2018届吉林省东北师大附中高三四模理科数学试题(word版)
2024年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学四模试卷+答案解析
2024年东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)高考数学四模试卷一、单选题:本题共8小题,每小题5分,共40分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知,x,,则()A.2B.3C.4D.52.若,是夹角为的两个单位向量,与垂直,则()A.0B.2C.D.3.某种酸奶每罐净重单位:服从正态分布随机抽取1罐,其净重在179g与之间的概率为()注:若,,,A. B. C. D.4.等差数列的前n项和记为,若,,则()A.51B.102C.119D.2385.过点作圆的切线PA,A为切点,,则的最大值是()A. B. C. D.6.已知双曲线的左,右焦点分别为,,点P在双曲线的右支上,I为的内心,记,,的面积分别为,,,且满足,则双曲线的离心率是()A. B. C.2 D.37.某高中2023年的高考考生人数是2022年高考考生人数的倍.为了更好地对比该校考生的升学情况,统计了该校2022年和2023年高考分数达线情况,得到如图所示扇形统计图:下列结论正确的是()A.该校2023年与2022年的本科达线人数比为6:5B.该校2023年与2022年的专科达线人数比为6:7C.2023年该校本科达线人数比2022年该校本科达线人数增加了D.2023年该校不上线的人数有所减少8.如图,在棱长为2的正方体中,已知M,N,P分别是棱,,BC的中点,Q为平面PMN上的动点,且直线与直线的夹角为,则点Q的轨迹长度为()A.B.C.D.二、多选题:本题共3小题,共18分。
在每小题给出的选项中,有多项符合题目要求。
全部选对的得6分,部分选对的得2分,有选错的得0分。
9.已知,内角A,B,C分别对应边a,b,c则下列命题中正确的是()A.若,则为钝角三角形B.若,,,则的面积为C.在锐角中,不等式恒成立D.若,,且有两解,则b的取值范围是10.已知函数,则下列说法正确的是()A.的极值点为B.的极值点为1C.直线是曲线的一条切线D.有两个零点11.已知和分别是定义在R上的偶函数和奇函数,且,则下列说法中正确的是()A.4为的一个周期B.8为的一个周期C. D.三、填空题:本题共3小题,每小题5分,共15分。
吉林省东北师大附中届高三第三次(12月)摸底考试历史试题(Word版)
吉林省东北师大附中2021届高三第三次摸底考试历史试题命题:刘文江陈明堂审校:高三历史学科组注意事项:1.答卷前,考生务必将自己的姓名,准考证号填写在本试题相应的位置。
2.全部答案在答题卡上完成,答在本试题上无效。
3.回答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案用0.5mm 黑色笔迹签字笔写在答题卡上。
4.考试结束后,将本试题和答题卡一并交回。
一、选择题:本题共24小题,每小题2分,共48分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.商代已能酿造不同种类的酒,有用稻造的酒,有用黑黍造的酒;殷墟墓葬中,有很多酒器。
这反映了商代A.农业生产力发展B.贵族奢靡的生活C.已经使用铁农具D.后世作物已具备2.汉朝时大都市近郊多有大面积菜圃,经营菜圃者的经济收益也较高。
据《史记》记载:“名国万家之城,带郭……千畦姜韭,此其人与千户侯等”。
据此可知汉朝A.重农抑商政策开始受到冲击B.农业中出现了专门化的生产C.地区性的经济中心城市形成D.等级观念因经济发展而淡化3.下图是魏晋时期九品中正制选拔人才的流程图。
据此可知该制度旨在A.规范选拔程序B.加强中央集权C.加强君主专制D.扩大选官范围4.宋代皇帝不可未经中书门下(三省)和枢密院将“圣旨”以“指挥”形式直接下达有关机构,否则,便不符合“国体”。
中书门下和枢密院在接到皇帝的“指挥”后也要参照前后敕令,审度可否,还要付录门下省审读,然后行下。
这表明,宋代中枢机构A.依附服务于皇权专制B.开始出现分权与制衡C.有效制约了君主专制D.具有规范的运作程序5.明英宗时,首辅李贤以善于进言和敢言著称,但考之史实,特别是从他自己所著的《天顺日录》中可以看出,李贤之所言大都不是主动地进言,而是皇上有所询问则言之,即使有所进谏,亦是帝意所属。
这反映出明代A.内阁不具有合法性B.官僚政治集团的腐朽C.中央行政效率低下D.君主专制统治的加强6.19世纪60—90年代,清政府与西方列强按照当时通行的国际惯例发展着近代外交,但同时仍继续和朝鲜、越南等国保持着朝贡关系。
2023届吉林省长春市东北师范大学附属中学高三第二次摸底考试数学试题
2023届吉林省长春市东北师范大学附属中学高三第二次摸底考试数学试题一、选择题:(本题8小题,每小题5分,共计40分,在每小题中给出四个选项中,只有一个选项是符合题目要求的)1.(5分)若集合A={x|﹣2<x<1},B={x|0<x<2},则集合A∩B=()A.{x|﹣1<x<1}B.{x|﹣2<x<1}C.{x|﹣2<x<2}D.{x|0<x<1} 2.(5分)“(kπ,0)(k∈Z)”是“函数f(x)=tan x的对称中心”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件3.(5分)已知函数f(x)满足2f(x)+f(﹣x)=3x2+2x+6,则()A.f(x)的最小值为2B.∃x∈R,<2C.f(x)的最大值为2D.∀x∈R,>24.(5分)函数f(x)=ln(x2﹣ax﹣3)在[2,+∞)单调递增,则实数a的取值范围是()A.a≤4B.a<4C.a≤D.a<5.(5分)已知函数f(x)=2sin(2x+),现将y=f(x)的图象向右平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)的图象,则g(x)在[0,]的值域为()A.[﹣1,2]B.[0,1]C.[0,2]D.[﹣1,] 6.(5分)若tan(α﹣)=,则sin2α的值为()A.﹣B.C.﹣D.7.(5分)已知a=e0.1,b=+1,c=,则()A.a>b>c B.c>b>a C.b>a>c D.a>c>b 8.(5分)已知函数f(x)=,g(x)=﹣x2+2x(其中e是自然对数的底数),若关于x的方程F(x)=g(f(x))﹣m恰有三个不同的零点x1,x2,x3,且x1<x2<x3,则3x1﹣x2+3x3的最大值为()A.1+ln B.1+ln C.3﹣ln3D.3+ln3二.选择题:(本题4小题,每小题'5分,共计20分,在每小题给出的选项中,有多项符合题目要求.全部选对得5分,有选错得0分,部分选对的得2分)(多选)9.(5分)设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|≤)的最小正周期为π,且过点(0,),则下列正确的为()A.f(x)在(0,)单调递减B.f(x)的一条对称轴为x=C.f(|x|)的最小正周期为πD.把函数f(x)的图像向左平移个长度单位得到函数g(x)的解析式为g(x)=cos (2x+)(多选)10.(5分)已知幂函数f(x)=x a图像经过点(3,),则下列命题正确的有()A.函数f(x)为增函数B.函数f(x)为偶函数C.若x>1,则f(x)>1D.若0<x1<x2,则>f()11.(5分)将函数的图象向左平移个单位长度,向下平移个单位长度后,得到h(x)的图象,若对于任意的实数,h(ωx)都单调递增,则正数ω的最大值为()A.3B.C.D.(多选)12.(5分)已知函数f(x)=x2lnx若<x1<x2,则下列结论正确的是()A.若x f(x1)<x f(x2)B.x1+<x2+C.<0D.当<x1<x2时,>三.填空题:((本题4小题,每小题5分,共计20分)13.(5分)求值=.14.(5分)已知函数f(x)=a x(a>0且a≠1)的反函数f(x)过点(4,2),设g(x)=f(x)+f﹣1(x),则不等式g(2x﹣1)﹣g(4﹣x)<0的解集是.15.(5分)在△ABC中,M,N分别是边AB,AC上的点,且=,=;AB 点O是线段MN上异于端点的一点,且满足λ+3+4=(λ≠0),则λ=.16.(5分)已知函数f(x)=sin|x|﹣cos x,若关于x的方程f(x)=m在(﹣,2π]上有三个不同的实根,则实数m的取值范围是.四.解答题:(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知{a n}是公差为1的等差数列,且a1,a2,a4成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求数列{}的前n项和T n.18.(12分)已知函数f(x)=•(+),其中向量=(sin x;﹣3cos x),=(sin x,﹣cos x),=(﹣cos x,sin x),x∈R.(Ⅰ)求f(x)的解析式及对称中心和单调减区间.(Ⅱ)不等式|f(x)﹣m|<3在x∈[,]上恒成立,求实数m的取值范围.19.(12分)已知f(x)=x2﹣x+a sin x.(1)若在x=π处的切线的斜率是π﹣2,求当λ≤f(x)在[0,+∞)恒成立时的λ的取值范围;(2)设g(x)=f(x)﹣x2+2x﹣ln(x+1),当x∈(0,π)时g(x)有唯一零点,求a的取值范围.20.(12分)某种机械设备随着使用年限的增加,它的使用功能逐渐减退,使用价值逐年减少,通常把它使用价值逐年减少的“量”换算成费用,称之为“失效费”.某种机械设备的使用年限x(单位年)与失效费y(单位:万元)的统计数据如表所示:使用年限x(单位:年)24568失效费y(单位:万元)34567(Ⅰ)根据上表数据,计算y与x的相关系数r,并说明y与x的线性相关性的强弱;(已知:0.75≤|r|≤1,则认为y与x线性相关性很强;0.3≤|r|<0.75,则认为y与x线性相关性一般;|r|<0.3,则认为y与x线性相关性较弱)(Ⅱ)求y关于x的线性回归方程,并估算该种机械设备使用10年的失效费.参考公式和数据:r==,==,=﹣.21.(12分)已知f(x)=.(1)求函数f(x)的值域;(2)若方程f(x)=在[0,]上的所有实根按从小到大的顺序分别记为x1,x2,⋯,x n.求x1+2x2+2x3+⋯+2x n﹣1+x n的值.22.(12分)已知函数f(x)=1+﹣ae x+,a≥.(1)当x+lnx>0时,求证f(x)<0;(2)求证:++⋯++>ln(n∈N*).2023届吉林省长春市东北师范大学附属中学高三第二次摸底考试数学试题参考答案与试题解析一、选择题:(本题8小题,每小题5分,共计40分,在每小题中给出四个选项中,只有一个选项是符合题目要求的)1.(5分)若集合A={x|﹣2<x<1},B={x|0<x<2},则集合A∩B=()A.{x|﹣1<x<1}B.{x|﹣2<x<1}C.{x|﹣2<x<2}D.{x|0<x<1}【分析】由于两个集合已知,故由交集的定义直接求出两个集合的交集即可.【解答】解:A∩B={x|﹣2<x<1}∩{x|0<x<2}={x|0<x<1}.故选D.【点评】常用数轴图、函数图、解析几何中的图或文恩图来解决集合的交、并、补运算.2.(5分)“(kπ,0)(k∈Z)”是“函数f(x)=tan x的对称中心”的()A.充要条件B.充分不必要条件C.必要不充分条件D.既不充分也不必要条件【分析】根据充分条件和必要条件的定义分别进行判断即可.【解答】解:函数f(x)=tan x的对称中心为(,0)(k∈Z),所以“(kπ,0)(k∈Z)”是“函数f(x)=tan x的对称中心”的充分不必要条件.故选:B.【点评】本题主要考查充分条件和必要条件的判断,根据充分条件和必要条件的定义是解决本题的关键.3.(5分)已知函数f(x)满足2f(x)+f(﹣x)=3x2+2x+6,则()A.f(x)的最小值为2B.∃x∈R,<2C.f(x)的最大值为2D.∀x∈R,>2【分析】先求得f(x),然后结合二次函数的性质确定正确选项.【解答】解:因为2f(x)+f(﹣x)=3x2+2x+6,(i),所以用﹣x代换x得:2f(﹣x)+f(x)=3x2﹣2x+6,(ii),(i)×2﹣(ii)得:3f(x)=3x2+6x+6,即f(x)=x2+2x+2=(x+1)2+1,从而f(x)只有最小值,没有最大值,且最小值为1,==2﹣<2,==2+>2,故选:D.【点评】本题主要考查根据函数解析式求最值,属于中档题.4.(5分)函数f(x)=ln(x2﹣ax﹣3)在[2,+∞)单调递增,则实数a的取值范围是()A.a≤4B.a<4C.a≤D.a<【分析】由复合函数的单调及对数函数的性质可得关于a的不等式组,即可求解.【解答】解:函数f(x)=ln(x2﹣ax﹣3)在[2,+∞)单调递增,由复合函数的性质可得y=x2﹣ax﹣3)在[2,+∞)单调递增,且函数值为正,所以,解得a<.故选:D.【点评】本题主要考查复合函数的单调性,考查运算求解能力,属于基础题.5.(5分)已知函数f(x)=2sin(2x+),现将y=f(x)的图象向右平移个单位,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)的图象,则g(x)在[0,]的值域为()A.[﹣1,2]B.[0,1]C.[0,2]D.[﹣1,]【分析】首先利用三角函数的关系式的平移变换和伸缩变换的应用求出函数的关系式为g (x)=2sin(4x﹣),进一步利用函数的定义域求出函数的值域.【解答】解:函数f(x)=2sin(2x+),现将y=f(x)的图象向右平移个单位,得到函数y=2sin(2x﹣)的图象,再将所得图象上各点的横坐标缩短为原来的倍,纵坐标不变,得到函数y=g(x)=2sin(4x﹣)的图象;由于,故,故,故g(x)∈[﹣1,2].故选:A.【点评】本题考查的知识要点:三角函数的关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和数学思维能力,属于基础题.6.(5分)若tan(α﹣)=,则sin2α的值为()A.﹣B.C.﹣D.【分析】利用二倍角公式,即可解出.【解答】解:sin2α=cos2()===﹣,故选:C.【点评】本题考查了三角函数的运算,学生的数学运算能力,属于基础题.7.(5分)已知a=e0.1,b=+1,c=,则()A.a>b>c B.c>b>a C.b>a>c D.a>c>b【分析】直接利用构造函数的应用和函数的导数与函数的单调性的关系判断a、b、c的大小关系.【解答】解:设函数f(x)=e x﹣x﹣1(x>0),则f′(x)=e x﹣1,当x=0时,f′(0)=0,故函数在(0,+∞)上单调递增,即f(x)>f(0)=0,即e x>x+1,故e0.2>1.2,进一步整理得,所以a>c;设g(x)=lnx﹣x+1,(x>0),所以,当x∈(0,1)时,g′(x)>0,故函数g(x)在(0,1)上单调递增,所以g(x)≤g(1)=0;所以lnx≤x﹣1,故,即,故,即,故b≤c,综上所述:a>c>b.故选:D.【点评】本题考查的知识要点:构造函数,函数的导数和函数的单调性的关系,主要考查学生的运算能力和数学思维能力,属于中档题.8.(5分)已知函数f(x)=,g(x)=﹣x2+2x(其中e是自然对数的底数),若关于x的方程F(x)=g(f(x))﹣m恰有三个不同的零点x1,x2,x3,且x1<x2<x3,则3x1﹣x2+3x3的最大值为()A.1+ln B.1+ln C.3﹣ln3D.3+ln3【分析】作出f(x)的图象,然后对F(x)=0中的f(x)换元,结合f(x)的图象以及题意,找到三个不同的零点x1,x2,x3之间的关系,最终将3x1﹣x2+3x3表示为x2的函数,利用导数求其最大值即可.【解答】解:作出函数f(x)的图象:令f(x)=t,则方程F(x)=g(f(x))﹣m恰有三个不同的零点,只需g(t)=﹣t2+2t ﹣m=0有两个实数根t1,t2,且t1∈(0,1],t2∈(1,+∞),t1+t2=2,故结合f(x)图象可知,=t1,3x3=t2,所以3x1=ln3x2,3x3=2﹣3x2,所以3x1﹣x2+3x3=ln3x2﹣x2+2﹣3x2=ln3x2﹣4x2+2,x2>1,令h(x)=ln3x﹣4x+2,x>1,则,显然该函数递减,令h′(x)=0,得x=是h(x)的极大值点,也是h(x)的最大值点,故h(x)max=h()=,即3x1﹣x2+3x3的最大值为.故选:A.【点评】本题考查函数的零点与方程的根、函数图象间的关系,同时考查了学生的逻辑推理能力,属于中档题.二.选择题:(本题4小题,每小题'5分,共计20分,在每小题给出的选项中,有多项符合题目要求.全部选对得50分,部分选对的得2分)(多选)9.(5分)设函数f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,|φ|≤)的最小正周期为π,且过点(0,),则下列正确的为()A.f(x)在(0,)单调递减B.f(x)的一条对称轴为x=C.f(|x|)的最小正周期为πD.把函数f(x)的图像向左平移个长度单位得到函数g(x)的解析式为g(x)=cos (2x+)【分析】首先利用关系式的变换和函数的最小正周期以及函数所经过的定点求出函数的解析式,进一步利用函数的性质和函数的图像的平移变换的应用判断A、B、C、D的结论.【解答】解:函数f(x)=sin(ωx+φ)+cos(ωx+φ)=,由于函数的最小正周期为π,所以ω=2,故f(x)=;由于函数的图象经过点(0,),且|φ|≤,所以:φ=;故f(x)==.对于A:函数在时,2x∈(0,π),故函数在该区间上单调递减,故A正确;对于B:当x=时,f()=0,故B错误;对于C:f(|x|)==cos2x,故函数的最小正周期为π,故C正确;对于D:函数的图像向左平移个长度单位得到函数g(x)的解析式为g(x)=cos (2x+),故D错误.故选:AC.【点评】本题考查的知识要点:函数的解析式的确定,正弦型函数的性质的应用,函数的图象的平移变换,主要考查学生的运算能力和数学思维能力,属于基础题.(多选)10.(5分)已知幂函数f(x)=x a图像经过点(3,),则下列命题正确的有()A.函数f(x)为增函数B.函数f(x)为偶函数C.若x>1,则f(x)>1D.若0<x1<x2,则>f()【分析】由已知求出幂函数的解析式,即可判断出函数的单调性以及奇偶性,由此即可判断选项A,B,C,画出图象,进而判断出D的正误.【解答】解:∵幂函数f(x)=x a图像经过点(3,),∴=3a,解得a=﹣2,∴f(x)=x﹣2=,x∈(﹣∞,0)∪(0,+∞),∴函数f(x)在(﹣∞,0)上单调递增,在(0,+∞)上单调递减,为偶函数,x<1时,f(x)<f(1)=1.可知:A不正确,B正确,C正确.画出图象,可知:0<x1<x2,则>f(),因此D正确.故选:BCD.【点评】本题考查了幂函数的图象与性质,考查了推理能力与计算能力,属于基础题.11.(5分)将函数的图象向左平移个单位长度,向下平移个单位长度后,得到h(x)的图象,若对于任意的实数,h(ωx)都单调递增,则正数ω的最大值为()A.3B.C.D.【分析】首先利用三角函数关系式的变换,平移变换和伸缩变换的应用求出函数h(x)的关系式进一步利用整体思想的应用和余弦函数的性质求出结果.【解答】解:函数的图象向左平移个单位长度,得到y=+,向下平移个单位长度后,得到h(x)=的图象,所以h(ωx)=ωx+),令2kπ﹣π≤4ωx+(k∈Z),解得(k∈Z),由于对于任意的实数,h(ωx)都单调递增,所以:(k∈Z),所以,解得,当k=1时,ω.故ω的最大值为.故选:B.【点评】本题考查的知识要点:三角函数关系式的恒等变换,正弦型函数的性质的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.(多选)12.(5分)已知函数f(x)=x2lnx若<x1<x2,则下列结论正确的是()A.若x f(x1)<x f(x2)B.x1+<x2+C.<0D.当<x1<x2时,>【分析】对于A:令F(x)===lnx,求导分析单调性,即可判断A是否正确;对于B:令G(x)=x+=x+xlnx,求导分析单调性,即可判断B是否正确;对于C:求导分析f(x)的单调性,即可判断C是否正确;对于D:由上可知x1f(x1)+x1f(x2)﹣2x2f(x1)>x1f(x1)+x1f(x2)﹣x2f(x1)﹣x2f (x2)=(x1﹣x2)(f(x1)+f(x2)),即可判断D是否正确.【解答】解:对于A:令F(x)===lnx,所以F(x)在(0,+∞)上单调递增,因为<x1<x2,所以F(x1)<F(x2),所以<,所以x22f(x1)<x12f(x2),故A正确;对于B:令G(x)=x+=x+xlnx,G′(x)=1+x•+lnx=2+lnx,令G′(x)=0,得x=,所以在(0,)上,G′(x)<0,G(x)单调递减,在(,+∞)上,G′(x)>0,G(x)单调递增,因为<x1<x2,所以G(x1)<G(x2),所以x1+<x2+,故B正确;对于C:f′(x)=2xlnx+x2•=2xlnx+x=x(2lnx+1),令f′(x)=0,得x=,所以在(0,)上,f′(x)<0,f(x)单调递减,在(,+∞)上,f′(x)>0,f(x)单调递增,因为<x1<x2,所以f(x1)<f(x2),所以>0,故C正确;对于D:x1f(x1)+x1f(x2)﹣2x2f(x1)=x1f(x1)+x1f(x2)﹣x2f(x1)﹣x2f(x1)>x1f(x1)+x1f(x2)﹣x2f(x1)﹣x2f(x2)=(x1﹣x2)f(x1)+(x1﹣x2)f(x2)=(x1﹣x2)(f(x1)+f(x2)),由上可知当当<x1<x2时,﹣<f()<f(x1)<f(x2),所以f(x1)+f(x2)符号无法确定,故D错误,故选:ABC.【点评】本题考查导数的综合应用,解题中需要理清思路,属于中档题.三.填空题:((本题4小题,每小题5分,共计20分)13.(5分)求值=.【分析】将正切化成正弦与余弦的比,再利用二倍角公式,即可解出.【解答】解:原式=====,故答案为:.【点评】本题考查了三角函数的运算,学生的数学运算能力,属于基础题.14.(5分)已知函数f(x)=a x(a>0且a≠1)的反函数f(x)过点(4,2),设g(x)=f(x)+f﹣1(x),则不等式g(2x﹣1)﹣g(4﹣x)<0的解集是[].【分析】根据反函数的定义得出f(x)的图象过点(2,4),由此即可求出a的值,再根据反函数的定义即可求出g(x)的解析式,由此得出函数的单调性,然后根据单调性建立不等式组,由此即可求解.【解答】解:因为函数f(x)=a x(a>0且a≠1)的反函数f(x)过点(4,2),所以函数f(x)的图象过点(2,4),即a2=4,解得a=2或﹣2(舍去),所以f(x)=2x,则f﹣1(x)=log2x,所以g(x)=2x+log2x,且函数g(x)在(0,+∞)上单调递增,所以不等式g(2x﹣1)﹣g(4﹣x)<0转化为:,解得,所以不等式的解集为[],故答案为:[].【点评】本题考查了反函数的定义的应用,涉及到求解函数不等式,属于中档题.15.(5分)在△ABC 中,M ,N 分别是边AB ,AC 上的点,且=,=;AB点O 是线段MN 上异于端点的一点,且满足λ+3+4=(λ≠0),则λ=8.【分析】将等式中的向量都用,,来表示,最后利用M ,O ,N 三点共线列出λ满足的方程求解.【解答】解:M ,N 分别是边AB ,AC 上的点,且=,=,=﹣=﹣,=﹣=3﹣,代入λ+3+4=(λ≠0),得λ+3(3﹣)+4(﹣)=,整理得=+,因为M ,O ,N 三点共线,故+=1,解得λ=8.故答案为:8.【点评】本题考查平面向量的线性运算以及三点共线的条件,属中档题.16.(5分)已知函数f (x )=sin|x |﹣cos x ,若关于x 的方程f (x )=m 在(﹣,2π]上有三个不同的实根,则实数m 的取值范围是[﹣,0].【分析】易知该函数是偶函数,然后画出x >0时,f (x )的图象,再结合对称性得到整个函数图象,将问题转化为y =m 与y =f (x )的交点问题求解.【解答】解:f (﹣x )=sin|﹣x |﹣cos (﹣x )=sin|x |cos x =f (x ),故函数f (x )是偶函数,当x≥0时,=,画出f(x)的图象如图:当y=m与y=f(x)产生三个不同交点时,f(x)=m在(﹣,2π]上有三个不同实根,故只需即可.故答案为:[﹣,0].【点评】本题考查了函数的零点与函数图象之间的关系,属于中档题.四.解答题:(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知{a n}是公差为1的等差数列,且a1,a2,a4成等比数列.(Ⅰ)求{a n}的通项公式;(Ⅱ)求数列{}的前n项和T n.【分析】(Ⅰ)利用等比中项和等差数列的通项公式,即可求解;(Ⅱ)利用裂项相消求和即可求解.【解答】解:(Ⅰ)因为{a n}是公差为1的等差数列,且a1,a2,a4成等比数列,所以,即,解得a1=1,所以{a n}的通项公式为a n=n;(Ⅱ)∵==﹣,∴T n=(1﹣)+(﹣)+(﹣)+…+(﹣)=1﹣=.【点评】本题考查了等差数列的通项公式和裂项相消求和,属于中档题.18.(12分)已知函数f(x)=•(+),其中向量=(sin x;﹣3cos x),=(sin x,﹣cos x),=(﹣cos x,sin x),x∈R.(Ⅰ)求f(x)的解析式及对称中心和单调减区间.(Ⅱ)不等式|f(x)﹣m|<3在x∈[,]上恒成立,求实数m的取值范围.【分析】(Ⅰ)先根据向量的数量积的坐标运算,三角函数公式化简f(x)的解析式,再根据三角函数的性质即可求解;(Ⅱ)先求出f(x)在[,]上的值域,再将恒成立问题转化为最值,从而建立不等式即可求解.【解答】解:(Ⅰ)∵f(x)=•(+)=(sin x,﹣cos x)•(sin x﹣cos x,sin x﹣3cos x)=sin2x﹣sin x cos x﹣sin x cos x+3cos2x=1﹣2sin x cos x+2cos2x=cos2x﹣sin2x+2=cos(2x+)+2,令2x+=,可得x=,k∈Z,∴f(x)的对称中心为(,2),k∈Z,令2kπ≤2x+≤2kπ+π,解得,k∈Z,∴f(x)的单调减区间为[kπ﹣,kπ+],k∈Z;(Ⅱ)∵x∈[,],,∴cos(2x+)∈[﹣1,0],∴cos(2x+)∈[﹣,0],∴f(x)∈[2﹣,2],又根据题意可得:∀x∈[,],﹣3<f(x)﹣m<3,∴∀x∈[,],m﹣3<f(x)<m+3,∴,解得﹣,∴实数m的取值范围为(﹣1,).【点评】本题考查向量的数量积的坐标运算,三角函数公式,三角函数的性质,恒成立问题,属中档题.19.(12分)已知f(x)=x2﹣x+a sin x.(1)若在x=π处的切线的斜率是π﹣2,求当λ≤f(x)在[0,+∞)恒成立时的λ的取值范围;(2)设g(x)=f(x)﹣x2+2x﹣ln(x+1),当x∈(0,π)时g(x)有唯一零点,求a的取值范围.=f′(π)=π﹣1﹣a,解得a,分析【分析】(1)求导得f′(x)=x﹣1+a cos x,则k切f(x)的单调性,进而只需λ≤f(x)min,即可得出答案.(2)根据题意可得g(x)=x+a sin x﹣ln(x+1),求导得g′(x)=1+a cos x﹣,分两种情况:当a≥0时,当a<g(x)的单调性,最值,即可得出答案.【解答】解:(1)f′(x)=x﹣1+a cos x,=f′(π)=π﹣1+a cosπ=π﹣1﹣a,所以k切因为在x=π处的切线的斜率是π﹣2,所以π﹣1﹣a=π﹣2,所以a=1,所以f(x)=x2﹣x+sin x,f′(x)=x﹣1+cos x,令μ(x)=x﹣1+cos x,μ′(x)=1﹣sin x≥0,所以μ(x)在(0,+∞)上单调递增,当x>0时,μ(x)>μ(0)=0,所以f′(x)>0,所以f(x)在(0,+∞)上的单调递增,所以f(x)>f(0)=0,若当λ≤f(x)在[0,+∞)恒成立,则λ≤f(x)min,所以λ≤0,所以λ的取值范围为(﹣∞,0].(2)g(x)=f(x)﹣x2+2x﹣ln(x+1)=x2﹣x+a sin x﹣x2+2x﹣ln(x+1)=x+a sin x ﹣ln(x+1),g′(x)=1+a cos x﹣,当a≥0时,由x∈(0,π)得g(x)≥x﹣ln(x+1),令h(x)=x﹣ln(x+1),h′(x)=1﹣=,所以当x∈(0,π)时,h′(x)>0,h(x)单调递增,所以h(x)>h(0)=0,所以g(x)>0在(0,π)上恒成立,所以g(x)在(0,π)上无零点,不满足题意,当a<0时,g′(x)在(0,π)上单调递增,g′(0)<0,g′(π)=1﹣a﹣>0,所以存在x0∈(0,π)使得g′(x0)=0,所以在(0,x0)时,g′(x)<0,g(x)单调递减,在(x0,π)时,g′(x)>0,g(x)单调递增,又g(0)=0,g(π)=π﹣ln(π+1)>0,所以存在唯一的t∈(x0,π),使得g(t)=0,满足题意,综上所述,a的取值范围为(﹣∞,0).【点评】本题考查导数的综合应用,解题中需要理清思路,属于中档题.20.(12分)某种机械设备随着使用年限的增加,它的使用功能逐渐减退,使用价值逐年减少,通常把它使用价值逐年减少的“量”换算成费用,称之为“失效费”.某种机械设备的使用年限x(单位年)与失效费y(单位:万元)的统计数据如表所示:使用年限x(单位:年)24568失效费y(单位:万元)34567(Ⅰ)根据上表数据,计算y与x的相关系数r,并说明y与x的线性相关性的强弱;(已知:0.75≤|r|≤1,则认为y与x线性相关性很强;0.3≤|r|<0.75,则认为y与x线性相关性一般;|r|<0.3,则认为y与x线性相关性较弱)(Ⅱ)求y关于x的线性回归方程,并估算该种机械设备使用10年的失效费.参考公式和数据:r==,==,=﹣.【分析】(Ⅰ)根据相关系数公式,分别求出变量的均值及和值,代入公式求得相关系数,并判断相关性强弱即可;(Ⅱ)根据第一问求得的值,结合线性回归方程求解公式求得参数,写出回归方程,并预测10年的失效费即可.【解答】解:(Ⅰ)由表知,,,,,故0.75<r<1,认为y与x线性相关性很强;(Ⅱ)由(Ⅰ)知,,又,故y关于x的线性回归方程为y=0.7x+1.5,当x=10时,y=0.7×10+1.5=8.5,即10年的失效费用为8.5万元.【点评】本题利用相关性计算公式及回归方程参数求解公式求解参数及估算预测值,属于中档题.21.(12分)已知f(x)=.(1)求函数f(x)的值域;(2)若方程f(x)=在[0,]上的所有实根按从小到大的顺序分别记为x1,x2,⋯,x n.求x1+2x2+2x3+⋯+2x n﹣1+x n的值.【分析】(1)函数的解析式化简,换元,由均值不等式的性质可得函数的最小值;(2)利用sin(x+)对称性,周期性计算可求解.【解答】解:(1)f(x)===,设t=sin x+cos x,x∈R,t=sin x+),t∈[﹣,],则g(t)===(t+2)+﹣4≥2﹣4=2,当且仅当t+2=,即t=1时等号成立,∴g(t)的最小值为2,又g(﹣)==7+,g()==7﹣,故g(t)的值域是[2,7+],即f(x)的值域是[2,7+];(2)由(1)得g(t)=,t∈[﹣,],则f(x)=,即=,化简得3t2﹣8t﹣1=0,解得t=(4﹣)或t=(4+)(不合题意,舍去);∴sin x+cos x=(4﹣),得sin(x+)=(4﹣),解得sin(x+)=,∵x∈[0,],∴x+∈[,10π]由x+=kπ+,得x=kπ+(k∈Z),得函数y=sin(x+)图象在[0,]区间且确保sin(x+)=成立,对称轴为x=kπ+,(k∈N*,k≤10),sin(x+)=在区间[0,]内有10个根x1,x2⋯,x10,数列{x i+x i+1}(i∈N*,i≤10)构成以x1+x2=为首项,2π为公差的等差数列,x1+2x2+2x3+⋯+2x9+x10=(x i+x i+1)=×10+×9×8•2π=97π.【点评】本题考查利用换元法求函数的值域,合理利用对应函数的对称性是解决问题的关键,考查方程的解,属于难题.22.(12分)已知函数f(x)=1+﹣ae x+,a≥.(1)当x+lnx>0时,求证f(x)<0;(2)求证:++⋯++>ln(n∈N*).【分析】(1)问题转化为证明恒成立,令t=xe x,进一步转化为当t>1时,,设,再利用导数即可得证;(2)由(1)可得当时,恒成立,再令,由此可得,再通过累加即可得证.【解答】证明:(1)函数的定义域为(0,+∞),要证f(x)<0,即证x2+xlnx﹣ax2e x+ae﹣x<0,即证,即证,令t=xe x,由于x+lnx=ln(xe x)>0,则t=xe x>1,即证当t>1时,,设,则,又,则方程﹣at2+t﹣a=0中Δ=1﹣4a2≤0,则h′(t)≤0在[1,+∞)上恒成立,所以h(t)在[1,+∞)上单调递减,则,即,即得证;(2)由(1)可知,当时,恒成立,令,则,所以,则,,……,以上各式相加可得,,所以,又,则,即得证.【点评】本题考查利用导数研究函数的单调性,考查不等式的证明,考查逻辑推理能力以及运算求解能力,属于较难题目.。
吉林省长春市东北师范大学附属中学2023-2024学年高三上学期第二次模拟考试数学试题
一、单选题二、多选题1. 已知点的坐标为,将向量绕原点逆时针方向旋转到的位置,则点坐标为( )A.B.C.D.2. 已知复数,则( )A.B .1C.D .3. 已知、是双曲线:的左、右焦点,点是双曲线上的任意一点(不是顶点),过作角平分线的垂线,垂足为,是坐标原点.若,则双曲线的渐近线方程为( )A.B.C.D.4. 若直线与圆相交,且两个交点位于坐标平面的同一象限,则k 的取值范围是( )A.B.C.D.5.设函数,则对任意实数a 、b,是的A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件6. 设全集,若集合,,则( )A.B.C.D.7. 设集合,若,,则( )A.B.C.D.8. 已如函数,若,且,则的取值范围是( )A.B.C.D.9. 已知函数的部分图象如图所示,则()A.函数的最小正周期为πB .点是曲线的对称中心C .函数在区间内单调递增D .函数在区间内有两个最值点10. (多选)2020年12月26日太原地铁2号线开通,在一定程度上缓解了市内交通的拥堵状况,为了了解市民对地铁2号线开通的关注情况,某调查机构在地铁开通后两天抽取了部分乘坐地铁的市民作为样本,分析其年龄和性别结构.并制作出如下等高堆积条形图:吉林省长春市东北师范大学附属中学2023-2024学年高三上学期第二次模拟考试数学试题三、填空题根据图中信息,下列结论正确的是( )A .样本中男性比女性更关注地铁2号线开通B .样本中多数女性是35岁及以上C .样本中35岁以下的男性人数比35岁及以上的女性人数多D .样本中35岁及以上的人对地铁2号线的开通关注度更高11. 如图,棱长为2的正方体中,为棱的中点,为正方形内一个动点(包括边界),且平面,则下列说法正确的有()A .动点轨迹的长度为B .三棱锥体积的最小值为C .与不可能垂直D .当三棱锥的体积最大时,其外接球的表面积为12. 已知函数在区间上单调,且满足.有下列结论:①;②若,则函数的最小正周期为;③关于的方程在区间上最多有个不相等的实数解;④若函数在区间上恰有个零点,则的取值范围为.其中所有正确结论的编号为________.13.对于任意的,且,均有定直线与圆相切,则直线的方程为______.14. “灯笼”是中国传统农业时代的文化产物,兼具生活功能与艺术特色.如图,现有悬挂着的6盏不同的花灯需要从下往上依次取下,每次取1盏,则不同取法总数为___________.四、填空题五、填空题六、解答题七、解答题八、解答题九、解答题15. 已知,则______.______.16. 直线与轴交于点,交圆于,两点,过点作圆的切线,轴上方的切点为,则__________;的面积为__________.17. 用表示不超过的最大整数,已知数列满足:,,.若,,则________;若,则________.18. 某校高中“数学建模”实践小组欲测量某景区位于“观光湖”内两处景点,之间的距离,如图,处为码头入口,处为码头,为通往码头的栈道,且,在B 处测得,在处测得(均处于同一测量的水平面内)(1)求两处景点之间的距离;(2)栈道所在直线与两处景点的连线是否垂直?请说明理由.19. 如图,正方体中,直线平面,,.(1)设,,试在所给图中作出直线,使得,并说明理由;(2)设点A 与(1)中所作直线确定平面.①求平面与平面ABCD 的夹角的余弦值;②请在备用图中作出平面截正方体所得的截面,并写出作法.20.如图,矩形和梯形所在平面互相垂直,,,,,,.(1)求证:平面;(2)当的长为何值时,二面角的大小为.21. 某生鲜批发店每天从蔬菜生产基地以5元/千克购进某种绿色蔬菜,售价8元/千克,若每天下午4点以前所购进的绿色蔬菜没有售完,则对十、解答题未售出的绿色蔬菜降价处理,以3元/千克出售.根据经验,降价后能够把剩余蔬菜全部处理完毕,且当天不再进货.该生鲜批发店整理了过往30天(每天下午4点以前)这种绿色蔬菜的日销售量(单位:千克)得到如下统计数据(视频率为概率)(注:x ,y ∈N *)每天下午4点前销售量350400450500550天数39xy2(1)求在未来3天中,至少有1天下午4点前的销售量不少于450千克的概率.(2)若该生鲜批发店以当天利润期望值为决策依据,当购进450千克比购进500千克的利润期望值大时,求x 的取值范围.22. 近年来,国际环境和局势日趋严峻,高精尖科技围堵和竞争更加激烈,国家号召各类高科技企业汇聚科研力量,加强科技创新,大力增加研发资金,以突破我国在各个领域的“卡脖子”关键技术.某市为了解本市高科技企业的科研投入和产出方面的情况,抽查了本市8家半导体企业2018年至2022年的研发投资额x (单位:百亿元)和因此投入而产生的收入附加额y (单位:百亿元),对研发投资额和收入附加额进行整理,得到相关数据,并发现投资额x 和收入附加额y 成线性相关.投资额(百亿元)234568911收入附加额(百亿元)3.64.14.85.46.27.57.99.1(1)求收入的附加额y 与研发投资额x 的线性回归方程(保留三位小数);(2)现从这8家企业且投资额不少于5百亿元的企业中,任意抽取3家企业,求抽取的3家企业中恰有1家企业的收入附加额大于投资额的概率.参考数据:.附:在线性回归方程,.。
2018年高考理科数学模拟试卷(共三套)(含答案)
