于两点,则F(x)= f (x) - kx有(/ C=—,且sinC+sin(B - A) -2sin2A=0,则有(3(A)b=2 a (B) △ ABC的周长为2+2-. 3 (C) △ ABC的面积为一空(D) △ ABC的外接圆半径为37.设函数f(x) (x23)e x,则( )(A) f (x)有极小值,但无最小值(B) f (x)有极大值,但无最大值(C)若方程f (x) =b恰有一个实根,则b>-6| (D)若方程f (x) =b恰有三个不同实根,则0<b<£e e1.设复数z=cos -3+isin (A)0 (B)1 (C) 2 冲13 ,则仁(D)3211 z22.设数列{aj为等差数列, p,q,k, l为正整数,则p+q>k+l ”是“ a p aqa k a l ”的()条件既不充分也不必要4.设函数f(x)的定义域为(-1,1),且满足:①个极小值点(D)3个极小值点8.已知 A={(x,y) 1 x 22 2y r },B={(x,y)1 (x2 2 2a) (y b) r ,已知 A n B={(x 1,yJ ,( X 2,y 2)},则()(A)0< a 2 b 2 <2r 2(B)aXX 2) b(y1 y 2) 0(C)X 1 X 2 = a , y 1y 2=b (D)2a b 2 = 2ax 1 2by 19.已知非负实数x,y,z满足4x 24y 22z +2z=3, 则5x+4y+3z 的最小值为()(A)1 (B)2 (C)3 (D)410.设数列{ a n }的前n 项和为S n ,若对任意正整数n ,总存在正整数 m,使得S n =a m ,则( )(A ){ a n }可能为等差数列(B ){ a n }可能为等比数列(c ){a n }的任意一项均可写成{a n }的两项之差(D)对任意正整数n ,总存在正整数 m 使得a n = S m 11.运动会上,有6名选手参加100米比赛,观众甲猜测:4道或5道的选手得第一名;观众乙猜测: 3道的选手不可能得第一名;观众丙猜测:1,2,6道选手中的一位获得第一名;观众丁猜测:4,5,6道的选手都不可能获得第一名•比赛后发现没有并列名次,且甲、乙、丙、丁中只有 1人猜对比赛结果,此人是( )(A)甲(B)乙(C)丙(D) 丁1(A)若S=4,则k 的值唯一(B) 若S=^,贝U k 的值有2个22(C)若D 为三角形,则0<k <(D)若D 为五边形,则312.长方体 ABCDAEGD 中,AB=2, AD=A A 1=1,贝U A 到平面 A BD 的距离为((A) - (B)3(D)13.设不等式组|x| |y| 2 y 2 k(x 1)所表示的区域为 D,其面积为S,U(k>414. △ ABC 勺三边长是 2,3,4,其外心为 0,则 uuu uuu OA AB uuu uuu uuur uuu OB BC 0C CA =((A)0 (B)-15 (C) -21(D)229 215. 设随机事件 A 与B 互相独立,且 P(B)=0.5(A)P(A)=0.4 (B)P(B -A)=0.3 (C)P(AB)=0.2 (D)P(A+B)=0.916. 过厶ABC 的重心作直线将厶 3(A)最小值为一(B)最小值为417. 从正15边形的顶点中选出,P(A- B)=0.2,则(ABC 分成两部分,则这两部分的面积之比的(4 4(C)最大值为一533个构成钝角三角形,5(D 最大值为一4则不同的选法有((A)105 种(B)225 种(C)315 种(D)420 种18. 已知存在实数r,使得圆周x2y2 r2上恰好有n个整点,则n可以等于(22.在极坐标系中,下列方程表示的图形是椭圆的有(4 2 1 V2(A)最小值为一(B)最小值为一 (C)最大值为1 (D)最大值为--------------------5 5 3(A)4 (B)6 (C)8 (D)1219. 设复数z 满足2|z| w |z-1|,则(1(A)|z|的最大值为1 (B)|z| 的最小值为—(C)z321的虚部的最大值为2(D)z 的实部的最大值为13320.设 m,n 是大于零的实数, a =(mcos a ,msin a ),b =(ncos 3 ,nsin 3 ),其中 a , B€ [0,2 n ) a , B€r 1, _[0,2 n ) •定义向量 a 2 =( 、、. m cos — ,、. m sin 一 ), b 2=(、. n 2cos — 2 ,、齐 sin —),记 9 = a - 3,贝U2r [ r 1 r r 1 r 1 ___ (A) a 2 • a 2 = a (B) a 2 b 2=、.mn cos — (C) 2r] r] … |a 2 b 2|4、一 mn sin 2 —4r 1 r] 2 _ 2 (D) |a 2 b 2 |24, mncos 2 —421.