地铁动车组-制动装置

合集下载

CRH3型动车组制动装置

CRH3型动车组制动装置

CRH3型动车组制动装置概述CRH3型动车组制动装置是中国铁路总公司开发的一种先进的列车制动系统。

它采用了电力制动和气力制动相结合的方式,能够提供高效可靠的制动性能,确保列车在运行过程中的安全性和稳定性。

主要组成部分CRH3型动车组制动装置主要由以下几个部分组成:1.压缩空气系统:负责提供气源,保证气力制动的正常运行。

2.制动控制系统:通过控制电路和信号传输,实现对制动装置的控制和调节。

3.制动装置:包括电动制动、气动制动和机械制动等多种制动方式,通过控制阀门和制动盘实现制动效果。

4.制动盘和制动垫:负责实现列车的制动效果,通过制动盘和制动垫之间的摩擦力来阻止列车运动。

5.制动辅助系统:包括制动风缸、制动阀门、制动线路等,用于实现制动装置的辅助功能。

工作原理CRH3型动车组制动装置的工作原理如下:1.电动制动:通过电机将电能转化为机械能,实现列车的减速和停车。

当司机控制台发出制动指令后,电路将电能传输到电机上,使其产生转动,通过传动装置转动制动盘实现列车的制动。

2.气动制动:利用压缩空气来产生制动力,通过气缸和制动盘之间的摩擦力来阻止列车运动。

司机控制台发出制动指令后,电路会控制制动阀门的开启,使压缩空气进入制动风缸,推动制动盘实现列车的制动。

3.机械制动:通过机械装置实现列车的制动效果。

当电动制动和气动制动无法满足需求时,机械制动会起到补充作用。

司机通过操纵手动制动杆或脚踏板来调节机械制动装置,通过制动盘和制动垫之间的摩擦力来实现列车的制动。

优势和特点CRH3型动车组制动装置具有以下几个优势和特点:1.高效性能:采用了电力制动和气力制动相结合的方式,能够提供更为高效的制动效果,大大缩短列车的制动距离。

2.稳定性和安全性:制动装置的控制系统具有高度的稳定性,能够快速响应司机的指令,保证列车在运行过程中的安全性和稳定性。

3.多功能性:CRH3型动车组制动装置还具有多种辅助功能,如防滑、防抱死、自检等,能够提供更全面的制动保护。

CRH2G型动车组制动系统介绍

CRH2G型动车组制动系统介绍

CRH2G型动车组制动系统介绍[摘要]CRH2G型动车组的制动系统主要由制动控制系统、基础制动装置和风源系统三大部分组成,具备常用制动、紧急制动EB、紧急制动UB、停放制动、辅助制动、耐雪制动、除冰制动和撒砂控制等功能。

本文对CRH2G型动车组制动系统的组成、原理及功能进行介绍。

[关键词]CRH2G型动车组;制动系统;紧急制动中图分类号:G106 文献标识码:A 文章编号:1009-914X(2018)30-0027-011 引言CRH2G型动车组是基于既有CRH2型动车组的成熟技术平台,针对高寒地区动车组的运行现状,从风沙、高寒、高温、防紫外线辐射和高海拔五个方面进行了适应性改进,研制的高寒抗风沙动车组,满足国内高寒地区高速动车组的运行需求。