2018年高考理科数学模拟试卷(一)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知集合S={1,2},设S的真子集有m个,则m=()A.4 B.3 C.2 D.12.已知i为虚数单位,则的共轭复数为()A.﹣+i B. +i C.﹣﹣i D.﹣i3.已知、是平面向量,如果||=3,||=4,|+|=2,那么|﹣|=()A. B.7 C.5 D.4.在(x﹣)10的二项展开式中,x4的系数等于()A.﹣120 B.﹣60 C.60 D.1205.已知a,b,c,d都是常数,a>b,c>d,若f(x)=2017﹣(x﹣a)(x﹣b)的零点为c,d,则下列不等式正确的是()A.a>c>b>d B.a>b>c>d C.c>d>a>b D.c>a>b>d6.公元263年左右,我国古代数学家刘徽用圆内接正多边形的面积去逼近圆的面积求圆周率π,他从圆内接正六边形算起,令边数一倍一倍地增加,即12,24,48,…,192,…,逐个算出正六边形,正十二边形,正二十四边形,…,正一百九十二边形,…的面积,这些数值逐步地逼近圆面积,刘徽算到了正一百九十二边形,这时候π的近似值是3.141024,刘徽称这个方法为“割圆术”,并且把“割圆术”的特点概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”.刘徽这种想法的可贵之处在于用已知的、可求的来逼近未知的、要求的,用有限来逼近无穷,这种思想及其重要,对后世产生了巨大影响,如图是利用刘徽的“割圆术”思想设计的一个程序框图,若运行改程序(参考数据:≈1.732,sin15°≈0.2588,sin7.5°≈0.1305),则输出n的值为()A.48 B.36 C.30 D.247.在平面区域内随机取一点(a,b),则函数f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数的概率为()A. B.C.D.8.已知△ABC的内角A、B、C的对边分别为a、b、c.若a=bcosC+csinB,且△ABC的面积为1+.则b的最小值为()A.2 B.3 C.D.9.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A.12 B.18 C.24 D.3010.已知常数ω>0,f(x)=﹣1+2sinωxcosωx+2cos2ωx图象的对称中心得到对称轴的距离的最小值为,若f(x0)=,≤x0≤,则cos2x0=()A.B.C.D.11.已知三棱锥P﹣ABC的所有顶点都在表面积为16π的球O的球面上,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,设二面角P﹣AB﹣C的大小为θ,则sinθ=()A. B.C.D.12.抛物线M的顶点是坐标原点O,抛物线M的焦点F在x轴正半轴上,抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,设A是抛物线M上的一点,若•=﹣4,则点A的坐标是()A.(﹣1,2)或(﹣1,﹣2)B.(1,2)或(1,﹣2)C.(1,2) D.(1,﹣2)二、填空题(共4小题,每小题5分,满分20分)13.某校1000名高三学生参加了一次数学考试,这次考试考生的分数服从正态分布N(90,σ2),若分数在(70,110]内的概率为0.7,估计这次考试分数不超过70分的人数为人.14.过双曲线﹣=1(a>0,b>0)的右焦点且垂直于x轴的直线与双曲线交于A,B两点,与双曲线的渐近线交于C,D两点,若|AB|≥|CD|,则双曲线离心率的取值范围为.15.计算=(用数字作答)16.已知f(x)=,若f (x﹣1)<f(2x+1),则x的取值范围为.三、解答题(共5小题,满分60分)17.设数列{a n}的前n项和为S n,a1=1,当n≥2时,a n=2a n S n﹣2S n2.(1)求数列{a n}的通项公式;(2)是否存在正数k,使(1+S1)(1+S2)…(1+S n)≥k对一切正整数n都成立?若存在,求k的取值范围,若不存在,请说明理由.18.云南省20XX年高中数学学业水平考试的原始成绩采用百分制,发布成绩使用等级制,各登记划分标准为:85分及以上,记为A等,分数在[70,85)内,记为B等,分数在[60,70)内,记为C等,60分以下,记为D等,同时认定等级分别为A,B,C都为合格,等级为D为不合格.已知甲、乙两所学校学生的原始成绩均分布在[50,100]内,为了比较两校学生的成绩,分别抽取50名学生的原始成绩作为样本进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]分别作出甲校如图1所示样本频率分布直方图,乙校如图2所示样本中等级为C、D的所有数据茎叶图.(1)求图中x的值,并根据样本数据比较甲乙两校的合格率;(2)在选取的样本中,从甲、乙两校C等级的学生中随机抽取3名学生进行调研,用X表示所抽取的3名学生中甲校的学生人数,求随机变量X的分布列和数学期望.19.如图,在四棱锥S﹣ABCD中,底面ABCD是矩形,平面ABCD⊥平面SBC,SB=SC,M是BC的中点,AB=1,BC=2.(1)求证:AM⊥SD;(2)若二面角B﹣SA﹣M的正弦值为,求四棱锥S﹣ABCD的体积.20.已知椭圆E的中心在原点,焦点F1、F2在y轴上,离心率等于,P 是椭圆E上的点,以线段PF1为直径的圆经过F2,且9•=1.(1)求椭圆E的方程;(2)做直线l与椭圆E交于两个不同的点M、N,如果线段MN被直线2x+1=0平分,求l的倾斜角的取值范围.21.已知e是自然对数的底数,实数a是常数,函数f(x)=e x﹣ax﹣1的定义域为(0,+∞).(1)设a=e,求函数f(x)在切点(1,f(1))处的切线方程;(2)判断函数f(x)的单调性;(3)设g(x)=ln(e x+x3﹣1)﹣lnx,若∀x>0,f(g(x))<f(x),求a 的取值范围.[选修4-4:坐标系与参数方程选讲]22.已知直线L的参数方程为(t为参数),以原点O为极点,以x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为ρ=.(Ⅰ)直接写出直线L的极坐标方程和曲线C的普通方程;(Ⅱ)过曲线C上任意一点P作与L夹角为的直线l,设直线l与直线L的交点为A,求|PA|的最大值.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|+|x﹣2|的定义域为实数集R.(Ⅰ)当a=5时,解关于x的不等式f(x)>9;(Ⅱ)设关于x的不等式f(x)≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3},如果A∪B=A,求实数a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵集合S={1,2},∴S的真子集的个数为:22﹣1=3.故选:B.2.解:∵=,∴的共轭复数为.故选:C.3.解:根据条件:==4;∴;∴=9﹣(﹣21)+16=46;∴.故选:A.==(﹣1)r x10﹣2r,4.解:通项公式T r+1令10﹣2r=4,解得r=3.∴x4的系数等于﹣=﹣120.故选:A5.解:由题意设g(x)=(x﹣a)(x﹣b),则f(x)=2017﹣g(x),所以g(x)=0的两个根是a、b,由题意知:f(x)=0 的两根c,d,也就是g(x)=2017 的两根,画出g(x)(开口向上)以及直线y=2017的大致图象,则与f(x)交点横坐标就是c,d,f(x)与x轴交点就是a,b,又a>b,c>d,则c,d在a,b外,由图得,c>a>b>d,故选D.6.解:模拟执行程序,可得:n=6,S=3sin60°=,不满足条件S≥3.10,n=12,S=6×sin30°=3,不满足条件S≥3.10,n=24,S=12×sin15°=12×0.2588=3.1056,满足条件S≥3.10,退出循环,输出n的值为24.故选:D.7.解:作出不等式组对应的平面区域如图:对应的图形为△OAB,其中对应面积为S=×4×4=8,若f(x)=ax2﹣4bx+1在区间[1,+∞)上是增函数,则满足a>0且对称轴x=﹣≤1,即,对应的平面区域为△OBC,由,解得,∴对应的面积为S1=××4=,∴根据几何概型的概率公式可知所求的概率为=,故选:B.8.解:由正弦定理得到:sinA=sinCsinB+sinBcosC,∵在△ABC中,sinA=sin[π﹣(B+C)]=sin(B+C),∴sin(B+C)=sinBcosC+cosBsinC=sinCsinB+sinBcosC,∴cosBsinC=sinCsinB,∵C∈(0,π),sinC≠0,∴cosB=sinB,即tanB=1,∵B∈(0,π),∴B=,=acsinB=ac=1+,∵S△ABC∴ac=4+2,由余弦定理得到:b2=a2+c2﹣2accosB,即b2=a2+c2﹣ac≥2ac﹣ac=4,当且仅当a=c时取“=”,∴b的最小值为2.故选:A.9.解:由已知中的三视图可得该几何体是一个以俯视图为底面的三棱锥,切去一个三棱锥所得的组合体,其底面面积S=×3×4=6,棱柱的高为:5,棱锥的高为3,故组合体的体积V=6×5﹣×6×3=24,故选:C10.解:由f(x)=﹣1+2sinωxcosωx+2cos2ωx,化简可得:f(x)=sin2ωx+cos2ωx=2sin(2ωx+)∵对称中心得到对称轴的距离的最小值为,∴T=π.由,可得:ω=1.f(x0)=,即2sin(2x0+)=∵≤x0≤,∴≤2x0+≤∴sin(2x0+)=>0∴cos(2x0+)=.那么:cos2x0=cos(2x0+﹣)=cos(2x0+)cos+sin(2x0+)sin=故选D11.解:如图所示:由已知得球的半径为2,AC为球O的直径,当三棱锥P﹣ABC的体积最大时,△ABC为等腰直角三角形,P在面ABC上的射影为圆心O,过圆心O作OD⊥AB于D,连结PD,则∠PDO为二面角P﹣AB﹣C的平面角,在△ABC△中,PO=2,OD=BC=,∴,sinθ=.故选:C12.解:x2+y2﹣6x+4y﹣3=0,可化为(x﹣3)2+(y+2)2=16,圆心坐标为(3,﹣2),半径为4,∵抛物线M的准线与曲线x2+y2﹣6x+4y﹣3=0只有一个公共点,∴3+=4,∴p=2.∴F(1,0),设A(,y0)则=(,y0),=(1﹣,﹣y0),由•=﹣4,∴y0=±2,∴A(1,±2)故选B.二、填空题(共4小题,每小题5分,满分20分)13.解:由X服从正态分布N(90,σ2)(σ>0),且P(70≤X≤110)=0.35,得P(X≤70)=(1﹣0.35)=.∴估计这次考试分数不超过70分的人数为1000×=325.故答案为:325.14.解:设双曲线﹣=1(a>0,b>0)的右焦点为(c,0),当x=c时代入双曲线﹣=1得y=±,则A(c,),B(c,﹣),则AB=,将x=c代入y=±x得y=±,则C(c,),D(c,﹣),则|CD|=,∵|AB|≥|CD|,∴≥•,即b≥c,则b2=c2﹣a2≥c2,即c2≥a2,则e2=≥,则e≥.故答案为:[,+∞).15.解:由===.故答案为:.16.解:∵已知f(x)=,∴满足f(﹣x)=f(x),且f(0)=0,故f(x)为偶函数,f(x)在[0,+∞)上单调递增.若f(x﹣1)<f(2x+1),则|x﹣1|<|2x+1|,∴(x﹣1)2<(2x+1)2,即x2+2x>0,∴x>0,或x<﹣2,故答案为:{x|x>0,或x<﹣2}.三、解答题(共5小题,满分60分)17.解:(1)∵当n≥2时,a n=2a n S n﹣2S n2,∴a n=,n≥2,∴(S n﹣S n﹣1)(2S n﹣1)=2S n2,∴S n﹣S n﹣1=2S n S n﹣1,∴﹣2,n≥2,∴数列{}是以=1为首项,以2为公差的等差数列,∴=1+2(n﹣1)=2n﹣1,∴S n=,∴n≥2时,a n=S n﹣S n﹣1=﹣=﹣,∵a1=S1=1,∴a n=,(2)设f(n)=,则==>1,∴f(n)在n∈N*上递增,要使f(n)≥k恒成立,只需要f(n)min≥k,∵f(n)min=f(1)=,∴0<k≤18.解:(1)由频率分布直方图可得:(x+0.012+0.056+0.018+0.010)×10=1,解得x=0.004.甲校的合格率P1=(1﹣0.004)×10=0.96=96%,乙校的合格率P2==96%.可得:甲乙两校的合格率相同,都为96%.(2)甲乙两校的C等级的学生数分别为:0.012×10×50=6,4人.X=0,1,2,3.则P(X=k)=,P(X=0)==,P(X=1)==,P(X=2)==,P(X=3)==.∴X的分布列为:X0123PE(X)=0+1×+2×+3×=.19.证明:(1)∵SB=SC,M是BC的中点,∴SM⊥BC,∵平面ABCD⊥平面SBC,平面ABCD∩平面SBC=BC,∴SM⊥平面ABCD,∵AM⊂平面ABCD,∴SM⊥AM,∵底面ABCD是矩形,M是BC的中点,AB=1,BC=2,∴AM2=BM2==,AD=2,∴AM2+BM2=AD2,∴AM⊥DM,∵SM∩DM=M,∴AM⊥平面DMS,∵SD⊂平面DMS,∴AM⊥SD.解:(2)∵SM⊥平面ABCD,∴以M为原点,MC为x轴,MS为y轴,过M作平面BCS的垂线为z轴,建立空间直角坐标系,设SM=t,则M(0,0,0),B(﹣1,0,0),S(0,t,0),A(﹣1,0,1),=(0,0,1),=(1,t,0),=(﹣1,0,1),=(0,t,0),设平面ABS的法向量=(x,y,z),则,取x=1,得=(1,﹣,0),设平面MAS的法向量=(a,b,c),则,取a=1,得=(1,0,1),设二面角B﹣SA﹣M的平面角为θ,∵二面角B﹣SA﹣M的正弦值为,∴sinθ=,cosθ==,∴cosθ===,解得t=,∵SM⊥平面ABCD,SM=,∴四棱锥S﹣ABCD的体积:V S﹣=== ABCD.20.解:(1)由题意可知:设题意的方程:(a>b>0),e==,则c=a,设丨PF1丨=m,丨PF2丨=n,则m+n=2a,线段PF1为直径的圆经过F2,则PF2⊥F1F2,则n2+(2c)2=m2,9m•n×cos∠F1PF2=1,由9n2=1,n=,解得:a=3,c=,则b==1,∴椭圆标准方程:;(2)假设存在直线l,依题意l交椭圆所得弦MN被x=﹣平分,∴直线l的斜率存在.设直线l:y=kx+m,则由消去y,整理得(k2+9)x2+2kmx+m2﹣9=0∵l与椭圆交于不同的两点M,N,∴△=4k2m2﹣4(k2+9)(m2﹣9)>0,即m2﹣k2﹣9<0①设M(x1,y1),N(x2,y2),则x1+x2=﹣∴=﹣=﹣,∴m=②把②代入①式中得()2﹣(k2+9)<0∴k>或k<﹣,∴直线l倾斜角α∈(,)∪(,).21.解:(1)a=e时,f(x)=e x﹣ex﹣1,f(1)=﹣1,f′(x)=e x﹣e,可得f′(1)=0,故a=e时,函数f(x)在切点(1,f(1))处的切线方程是y=﹣1;(2)f(x)=e x﹣ax﹣1,f′(x)=e x﹣a,当a≤0时,f′(x)>0,则f(x)在R上单调递增;当a>0时,令f′(x)=e x﹣a=0,得x=lna,则f(x)在(﹣∞,lna]上单调递减,在(lna,+∞)上单调递增.(3)设F(x)=e x﹣x﹣1,则F′(x)=e x﹣1,∵x=0时,F′(x)=0,x>0时,F′(x)>0,∴F(x)在[0,+∞)递增,∴x>0时,F(x)>F(0),化简得:e x﹣1>x,∴x>0时,e x+x3﹣1>x,设h(x)=xe x﹣e x﹣x3+1,则h′(x)=x(e x﹣ex),设H(x)=e x﹣ex,H′(x)=e x﹣e,由H′(x)=0,得x=1时,H′(x)>0,x<1时,H′(x)<0,∴x>0时,H(x)的最小值是H(1),x>0时,H(x)≥H(1),即H(x)≥0,∴h′(x)≥0,可知函数h(x)在(0,+∞)递增,∴h(x)>h(0)=0,化简得e x+x3﹣1<xe x,∴x>0时,x<e x+x3﹣1<xe x,∴x>0时,lnx<ln(e x+x3﹣1)<lnx+x,即0<ln(e x+x3﹣1)﹣lnx<x,即x>0时,0<g(x)<x,当a≤1时,由(2)得f(x)在(0,+∞)递增,得f(g(x))<f(x)满足条件,当a>1时,由(2)得f(x)在(0,lna)递减,∴0<x≤lna时,f(g(x))>f(x),与已知∀x>0,f(g(x))<f(x)矛盾,综上,a的范围是(﹣∞,1].[选修4-4:坐标系与参数方程选讲]22.解:(Ⅰ)直线L的参数方程为(t为参数),普通方程为2x+y﹣6=0,极坐标方程为2ρcosθ+ρsinθ﹣6=0,曲线C的极坐标方程为ρ=,即ρ2+3ρ2cos2θ=4,曲线C 的普通方程为=1;(Ⅱ)曲线C上任意一点P(cosθ,2sinθ)到l的距离为d=|2cosθ+2sinθ﹣6|.则|PA|==|2sin(θ+45°)﹣6|,当sin(θ+45°)=﹣1时,|PA|取得最大值,最大值为.[选修4-5:不等式选讲]23.解:(Ⅰ)当a=5时,关于x的不等式f(x)>9,即|x+5|+|x﹣2|>9,故有①;或②;或③.解①求得x<﹣6;解②求得x∈∅,解③求得x>3.综上可得,原不等式的解集为{x|x<﹣6,或x>3}.(Ⅱ)设关于x的不等式f(x)=|x+a|+|x﹣2|≤|x﹣4|的解集为A,B={x∈R|2x﹣1|≤3}={x|﹣1≤x≤2 },如果A∪B=A,则B⊆A,∴,即,求得﹣1≤a≤0,故实数a的范围为[﹣1,0].2018年高考理科数学模拟试卷(二)(考试时间120分钟满分150分)一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.复数z满足方程=﹣i(i为虚数单位),则复数z在复平面内对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限2.已知集合A={x|x2+x﹣2<0},集合B={x|(x+2)(3﹣x)>0},则(∁R A)∩B 等于()A.{x|1≤x<3}B.{x|2≤x<3}C.{x|﹣2<x<1}D.{x|﹣2<x≤﹣1或2≤x<3}3.下列函数中,在其定义域内,既是奇函数又是减函数的是()A.f(x)=B.f(x)=C.f(x)=2﹣x﹣2x D.f(x)=﹣tanx 4.已知“x>2”是“x2>a(a∈R)”的充分不必要条件,则a的取值范围是()A.(﹣∞,4)B.(4,+∞)C.(0,4]D.(﹣∞,4]5.已知角α是第二象限角,直线2x+(t anα)y+1=0的斜率为,则cosα等于()A. B.﹣C.D.﹣6.执行如图所示的程序框图,若输入n的值为8,则输出s的值为()A.16 B.8 C.4 D.27.(﹣)8的展开式中,x的系数为()A.﹣112 B.112 C.56 D.﹣568.在△ABC中,∠A=60°,AC=3,面积为,那么BC的长度为()A.B.3 C.2D.9.记曲线y=与x轴所围成的区域为D,若曲线y=ax(x ﹣2)(a<0)把D的面积均分为两等份,则a的值为()A.﹣B.﹣C.﹣D.﹣10.为了普及环保知识,增强环保意识,某大学随机抽取30名学生参加环保知识测试,得分(十分制)如图所示,假设得分的中位数为m e,众数为m0,平均值为,则()A.m e=m0=B.m e=m0<C.m e<m0<D.m0<m e<11.已知矩形ABCD的顶点都在半径为5的球O的球面上,且AB=6,BC=2,则棱锥O﹣ABCD的侧面积为()A.20+8B.44 C.20 D.4612.函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后关于y轴对称,则以下判断不正确的是()A.是奇函数 B.为f(x)的一个对称中心C.f(x)在上单调递增D.f(x)在(0,)上单调递减二、填空题:本大题共4小题,每小题5分,共20分.13.若变量x,y满足约束条件,则z=2x﹣y的最大值为.14.如图所示是一个几何体的三视图,则这个几何体的体积为.15.已知抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,点P是抛物线y2=8x上的一动点,P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,则该双曲线的方程为.16.已知向量,的夹角为θ,|+|=2,|﹣|=2则θ的取值范围为.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.已知S n为等差数列{a n}的前n项和,S6=51,a5=13.(1)求数列{a n}的通项公式;(2)数列{b n}的通项公式是b n=,求数列{b n}的前n项和S n.18.袋中有大小相同的四个球,编号分别为1、2、3、4,从袋中每次任取一个球,记下其编号.若所取球的编号为偶数,则把该球编号改为3后放同袋中继续取球;若所取球的编号为奇数,则停止取球.(1)求“第二次取球后才停止取球”的概率;(2)若第一次取到偶数,记第二次和第一次取球的编号之和为X,求X的分布列和数学期望.19.在三棱椎A﹣BCD中,AB=BC=4,AD=BD=CD=2,在底面BCD内作CE ⊥CD,且CE=.(1)求证:CE∥平面ABD;(2)如果二面角A﹣BD﹣C的大小为90°,求二面角B﹣AC﹣E的余弦值.20.在平面直角坐标系xOy中,已知椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1).(1)求椭圆C的方徎;(2)若动点P在直线l:x=﹣2上,过P作直线交椭圆C于M,N两点,使得PM=PN,再过P作直线l′⊥MN,直线l′是否恒过定点,若是,请求出该定点的坐标;若否,请说明理由.21.已知函数f(x)=m(x﹣1)2﹣2x+3+lnx(m≥1).(1)求证:函数f(x)在定义域内存在单调递减区间[a,b];(2)是否存在实数m,使得曲线C:y=f(x)在点P(1,1)处的切线l与曲线C有且只有一个公共点?若存在,求出实数m的值;若不存在,请说明理由.[选修4-1:几何证明选讲]22.选修4﹣1:几何证明选讲如图,已知PA是⊙O的切线,A是切点,直线PO交⊙O于B、C两点,D是OC 的中点,连接AD并延长交⊙O于点E,若PA=2,∠APB=30°.(Ⅰ)求∠AEC的大小;(Ⅱ)求AE的长.[选修4-4:极坐标与参数方程]23.选修4﹣4:坐标系与参数方程在平面直角坐标系x0y中,动点A的坐标为(2﹣3sinα,3cosα﹣2),其中α∈R.在极坐标系(以原点O为极点,以x轴非负半轴为极轴)中,直线C的方程为ρcos (θ﹣)=a.(Ⅰ)判断动点A的轨迹的形状;(Ⅱ)若直线C与动点A的轨迹有且仅有一个公共点,求实数a的值.[选修4-5:不等式选讲]24.已知函数f(x)=|x﹣1|+|x﹣a|.(1)若a=2,解不等式f(x)≥2;(2)若a>1,∀x∈R,f(x)+|x﹣1|≥1,求实数a的取值范围.参考答案与试题解析一、选择题:本大题共12小题,每小题5分,共60分.在每个小题给出的四个选项中,有且只有一项符合题目要求.1.解:由=﹣i,得,即z=1+i.则复数z在复平面内对应的点的坐标为(1,1).位于第一象限.故选:A.2.解:∵集合A={x|x2+x﹣2<0}={x|﹣2<x<1},集合B={x|(x+2)(3﹣x)>0}={x|﹣2<x<3},∴(C R A)∩B={x|x≤﹣2或x≥1}∩{x|﹣2<x<3}={x|1≤x<3}.故选:A.3.解:A中,f(x)=是奇函数,但在定义域内不单调;B中,f(x)=是减函数,但不具备奇偶性;C中,f(x)2﹣x﹣2x既是奇函数又是减函数;D中,f(x)=﹣tanx是奇函数,但在定义域内不单调;故选C.4.解:由题意知:由x>2能得到x2>a;而由x2>a得不出x>2;∵x>2,∴x2>4;∴a≤4;∴a的取值范围是(﹣∞,4].故选:D.5.解:由题意得:k=﹣=,故tanα=﹣,故cosα=﹣,故选:D.6.解:开始条件i=2,k=1,s=1,i<8,开始循环,s=1×(1×2)=2,i=2+2=4,k=1+1=2,i<8,继续循环,s=×(2×4)=4,i=6,k=3,i<8,继续循环;s=×(4×6)=8,i=8,k=4,8≥8,循环停止,输出s=8;故选B:=(﹣2)r C8r x4﹣r,7.解:(﹣)8的展开式的通项为T r+1令4﹣r=1,解得r=2,∴展开式中x的系数为(﹣2)2C82=112,故选:B.8.解:在图形中,过B作BD⊥ACS△ABC=丨AB丨•丨AC丨sinA,即×丨AB丨×3×sin60°=,解得:丨AB丨=2,∴cosA=,丨AD丨=丨AB丨cosA=2×=1,sinA=,则丨BD丨=丨AB丨sinA=2×=,丨CD丨=丨AC丨﹣丨AD丨=3﹣1=2,在△BDC中利用勾股定理得:丨BC丨2=丨BD丨2+丨CD丨2=7,则丨BC丨=,故选A.9.解:由y=得(x﹣1)2+y2=1,(y≥0),则区域D表示(1,0)为圆心,1为半径的上半圆,而曲线y=ax(x﹣2)(a<0)把D的面积均分为两等份,∴=,∴(﹣ax2)=,∴a=﹣,故选:B.10.解:根据题意,由题目所给的统计图可知:30个得分中,按大小排序,中间的两个得分为5、6,故中位数m e=5.5,得分为5的最多,故众数m0=5,其平均数=≈5.97;则有m0<m e<,故选:D.11.解:由题意可知四棱锥O﹣ABCD的侧棱长为:5.所以侧面中底面边长为6和2,它们的斜高为:4和2,所以棱锥O﹣ABCD的侧面积为:S=4×6+2=44.故选B.12.解:把函数f(x)=2sin(2x++φ)(|φ|<)的图象向左平移个单位后,得到y=2sin(2x++φ+π)=﹣2sin(2x++φ)的图象,再根据所得关于y轴对称,可得+φ=kπ+,k∈Z,∴φ=,∴f(x)=2sin(2x++φ)=2cos2x.由于f(x+)=2cos(2x+)=﹣sin2x是奇函数,故A正确;当x=时,f(x)=0,故(,0)是f(x)的图象的一个对称中心,故B正确;在上,2x∈(﹣,﹣),f(x)没有单调性,故C不正确;在(0,)上,2x∈(0,π),f(x)单调递减,故D正确,故选:C.二、填空题:本大题共4小题,每小题5分,共20分.13.解:由约束条件作出可行域如图,联立,解得A(4,2),化目标函数z=2x﹣y为y=2x﹣z,由图可知,当直线y=2x﹣z过点A时,直线在y 轴上的截距最小,z有最大值为6.故答案为:6.14.解:由三视图得到几何体如图:其体积为;故答案为:15.解:抛物线y2=8x的焦点F(2,0),双曲线C:﹣=1(a>0,b >0)一条渐近线的方程为ax﹣by=0,∵抛物线y2=8x的焦点F到双曲线C:﹣=1(a>0,b>0)渐近线的距离为,∴,∴2b=a,∵P到双曲线C的上焦点F1(0,c)的距离与到直线x=﹣2的距离之和的最小值为3,∴FF1=3,∴c2+4=9,∴c=,∵c2=a2+b2,a=2b,∴a=2,b=1,∴双曲线的方程为﹣x2=1.故答案为:﹣x2=1.16.解:由|+|=2,|﹣|=2,可得:+2=12,﹣2=4,∴=8≥2,=2,∴cosθ=≥.∴θ∈.故答案为:.三、解答题:本大题共5小题,共70分.解答应写出必要的文字说明或推理、验算过程.17.解:(1)设等差数列{a n}的公差为d,则∵S6=51,∴×(a1+a6)=51,∴a1+a6=17,∴a2+a5=17,∵a5=13,∴a2=4,∴d=3,∴a n=a2+3(n﹣2)=3n﹣2;(2)b n==﹣2•8n﹣1,∴数列{b n}的前n项和S n==(8n﹣1).18.解:(1)记“第二次取球后才停止取球”为事件A.∴第一次取到偶数球的概率为=,第二次取球时袋中有三个奇数,∴第二次取到奇数球的概率为,而这两次取球相互独立,∴P(A)=×=.(2)若第一次取到2时,第二次取球时袋中有编号为1,3,3,4的四个球;若第一次取到4时,第二次取球时袋中有编号为1,2,3,3的四个球.∴X的可能取值为3,5,6,7,∴P(X=3)=×=,P(X=5)=×+×=,P(X=6)=×+×=,P(X=7)=×=,∴X的分布列为:X3567P数学期望EX=3×+5×+6×+7×=.19.(1)证明:∵BD=CD=2,BC=4,∴BD2+CD2=BC2,∴BD⊥CD,∵CE⊥CD,∴CE∥BD,又CE⊄平面ABD,BD⊂平面ABD,∴CE∥平面ABD;(2)解:如果二面角A﹣BD﹣C的大小为90°,由AD⊥BD得AD⊥平面BDC,∴AD⊥CE,又CE⊥CD,∴CE⊥平面ACD,从而CE⊥AC,由题意AD=DC=2,∴Rt△ADC中,AC=4,设AC的中点为F,∵AB=BC=4,∴BF⊥AC,且BF=2,设AE中点为G,则FG∥CE,由CE⊥AC得FG⊥AC,∴∠BFG为二面角B﹣AC﹣E的平面角,连接BG,在△BCE中,∵BC=4,CE=,∠BCE=135°,∴BE=,在Rt△DCE中,DE==,于是在Rt△ADE中,AE==3,在△ABE中,BG2=AB2+BE2﹣AE2=,∴在△BFG中,cos∠BFG==﹣,∴二面角B﹣AC﹣E的余弦值为﹣.20.解:(1)∵椭圆C: +=1(a>b>0)的离心率为.且过点(3,﹣1),∴,解得a2=12,b2=4,∴椭圆C的方程为.(2)∵直线l的方程为x=﹣2,设P(﹣2,y0),,当y0≠0时,设M(x1,y1),N(x2,y2),由题意知x1≠x2,联立,∴,∴,又∵PM=PN,∴P为线段MN的中点,∴直线MN的斜率为,又l′⊥MN,∴l′的方程为,即,∴l′恒过定点.当y0=0时,直线MN为,此时l′为x轴,也过点,综上,l′恒过定点.21.(1)证明:令f′(x)=0,得mx2﹣(m+2)x+1=0.(*)因为△=(m+2)2﹣4m=m2+4>0,所以方程(*)存在两个不等实根,记为a,b (a<b).因为m≥1,所以a+b=>0,ab=>0,所以a>0,b>0,即方程(*)有两个不等的正根,因此f′(x)≤0的解为[a,b].故函数f(x)存在单调递减区间;(2)解:因为f′(1)=﹣1,所以曲线C:y=f(x)在点P(1,1)处的切线l为y=﹣x+2.若切线l与曲线C只有一个公共点,则方程m(x﹣1)2﹣2x+3+lnx=﹣x+2有且只有一个实根.显然x=1是该方程的一个根.令g(x)=m(x﹣1)2﹣x+1+lnx,则g′(x)=.当m=1时,有g′(x)≥0恒成立,所以g(x)在(0,+∞)上单调递增,所以x=1是方程的唯一解,m=1符合题意.当m>1时,令g′(x)=0,得x1=1,x2=,则x2∈(0,1),易得g(x)在x1处取到极小值,在x2处取到极大值.所以g(x2)>g(x1)=0,又当x→0时,g(x)→﹣∞,所以函数g(x)在(0,)内也有一个解,即当m>1时,不合题意.综上,存在实数m,当m=1时,曲线C:y=f(x)在点P(1,1)处的切线l与C 有且只有一个公共点.[选修4-1:几何证明选讲]22.解:(Ⅰ)连接AB,因为:∠APO=30°,且PA是⊙O的切线,所以:∠AOB=60°;∵OA=OB∴∠AB0=60°;∵∠ABC=∠AEC∴∠AEC=60°.(Ⅱ)由条件知AO=2,过A作AH⊥BC于H,则AH=,在RT△AHD中,HD=2,∴AD==.∵BD•DC=AD•DE,∴DE=.∴AE=DE+AD=.[选修4-4:极坐标与参数方程]23.解:(Ⅰ)设动点A的直角坐标为(x,y),则,利用同角三角函数的基本关系消去参数α可得,(x﹣2)2+(y+2)2=9,点A的轨迹为半径等于3的圆.(Ⅱ)把直线C方程为ρcos(θ﹣)=a化为直角坐标方程为+=2a,由题意可得直线C与圆相切,故有=3,解得a=3 或a=﹣3.[选修4-5:不等式选讲]24.解:(1)当a=2时,,由于f(x)≥2,则①当x<1时,﹣2x+3≥2,∴x≤;②当1≤x≤1时,1≥2,无解;③当x>2时,2x﹣3≥2,∴x≥.综上所述,不等式f(x)≥2的解集为:(﹣∞,]∪[,+∞);(2)令F(x)=f(x)+|x﹣1|,则,所以当x=1时,F(x)有最小值F(1)=a﹣1,只需a﹣1≥1,解得a≥2,所以实数a的取值范围为[2,+∞).2018年高考理科数学模拟试卷(三)(考试时间120分钟满分150分)一、选择题(共12小题,每小题5分,满分60分)1.已知复数z满足z(1﹣i)2=1+i(i为虚数单位),则z=()A. +i B.﹣i C.﹣+i D.﹣﹣i2.已知集合A={x|(x﹣1)2≤3x﹣3,x∈R},B={y|y=3x+2,x∈R},则A∩B=()A.(2,+∞)B.(4,+∞)C.[2,4]D.(2,4]3.甲、乙两类水果的质量(单位:kg)分别服从正态分布N(μ1,σ12)及N(μ2,σ22),其正态分布的密度曲线如图所示,则下列说法错误的是()A.乙类水果的质量服从的正态分布的参数σ2=1.99B.甲类水果的质量比乙类水果的质量更集中C.甲类水果的平均质量μ1=0.4kgD.甲类水果的平均质量比乙类水果的平均质量小4.已知数列{a n}的前n项和S n满足S n+S m=S n(n,m∈N*)且a1=5,则a8=()+mA.40 B.35 C.12 D.55.设a=(),b=(),c=ln,则a,b,c的大小关系是()A.a>b>c B.b>a>c C.b>c>a D.a>c>b6.执行如图所示的程序框图,则输出b的值为()A.2 B.4 C.8 D.167.若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,则k的值为()A.﹣1 B.﹣C.﹣D.﹣38.某同学在运动场所发现一实心椅子,其三视图如图所示(俯视图是圆的一部分及该圆的两条互相垂直的半径,有关尺寸如图,单位:m),经了解,建造该类椅子的平均成本为240元/m3,那么该椅子的建造成本约为(π≈3.14)()A.94.20元 B.240.00元C.282.60元D.376.80元9.当函数f(x)=sinx+cosx﹣t(t∈R)在闭区间[0,2π]上,恰好有三个零点时,这三个零点之和为()A.B. C. D.2π10.有5位同学排成前后两排拍照,若前排站2人,则甲不站后排两端且甲、乙左右相邻的概率为()A.B.C.D.11.某工厂拟生产甲、乙两种实销产品.已知每件甲产品的利润为0.4万元,每件乙产品的利润为0.3万元,两种产品都需要在A,B两种设备上加工,且加工一件甲、乙产品在A,B设备上所需工时(单位:h)分别如表所示.甲产品所需工时乙产品所需工时A设备23B设备41若A设备每月的工时限额为400h,B设备每月的工时限额为300h,则该厂每月生产甲、乙两种产品可获得的最大利润为()A.40万元B.45万元C.50万元D.55万元12.若函数g(x)满足g(g(x))=n(n∈N)有n+3个解,则称函数g(x)为“复合n+3解”函数.已知函数f(x)=(其中e是自然对数的底数,e=2.71828…,k∈R),且函数f(x)为“复合5解”函数,则k的取值范围是()A.(﹣∞,0)B.(﹣e,e)C.(﹣1,1)D.(0,+∞)二、填空题(共4小题,每小题5分,满分20分)13.在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,则•=.14.有下列四个命题:①垂直于同一条直线的两条直线平行;②垂直于同一条直线的两个平面平行;③垂直于同一平面的两个平面平行;④垂直于同一平面的两条直线平行.其中正确的命题有(填写所有正确命题的编号).15.若等比数列{a n}的公比为2,且a3﹣a1=2,则++…+=.16.设抛物线C:y2=2px(p>0)的焦点为F,点A在C上,若|AF|=,以线段AF为直径的圆经过点B(0,1),则p=.三、解答题(共5小题,满分60分)17.在△ABC中,设内角A,B,C所对边分别为a,b,c,且sin(A﹣)﹣cos(A+)=.(1)求角A的大小;(2)若a=,sin2B+cos2C=1,求△ABC的面积.18.某大学有甲、乙两个图书馆,对其借书、还书的等待时间进行调查,得到下表:甲图书馆12345借(还)书等待时间T1(分钟)频数1500 1000 500 500 1500乙图书馆12345借(还)书等待时间T2(分钟)频数100050020001250250以表中等待时间的学生人数的频率为概率.(1)分别求在甲、乙两图书馆借书的平均等待时间;(2)学校规定借书、还书必须在同一图书馆,某学生需要借一本数学参考书,并希望借、还书的等待时间之和不超过4分钟,在哪个图书馆借、还书更能满足他的要求?19.如图所示,在Rt△ABC中,AC⊥BC,过点C的直线VC垂直于平面ABC,D、E分别为线段VA、VC上异于端点的点.(1)当DE⊥平面VBC时,判断直线DE与平面ABC的位置关系,并说明理由;(2)当D、E、F分别为线段VA、VC、AB上的中点,且VC=2BC时,求二面角B ﹣DE﹣F的余弦值.20.已知椭圆+=1(a>b>0)过点P(2,1),且离心率为.(Ⅰ)求椭圆的方程;(Ⅱ)设O为坐标原点,在椭圆短轴上有两点M,N满足=,直线PM、PN分别交椭圆于A,B.(i)求证:直线AB过定点,并求出定点的坐标;(ii)求△OAB面积的最大值.21.已知函数f(x)=lnx﹣2ax(其中a∈R).(Ⅰ)当a=1时,求函数f(x)的图象在x=1处的切线方程;(Ⅱ)若f(x)≤1恒成立,求a的取值范围;(Ⅲ)设g(x)=f(x)+x2,且函数g(x)有极大值点x0,求证:x0f(x0)+1+ax02>0.请考生在22、23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy中,双曲线E的参数方程为(θ为参数),设E的右焦点为F,经过第一象限的渐进线为l.以坐标原点为极点,x轴的正半轴为极轴建立极坐标系.(1)求直线l的极坐标方程;(2)设过F与l垂直的直线与y轴相交于点A,P是l上异于原点O的点,当A,O,F,P四点在同一圆上时,求这个圆的极坐标方程及点P的极坐标.[选修4-5:不等式选讲]23.已知函数f(x)=|x+a|﹣2a,其中a∈R.(1)当a=﹣2时,求不等式f(x)≤2x+1的解集;(2)若x∈R,不等式f(x)≤|x+1|恒成立,求a的取值范围.参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.解:∵z(1﹣i)2=1+i,∴,故选:C.2.解:集合A={x|(x﹣1)2≤3x﹣3,x∈R}={x|(x﹣1)(x﹣4)≤0}={x|1≤x ≤4}=[1,4];B={y|y=3x+2,x∈R}={y|y>2}=(2,+∞),则A∩B=(2,4].故选:D.3.解:由图象可知,甲类水果的平均质量μ1=0.4kg,乙类水果的平均质量μ2=0.8kg,故B,C,D正确;乙类水果的质量服从的正态分布的参数σ2=,故A 不正确.故选:A.4.解:数列{a n}的前n项和S n满足S n+S m=S n+m(n,m∈N*)且a1=5,令m=1,则S n+1=S n+S1=S n+5.可得a n+1=5.则a8=5.故选:D.5.解:b=()=>()=a>1,c=ln<1,∴b>a>c.故选:B.6.解:第一次循环,a=1≤3,b=2,a=2,第二次循环,a=2≤3,b=4,a=3,第三次循环,a=3≤3,b=16,a=4,第四次循环,a=4>3,输出b=16,故选:D.7.解:圆C:x2+y2﹣2x+4y=0的圆心(1,﹣2),若圆C:x2+y2﹣2x+4y=0上存在两点A,B关于直线l:y=kx﹣1对称,可知直线经过圆的圆心,可得﹣2=k﹣1,解得k=﹣1.故选:A.8.解:由三视图可知:该几何体为圆柱的.∴体积V=.∴该椅子的建造成本约为=×240≈282.60元.故选:C.9.解:f(x)=2sin(x+)﹣t,令f(x)=0得sin(x+)=,做出y=sin(x+)在[0,2π]上的函数图象如图所示:∵f(x)在[0,2π]上恰好有3个零点,∴=sin=,解方程sin(x+)=得x=0或x=2π或x=.∴三个零点之和为0+2π+=.故选:B.10.解:由题意得:p===,故选:B.11.C解:设甲、乙两种产品月的产量分别为x,y件,约束条件是目标函数是z=0.4x+0.3y由约束条件画出可行域,如图所示的阴影部分由z=0.4x+0.3y,结合图象可知,z=0.4x+0.3y在A处取得最大值,由可得A(50,100),此时z=0.4×50+0.3×100=50万元,故选:C.12.解:函数f(x)为“复合5解“,∴f(f(x))=2,有5个解,设t=f(x),∴f(t)=2,∵当x>0时,f(x)=,∴f(x)=,当0<x<1时,f′(x)<0,函数f(x)单调递减,当x>1时,f′(x)>0,函数f(x)单调递增,∴f(x)min=f(1)=1,∴t≥1,∴f(t)=2在[1,+∞)有2个解,当x≤0时,f(x)=kx+3,函数f(x)恒过点(0,3),当k≤0时,f(x)≥f(0)=3,∴t≥3∵f(3)=>2,∴f(t)=2在[3,+∞)上无解,当k>0时,f(x)≤f(0)=3,∴f(t)=2,在(0,3]上有2个解,在(∞,0]上有1个解,综上所述f(f(x))=2在k>0时,有5个解,故选:D二、填空题(共4小题,每小题5分,满分20分)13.解:在Rt△ABC中,D是斜边AB的中点,若BC=6,CD=5,可得AD=BD=5,即AB=10,由勾股定理可得AC==8,则•=﹣•=﹣||•||•cosA=﹣5×8×=﹣32.14.解:如图在正方体ABCD﹣A′B′C′D′中,对于①,AB⊥BB′,BC⊥BB′,AB、BC不平行,故错;对于②,两底面垂直于同一条侧棱,两个底面平面平行,故正确;对于③,相邻两个侧面同垂直底面,这两个平面不平行,故错;对于④,平行的侧棱垂直底面,侧棱平行,故正确.故答案为:②④15.解:∵等比数列{a n}的公比为2,且a3﹣a1=2,∴=2,解得a1=.∴a n==.∴=.则++…+=3×==1﹣.故答案为:1﹣.16.解:由题意,可得A(,),AB⊥BF,∴(,﹣1)•(,﹣1)=0,∴﹣+1=0,∴p(5﹣p)=4,∴p=1或4.三、解答题(共5小题,满分60分)17.解:(1)sin(A﹣)﹣cos(A+)=sin(A﹣)﹣cos(2π﹣A)=sin(A﹣)﹣cos(A+)=sinA﹣cosA﹣cosA﹣sinA=即cosA=,∵0<A<π,∴A=.(2)由sin2B+cos2C=1,可得sin2B=2sin2C,由正弦定理,得b2=2c2,即.a=,cosA==,解得:c=1,b=∴△ABC的面积S=bcsinA=.18.解:(1)根据已知可得T1的分布列:T1(分钟)12345P0.30.20.10.10.3T1的数学期望为:E(T1)=1×0.3+2×0.2+3×0.1+4×0.1+5×0.3=2.9.T2(分钟)12345P0.20.10.4 0.250.05T2的数学期望为:E(T1)=1×0.2+2×0.1+3×0.4+4×0.25+5×0.05=2.85.因此:该同学甲、乙两图书馆借书的平均等待时间分别为:2.9分钟,2.85分钟.(2)设T11,T12分别表示在甲图书馆借、还书所需等待时间,设事件A为“在甲图书馆借、还书的等待时间之和不超过4分钟”.T11+T12≤4的取值分别为:(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).。