设数列{ a n }满足:a 1=6, an 1,则((A) ? n € N?, a n <(n 1)3 (B) ? n € N?, a n 丰 2015 (C) ? n € N?, a n 为完全平方数(D)? n € N?, a n 为完全立方数1 (A )p=cos sin23. 设函数 f(x)s in x,则( x x 14(A ) f(x) w (B)| f (x) | w 5|x| (C)曲线 y= f (x)存在对称轴324. △ ABC 的三边分别为a ,b,c ,若△ ABC 为锐角三角形,则((B )p=—1(C ) 2 sin1p= —2 cos(D )(D) 1 1 2si n曲线y= f (x)存在对称中心(A)si nA>cosB (B)ta nA>cotB (C) a 2 b 2 c 2 (D) a 3 b 3 c 325.设函数f (x)的定义域是(-1,1), 若f(0) = f (0) =1,则存在实数 s€ (0,1),使得()(A) f (x) >0, x € (- S , S) (B)f (x)在(-S , S )上单调递增 (C) f (x) >1, x € (0, S) (D)f (x)>1 , x € (- S ,0)26.在直角坐标系中,已知A(-1,0),B(1,0) •若对于y 轴上的任意n 个不同的点 P k (k=1,2,…,n),总存在两个不同的点R ,P j ,1使得 |sin / A P j B-sin / A P j B| w —,贝V n 的最小值为( 3(A)3 (B)4(C)5 (D)627.设非负实数x,y 满足2x+y=1,则 x+ x 2 y 2 的()128.对于50个黑球和49个白球的任意排列(从左到右排成一行),则((A)存在一个黑球,它右侧的白球和黑球一样多(B)存在一个白球,它右侧的白球和黑球一样多(C)存在一个黑球,它右侧的白球比黑球少一个 (D)存在一个白球,它右侧的白球比黑球少一个 29.从1,2,3,4,5 中挑出三个不同数字组成五位数, 同的五位数有( (A)300 个(B)450其中有两个数字各用两次,例如 12231,则能得到的不 30.设曲线L 的方程为 (A)L 是轴对称图形 (C)L ? {(x,y) I ##A nswer##1.【解析】 丄1-z) 个(C)900 y 4 (2x 2(B)L 个(D)1800 个 2 4 2 2)y (x 2x ) =0,则(是中心对称图形 1 (D)L ? {(x,y)zz 1 zz_______ 1 - 2. 21-cos i sin332 cos 3..2 i sin ___ 3 2 2i sin32sin 2 i 2sin cos —3 3 3 cos0 isinO 2sin — [cos( —) i sin(-)i sin(3、、3(cos —2-洽 2os(cos( i sin ) 27) i sin(67)]丄(cos — isi n —.3 6 6△ )=1,选 B22.【简解】 a p (a k Q )=[(p+q)-(k+l)]d ,与公差 d 的符号有关,选 3.【解析】设A( 2X 1,X 1 ),B( 2 uuu uuu X 2,X 2 ), OA OB =X 1X 2(1 X 1X 2) =0 X 2 X1 答案(A), |0A| l OBI ^x^(1 好)4(1 —1^) = j1 X2 1 2 X 11 > /2 2|X 1 | 丄=2,正确; |X 1 | 答案(B),|OA|+|OB| > 2..|OA 「|OB| > 2 .2,正确;答案(C),直线 AB 的斜率为 2 22^=X 2 x 2 x 1X1程为 y- xj =( x 1 1)(x-x 1),焦点(0, 1)不满足方程,错误;答案(D),原点到直线AB :(4X11)x-y+ 仁X 1的距离d=w 1,正确。
高三清华北大自主招生数学训练题含答案
![高三清华北大自主招生数学训练题含答案](https://img.taocdn.com/s3/m/0cf64c64b94ae45c3b3567ec102de2bd9605debc.png)
数学自主招生训练题(2)1.设直线l 与抛物线24y x =相交于A ,B 两点,与圆()()22250x y r r -+=>相切于点M ,且M 为线段AB 的中点.若这样的直线l 恰有4条,则r 的取值范围是( ) (A )()13, (B )()14, (C )()23, (D )()24,2.已知菱形ABCD 的边长为2,120BAD,点,E F 分别在边,BC DC 上,BEBC ,DFDC .若1AE AF,23CE CF,则( )(A )12 (B )23 (C )56 (D )7123.已知定义在R 上的函数()21x mf x -=- (m 为实数)为偶函数,记()()0.52(log 3),log 5,2a f b f c f m === ,则,,a b c 的大小关系为(A )a b c << (B )a c b << (C )c a b << (D )c b a <<4.