CRH2G型动车组制动系统是车辆系统的重要组成部分,本文将从制动系统的组成、原理及功能方面进行介绍。

2 系统组成及原理CRH2G型动车组制动系统为微机控制的直通式电空制动系统,采用复合制动方式,即再生制动并用电气指令式空气制动。

列车制动时,再生制动优先,当再生制动力不足时,由空气制动进行补足。

CRH2G型动车组的制动系统主要由制动控制系统、基础制动装置及空气供给系统三大部分组成,系统组成如图1所示。

制动控制系统主要由制动指令传输装置、制动控制装置、停放制动控制装置、救援转?Q装置、BP救援装置、防滑阀、撒砂装置等组成。

通过制动指令传输装置接收制动指令,计算并分配制动力,向基础制动装置输送压力空气。

基础制动装置是空气制动系统的执行部分,在制动控制系统的控制下产生闸片压向制动盘面所需的制动缸压力。

CRH2G型动车组基础制动装置采用紧凑式气动夹钳、粉末冶金闸片及铸钢制动盘。

根据统型要求,在1、4、5、8车每轴配置1个带停放功能的制动夹钳。

风源系统主要由空气压缩机组、干燥器、总风缸、控制风缸以及贯穿全列的总风管路组成,为制动系统及其它风动装置提供清洁、干燥的压缩空气。

轨道内部刹车结构

轨道内部刹车结构

轨道内部刹车结构
轨道内部的刹车结构主要由紧急制动安全环路线、制动控制装置和制动执行机构组成。

紧急制动安全环路线是一种控制电路,用于监控列车的紧急制动状态。

当紧急制动安全环路线的某一处瞬间失电时,列车会产生紧急制动指令。

制动控制装置是制动指令的执行和控制机构,由电气控制部分和气动控制部分组成。

在气动控制部分中,有一个紧急制动电磁阀,通常处于得电状态,将中继阀的紧急制动预先控制压力口与空重车调整阀输出口的气路通道切断,并将中继阀的紧急制动预先控制压力排向外界。

制动执行机构则包括盘形制动和磁轨制动等类型。

盘形制动是在车轴上或在车轮辐板侧面装上制动盘,用制动夹钳使合成材料制成的两个闸片紧压制动盘侧面,通过摩擦产生制动力。

磁轨制动则是在转向架的两个侧架下面,在同侧的两个车轮之间,各安置一个制动用的电磁铁,制动时将它放下并利用电磁吸力紧压钢轨,通过电磁铁上的磨耗板与钢轨之间的滑动摩擦产生制动力。

在紧急情况下,列车会触发紧急制动指令,通过制动控制装置和制动执行机构的工作,使列车迅速停止运行。

城市轨道交通车辆制动系统的重要作用

城市轨道交通车辆制动系统的重要作用
一套列车制动装置至少包括两个部分,即制信号发生与传输装置以及制动控制装置组成。制 动执行部分通常称为基础制动装置,包括闸瓦制动、盘形制动、磁轨制动 等不同方式。
一 基本概念
一 基本概念
当以压力空气作为制动信号传递和制动力控制的介质时, 该制动装置称为空气制动控制(空气制动机)。
二 城市轨道交通车辆制动系统的制动模式
三、快速制动
是为了使列车尽快停车而实施的制动,其制动力高于常用 全制动(上海、广州快速制动力高于常用全制动22% )。这种制 动方式在紧急情况下、制动系统各部分作用均正常时所采取的 一种制动方式,其特点是与常用制动相同,制动过程可以施行 缓解。
受冲击率极限的限制,主控制器手柄回“0”位,可缓解, 具有防滑保护和载荷修正功能。
一 基本概念
三、制动的实质:
(1)能量的观点:将列车的动能变成别的 能量或转移走。
(2)作用力的观点:制动装置产生与列车 运行方向相反的力,使列车尽快减速或停车。
一 基本概念
四、制动机:
产生制动原动力并进行操纵和控制的部分设备。
五、制动力:
由制动装置产生的与列车运动方向相反的外力。 对轨道交通机车车辆而言,制动力是制动时由制动装置产 生作用后而引起的钢轨施加于车轮的与列车运行方向相反的力。
一 基本概念
六、基础制动装置:
传送制动原动力并产生制动力的制动执行装置。
一 基本概念
七、 制动距离:
从司机施行制动的瞬间起(将制动手柄移至制动位),到列 车速度降为零列车所行驶的距离,其综合反映列车制动装置的性 能和实际制动效果的主要技术指标。
上海地铁规定:列车在满载乘客的条件下,在任何运行初速 度下,其紧急制动距离不得超过180m。
第二阶段:接近停车时(列车速度0.5Km/h),一个 小于制动指令(最大制动指令的70%)的保压制动由ECU 开始自动实施,即瞬时地将制动缸压力降低。如果由于 故障,ECU未接收到保压制动触发信号,ECU内部程序 将在8Km/h的速度时自行触发。