2022年吉林省长春市南关区东北师大附中中考数学四模试卷含解析
2021-2022中考数学模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(共10小题,每小题3分,共30分)1.如图,在菱形ABCD中,AB=BD,点E、F分别是AB、AD上任意的点(不与端点重合),且AE=DF,连接BF 与DE相交于点G,连接CG与BD相交于点H.给出如下几个结论:①△AED≌△DFB;②S四边形BCDG=;③若AF=2DF,则BG=6GF;④CG与BD一定不垂直;⑤∠BGE的大小为定值.其中正确的结论个数为()A.4 B.3 C.2 D.12.如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为()A.16cm B.20cm C.24cm D.28cm3.一、单选题小明和小张两人练习电脑打字,小明每分钟比小张少打6个字,小明打120个字所用的时间和小张打180个字所用的时间相等.设小明打字速度为x个/分钟,则列方程正确的是()A.1201806x x=+B.1201806x x=-C.1201806x x=+D.1201806x x=-4.一、单选题在某校“我的中国梦”演讲比赛中,有7名学生参加了决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这7名学生成绩的()A .平均数B .众数C .中位数D .方差5.2cos 30°的值等于( ) A .1B .2C .3D .26.已知a <1,点A (x 1,﹣2)、B (x 2,4)、C (x 3,5)为反比例函数a 1y x-=图象上的三点,则下列结论正 确的是( ) A .x 1>x 2>x 3B .x 1>x 3>x 2C .x 3>x 1>x 2D .x 2>x 3>x 17.等腰三角形底角与顶角之间的函数关系是( ) A .正比例函数B .一次函数C .反比例函数D .二次函数8.一个多边形的边数由原来的3增加到n 时(n >3,且n 为正整数),它的外角和( ) A .增加(n ﹣2)×180° B .减小(n ﹣2)×180° C .增加(n ﹣1)×180°D .没有改变9.下列成语描述的事件为随机事件的是( )A .水涨船高B .守株待兔C .水中捞月D .缘木求鱼 10.观察下列图形,则第n 个图形中三角形的个数是( )A .2n +2B .4n +4C .4n ﹣4D .4n二、填空题(本大题共6个小题,每小题3分,共18分)11.如果x y 10+-=,那么代数式2y x y x x x ⎛⎫--÷⎪⎝⎭的值是______. 12.图①是一个三角形,分别连接这个三角形的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.按上面的方法继续下去,第n 个图形中有_____个三角形(用含字母n 的代数式表示).13.分解因式:2x +xy =_______.14.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是 .15.一个样本为1,3,2,2,a ,b ,c ,已知这个样本的众数为3,平均数为2,则这组数据的中位数为______. 16.如图,AC 是正五边形ABCDE 的一条对角线,则∠ACB =_____.三、解答题(共8题,共72分)17.(8分)由于持续高温和连日无雨,某水库的蓄水量随时间的增加而减少,已知原有蓄水量y1(万m³)与干旱持续时间x(天)的关系如图中线段l1所示,针对这种干旱情况,从第20天开始向水库注水,注水量y2(万m³)与时间(天)的关系如图中线段l2所示(不考虑其他因素).(1)求原有蓄水量y1(万m³)与时间(天)的函数关系式,并求当x=20时的水库总蓄水量.(2)求当0≤x≤60时,水库的总蓄水量y万(万m³)与时间x(天)的函数关系式(注明x的范围),若总蓄水量不多于900万m³为严重干旱,直接写出发生严重干旱时x的范围.18.(8分)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交于A(﹣1,0)B(3,0)两点,与y轴交于点C.求抛物线y=ax2+2x+c的解析式:;点D为抛物线上对称轴右侧、x轴上方一点,DE⊥x轴于点E,DF∥AC交抛物线对称轴于点F,求DE+DF的最大值;①在拋物线上是否存在点P,使以点A,P,C为顶点,AC为直角边的三角形是直角三角形?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由;②点Q在抛物线对称轴上,其纵坐标为t,请直接写出△ACQ为锐角三角形时t的取值范围.19.(8分)如图,在△ABC中,AB=AC,AE是角平分线,BM平分∠ABC交AE于点M,经过B、M两点的⊙O交BC于点G,交AB于点F,FB恰为⊙O的直径.(1)判断AE与⊙O的位置关系,并说明理由;(2)若BC=6,AC=4CE时,求⊙O的半径.20.(8分)如图,⊙O是△ABC的外接圆,AD是⊙O的直径,BC的延长线于过点A的直线相交于点E,且∠B=∠EAC.(1)求证:AE是⊙O的切线;(2)过点C作CG⊥AD,垂足为F,与AB交于点G,若AG•AB=36,tanB=22,求DF的值21.(8分)某工厂生产部门为了解本部门工人的生产能力情况,进行了抽样调查.该部门随机抽取了30名工人某天每人加工零件的个数,数据如下:20 21 19 16 27 18 31 29 21 2225 20 19 22 35 33 19 17 18 2918 35 22 15 18 18 31 31 19 22整理上面数据,得到条形统计图:样本数据的平均数、众数、中位数如下表所示:统计量平均数众数中位数数值23 m 21根据以上信息,解答下列问题:上表中众数m的值为;为调动工人的积极性,该部门根据工人每天加工零件的个数制定了奖励标准,凡达到或超过这个标准的工人将获得奖励.如果想让一半左右的工人能获奖,应根据来确定奖励标准比较合适.(填“平均数”、“众数”或“中位数”)该部门规定:每天加工零件的个数达到或超过25个的工人为生产能手.若该部门有300名工人,试估计该部门生产能手的人数.22.(10分)如图,在△ABC中,∠C=90°,AD平分∠CAB,交CB于点D,过点D作DE⊥AB,于点E求证:△ACD≌△AED;若∠B=30°,CD=1,求BD的长.23.(12分)如图,在平面直角坐标系xOy中,已知正比例函数34y x=与一次函数7y x=-+的图像交于点A,(1)求点A的坐标;(2)设x轴上一点P(a,0),过点P作x轴的垂线(垂线位于点A的右侧),分别交34y x=和7y x=-+的图像于点B、C,连接OC,若BC=75OA,求△OBC的面积.24.某公司今年1月份的生产成本是400万元,由于改进技术,生产成本逐月下降,3月份的生产成本是361万元.假设该公司2、3、4月每个月生产成本的下降率都相同.求每个月生产成本的下降率;请你预测4月份该公司的生产成本.参考答案一、选择题(共10小题,每小题3分,共30分)1、B【解析】试题分析:①∵ABCD为菱形,∴AB=AD,∵AB=BD,∴△ABD为等边三角形,∴∠A=∠BDF=60°,又∵AE=DF,AD=BD,∴△AED≌△DFB,故本选项正确;②∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°=∠BCD,即∠BGD+∠BCD=180°,∴点B、C、D、G四点共圆,∴∠BGC=∠BDC=60°,∠DGC=∠DBC=60°,∴∠BGC=∠DGC=60°,过点C作CM⊥GB于M,CN⊥GD于N(如图1),则△CBM≌△CDN(AAS),∴S四边形BCDG=S四边形CMGN,S四边形CMGN=2S△CMG,∵∠CGM=60°,∴GM=CG,CM=CG,∴S四边形CMGN=2S△CMG=2××CG×CG=,故本选项错误;③过点F作FP∥AE于P点(如图2),∵AF=2FD,∴FP:AE=DF:DA=1:3,∵AE=DF,AB=AD,∴BE=2AE,∴FP:BE=FP:AE=1:6,∵FP∥AE,∴PF∥BE,∴FG:BG=FP:BE=1:6,即BG=6GF,故本选项正确;④当点E,F分别是AB,AD中点时(如图3),由(1)知,△ABD,△BDC为等边三角形,∵点E,F分别是AB,AD中点,∴∠BDE=∠DBG=30°,∴DG=BG,在△GDC与△BGC中,∵DG=BG,CG=CG,CD=CB,∴△GDC≌△BGC,∴∠DCG=∠BCG,∴CH⊥BD,即CG⊥BD,故本选项错误;⑤∵∠BGE=∠BDG+∠DBF=∠BDG+∠GDF=60°,为定值,故本选项正确;综上所述,正确的结论有①③⑤,共3个,故选B.考点:四边形综合题.2、C【解析】首先根据平行线的性质以及折叠的性质证明∠EAC=∠DCA,根据等角对等边证明FC=AF,则DF即可求得,然后在直角△ADF中利用勾股定理求解.【详解】∵长方形ABCD中,AB∥CD,∴∠BAC=∠DCA,又∵∠BAC=∠EAC,∴∠EAC=∠DCA,∴FC=AF=25cm,又∵长方形ABCD中,DC=AB=32cm,∴DF=DC-FC=32-25=7cm,在直角△ADF中,2222=257AF DF--(cm).故选C.【点睛】本题考查了折叠的性质以及勾股定理,在折叠的过程中注意到相等的角以及相等的线段是关键.3、C【解析】解:因为设小明打字速度为x个/分钟,所以小张打字速度为(x+6)个/分钟,根据关系:小明打120个字所用的时间和小张打180个字所用的时间相等,可列方程得1201806x x=+,故选C.【点睛】本题考查列分式方程解应用题,找准题目中的等量关系,难度不大.4、C【解析】由于其中一名学生想要知道自己能否进入前3名,共有7名选手参加,故应根据中位数的意义分析.【详解】由于总共有7个人,且他们的成绩各不相同,第4的成绩是中位数,要判断是否进入前3名,故应知道中位数的多少.故选C.【点睛】此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数、方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.5、C【解析】分析:根据30°角的三角函数值代入计算即可.详解:2cos30°=2×2故选C.点睛:此题主要考查了特殊角的三角函数值的应用,熟记30°、45°、60°角的三角函数值是解题关键.6、B【解析】根据a1yx-=的图象上的三点,把三点代入可以得到x1=﹣12a-,x1=14a-,x3=15a-,在根据a的大小即可解题【详解】解:∵点A(x1,﹣1)、B(x1,4)、C(x3,5)为反比例函数a1yx-=图象上的三点,∴x1=﹣12a-,x1=14a-,x3=15a-,∵a<1,∴a﹣1<0,∴x1>x3>x1.故选B.【点睛】此题主要考查一次函数图象与系数的关系,解题关键在于把三点代入,在根据a的大小来判断7、B【解析】根据一次函数的定义,可得答案.【详解】设等腰三角形的底角为y,顶角为x,由题意,得x+2y=180,所以,y=﹣12x+90°,即等腰三角形底角与顶角之间的函数关系是一次函数关系,故选B.【点睛】本题考查了实际问题与一次函数,根据题意正确列出函数关系式是解题的关键.8、D【解析】根据多边形的外角和等于360°,与边数无关即可解答.【详解】∵多边形的外角和等于360°,与边数无关,∴一个多边形的边数由3增加到n时,其外角度数的和还是360°,保持不变.故选D.【点睛】本题考查了多边形的外角和,熟知多边形的外角和等于360°是解题的关键.9、B【解析】试题解析:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选B.考点:随机事件.10、D【解析】试题分析:由已知的三个图可得到一般的规律,即第n个图形中三角形的个数是4n,根据一般规律解题即可.解:根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律,第n 个图形中三角形的个数是4n . 故选D .考点:规律型:图形的变化类.二、填空题(本大题共6个小题,每小题3分,共18分) 11、1 【解析】分析:对所求代数式根据分式的混合运算顺序进行化简,再把10x y +-=变形后整体代入即可.详解:2,y x yx x x ⎛⎫--÷⎪⎝⎭ 22,x y x yxx x ⎛⎫-=-÷ ⎪⎝⎭()(),x y x y xxx y+-=⋅- .x y =+10,x y +-= 1.x y ∴+=故答案为1.点睛:考查分式的混合运算,掌握运算顺序是解题的关键.注意整体代入法的运用. 12、4n ﹣1 【解析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为943 3.=⨯-按照这个规律即可求出第n 各图形中有多少三角形. 【详解】分别数出图①、图②、图③中的三角形的个数, 图①中三角形的个数为1413=⨯-; 图②中三角形的个数为5423=⨯-; 图③中三角形的个数为9433=⨯-;可以发现,第几个图形中三角形的个数就是4与几的乘积减去1.-.按照这个规律,如果设图形的个数为n,那么其中三角形的个数为4n3-.故答案为4n3【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.x x+y.13、()【解析】将一个多项式分解因式的一般步骤是首先看各项有没有公因式,若有公因式,则把它提取出来,之后再观察是否是完全平方式或平方差式,若是就考虑用公式法继续分解因式.【详解】+=+.直接提取公因式x即可:2x xy x(x y)14、.【解析】试题分析:画树状图为:共有36种等可能的结果数,其中“两枚骰子的点数和小于8且为偶数”的结果数为9,所以“两枚骰子的点数和小于8且为偶数”的概率==.故答案为.考点:列表法与树状图法.15、1.【解析】解:因为众数为3,可设a=3,b=3,c未知,平均数=(1+3+1+1+3+3+c)÷7=1,解得c=0,将这组数据按从小到大的顺序排列:0、1、1、1、3、3、3,位于最中间的一个数是1,所以中位数是1,故答案为:1.点睛:本题为统计题,考查平均数、众数与中位数的意义,中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数),叫做这组数据的中位数,如果中位数的概念掌握得不好,不把数据按要求重新排列,就会出错.16、36°【解析】由正五边形的性质得出∠B=108°,AB=CB ,由等腰三角形的性质和三角形内角和定理即可得出结果.【详解】∵五边形ABCDE 是正五边形,∴∠B=108°,AB=CB ,∴∠ACB=(180°﹣108°)÷2=36°;故答案为36°.三、解答题(共8题,共72分)17、(1)y 1=-20x+1200, 800;(2)15≤x≤40.【解析】(1)根据图中的已知点用待定系数法求出一次函数解析式(2)设y 2=kx+b ,把(20,0)和(60,1000)代入求出解析式,在已知范围内求出解即可.【详解】解:(1)设y 1=kx+b ,把(0,1200)和(60,0)代入得1200600b k b =⎧⎨+=⎩解得201200k b =-⎧⎨=⎩,所以y 1=-20x+1200,当x=20时,y 1=-20×20+1200=800,(2)设y 2=kx+b ,把(20,0)和(60,1000)代入得200601000k b k b +=⎧⎨+=⎩则25500k b =⎧⎨=-⎩,所以y 2=25x-500,当0≤x≤20时,y=-20x+1200,当20<x≤60时,y=y 1+y 2=-20x+1200+25x-500=5x+700,由题意2012009005700900x x -+≤⎧⎨+≤⎩解得该不等式组的解集为15≤x≤40所以发生严重干旱时x 的范围为15≤x≤40.【点睛】此题重点考察学生对一次函数和一元一次不等式的实际应用能力,掌握一次函数和一元一次不等式的解法是解题的关键.18、(1)y=﹣x 2+2x+3;(2)DE+DF 有最大值为132;(3)①存在,P 的坐标为(73,209)或(103,139-);②23-<t <83. 【解析】(1)设抛物线解析式为y=a (x+1)(x ﹣3),根据系数的关系,即可解答(2)先求出当x=0时,C 的坐标,设直线AC 的解析式为y=px+q ,把A,C 的坐标代入即可求出AC 的解析式,过D作DG 垂直抛物线对称轴于点G ,设D (x ,﹣x 2+2x+3),得出DE+DF=﹣x 2+2x+3+10(x-1)=﹣x 2+(2+10)x+3-10,即可解答(3)①过点C 作AC 的垂线交抛物线于另一点P 1,求出直线PC 的解析式,再结合抛物线的解析式可求出P 1,过点A 作AC 的垂线交抛物线于另一点P 2,再利用A 的坐标求出P 2,即可解答②观察函数图象与△ACQ 为锐角三角形时的情况,即可解答【详解】解:(1)设抛物线解析式为y=a (x+1)(x ﹣3),即y=ax 2﹣2ax ﹣3a ,∴﹣2a=2,解得a=﹣1,∴抛物线解析式为y=﹣x 2+2x+3;(2)当x=0时,y=﹣x 2+2x+3=3,则C (0,3),设直线AC 的解析式为y=px+q ,把A (﹣1,0),C (0,3)代入得03p q q -+=⎧⎨=⎩,解得33p q =⎧⎨=⎩,∴直线AC 的解析式为y=3x+3,如答图1,过D 作DG 垂直抛物线对称轴于点G ,设D (x ,﹣x 2+2x+3),∵DF ∥AC ,∴∠DFG=∠ACO ,易知抛物线对称轴为x=1,∴DG=x-1,DF=10(x-1),∴DE+DF=﹣x 2+2x+3+10(x-1)=﹣x 2+(2+10)x+3-10,∴当x=1012+,DE+DF 有最大值为132;答图1 答图2(3)①存在;如答图2,过点C 作AC 的垂线交抛物线于另一点P 1,∵直线AC 的解析式为y=3x+3,∴直线PC 的解析式可设为y=13-x+m ,把C (0,3)代入得m=3, ∴直线P 1C 的解析式为y=13-x+3,解方程组223133y x x y x ⎧=-++⎪⎨=-+⎪⎩,解得03x y =⎧⎨=⎩或73209x y ⎧=⎪⎪⎨⎪=⎪⎩,则此时P 1点坐标为(73,209);过点A 作AC 的垂线交抛物线于另一点P 2,直线AP 2的解析式可设为y=13-x+n ,把A (﹣1,0)代入得n=13-, ∴直线PC 的解析式为y=1133x --,解方程组2231133y x x y x ⎧=-++⎪⎨=--⎪⎩,解得10x y =-⎧⎨=⎩或103139x y ⎧=⎪⎪⎨⎪=-⎪⎩,则此时P 2点坐标为(103,139-),综上所述,符合条件的点P 的坐标为(73,209)或(103,139-); ②23-<t <83. 【点睛】此题考查二次函数综合题,解题关键在于把已知点代入解析式求值和作辅助线.19、(1)AE 与⊙O 相切.理由见解析.(2)2.1【解析】(1)连接OM ,则OM=OB ,利用平行的判定和性质得到OM ∥BC ,∠AMO=∠AEB ,再利用等腰三角形的性质和切线的判定即可得证;(2)设⊙O 的半径为r ,则AO=12﹣r ,利用等腰三角形的性质和解直角三角形的有关知识得到AB=12,易证△AOM ∽△ABE ,根据相似三角形的性质即可求解.【详解】解:(1)AE 与⊙O 相切.理由如下:连接OM ,则OM=OB ,∴∠OMB=∠OBM ,∵BM平分∠ABC,∴∠OBM=∠EBM,∴∠OMB=∠EBM,∴OM∥BC,∴∠AMO=∠AEB,在△ABC中,AB=AC,AE是角平分线,∴AE⊥BC,∴∠AEB=90°,∴∠AMO=90°,∴OM⊥AE,∴AE与⊙O相切;(2)在△ABC中,AB=AC,AE是角平分线,∴BE=12BC,∠ABC=∠C,∵BC=6,cosC=14,∴BE=3,cos∠ABC=14,在△ABE中,∠AEB=90°,∴AB=BEcos ABC∠=314=12,设⊙O的半径为r,则AO=12﹣r,∵OM∥BC,∴△AOM∽△ABE,∴OM AO BE AB=,∴r3=12r12-,解得:r=2.1,∴⊙O的半径为2.1.20、(1)见解析;(2)【解析】分析:(1)欲证明AE是⊙O切线,只要证明OA⊥AE即可;(2)由△ACD∽△CFD,可得DF CDCD AD=,想办法求出CD、AD即可解决问题.详解:(1)证明:连接CD.∵∠B=∠D,AD是直径,∴∠ACD=90°,∠D+∠1=90°,∠B+∠1=90°,∵∠B=∠EAC,∴∠EAC+∠1=90°,∴OA⊥AE,∴AE是⊙O的切线.(2)∵CG⊥AD.OA⊥AE,∴CG∥AE,∴∠2=∠3,∵∠2=∠B,∴∠3=∠B,∵∠CAG=∠CAB,∴△ABC∽△ACG,∴AC AB AG AC=,∴AC2=AG•AB=36,∴AC=6,∵tanD=tanB=22,在Rt△ACD中,tanD=ACCD=22CD=262⨯=62,AD=()22662+=63,∵∠D=∠D,∠ACD=∠CFD=90°,∴△ACD∽△CFD,∴DF CD CD AD=,∴3,点睛:本题考查切线的性质、圆周角定理、垂径定理、相似三角形的判定和性质、解直角三角形等知识,解题关键是灵活运用所学知识解决问题,属于中考常考题型.21、 (1)18;(2)中位数;(3)100名.【解析】【分析】(1)根据条形统计图中的数据可以得到m 的值;(2)根据题意可知应选择中位数比较合适;(3)根据统计图中的数据可以计该部门生产能手的人数.【详解】(1)由图可得,众数m 的值为18,故答案为:18;(2)由题意可得,如果想让一半左右的工人能获奖,应根据中位数来确定奖励标准比较合适,故答案为:中位数;(3)300×11231230+++++=100(名), 答:该部门生产能手有100名工人.【点睛】本题考查了条形统计图、用样本估计总体、加权平均数、中位数和众数,解答本题的关键是明确题意,利用数形结合的思想解答.22、(1)见解析(2)BD=2【解析】解:(1)证明:∵AD 平分∠CAB ,DE ⊥AB ,∠C=90°,∴CD=ED ,∠DEA=∠C=90°.∵在Rt △ACD 和Rt △AED 中,AD AD {CD DE==, ∴Rt △ACD ≌Rt △AED (HL ).(2)∵Rt △ACD ≌Rt △AED ,CD=1,∴DC=DE=1.∵DE ⊥AB ,∴∠DEB=90°.∵∠B=30°,∴BD=2DE=2.(1)根据角平分线性质求出CD=DE ,根据HL 定理求出另三角形全等即可.(2)求出∠DEB=90°,DE=1,根据含30度角的直角三角形性质求出即可.23、(1)A(4,3);(2)28.【解析】(1)点A 是正比例函数34y x =与一次函数y=-x+7图像的交点坐标,把34y x =与y=-x+7联立组成方程组,方程组的解就是点A的横纵坐标;(2)过点A作x轴的垂线,在Rt△OAD中,由勾股定理求得OA的长,再由BC=75OA求得OB的长,用点P的横坐标a表示出点B、C的坐标,利用BC的长求得a值,根据12OBCS BC OP∆=⋅即可求得△OBC的面积. 【详解】解:(1)由题意得:347y xy x⎧=⎪⎨⎪=-+⎩,解得43xy=⎧⎨=⎩,∴点A的坐标为(4,3).(2)过点A作x轴的垂线,垂足为D,在Rt△OAD中,由勾股定理得,2222435 OA OD AD=++=∴775755BC OA==⨯=.∵P(a,0),∴B(a,34a),C(a,-a+7),∴BC=37(7)744a a a--+=-,∴7774a-=,解得a=8.∴11782822OBCS BC OP∆=⋅=⨯⨯=.24、(1)每个月生产成本的下降率为5%;(2)预测4月份该公司的生产成本为342.95万元.【解析】(1)设每个月生产成本的下降率为x,根据2月份、3月份的生产成本,即可得出关于x的一元二次方程,解之取其较小值即可得出结论;(2)由4月份该公司的生产成本=3月份该公司的生产成本×(1﹣下降率),即可得出结论.【详解】(1)设每个月生产成本的下降率为x,根据题意得:400(1﹣x)2=361,解得:x1=0.05=5%,x2=1.95(不合题意,舍去).答:每个月生产成本的下降率为5%;(2)361×(1﹣5%)=342.95(万元),答:预测4月份该公司的生产成本为342.95万元.【点睛】本题考查了一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元二次方程;(2)根据数量关系,列式计算.。
东北师大附中2007-2008学年上学期高三年级第四次摸底考试语文试题
吉林省东北师大附中2007-2008学年上学期高三年级第四次摸底考试语文试题命题人:唐志强黄丽娟张钧审核:高三语文学科组本试卷分为第Ⅰ卷和第Ⅱ卷两部分。
满分150分。
考试时间为150分钟。
注意事项:1.答题前,考生务必将自己的“姓名”、“班级”、和“考号”写在答题纸上作文纸上;2.请同学们认真阅读试题要求,并把答案分别落实在答题卡和答题纸上;3.考试结束,分交答题卡、答题纸和作文纸。
第Ⅰ卷一、(12分,每小题3分)1.下列各组词语中,有两个错别字的一组是A.秘诀满堂彩徇私舞弊异曲同工B.就犯列提纲貌合神离一如继往C.发仞抓典型相辅相承两全齐美D.诙谐眼中钉囚首垢面开源节流2.依次填入下面横线处的词语,最恰当的一组是①国家发展改革委宣布从1月15日起启动临时价格___________措施,主要涉及粮食、食用植物油、肉类及其制品、牛奶、鸡蛋、液化石油等。
②翻翻日历数着回家过年的日子,张丹丹和男友________着要在年三十这天从北京赶回哈尔滨,带着父母体验一顿西餐厅里的年夜饭。
③肥胖_____是一种臃肿的体态,更是一种疾病,它能导致糖尿病、高血压、癌症等诸多疾病,还会使人产生自卑心理。
A.干预合计不只B.干涉核计不只C.干预核计不止D.干涉合计不止3.下列各句中,加点的成语使用不恰当的一句是A.歌手李亚蓉在《我是你的》一书中,披露了娱乐圈多样化的潜规则,她用自己的经历告诉读者,在这个圈子里要做到一尘不染....绝非易事。
B.古人做学问讲究“博学”“转益多师”,今人求学也不可师心自用....。
C.老舍先生的《茶馆》聚国事家事、世态人情于一室,句句如探骊得珠....,让我们在啼笑中感知着民众的无奈以及时代的黑暗。
D.1月9日,长春市劳动保障监察支队向某建筑公司发出责令函,责令该公司限期支付拖欠农民工的143万工资。
市民们已经司空见惯....了这种拖欠农民工工资的现象。
4.下列各句中,没有语病、语意明确的一句是A.近日记者从省牧业局、省商务厅了解到,我省已做好了猪肉储备工作,猪肉价格将趋于平稳,如果价格一旦涨幅过大,立即投放储备猪肉。
吉林省吉林地区普通高中2023-2024学年高三第四次模拟考试数学试题
吉林省吉林地区普通高中2023-2024学年高三第四次模拟考试数学试题一、单选题1.已知命题:1,1p x x ∀>>,则命题p 的否定为( ) A .1,1x x ∃>≤ B .1,1x x ∃≤≤ C .1,1x x ∀><D .1,1x x ∀≤>2.已知复数z 满足226z z ++-=,则复数z 在复平面内所对应的点的轨迹为( ) A .线段B .圆C .椭圆D .双曲线3.如图,位于江城广场某大厦楼顶的四面钟与摇橹人雕像相映成趣,一直以来是吉林市的重要地标之一.该时钟整体呈正方体造型,在相邻两个时钟正常运行的过程中,两时针所在直线所成的角的最大值为( )A .30oB .45oC .60oD .90o二、多选题4.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解,例如,地震时释放出的能量E (单位:焦耳)与地震里氏震级M 之间的关系为lg 4.8 1.5E M =+.2024年3月25日,斐济附近海域发生里氏5.1级地震,它所释放的能量是同日我国新疆阿克苏地区发生里氏3.1级地震的( ) A .10倍B .100倍C .1000倍D .10000倍三、单选题5.已知双曲线C :()222103y x b b-=>的一条渐近线为y =,则双曲线C 的离心率为( )AB .2 CD .26.越来越多的人喜欢参加户外极限运动,据调查数据显示,,A B 两个地区分别有3%,8%的人参加户外极限运动,两个地区的总人口数的比为2:3.若从这两个地区中任意选取一人,则此人参加户外极限运动的概率为1p ;若此人参加户外极限运动,则此人来自A 地区的概率为2p ,那么( ) A .1211310011p p ==, B .12335011p p ==, C .121111005p p ==, D .1231505p p ==, 7.已知ABC V 的三个内角A ,B ,C 的对边分别为a ,b ,c ,π3A =,2DC BD =u u ur u u u r ,3b =,1c =,则线段AD 的长为( ) ABCD8.如图所示,曲线C 是由半椭圆221:1(0)43x y C y +=<,半圆()222:(1)10C x y y -+=≥和半圆()223:(1)10C x y y ++=≥组成,过1C 的左焦点1F 作直线1l 与曲线C 仅交于,A B 两点,过1C 的右焦点2F 作直线2l 与曲线C 仅交于,M N 两点,且12//l l ,则AB MN +的最小值为( )A .3B .4C .5D .6四、多选题9.从含有2件次品的100件产品中,任意抽出3件,则( )A .抽出的产品中恰好有1件是次品的抽法有28129C C 种B .抽出的产品中至多有1件是次品的概率为3983100C 1C -C .抽出的产品中至少有1件是次品的概率为3983100C 1C -D .抽出的产品中次品数的数学期望为35010.已知在公差不为0的等差数列{}n a 中,455,a a =-是2a 与6a 的等比中项,数列{}n b 的前n 项和为n S ,且11n n n b a a +=,则( ) A .213n a n =- B .*N ,1n n b ∀∈≥- C .1111211n S n =--- D .*65N ,n n S S S ∀∈≤≤11.已知函数()sin221cos2x x f x x=-+,则( ) A .函数()f x 一个周期是πB .函数()f x 递减区间为()πππ,π22k k k Z ⎛⎫-+∈ ⎪⎝⎭C .函数()f x 有无数多个对称中心D .过点()2,0作曲线()y f x =的切线有且只有一条五、填空题12.已知随机变量,X Y ,满足()2,32D X Y X ==-,则()D Y =. 13.已知函数()sin (0)f x x ωω=>,将函数()f x 的图象向右平移π3ω个单位得到函数()g x 的图象,点,,A B C 是函数()f x 与()g x 图象的连续相邻的三个交点,若ABC V 是钝角三角形,则ω的取值范围是.14.清初著名数学家孔林宗曾提出一种“蒺藜形多面体”,其可由两个正交的全等正四面体组合而成(每一个四面体的各个面都过另一个四面体的三条共点的棱的中点).如图,若正四面体棱长为2,则该组合体的表面积为;该组合体的外接球体积与两正交四面体公共部分的内切球体积的比值为.六、解答题15.已知数列{}n a 的前n 项和为n S ,且11,23n n a S a m ==+. (1)求实数m 的值和数列{}n a 的通项公式; (2)若31log n n n b a a +=⋅,求数列{}n b 的前n 项和n T .16.已知函数()()2e xf x x ax a =--.(1)当0a =时,求函数()f x 的极值; (2)求证:当01,0a x <<>时,()1a f x a >-. 17.某商场为庆祝开业十周年,开展了为期一个月的有奖促销活动,消费者一次性消费满200元,即可参加抽奖活动.抽奖盒子中装有大小相同的2个黄球和2个白球,规则如下:每次从盒子中任取两个球,若取到的两个球均为黄球,则中奖并获得奖品一份,活动结束;否则将取出的两个球放回盒中,并再放入一个大小相同的红球,按上述规则,重复抽奖,参加抽奖的消费者最多进行三次,即使第三次没有中奖,抽奖也会结束.(1)现某消费者一次性消费200元,记其参加抽奖的次数为随机变量ξ,求ξ的分布列和数学期望;(2)随着抽奖活动的有效开展,参加抽奖活动的人数越来越多,y 表示第x 天参加抽奖活动的人数,该商场对活动前5天参加抽奖活动的人数进行统计,得到数据如下:经过进一步统计分析,发现y 与x 具有线性相关关系.(i )计算相关系数r ,并说明y 与x 的线性相关程度的强弱;(结果精确到0.01)(ii )请用最小二乘法求出y 关于x 的经验回归方程ˆˆˆybx a =+,并据此估计第10天参加抽奖的消费者人数.附:①相关系数:()()nniii ix x y y x y nxyr ---==∑∑最小二乘估计分别为:()()()1122211ˆˆˆ,nniii ii i nniii i x x y y x y nxybay bx x x xnx ====---===---∑∑∑∑ ②参考数据:()()()55522111160,2890,4890i i i i i i i x x y y y y y ===--=-==∑∑∑.18.如图所示,半圆柱1OO 与四棱锥A BCDE -拼接而成的组合体中,F 是半圆弧BC 上(不含,B C )的动点,FG 为圆柱的一条母线,点A 在半圆柱下底面所在平面内,122,OB OO AB AC ====(1)求证:CG BF ⊥;(2)若//DF 平面ABE ,求平面FOD 与平面GOD 夹角的余弦值; (3)求点G 到直线OD 距离的最大值.19.直线族是指具有某种共同性质的直线的全体,例如()()210k x y ---='表示过点 2,1 且斜率存在的直线族,y x t =+'表示斜率为1的直线族.直线族的包络曲线定义为:直线族中的每一条直线都是该曲线上某点处的切线,且该曲线上的每一点处的切线都是该直线族中的某条直线.(1)若直线族()10,mx ny m n ++=∈R 的包络曲线是圆22:16O x y +=,求,m n 满足的关系式;(2)若点()00,M x y 不在直线族()2:280x y λλλΦ--=∈R 的任意一条直线上,对于给定的实数0x ,求0y 的取值范围和直线族Φ的包络曲线E ;(3)在(2)的条件下,过直线480x y --=上一个动点P 作曲线E 的两条切线,切点分别为,A B ,求原点O到直线AB距离的最大值.。
东北三省(哈尔滨师大附中、东北师大附中、辽宁省实验中学)2024届高三第三次联合模拟考试数学试题
=
uuur 2EA
.