已知函数()()22,2,2,2,x x f x x x ⎧-≤⎪=⎨->⎪⎩ 函数()()2g x b f x =-- ,其中b R ∈ ,若函数()()y f x g x =- 恰有4个零点,则b 的取值范围是(A )7,4⎛⎫+∞⎪⎝⎭ (B )7,4⎛⎫-∞ ⎪⎝⎭ (C )70,4⎛⎫ ⎪⎝⎭ (D )7,24⎛⎫ ⎪⎝⎭5.已知某批零件的长度误差(单位:毫米)服从正态分布N (0,32),从中随机抽取一件,其长度误差落在区间(3,6)内的概率为( )(附:若随机变量ξ服从正态分布N (μ,σ2),则P (μ﹣σ<ξ<μ+σ)=68.26%,P (μ﹣2σ<ξ<μ+2σ)=95.44%) A . 4.56% B . 13.59% C . 27.18% D . 31.74%6.一条光线从点(﹣2,﹣3)射出,经y 轴反射后与圆(x+3)2+(y ﹣2)2=1相切,则反射光线所在直线的斜率为( ) A . ﹣或﹣ B . ﹣或﹣ C . ﹣或﹣ D .﹣或﹣ 7.设函数f (x )=,则满足f (f (a ))=2f (a )的a 的取值范围是( )A .[,1]B . [0,1]C .[,+∞)D . [1,+∞)8.已知0b 0,a >>,椭圆1C 的方程为1x 2222=+b y a ,双曲线2C 的方程为1x 2222=-by a ,1C 与2C 的离心率之积为23,则2C 的渐近线方程为 (A ) 02x =±y (B )02=±y x (C )02y x =±(D )0y 2x =± 9.若实数x ,y 满足x 2+y 2≤1,则|2x+y ﹣2|+|6﹣x ﹣3y|的最小值是 .10.某食品的保鲜时间y (单位:小时)与储存温度x (单位:C )满足函数关系bkx ey +=( 718.2=e 为自然对数的底数,k 、b 为常数)。
清华自主招生数学创新试题大全
![清华自主招生数学创新试题大全](https://img.taocdn.com/s3/m/19be4aae482fb4daa48d4b77.png)
1、(Ⅰ)已知函数:1()2()(),([0,),)n n n f x x a x a x n N -*=+-+∈+∞∈求函数()f x 的最小值;(Ⅱ)证明:()(0,0,)22n n n a b a b a b n N *++≥>>∈;(Ⅲ)定理:若123,,k a a a a L 均为正数,则有123123()n n nn nk k a a a a a a a a k k++++++++≥L L 成立(其中2,,)k k N k *≥∈为常数.请你构造一个函数()g x ,证明:当1231,,,,,k k a a a a a +L 均为正数时,12311231()11n n n nn k k a a a a a a a a k k ++++++++++≥++L L .解:(Ⅰ)令111'()2()0n n n f x nx n a x ---=-+=得11(2)()2n n x a x x a x x a --=+∴=+∴=…2分当0x a ≤≤时,2x x a <+ '()0f x ∴≤ 故()f x 在[0,]a 上递减.当,'()0x a f x >>故()f x 在(,)a +∞上递增.所以,当x a =时,()f x 的最小值为()0f a =.….4分(Ⅱ)由0b >,有()()0f b f a ≥= 即1()2()()0n n n n f b a b a b -=+-+≥故 ()(0,0,)22n n na b a b a b n N *++≥>>∈.………………………………………5分(Ⅲ)证明:要证: 12311231()11n n n nn k k a a a a a a a a k k ++++++++++≥++L L只要证:112311231(1)()()n n n n n nk k k a a a a a a a a -+++++++≥++++L L设()g x =1123123(1)()()n n n nn n k a a a x a a a x -+++++-++++L L …………………7分 则11112'()(1)()n n n k g x k nx n a a a x ---=+⋅-++++L令'()0g x =得12ka a a x k+++=L …………………………………………………….8分当0x ≤≤12ka a a k+++L 时,1112'()[(]()n n k g x n kx x n a a a x --=+-++++L故12()[0,]k a a a g x k +++L 在上递减,类似地可证12()(,)ka a a g x k++++∞L 在递增所以12()k a a a x g