动车车辆制动系统原理及性能分析

动车车辆制动系统原理及性能分析

动车车辆制动系统原理及性能分析动车车辆制动系统是保证列车行车安全的关键部件之一。

它通过控制车辆的制动力和制动距离,确保列车能够在规定的时间内停下来或减速到安全的行驶速度。

本文将详细介绍动车车辆制动系统的原理及性能分析。

一、动车车辆制动系统的原理动车车辆制动系统主要由制动装置、制动控制设备和制动传动装置组成。

制动装置包括制动盘、制动鼓、滑轮等,制动控制设备包括制动阀、主管压力保持阀等,制动传动装置包括制动管路、制动杠杆等。

1. 制动装置制动装置是实现制动力的传递和作用的部件,主要包括制动盘、制动鼓和滑轮。

当列车需要制动时,通过控制制动杆杆的位置,使制动齿轮靠近制动盘或制动鼓,利用摩擦力的作用产生制动力。

2. 制动控制设备制动控制设备主要由制动阀和主管压力保持阀组成。

制动阀的作用是调节制动力的大小和作用时间,控制列车的制动或减速。

主管压力保持阀的作用是保持制动气压的稳定,确保制动力的均匀输出。

3. 制动传动装置制动传动装置将制动力从制动装置传递到车轮上,主要包括制动管路和制动杠杆。

制动管路将制动力传递到制动装置上,制动杠杆通过连接制动装置和车轮实现制动力的传递。

二、动车车辆制动系统的性能分析动车车辆制动系统的性能直接影响列车的制动效果和运行安全性。

以下将从制动力、制动距离和制动稳定性三个方面对动车车辆制动系统的性能进行分析。

1. 制动力制动力是制动系统产生的力,直接影响列车的制动效果。

制动力的大小取决于制动装置的设计和使用条件。

制动力需要能够快速调整和准确控制,以适应不同的行车情况和制动需求。

2. 制动距离制动距离是列车从施加制动开始到完全停下所需的距离。

制动距离的大小受到列车速度、制动力和制动装置的效果等因素的影响。

合理控制制动距离,可以确保列车在规定的时间内停下来,避免碰撞事故的发生。

3. 制动稳定性制动稳定性是指列车在制动过程中的稳定性能。

制动系统需要能够在不同的行车速度和路况下提供稳定的制动力,避免制动过程中的冲击和抖动。

动车组制动控制装置原理

动车组制动控制装置原理


动车组的制动指令由司机制动控制器发出电器指令, 经列车信息控制系统传送到每辆车的制动控制装置,由制 动控制装置的BCU运算,按制动控制规律实施再生制动和 空气制动。其中空气制动通过控制电控转换阀的电流,送 出与电流对应的空气压力信号到中继阀,控制中继阀送出 压缩空气到转向架基础控制装置,由增压气缸经空——油 变换作用转变成油压,最后经制动盘液压卡钳的液压缸推 动闸片压制动盘面,完成制动作用。
气制动、拖车使用空气制动的复合制动方式。
再生制动不空气制动的切换,通过电—空协调控制,由 制动控制装置判断制动力,当再生制动力丌足时由空气制 动补充。 当列车速度减慢到大约7~10km/h以下时,牵引电机的 可用功率减小,再生制动作用减小,在大约2km/h时减到 零。为了在低速下得到制动力,随着速度的减小,计算机 系统将控制车辆制动控制装置(BCU)逐步增大直通式空 气制动,配合再生制动保证列车所需要的制动力,最后全 部由空气制动取代电空制动。
CRH2
型 动 车 组 制 动 控 制 系 统 原 理 图
一、制动控制系统的类型
CRH2制动控制系统的制动指令发出有两种途径,一种是 正常行车时经常制动等制动指令由司机制动控制器发出; 另一种时来自列车ATP或LKJ2000的安全制动指令经ATP或 LKJ2000与制动系统的接口出发。
二、 制动方式
CRH2采用了盘形制动和动力制动两种制动方式; 按制动原动力说,盘形制动属于空气制动,动力制动属于 电气制动;按照制动力形成方式,盘形制动、动力制动均 属于粘着制动。
制动减速模式
等制动减速模式 等闸片磨耗模式 节能模式
模式
各车辆制动减速度 一致,制动计算机 据车辆载重、运行 工况控制各车制动 力
各车辆一致性好、 纵向冲击小、舒适 性好 各车闸片磨耗不均 匀、维修不便

CRH2型动车组转向架制动装置

CRH2型动车组转向架制动装置

CRH2型动车组转向架制动装置转向架基础制动装置采用空液转换液压制动方式,M车、T车均采用变换空压、油压的增压气/油缸和油压卡钳式盘形制动装置。

卡钳式盘形制动分轮盘和轴盘两种形式。

轮盘安装在每个车轮上(无论是动轮还是拖轮均有),而轴盘仅安装在拖车车轴上,每轴两个。

制动卡钳的夹紧动作是由液压油缸驱动的,而推动该液压油缸的高压油是通过一套气一液变换装置将制动管内的压缩空气压力放大若干倍(即制动倍率,约18倍)后而获得的。

采用液压制动的优势是:能够通过制动控制系统满足不同载重条件下对不同制动倍率(即制动力)的要求以及防滑要求,同时可以简化制动单元的结构,取消复杂的杠杆构件和空气单元制动缸,节省空间,减轻质量。