(1)求证: D1E / / 平面 DB1C1 ; (2)若 ADD1A1 为菱形, ÐA1AD = 60o ,平面 ADD1A1 ^ 平面 ABCD . ①求平面 DB1C1 和平面 DCC1 夹角的余弦; ②求点 A1 到平面 DB1C1 的距离.
19.如图抛物线 C : y2 = x ,过 M (2,1) 有两条直线 l1, l2, l1 与抛物线交于 A, B,l2 与抛物线交于
故选:A 6.A
【分析】由题意可得 f ( x +1) = 10 - f (1- x) ,可将 f (2x +1) + f (1- x)≥10 转化为
答案第21 页,共22 页
f (2x +1) ³ f ( x +1) ,结合导数可得 f ( x) 在 (-¥, +¥) 上单调递增,即可得 2x +1 ³ x +1.
互独立,且没有平局,经抽签决定,第 1 局由甲开球. (1)求第 3 局甲开球的概率;
(2)设前 4 局中,甲开球的次数为 X ,求 X 的分布列及期望.
18.如图:四棱柱 ABCD - A1B1C1D1 底面 ABCD 为等腰梯形,
AB
/
/ DC ,
DC
=
1,
AB
=
3,
AD
=
BC
=
2,
uuur BE
()
试卷第11 页,共33 页
A.[0, +¥ )
B.[1, +¥)
C.[2, +¥)
7.已知 2a
=
log1 a
2
,
æ çè
1 2
吉林省长春市东北师范大学附属中学2023-2024学年高二上学期期中考试数学试题
(1)若从两校参加活动的教师中各任选1名,写出所有可能的结果,并求选出的 2 名教师
性别相同的概率;
(2)若从报名的 6 名教师中任选 2 名,求选出的 2 名教师来自同一学校的概率. 19.如图,在三棱锥 P ABC 中,△PAC 是边长为 2 的正三角形,BC AC ,ACB 2π ,
3 D 为 AB 上靠近 A 的三等分点.
D. 4 2,8
二、多选题
9.已知直线 l1 : x y 1 0 和直线 l2 : k 1 x ky k 0 k R ,则下列结论正确的
是( )
A.存在实数
k,使得直线
l2
的倾斜角为
π 2
B.对任意的实数 k,直线 l1 与直线 l2 都有公共点
C.对任意的实数 k,直线 l1 与直线 l2 都不重合
D.
1 3
5.圆心在 x 轴上,并且过点 A1,3 和 B 1,1 的圆的标准方程是( )
A. x 42 y2 18
B. x 32 y2 10
C. x 22 y2 10
D. x 22 y 2 10
6.若 a 是从 0,1,2,3 四个数中任取的一个数, b 是从 0,1,2 三个数中任取的一个数,则关于 x
x 42 y2 4 .
(1)求证:直线 l 恒过定点; (2)当直线 l 被圆 C 截得的弦长最短时,求 的值以及最短弦长;
(3)设 l 恒过定点 A ,点 P 满足
PA PO
2 ,记以点 P 、 O (坐标原点)、 A 、 C 为顶点的
四边形为 ,求四边形 面积的最大值,并求取得最大值时点 P 的坐标.
的一元二次方程 x2 2ax b2 0 有实根的概率是
A.
5 6
吉林省东北师范大学附属中学2024-2025学年高三上学期第一次摸底考试数学试卷
吉林省东北师范大学附属中学2024-2025学年高三上学期第一次摸底考试数学试卷一、单选题1.已知集合{}213A x x =-≤,{}240B x x x =∈-≤N ,则A B =I ( )A . 0,2B . 0,2C .{}0,1,2D .{}1,22.已知1tan 2α=,则sin cos sin 3cos αααα-=+( ) A .23B .17-C .12D .12-3.已知角α的终边经过点5π5πsin ,cos 66⎛⎫ ⎪⎝⎭,则tan α=( )A .B C .D 4.若函数()3ln f x a x x x=+-既有极大值也有极小值,则实数a 的取值范围为( )A .(B .((),-∞-⋃+∞C .(,-∞-D .()+∞5.已知函数()f x 是定义在R 上的奇函数,当0x <时,()3e 1e 1x x f x -=-,则下列说法正确的是( )A .函数()f x 有两个零点B .当0x >时,()e 3e 1x x f x -=-C .()0f x >的解集是(),ln 3-∞-D .m ∀∈R ,0x ∃∈R ,使得()0f x m =6.定义在R 上的函数()f x 的导函数为()f x ',若()10f =,()()f x f x '>,则不等式()0f x >的解集为( ) A .()0,∞+B .()1,+∞C .()0,1D .()()0,11,+∞U7.已知34m =,44m a -=,22m b -=,则下列说法正确的是( )A .a b <B .a b >C .a b =D .a b =-8.若关于x 不等式()ln ax x b ≤+恒成立,则当1e ea ≤≤时,1e lnb a +-的最小值为( )A .11e+B .e 1-C .1D .e二、多选题9.若0b a >>,则下列不等式成立的是( )A .2a ba b +<< B .11a b< C .222log log log 22a b a b ++< D .()22b a b a ->-10.已知π2sin 33α⎛⎫+= ⎪⎝⎭,则下列说法正确的是( )A .πcos 6α⎛⎫-= ⎪⎝⎭B .π1cos 239α⎛⎫-=- ⎪⎝⎭C .5π2cos 63α⎛⎫+=- ⎪⎝⎭D .若()0,πα∈,cos α=11.定义在R 上的偶函数()f x ,满足()()=2f x f x --,当(]1,0x ∈-时,()1f x x =--,则下列说法正确的是( )A .()10f =B .2027122f ⎛⎫= ⎪⎝⎭C .函数()()31y f x x =--的所有零点之和为5D .()0.11e 1ln 1.1f f ⎛⎫-> ⎪⎝⎭三、填空题12.已知某扇形的圆心角为120°,弧长为2πcm ,则此扇形的面积为2cm .13.已知函数2231,0()ln(3),0x x f x x ax x +⎧-<⎪=⎨++≥⎪⎩,()()30f f -=,则实数a 的值为. 14.对于函数()f x ,若在定义域内存在实数x 满足()()f x f x -=-,则称函数()f x 为“局部奇函数”.若函数()14972x x f x m +=-⋅-在定义域R 上为“局部奇函数”,则实数m 的取值范围为.四、解答题15.已知数列{}n a 满足:11a =,()*12n n a a n +=+∈N ,数列{}n b 为单调递增等比数列,22b =,且1b ,2b ,31b -成等差数列. (1)求数列{}n a ,{}n b 的通项公式;(2)设2log n n n c a b =+,求数列{}n c 的前n 项和n T .16.已知函数()2e e x xf x x =+-.(1)求曲线()y f x =在点()()0,0f 处的切线方程; (2)当[]1,0x ∈-时,求函数()f x 的最大值与最小值.17.师大附中考入北大的学生李聪毕业后帮助某地打造“生态果园特色基地”,他决定为该地改良某种珍稀水果树,增加产量,提高收入,调研过程中发现:此珍稀水果树的单株产量W (单位:千克)与投入的成本30x (单位:元)满足如下关系:()2343,02,332,2 5.1x x W x x x x x ⎧+≤≤⎪⎪=⎨⎪+<≤⎪+⎩,已知这种水果的市场售价为10元/千克,且供不应求.水果树单株获得的利润为()f x (单位:元).(1)求()f x 的函数关系式;(2)当投入成本为多少时,该水果树单株获得的利润最大?最大利润是多少?18.已知函数()()e ln xf x x a a x =--,a ∈R .(1)当e a =时,求函数()f x 的单调区间与极值;(2)若函数()f x 有2个不同的零点1x ,2x ,满足2121e 2e x xx x >,求a 的取值范围.19.对于数列{}n x ,若0M ∃>,对任意的*n ∈N ,有n x M ≤,则称数列{}n x 是有界的.当正整数n 无限大时,若n x 无限接近于常数a ,则称常数a 是数列{}n x 的极限,或称数列{}n x 收敛于a ,记为lim n n x a →+∞=.单调收敛原理:“单调有界数列一定收敛”可以帮助我们解决数列的收敛性问题.(1)证明:对任意的1x ≥-,*n ∈N ,()11nx nx +≥+恒成立; (2)已知数列{}n a ,{}n b 的通项公式为:11nn a n ⎛+⎫ ⎪⎝⎭=,111n n b n +⎛⎫=+ ⎪⎝⎭,*n ∈N .(i )判断数列{}n a ,{}n b 的单调性与有界性,并证明;(ii )事实上,常数e lim lim n n n n a b →+∞→+∞==,以e 为底的对数称为自然对数,记为ln x .证明:对任意的*n ∈N ,()1111ln 11nnk k n k k==<+<+∑∑恒成立.。
吉林省长春市东北师大附中2024届高三上学期第三次摸底考试数学试题含答案
2023-2024学年上学期东北师大附中数学学科试卷高三年级第三次摸底考试第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2Z 230A x x x =∈--<∣,则集合A 的子集个数为()A.3B.4C.8D.162.设()()1i 21i z -=+,则z =()A.22B.1C.D.23.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[]0,1均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第一次操作;再将剩下的两个区间120,,,133⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于910,则需要操作的次数n 的最小值为(参考数据:lg 20.3010,lg 30.4771==)()A.6B.8C.10D.124.命题“2R,230x x x ∃∈-+<”的否定是()A.2R,230x x x ∃∈-+>B.2R,230x x x ∀∈-+>C.2R,230x x x ∃∈-+≥ D.2R,230x x x ∀∈-+≥5.底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为()A.26B.28C.30D.326.已知π1sin 63x ⎛⎫+=- ⎪⎝⎭,则2πcos 23x ⎛⎫-= ⎪⎝⎭()A.79-B.29-C.29D.797.已知函数()f x 及其导数()f x '的定义域均为R ,()f x '在R 上单调递增,()1f x '+为奇函数,若23a =,45b =,34c =,则()A.()()()f a f b f c <<B.()()()f b f a f c <<C.()()()f b f c f a << D.()()()f c f b f a <<8.若对任意实数0,0x y >>,不等式()x a x y ≤+恒成立,则实数a 的最小值为()A.12B.1- C.1D.12+二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知k ∈Z ,则函数()()22kxxf x x -=⋅+的图象可能是()A.B.C. D.10.已知函数2()cos (0)3f x x ωωπ⎛⎫=+> ⎪⎝⎭在ππ,2⎡⎤-⎢⎥⎣⎦上单调,且()f x 的图象关于点π,03⎛⎫-⎪⎝⎭对称,则()A.()f x 的最小正周期为4πB.21099f f ππ⎛⎫⎛⎫> ⎪ ⎪⎝⎭⎝⎭C.将()f x 的图象向右平移4π3个单位长度后对应的函数为偶函数D.函数5()4y f x =+在[0,]π上有且仅有一个零点11.如图,在正方体1111ABCD A B C D -中,点,M N 分别为棱11,B C CD 上的动点(包含端点),则下列说法正确的是()A.当M 为棱11B C 的中点时,则在棱CD 上存在点N 使得MN AC⊥B.当,M N 分别为棱11,B C CD 的中点时,则在正方体中存在棱与平面1A MN 平行C.当,M N 分别为棱11,B C CD 的中点时,过1,,A M N 三点作正方体的截面,则截面为五边形D.三棱锥11D A MN -的体积为定值12.已知曲线()e xf x =在点()()11,P x f x 处的切线和曲线()lng x x =在点()()22,Q x g x 处的切线互相平行,则下列命题正确的有()A.12x x +有最大值是1B.()()12f x g x +有最小值是1C.12x x 有最小值是1eD.若10x <,则221212x x x x +有最大值为1e e--第II 卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13.已知()2,1P -是θ终边上的一点,则sin 2θ=_____________.14.在ABC 中,2,4AB AC ==,P 是ABC 的外心,则AP BC ⋅等于___________.15.已知两个等差数列2,6,10,…,210及2,8,14,…,212,将这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的各项之和等于___________.16.正三棱锥-P ABC 的四个顶点都在同一个球面上,且底面边长是3,侧棱PA 与底面ABC 所成的角为α,二面角P AB C --的平面角为β.当该球的表面积最小时,()tan αβ+=____________.四、解答题:本题共6小题,第17小题10分,其余小题每题12分,共70分.解答题应写出文字说明、证明过程或演算步骤.17.已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S 成等比数列.(1)求数列{}n a 的通项公式;(2)求数列{}2na n ⋅的前n 项和nT .18.在ABC 中,角,,A B C 所对的边分别是,,a b c .已知()2cos cos cos B C B Cbcab ac+=+.(1)求A ;(2)D 为BC 边上一点,DA BA ⊥,且3BD DC =,求cos C .19.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 和侧面11BCC B 都是矩形,11D D D C ==,22AB BC ==.(1)求证:1AD D C ⊥;(2)若点P 的在线段1BD 上,且二面角P CD B --的大小为4π,求1D P PB的值.20.甲,乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为1()2p p >,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为59.(1)求p 的值;(2)设ξ表示比赛停止时比赛的局数,求随机变量ξ的分布列和数学期望E ξ.21.已知双曲线()2222:10,0x y E a b a b-=>>的左、右焦点分别为())12,F F ,渐近线方程为12y x =±.(1)求E 的方程;(2)直线l 与E 的左、右两支分别交于,M N 两点(,M N 在x 轴的同侧),当12//F M F N 时,求四边形12F F NM 面积的最小值.22.已知函数()()sin sin 0f x a x ax a =+>.(1)当1,0a x =>时,证明()2f x x <;(2)当2a =时,讨论()f x 的单调性;(3)设0x >,证明()()e 2e axax f x +->.2023-2024学年上学期东北师大附中数学学科试卷高三年级第三次摸底考试第I 卷(选择题)一、单选题:本题共8小题,每小题5分,共40分.在每个小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2Z 230A x x x =∈--<∣,则集合A 的子集个数为()A.3B.4C.8D.16【答案】C 【解析】【分析】解一元二次不等式,并结合已知用列举法表示集合A 作答.【详解】解不等式2230x x --<,得13x -<<,因此{}3Z{0,1,12}A x x -<<=∈=∣,所以集合A 的子集个数为328=.故选:C2.设()()1i 21i z -=+,则z =()A.2B.1C.D.2【答案】D 【解析】【分析】根据复数的乘法运算以及模长公式求解.【详解】由()()1i 21i z -=+可得()()()21i 1i 21i z -+=+,所以()21i 2i z =+=,故2z =,故选:D3.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[]0,1均分为三段,去掉中间的区间段12,33⎛⎫⎪⎝⎭,记为第一次操作;再将剩下的两个区间120,,,133⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于910,则需要操作的次数n 的最小值为(参考数据:lg 20.3010,lg 30.4771==)()A.6B.8C.10D.12【答案】A 【解析】【分析】先由题设得到前几次操作去掉的区间的长度,然后总结出第n 次操作去掉的区间的长度和为123n n -,把n 次操作和去掉的区间的长度之和转化为等比数列的前n 项和,求出前n 项和n S ,再求解不等式910n S ≥即可.【详解】第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19的区间,长度和为29;第三次操作去掉四个长度为127的区间,长度和为427;⋯,第n 次操作去掉12n -个长度为13n 的区间,长度和为123n n -,于是进行了n 次操作后,所有去掉的区间长度之和为112[1()]1222331()2393313n n nn n S --=++⋯+==--,由题意知:291()310n-≥,解得: 5.679n ≥,又n 为整数,可得n 的最小值为6,故选:A4.命题“2R,230x x x ∃∈-+<”的否定是()A.2R,230x x x ∃∈-+>B.2R,230x x x ∀∈-+>C.2R,230x x x ∃∈-+≥D.2R,230x x x ∀∈-+≥【答案】D 【解析】【分析】根据全称命题与存在性命题的关系,准确改写,即可求解.【详解】根据全称命题与存在性命题的关系得,命题“2R,230x x x ∃∈-+<”的否定是“2R,230x x x ∀∈-+≥”.故选:D.5.底面边长为4的正四棱锥被平行于其底面的平面所截,截去一个底面边长为2,高为3的正四棱锥,所得棱台的体积为()A.26B.28C.30D.32【答案】B 【解析】【分析】用棱台的体积公式(1213V h S S =+求解,其中h 为高,12,S S 分别为上下底面积.【详解】设正四棱锥为S ABCD -,截取的正四棱锥为1111S A B C D -,1,O O 分别为正四棱台1111A B C D ABCD -上下底面的中心,如图.因为114,2,AB A B ==,所以OA ===,11O A =,由于截面平行于底面得11112SO O A SO OA ===,又13SO =,所以16,3SO OO ==,所以正四棱台上下底面边长分别为2,4,高为3,所以(14163283V =⨯++⨯=,故选:B 6.已知π1sin 63x ⎛⎫+=- ⎪⎝⎭,则2πcos 23x ⎛⎫-= ⎪⎝⎭()A.79-B.29-C.29D.79【答案】A 【解析】【分析】利用诱导公式、余弦的倍角公式可得答案.【详解】因为π1sin 63x ⎛⎫+=- ⎪⎝⎭,所以22π2πππcos 2cos π2cos 212sin 3336⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫-=--+=-+-+ ⎪ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎝-⎭⎣=⎦x x x x 2179123⎡⎤⎛⎫=---⎢⎥ ⎪⎢⎥⎣⎦=-⎝⎭.故选:A.7.已知函数()f x 及其导数()f x '的定义域均为R ,()f x '在R 上单调递增,()1f x '+为奇函数,若23a =,45b =,34c =,则()A.()()()f a f b f c <<B.()()()f b f a f c <<C.()()()f b f c f a <<D.()()()f c f b f a <<【答案】C 【解析】【分析】先由()1f x '+为奇函数得到()10f '=,再由()f x '的单调性可推得()f x 的单调性,再比较,,,1a b c 的大小即可得解.【详解】因为()1f x '+为奇函数,所以()()11f x f x ''+=--,令0x =,则()()11f f ''=-,故()10f '=,又()f x '在R 上单调递增,所以当1x <时,()0f x '<,则()f x 单调递减;当1x >时,()0f x ¢>,则()f x 单调递增;因为23a =,45b =,34c =,所以22log 3log 21a =>=,44log 541log b =>=,33log 4log 31c =>=,因为()()()()()()22224ln 2ln 4ln 2ln 4ln 8ln 94ln 3≤+=<=,由于ln 2ln 4≠,故上式等号不成立,则()()()2ln 2ln 4ln 3<,又ln 30,ln 20>>,所以ln 4ln 3ln 3ln 2<,即32log 4log 3<,即c a <,同理可得b c <,所以1b c a <<<,所以()()()f b f c f a <<.故选:C.8.若对任意实数0,0x y >>,不等式()x a x y ≤+恒成立,则实数a 的最小值为()A.12B.1-C.1D.12+【答案】D 【解析】【分析】分离变量将问题转化为a ≥0,0x y >>(0)t t =>及1(1)t m m +=>,然后通过基本不等式求得答案.【详解】由题意可得,a ≥0,0x y >>1x =+(0)t t =>,则2111t t x+=++,再设1(1)t m m +=>,则22111(1)1t m t m x+===++-+212222m m m m m =-++-12+≤==,当且仅当21m m=⇒=-时取得“=”.所以12a ≥,即实数a 的最小值为212.故选:D.二、多选题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知k ∈Z ,则函数()()22kxxf x x -=⋅+的图象可能是()A.B.C. D.【答案】ABC 【解析】【分析】令()22xxg x -=+,先分析函数()g x 的奇偶性,再分情况讨论()kh x x =的奇偶性,然后逐项分析四个选项即可求解.【详解】令()22xx g x -=+,则()()22xx g x g x --=+=,故()22x x g x -=+为偶函数.当0k =时,函数()22xxf x -=+为偶函数,且其图象过点()0,2,显然四个选项都不满足.当k 为偶数且0k ≠时,易知函数()kh x x =为偶函数,所以函数()()22kxxf x x -=⋅+为偶函数,其图象关于y 轴对称,则选项C ,D 符合;若k 为正偶数,因为()()22kxxf x x -=⋅+,则1()(22)(2ln 22ln 2)k x x k x x f x kx x ---'=++-,当0x >时,()0f x '>,所以函数()f x 在(0,)+∞上单调递增,又因为函数()()22kx xf x x -=⋅+为偶函数,所以函数()f x 在(,0)-∞上单调递减,选项C 符合;若k 为负偶数,易知函数()()()12222kxxxx kf x x x ---=⋅+=⋅+的定义域为{}0xx ≠∣,排除选项D .当k 为奇数时,易知函数()kh x x =为奇函数,所以函数()()22kxxf x x -=⋅+为奇函数,其图象关于坐标原点对称,则选项A,B 符合,若k 为正奇数,因为()()22kxxf x x -=⋅+,则1()(22)(2ln 22ln 2)k x x k x x f x kx x ---'=++-,当0x >时,()0f x '>,所以函数()f x 在(0,)+∞上单调递增,又因为函数()()22kxxf x x -=⋅+为奇函数,所以函数()f x 在(,0)-∞上单调递增,选项B 符合;若k 为负奇数,函数()()()12222kxxxx kf x x x ---=⋅+=⋅+的定义域为{}0xx ≠∣,不妨取1k =-,则()22x xf x x-+=,当0x +→时,()f x →+∞;当12x =时,12()122f ==;当1x =时,1(1)22f =;当2x =时,1(2)28f =;当3x =时,17(3)2(2)24f f =>;当x 趋向于正无穷时,因为指数函数的增长速率比幂函数的快,所以()f x 趋向于正无穷;所以()0,∞+内()f x 先减后增,故选项A 符合.故选:ABC .10.已知函数2()cos (0)3f x x ωωπ⎛⎫=+> ⎪⎝⎭在ππ,2⎡⎤-⎢⎥⎣⎦上单调,且()f x 的图象关于点π,03⎛⎫-⎪⎝⎭对称,则()A.()f x 的最小正周期为4πB.21099f f ππ⎛⎫⎛⎫>⎪ ⎪⎝⎭⎝⎭C.将()f x 的图象向右平移4π3个单位长度后对应的函数为偶函数D.函数5()4y f x =+在[0,]π上有且仅有一个零点【答案】ACD 【解析】【分析】根据函数的单调性和对称性列式求出ω,再根据最小正周期公式可判断A ;根据解析式计算可判断B ;利用图象变换和余弦函数的奇偶性可判断C ,利用余弦函数的图象可判断D.【详解】因为函数2()cos (0)3f x x ωωπ⎛⎫=+> ⎪⎝⎭在ππ,2⎡⎤-⎢⎥⎣⎦上单调,所以()f x 的最小正周期T 满足π3π(π)222T ≥--=,即π3π2ω≥,所以203ω<≤.因为()f x 的图象关于点π,03⎛⎫- ⎪⎝⎭对称,所以π2πππ332k ω-+=+,Z k ∈,得132k ω=-,Z k ∈,由120323k ω<=-≤,得11186k -≤<,因为Z k ∈,所以0k =,12ω=.所以12π()cos()23f x x =+.对于A ,()f x 的最小正周期为2π4π12T ==,故A 正确;对于B ,2π(9f =12π2πcos(293⨯+7π2πcos cos 99==-,10π110π2π(cos()9293f =⨯+11π2πcos cos 99==-,所以21099f f ππ⎛⎫⎛⎫=⎪ ⎪⎝⎭⎝⎭,故B 不正确;对于C ,将()f x 的图象向右平移4π3个单位长度后对应的函数为14π2π()cos[()]233g x x =-+1cos 2x =为偶函数,故C 正确;对于D ,5()4y f x =+12π5cos(423x =++,令0y =,得12π4cos()235x +=-,令12π23t x =+,由0πx ≤≤,得2π7π36t ≤≤,作出函数cos y t =2π7π36t ⎛⎫≤≤⎪⎝⎭与直线45y =-的图象如图:由图可知,函数cos y t =2π7π36t ⎛⎫≤≤⎪⎝⎭与直线45y =-的图象有且只有一个交点,所以函数5()4y f x =+在[0,]π上有且仅有一个零点,故D 正确.故选:ACD11.如图,在正方体1111ABCD A B C D -中,点,M N 分别为棱11,B C CD 上的动点(包含端点),则下列说法正确的是()A.当M 为棱11B C 的中点时,则在棱CD 上存在点N 使得MN AC⊥B.当,M N 分别为棱11,B C CD 的中点时,则在正方体中存在棱与平面1A MN 平行C.当,M N 分别为棱11,B C CD 的中点时,过1,,A M N 三点作正方体的截面,则截面为五边形D.三棱锥11D A MN -的体积为定值【答案】ACD 【解析】【分析】当N 为CD 的中点时,过M 作MM BC '⊥于M ',证AC MM N '⊥平面判断A ;根据正方体棱的特征和线面平行的判定方法判断B ;通过线线平行和线面平行的性质,作出平面1A MN 与正方体各个面的交线判断C ;利用等体积法计算判断D.【详解】在正方体1111ABCD A B C D -中,点,M N 分别在棱11,B C CD 上,对于A ,如图,当N 为CD 的中点时,过M 作1//MM BB '交BC 于M ',显然M '为BC 的中点,MM '⊥平面ABCD ,而AC ⊂平面ABCD ,则有MM AC '⊥,又M N AC ¢^,M N '与MM '相交于M ',因此AC ⊥平面MM N ',又MN ⊂平面MM N ',所以MN AC ⊥,A 正确;对于B ,在正方体1111ABCD A B C D -中,棱可分为三类,分别是与11111,,A A A B A D 平行的棱,而11111,,A A A B A D 与平面1A MN 都相交于1A ,因此在正方体中不存在棱与平面1A MN 平行,B 错误;对于C ,如图,取BC 中点M ',连接AM ',有1//AM A M ',过N 作AM '的平行线交AD 于点E ,此时14DE DA =,有1//EN A M ,即EN 为过1,,A M N 三点的平面与平面ABCD 的交线;连接1A E ,在BC 上取点F ,使得14CF CB =,有11//A E B F ,再过点M 作1B F 的平行线交1CC 于点G ,此时113CG CC =,且1//A E MG ,即MG 为过1,,A M N 三点的平面与平面11BCC B 的交线;连接NG ,则五边形1A MGNE 即为正方体中过1,,A M N 三点的截面,C 正确;对于D ,M ,N 在棱11,B C CD 上运动时,M 到11A D 距离始终为2,N 到平面11A D M 的距离始终为2,因此1111114222323D A MN N A MD V V --==⨯⨯⨯⨯=恒为定值,D 正确.故选:ACD12.已知曲线()e xf x =在点()()11,P x f x 处的切线和曲线()lng x x =在点()()22,Q x g x 处的切线互相平行,则下列命题正确的有()A.12x x +有最大值是1B.()()12f x g x +有最小值是1C.12x x 有最小值是1eD.若10x <,则221212x x x x +有最大值为1e e--【答案】BD 【解析】【分析】根据导数值相等可得121e x x =,进而分别构造函数()1e x m x x =+()=e x n x x -()e ,xq x x =(),e xx p x =即可利用导数求解函数的最值求解.【详解】()1e ,()xf xg x x ''==,所以()11221e ()x f x g x x ''===,故121e x x =,进而121e xx =对于A ,11211ex x x x +=+,令()()11e 1,e e 1ex x x xm x x m x =+=-∴=-,故当()0,0,()x m x m x '>>单调递增,当()0,0,()x m x m x '<<单调递减,故()()01m x m ≥=,因此12x x +有最小值为1,A 错误,对于B ,()()11111221e ln e lne exxx x f x g x x x +=+=+=-,令()()=e ,e 1xx n x x n x '-∴=-,故当0,()0,()x n x n x '>>单调递增,当0,()0,()x n x n x '<<单调递减,所以()(0)1n x n ≥=,故()()12f x g x +的最小值为1,B 正确,对于C ,1112e x x x x =,令1(),()e ex xx xp x p x -'=∴=,故当1,()0,()x p x p x '><单调递减,当1,()0,()x p x p x '<>单调递增,所以1()(1)ep x p ≤=,故12x x 有最大值是1e,C 错误,对于D ,11221211211e ex x x x x x x x +=+,令()()()e ,1e x x q x x q x x '=∴=+,当01,()0,()x q x q x '>>->单调递增,当1,()0,()x q x q x '<-<单调递减,所以1()(1)eq x q ≥-=-,故()1,0e q x ⎡⎫∈-⎪⎢⎣⎭由于函数11,,0ey t t t ⎡⎫=+∈-⎪⎢⎣⎭单调递减,所以当max 111,e,eet y t t ⎛⎫=-=+=-- ⎪⎝⎭,故D 正确,故选:BD【点睛】方法点睛:利用导数比较大小的基本步骤(1)作差或变形;(2)构造新的函数()h x ;(3)利用导数研究()h x 的单调性或最值;(4)根据单调性及最值,得到所证不等式.第II 卷(非选择题)三、填空题:本题共4小题,每小题5分,共20分.13.已知()2,1P -是θ终边上的一点,则sin 2θ=_____________.【答案】45-##0.8-【解析】【分析】根据任意角三角函数的定义以及二倍角的正弦公式求解.【详解】由题可知,r OP ==,所以525sin ,55θθ===-所以4sin 22sin cos ,5θθθ==-故答案为:45-.14.在ABC 中,2,4AB AC ==,P 是ABC 的外心,则AP BC ⋅等于___________.【答案】6【解析】【分析】根据平面向量数量积的运算律求解.【详解】如图,若P 是ABC 的外心,过P 作,PS AB PT AC ⊥⊥,垂足分别为,S T ,则,S T 分别为,AB AC 中点,所以1,2AS AT ==,所以()·AP BC AP AC AB AP AC AP AB⋅=-=⋅-⋅ 24126AT AC AS AB =⋅-⋅=⨯-⨯=,故答案为:6.15.已知两个等差数列2,6,10,…,210及2,8,14,…,212,将这两个等差数列的公共项按从小到大的顺序组成一个新数列,则这个新数列的各项之和等于___________.【答案】1872【解析】【分析】分别求出两数列的通项公式,求得满足公共项的特征,可知公共项组成的数列是首项为2,公差为12的等差数列,且项数为18项,即可求出各项之和等于1872.【详解】根据题意可知,令数列2,6,10,…,210为{}n a ,易知数列{}n a 是首项为2,公差为4的等差数列,即()*24142,N ,153n a n n n n =+-=-∈≤≤;令数列2,8,14,…,212为{}n b ,易知数列{}n b 是首项为2,公差为6的等差数列,即()*26164,N ,136n b n n n n =+-=-∈≤≤;这两个等差数列的公共项需满足12124264n n a n b n =-==-,可得12426n n +=,易知当21n =时,11n =;当22n =时,*15N 2n =∉;当23n =时,14n =;当24n =时,*111N 2n =∉;当25n =时,17n =……即可得21,3,5,,35n =⋅⋅⋅⋅时为两数列的公共项,设公共项为数列{}n c ,易知1232,14,c c b ===⋅⋅⋅所以{}n c 是以12c =为首项,公差为12的等差数列,且项数为18项,即()21211210,118n c n n n =+-=-≤≤;可得数列{}n c 的各项之和等于()121818212181018722c c c ⨯+⨯-++⋅⋅⋅+==.故答案为:187216.正三棱锥-P ABC 的四个顶点都在同一个球面上,且底面边长是3,侧棱PA 与底面ABC 所成的角为α,二面角P AB C --的平面角为β.当该球的表面积最小时,()tan αβ+=____________.【答案】3-【解析】【分析】建立空间直角坐标系,利用球心到A ,B ,C ,P 的距离等于半径,将半径表示为只含有一个变量的函数,利用导数找到最小值,将三棱锥特殊化,再分别求角即可.【详解】如图建立空间直角坐标系,记ABC 中心为Q,则(0,0,0)Q,A ,33(,22C --,33(,22B -,(0,0,)P m 设球心为(,,)a b c ,半径为R ,则(()222222222222222233223322a b c R a b c R a b c R a b c m R ⎧++=⎪⎪⎛⎫⎛⎫⎪++++= ⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎨⎪⎛⎛⎫⎪-+++= ⎪ ⎝⎭⎪⎝⎭⎪++-=⎪⎩,解得0a =,0b =,c =,232m R m+=,该球的表面积最小,∴该球半径最小,构建()()2302m f m m m+=>,则223()2-'=m f m m ,令()0f m '<,∈m ,令()0f m '>,)∈+∞m ,故()f m在单调递减,在)+∞单调递增,当m =时,半径最小,此时P易知面ABC 法向量(0,0,1)n =,(0,= AP ,故·sin 2·AP n AP nα== ,且π0,2α⎡⎤∈⎢⎥⎣⎦可得π4α=,故tan 1α=,而3(,22AB =-,设面ABP 法向量(,,)m x y z = ,则333·022·0m AB x y mAP ⎧=-=⎪⎨⎪=+=⎩,令x =可得m = ,且π0,2β⎛⎫∈ ⎪⎝⎭,故·5cos 5n m n m β== ,所以sin 5β=,tan 2β=,故()tan tan tan 31tan tan αβαβαβ++==--故答案为:3-.