x k +++=L 当时,的最小值为12()ka a a g k+++L ………………10分而11212121212()(1)[()]()n n n n n n k k k k k a a a a a a a a a g k a a a a a a k k k-+++++++++=+++++-++++L L L L L =1121212(1)[()()(1)()]n n n n nn n k k k nk k a a a a a a k a a a k -++++++++-++++L K L =11212(1)[()()]n n n n n n k k nk k a a a k a a a k -++++-+++L L =1112121(1)[()()]n n n n n n k k n k k a a a a a a k---++++-+++L L 由定理知: 11212()()0n n n nn k k k a a a a a a -+++-+++≥L L 故12()0ka a a g k+++≥L故112311231(1)()()n n n n n n k k k a a a a a a a a -+++++++≥++++L L即: 12311231()11n n n nn k k a a a a a a a a k k ++++++++++≥++L L .…………………………..14分2、用类比推理的方法填表答案:5354321b b b b b b =••••3、10.定义一种运算“*”:对于自然数n 满足以下运算性质:(i )1*1=1,(ii )(n +1)*1=n *1+1,则n *1等于A .nB .n +1C .n -1D .2n 答案:D4、若)(n f 为*)(12N n n ∈+的各位数字之和,如:1971142=+,17791=++,则17)14(=f ;记=∈===+)8(*,)),(()(,)),(()(),()(20081121f N k n f f n f n f f n f n f n f k k 则K ____ 答案:55、下面的一组图形为某一四棱锥S-ABCD 的侧面与底面。
清华自主招生试题
![清华自主招生试题](https://img.taocdn.com/s3/m/7a96f048b42acfc789eb172ded630b1c59ee9bcb.png)
清华自主招生试题一、数学题1. 某校有3000名学生,其中男生占总人数的60%,女生占总人数的40%。
男女生中,有20%的人精通数学。
问:该校男女生中,精通数学的人数分别是多少?解析:根据题意得知男生占总人数的60%,女生占总人数的40%。
所以男生总数为3000 * 60% = 1800,女生总数为3000 * 40% = 1200。
由于精通数学的人占男女生总数的20%,所以男生中精通数学的人数为1800 * 20% = 360,女生中精通数学的人数为1200 * 20% = 240。
答案:男生中精通数学的人数为360人,女生中精通数学的人数为240人。
2. 已知正方形ABCD的边长为2,点E是AD的中点,F是BC的中点。
连接AE、BF,交于点G。
问:三角形AEG的面积为多少?解析:根据题意,AE的长度为1,EG的长度为√2(正方形相邻两边长的一半),所以三角形AEG的面积为1/2 * 1 * √2 = √2/2。
答案:三角形AEG的面积为√2/2。
二、物理题1. 一辆汽车在匀速行驶时,刹车后停下需要的时间是20秒。
若汽车的质量为1000kg,刹车时产生的加速度为5m/s²,求:汽车刹车时作用在车体上的力大小为多少?解析:根据牛顿第二定律,力的大小等于质量乘以产生的加速度。
所以汽车刹车时作用在车体上的力大小为1000kg * 5m/s² = 5000N(牛顿)。
答案:汽车刹车时作用在车体上的力大小为5000N。
2. 物体A和物体B质量相同,在水平面上相互作用力F = 20N。
已知物体A的重力为30N,物体B的摩擦力为8N。
问:物体A和物体B 的加速度分别是多少?解析:根据牛顿第二定律,力的大小等于质量乘以产生的加速度。
所以物体A的加速度为(20N - 8N)/30kg = 12/30 = 0.4m/s²,物体B的加速度同样为0.4m/s²。
答案:物体A和物体B的加速度分别是0.4m/s²。
2021年北京海淀区清华大学自主招生数学试卷(语言类保送暨高水平艺术团)
![2021年北京海淀区清华大学自主招生数学试卷(语言类保送暨高水平艺术团)](https://img.taocdn.com/s3/m/e46c87406bec0975f565e201.png)