CRH2型动车组转向架基础制动装置主要由制动增压缸、制动卡钳、闸片及管路系统等部分组成。

5.8.1气一液转换装置5.8.1.1工作原理增压缸是气一液转换装置的主要部件,将来自制动管的压缩空气压力放大若干倍(约18倍)转换成油压后,提供给制动油缸实施对制动盘的夹紧。

工作原理如下(参照图5.39):制动时,压力空气经过PClS压力控制阀调整后进人气缸,推动活塞,随其活塞杆压进油缸里,此时在活塞杆端部设有的油孔在通过垫圈的同时,油缸内的油液受压并逐渐移动,油压逐步上升到达到平衡气缸内的气压(约18倍)为止。

油缸内的油液推开止回阀输送到盘式制动器的制动油缸。

此时,供给阀弹簧面承受油的压力,该阀仍呈现关闭状态。

随着活塞的移动,行程表示杆也逐渐地突出,使能在外面方便读取活塞的行程尺寸。

制动缓解时,活塞转变为后退行程,同时油缸内的活塞杆也在释放弹簧的作用下退回到原位,油缸内的压力急剧地下降,此时制动油缸的油压大于油缸内的压力。

当制动油缸的油压大于弹簧力时,将推动止回阀座带着止回阀一起脱离接触面,使油液由止回阀座的周围向油缸回流,直到与弹簧的张力平衡为止。

制动油缸内的油压与弹簧的张力相互平衡,停止油液的回流,止回阀座又复位,这样在制动油缸内可保持约49~98kPa的残剩压力,以防止从装置的密封垫圈及油管接头等处间隙窜入气泡。

CRH动车组转向架-第七章CRH转向架基础制动装置

CRH动车组转向架-第七章CRH转向架基础制动装置
带停车制动制动单元
7.3 CRH2型动车组基础制动装置
• CRH2型动车组采用空-油转换液压制动方式 。
7.2 CRH1型动车组基础制动装置
• 动车转向架制动装置(轮盘制动) • 动车转向架的基础制动装置为盘形摩擦制
动。制动盘成对地安装在车轮幅板两侧, 制动盘是环形的,用铸钢制作,并配有冷 却片。它们都是用螺钉安装在车轮的两面 。 • 制动单元装在转向架构架的外端梁上。
三种动车制器;85、86.控制臂; 46、47.制动闸片托;4.薄膜气缸;R.复位螺钉;C.压缩空气接口
不带停车制动制动单元
1.外壳;2.安装架;5.自动闸瓦间隙调制器;85、86.控制臂;46、47.制动闸片托; 4.薄膜气缸;A.控制单元;F.停车制动器压缩空气接口;R.复位螺钉; C.盘式制动器压缩空气接口;N.停车制动器紧急释放机构