【点睛】本题解题关键是先利用球的表面积最小得到P 的坐标,然后再利用向量法求得线面角,面面角,结合和角公式可得答案.四、解答题:本题共6小题,第17小题10分,其余小题每题12分,共70分.解答题应写出文字说明、证明过程或演算步骤.17.已知等差数列{}n a 的公差为2,前n 项和为n S ,且124,,S S S 成等比数列.(1)求数列{}n a 的通项公式;(2)求数列{}2na n ⋅的前n 项和nT .【答案】(1)*21,N n a n n =-∈(2)211122339n n T n +⎛⎫=-⋅+ ⎪⎝⎭【解析】【分析】(1)根据等差数列定义利用等比中项即可求得11a =,求得*21,N n a n n =-∈;(2)利用错位相减法求和即可求得数列{}2na n ⋅的前n 项和211122339n nTn +⎛⎫=-⋅+ ⎪⎝⎭.【小问1详解】设等差数列{}n a 的首项为1a ,由124,,S S S 成等比数列可得()()211112462a a a a ++=+⨯,解得11a =,所以数列{}n a 是以11a =为首项,公差为2的等差数列;即()12121n a n n =+-=-,所以数列{}n a 的通项公式为*21,N n a n n =-∈【小问2详解】由(1)可得2122n a n n n -⋅=⋅,所以前n 项和135211232222n n T n -⋅+⋅+⋅⋅⋅+⋅=⋅+,()35721214211232222n n n n n T -+⋅+⋅+⋅+⋅⋅+⋅=⋅+-⋅;两式相减可得()213572121212121422222222232143n nn n n n n n n T n +-+++--+++⋅⋅⋅+-⋅=--⋅-⋅-=+=;可得211122339n n T n +⎛⎫=-⋅+ ⎪⎝⎭18.在ABC 中,角,,A B C 所对的边分别是,,a b c .已知()2cos cos cos B C B Cbcab ac+=+.(1)求A ;(2)D 为BC 边上一点,DA BA ⊥,且3BD DC =,求cos C .【答案】(1)2π3(2)71938【解析】【分析】1.先利用三角形的内角和及诱导公式,把()cos B C +转化为cos A -,然后两边同乘以abc ,转化为:2cos cos cos a A c B b C -=+,再由正弦定理把边化成角,得:()2sin cos sin cos cos sin sin sin A A C B C B B C A -=+=+=,进一步得:1cos 2A =-,可得角A .2.可以采用向量的方法,表示AD,根据AB AD ⊥,转化为向量的数量积为0,得到边的关系;在再ABC 中,用余弦定理求解.【小问1详解】∵πB C A +=-⇒()cos cos B C A +=-,所以:2cos cos cos A B Cbc ab ac-=+,两边同乘以abc 得:2cos cos cos a A c B b C -=+.由正弦定理得:()2sin cos sin cos cos sin sin sin A A C B C B B C A -=+=+=.∵sin 0A ≠,所以1cos 2A =-.所以2π3A =.【小问2详解】取AB 、AC为平面向量的基底.因为D 在BC 边上,且3BD DC =,所以1344AD AB AC =+ .因为DA BA ⊥,所以·0AD AB = ⇒13·044AB AC AB ⎛⎫+= ⎪⎝⎭⇒23·0AB AC AB +=,所以232c bc =⇒23c b =.不妨设2b =,3c =.在ABC 中,由余弦定理:2222π2cos496193a b c bc =+-=++=,所以a =.由余弦定理:222719cos 238a b c C ab +-===.故cos 38C =.19.如图,在四棱柱1111ABCD A B C D -中,底面ABCD 和侧面11BCC B都是矩形,11D D D C ==,22AB BC ==.(1)求证:1AD D C ⊥;(2)若点P 的在线段1BD 上,且二面角P CD B --的大小为4π,求1D P PB的值.【答案】(1)证明见解析(2)2【解析】【分析】(1)通过证明AD ⊥平面11DCC D ,可证1AD D C ⊥;(2)建立空间直角坐标系,设()1101D P D B λλ=≤≤ ,由二面角P CD B --的大小为π4,利用平面法向量求出λ,可求1D PPB.【小问1详解】在四棱柱1111ABCD A B C D -中,底面ABCD 和侧面11BCC B 都是矩形,则侧面11ADD A 都是矩形,有AD DC ⊥,1AD DD ⊥,1DC DD D ⋂=,1,DC DD ⊂平面11DCC D ,AD ⊥平面11DCC D ,1D C ⊂平面11DCC D ,1AD D C⊥【小问2详解】11D D D C ==,22AB BC ==.,E F 分别为,AB DC 的中点,连接1ED ,EF//EF AD ,AD ⊥平面11DCC D ,EF ⊥平面11DCC D ,11D D D C =,以E 为原点,1,,EF EC ED 所在直线分别为,,x y z 轴,建立如图所示的空间直角坐标系,11D D D C ==,22AB BC ==,则12ED =.则()()()()10,1,0,0,1,0,0,0,2,1,1,0C D D B -,设()1101D P D B λλ=≤≤ ,即()11,1,2D P λ=-,可得(),,22P λλλ-,()0,2,0DC = ,(),1,22CP λλλ=-- ,设平面PCD 的一个法向量(),,n x y z =r,则有()()201220n DC y n CP x y z λλλ⎧⋅==⎪⎨⋅=+-+-=⎪⎩ ,令z λ=,则22,0x y λ=-=,得()22,0,n λλ=-r ,又平面BCD 的一个法向量()0,0,1m =,二面角P CD B --的大小为π4,则有πcos cos42n m n m n m ⋅⋅====⋅ ,解得23λ=,1123D P D B = ,则113PB D B = ,有1D PPB的值为2.20.甲,乙两人进行乒乓球比赛,约定每局胜者得1分,负者得0分,比赛进行到有一人比对方多2分或打满6局时停止.设甲在每局中获胜的概率为1()2p p >,且各局胜负相互独立.已知第二局比赛结束时比赛停止的概率为59.(1)求p 的值;(2)设ξ表示比赛停止时比赛的局数,求随机变量ξ的分布列和数学期望E ξ.【答案】(1)23p =.(2)ξ246P592081168126681E ξ=.【解析】【分析】(1)分析题意,甲连胜2局或乙连胜2局时,第二局比赛结束时比赛结束.列方程求出p ;(2)依题意知,分析出ξ的所有可能值为2,4,6.分别求出对应的概率,写出分布列,求出数学期望.【详解】(1)依题意,当甲连胜2局或乙连胜2局时,第二局比赛结束时比赛结束.∴有225(1)9p p +-=.解得23p =或13p =.12p >,23p ∴=.(2)依题意知,依题意知,ξ的所有可能值为2,4,6.设每两局比赛为一轮,则该轮结束时比赛停止的概率为59.若该轮结束时比赛还将继续,则甲、乙在该轮中必是各得一分,此时,该轮比赛结果对下轮比赛是否停止没有影响.从而有5(2)9P ξ==,5520(4)(1)()9981P ξ==-=,5516(6)(1)(1)19981P ξ==--⋅=.∴随机变量ξ的分布列为:ξ246P5920811681则52016266246.9818181E ξ=⨯+⨯+⨯=【点睛】(1)求随机变量的分布列的主要步骤:一是明确随机变量的取值,并确定随机变量服从何种概率分布;二是求每一个随机变量取值的概率,三是列成表格;(2)求出分布列后注意运用分布列的两条性质检验所求的分布列是否正确;(3)求解离散随机变量分布列和方差,首先要理解问题的关键,其次要准确无误的找出随机变量的所有可能值,计算出相对应的概率,写成随机变量的分布列,正确运用均值、方差公式进行计算.21.已知双曲线()2222:10,0x y E a b a b-=>>的左、右焦点分别为())12,F F ,渐近线方程为12y x =±.(1)求E 的方程;(2)直线l 与E 的左、右两支分别交于,M N 两点(,M N 在x 轴的同侧),当12//F M F N 时,求四边形12F F NM 面积的最小值.【答案】(1)2214x y -=(2【解析】【分析】(1)根据焦点坐标可得c =,再由渐近线方程可知12b a =,即可求得E 的方程为2214x y -=;(2)利用双曲线的对称性可知,将12,F M F N 延长分别交双曲线与点11,M N ,即可得1211F F NM M N N S S =V ,设出直线1N N的方程为x my =+并于双曲线联立,求得弦长()212414m NN m +=-,再由点到直线距离公式可得1124M N NS m=-V ,利用换元法和函数单调性可知当0m =时,四边形12F F NM 的面积取最小【小问1详解】根据意义可得c =,即225a b +=,又渐近线方程为by x a =±可得12b a =,解得224,1a b ==,即双曲线E 的方程为2214x y -=;【小问2详解】根据题意延长12,F M F N 分别交双曲线与点11,M N ,连接111,M N M N,如下图所示:由12//F M F N 以及双曲线的对称性可知四边形11M N NM 为平行四边形,四边形12F F NM 的面积即为平行四边形11M N NM 的一半,即1211F F NM M N N S S =V ,易知直线1N N过右焦点)2F ,可设直线1N N的方程为x my =+,()()11122,,,N x y N x y联立直线和双曲线方程2214x y x my ⎧-=⎪⎨⎪=+⎩,消去x 可得()22410m y -++=;显然()()22220441610m m m ∆=--=+>,且121222251,44y y y y m m +==--,易知12,y y 异号,即122104y y m =<-,可得24m <;由弦长公式可得()212414m NN m +===-,由平行可知1M 到直线1NN 的距离与()1F 到直线1NN 的距离相等,即为d =,所以()1211212241114224514F F NM M N NS m S NN d m m =+=⋅⨯==--V,t ⎡=∈⎣,则225455554441m tm t t==---,易知函数5y t t=-在t ⎡∈⎣上单调递减,所以max 5141y =-=,此时0m =;因此面积最小值为()11min4M N N S ==V ,即12,F M F N 都与x 轴垂直时,四边形12F FNM .【点睛】关键点点睛:本题关键在于利用直线平行以及双曲线的对称性,将四边形面积转化为三角形面积,再利用弦长公式以及点到直线距离公式求出面积表达式,根据函数单调性求出面积最小值.22.已知函数()()sin sin 0f x a x ax a =+>.(1)当1,0a x =>时,证明()2f x x <;(2)当2a =时,讨论()f x 的单调性;(3)设0x >,证明()()e 2e axax f x +->.【答案】(1)证明见解析(2)答案见解析(3)证明见解析【解析】【分析】(1)利用导数与单调性、最值的关系证明;(2)利用导数与单调性的关系求解;(3)利用导数与单调性、最值的关系,证明不等式恒成立.【小问1详解】1,0a x =>时,()2sin f x x =,要证()2f x x <,即证()20f x x -<,即sin 0x x -<,设()sin ,(0),()cos 10g x x x x g x x '=->=-≤恒成立,所以()sin g x x x =-在()0,∞+单调递减,所以()sin (0)0g x x x g =-<=,即sin 0x x -<在()0,∞+恒成立,命题得证;【小问2详解】当2a =时,()2sin sin 2f x x x =+,所以()22cos 2cos 24cos 2cos 22(2cos 1)(cos 1)f x x x x x x x '=+=+-=-+,因为cos 10x +≥,在()2(2cos 1)(cos 1)f x x x '=-+的一个周期范围π5π,33⎡⎤-⎢⎣⎦内,ππ,33x ⎡⎤∈-⎢⎥⎣⎦时,()0f x ¢>;π5π,33x ⎡⎤∈⎢⎥⎣⎦时,()0f x '≤;所以()f x 在ππ2π,2π,Z 33x k k k ⎡⎫∈-++∈⎪⎢⎣⎭单调递增,在π5π2π,2π,Z 33x k k k ⎡⎫∈++∈⎪⎢⎣⎭单调递减.【小问3详解】要证:()()e 2e axax f x +->,即证:()e 2e sin sin axax a x ax +->+,即证:()e e sin sin 0axa x a x x ax ax -+-+->,因为0,0x a >>,所以0ax >,由(1)可知,sin 0x x -<在()0,∞+恒成立,所以()sin 0,sin 0a x x ax ax ->->,令()e e ax h x a x =-,()e e ax h x a a '=-,令()e e=0ax h x a a '=-,解得1x a=,所以当10,x a ⎛⎫∈ ⎪⎝⎭时,()0h x '<,当1,x a ⎛⎫∈+∞ ⎪⎝⎭时,()0h x '>,所以函数()e e ax h x a x =-在10,a ⎛⎫ ⎪⎝⎭单调递减,1,a ⎛⎫+∞ ⎪⎝⎭单调递增,所以1()e e ()0axh x a x h a=-≥=,所以()e e sin sin 0axa x a x x ax ax -+-+->恒成立,原命题得证.。
东北三省三校(哈师大附中)2018-2019学年高三第二次模拟考试数学(理)试题+Word版含答案
东北三省三校(哈师大附中、东北师大附中、辽宁省实验中学)2018-2019学年高三第二次模拟考试数学(理)试题第Ⅰ卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.设i 是虚数单位,则复数ii437++在复平面内所对应的点位于( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 2.设集合}02|{2<--=x x x A ,集合}41|{<<=x x B ,则=B A Y ( ) A .}21|{<<x x B .}41|{<<-x x C .}11|{<<-x x D .}42|{<<x x3.等比数列}{n a 中,23-=a ,811-=a ,则=7a ( ) A .4- B .4 C .4± D .5- 4.已知向量)1,1(=a ,)2,1(-=b ,若)2//()(b t a b a +-,则=t ( )A .0B .21C .2-D .3- 5.执行如下的程序框图,若输出T 的值为1225,则“?”处可填( )A .6<nB .5<nC .4<nD .3<n6.将7个座位连成一排,安排4个人就座,恰有两个空位相邻的不同坐法有( ) A .240 B .480 C .720 D .960 7.函数11)(+-+=x x e x f x的部分图象大致是( )8.《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的外接球的表面积为( )A .338π B .π8 C .π6 D .334π9.21,F F 是双曲线)0,0(12222>>=-b a by a x 的左右焦点,过1F 且斜率为1的直线与两条渐近线分别交于B A ,两点,若12=,则双曲线的离心率为( ) A.25B. 5C.310D. 10 10.设n m ,是两条不同的直线,βα,是两个不同的平面,则下列命题中正确的是( ) A .若βα⊥,α⊥m ,则β//m B .若α//m ,α⊂n ,则n m // C .若m =βαI ,α//n ,β//n ,则n m //D .若βα⊥,且m =βαI ,点α∈A ,直线m AB ⊥,则β⊥AB11.甲、乙、丙、丁四位同学参加比赛,只有其中三位获奖.甲说:“乙或丙未获奖”;乙说:“甲、丙都获奖”;丙说:“我未获奖”;丁说:“乙获奖”.四位同学的话恰有两句是对的,则( )A .甲和乙不可能同时获奖B .丙和丁不可能同时获奖C .乙和丁不可能同时获奖D .丁和甲不可能同时获奖 12.已知当),1(+∞∈x 时,关于x 的方程1)2(ln -=-+kxk x x 有唯一实数解,则k 值所在的范围是( )A .)4,3(B .)5,4(C .)6,5(D .)7,6( 二、填空题(每题4分,满分20分,将答案填在答题纸上) 13.设随机变量)21,6(~B X ,则==)3(X P .14.已知递增的等差数列}{n a 的前三项和为6-,前三项积为10,则前10项和=10S .15.函数43cos 3)3sin(cos )(2+-+=x x x x f π在闭区间]4,4[ππ-上的最小值是 .16.设抛物线x y 22=的焦点为F ,过点)0,3(M 的直线与抛物线相交于B A ,两点,与抛物线的准线相交于点C ,2||=BF ,则BCF ∆与ACF ∆的面积之比=∆∆ACFBCFS S . 三、解答题 (本大题共6题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.已知ABC ∆三个内角C B A ,,所对的边分别是c b a ,,,若)sin (sin )sin )(sin (B A b C A c a -=+-.(1)求角C ;(2)若ABC ∆的外接圆半径为2,求ABC ∆周长的最大值.18.经调查,3个成年人中就有一个高血压,那么什么是高血压?血压多少是正常的?经国际卫生组织对大量不同年龄的人群进行血压调查,得出随年龄变化,收缩压的正常值变化情况如下表:其中:xb y a xn x yx n yx bn i i ni ii ˆˆ,ˆ1221-=⋅-⋅⋅-=∑∑==,∑==81217232i i x ,∑==8147384i ii y x(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程a x b y ˆˆˆ+=;(b aˆ,ˆ的值精确到0.01)(3)若规定,一个人的收缩压为标准值的0.9~1.06倍,则为血压正常人群;收缩压为标准值的1.06~1.12倍,则为轻度高血压人群;收缩压为标准值的1.12~1.20倍,则为中度高血压人群;收缩压为标准值的1.20倍及以上,则为高度高血压人群.一位收缩压为180mmHg 的70岁的老人,属于哪类人群?19.如图,四棱柱1111D C B A ABCD -的底面为菱形,0120=∠BAD ,2=AB ,F E ,为1,AA CD 中点.(1)求证://DF 平面AE B 1;(2)若⊥1AA 底面ABCD ,且直线1AD 与平面AE B 1所成线面角的正弦值为43,求1AA 的长.20.椭圆C :)0(12222>>=+b a by a x 的左、右焦点分别为)0,1(1-F 、)0,1(2F ,若椭圆过点)23,1(. (1)求椭圆C 的方程;(2)若B A ,为椭圆的左、右顶点,),(00y x P (00≠y )为椭圆上一动点,设直线BP AP ,分别交直线l :6=x 于点N M ,,判断线段MN 为直径的圆是否经过定点,若是,求出该定点坐标;若不恒过定点,说明理由.21.已知函数1ln )(--=x a x x f ,曲线)(x f y =在)0,1(处的切线经过点)0,(e . (1)证明:0)(≥x f ;(2)若当),1[+∞∈x 时,xp x x f ln )(ln )1(2+≥,求p 的取值范围.请考生在22、23二题中任选一题作答,如果都做,则按所做的第一题记分. 22.选修4-4:坐标系与参数方程在直角坐标坐标系xOy 中,曲线1C 的参数方程为⎩⎨⎧+==θθsin 1cos y x (θ为参数),曲线2C :1222=+y x .以O 为极点,x 轴的非负半轴为极轴,与直角坐标系xOy 取相同的长度单位,建立极坐标系.(1)求曲线21,C C 的极坐标方程;(2)射线3πθ=(0>ρ)与曲线1C 的异于极点的交点为A ,与曲线2C 的交点为B ,求||AB .23.选修4-5:不等式选讲 设函数|12|)(-=x x f .(1)设5)1()(<++x f x f 的解集为集合A ,求集合A ;(2)已知m 为集合A 中的最大自然数,且m c b a =++(其中c b a ,,为正实数),设ccb b a a M -⋅-⋅-=111.求证:8≥M .理科数学答案一、选择题二、填空题 13.165 14. 85 15.21- 16. 54 三、解答题17.(1)由正弦定理得)())((b a b c a c a -=+-,∴222b abc a -=-,∴212222=-+ab c b a ,即21cos =C 因为π<<C 0,则3π=C .(2)由正弦定理4sin sin sin 2====AaB bC c r ∴A a sin 4=,B b sin 4=,32sin 4==C c , ∴周长c b a l ++=32sin 4sin 4++=B A32)32sin(4sin 4+-+=A A π32sin 214cos 234sin 4+⨯+⨯+=A A A 32cos 32sin 6++=A A32)6sin(34++=πA∵)32,0(π∈A ,∴)65,6(6πππ∈+A ∴当26ππ=+A 即3π=A 时363234max =+=l∴当3π==B A 时,ABC ∆周长的最大值为36.18. (1)(2)4586258524842383228=+++++++=x1298147140135129127122118114=+++++++=y∴91.012911845817232129458473848ˆ2812281≈=⨯-⨯⨯-=⋅-⋅⋅-=∑∑==i ii ii xxy x n yx b05.884591.0129ˆˆ=⨯-=-=x b y a∴回归直线方程为05.8891.0ˆ+=x y. (3)根据回归直线方程的预测,年龄为70岁的老人标准收缩压约为75.15105.887091.0=+⨯(mmHg )∵19.175.151180≈∴收缩压为180mmHg 的70岁老人为中度高血压人群. 19.(1)证明:设G 为1AB 的中点,连GF EG , 因为FG1121B A ,又DE 1121B A ,所以FG DE ,所以四边形DEGF 是平行四边形, 所以EG DF //又⊄DF 平面AE B 1,⊂EG 平面AE B 1, 所以//DF 平面AE B 1.(2)因为ABCD 是菱形,且060=∠ABD , 所以ABC ∆是等边三角形 取BC 中点G ,则AD AG ⊥,因为⊥1AA 平面ABCD , 所以AG AA ⊥1,AD AA ⊥1建立如图的空间直角坐标系,令)0(1>=t t AA ,则)0,0,0(A ,)0,23,23(E ,),1,3(t B -,),2,0(1t D , )0,23,23(=AE ,),1,3(1t AB -=,),2,0(1t AD =, 设平面AE B 1的一个法向量为),,(z y x n =, 则0)3(23=+=⋅y x AE n 且031=+-=⋅tz y x , 取)4,,3(t t n -=,设直线1AD 与平面AE B 1所成角为θ, 则43)4(26||||sin 211=+=⋅=t t AD n θ,解得2=t ,故线段1AA 的长为2. 20.(1)由已知1=c , ∴122+=b a ① ∵椭圆过点)23,1(,∴149122=+b a ② 联立①②得42=a ,32=b∴椭圆方程为13422=+y x(2)设),(00y x P ,已知)0,2(),0,2(B A - ∵00≠y ,∴20±≠x ∴BP AP ,都有斜率 ∴2,20000-=+=x y k x y k BP AP ∴4202-=⋅x y k k BPAP ③ ∵1342020=+y x ∴)41(3220x y -=④ 将④代入③得434)41(32020-=--=⋅x x k k BPAP设AP 方程)2(-=x k y ∴BP 方程)2(43--=x k y ∴)3,6(),8,6(kN k M -由对称性可知,若存在定点,则该定点必在x 轴上,设该定点为)0,(t T 则TM ⊥ ∴0)24()6()3,6()8,6(2=-+-=--⋅-=⋅t k t k t∴24)6(2=-t ,∴626±=t ∴存在定点)0,626(+或)0,626(-以线段MN 为直径的圆恒过该定点.21. (1)曲线)(x f y =在)0,1(处的切线为)1)(1('-=x f y ,即)1)(1(--=x a y 由题意得)1)(1(0--=e a ,解得1=a所以1ln )(--=x x x f 从而xx x x f 111)('-=-= 因为当)1,0(∈x 时,0)('<x f ,当),1(+∞∈x 时,0)('>x f .所以)(x f 在区间)1,0(上是减函数,区间),1(+∞上是增函数,从而0)1()(=≥f x f .(2)由题意知,当),1[+∞∈x 时,0ln ≠+x p ,所以0>p从而当),1[+∞∈x 时,0ln >+x p , 由题意知xp x x x ln )(ln 1ln 12+≥-+,即0ln ]1)1[(≥+-+-p px x x p ,其中),1[+∞∈x 设p px x x p x g +-+-=ln ]1)1[()(,其中),1[+∞∈x设)(')(x g x h =,即11)1()(-+-=x x p x h ,其中),1[+∞∈x 则21)1()('xx p x h --=,其中),1[+∞∈x (1)当2≥p 时,因为),1(+∞∈x 时,0)('>x h ,所以)(x h 是增函数从而当),1(+∞∈x 时,0)1()(=>h x h ,所以)(x g 是增函数,从而0)1()(=≥g x g .故当2≥p 时符合题意.(2)当21<<p 时,因为)11,1(-∈p x 时,0)('<x h , 所以)(x h 在区间)11,1(-p 上是减函数 从而当)11,1(-∈p x 时,0)1()(=<h x h 所以)(x g 在)11,1(-p 上是减函数,从而0)1()11(=<-g p g 故当21<<p 时不符合题意.(3)当10≤<p 时,因为),1(+∞∈x 时,0)('<x h ,所以)(x h 是减函数 从而当),1(+∞∈x 时,0)1()(=<h x h所以)(x g 是减函数,从而0)1()2(=<g g故当10≤<p 时不符合题意综上p 的取值范围是),2[+∞.22. (1)曲线1C 的参数方程⎩⎨⎧+==θθsin 1cos y x (θ为参数) 可化为普通方程1)1(22=-+y x ,由⎩⎨⎧==θρθρcos sin x y ,可得曲线1C 的极坐标方程为θρsin 2=, 曲线2C 的极坐标方程为2)cos 1(22=+θρ.(2)射线3πθ=(0>ρ)与曲线1C 的交点A 的极径为33sin21==πρ, 射线3πθ=(0>ρ)与曲线2C 的交点B 的极径满足2)3cos 1(222=+πρ,解得51022=ρ, 所以51023||||21-=-=ρρAB . 23.(1)5)1()(<++x f x f 即5|12||12|<++-x x当21-<x 时,不等式化为51221<---x x ,∴2145-<<-x ; 当2121≤≤-x 时,不等式化为51221<++-x x ,不等式恒成立; 当21>x 时,不等式化为51212<++-x x ,∴4521<<x . 综上,集合}4545|{<<-=x x A . (2)由(1)知1=m ,则1=++c b a . 则a bc a c b a a 21≥+=-,同理c ab c c b ac b b 21,21≥-≥-,则 8222111=⋅⋅≥-⋅-⋅-a bc b ac c ab c c b b a a ,即8≥M .。
吉林省东北师范大学附属中学2022-2023学年高三下学期第二次模拟考试数学试题(含答案解析)
吉林省东北师范大学附属中学2022-2023学年高三下学期第二次模拟考试数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.设集合{}|lg P y y x ==,集合{|Q x y ==,则()R P Q = ðA .[]2,0-B .(,0)-∞C .(0,)+∞D .(,2)-∞-2.i 为虚数单位,复数2i12iz +=-,复数z 的共轭复数为z ,则z 的虚部为()A .1-B .2-C .2i-D .i-3.已知向量(),3a m = ,()1,b m = ,若a 与b方向相反,则a = ()A .54B .48C .D .4.“中国剩余定理”又称“孙子定理”,最早可见于我国南北朝时期的数学著作《孙子算经》.1852年,英国传教士伟烈亚力将该解法传至欧洲,1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.此定理讲的是关于整除的问题,现将1到2023这2023个数中,能被7除余1且被9除余1的数按从小到大的顺序排成一列,构成数列{}n a ,则该数列的和为()A .30014B .30016C .33297D .332995.一个圆锥的侧面展开图是半径为1的半圆,则此圆锥的内切球的表面积为()A .πB .π2C .π3D .π46.已知cos1a =,sin11e b -=,34c =,则下列不等关系正确的是()A .a c b<<B .a b c<<C .c b a<<D .c a b<<7.直线l 的方程为()()()2130x y λλλλ++--=∈R ,当原点O 到直线l 的距离最大时,λ的值为()A .1-B .5-C .1D .58.函数()()()sin 0,0πf x x ωϕωϕ=+><<的部分图象如图,BC x ∥轴,当π0,4x ⎡⎤∈⎢⎥⎣⎦时,不等式()sin 2f x m x ≥-恒成立,则m 的取值范围是()A.2⎛-∞ ⎝⎦B .1,2⎛⎫-∞ ⎪⎝⎭C.(-∞D .(],1-∞二、多选题9.定义在R 上的奇函数()f x 满足()()3f x f x -=-,当[]0,3x ∈时,()23f x x x =-,则下列结论正确的是()A .()()6f x f x +=B .[]6,3x ∈--时,()236f x x x =--C .()()()202120232022f f f +=D .()202312k f k ==∑10.已知数列{}n a ,11a =,()21*12n n n a a n -+=∈N ,{}n a 的前n 项的和为nS,前n 项的积为n T ,则下列结论正确的是()A .32a =B .114n n a a +-=C .21n n S =-D .()2122n n n T -=11.直四棱柱1111ABCD A B C D -中,底面ABCD 为菱形,60BAD ∠=︒,12AB AD AA ===,P 为1CC 中点,点Q 在四边形11CDD C 内(包括边界)运动,下列结论正确的是()A .若1DQ DC DD λμ=+ ,且12λμ+=,则四面体1A BPQ 的体积为定值B .若AQ ∥平面1A BP ,则AQC .若1A BQ △的外心为O ,则11A B AO ⋅为定值2D.若1AQ =,则点Q 的轨迹长度为3π12.已知函数()ln xf x a a =,()()ln 1g x a x =-,其中0a >且1a ≠.若函数()()()h x f x g x =-,则下列结论正确的是()A .当01a <<时,()h x 有且只有一个零点B .当1e 1e a <<时,()h x 有两个零点C .当1e e a >时,曲线()yf x =与曲线()yg x =有且只有两条公切线D .若()h x 为单调函数,则e e 1a -≤<三、填空题13.若1cos 123πα⎛⎫+= ⎪⎝⎭,则2sin 23πα⎛⎫+= ⎪⎝⎭___________.14.如图,单位向量OA ,OB 的夹角为π2,点C 在以O 为圆心,1为半径的弧AB 上运动,则CA CB ⋅的最小值为______.15.已知函数()322x x f x x -=+-,若实数a 、b 满足()()22210f a f b +-=,则的最大值为______.16.在平面直角坐标系xOy 中,已知动圆M 的方程为()()()221211R x a y a a +++-+=∈,则圆心M 的轨迹方程为____________.若对于圆M 上的任意点P ,在圆O :224x y +=上均存在点Q ,使得30OPQ ∠=︒,则满足条件的圆心M 的轨迹长度为______.四、解答题17.如图,四边形ABCD 中90BAC ∠= ,30ABC ∠= ,AD CD ⊥,设ACD θ∠=.(1)若ABC ∆面积是ACD ∆面积的4倍,求sin 2θ;(2)若6ADB π∠=,求tan θ.18.已知数列{}n a 的前n 项和为n S ,14a =,12n n a n S n+=.(1)求数列{}n a 的通项公式;(2)记12nn na c =-,数列{}nc 的前n 项和为n T ,求12111n T T T ++⋅⋅⋅+的值.19.已知函数()()()2112ln 2f x x a x a x =+-+-,其中a ∈R .(1)若1a =,求函数()f x 的极值;(2)讨论函数()f x 的单调性.20.如图,等腰梯形ABCD 中,AB //CD ,1AD AB BC ===,2CD =,E 为CD 中点,以AE 为折痕把ADE V 折起,使点D 到达点P 的位置(P ∉平面ABCE ).(1)证明:AE PB ⊥;(2)若直线PB 与平面ABCE 所成的角为π4,求平面APE 与平面CPE 夹角的余弦值.21.已知圆22:(4)4M x y +-=,P 是直线:20l x y -=上的动点,过点P 作圆M 的切线PA ,切点为A .(1)当切线PA的长度为P 的坐标.(2)若PAM △的外接圆为圆N ,试问:当点P 运动时,圆N 是否过定点?若过定点,求出所有的定点的坐标;若不过定点,请说明理由.22.已知函数()e cos axf x x =⋅,其中a ∈R .(1)若2a =,求曲线()y f x =在点()()0,0f 处的切线方程;(2)已知()f x 在区间()0,π上存在唯一的极小值点.(ⅰ)求实数a 的取值范围;(ⅱ)记()f x 在区间()0,π上的极小值为()g a ,讨论函数()g a 的单调性.参考答案:1.D【详解】分析:先化简集合P 和Q,再求R Q ð和()R P Q ⋂ð.详解:由题得P R =,{|2}Q x x =≥-,所以R Q ð={x|x <-2},所以()R P Q ⋂ð=(),2-∞-,故答案为D点睛:(1)本题主要考查集合的化简和集合的运算,意在考查学生对这些基础知识的掌握能力.(2)本题是易错题,解答集合的题目时,首先要看集合“|”前集合元素的一般形式,本题{}|lg P y y x ==,表示的是函数的值域.集合{|Q x y ==表示的是函数的定义域.2.A【分析】利用复数的除法化简复数z ,利用共轭复数的定义以及复数的概念可得结果.【详解】因为()()()()2i 12i 2i5i i 12i 12i 12i 5z +++====--+,故i z =-,因此,z 的虚部为1-.故选:A.3.D【分析】首先根据题意得到m =,再求a即可.【详解】向量(),3a m = ,()1,b m = ,若a 与b方向相反,所以230m -=,解得m =.所以())()32a =--=- ,a = 故选:D 4.C【分析】得到6362n a n =-,从而得到{}n a 为等差数列,首项为1,公差为63,利用等差数列求和公式求出答案.【详解】由已知可得1n a -既能被7整除,又能被9整除,故1n a -能被63整除,所以()1631n a n -=-,即6362n a n =-,所以()()163162636263n n a a n n +-=+---=,故{}n a 为等差数列,首项为1,公差为63,由12023n a ≤≤可得:163622023n ≤-≤,因为N n *∈,所以133n ≤≤,N n *∈,故该数列的和为33323363332972⨯+⨯=.故选:C 5.C【分析】由侧面展开图的半圆弧长等于圆锥底面圆周长可构造方程求得圆锥底面半径,由此可确定圆锥轴截面为正三角形,求得正三角形内切圆半径即为所求内切球半径,代入球的表面积公式即可得到结果.【详解】设圆锥底面半径为r ,则12π2π1π2r =⨯⨯=,解得:12r =;∴圆锥的轴截面是边长为1的正三角形,∴此正三角形内切圆的半径为13=R ∴圆锥内切球的表面积21π4π4π123S R ==⨯=.故选:C.6.A【分析】构造()e 1xf x x =--,x ∈R ,得到sin11sin1e ->,构造()31sin 6t x x x x =-+,0x >,多次求导得到5sin16>,从而得到sin1156e b ->=,再构造()2411cos 1224g x x x x ⎛⎫=--+⎪⎝⎭,0x >,多次求导后得到13cos124<,从而比较出大小.