2021年北京海淀区清华大学自主招生数学试卷(语言类保送暨高水平艺术团)一、选择题(本大题共7小题,每小题5分,共35分)A.B.C.D.1.已知复数,设是的共轭复数,则等于( ).A.B.C.D.2.已知集合,,且,则实数等于( ).A.或B.C.或D.3.已知正整数数列满足,则等于( ).,A.B.C.D.4.已知椭圆 的两个焦点分别为,,为椭圆上一点,的平分线与轴交于点 ,作交于点,则等于( ).A.B.C.D.5.已知非负实数,满足,则的最大值为( ).A.B.C. D.6.已知函数在区间上恰有一个极大值点与一个极小值点,则正实数的取值范围是( ).A.B.C.D.7.在四面体中,,为的中点,,且,则四面体外接球的半径为( ).二、填空题(本大题共3小题,每小题5分,共15分)8.展开式中的常数项为 .9.已知是定义在上的偶函数,且,当时,有,则的解集为 .10.在平面直角坐标系中,设,,向量,其中,动点满足,则的最小值为 .三、解答题(本大题共4小题,共50分)(1)(2)11.已知是公差不等于的等差数列,且是,的等比中项,记数列前项和为,.求数列的通项公式.设数列满足,,且,求数列的前项和.(1)(2)12.在三棱台中,,, ,,且平面,设,,分别为棱,,的中点.证明:平面平面.求二面角的正弦值.13.(1)(2)已知抛物线的焦点为,准线与轴交于点,过点的直线与抛物线交于,两点,且.求抛物线的方程.设,是抛物线上的不同两点,且轴,直线与轴交于点,再在轴上截取线段,且点介于点与点之间,连接,过点作直线的平行线,证明:为抛物线的切线.(1)(2)14.已知函数在点处的切线与直线:垂直.设函数,求函数的单调区间.证明:.【答案】解析:∵,∴,∴,则.故选.解析:∵,∴,∴,∴,又∵,∴,而,∴必有解,∴,则,∴.故选.A 1.C 2.B3.依题意,有,则,假设,则,故,,则,矛盾,当时,则,矛盾,从而,故选.解析:设,,则,故是直角三角形,且,从而,故选.解析:由不等式,得,又,是非负实数,则,设,则,上式当,时取等号.故选.A 4.C 5.解析:由,得,依题意,有,解得.故选.解析:依题意,有,则,又,,则平面,如图,设四面体的外接球球心为点,球心在平面与平面上的射影分别为,两点,注意到,均为正三角形,则,,即四面体的外接球半径.故选.解析:仅需考虑展开式中项的系数与常数项.一方面,的常数项为.另一方面,的项的系数为.从而原式展开式中常数项为.解析:D 7.8.9.(1)(2)设.当时,有.即函数在上单调递增.当时,有,又注意到是偶函数.则原不等式的解集为.解析:依题意,得,则点在直线上运动,设线段的中点为,则点在以为圆心,为半径的圆周上运动,又点到直线的距离,则.故答案为:.解析:设数列的公差为(),则,,,又是,的等比中项,且,则.从而.当时,有,则当时,有10.(1).(2),.11.(1)(2),又注意到,上式也成立,从而,.解析:如图,连接,则四边形是矩形.又,则,从而,由平面,且平面,得,由,且为的中位线,得,又,则平面,注意到平面,则,又,则平面,从而平面平面.以为原点,为轴正方向,建立如图所示的空间直角坐标系,(1)证明见解析.(2).12.(1)则,,,,故,,,设是平面的法向量,则,取,,,即,设是平面的法向量,则,取,,, 即,设二面角的平面角为,则,故,从而二面角的正弦值为.解析:设直线的方程为,联立直线与抛物线的方程,得,设,,则,,(1).(2)证明见解析.13.(2)(1)故,注意到,,则,即抛物线的方程为.如图:yOx不妨设点在第一象限,点在第四象限,当时,有,则,即抛物线在点处的切线斜率为,注意到轴,则,设,由,,三点共线,得 ,则,设,由,得,故直线的斜率,从而为抛物线的切线.解析:.依题意,有,,解得,,(1),.(2)证明见解析.14.(2)则,,设,则,当时,有,单调递增,当,时,有,单调递减,故函数在处取到唯一极小值,则,故在区间,上单调递增.①首先证明:,设,则,注意到,这是熟知的,当时,有,单调递减,当时,有,单调递增,故函数在处取到唯一极小值,则,②然后证明:.设,则.当时,有,单调递增,当时,有,单调递减,故函数在处取到唯一极小值,则,结合①与②这两个不等式,得.从而原不等式成立.11。
清华自主招生数学创新试题汇编
![清华自主招生数学创新试题汇编](https://img.taocdn.com/s3/m/f70ab2c39ec3d5bbfd0a7411.png)