CRH制动

CRH制动

1 CRH1动车组CRH1动车组采用电气指令式制动系统动车组各车辆的制动控制装置采用微机控制,制动力则由动车的电控制(再生制动)及各车的空气制动(动车轮盘式盘型制动,拖车轴盘式盘型)制动构成。

根据制动性能的不同,又可分为常用制动,紧急制动,停放制动,保持制动,防冰制动。

司机控制器可分为1—7级,7级过后为紧急制动。

其他制动功能不能通过司机主控制器施加。

制动系统通过列车信息与控制网络把每车的制动设备—制动模块(制动控制单元)联系在一起,形成一个整体。

每车的制动设备集中于控制模块中,悬挂于车体下方。

T车得制动模块中含有制动控制器(制动控制计算机BC)空气制动模板(BP),M车除了BC、BP外,还有停放制动控制板(PBP)。

CRH1的停放制动缸在M车上。

常用制动采用空电复合制动,紧急制动可由多种方式控制施加。

主手柄施加紧急制动也采用空电复合制动。

采用电气再生制动和直通电气制动通过控制计算机复合控制施加制动力。

主车辆控制单元(VCU)根据制动指令信号(级位)和车重的测量信号进行总制动力需求要求计算。

然后进行再生制动和空气制动之间的协调分配。

复合制动控制中,车辆制动单元会调节空气制动信号,再生制动和空气制动共同采用时,再生制动优先采用。

再生制动不足部分由空气制动补充。

空气制动采用直通式电控制动系统,每车都有本车制动计算机BC。

复合制动控制的优先顺序为:①动车的再生制动。

②拖车和动车的空气制动。

在动车和拖车之间平均分配制动力。

紧急制动由贯穿整个列车的电气安全环路失电启动(或激活)不受制动计算机控制。

保持制动采用与常用制动相同的空气制动。

只要列车处于静止状态,保持制动会自动施加,用于列车在坡道上停车和起动时防止溜行。

当主手柄在“0“位,列车速度低于设计规定速度值(一般为5km/h)和停车状态时,自动输出制动力。

停放制动是纯空气控制的制动,可使列车在30‰斜坡上长时间停放防止溜车。

在每辆M车得5、6、7号制动单元中含有弹簧储能性停放制动缸。

CRH2制动系统介绍

CRH2制动系统介绍

CRH2电动车组制动系统简介制动方式1)制动控制方式动车组动车使用电制动、拖车使用空气制动的复合制动方式。

动车电制动优先,低速区域的电制动停止工作时或电制动故障时,不足的部分由空气制动力补充实施。

制动时,列车首先最大限度地利用电制动力制动列车,减轻拖车的空气制动负荷,减少拖车的机械制动部件的磨损。

通过ATP的自动控制及手动制动光传送指令式采用再生制动并用电气指令式空气制动延迟控制,首先让动车(再生制动)负担制动力,减小拖车自身制动力的方式。

以1辆动车、1辆拖车为控制单位进行延迟控制2)制动的种类通常运行时司机用制动控制器操作常用制动(表示为1级~7级的7个档位的制动力)和快速制动。

ATP动作时常用最大制动(7级)和快速制动作用相同。

紧急制动、辅助制动,在故障时等异常情况下通过开关操作。

耐雪制动是积雪时通过开关操作,制动力几乎不作用。

制动方式①适应粘着变化规律的速度-粘着控制模式;②根据载荷变化自动调整制动力;③防滑保护控制;④以1M1T为单元进行制动力的协调配合,充分利用动车再生制动力,减少拖车空气制动力的使用,仅在再生制动力不足时才由空气制动力补充;⑤优先响应车载A TP/LKJ2000接口的指令,可施行安全制动;⑥故障诊断和相关信息保存功能;⑦当安全控制回路分离时产生紧急制动;常用制动:常用制动力为1级~7级;延迟控制,在初速度为75km/h以上时,由动车的再生制动负担拖车部分的制动力,在65km/h以下切换成为单独控制。

快速制动:具备常用制动倍的制动力,在手动制动操作时及在闭塞区间无法减速至设定的速度时根据A TP指令动作。

紧急制动:当列车分离、总风管压力降低及手柄取出时均会实施紧急制动。

此时,不具有按照负荷大小调整制动力的功能。

耐雪制动:在降雪时,为了防止冰雪进入制动盘和闸瓦之间,使得闸瓦无间隙轻轻接触制动盘。

在110km/h的速度以下,接通耐雪制动开关,通过操作制动手柄动作。

制动缸压力设定为40±20kPa,可以操作制动控制器的开关调整设定值。

CRH380A型动车组制动系统

CRH380A型动车组制动系统
工作压力范围640kPa-780kPa.
2021/10/10
7
基础制动装置安装于转向架上,采用空气卡钳盘形制 动装置。 基础制动配置: M车每轴设置2轮盘; T车每轴设置2轮盘和2轴盘。
制动盘采用铸钢制动盘和闸片采用浮动式结构,提高 盘片接触均匀性,使制动盘各部分热负荷更加均匀。
2021/10/10
8
制动控制装置采用模块 化设计,由构架、制动控制 器(BCU)、各空气阀类组 件、压力开关、电磁阀、安 全阀、风缸等设Байду номын сангаас组成。
2021/10/10
9
THE END 谢谢
2021/10/10
10
紧急电磁阀失电时 , 压缩空气直接到达中继阀,产生制动压力

司机制动控制器
车辆信息控制装置(中央装置)
牵引变流器
制动指令转换装置
车辆信息控制装置(终端装置)
制动控制器 电空转换阀
制动控制装置
中继阀
制动风缸
紧急制动 电磁阀
调压阀
总风缸
防滑阀
紧急制动回路
基础制动装置
干燥器
主空气压 缩机组
2021/10/10 空气
2021/10/10
2
CRH380A/AL新一代高速列车制动系统由制动控制系统、 供风系统、基础制动装置三大部分组成。制动系统采用复合 制动方式,单元内优先利用再生制动,再生制动不足时由空 气制动进行补充。降低制动盘和闸片的磨耗。初速度380km/h 紧急制动距离小于8500m;初速度350km/h 紧急制动距离小 于6500m
电气
光纤
4
供风系统主要由螺 杆式空气压缩机组、膜 式干燥器、以及贯穿全 列的总风管等组成。