【详解】设()e 1xf x x =--,x ∈R ,故()e 1xf x '=-,当(),0x ∈-∞时,()0f x '<,当()0,x ∈+∞时,()0f x ¢>,故()e 1xf x x =--在(),0x ∈-∞上单调递减,在()0,x ∈+∞上单调递增,所以()()00f x f ≥=,故e 1x x ≥+,当且仅当0x =时,等号成立,因为sin110-≠,故sin111si 1n e in 1s 1b -+=-=>,设()31sin 6t x x x x =-+,0x >,则()21cos 12t x x x '=-+,0x >,设()()r x t x '=,则()sin r x x x '=-+,0x >,设()()e x r x '=,则()1cos 0e x x '=-≥在0x >上恒成立,故()r x '在()0,∞+上单调递增,则()()00r x r ''>=,故()t x '在()0,∞+上单调递增,则()()00t x t ''>=,故()31sin 6t x x x x =-+在()0,∞+上单调递增,则()()00t x t >=在()0,∞+上恒成立,所以()11sin1106t =-+>,则5sin16>,故sin1156eb ->=,设()2411cos 1224g x x x x ⎛⎫=--+⎪⎝⎭,0x >,故()31sin 6g x x x x ⎛⎫'=---+ ⎪⎝⎭,0x >,设()()h x g x '=,则()21cos 12h x x x '=-+-,0x >,设()()j x h x '=,则()sin j x x x '=-,0x >,设()()k x j x '=,则()cos 10k x x '=-≤在()0,∞+上恒成立,故()sin j x x x '=-在()0,∞+上单调递减,故()()00j x j ''<=,故()h x '在()0,∞+上单调递减,故()()00h x h ''<=,故()g x '在()0,∞+上单调递减,故()()00g x g ''<=,故()g x 在()0,∞+上单调递减,故()()00g x g <=,所以()111cos110224g ⎛⎫=--+< ⎝⎭,即13cos124<,又sin11133c 4e os 56124-<<<<,即a c b <<.故选:A【点睛】方法点睛:麦克劳林展开式常常用于放缩法进行比较大小,常用的麦克劳林展开式如下:()21e 1!!2n xn x x x n o x +=++++ ,()()()352122s 1!5!in 32!1n n n x x x x x o x n ++=-+-+-++ ,()()()24622cos 1162!4!!!2nn n x x x xx o x n =-+-++-+ ,()()()2311ln 11312n n n x x xx x o x n +++=-+-+-++ ,()2111n n x x x o x x =+++++- ,()()()221112!nn n x nx x o x -+=+++.7.B【分析】求出直线()()()2130x y λλλλ++--=∈R 所过定点A 的坐标,分析可知当OA l ⊥时,原点O 到直线l 的距离最大,利用两直线垂直斜率的关系可求得实数λ的值.【详解】直线方程()()()2130x y λλλλ++--=∈R 可化为()()320x y x y λ+-+-=,由3020x y x y +-=⎧⎨-=⎩可得12x y =⎧⎨=⎩,所以,直线()()()2130x y λλλλ++--=∈R 过定点()1,2A ,当OA l ⊥时,原点O 到直线l 的距离最大,且2OA k =,又因为直线l 的斜率为2112k λλ+=-=--,解得5λ=-.故选:B.8.A【分析】利用三角函数的图象性质和三角恒等变换求解.【详解】因为BC x ∥轴,所以图象最低点的横坐标为π2π7π23212+=,所以17πππ41234T =-=,所以2π=πT ω=解得2ω=,又因为77sin 126ππ1f ϕ⎛⎫⎛⎫=+=- ⎪⎪⎝⎭⎝⎭,所以7π3π2π,Z 62k k ϕ+=+∈,即ππ,Z k k ϕ=+∈23,又因为0πϕ<<,所以π3ϕ=,所以()πsin 23f x x ⎛⎫=+ ⎪⎝⎭,由()sin 2f x m x ≥-可得n πs 22in 3si m x x ⎛⎫+ ⎪⎝≥-⎭,即1sin 22s 22s in x x m x ≥-也即3sin 222m x x +≥,令3()sin 2co )s 22π62n(2g x x x x =+=+,因为π0,4x ⎡⎤∈⎢⎥⎣⎦,所以ππ2π2,663x ⎡⎤+∈⎢⎥⎣⎦,所以()2g x ∈⎢⎣,因为()g x m ≥恒成立,所以2m ≤.故选:A.9.AC【分析】根据函数的满足()()3f x f x -=-,可确定函数的周期性,从而可判断A ;结合周期性由[]0,3x ∈时的解析式即可得[]6,3x ∈--时的解析式,从而可判断B ;根据函数周期性与对称性即可判断C ,D.【详解】因为函数()f x 的()()3f x f x -=-,所以()()3f x f x =-+,则()()33f x f x -=+,故函数()f x 的周期为6,所以()()6f x f x +=,故A 正确;又当[]0,3x ∈时,()23f x x x =-,则当[]6,3x ∈--时,[]60,3x +∈,()()()()226636918f x f x x x x x =+=+-+=++,故B 不正确;由周期可得()()()()()()20211,20231,20220f f f f f f =-==,又函数()f x 是R 上的奇函数()()f x f x =--,所以()()()00,11f f f ==--,即()()()110f f f +-=,所以()()()202120232022f f f +=,故C 正确;当[]0,3x ∈时,()23f x x x =-,所以()()()12,22,30f f f =-=-=,又因为()()f x f x =--,所以()()()()()()4422,5512f f f f f f =--=-==--=-=,()()600f f ==,则()()()()()()1234560f f f f f f +++++=,所以()()()20236113371337022k k f k f k f ===+=⨯-=-∑∑,故D 不正确.故选:AC.10.BCD【分析】令1n =可求得2a 的值,推导出114n n a a +-=,分析可知数列{}n a 中的奇数项和偶数项分别成以4为公比的等比数列,求出数列{}n a 的通项公式,逐项判断可得出合适的选项.【详解】数列{}n a 中,11a =,()21*12n n n a a n -+=∈N ,当1n =时,则有122a a =,可得22a =,当2n ≥时,由2112n n n a a -+=可得2312n n n a a --=,上述两个等式相除可得114n n a a +-=,B 对;所以,数列{}n a 中的奇数项和偶数项分别成以4为公比的等比数列,当n 为奇数时,设()21n k k *=-∈N ,则1221211422k k n n k a a a ----==⋅==,当n 为偶数时,设()2n k k *=∈N ,则121122422k k n n k a a a ---==⋅==,故对任意的n *∈N ,12n n a -=,所以,2324a ==,A 错;11222nn n n a a +-==,所以数列{}n a 为等比数列,且该数列的首项为1,公比为2,则122112n n n S -==--,C 对;()()()2120122121221232222n nn n n n n T a a a a -⋅++++--==== ,D 对.故选:BCD.11.AB【分析】对于A ,取1,DD DC 的中点分别为,M N ,,由条件确定Q 的轨迹,结合锥体体积公式判断A ;对于B ,由面面平行的判定定理可得平面1//A BP 平面AMN ,从而可得//AQ 平面1A BP ,进而可求得AQ 的最小值;对于C ,由三角形外心的性质和向量数量积的性质可判断,对于D ,由条件确定点Q 的轨迹为圆弧23A A ,利用弧长公式求轨迹长度即可判断.【详解】对于A ,取1,DD DC 的中点分别为,M N ,连接,,,MN DQ AM AN ,则12DD DM =,2DC DN =,1//MN D C ,因为1DQ DC DD λμ=+ ,12λμ+=,所以22DQ DN DM λμ=+ ,221λμ+=,所以,,Q M N 三点共线,所以点Q 在MN ,因为11//D C A B ,1//MN D C ,所以1//MN A B ,MN ⊄平面1A BP ,1A B ⊂平面1A BP ,所以MN ∥平面1A BP ,所以点Q 到平面1A BP 的距离为定值,因为1A BP 的面积为定值,所以四面体1A BPQ 的体积为定值,所以A 正确;对于B ,因为//AM BP ,因为AM ⊄平面1A BP ,BP ⊂平面1A BP ,所以AM ∥平面1A BP ,又AQ 平面1A BP ,AQ AM M = ,,AQ AM ⊂平面AMQ ,所以平面//AMQ 平面1A BP ,取11D C 的中点E ,连接PE ,则1//PE D C ,11//D C A B ,所以1//PE A B ,所以1,,,A B P E 四点共面,所以平面//AMQ 平面1A BPE ,即Q 在MN 上,当AQ MN ⊥时,AQ 取最小值,因为160,2BAD AB AD AA ∠====,所以AM MN ==AN =222AM MN AN +=,所以,Q M 重合,所以AQ B 正确;对于C ,若1A BQ △的外心为O ,过O 作1OH A B ⊥于H ,因为1A B == 所以()21111111142A B A O A B A H HO A B A H A B ⋅=⋅+=⋅== ,所以C 错误;对于D ,过1A 作111A K C D ⊥,垂足为K ,因为1DD ⊥平面1111D C B A ,1A K ⊂平面1111D C B A ,所以11DD A K ⊥,因为1111C D DD D = ,111,C D DD ⊂平面11DD C C ,所以1A K ⊥平面11DD C C ,因为KQ ⊂平面11DD C C ,所以1A K KQ ⊥,又在11A KD 中,111111ππ2,,23A D A KD A D K =∠==,所以111πcos13KD A D ==,111πsin 3A K A D ==,在1A KQ 中,1A K ,1AQ ,1π2A KQ ∠=,所以2KQ =,则Q 在以K 为圆心,2为半径的圆上运动,在111,DD D C 上取点32,A A ,使得13121D A D A =,则322KA KA ==,所以点Q 的轨迹为圆弧23A A ,因为1131,D K D A ==323A KA π∠=,则圆弧23A A 等于23π,所以D 错误;故选:AB【点睛】关键点睛:本题解决的关键在于根据所给条件结合线面位置关系确定点的轨迹,再结合锥体体积公式,空间图形与平面图形的转化解决问题.12.BCD【分析】A.()ln ln(1),xh x a a a x =--通过举特例说明该选项错误;B.考虑()ln F x x x =,ln (),xQ x x=求出函数的单调性,分析图象得到()h x 有两个零点;C .求出两曲线的切线方程,再建立方程组,转化为零点个数问题分析得解;D.分()h x 单调递增和单调递减讨论,从而求出e e 1a -≤<得解.【详解】对A ,()ln ln(1),x h x a a a x =--令()10,ln ln(1),log (1)x x a h x a a a x a x -=∴=-∴=-,令111,164a x =-=或111,162a x =-=1log (1)x a a x -=-都成立,()h x 有两个零点,故A 错误;对B ,1ln ln(1),x a a x -=-令1ln ,(1)ln ln ,ln(1),1x ta t x a t t x x -=∴-=∴⋅=--ln (1)ln(1)t t x x ∴=--,(1t >).考虑ln (),()ln 10,y x x F x F x x '===+=11,()(1),e x x F a F x -∴=∴=-所以函数()F x 在1(0,)e单调递减,在1(,)e +∞单调递增,1()(1),x F a F x -∴=-1ln(1)1,ln 1x x a x a x --∴=-∴=-.考虑2ln 1ln ()()0,e,x xQ x Q x x x x-'=∴==∴=所以函数()Q x 在(0,e)单调递增,在(e,)+∞单调递减,1(e),eQ =当1ln1e (e 0,1e eQ ==-<x →+∞时,()0Q x >,所以当10ln e a <<时,有两个零点.此时1e 1e a <<,故B 正确;对C ,设21ln ,(),()e 1x a k a f x a k g x x ''=>=⋅=-,1t x =-.设切点1122111222(,()),(,()),()()(),()()(),x f x x g x y f x f x x x y g x g x x x ''∴-=--=-所以12111222()()()()()()f xg x f x x f x g x x g x ''''=⎧⎨-=-⎩.①111122222211,,11x x t a a k a k a k x x t -=∴==--②1111222222(1)ln (1),ln 1,xt t a aa k t a t t a k t t t t -+=-+∴-=-12122221ln 1,1(ln 1)t t kt kt t kt t ∴-=-∴-=-,1222222ln ln ,1ln 2ln ln 0t k k t t k kt t kt +=-∴++-+= ,设1ln 2ln ln (0)S t k kt t kt t =++-+>,所以211()ln (),()0kS t k t P t P t t t t''=-=∴=--<,所以函数()P t 在(0,)+∞单调递减,因为11(1e+0,(e)0e e P k P k =+>=-<,所以00001(,e),()0,(0,),()0,(,),()0,ex S t t t S t t t S t '''∃∈=∴∈>∈+∞<所以()0S t =有两解,所以当1e e a >时,曲线()yf x =与曲线()yg x =有且只有两条公切线,所以该选项正确;对D ,若()h x 单调递增,则2121()0,ln ,(1),1ln x x a h x a a x a x a-'≥∴≥∴-≥-.21.(10)ln m ma m x a∴≥=->.考虑min ,0,m y ma y =→不满足.若()h x 单调递减,则212211()0,ln ,(1),.(10)1ln ln x x m a h x a a x a ma m x x a a-'≤∴≤∴-≥≤=->-.所以max 21(),ln mma a ≤考虑1,(1ln )0,ln m ty ma y m a a t a'==+=∴=-不满足.当1a >时,,m ma →+∞不满足.当1a <时,11ln ln 21111,,,ln ln (ln )ln a am a a a a a a--=-∴-⋅≤∴-11ln ()ln()ln ln a a a ∴⋅-≤-,∴e 11ln(),0ln e,e 1ln a a a--≤-∴>≥-∴≤<.故D 正确.故选:BCD【点睛】关键点睛:本题主要有四个关键,其一,是逻辑思维,证明命题是错误的,只要举出反例即可;其二,要熟练掌握利用导数讨论函数的零点个数;其三,是理解掌握曲线公切线的研究方法;其四,要会根据函数的单调性求参数的范围.13.79-【分析】根据题中条件,由诱导公式以及二倍角公式,直接计算,即可得出结果.【详解】因为2223122πππαα⎛⎫+=++ ⎪⎝⎭,则227sin 2cos22cos 1312129πππααα⎛⎫⎛⎫⎛⎫+=+=+-=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.故答案为:79-.14.1【分析】建立平面直角坐标系,设出()cos ,sin C θθ,π0,2θ⎡⎤∈⎢⎥⎣⎦,利用平面向量数量积公式,结合辅助角公式得到π14CA CB θ⎛⎫⋅=-+ ⎪⎝⎭ ,结合π0,2θ⎡⎤∈⎢⎥⎣⎦,求出最小值.【详解】以O 为坐标原点,分别以,OB OA 为,x y 轴,建立空间直角坐标系,则()()1,0,0,1B A ,设()cos ,sin C θθ,π0,2θ⎡⎤∈⎢⎥⎣⎦,故()()22cos ,1sin 1cos ,sin cos cos sin sin CA CB θθθθθθθθ⋅=--⋅--=--+ π1cos sin 14θθθ⎛⎫=--=-+ ⎪⎝⎭,因为π0,2θ⎡⎤∈⎢⎥⎣⎦,所以ππ3π444,θ⎡⎤+∈⎢⎣⎦,故当ππ42θ+=,π4θ=时,CA CB ⋅ 取得最小值,最小值为1-故答案为:115.34##0.75【分析】分析出函数()f x 为R 上的增函数,且为奇函数,由()()22210f a f b +-=可得出2221a b +=,利用基本不等式可求得的最大值.【详解】函数()f x 的定义域为R ,且()()()332222x x x x f x x x f x ---=-+-=-+-=-,所以,函数()f x 为奇函数,因为函数3y x =、2x y =、2x y -=-均为R 上的增函数,故函数()f x 在R 上为增函数,由()()22210f a f b +-=可得()()()222211f a f b f b =--=-,所以,2221a b =-,即2221a b +=,当取最大值时,则0a >,所以,22421344a b ++=≤=,当且仅当2222421210a b a b a ⎧=+⎪+=⎨⎪>⎩时,即当412a b ⎧=⎪⎪⎨⎪=±⎪⎩,等号成立,因此,的最大值为34.故答案为:34.16.230x y ++=5【分析】设出M 的坐标(),x y ,得到1x a =--和21y a =-,消去a 得到圆心的轨迹方程;数形结合分析出点P '离圆O 的距离最大,要使得对于圆M 上的任意点P ,在圆O :224x y +=上均存在点Q ,使得30OPQ ∠=︒,只需要过点P '作圆的切线,切点为Q ',30OP Q ''∠≥︒即可,从而得到3OM ≤,由垂径定理得到答案.【详解】设圆心M 的坐标为(),x y ,故1x a =--①,21y a =-②,①×2+②得:230x y ++=,故圆心M 的轨迹方程为230x y ++=;如图所示,取圆M 上一点P ,要使OPQ ∠最大,则过点P 作圆O 的切线,连接OM 并延长交圆M 于点P ',则点P '离圆O 的距离最大,故要使得对于圆M 上的任意点P ,在圆O :224x y +=上均存在点Q ,使得30OPQ ∠=︒,则只需要过点P '作圆的切线,切点为Q ',若此时30OP Q ''∠≥︒即可,当30OP Q ''∠≥︒时,24OP OQ ''≤=,此时3OM ≤,圆心()0,0O 到直线230x y ++=的距离为d =由勾股定理得:圆心M的轨迹长度为52==.故答案为:230x y ++=17.(1)sin 2θ=(2)tan θ=【分析】(1)设AC =a ,可求AB =,AD =a sin θ,CD =a cos θ,由题意S △ABC =4S △ACD ,利用三角形的面积公式即可求解;(2)在△ABD 中,△BCD 中,分别应用正弦定理,联立可得2sin (3π+θ)=3sin θ,利用两角和的正弦公式,同角三角函数基本关系式即可求解.【详解】(1)设AC a =,则AB =,sin AD a θ=,cos CD a θ=,由题意4ABC ACD S S ∆∆=,则114cos sin 22a a a θθ=⋅⋅,所以sin 22θ=.(2)由正弦定理,ABD ∆中,sin sin BD AB BAD ADB=∠∠,即()sin sin 6BD a ππθ=-①BCD ∆中,sin sin BD BCBCD CDB =∠∠,即2sin sin 33BD aππθ=⎛⎫+ ⎪⎝⎭②①÷②得:2sin 3sin 3πθθ⎛⎫+= ⎪⎝⎭,化简得2sin θθ=,所以tan 2θ=.【点睛】本题主要考查了三角形的面积公式,正弦定理,两角和的正弦公式,同角三角函数基本关系式在解三角形中的应用,意在考查学生的计算能力和转化思想.18.(1)()12nn a n =+(2)21n n +【分析】(1)根据11,1,2n n n S n a S S n -=⎧=⎨-≥⎩得到1n a n ⎧⎫⎨⎬+⎩⎭是以2为首项,2为公比的等比数列,求出通项公式;(2)由(1)得12nn n a c n =-=,由等差数列求和公式得到11121n T n n ⎛⎫=- ⎪+⎝⎭,利用裂项相消法求和.【详解】(1)由12n n a n S n +=得到21nn na S n =+,当2n ≥时,()1121n n n a S n---=,两式相减,有()12121n n n n a na a n n --=-+,得到()()12111n n n a n a n n ---=+,由于2n ≥,121n n a an n-=⋅+,因为122a =,由上述递推关系知01n a n ≠+,所以1n a n ⎧⎫⎨⎬+⎩⎭是以2为首项,2为公比的等比数列,所以1221n n a n -=⨯+,所以()12n n a n =+.(2)由(1)知:12nn na c n =-=,则111n n c c n n +-=+-=,所以数列{}n c 为等差数列,所以数列{}n c 的前n 项和为()12n n n T +=,则()1211211⎛⎫==- ⎪++⎝⎭n T n n n n ,所以121111111122122311n n T T T n n n ⎡⎤⎛⎫⎛⎫⎛⎫++⋅⋅⋅+=-+-+⋅⋅⋅+-= ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦.19.(1)不存在极大值;存在极小值,且极小值为12;(2)见解析【分析】(1)由导数得出单调性,进而得出极值;(2)求导,讨论2a -和1的大小关系,得出函数()f x 的单调性.【详解】(1)若1a =,则()21ln 2f x x x =-,()0,x ∈+∞,()()()111x x f x x x x+-'=-=,令()0f x '=,得1x =.当()0f x '<时,()0,1x ∈;当()0f x ¢>时,()1,x ∈+∞.所以,()f x 在区间()0,1上单调递减,在区间()1,+∞上单调递增.()f x 不存在极大值;存在极小值,且极小值为()112f =.(2)()()()2121x a x a f x x a x x-+'--=+-+=,()0,x ∈+∞.①若20a -≤,即2a ≤,则令()0f x '=,得1x =.当()0,1x ∈时,()0f x '<;当()1,x ∈+∞时,()0f x ¢>.所以,()f x 在区间()0,1上单调递减,在区间()1,+∞上单调递增.②若021a <-<,即23a <<,则令()0f x '=,得1x =或2=-x a .此时,()f x 的单调性如下表所示:x ()0,2a -2a -()2,1a -1()1,+∞()f x '+-+()f x 极大值 极小值③若3a =,则当()0,x ∈+∞时,()()210x f x x-'=≥,当且仅当1x =时,等号成立.此时,()f x 在区间()0,∞+上单调递增.④若21a ->,即3a >,则令()0f x '=,得1x =或2=-x a .此时,()f x 的单调性如下表所示:x ()0,11()1,2a -2a -()2,a -+∞()f x '+0-0+()f x 极大值极小值综上:2a ≤时,()f x 在区间()0,1上单调递减,在区间()1,+∞上单调递增;23a <<时,()f x 在区间()0,2a -,()1,+∞上单调递增,在区间()2,1a -上单调递减;3a =时,()f x 在区间()0,∞+上单调递增3a >时,()f x 在区间()0,1,()2,a -+∞上单调递增,在区间()1,2a -上单调递减;【点睛】关键点睛:在判断函数()f x 的单调性时,关键在于讨论2a -和1的大小关系,利用导函数的正负来判断单调性.20.(1)证明见解析(2)55-【分析】(1)取AE 的中点为O ,证明⊥AE 平面POB 即可;(2)结合直线PB 与平面ABCE 所成的角,先证明PO ⊥平面ABCE ,然后建立空间直角坐标系,利用空间向量求二面角【详解】(1)连接BD ,设AE 的中点为O ,由AB //CE ,2CDAB CE ==,故四边形ABCE 为平行四边形,∴AE BC AD DE ===,故ADE V ,ABE 为等边三角形,故OD AE ⊥,OB AE ⊥,折叠后,OP AE OB AE ⊥⊥,又OP OB O = ,且,OP OB ⊂平面POB ,故⊥AE 平面POB ,又PB ⊂平面POB ,故AE PB⊥(2)由(1)已证得⊥AE 平面POB ,故在平面POB 内可作PQ ⊥平面ABCE ,垂足为Q ,则Q 在直线OB 上,直线PB 与平面ABCE 夹角为π4PBQ PBO ∠=∠=,又OP OB =,故OP OB ⊥,∴,O Q 两点重合,即PO ⊥平面ABCE ,以O 为原点,OE 为x 轴,OB 为y 轴,OP 为z 轴,建立空间直角坐标系,则32P ⎛⎫ ⎪ ⎪⎝⎭,1,0,02E ⎛⎫⎪⎝⎭,32C ⎛⎫ ⎪ ⎪⎝⎭,13,0,22PE ⎛=- ⎝⎭ ,1322EC ⎛⎫= ⎪ ⎪⎝⎭ .设平面PCE 的一个法向量为1(,,)n x y z = ,则110n PE n EC ⎧⋅=⎪⎨⋅=⎪⎩,即10221022x z x y ⎧-=⎪⎪⎨⎪+=⎪⎩,令x =11,1)n =-,又OB ⊥平面PAE ,显然2(0,1,0)n =为平面PAE 的一个法向量,设二面角A EP C --的大小为α,则121212cos cos ,5n n n n n n α⋅===由图可知二面角A EP C --为钝角,所以cos α=21.(1)(0,0)或168 ,55⎛⎫ ⎪⎝⎭;(2)过定点,定点(0,4)和84,55⎛⎫⎪⎝⎭.【分析】(1)由切线的性质可得222MP AM AP =+,列方程求P 的坐标;(2)由条件求出圆N 的方程,根据恒等式的性质确定圆N 所过定点.【详解】(1)由题可知圆M 的圆心为(0,4)M ,半径2r =.设(2,)P b b ,因为PA 是圆M 的一条切线,所以90MAP ∠=︒.在Rt MAP △中,222MP AM AP =+,故4MP ==.又MP =,4=,解得0b =或85.所以点P 的坐标为(0,0)或168 ,55⎛⎫⎪⎝⎭.(2)因为90MAP ∠=︒,所以PAM △的外接圆圆N 是以MP 为直径的圆,且MP 的中点坐标为4,2b b +⎛⎫ ⎪⎝⎭,所以圆N 的方程为()()222244424b b b x b y +-+⎛⎫-+-= ⎪⎝⎭,即()22(24)40x y b x y y +--+-=.由2224040x y x y y +-=⎧⎨+-=⎩,解得04x y =⎧⎨=⎩或8545x y ⎧=⎪⎪⎨⎪=⎪⎩,所以圆N 过定点(0,4)和84,55⎛⎫⎪⎝⎭.22.(1)21y x =+(2)(i )(),0∞-;(ii )()g a 在区间(),0∞-上单调递减.【分析】(1)当2a =时,求出()0f 、()0f '的值,利用导数的几何意义可求得所求切线的方程;(2)(i )分0a =、0a >、a<0三种情况讨论,利用导数分析函数()f x 在()0,π上的定义,结合极小值点的定义可求得实数a 的取值范围;(ii )由(i )以及极小值的定义可得出()()tan e cos e cos at t tg a f t t t ==⋅=⋅.令函数()tan e cos x x x x ϕ=⋅,π,π2x ⎛⎫∈ ⎪⎝⎭,则()()g a t ϕ=,利用导数分析函数()x ϕ在()0,π上的单调性,再结合函数单调性的定义可证得()g a 在区间(),0∞-上单调递减.【详解】(1)解:若2a =,则()2e cos x f x x =⋅,()()2e 2cos sin xf x x x =-',所以,()01f =,()02f '=.所以,曲线()y f x =在点()()0,0f 处的切线方程为21y x =+.(2)解:(i )()()e cos sin axf x a x x =-',令()cos sin p x a x x =-,①若0a =,则()cos f x x =,在区间()0,π上单调递减,()f x 不存在极值点;②若0a >,则当π,π2x ⎡⎫∈⎪⎢⎣⎭时,cos sin 0a x x -<,从而()0f x '<.因为正切函数tan y x =在π0,2⎛⎫ ⎪⎝⎭上单调递增,且该函数在π0,2⎛⎫ ⎪⎝⎭上的值域为()0,∞+,则1π0,2x ⎛⎫∃∈ ⎪⎝⎭,使得1tan x a =,即11cos sin 0a x x -=.当π0,2x ⎛⎫∈ ⎪⎝⎭时,()sin cos 0p x a x x '=--<,即函数()p x 在π0,2⎛⎫⎪⎝⎭上单调递减.当()10,x x ∈时,11cos sin cos sin 0a x x a x x ->-=,从而()0f x ¢>;当1π,2x x ⎛⎫∈ ⎪⎝⎭时,11cos sin cos sin 0a x x a x x -<-=,从而()0f x '<.所以,()f x 在()10,x 上单调递增,在()1,πx 上单调递减,()f x 在()0,π上不存在极小值点.③若a<0,则当π0,2x ⎛⎤∈ ⎝⎦时,cos sin 0a x x -<,从而()0f x '<.因为正切函数tan y x =在π,π2⎛⎫ ⎪⎝⎭上单调递增,且该函数在π,π2⎛⎫⎪⎝⎭上的值域为(),0∞-,所以,π,π2t ⎛⎫∃∈ ⎪⎝⎭,使得tan t a =,即cos sin 0a t t -=.当π,π2x ⎛⎫∈ ⎪⎝⎭时,()sin cos 0p x a x x '=-->,所以,函数()p x 在π,π2⎛⎫⎪⎝⎭上单调递增.当π,2x t ⎛⎫∈ ⎪⎝⎭时,cos sin cos sin 0a x x a t t -<-=,从而()0f x '<;当(),πx t ∈时,cos sin cos sin 0a x x a t t ->-=,从而()0f x ¢>.所以,()f x 在()0,t 上单调递减,在(),πt 上单调递增.此时,x t =为()f x 在区间()0,π上的唯一的极小值点.综上所述,实数a 的取值范围为(),0∞-.(ii )由(ⅰ)知a<0,()f x 在()0,π上的唯一的极小值点t 满足π,π2t ⎛⎫∈ ⎪⎝⎭且tan t a =.由此,()()tan e cos e cos at t tg a f t t t ==⋅=⋅.令函数()tan e cos x xx x ϕ=⋅,π,π2x ⎛⎫∈ ⎪⎝⎭,则()()g a t ϕ=,且()tan tan 2etan cos sin e 0cos cos x xx x x x x x x x x x ϕ⎡⎤⎛⎫=+-=⋅< ⎪⎢⎥⎝⎭'⎣⎦.所以,()x ϕ在区间π,π2⎛⎫⎪⎝⎭上单调递减.下面证明函数()g a 在区间(),0∞-上单调递减.对于任意的120a a <<,设当1a a =和2a a =时,()f x 在()0,π上的极小值点分别为1t 、2t ,则1t 、2π,π2t ⎛⎫∈ ⎪⎝⎭,且11tan t a =,22tan t a =.由12a a <及函数tan y x =在π,π2⎛⎫⎪⎝⎭上单调递增,有12t t <.又由()x ϕ在区间π,π2⎛⎫⎪⎝⎭上单调递减,有()()()()1122g a t t g a ϕϕ=>=.综上,对于任意的120a a <<,均有()()12g a g a >,即()g a 在区间(),0∞-上单调递减.【点睛】方法点睛:函数单调性的判断方法:(1)利用基本初等函数的单调性与图像:只需作出函数的图象便可判断函数在相应区间上的单调性;(2)性质法:①增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数;②函数()f x -与函数()f x 的单调性相反;③0k >时,函数()f x 与()k f x 的单调性相反(()0f x ≠);0k <时,函数()f x 与()kf x 的单调性相同(()0f x ≠).(3)复合函数法:同增异减法.即函数()y f g x ⎡⎤=⎣⎦的单调性,由内层函数()u g x =和外层函数()y f u =同时决定,若内层函数和外层函数单调性相同,则函数()y f g x ⎡⎤=⎣⎦单调递增;若内层函数和外层函数单调性相反,则函数()y f g x ⎡⎤=⎣⎦单调递减.(4)导数法:()0f x '≥在区间D 上恒成立,则函数()f x 在区间D 上单调递增;()0f x '≤在区间D 上恒成立,则函数()f x 在区间D 上单调递减.(5)定义法:作差法与作商法(常用来函数单调性的证明,一般使用作差法).。
2018届吉林省长春市普通高中高三一模考试数学试题卷