1、(Ⅰ)已知函数:1()2()(),([0,),)n n n f x x a x a x n N -*=+-+∈+∞∈求函数()f x 的最小值;(Ⅱ)证明:()(0,0,)22n n na b a b a b n N *++≥>>∈; (Ⅲ)定理:若123,,k a a a a 均为正数,则有123123()n n nn nk k a a a a a a a a k k++++++++≥ 成立(其中2,,)k k N k *≥∈为常数.请你构造一个函数()g x ,证明:当1231,,,,,k k a a a a a + 均为正数时,12311231()11n n n nn k k a a a a a a a a k k ++++++++++≥++ . 解:(Ⅰ)令111'()2()0n n n f x nx n a x ---=-+=得11(2)()2n n x a x x a x x a --=+∴=+∴=…2分当0x a ≤≤时,2x x a <+ '()0f x ∴≤ 故()f x 在[0,]a 上递减.当,'()0x a f x >>故()f x 在(,)a +∞上递增.所以,当x a =时,()f x 的最小值为()0f a =.….4分(Ⅱ)由0b >,有()()0f b f a ≥= 即1()2()()0n n n n f b a b a b -=+-+≥故()(0,0,)22n n na b a b a b n N *++≥>>∈.………………………………………5分(Ⅲ)证明:要证:12311231()11n n n nn k k a a a a a a a a k k ++++++++++≥++ 只要证:112311231(1)()()n n n n n nk k k a a a a a a a a -+++++++≥++++设()g x =1123123(1)()()n n n nn n k a a a x a a a x -+++++-++++ …………………7分则11112'()(1)()n n n k g x k nx n a a a x ---=+⋅-++++令'()0g x =得12ka a a x k+++= (8)分 当0x ≤≤12ka a a k+++ 时,1112'()[(]()n n k g x n kx x n a a a x --=+-++++≤111212()()0n n k k n a a a x n a a a x --++++-++++=故12()[0,]k a a a g x k +++ 在上递减,类似地可证12()(,)ka a a g x k++++∞ 在递增所以12()k a a a x g x k +++=当时,的最小值为12()ka a a g k+++ ………………10分而11212121212()(1)[()]()n n n n n n k k k k k a a a a a a a a a g k a a a a a a k k k-+++++++++=+++++-++++ =1121212(1)[()()(1)()]n n n n n n n k k knk k a a a a a a k a a a k -++++++++-++++ =11212(1)[()()]n n n n n n k k n k k a a a k a a a k -++++-+++ =1112121(1)[()()]n n n n n nk kn k k a a a a a a k ---++++-+++ 由定理知: 11212()()0n n n nn k k k a a a a a a -+++-+++≥ 故12()0ka a a g k+++≥1211[0,)()()0kk k a a a a g a g k+++++∈+∞∴≥≥故112311231(1)()()n n n n n nk k k a a a a a a a a -+++++++≥++++即:12311231()11n n n nn k k a a a a a a a a k k ++++++++++≥++ .…………………………..14分答案:5354321b b b b b b =∙∙∙∙3、10.定义一种运算“*”:对于自然数n 满足以下运算性质:(i )1*1=1,(ii )(n +1)*1=n *1+1,则n *1等于A .nB .n +1C .n -1D .2n 答案:D4、若)(n f 为*)(12N n n ∈+的各位数字之和,如:1971142=+,17791=++,则17)14(=f ;记=∈===+)8(*,)),(()(,)),(()(),()(20081121f N k n f f n f n f f n f n f n f k k 则 ____答案:55、下面的一组图形为某一四棱锥S-ABCD 的侧面与底面。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2011年自主招生华约数学试题一、选择题(1) 设复数z满足|z|<1且15||2zz+=则|z| = ( )4321 A B C D 5432解:由15||2zz+=得25||1||2z z+=,已经转化为一个实数的方程。
解得|z| =2(舍去),12 。
(2) 在正四棱锥P-ABCD中,M、N分别为P A、PB的中点,且侧面与底面所成二面角。
则异面直线DM与AN所成角的余弦为( )1111A B C D36812[分析]本题有许多条件,可以用“求解法”,即假设题中的一部分要素为已知,利用这些条件来确定其余的要素。