CRH1制动

CRH1制动
3) 停放制动控制板
停放自动面板的主要控制的是列车的停放制动,当接 受到TCMS施加停放制动的电信号后,则打开停放制 动回路的同大气口,向大气排风,停放制动上。
当接受到缓解停放制动的命令时,则导通与总风管的 连接,充风缓解。
停放制动面板、制动面板和停放制动管路之间又一个 3位2通阀连接,保证了在停车情况下,不会停放制动 力和常用制动力产生叠加,以防损坏闸盘。
司机安全继电器 计算机故障继电器 安全装置切除开关
回送开关
------动制动车安组全技回术路
激活继电器 激活继电器
司机紧急按钮
司控器
司机安全继电器 计算机故障继电器 安全装置切除开关
回送开关
制动管压力继电器
ATP隔离开关 无ATP紧急制 动继电器
CRH1 制动系统
激活继电器 激活继电器
总风缸
停放制动控制单元 (拖车无)
制动控制单元BCU
动车组技术
CRH1 制动系统
制动系统主要部件
动车组技术
CRH1 制动系统
动车组技术
CRH1 制动系统
1) 供风系统
主压缩机(全车3台,每个拖车1台) 辅助压缩机( 2台,TP1、TP2各1台) 总风缸(拖车3个、动车1个) 辅助风缸(TP1、TP2各1个) 空簧风缸(每辆车4个) 总风管(一条贯穿全车的总风管及若干条支系风管构成。
从0位向后拉动操控杆,可以施加常用制动(共7级)。向后拉动 超过第7级,就到紧急制动位,会施加紧急制动。
动车组技术
CRH1 制动系统
制动信息的显示2007.5广铁添乘拍
制 动 力
动车组技术
CRH1 制动系统
1、正数值绿条显示牵引力。 2、负数值绿条显示动力(电)制动力。蓝条显示空气制动力。 3、动力制动的接通/切断按钮有两种预定义状态。