2018届吉林省长春市普通高中高三一模考试题数学试题卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设为虚数单位,则(?1+2i)(2?i)=()A. 5iB. ?5iC. 5D. -5【答案】A【解析】由题意可得:(?1+2i)(2?i)=?2+4i+i?2i2=5i.本题选择A选项.2. 集合{a,b,c}的子集的个数为()A. 4B. 7C. 8D. 16【答案】C【解析】集合{a,b,c}含有3个元素,则其子集的个数为23=8.本题选择C选项.3. 若图是某学校某年级的三个班在一学期内的六次数学测试的平均成绩y关于测试序号x的函数图像,为了容易看出一个班级的成绩变化,将离散的点用虚线连接,根据图像,给出下列结论:①一班成绩始终高于年级平均水平,整体成绩比较好;②二班成绩不够稳定,波动程度较大;③三班成绩虽然多数时间低于年级平均水平,但在稳步提升.其中正确结论的个数为()A. 0B. 1C. 2D. 3【答案】D【解析】通过函数图象,可以看出①②③均正确.故选D.4. 等差数列{a n}中,已知|a6|=|a11|,且公差d>0,则其前n项和取最小值时的n的值为()A. 6B. 7C. 8D. 9【答案】C【解析】因为等差数列中,,所以,有,所以当时前项和取最小值.故选C......................5. 已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为()A. 95,94B. 92,86C. 99,86D. 95,91【答案】B【解析】由茎叶图可知,中位数为92,众数为86. 故选B.6. 若角α的顶点为坐标原点,始边在x轴的非负半轴上,终边在直线y=?√3x上,则角α的取值集合是()A. {α|α=2kπ?π3,k∈Z} B. {α|α=2kπ+2π3,k∈Z}C. {α|α=kπ?2π3,k∈Z} D. {α|α=kπ?π3,k∈Z}【答案】D【解析】因为直线y=?√3x的倾斜角是2π3,所以终边落在直线y=?√3x上的角的取值集合为{α|α=kπ?π3,k∈Z}或者{α|α=kπ+2π3,k∈Z}.故选D.7. 已知x>0,y>0,且4x+y=xy,则x+y的最小值为()A. 8B. 9C. 12D. 16【答案】B【解析】由题意可得:4y +1x=1,则:x+y=(x+y)(4y +1x)=5+4xy+yx≥5+2√4xy×yx=9,当且仅当x=3,y=6时等号成立,综上可得:则x+y的最小值为9.本题选择B选项.点睛:在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.8. 《九章算术》卷五商功中有如下问题:今有刍甍,下广三丈,袤四丈,上袤二丈,无广,高一丈,问积几何.刍甍:底面为矩形的屋脊状的几何体(网格纸中粗线部分为其三视图,设网格纸上每个小正方形的边长为1丈),那么该刍甍的体积为()A. 4立方丈B. 5立方丈C. 6立方丈D. 12立方丈【答案】B【解析】由已知可将刍甍切割成一个三棱柱和一个四棱锥,三棱柱的体积为3,四棱锥的体积为2,则刍甍的体积为5.故选B.9. 已知矩形ABCD的顶点都在球心为O,半径为R的球面上,AB=6,BC=2√3,且四棱锥O?ABCD的体积为8√3,则R等于()A. 4B. 2√3C. 4√7D. √139【答案】A【解析】由题意可知球心到平面ABCD的距离 2,矩形ABCD所在圆的半径为2√3,从而球的半径R=4.故选A.10. 已知某算法的程序框图如图所示,则该算法的功能是()A. 求首项为1,公差为2的等差数列前2017项和B. 求首项为1,公差为2的等差数列前2018项和C. 求首项为1,公差为4的等差数列前1009项和D. 求首项为1,公差为4的等差数列前1010项和【答案】C【解析】由题意可知S=1+5+9+?+4033,为求首项为1,公差为4的等差数列的前1009项和.故选C.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.11. 已知O为坐标原点,设F1,F2分别是双曲线x2?y2=1的左、右焦点,点P为双曲线上任一点,过点F1作∠F1PF2的平分线的垂线,垂足为H,则|OH|=()A. 1B. 2C. 4D. 12【答案】A【解析】延长交于点,由角分线性质可知根据双曲线的定义,,从而,在中,为其中位线,故.故选A.点睛:对于圆锥曲线问题,善用利用定义求解,注意数形结合,画出合理草图,巧妙转化.12. 已知定义在R上的奇函数f(x)满足f(x+π)=f(?x),当x∈[0,π2]时,f(x)=√x,则函数g(x)=(x?π)f(x)?1在区间[?3π2,3π]上所有零点之和为()A. πB. 2πC. 3πD. 4π【答案】D【解析】f(x+π)=f(−x)=?f(x)?T=2π,g(x)=(x−π)f(x)−1=0?f(x)=1x?π作图如下:,四个交点分别关于(π,0)对称,所以零点之和为2×2π=4π,选D.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.二、填空题(每题5分,满分20分,将答案填在答题纸上)13. 已知角α,β满足?π2<α?β<π2,0<α+β<π,则3α?β的取值范围是__________.【答案】(?π,2π)【解析】结合题意可知:3α?β=2(α?β)+(α+β),且:2(α?β)∈(?π,π),(α+β)∈(0,π),利用不等式的性质可知:3α−β的取值范围是(−π,2π).点睛:利用不等式性质求某些代数式的取值范围时,多次运用不等式的性质时有可能扩大变量的取值范围.解决此类问题一般是利用整体思想,通过“一次性”不等关系的运算求得待求整体的范围,是避免错误的有效途径.14. 已知平面内三个不共线向量a ⃑,b ⃑⃑,c ⃑两两夹角相等,且|a ⃑|=|b ⃑⃑|=1,|c ⃑|=3,则|a ⃑+b ⃑⃑+c ⃑|=__________. 【答案】2【解析】因为平面内三个不共线向量a ⃑,b ⃑⃑,c ⃑两两夹角相等,所以由题意可知,a ⃑,b ⃑⃑,c ⃑的夹角为120°,又知|a ⃑|=|b ⃑⃑|=1,|c ⃑|=3,所以a ⃑.b ⃑⃑=?12 ,a ⃑?c ⃑=b ⃑⃑?c ⃑=?32,|a ⃑+b ⃑⃑+c ⃑|= √1+1+9+2×(?12)+2×(?32)+2×(?32)=2 故答案为2.15. 在ΔABC 中,三个内角A,B,C 的对边分别为a,b,c ,若(12b?sinC)cosA =sinAcosC ,且a =2√3,ΔABC 面积的最大值为__________. 【答案】3√3【解析】由(12b −sinC)cosA =sinAcosC 可得12bcosA =sin (A +C )=sinB ,cosA2=sinB b=sinA a,得 tanA =√3,A =π3,由余弦定理12=b 2+c 2?bc ≥2bc?bc =bc , ΔABC 面积的最大值为12×12×√32=3√3,当且仅当b =c 时取到最大值,故答案为3√3.【方法点睛】本题主要考查正弦定理及余弦定理的应用以及三角形面积公式,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据. 除了直接利用两定理求边和角以外,恒等变形过程中,一般来说 ,当条件中同时出现ab 及b 2 、a 2 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答. 16. 已知圆锥的侧面展开图是半径为3的扇形,则圆锥体积的最大值为__________. 【答案】2√3π【解析】设圆锥的底面半径为R ,由题意可得其体积为:V =13Sℎ=13×πR 2×√9?R 2=2π×√R 2×R 2×(9?R 2)=23π×3√3=2√3π.当且仅当R =√6时等号成立.综上可得圆锥体积的最大值为2√3π.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17. 已知数列{a n}的前n项和S n=2n+1+n?2.(Ⅰ)求数列{a n}的通项公式;(Ⅱ)设b n=log2(a n?1),求证:1b1b2+1b2b3+1b3b4+?+1b n b n+1<1.【答案】(Ⅰ)a n=2n+1;(Ⅱ)证明见解析.【解析】试题分析:(Ⅰ)利用已知条件,推出新数列是等比数列,然后求数列{a n}的通项公式;(Ⅱ)化简b n=log2(a n?1)=log22n=n,则1b n b n+1=1n−1n+1,利用裂项相消法和,再根据放缩法即可证明结果.试题解析:(Ⅰ)由{S n=2n+1+n−2S n−1=2n+(n−1)−2(n≥2),则a n=2n+1(n≥2). 当n=1时,a1=S1=3,综上a n=2n+1.(Ⅱ)由b n=log2(a n−1)=log22n=n.1 b1b2+1b2b3+1b3b4+...+1b n b n+1=11×2+12×3+13×4+...+1n(n+1)=(1−12)+(12−13)+(13−14)+...+(1n−1n+1)=1−1n+1<1. 得证.18. 长春市的“名师云课”活动自开展以来获得广大家长和学生的高度赞誉,在我市推出的第二季名师云课中,数学学科共计推出36节云课,为了更好地将课程内容呈现给学生,现对某一时段云课的点击量进行统计:(Ⅰ)现从36节云课中采用分层抽样的方式选出6节,求选出的点击量超过3000的节数.(Ⅱ)为了更好地搭建云课平台,现将云课进行剪辑,若点击量在区间[0,1000]内,则需要花费40分钟进行剪辑,若点击量在区间(1000,3000]内,则需要花费20分钟进行剪辑,点击量超过3000,则不需要剪辑,现从(Ⅰ)中选出的6节课中随机取出2节课进行剪辑,求剪辑时间X的分布列与数学期望.【答案】(Ⅰ)2;(Ⅱ)1003.【解析】试题分析:(Ⅰ)因为 36节云课中采用分层抽样的方式选出6节,所以12节应选出12×636=2节;(Ⅱ)X的所有可能取值为0,1,2,3,根据古典概型概率公式分别求出各随机变量的概率,从而可得分布列,由期望公式可得结果..试题解析:(Ⅰ)根据分层抽样,选出的6节课中有2节点击量超过3000. (Ⅱ)X的可能取值为0,20,40,60P(X=0)=1C62=115P(X=20)=C31C21C62=615=25P(X=40)=C21+C32C62=515=13P(X=60)=C31C62=315=15则X的分布列为0 20 40 60即EX=1003.19. 如图,四棱锥P?ABCD中,底面ABCD为菱形,PA⊥平面ABCD,E为PD的中点.(Ⅰ)证明:PB∥平面AEC;(Ⅱ)设PA=1,∠ABC=60°,三棱锥E?ACD的体积为√38,求二面角D?AE?C的余弦值.【答案】(Ⅰ)证明见解析;(Ⅱ)√1313.【解析】试题分析:(Ⅰ) )连接BD交AC于点O,连接OE,根据中位线定理可得PB//OE,由线面平行的判定定理即可证明PB//平面AEC;(Ⅱ)以点A为原点,以AM方向为x轴,以AD方向为y轴,以AP方向为z轴,建立空间直角坐标系,分别求出平面CAE与平面DAE的一个法向量,根据空间向量夹角余弦公式,可得结果.试题解析:(Ⅰ)连接BD交AC于点O,连接OE在△PBD中,PE =DEBO =DO }?PB//OE OE?平面ACE PB?平面ACE}?PB//平面ACE(Ⅱ)V P−ABCD =2V P−ACD =4V E−ACD =√32,设菱形ABCD 的边长为aV P−ABCD =13S ?ABCD ?PA =13×(2×√34a 2)×1=√32,则a =√3.取BC 中点M ,连接AM .以点A 为原点,以AM 方向为x 轴,以AD 方向为y 轴,以AP 方向为z 轴, 建立如图所示坐标系.D(0,√3,0),A(0,0,0),E(0,√32,12),C(32,√32,0) AE⃑⃑⃑⃑⃑⃑=(0,√32,12),AC ⃑⃑⃑⃑⃑⃑=(32,√32,0), n 1⃑⃑⃑⃑⃑=(1,−√3,3),n 2⃑⃑⃑⃑⃑=(1,0,0) cosθ=|n1⃑⃑⃑⃑⃑⃑?n 2⃑⃑⃑⃑⃑⃑||n 1⃑⃑⃑⃑⃑⃑|?|n 2⃑⃑⃑⃑⃑⃑|=√1+3+9=√1313, 即二面角D −AE −C 的余弦值为√1313.【方法点晴】本题主要考查线面平行的判定定理以及利用空间向量求二面角,属于难题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定理结论求出相应的角和距离. 20. 已知椭圆C 的两个焦点为F 1(?1,0),F 2(1,0),且经过点E(√3,√32).(Ⅰ)求椭圆C 的方程;(Ⅱ)过F 1的直线与椭圆C 交于A,B 两点(点A 位于x 轴上方),若AF 1⃑⃑⃑⃑⃑⃑⃑⃑=λF 1B ⃑⃑⃑⃑⃑⃑⃑⃑,且2≤λ<3,求直线的斜率k 的取值范围. 【答案】(Ⅰ)x 24+y 23=1;(Ⅱ)0<k ≤√52. 【解析】试题分析:(1)由题意可得a =2,c =1,b =√3,则椭圆方程为x 24+y 23=1. (2)联立直线与椭圆的方程,结合韦达定理得到关于实数k 的不等式,求解不等式可得直线的斜率k 的取值范围是k=√52. 试题解析:(1)由椭圆定义2a =|EF 1|+|EF 2|=4,有a =2,c =1,b =√3,从而x 24+y 23=1.(2)设直线l:y =k (x +1)(k >0),有{y =k (x +1)x 24+y 23=1 ,整理得(3k 2+4)y 2−6k y −9=0, 设A (x 1,y 1),B (x 2,y 2),有y 1=−λy 2,y 1y 2=−λ(1−λ)2(y 1+y 2)2,(1−λ)2λ=43+4k 2,λ+1λ−2=43+4k 2, 由于2≤λ<3,所以12≤λ+1λ−2<43,12≤43+4k 2<43,解得0<k ≤√52. 3+4k 2=8,k =±√52,由已知k =√52.21. 已知函数f (x )=e x ,g (x )=ln (x +a )+b .(Ⅰ)若函数f (x )与g (x )的图像在点(0,1)处有相同的切线,求a,b 的值; (Ⅱ)当b =0时,f (x )?g (x )>0恒成立,求整数a 的最大值;(Ⅲ)证明:ln2+(ln3?ln2)2+(ln4?ln3)3 +?+[ln(n +1)?lnn]n <ee?1. 【答案】(Ⅰ)1,1;(Ⅱ)2;(Ⅲ)证明见解析.【解析】试题分析:(Ⅰ)求出f′(x )与g′(x ),由f(1)=g(1)且f ′(1)=g ′(1)解方程组可求a,b 的值;(Ⅱ)f (x )−g (x )>0恒成立等价于e x ≥ln(x +a)恒成立,先证明当a ≤2时恒成立,再证明a ≥3时不恒成立,进而可得结果;(Ⅲ))由e x >ln(x +2),令x =−n+1n,即e−n+1n>ln(−n+1n+2),即e −n+1>ln n (−n+1n+2),令n =1,2,3,4... ,各式相加即可得结果.试题解析:(Ⅰ)由题意可知,f(x)和g(x)在(0,1)处有相同的切线, 即在(0,1)处f(1)=g(1)且f ′(1)=g ′(1), 解得a =1,b =1.(Ⅱ)现证明e x ≥x +1,设F(x)=e x −x −1, 令F ′(x)=e x −1=0,即x =0,因此F(x)min =F(0)=0,即F(x)≥0恒成立, 即e x ≥x +1, 同理可证lnx ≤x −1.由题意,当a ≤2时,e x ≥x +1且ln(x +2)≤x +1,即e x ≥x +1≥ln(x +2), 即a =2时,f(x)−g(x)>0成立.当a ≥3时,e 0<lna ,即e x ≥ln(x +a)不恒成立. 因此整数a 的最大值为2. (Ⅲ)由e x >ln(x +2),令x =−n+1n,即e−n+1n>ln(−n+1n+2),即e −n+1>ln n (−n+1n+2)由此可知,当n =1时,e 0>ln2, 当n =2时,e −1>(ln3−ln2)2, 当n =3时,e −2>(ln4−ln3)3, ……当n =n 时,e −n+1>[ln(n +1)−lnn]n .综上:e 0+e −1+e −2+...+e −n+1>ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln(n +1)−lnn]n11−1e>e 0+e −1+e −2+...+e −n+1>ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln (n +1)−lnn ]n .即ln2+(ln3−ln2)2+(ln4−ln3)3+...+[ln(n +1)−lnn]n <ee−1.(二)选考题:请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.22. 选修4-4:坐标系与参数方程以直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系,已知点P 的直角坐标为(1,2),点M 的极坐标为(3,π2),若直线过点P ,且倾斜角为π6,圆C 以M 圆心,3为半径. (Ⅰ)求直线的参数方程和圆C 的极坐标方程; (Ⅱ)设直线与圆C 相交于A,B 两点,求|PA|?|PB|. 【答案】(Ⅰ){x =1+√32ty =2+12t(t 为参数),ρ=6sinθ;(Ⅱ)7. 【解析】试题分析:(1)根据直线参数方程形式直接写出直线的参数方程,根据直角三角形关系得ρ=6sinθ,即为圆C 的极坐标方程(2)利用ρsinθ=y,x 2+y 2=ρ2将圆C 的极坐标方程化为直接坐标方程,将直线参数方程代入,利用韦达定理及参数几何意义得|PA |?|PB |=|t 1t 2|=7 试题解析:(Ⅰ)直线的参数方程为{x =1+√32t,y =2+12t, (t 为参数), 圆的极坐标方程为ρ=6sinθ .(Ⅱ)把{x =1+√32t,y =2+12t,代入x 2+(y −3)2=9,得t 2+(√3−1)t −7=0, ∴t 1t 2=−7,设点A,B 对应的参数分别为t 1,t 2,则|PA |=|t 1|,|PB |=|t 2|,|PA |?|PB |=7. 23. 选修4-5:不等式选讲设不等式||x +1|?|x?1||<2的解集为A .(Ⅰ)求集合A ;(Ⅱ)若a,b,c ∈A ,求证:|1?abcab?c |>1.【答案】(Ⅰ){x|?1<x <1};(Ⅱ)证明见解析.【解析】试题分析:(1)根据绝对值定义将不等式化为三个不等式组,分别求解,最后求并集(2)利用分析法证明,将所求不等式转化为(1−a 2b 2)(1−c 2)>0,再根据a,b,c ∈A ,证明(1−a 2b 2)(1−c 2)>0试题解析:(1)由已知,令f(x)=|x +1|−|x −1|={2(x ≥1)2x(−1<x <1)−2(x ≤−1)由|f(x)|<2得A ={x|−1<x <1}.(2)要证|1−abcab−c |>1,只需证|1−abc|>|ab −c|,只需证1+a 2b 2c 2>a 2b 2+c 2,只需证1−a 2b 2>c 2(1−a 2b 2)只需证(1−a 2b 2)(1−c 2)>0,由a,b,c ∈A ,则(1−a 2b 2)(1−c 2)>0恒成立.点睛:(1)分析法是证明不等式的重要方法,当所证不等式不能使用比较法且与重要不等式、基本不等式没有直接联系,较难发现条件和结论之间的关系时,可用分析法来寻找证明途径,使用分析法证明的关键是推理的每一步必须可逆.(2)利用综合法证明不等式,关键是利用好已知条件和已经证明过的重要不等式.。
吉林省长市东北师大附中高三数学上学期第二次摸底试卷
2014-2015学年吉林省长春市东北师大附中高三(上)第二次摸底数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.已知全集U={1,2,3,4},集合A={1,2},B={2,3},则∁U(A∪B)=()A. {1,3,4} B. {3,4} C. {3} D. {4}2.函数f(x)=+的定义域为()A.B.(﹣1,0)∪(0,1] C.D.(﹣1,1]3.命题p:“∀x∈R,2x﹣1>0”,命题q:“函数f(x)=x﹣是奇函数”,则下列命题正确的是()A.命题“p∧q”是真命题B.命题“(¬p)∧q”是真命题C.命题“p∧(¬q)”是真命题D.命题“(¬p)∧(¬q)”是真命题4.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0),|φ|≤)的图象的一部分如图所示,则函数解析式为()A. f(x)=sin(2x+)B. f(x)=sin(2x﹣)C. f(x)=sin (4x+)D. f(x)=sin(4x﹣)5.曲线f(x)=在点(3,f(3))处的切线方程为()A. x﹣2y+1=0 B. x+2y﹣7=0 C. 2x﹣y﹣4=0 D. 2x+y﹣8=0 6.(﹣﹣1)dx=()A.πB.﹣πC.π+2D.﹣π﹣2 7.所示四个图中,函数y=的图象大致为()A.B.C.D.8.若tan﹣=3,则sin2θ=()A.﹣B.﹣C.D.9.“a=1”是“f(x)=sin2x+acos2x的一条对称轴是x=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件10.在△ABC中,内角A,B,C对应的边分别是a,b,c,已知,△ABC的面积,则△ABC的周长为()A. 6 B. 5 C. 4 D.11.已知函数f(x)=x3+x,若不等式f(4x﹣m•2x+1)﹣f(4﹣x﹣m•2﹣x+1)≥0恒成立,则实数m的取值范围是()A.m≤B.m≥C.m≤1D.m≥112.设f(x)=|xe x|,若关于x的方程(1﹣t)f2(x)﹣f(x)+t=0有四个不同的实数根,则实数t的取值范围为()A.(﹣∞,0)B.(0,)C.(,1)D.(1,+∞)二、填空题(共4小题,每小题5分,满分20分)13.已知α为锐角,化简+2sinα=.14.已知△ABC中,sinA+cosA=,则tanA= .15.已知函数f(x)=sinx,g(x)=x2+ax+2,如果对于任意的x1∈,都存在x2∈R,得f(x1)=g(x2)成立,则a的取值范围是.16.关于函数f(x)=(x≠0),下列说法正确的是.①函数f(x)有两个极值点x=±;②函数f(x)的值域为(﹣∞,﹣2+a]∪上的值域.18.某厂生产一种内径为105mm的零件,为了检查该生产流水线的质量情况,随机抽取该流水线上50个零件作为样本测出它们的内径长度(单位:mm),长度的分组区间为B.(﹣1,0)∪(0,1] C.D.(﹣1,1]考点:对数函数的定义域.专题:函数的性质及应用.分析:由对数式的真数大于0,分式的分母不等于0,根式内部的代数式大于等于联立不等式组得答案.解答:解:由,解得:﹣1<x≤1且x≠0.∴原函数的定义域为(﹣1,0)∪(0,1].故选:B.点评:本题考查了函数的定义域及其求法,考查了不等式组的解法,是基础题.3.命题p:“∀x∈R,2x﹣1>0”,命题q:“函数f(x)=x﹣是奇函数”,则下列命题正确的是()A.命题“p∧q”是真命题B.命题“(¬p)∧q”是真命题C.命题“p∧(¬q)”是真命题D.命题“(¬p)∧(¬q)”是真命题考点:复合命题的真假.专题:函数的性质及应用;简易逻辑.分析:先根据指数函数的值域,奇函数的定义能够判断出命题p,q的真假,然后根据p∧q,p∨q,¬p的真假和p,q真假的关系即可找出正确的选项.解答:解:命题p为假命题,比如x=0时,便有20﹣1=0;根据奇函数的定义知命题q为真命题;∴(¬p)∧q是真命题,即B正确.故选B.点评:考查指数函数的值域,奇函数的定义,以及p∧q,p∨q,¬p的真假和p,q真假的关系.4.函数f(x)=Asin(ωx+φ)(其中A>0,ω>0),|φ|≤)的图象的一部分如图所示,则函数解析式为()A. f(x)=sin(2x+)B. f(x)=sin(2x﹣)C. f(x)=sin (4x+)D. f(x)=sin(4x﹣)考点:由y=Asin(ωx+φ)的部分图象确定其解析式.专题:三角函数的图像与性质.分析:由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,可得函数的解析式.解答:解:由函数的图象可得A=1,=•=+=,∴ω=2.再根据五点法作图可得2×(﹣)+φ=0,求得φ=,故函数的解析式为f(x)=sin(2x+),故选:A.点评:本题主要考查由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的图象的顶点坐标求出A,由周期求出ω,由五点法作图求出φ的值,属于基础题.5.曲线f(x)=在点(3,f(3))处的切线方程为()A. x﹣2y+1=0 B. x+2y﹣7=0 C. 2x﹣y﹣4=0 D. 2x+y﹣8=0考点:利用导数研究曲线上某点切线方程.专题:导数的综合应用.分析:由f′(x)==(x≠1).可得f′(3).利用点斜式即可得出切线的方程.解答:解:f′(x)==(x≠1).∴f′(3)=﹣.而f(3)=2.∴曲线f(x)=在点(3,f(3))处的切线方程为y﹣2=﹣(x﹣3),化为x+2y﹣7=0.故选:B.点评:本题考查了导数的几何意义、切线方程,属于基础题.6.(﹣﹣1)dx=()A.πB.﹣πC.π+2D.﹣π﹣2考点:定积分.专题:导数的概念及应用.分析:先根据定积分的几何意义求出dx,再根据原式可以化为(﹣﹣1)dx=﹣dx﹣1dx,根据定积分计算即可解答:解:根据定积分的几何意义,dx表示以原点为圆心,以2为半径的圆的4分之一,故dx==π,(﹣﹣1)dx=﹣dx﹣1dx=﹣﹣dx﹣x=﹣π﹣2,故选:D点评:本题主要考查定积分的几何意义,属于基础题7.所示四个图中,函数y=的图象大致为()A.B.C.D.考点:对数函数的图像与性质.专题:作图题;函数的性质及应用.分析:求出x+1>0和x+1<0的函数的导数,求出单调区间,判断增减情况,对照选项加以判断,即可得到.解答:解:若x+1>0,即x>﹣1,则y=的导数y′=,则y′>0,y在﹣1<x<e﹣1递增,y′<0,y在x>e﹣1递减,若x+1<0,即x<﹣1,则y=的导数y′=,则y′>0,y在﹣1﹣e<x<﹣1递增,y′<0,y在x<﹣e﹣1递减,对照选项,x<﹣1先减后增,C显然不对,x>﹣1,先增后减,B,D都错,A对.故选A.点评:本题考查函数的图象的画法,考查运用导数判断函数的单调性,属于基础题.8.若tan﹣=3,则sin2θ=()A.﹣B.﹣C.D.考点:二倍角的正切;二倍角的正弦.专题:计算题;三角函数的求值.分析:令m=tan,有m﹣=3,则m2﹣1=3m,则tanθ===﹣,从而由万能公式可求sin2θ的值.解答:解:令m=tan,有m﹣=3,则m2﹣1=3m则tanθ===﹣所以sin2θ===﹣.故选:A.点评:本题主要考察了二倍角的正切公式、二倍角的正弦公式、万能公式的应用,属于基础题.9.“a=1”是“f(x)=sin2x+acos2x的一条对称轴是x=”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件考点:必要条件、充分条件与充要条件的判断.专题:函数的性质及应用.分析:根据充分必要条件的定义,分别进行判断,从而得到答案.解答:解:若a=1,则f(x)=sin2x+cos2x=sin(2x+),∴2x+=kπ+,∴对称轴是:x=π+,故一条对称轴是x=,是充分条件,若f(x)=sin2x+acos2x=sin(2x+α),其中cosα=,∴﹣=,∴α=,∴a=1,是必要条件,故选:C.点评:本题考查了充分必要条件,考查了三角函数的图象及性质,是一道基础题.10.在△ABC中,内角A,B,C对应的边分别是a,b,c,已知,△ABC的面积,则△ABC的周长为()A. 6 B. 5 C. 4 D.考点:余弦定理;正弦定理.专题:解三角形.分析:根据△ABC的面积求得 ab=4,再由余弦定理求得 a2+b2=8,由此求得a+b的值,再由c 的值,即可得到△ABC的周长.解答:解:在△ABC中,∵△ABC的面积==,∴ab=4.再由余弦定理 c2=4=a2+b2﹣2ab•cosC=a2+b2﹣4,∴a2+b2=8,∴a+b===4,故△ABC的周长为 a+b+c=4+2=6,故选A.点评:本题主要考查三角形的面积公式、余弦定理的应用,属于中档题.11.已知函数f(x)=x3+x,若不等式f(4x﹣m•2x+1)﹣f(4﹣x﹣m•2﹣x+1)≥0恒成立,则实数m的取值范围是()A.m≤B.m≥C.m≤1D.m≥1考点:函数的单调性与导数的关系.专题:导数的综合应用.分析:通过求f′(x)判断出f(x)在R上是增函数,所以由原不等式可得4x﹣m•2x+1≥4﹣x ﹣m•2﹣x+1,该不等式又可变成4x﹣4﹣x≥m(2x+1﹣2﹣x+1),所以要求m的取值范围需讨论2x+1﹣2﹣x+1是否为0:x=0时,上面不等式成立;x≠0时,上面不等式变成m,而,所以m≤1,这样即求出了m的范围.解答:解:f′(x)=3;∴f(x)在R上是增函数;由原不等式得f(4x﹣m•2x+1)≥f(4﹣x﹣m•2﹣x+1);∴4x﹣m•2x+1≥4﹣x﹣m•2﹣x+1;∴4x﹣4﹣x≥m(2x+1﹣2﹣x+1),①x=0时对任意m∈R上面不等式都成立;②x≠0时上面不等式变成m;2x+2﹣x≥2,∴;∴m≤1;∴实数m的取值范围是(﹣∞,1].故选:C.点评:考查根据导数符号判断函数的单调性的方法,对增函数定义的运用,平方差公式以及基本不等式.12.设f(x)=|xe x|,若关于x的方程(1﹣t)f2(x)﹣f(x)+t=0有四个不同的实数根,则实数t的取值范围为()A.(﹣∞,0)B.(0,)C.(,1)D.(1,+∞)考点:根的存在性及根的个数判断.专题:综合题;导数的综合应用.分析:函数f(x)=|xe x|是分段函数,通过求导分析得到函数f(x)在(0,+∞)上为增函数,在(﹣∞,﹣1)上为增函数,在(﹣1,0)上为减函数,求得函数f(x)在(﹣∞,0)上,当x=﹣1时有一个最大值,所以,由(1﹣t)f2(x)﹣f(x)+t=0,可得f(x)=1或f(x)=,要使方程(1﹣t)f2(x)﹣f(x)+t=0有四个实数根,可得0<<,即可求出实数t的取值范围.解答:解:f(x)=|xe x|=,当x≥0时,f′(x)=e x+xe x≥0恒成立,所以f(x)在,都存在x2∈R,得f(x1)=g(x2)成立,则a的取值范围是a或a.考点:正弦函数的单调性;二次函数的性质.专题:常规题型;函数的性质及应用;三角函数的图像与性质.分析:对于任意的x1∈,都存在x2∈R,得f(x1)=g(x2)成立,只须让函数f(x)在x1∈的值域是函数g(x)值域的子集即可.解答:解:函数f(x)=sinx在x1∈的值域为,对于任意的x1∈,都存在x2∈R,得f(x1)=g(x2)成立,须让函数f(x)的值域是函数g(x)值域的子集∴函数g(x)的最小值要小于等于﹣1,∴,解得a或a.故答案为:a或a.点评:解决本题的关键是把任意性和存在性问题转化成求两个函数的值域问题解决.16.关于函数f(x)=(x≠0),下列说法正确的是③④.①函数f(x)有两个极值点x=±;②函数f(x)的值域为(﹣∞,﹣2+a]∪上的值域.考点:三角函数中的恒等变换应用;三角函数的周期性及其求法;复合三角函数的单调性.专题:三角函数的图像与性质.分析:首先将解析式三角恒等变形为y=Asin(ωx+φ)的形式然后解得相关问题解答:解:因为f(x)=cos(2x﹣)+2sin(x﹣)sin(x+)=cos2xcos+sin2xsin+2sin(x﹣)cos(﹣x﹣)=cos2x+sin2x+sin(2x﹣)=cos2x+sin2x﹣cos2x=)=sin2x﹣cos2x=sin(2x﹣),所以(1)函数f(x)的最小正周期为T=;因为y=sinx的单调递增区间为,令2kπ﹣≤2x﹣≤2kπ+,解得kπ﹣≤x≤kπ+,所以函数的递增区间为.(2)因为x∈,所以2x﹣∈,所以sin(2x﹣)∈,所以函数f(x)在区间上的值域是.点评:本题考查了三角函数的恒等变形以及三角函数的性质运用;关键是正确化简三角函数式为一个角的一个三角函数名称的形式,然后利用简单三角函数性质解答.18.某厂生产一种内径为105mm的零件,为了检查该生产流水线的质量情况,随机抽取该流水线上50个零件作为样本测出它们的内径长度(单位:mm),长度的分组区间为点评:本题考查直线和圆的参数方程,涉及直线和圆的位置关系,属基础题.选修4-5:不等式选讲24.已知定义在R上的函数f(x)=|x﹣1|+|x+2|的最小值为a.(1)求a的值;(2)若m,n是正实数,且m+n=a,求+的最小值.考点:基本不等式在最值问题中的应用;带绝对值的函数.专题:计算题;函数的性质及应用;不等式的解法及应用.分析:(1)由|x﹣1|+|x+2|的几何意义表示了数轴上点x到点1与到点﹣2的距离之和可知a=3;(2)+=+=1++≥1+2=1+.利用基本不等式.解答:解:(1)由|x﹣1|+|x+2|的几何意义表示了数轴上点x到点1与到点﹣2的距离之和,如图:则x在上时,函数f(x)=|x﹣1|+|x+2|取得最小值a=3.即a=3.(2)由题意,m+n=3,则+=+=+++=1++≥1+2=1+.(当且仅当=时,等号成立).即+的最小值为1+.点评:本题考查了绝对值函数的最值与基本不等式的应用,属于基础题.。
吉林省长春市东北师大附中2023届高三第二次摸底考试数学
一、单选题二、多选题1.若,则的值为( )A.B.C.D.2. 已知函数,若关于的方程只有两个不同的实根,则的取值范围为A.B.C.D.3.点是曲线上任意一点, 则点到直线的距离的最小值是( )A .1B.C .2D. 4. 的内角的对边分别为,已知,则的面积为( )A.B.C.D.5. 在三棱锥中,,,,是边长为的等边三角形,点E为棱的中点,则三棱锥的体积为( )A.B.C.D.6. 在正方体中,M 为的中点,则直线CM与所成的角为( )A.B.C.D.7. 已知,是相互垂直的单位向量,与,共面的向量c 满足,则的模为( )A.B .2C.D.8. 复数在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限9. 某校体育活动社团对全校学生体能情况进行检测,以鼓励学生积极参加体育锻炼.学生的体能检测结果服从正态分布,其中检测结果在以上为体能达标,以上为体能优秀,则( )附:随机变量服从正态分布,则,,.A.该校学生的体能检测结果的期望为B.该校学生的体能检测结果的标准差为C.该校学生的体能达标率超过D .该校学生的体能不达标的人数和优秀的人数大致相等10. 设函数的图象为曲线,则( )A .将曲线向右平移个单位长度后与曲线重合B .将曲线上各点的横坐标缩短到原来的,纵坐标不变,则与曲线E 重合C .将曲线向左平移后所得图象对应的函数为奇函数D .若,且,则的最小值为11. 在平面直角坐标系中,已知双曲线的离心率为,且双曲线的右焦点在直线上,、分别是双曲线的左、右顶点,点是双曲线的右支上位于第一象限的动点,记、的斜率分别为、,则下列说法正确的是吉林省长春市东北师大附中2023届高三第二次摸底考试数学吉林省长春市东北师大附中2023届高三第二次摸底考试数学三、填空题四、解答题( )A .双曲线的渐近线方程为B .双曲线的方程为C .为定值D .存在点,使得12. 已知圆锥的底面圆的半径与球的半径相等,且圆锥,与球的表面积相等,则( )A .圆锥的母线与底面所成角的余弦值为B.圆锥的高与母线长之比为C.圆锥的侧面积与底面积之比为3D .球的体积与圆锥的体积之比为13. 经过点且与圆相切的直线方程为__________.14. 若一次函数有一个零点2,那么函数的零点是_______.15.在平面直角坐标系中,角的终边经过点,则的取值范围是__________.16. 已知,均为给定的大于1的自然数,设集合,.(Ⅰ)当,时,用列举法表示集合;(Ⅱ)当时,,且集合满足下列条件:①对任意,;②.证明:(ⅰ)若,则(集合为集合在集合中的补集);(ⅱ)为一个定值(不必求出此定值);(Ⅲ)设,,,其中,,若,则.17. 设函数.(1)求函数的单调递增区间;(2)当时,记,是否存在整数,使得关于x的不等式有解?若存在,请求出的最小值;若不存在,请说明理由.18. 如图,在直四棱柱中,底面ABCD为直角梯形,,,,P 为上一点,且为正三角形,Q 为PD上一点.(1)若,求证:平面ACQ ;(2)当平面ABQ 时,求平面ACQ 与平面APB 所成锐二面角的余弦值.19. 已知双曲线的左、右顶点分别为A 1,A 2,动直线l:与圆相切,且与双曲线左、右两支的交点分别为(,),(,).(1)求k的取值范围;(2)记直线P 1A1的斜率为k1,直线P2A2的斜率为k2,那么是定值吗?证明你的结论.20. 中,,,分别是角,,的对边,且有.(1)求角;(2)当,时,求的面积.21. 在等比数列中,且,求公比q及前6项的和.。
吉林省长春市东北师大附中明珠学校2024届中考数学模试卷含解析
吉林省长春市东北师大附中明珠学校2024届中考数学模试卷请考生注意:1.请用2B 铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。