本题中可假设底面边长为已知(不妨设为2),利用侧面与底面所成二面角可确定其他要素,如正四棱锥的高等。
然后我们用两种方法,一种是建立坐标系,另一种是平移其中一条线段与另一条在一起。
解法一:如图,设底面边长为2得高为。
如图建立坐标系,则A(1,-1,0),B(1,1,0),C(-1,1,0),D(-1,-1,0),P(0,),则1111(,,(,,222222M N-,31213(,,),(,,222222DM AN=-=-。
设所成的角为θ,则1 cos6DM ANDM ANθ==。
解法二:如图,设底面边长为2得高为。
平移DM 与AN 在一起。
即M 移到N ,D 移到CD 的中点Q 。
于是QN = DM = AN 。
而P A = PB = AB = 2,所以QN = AN=AQ= ,容易算出等腰ΔAQN 的顶角1cos 6ANQ ∠=。
解法三:也可以平移AN 与DM 在一起。
即A 移到M ,N 移到PN 的中点Q 。
以下略。
(3)过点(-1, 1)的直线l 与曲线相切,且(-1, 1)不是切点,则直线l 的斜率为 ( )A 2B1C 1D 2 - -此题有误,原题丢了,待重新找找。
(4)若222cos cos 3A B A B π+=+,则的最小值和最大值分别为 () 3131A1,B ,C1D ,122222222--+ + [分析]首先尽可能化简结论中的表达式22cos cos A B +,沿着两个方向:①降次:把三角函数的平方去掉;②去角:原来含两个角,去掉一个。
解:221cos 21cos 21cos cos 1(cos 2cos 2)222A B A B A B +++=+=++ 11cos()cos()1cos()2A B A B A B =++-=--,可见答案是B[分析]题目中的条件是通过三个圆来给出的,有点眼花缭乱。
我们来转化一下,就可以去掉三个圆,已知条件变为:ΔO O 1 O 2边O 1 O 2上一点C ,O O 1、O O 2延长线上分别一点A 、B ,使得O 1A = O 1C ,O 2B = O 2C 。
解法一:连接12O O ,C 在12O O 上,则1221OO O OO O πα∠+∠=-,111212O AC O CA OO O ∠=∠=∠,222112O BC O CB OO O ∠=∠=∠,故1212211()22O CA O CB OO O OO O πα-∠+∠=∠+∠=, 12()2O CA O CB παβπ+=-∠+∠=,sin cos 2αβ=。
解法二:对于选择填空题,可以用特例法,即可以添加条件或取一些特殊值,在本题中假设两个小圆的半径相等,则12212OO O OO O πα-∠=∠=,1212124O CA O CB OO O πα-∠=∠=∠=, 12()2O CA O CB παβπ+=-∠+∠=,sin cos 2αβ=。
(6) 已知异面直线a ,b 成60°角。
A 为空间一点则过A 与a ,b 都成45°角的平面 ( )A 有且只有一个B 有且只有两个C 有且只有三个D 有且只有四个[分析]已知平面过A ,再知道它的方向,就可以确定该平面了。
因为涉及到平面的方向,我们考虑它的法线,并且假设a ,b 为相交直线也没关系。
于是原题简化为:已知两条相交直线a ,b 成60°角,求空间中过交点与a ,b 都成45°角的直线。
答案是4个。
(7) 已知向量3131(0,1),(,),(,),(1,1)2222a b c xa yb zc ==--=-++=则222x y z ++ 的最小值为( )43A1B C D 232解:由(1,1)xa yb zc ++=得1)111222y z y z y z y z x x ⎧⎧=-=⎪⎪⎪⎪⎨⎨+⎪⎪--=-=⎪⎪⎩⎩, 由于222222()()2y z y z x y z x ++-++=+,可以用换元法的思想,看成关于x ,y+ z ,y - z三个变量,变形2(1)y z y z x ⎧-=⎪⎨⎪+=-⎩,代入222222()()2y z y z x y z x ++-++=+222228242(1)343()3333x x x x x =+-+=-+=-+,答案B (8)AB 为过抛物线y 2 = 4x 焦点F 的弦,O 为坐标原点,且135OFA ∠=,C 为抛物线准线与x 轴的交点,则ACB ∠的正切值为 ()A B C D 533解法一:焦点F (1,0),C (-1,0),AB 方程y = x – 1,与抛物线方程y 2 = 4x 联立,解得A B (3+2+ (3-2- ,,于是22CA CB k k ==,tan 1CA CB CA CBk k ACB k k -∠==+,答案A解法二:如图,利用抛物线的定义,将原题转化为:在直角梯形ABCD 中,∠BAD = 45°,EF ∥DA ,EF = 2,AF = AD ,BF = BC ,求∠AEB 。