高铁刹车原理

高铁刹车原理

高铁刹车原理高铁作为一种快速、便捷的交通工具,其安全性备受关注。

而高铁刹车系统作为保障乘客安全的重要组成部分,其原理和工作机制也备受关注。

本文将介绍高铁刹车原理,帮助大家更好地理解高铁的安全性能。

高铁刹车系统主要包括动车组本体、制动电气装置、制动辅助装置和车辆控制装置。

其中,动车组本体是刹车系统的核心部件,其工作原理如下:首先,当列车需要刹车时,车辆控制装置会发出指令,通过制动电气装置传输给动车组本体。

动车组本体接收到指令后,会启动制动辅助装置,开始进行刹车操作。

在刹车过程中,制动辅助装置会通过控制电磁阀,使制动缸内的压力逐渐增加。

随着制动缸内压力的增加,制动鞋会与车轮接触,产生摩擦力,从而减速列车。

同时,动车组本体还会监测列车的速度和制动状态,通过传感器实时反馈信息给车辆控制装置。

车辆控制装置会根据反馈信息,调整制动电气装置的输出,以确保列车的平稳减速和停车。

需要注意的是,高铁刹车系统采用了电气控制和辅助装置,相比传统的机械刹车系统,具有更高的灵活性和精准度。

这也使得高铁在高速行驶中,能够更加稳定地进行刹车操作,保障乘客的安全。

此外,高铁刹车系统还采用了多重安全保护措施,如防抱死系统、防滑系统等,以应对各种复杂的道路条件和紧急情况。

这些安全保护措施的应用,进一步提升了高铁的安全性能。

总的来说,高铁刹车系统通过动车组本体、制动电气装置、制动辅助装置和车辆控制装置的协同作用,实现了高速列车的平稳减速和停车。

其电气控制和多重安全保护措施,为乘客提供了更加安全、舒适的出行体验。

通过本文的介绍,相信大家对高铁刹车原理有了更深入的了解,也更加信任高铁的安全性能。

希望高铁刹车系统能够不断完善和提升,为乘客提供更加安全、快速、舒适的出行服务。

动车组基础制动装置种类

动车组基础制动装置种类

动车组基础制动装置种类
空气制动是指利用空气压力传动制动力的一种制动方式。

它包
括制动缸、制动鞋或制动盘、制动阀等组成的系统。

当司机操作制
动手柄时,空气制动系统会释放空气压力,使制动鞋或制动盘与车
轮接触,从而产生制动力,实现列车的制动。

电磁制动是利用电磁感应产生的电磁力来实现制动的一种方式。

它包括电磁制动器、电磁盘等组成的系统。

当需要制动时,通过控
制电磁制动器通电,产生电磁力使电磁盘与车轮接触,从而实现列
车的制动。

除了空气制动和电磁制动,还有一些其他类型的基础制动装置,例如液压制动等。

液压制动是利用液压传动制动力的一种方式,通
过控制液压系统释放液压压力,使制动器与车轮接触,实现制动。

总的来说,动车组基础制动装置种类主要包括空气制动、电磁
制动和液压制动等多种类型,每种类型都有其特点和适用场景。


实际应用中,根据列车的具体情况和需要,会选择不同类型的基础
制动装置来实现列车的制动功能。

CRH380B型动车组制动系统

CRH380B型动车组制动系统
制动控制单元bcu司机室制动控制设备风笛备用制动控制制动控制单元bcu司机室制动控制设备基础制动装置空气悬挂装置风缸模块备用制动控制制动系统原理图介绍22基础制动装置空气悬挂装置风缸模块直通电空制动原理33从列车接收制动指令并执行从列车接收制动指令并执行电气指令生成预控压力生成制动缸压力备用制动原理44列车管压力下降分配阀动作生成预控压力列车管压力下降分配阀动作生成预控压力生成制动缸压力紧急制动原理55紧急制动时系统同时执行如下动作
2
制动系统原理图介绍
制动控制单元(BCU风) 缸模块司机室制动控制设备
备空用气制悬动挂控装制置 基础制动装置 制动控制单元(BCU)
风笛
司机室制动控制设备
备用制动控制
基础制动装置
空气悬挂装置
风缸模块
3
从列车接收 制动指令并 执行
直通电空制动原理
电气指令
生成预控压力
压生 力成
制 动 缸
4
备用制动原理
列车管压力下降, 分配阀动作,生 成预控压力
压生 力成
制 动 缸
5
紧急制动原理
紧急制动时,系统同时执行如下动作:1.紧急电磁阀导通,2.列车管减压,3.模拟 转换阀动作,冗余生成预控压力,提高了车辆紧急制动的安全性和可靠性。
第三部分 1 2 3 4 5
制动系统结构组成 单车制动系统结构组成
制动控制模块 供风单元 辅助压缩机 管路连接
4
减速度曲线设定
常用制动减速度曲线(不含风阻)
0.90
1A
0.80
1B
0.70
N2
0.60
N3
0.50
0.40
N4
0.30
N5
0.20
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
盘形制动 1—轮对 2—制动盘 3—单元制动缸 4—制动夹钳 5—牵引电动机
(3)轨道电磁制动,也叫磁轨制动。在转向梁构架 侧梁4下方,通过升降风缸2安装有电磁铁1,电磁铁 下设有密耗板5。制动时通过升降风缸将电磁铁压向 轨道,使磨耗板与钢轨3吸住,电动车辆的动能通过 磨耗板与钢轨之间的摩擦转化为热能,散发到空气中 ,而达到减速的目的。轨道电磁制功能得到较大的制 动力,因此常被地面轻轨车辆和高速列车采用。
三)ATS的功能: 1、监督列车运行的全过程。
2、修正并给ATO提供当前可用的运行时刻表 。
3、自动调整列车运行参数。
对ATS也没有安全要求,其的任务由列车位 置识别系统(PTI)支持。