写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(共10小题,每小题3分,共30分)1.把一个多边形纸片沿一条直线截下一个三角形后,变成一个18边形,则原多边形纸片的边数不可能是( ) A .16 B .17 C .18 D .192.已知二次函数y =ax 2+2ax +3a 2+3(其中x 是自变量),当x ≥2时,y 随x 的增大而增大,且−2≤x ≤1时,y 的最大值为9,则a 的值为A .1或−2B .−或C .D .1 3.|﹣3|的值是( )A .3B .13C .﹣3D .﹣13 4.下列运算正确的是 ( )A .22a +a=33aB .()32m =5mC .()222x y x y +=+D .63a a ÷=3a5.如图,AB 是半圆O 的直径,点C 、D 是半圆O 的三等分点,弦2CD =.现将一飞镖掷向该图,则飞镖落在阴影区域的概率为( )A .19B .29C .23D .136.已知两组数据,2、3、4和3、4、5,那么下列说法正确的是( )A .中位数不相等,方差不相等B .平均数相等,方差不相等C .中位数不相等,平均数相等D .平均数不相等,方差相等7.计算327的值为( )A .26-B .-4C .23-D .-28.如图,在平面直角坐标系中,以O 为圆心,适当长为半径画弧,交x 轴于点M ,交y 轴于点N ,再分别以点M 、N 为圆心,大于12MN 的长为半径画弧,两弧在第二象限交于点P .若点P 的坐标为(2a ,b+1),则a 与b 的数量关系为( )A .a=bB .2a+b=﹣1C .2a ﹣b=1D .2a+b=19.我国第一艘航母“辽宁舰”最大排水量为67500吨,用科学记数法表示这个数字是A .6.75×103吨B .67.5×103吨C .6.75×104吨D .6.75×105吨10.下列四个命题,正确的有( )个.①有理数与无理数之和是有理数②有理数与无理数之和是无理数③无理数与无理数之和是无理数④无理数与无理数之积是无理数.A .1B .2C .3D .4二、填空题(本大题共6个小题,每小题3分,共18分)11.图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消溶,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5= 度.12.关于x 的一元二次方程2210ax x -+=有实数根,则a 的取值范围是 __________.13.如图为两正方形ABCD 、CEFG 和矩形DFHI 的位置图,其中D ,A 两点分别在CG 、BI 上,若AB=3,CE=5,则矩形DFHI 的面积是_____.14.若反比例函数y=1kx+的图象与一次函数y=x+k的图象有一个交点为(m,﹣4),则这个反比例函数的表达式为_____.15.当x ________ 时,分式xx3-有意义.16.等腰梯形是__________对称图形.三、解答题(共8题,共72分)17.(8分)如图1,已知抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)两点.(1)求抛物线的解析式;(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,在坐标平面内有点P,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).18.(8分)如图,在四边形ABCD中,E是AB的中点,AD//EC,∠AED=∠B.求证:△AED≌△EBC;当AB=6时,求CD的长.19.(8分)如图,平面直角坐标系内,小正方形网格的边长为1个单位长度,△ABC的三个顶点的坐标分别为A(﹣1,3),B(﹣4,0),C(0,0)(1)画出将△ABC向上平移1个单位长度,再向右平移5个单位长度后得到的△A1B1C1;(2)画出将△ABC绕原点O顺时针方向旋转90°得到△A2B2O;(3)在x轴上存在一点P,满足点P到A1与点A2距离之和最小,请直接写出P点的坐标.20.(8分)在某校举办的2012 年秋季运动会结束之后,学校需要为参加运动会的同学们发纪念品.小王负责到某商场买某种纪念品,该商场规定:一次性购买该纪念品200 个以上可以按折扣价出售;购买200 个以下(包括200 个)只能按原价出售.小王若按照原计划的数量购买纪念品,只能按原价付款,共需要1050 元;若多买35 个,则按折扣价付款,恰好共需1050 元.设小王按原计划购买纪念品x 个.(1)求x 的范围;(2)如果按原价购买 5 个纪念品与按打折价购买6 个纪念品的钱数相同,那么小王原计划购买多少个纪念品?21.(8分)如图,在⊙O的内接四边形ABCD中,∠BCD=120°,CA平分∠BCD.(1)求证:△ABD是等边三角形;(2)若BD=3,求⊙O的半径.22.(10分)如图1,抛物线y1=ax1﹣12x+c与x轴交于点A和点B(1,0),与y轴交于点C(0,34),抛物线y1的顶点为G,GM⊥x轴于点M.将抛物线y1平移后得到顶点为B且对称轴为直线l的抛物线y1.(1)求抛物线y1的解析式;(1)如图1,在直线l上是否存在点T,使△TAC是等腰三角形?若存在,请求出所有点T的坐标;若不存在,请说明理由;(3)点P为抛物线y1上一动点,过点P作y轴的平行线交抛物线y1于点Q,点Q关于直线l的对称点为R,若以P,Q,R为顶点的三角形与△AMG全等,求直线PR的解析式.23.(12分)某省为解决农村饮用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助.2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元.求A市投资“改水工程”的年平均增长率;从2008年到2010年,A市三年共投资“改水工程”多少万元?24.解方程:(1)x2﹣7x﹣18=0(2)3x(x﹣1)=2﹣2x参考答案一、选择题(共10小题,每小题3分,共30分)1、A【解题分析】一个n边形剪去一个角后,剩下的形状可能是n边形或(n+1)边形或(n-1)边形.故当剪去一个角后,剩下的部分是一个18边形,则这张纸片原来的形状可能是18边形或17边形或19边形,不可能是16边形.故选A.【题目点拨】此题主要考查了多边形,减去一个角的方法可能有三种:经过两个相邻点,则少了一条边;经过一个顶点和一边,边数不变;经过两条邻边,边数增加一条.2、D【解题分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a>0,然后由-2≤x≤1时,y的最大值为9,可得x=1时,y=9,即可求出a.【题目详解】∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),∴对称轴是直线x=-=-1,∵当x≥2时,y随x的增大而增大,∴a >0,∵-2≤x≤1时,y 的最大值为9,∴x=1时,y=a+2a+3a 2+3=9,∴3a 2+3a-6=0,∴a=1,或a=-2(不合题意舍去).故选D .【题目点拨】本题考查了二次函数的性质,二次函数y=ax 2+bx+c (a≠0)的顶点坐标是(-,),对称轴直线x=-,二次函数y=ax 2+bx+c (a≠0)的图象具有如下性质:①当a >0时,抛物线y=ax 2+bx+c (a≠0)的开口向上,x <-时,y 随x 的增大而减小;x >-时,y 随x 的增大而增大;x=-时,y 取得最小值,即顶点是抛物线的最低点.②当a <0时,抛物线y=ax 2+bx+c (a≠0)的开口向下,x <-时,y 随x 的增大而增大;x >-时,y 随x 的增大而减小;x=-时,y 取得最大值,即顶点是抛物线的最高点.3、A【解题分析】分析:根据绝对值的定义回答即可.详解:负数的绝对值等于它的相反数, 3 3.-=故选A.点睛:考查绝对值,非负数的绝对值等于它本身,负数的绝对值等于它的相反数.4、D【解题分析】根据整式的混合运算计算得到结果,即可作出判断.【题目详解】A 、22a 与a 不是同类项,不能合并,不符合题意;B 、()32m =6m ,不符合题意;C 、原式=22x 2y xy ++,不符合题意;D 、63a a ÷=3a ,符合题意,故选D .【题目点拨】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.5、D【解题分析】连接OC 、OD 、BD ,根据点C ,D 是半圆O 的三等分点,推导出OC ∥BD 且△BOD 是等边三角形,阴影部分面积转化为扇形BOD 的面积,分别计算出扇形BOD 的面积和半圆的面积,然后根据概率公式即可得出答案.【题目详解】解:如图,连接OC 、OD 、BD ,∵点C 、D 是半圆O 的三等分点,∴==AC CD DB ,∴∠AOC =∠COD =∠DOB =60°,∵OC=OD ,∴△COD 是等边三角形,∴OC=OD=CD ,∵2CD =,∴2OC OD CD ===,∵OB=OD ,∴△BOD 是等边三角形,则∠ODB =60°,∴∠ODB =∠COD =60°,∴OC ∥BD ,∴=BCD BOD S S ,∴S 阴影=S 扇形OBD 226060223603603πππ⋅⨯===OD , S 半圆O 222222πππ⋅⨯===OD ,飞镖落在阴影区域的概率21233ππ=÷=,故选:D.【题目点拨】本题主要考查扇形面积的计算和几何概率问题:概率=相应的面积与总面积之比,解题的关键是把求不规则图形的面积转化为求规则图形的面积.6、D【解题分析】分别利用平均数以及方差和中位数的定义分析,进而求出答案.【题目详解】2、3、4的平均数为:13(2+3+4)=3,中位数是3,方差为:13[(2﹣3)2+(3﹣3)2+(3﹣4)2]=23;3、4、5的平均数为:13(3+4+5)=4,中位数是4,方差为:13[(3﹣4)2+(4﹣4)2+(5﹣4)2]=23;故中位数不相等,方差相等.故选:D.【题目点拨】本题考查了平均数、中位数、方差的意义,解答本题的关键是熟练掌握这三种数的计算方法.7、C【解题分析】根据二次根式的运算法则即可求出答案.【题目详解】原式故选C.【题目点拨】本题考查二次根式的运算,解题的关键是熟练运用二次根式的运算法则,本题属于基础题型.8、B【解题分析】试题分析:根据作图方法可得点P在第二象限角平分线上,则P点横纵坐标的和为0,即2a+b+1=0,∴2a+b=﹣1.故选B.9、C【解题分析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a×10n ,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).67500一共5位,从而67 500=6.75×2.故选C .10、A【解题分析】解:①有理数与无理数的和一定是有理数,故本小题错误;②有理数与无理数的和一定是无理数,故本小题正确;③例如,0是有理数,故本小题错误;)=﹣2,﹣2是有理数,故本小题错误.故选A .点睛:本题考查的是实数的运算及无理数、有理数的定义,熟知以上知识是解答此题的关键.二、填空题(本大题共6个小题,每小题3分,共18分)11、360°.【解题分析】根据多边形的外角和等于360°解答即可.【题目详解】由多边形的外角和等于360°可知,∠1+∠2+∠3+∠4+∠5=360°,故答案为360°.【题目点拨】本题考查的是多边形的内角和外角,掌握多边形的外角和等于360°是解题的关键.12、a≤1且a≠0【解题分析】∵关于x 的一元二次方程2210ax x -+=有实数根,∴()20240a a ≠⎧⎪⎨=--≥⎪⎩,解得:a 1≤, ∴a 的取值范围为:a 1≤且0a ≠ .点睛:解本题时,需注意两点:(1)这是一道关于“x”的一元二次方程,因此0a ≠ ;(2)这道一元二次方程有实数根,因此()2240a =--≥ ;这个条件缺一不可,尤其是第一个条件解题时很容易忽略.13、872 【解题分析】 由题意先求出DG 和FG 的长,再根据勾股定理可求得DF 的长,然后再证明△DGF ∽△DAI ,依据相似三角形的性质可得到DI 的长,最后依据矩形的面积公式求解即可. 【题目详解】∵四边形ABCD 、CEFG 均为正方形,∴CD=AD=3,CG=CE=5,∴DG=2,在Rt △DGF 中, DF=22DG FG +=222529+=,∵∠FDG+∠GDI=90°,∠GDI+∠IDA=90°,∴∠FDG=∠IDA .又∵∠DAI=∠DGF ,∴△DGF ∽△DAI ,∴23DF DG DI AD ==,即2923DI =,解得:DI=3292, ∴矩形DFHI 的面积是32987292=, 故答案为:872. 【题目点拨】本题考查了正方形的性质,矩形的性质,相似三角形的判定和性质,三角形的面积,熟练掌握相关性质定理与判定定理是解题的关键.14、y =﹣4x. 【解题分析】把交点坐标代入两个解析式组成方程组,解方程组求得k ,即可求得反比例函数的解析式.【题目详解】解:∵反比例函数y =1k x +的图象与一次函数y =x +k 的图象有一个交点为(m ,﹣4),∴144k m m k+=-⎧⎨+=-⎩,解得k=﹣5,∴反比例函数的表达式为y=﹣4x,故答案为y=﹣4x.【题目点拨】本题考查了反比例函数与一次函数的交点问题,根据图象上点的坐标特征得出方程组是解题的关键.15、x≠3【解题分析】由题意得x-3≠0,∴x≠3.16、轴【解题分析】根据轴对称图形的概念,等腰梯形是轴对称图形,且有1条对称轴,即底边的垂直平分线.【题目详解】画图如下:结合图形,根据轴对称的定义及等腰梯形的特征可知,等腰梯形是轴对称图形.故答案为:轴【题目点拨】本题考查了关于轴对称的定义,运用定义会进行判断一个图形是不是轴对称图形.三、解答题(共8题,共72分)17、(1)抛物线的解析式是y=12x2﹣3x;(2)D点的坐标为(4,﹣4);(3)点P的坐标是(345,416--)或(453,164).【解题分析】试题分析:(1)利用待定系数法求二次函数解析式进而得出答案即可;(2)首先求出直线OB的解析式为y=x,进而将二次函数以一次函数联立求出交点即可;(3)首先求出直线A′B的解析式,进而由△P1OD∽△NOB,得出△P1OD∽△N1OB1,进而求出点P1的坐标,再利用翻折变换的性质得出另一点的坐标.试题解析:(1)∵抛物线y=ax2+bx(a≠0)经过A(6,0)、B(8,8)∴将A与B两点坐标代入得:64883660a ba b+=⎧⎨+=⎩,解得:123ab⎧=⎪⎨⎪=-⎩,∴抛物线的解析式是y=12x2﹣3x.(2)设直线OB的解析式为y=k1x,由点B(8,8),得:8=8k1,解得:k1=1∴直线OB的解析式为y=x,∴直线OB向下平移m个单位长度后的解析式为:y=x﹣m,∴x﹣m=12x2﹣3x,∵抛物线与直线只有一个公共点,∴△=16﹣2m=0,解得:m=8,此时x1=x2=4,y=x2﹣3x=﹣4,∴D点的坐标为(4,﹣4)(3)∵直线OB的解析式为y=x,且A(6,0),∴点A关于直线OB的对称点A′的坐标是(0,6),根据轴对称性质和三线合一性质得出∠A′BO=∠ABO,设直线A′B的解析式为y=k2x+6,过点(8,8),∴8k2+6=8,解得:k2=14,∴直线A′B的解析式是y=164y x=+,∵∠NBO=∠ABO,∠A′BO=∠ABO,∴BA′和BN重合,即点N在直线A′B上,∴设点N(n,164x+),又点N在抛物线y=12x2﹣3x上,∴164x+=12n2﹣3n,解得:n1=﹣32,n2=8(不合题意,舍去)∴N点的坐标为(﹣32,458).如图1,将△NOB沿x轴翻折,得到△N1OB1,则N1(﹣32,-458),B1(8,﹣8),∴O、D、B1都在直线y=﹣x上.∵△P1OD∽△NOB,△NOB≌△N1OB1,∴△P1OD∽△N1OB1,∴1111 2OP ODON OB==,∴点P1的坐标为(345,416--).将△OP1D沿直线y=﹣x翻折,可得另一个满足条件的点P2(453,164),综上所述,点P的坐标是(345,416--)或(453,164).【题目点拨】运用了翻折变换的性质以及待定系数法求一次函数和二次函数解析式以及相似三角形的判定与性质等知识,利用翻折变换的性质得出对应点关系是解题关键.18、(1)证明见解析;(2)CD =3【解题分析】分析: (1)根据二直线平行同位角相等得出∠A=∠BEC,根据中点的定义得出AE=BE,然后由ASA判断出△AED≌△EBC;(2)根据全等三角形对应边相等得出AD=EC,然后根据一组对边平行且相等的四边形是平行四边形得出四边形AECD 是平行四边形,根据平行四边形的对边相等得出答案.详解:(1)证明:∵AD∥EC∴∠A=∠BEC∵E是AB中点,∴AE=BE∵∠AED=∠B∴△AED≌△EBC(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四边形AECD是平行四边形∴CD=AE∵AB=6∴CD= 12AB=3点睛: 本题考查全等三角形的判定和性质、平行四边形的判定和性质等知识,解题的关键是正确寻找全等三角形解决问题,属于中考常考题型.19、(1)作图见解析;(2)作图见解析;(3)P(165,0).【解题分析】(1)分别将点A、B、C向上平移1个单位,再向右平移5个单位,然后顺次连接;(2)根据网格结构找出点A、B、C以点O为旋转中心顺时针旋转90°后的对应点,然后顺次连接即可;(3)利用最短路径问题解决,首先作A1点关于x轴的对称点A3,再连接A2A3与x轴的交点即为所求.【题目详解】解:(1)如图所示,△A1B1C1为所求做的三角形;(2)如图所示,△A2B2O为所求做的三角形;(3)∵A2坐标为(3,1),A3坐标为(4,﹣4),∴A2A3所在直线的解析式为:y=﹣5x+16,令y=0,则x=165,∴P点的坐标(165,0).考点:平移变换;旋转变换;轴对称-最短路线问题.20、(1)0<x≤200,且x是整数(2)175【解题分析】(1)根据商场的规定确定出x的范围即可;(2)设小王原计划购买x个纪念品,根据按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同列出分式方程,求出解即可得到结果.【题目详解】(1)根据题意得:0<x≤200,且x为整数;(2)设小王原计划购买x个纪念品,根据题意得:105010505635x x⨯=⨯+,整理得:5x+175=6x,解得:x=175,经检验x=175是分式方程的解,且满足题意,则小王原计划购买175个纪念品.【题目点拨】此题考查了分式方程的应用,弄清题中的等量关系“按原价购买5个纪念品与按打折价购买6个纪念品的钱数相同”是解本题的关键.21、(1)详见解析;(23【解题分析】(1)因为AC平分∠BCD,∠BCD=120°,根据角平分线的定义得:∠ACD=∠ACB=60°,根据同弧所对的圆周角相等,得∠ACD=∠ABD,∠ACB=∠ADB,∠ABD=∠ADB=60°.根据三个角是60°的三角形是等边三角形得△ABD 是等边三角形.(2)作直径DE,连结BE,由于△ABD是等边三角形,则∠BAD=60°,由同弧所对的圆周角相等,得∠BED=∠BAD=60°.根据直径所对的圆周角是直角得,∠EBD=90°,则∠EDB=30°,进而得到DE=2BE.设EB =x,则ED=2x,根据勾股定理列方程求解即可.【题目详解】解:(1)∵∠BCD=120°,CA平分∠BCD,∴∠ACD=∠ACB=60°,由圆周角定理得,∠ADB=∠ACB=60°,∠ABD=∠ACD=60°,∴△ABD是等边三角形;(2)连接OB、OD,作OH⊥BD于H,则DH=12BD=32,∠BOD=2∠BAD=120°,∴∠DOH=60°,在Rt△ODH中,OD=sin DHDOH∠=3,∴⊙O的半径为3.【题目点拨】本题是一道圆的简单证明题,以圆的内接四边形为背景,圆的内接四边形的对角互补,在圆中往往通过连结直径构造直角三角形,再通过三角函数或勾股定理来求解线段的长度.22、(1)y1=-14x1+12x-14;(1)存在,T(1,31374+),(1,31374),(1,﹣778);(3)y=﹣12x+34或y=﹣11 24x-.【解题分析】(1)应用待定系数法求解析式;(1)设出点T坐标,表示△TAC三边,进行分类讨论;(3)设出点P坐标,表示Q、R坐标及PQ、QR,根据以P,Q,R为顶点的三角形与△AMG全等,分类讨论对应边相等的可能性即可.【题目详解】解:(1)由已知,c=34,将B(1,0)代入,得:a﹣1324=0,解得a=﹣14,抛物线解析式为y1=14x1-12x+34,∵抛物线y1平移后得到y1,且顶点为B(1,0),∴y1=﹣14(x﹣1)1,即y1=-14x1+12x-14;(1)存在,如图1:抛物线y1的对称轴l为x=1,设T(1,t),已知A(﹣3,0),C(0,34),过点T作TE⊥y轴于E,则TC1=TE1+CE1=11+(34)1=t1﹣32t+2516,TA1=TB1+AB1=(1+3)1+t1=t1+16,AC1=153 16,当TC=AC时,t1﹣32t+2516=15316,解得:t 1=31374+,t 1=31374-; 当TA=AC 时,t 1+16=15316,无解; 当TA=TC 时,t 1﹣32t+2516=t 1+16, 解得t 3=﹣778; 当点T 坐标分别为(1,31374+),(1,31374-),(1,﹣778)时,△TAC 为等腰三角形; (3)如图1:设P (m ,2113424m m --+),则Q (m ,2111424m m -+-), ∵Q 、R 关于x=1对称 ∴R (1﹣m ,2111424m m -+-), ①当点P 在直线l 左侧时,PQ=1﹣m ,QR=1﹣1m ,∵△PQR 与△AMG 全等,∴当PQ=GM 且QR=AM 时,m=0,∴P (0,34),即点P 、C 重合, ∴R (1,﹣14), 由此求直线PR 解析式为y=﹣12x+34,当PQ=AM 且QR=GM 时,无解;②当点P 在直线l 右侧时,同理:PQ=m ﹣1,QR=1m ﹣1,则P (1,﹣54),R (0,﹣14), PQ 解析式为:y=﹣1124x -; ∴PR 解析式为:y=﹣12x+34或y=﹣1124x -. 【题目点拨】本题是代数几何综合题,考查了二次函数性质、三角形全等和等腰三角形判定,熟练掌握相关知识,应用数形结合和分类讨论的数学思想进行解题是关键.23、 (1) 40%;(2) 2616.【解题分析】(1)设A 市投资“改水工程”的年平均增长率是x .根据:2008年,A 市投入600万元用于“改水工程”,2010年该市计划投资“改水工程”1176万元,列方程求解;(2)根据(1)中求得的增长率,分别求得2009年和2010年的投资,最后求和即可.【题目详解】解:(1)设A 市投资“改水工程”年平均增长率是x ,则 2600(1)1176x +=.解之,得0.4x =或 2.4x =-(不合题意,舍去).所以,A 市投资“改水工程”年平均增长率为40%.(2)600+600×1.4+1176=2616(万元).A 市三年共投资“改水工程”2616万元.24、(1)x 1=9,x 2=﹣2;(2)x 1=1,x 2=﹣23. 【解题分析】(1)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)移项后分解因式,即可得出两个一元一次方程,求出方程的解即可.【题目详解】解:(1)x 2﹣7x ﹣18=0,(x ﹣9)(x+2)=0,x ﹣9=0,x+2=0,x 1=9,x 2=﹣2;(2)3x(x﹣1)=2﹣2x,3x(x﹣1)+2(x﹣1)=0,(x﹣1)(3x+2)=0,x﹣1=0,3x+2=0,x1=1,x2=﹣.【题目点拨】本题考查了解一元二次方程,熟练掌握因式分解法是解此题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
东北师大附中四模——理科数学试题 2018届高三第四次模拟考试理科数学一、选择题: 本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只 一项是符合题目要求的.1.已知集合{}1<=x x A ,{}02<-=x x x B ,则( )A .B A ⊆ B .A B ⊆C .{}1<=x x B AD .{}0>=x x B A 2.已知R a ∈,i 为虚数单位,若i iia +++12为实数,a 则的值为( ) A .4 B .3 C .2 D .13.《孙子算经》是我国古代的数学名著,书中有如下问题:“今有五等诸侯,共分橘子六十颗,人别加三颗.问: 五人各得几何?”其意思为: 有5个人分60个橘子,他们分得的橘子数成公差为3的等差数列,问5人各得多少个橘子.这个问题中,得到橘子最多的人所得的橘子个数是( ) A .15 B .16 C .18 D . 214.已知3131⎪⎭⎫⎝⎛=a ,21ln =b ,4131log =c 则( )A .c b a >>B .c a b << C. a c b << D .c a b >> 5. 一个棱锥的三视图如图所示,则这个棱锥的外接球的表面积为( ) A .π34 B .π25 C. π41 D .π506. 执行如图所示的程序框图,若输出结果为15,则判断框中应填入的条件M 为( )A .16≥kB .8<k C. 16<k D .8≥k7. 商场一年中各月份的收入.支出(单位:万元)情况的统计如图所示,下列说法中错误的是( )A.2至3月份的收入的变化率与11至12月份的收入的变化率相同B.支出最高值与支出最低值的比是1:6C.第三季度平均收入为50万元D.利润最高的月份是2月份8.学校艺术节对同一类的D C B A ,,,四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:甲说:“C 或D 作品获得一等奖”; 乙说:“B 作品获得一等奖”; 丙说:“A ,D 两项作品未获得一等奖”; 丁说:“C 作品获得一等奖”. 若这四位同学只有两位说的话是对的,则获得一等奖的作品是( ) A .A 作品 B .B 作品 C. C 作品 D .D 作品9.设抛物线()022>=p px y 的焦点为F ,过点()0,p M 且倾斜角为︒45的直线与抛物线交于B A ,两点,若10=+BF AF ,则抛物线的准线方程为( )A .01=+xB . 02=+x C. 012=+x D .032=+x 10.若函数()()+-=x x f ϖπsin ⎪⎭⎫⎝⎛+x ϖπ2sin 3()0>ϖ 满足(),21-=x f ()02=x f 且21x x -的最小值为4π,则函数()x f 的单调递增区间为( ) A .⎥⎦⎤⎢⎣⎡+-62,652ππππk k ()Z k ∈ B .()Z k k k ∈⎥⎦⎤⎢⎣⎡+-122,1252ππππ C. ()Z k k k ∈⎥⎦⎤⎢⎣⎡+-6,3ππππ D .()Z k k k ∈⎥⎦⎤⎢⎣⎡+-12,125ππππ11.已知双曲线12222=-by a x ()0,0>>b a 在左,右焦点分别为21,F F ,以O 为圆心,以O F 1为半径的圆与该双曲线的两条渐近线在y 轴左侧交于B A ,两点,且AB F 2∆是等边三角形.则双曲线的离心率为( ) A .2 B .2 C. 13+ D .23+ 12.已知函数()=x f ()x e x ax 1212--,若对区间[]1,0内的任意实数1x ,2x ,3x ,都有()()21x f x f +()3x f ≥则实数a 的取值范围是( )A . []2,1B .[]4,e C. []4,1 D .[][]4,2,1e二、填空题: 本题共4 小题,每小题5分,共20 分.13.二项式6212⎪⎭⎫ ⎝⎛-x x 的展开式中的常数项为 .14.若y x ,满足约束条件⎪⎩⎪⎨⎧≤-≥-+≥02030y x y x x ,则y x z 2+=的取值范围是 .15.已知向量AB 与AC 的夹角为︒120,且2=AB ,3=AC 若AC AB AP +=λ,且BC AP ⊥,则实数λ的值为 . 16. 已知在数列{}n a 中,211=a ,()nn n n a n a n a 211++=+则数列{}n a 的通项公式为 . 三、解答题: 共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.17.在ABC ∆中,内角C B A ,,所对的边分别为c b a ,,,且B c B a cos cos 2-C b cos =. (1)求角B 的大小:(2)若点D 为的BC 中点,且b AD =,求的值CAsin sin 的值 18.如图1,在正方形ABCD 中,E 是AB 的中点,点F 在线段BC 上,且BC BF 41=.若将AED ∆, CFD ∆分别沿FD ED ,折起,使C A ,两点重合于点M ,如图2. (1)求证: ⊥EF 平面MED ;(2)求直线EM 与平面MFD 所成角的正弦值19. 从甲、乙两种棉花中各抽测了25根棉花的纤维长度(单位: mm ) 组成一个样本,且将纤维长度超过315mm 的棉花定为一级棉花.设计了如下茎叶图:20. 已知椭圆=+2222:b y a x C ()01>>b a 的焦点坐标分別为()0,11-F ,()0,12F ,P 为椭圆C 上一点,满足2153PF PF ==且53cos 21=∠PF F (1) 求椭圆C 的标准方程:(2) 设直线m kx y l +=:与椭圆C 交于B A ,两点,点⎪⎭⎫ ⎝⎛0,41Q ,若BQ AQ =,求k 的取值范围.21. 已知函数()b ax x xe x f x +++=2,曲线()x f y =在点()()0,0f 处的切线方程为0324=--y x (1) 求b a ,的值; (2) 证明: ()x x f ln >.(二) 选做题: 共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程]在直角坐标系xOy 中,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为=θρ2cos ()0sin 2>a a θ,过点()2,1--P 的直线l 的参数方程为⎪⎪⎩⎪⎪⎨⎧+-=+-=t y tx 222221(t为参数),l 与C 交于B A ,两点(1) 求C 的直角坐标方程和l 的普通方程; (2) 若PA ,AB ,PB 成等比数列,求a 的值. 23.[选修4-5: 不等式选讲]已知定义在R 上的函数x k x x f 22+-=.∙∈N k .存在实数0x 使()20<x f 成立,(1) 求实数k 的值: (2)若21>m ,21>n 且求证()()10=+n f m f ,求证31619≥+n m试卷答案一、选择题1-5: BACBA 6-10: ADBAD 11、12:AC二、填空题13. 60 14. [)+∞,4 15.712 16. n n2三、解答题17.解:(1)在ABC ∆中,C b B c B a cos cos cos 2=-∴由正弦定理得=B A cos sin 2C B B C cos sin cos sin +()A C B sin sin =+=, ()π,0∈A ,0sin ≠∴A ,则21cos =B ,()π,0∈B ,3π=∴B 在ABD ∆中,由余弦定理得22221c a AD +⎪⎭⎫⎝⎛=B ac cos 22⨯-ac c a 214122-+=, 在ABC ∆中,由余弦定理得222c a b +=B ac cos 2-ac c a -+=22,b AD = ,ac c a -+∴22ac c a 214122-+=,整理得ac a 21432=,32=∴c a ,由正弦定理得32sin sin ==c a C A 18.(1)证明:设正方形ABCD 的边长为4,由图1知,2==BE AE ,3,1==CF BF22AE AD DE +=∴52=,22BF BE EF +=5=,22CD CF DF +=5=222DF EF DE =+∴,︒=∠∴90DEF ,即ED EF ⊥由题意知,在图2中,ME MD ⊥,MF MD ⊥,⊂ME 平面MEF ,⊂MF 平面MEF ,且M MF ME = ,⊥∴MD 平面MEF ,⊂EF 平面MEF ,EF MD ⊥∴.又⊂ED 平面MED ,⊂MD 平面MED ,且D MD ED = ,⊥∴EF 平面MED(2)解:由(1)知⊥EF 平面MED ,则建立如图所示空间直角坐标系,过点M 作ED MN ⊥,垂足为N在DME Rt ∆中,554=⋅=ED MD ME MN ,22MN EM EN -=552=,从而()0,0,0E⎪⎪⎭⎫ ⎝⎛554,552,0M ,()00,5F ,()0,52,0D ,⎪⎪⎭⎫ ⎝⎛=∴554,552,0EM ,⎪⎪⎭⎫⎝⎛-=554,552,5FM ,()0,52,5-=FD . 设平面MFD 的一个法向量为()z y x n ,,=,则⎪⎩⎪⎨⎧=+-=++-052505545525y x z y x , 令2=x ,则1=y ,4=z ,()2,1,2=∴n .设直线EM 与平面MFD 所成角为θ,则EM <=cos sin θ,>n 35=⋅=nEM n EM .∴直线EM 与平面MFD 所成角的正弦值为35 19. 解: (1) 1.乙种棉花的纤维平均长度大于甲种棉花的纤维平均长度(或:乙种棉花的纤维长度普遍大于甲种棉花的纤维长度).2.甲种棉花的纤维长度较乙种棉花的纤维长度更分散.(或:乙种棉花的纤维长度较甲种棉花的纤维长度更集中(稳定),甲种棉花的纤维长度的分散程度比乙种棉花的纤维长度的分散程度更大.)3.甲种棉花的纤维长度的中位数为307mm .乙种棉花的纤维长度的中位数为318mm .4.乙种棉花的纤维长度基本上是对称的,而且大多集中在中间(均值附近).甲种棉花的纤维长度除一个特殊值(352) 外,也大致对称,其分布较均匀.(2) 记事件A 为“从样本中随机抽取甲、乙两种棉花各2根,其中恰有3根一级棉花”.则()=A P 225225115110210215115110C C C C C C C C +41= (3) 由题意知,X 的可能取值是0,1,2,其相应的概率为()25652530=⨯==X P ,()==1X P 251353535252=⨯+⨯,()25653522=⨯==X P , 所以X 的分布列为X 0 1 2P2562513 256 ()=X E 2562251312560⨯+⨯+⨯1= 20.解:(1)由题意设11r PF =,22r PF =则2153r r=,又a r r 221=+,a r 451=∴,a r 432= 在21F PF ∆中,由余弦定理得,=∠21cos PF F 2122122212r r F F r r -+=a a a a 4345224345222⨯⨯-⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛53=, 解得2=a ,1=c ,3222=-=∴c a b ,∴所求椭圆方程为13422=+y x (2)联立方程⎪⎩⎪⎨⎧+==+m kx y y x 13422,消去y 得()++2243x k 012482=-+m kmx , 则=+21x x 2438k km +-,222143124km x x +-=,且()0434822>-+=∆m k …①设AB 的中心为()00,y x M ,则=+=2210x x x 2434k km +-,20433k mm kx y +=+=, BQ AQ = ,QM AB ⊥∴,即,=⋅QM k k 14143443322-=-+-+⋅k km kmk ,解得k km 4432+-=…② 把②代入①得22244343⎪⎪⎭⎫ ⎝⎛+->+k k k ,整理得0381624>-+k k ,即()()0341422>+-k k 解得⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛-∞-∈,2121, k21.(1)解:()()a x e x x f x +++='21,由题意有()()⎪⎩⎪⎨⎧-===+='230210b f a f ,解得23,1-==b a (2)证明:(方法一)由(1)知,()232-++=x x xe x f x.设()x x x xe x h x ln 2-++= 则只需证明()23>x h ()()x x e x x h x 1121-+++='()⎪⎭⎫ ⎝⎛-++=x e x x 121,设()x e x g x 12-+= 则()012>+='xe x g x, ()x g ∴在()+∞,0上单调递增 0424141<-+=⎪⎭⎫ ⎝⎛e g ,0323131>-+=⎪⎭⎫⎝⎛e g⎪⎭⎫⎝⎛∈∃∴31,410x ,使得()01000=+=x e x g x且当()0,0x x ∈时,()0<x g ,当()+∞∈,0x x 时,()0>x g∴当()0,0x x ∈时,()0<'x h ,()x h 单调递减当()+∞∈,0x x 时,()0>'x h ,()x h 单调递增()()==∴0min x h x h 00200ln 0x x x e x x -++,由01200=-+x e x ,得210-=x e x , ()+⎪⎪⎭⎫ ⎝⎛-=∴21000x x x h 0020ln x x x -+0020ln 1x x x -+-=, 设()x x x x ln 12-+-=ϕ,⎪⎭⎫⎝⎛∈31,41x ,()x x x 112--='ϕ()()xx x 112-+=∴当⎪⎭⎫ ⎝⎛∈31,41x 时,()0<'x ϕ,()x ϕ在⎪⎭⎫⎝⎛31,41单调递减,∴()()>=00x x h ϕ23131⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛ϕ⎪⎭⎫ ⎝⎛-+-31ln 131233ln 97>+=,因此()23>x h(方法二)先证当0≥x 时,()232-++=x x xe x f x232-≥x ,即证02≥-+x x xe x设()x x xe x g x -+=2,0≥x 则()()121-++='x e x x g x ,且()00='g()()022>++='x e x x g ,()x g '∴在[)+∞,0单调递增,()()00='≥'g x g ()x g '∴在[)+∞,0单调递增,则当0≥x 时,()()002=≥-+=g x x xe x g x(也可直接分析232232-≥-++x x x xe x⇔02≥-+x x xe x ⇔01≥-+x e x 显然成立) 再证x x ln 232≥-设()x x x h ln 232--=,则()x x x x h 1212-=-=',令()0='x h ,得21=x且当⎪⎭⎫ ⎝⎛∈21,0x 时,()0<'x h ,()x h 单调递减;当⎪⎭⎫ ⎝⎛+∞∈,21x 时,()0>'x h ,()x h 单调递增.∴()x x x h ln 232--=02ln 2121>+-=⎪⎭⎫⎝⎛≥h ,即x x ln 232>- 又()232232-≥-++=x x x xe x f x,()x x f ln >∴ 22.解:(1)由θθρsin 2cos 2a =,两边同乘ρ,得θρθρsin 2cos 22a = 化为普通方程为)0(22>=a ay x将⎪⎪⎩⎪⎪⎨⎧+-=+-=t y tx 222221消去参数t,得直线l 的普通方程为01=--y x(2)把⎪⎪⎩⎪⎪⎨⎧+-=+-=t y tx 222221代入ay x 22=,整理得028)1(222=+++-a t a t=+∴21t t )1(22a +,2821+=a t t ,由2)1(8a +=∆0)28(4>+-a ,得2>a 或0<a ,0>a ,2<∴a ,02821>+=∴a t tPA ,AB ,PB 成等比数列,PB PA AB ⋅=∴2由t 的几何意义得()2121221t t t t t t ==-,即()212215t t t t =+()[]2122a +∴)28(5+=a ,即011242=--a a ,解得2103±=a 又2>a ,2103+=∴a 23.(1)解: 存在实数0x 使()20<x f 成立,()2min <∴x f=+-x k x 22 x k x 22+-x k x 22--≥k =,则()2min <=k x f解得22<<-k ,*∈N k ,1=∴k(2)证明:由(1)知,()x x x f 212+-=,21>m ,21>n , ()=+-=∴m m m f 212m m 212+-14-=m ,同理,()14-=n n f ()()10==n f m f ,10244=-+∴n m ,即3=+n m=+∴n m 19()n m n m +⎪⎭⎫ ⎝⎛+1931⎪⎭⎫ ⎝⎛++=n m m n 91031316921031=⎪⎪⎭⎫ ⎝⎛⋅+≥n m m n 当且仅当n m m n =9,又3=+n m ,得49=m ,43=n 时取等号.。