tan tan 2DE GF AEF EAD AD AF ∠=∠===。
类似的,有2tan tan2BEF EBC∠=∠=,2AEB AEF BEF AEF∠=∠+∠=∠,tan tan222AEB AEF∠=∠=,答案A解:BDF BDE BDEDFS S zSDE∆∆∆==,(1)BDE ABE ABEBDS S x SAB∆∆∆==-,ABE ABC ABCAES S ySAC∆∆∆==,于是(1)2(1)BDF ABCS x yzS x yz∆∆=-=-。
将11y z x y z x+-=+=+,变形为,暂时将x看成常数,欲使yz取得最大值必须12xy z+==,于是21(1)(1)2BDFS x x∆=-+,解这个一元函数的极值问题,13x=时取极大值1627。
(10) 将一个正11边形用对角线划分为9个三角形,这些对角线在正11边形两两不相交,则()A 存在某种分法,所分出的三角形都不是锐角三角形B 存在某种分法,所分出的三角形恰有两个锐角三角形C 存在某种分法,所分出的三角形至少有3个锐角三角形D 任何一种分法所分出的三角形都恰有1个锐角三角形解:我们先证明所分出的三角形中至多只有一个锐角三角形。
如图,假设ΔABC是锐角三角形,我们证明另一个三角形ΔDEF(不妨设在AC的另一边)的(其中的边EF有可能与AC 重合)的∠D一定是钝角。
事实上,∠D ≥∠ADC,而四边形ABCD是圆接四边形,所以∠ADC = 180°-∠B,所以∠D为钝角。
这样就排除了B,C。
下面证明所分出的三角形中至少有一个锐角三角形。
FEDBCA假设ΔABC中∠B是钝角,在AC的另一侧一定还有其他顶点,我们就找在AC的另一侧的相邻(指有公共边AC) ΔACD,则∠D = 180°-∠B是锐角,这时如果或是钝角,我们用同样的方法继续找下去,则最后可以找到一个锐角三角形。
所以答案是D。
二、解答题解:(I)tan tantan tan()tan tan1A BC A BA B+=-+=-,整理得tan tan tan tan tan tanA B C A B C=++(II)3tan tan tan tanA C AB C=++,与(I)比较知tan33B Bπ=,=。
又11222sin2sin2sin23sin3A C Bπ+===,sin2sin2sin2sin23A CA C+=,sin()cos()cos2()cos2()3A C A CA C A C+-=--+3sin()sin2A C B+==,1cos2()cos22A C B+==-,代入得2cos2()13cos()A C A C-+=-,24cos()3cos()10A C A C----=,1cos()14A C-=-,,6cos12A C-=,(12)已知圆柱形水杯质量为a克,其重心在圆柱轴的中点处(杯底厚度及重量忽略不计,且水杯直立放置)。
质量为b克的水恰好装满水杯,装满水后的水杯的重心还有圆柱轴的中点处。
(I)若b = 3a,求装入半杯水的水杯的重心到水杯底面的距离与水杯高的比值;(II)水杯装多少克水可以使装入水后的水杯的重心最低?为什么?解:不妨设水杯高为1。
(I)这时,水杯质量:水的质量= 2 :3。
水杯的重心位置(我们用位置指到水DBCA杯底面的距离)为12,水的重心位置为14,所以装入半杯水的水杯的重心位置为11237242320+=+ (II) 当装入水后的水杯的重心最低时,重心恰好位于水面上。
设装x 克水。
这时,水杯质量 :水的质量 = a :x 。
水杯的重心位置为12,水的重心位置为2xb,水面位置为xb,于是122x ax xb a x b+=+,解得x a =(13)已知函数21()(1)1()2x f x f f ax b ===+2,,3。
令111()2n n x x f x +==,。
(I)求数列{}n x 的通项公式;(II)证明12112n x x x e +>。
解:由12(1)1()1()21xf f a b f x x =====+2,得,3 (I)先求出123412482359x x x x ====,,,,猜想11221n n n x --=+。
用数学归纳法证明。
当n = 1显然成立;假设n = k 显然成立,即11221k k k x --=+,则122()121kk k k k k x x f x x +===++,得证。
(II) 我们证明12112n e x x x +>。
事实上,12111112(1)(1)(1)242n n x x x +=+++。
我们注意到 2212(1)12(1)nn a a a a +<++<+,,,于是122121212111112(1)2(1)2(1)2222n n nn n n n e x x x -+++-+<+=+<+<(14)已知双曲线221222:1(0,0),,x y C a b F F a b-=>>分别为C 的左右焦点。