九、 车辆的维修管理
车辆维修根据目的不同主要分为以下两大 类:预防性维修和故障维修。
预防性维修是在故障率没有超过事先确定 的指标之前,为了限制故障的产生而对设 备采取的维修措施。 预防性维修可以根据下列因素来确定: 1. 使用时间 2. 车辆的走行公里数
1、摩擦制动
城市轨道交通车辆常用的摩擦制动方式主要有:闸 瓦制动、盘形制动和轨道电磁制动。轨道电磁制 动运用在高速列车的制功系统中。
(1)、闸瓦制动:又称为踏面制功。它是最常用的 一种制动方式。制动时闸瓦压紧车轮,车轮和闸瓦之 间发生摩擦,电动车辆的动能大部分通过车轮和闸瓦 之间的摩擦变成热能,散发到空气中,而达到减速的 目的。
(三) 目的地/车次指示器
八、列车自动控制系统(ATC)
(一)ATC的作用: 列车自动控制系统(ATC)即LZB700M系统
,主要用于列车运行的自动监控、驾驶、控制 ,以确保列车运营的安全性和可靠性。 (二)ATC的组成及特点:
1、ATP—列车自动保护系统。 2、ATO—列车自动驾驶系统。 3、ATS—列车自动监制的单管 式空气摩擦制动系统,常用制动下,它采用电 -空联合制动的方法,基础制动采用单元式踏 面制动器(分带和不带停车制动用的弹簧制动 器两种)。
为了实现能满负荷工作,并且具有故障保护的 功能,该系统具有独立的紧急制动系统,它是 通过“失电-施加”的原则(紧急模式)来实现 故障保护的。
送、接收、记录、显示;并监控整列车的状态;对列 车的牵引、制动、辅助系统的故障信息及状态信息收 集、传送、存储及显示,便于了解故障发生时的列车 状态,从而为分析故障原因、处理故障提供帮助。
(二)列车广播系统
系统用于向乘客提供语言方面的信息,包括报 站(含自动报站功能)、关门报警和广播。
乘客可听到较好的语音品质。高语音品质来源 于采用了带宽可调节调制技术,可以抗噪音和 保持语音信号的品质。
一)ATP的功能: 1、轨道空闲检测。 2、确定和速度监控。
3、紧急制动施加。 4、列车追踪间隔的自动确定。 5、车门释放。
二)ATO的功能: 在按压“ATO”启动列车自动驾驶后: 1、列车自动启动。 2、列车运行速度自动调整。 3、列车目标制动。 4、启动车门打开。
ATO始终在ATP的安全监控下运行,故对ATO 没有任何的安全要求。
闸瓦 制动
1—制 动缸
2—基
( 2)盘形制动:盘形制动分为轴盘式和轮盘式两 种,一般采用轴盘式盘形制动,当轮对中间因牵引 电机等设备的安装而使制动盘安装发生困难时,可 采用轮盘式盘形制动。盘形制动在制动时,通过制 动缸的作用使制动夹钳的闸片夹紧制动盘,通过闸 片和制动盘之间的摩擦,将电动车辆的动能转变为 热能,散发到空气中,而达到减速的目的。盘形制 动的制动功率比闸瓦制动的制动功率大。
因此,地铁车辆的制动系统具有优良的制动性能, 而且操纵灵活,制动减速快,响应时间短,并具有 载荷校正功能。
(一)制动类型
地铁车辆牵引电传动系统采用先进的调频调压 交流感应电机驱动系统,在高速时具有良好的 电制动性能,但是由于电制动的效率随着运行 速度的降低而降低(低速时电制动发挥不出来 )以及安全要求,在车速降低到一定程度以后 必须采用空气制动系统。
因此,将制动系统分为两大类:电制动和摩擦 制动(空气制动)。
摩擦制动方式,是把动能通过摩擦的方式转变为 热能后,散发到空气中;
电制动即动力制动方式是把动能通过发电机转化 为电能后、再将电能送回电网或变成热能散发到 空气中。
制动系统的动力制动(电制动)仅在动车转向架 上,闸瓦制动(每个动车和拖车转向架上)各有 4块闸瓦组成,其中两个闸瓦块装有附加的弹簧 制动器,起停车制动的作用。
磁轨 制动 1—电 磁铁
(二)动力制动:
动力制动在制动时,是将牵引电动机变成发电机使用, 并通过发电机将电动车辆的动能转化为电能。根据对这些 电能的处理方式不同,动力制动可分为电阻制动和再生制 动两种。
1、电阻制动:将发电机发出的电能加于电阻上,使电阻 发热,即电能转变为热能。电阻上的热能依靠强迫通风而 散发于空气中。电阻制动一般能提供较稳定的制动力,但 车辆底架下需要安装体积较大的制动电阻箱。
制动系统可以实现:常用制动、紧急制动、缓 解作用、防滑作用、停车制动
七、列车信息及诊断系统
广州地铁车辆列车信息系统包括:信息及诊断系统、 有线广播、目的地/车次号指示器三部分组成。
(一)信息及诊断系统 信息及诊断系统所含的技术成分最高,也最为重要。 主要用于列车各系统故障信息及状态信息的识别、传
2、再生制动:在以上的各种制动方式中,电动车辆的动 能最终都是转化为热能而散发到空气中。而再生制动是把 电动车辆的动能转化为电能后,供车辆的其它负载使用或 反馈回电网供给别的列车使用。显然这种方式既能节约能 源,又减少制动时对环境的污染,且基本上无磨耗,因此 这是一种较为理想的制动方式。是目前在地铁车辆普遍采 用的一种制动方式。
广州地铁培训 车辆制动装置
六、制动装置
车辆制动系统的作用是产生制动力,使列车减速或 停车。其作用的好坏对保证列车安全和正点运行具 有极其重要的作用,而且也是提高载重和运行速度 的前提条件。
地铁站间距离短,启动快,制动距离短,停车精度 要求高。同时,地铁车辆的旅客上下波动较大,对 车辆载重有较大的影响。
相关文档
最新文档