不等式的综合应用提高。知识梳理
一元一次不等式(组)综合+应用拔高训练

不等关系综合应用(讲义)一、知识点睛一元一次不等式(组)是探求不等关系的基本工具,主要应用在复杂不等式(含参、高次、多元等)的处理,比较大小等方面. 1. 复杂不等式的处理①含参不等式(组)解题步骤:________________;________________;________________. ②高次不等式:________,转化成一元一次不等式(组)求解.③方程与不等式组合:____________________,转化成一元一次不等式(组)求解. ④一次函数与不等式:利用_____________求解. 2. 比较大小作差是比较大小常用的手段,作差之后是二次三项式结构,可以考虑通过配方借助完全平方的非负性进行判断.当0a >时,代数式2()a x h k k -+≥; 当0a <时,代数式2()a x h k k -+≤. 二、精讲精练1. 若关于x 的不等式组12x m x m >-⎧⎨>+⎩的解集是1x >-,则m =____.2. 若关于x 的不等式组1240x a x +>⎧⎨-⎩≤有解,则a 的取值范围是_______________. 3. 若关于x 的不等式组4050a x x a -⎧⎨+->⎩≥无解,则a 的取值范围是_______________.4. 若关于x 的不等式组23335x x x a >-⎧⎨-⎩≥有两个整数解,则a 的取值范围是_______________. 5. 已知a ,b 为实数,则解集可以为22x -<<的不等式组是( )A .11ax bx >⎧⎨>⎩B .11ax bx >⎧⎨<⎩C .11ax bx <⎧⎨>⎩D .11ax bx <⎧⎨<⎩6. 阅读下列材料,并解答问题.例题:解一元二次不等式2620x x -->.解:把262x x --分解因式,得262(32)(21)x x x x --=-+, 又2620x x -->, ∴(32)(21)0x x -+>,由有理数的乘法法则“两数相乘,同号得正”得,①320210x x ->⎧⎨+>⎩或②320210x x -<⎧⎨+<⎩解不等式组①得23x >,解不等式组②得12x <-,∴(32)(21)0x x -+>的解集为23x >或12x <-,∴原不等式的解集为23x >或12x <-. 仿照上面的解法解不等式.(1)若2210x x +-≥,则x 的取值范围是______________.(2)若2230x x -++≤,则x 的取值范围是_____________. 7. 已知4a b +=,23a b a <<,则a 的取值范围是____________. 8. 已知6a b -=,97420a b <+<,则b 的取值范围是________.9. 若2a b +=-,且2a b ≥,则( )A .b a 有最小值12B .b a 有最大值1C .ab 有最大值2D .a b 有最小值89-10. 如图,直线1y k x b =+经过点A (0,2),且与直线2y mx =交于点P (1,m ),则不等式组2mx kx b mx -<+<的解集是( ) A .12x << B .02x << C .23x << D .13x << 11. 已知函数1y x =,2113y x =+,3455y x =-+的图象如图所示,若无论x 取何值,y 总取1y ,2y ,3y 中的最小值,则y 的最大值为( )A .32B .3717C .6017D .25912. 已知当12x -≤≤时,函数6y ax =+满足y ≤A .2a ≤B .4a -≥C .42a -≤≤D .4a -≤或2a ≥13. 当x =______时,代数式241x x -+有最____值,值为_______;当x =______时,代数式2247x x -++有最____值,值为________.14. 若无论x 取何值,二次三项式26x x c -+的值都不小于0,则常数c 满足的条件是________________________.15. 用作差法比较大小.(1)22a +与2a ;(2)23x +与3x ;(3)2259x x ++与256x x ++; (4)221x y ++与2(1)x y +-.不等关系综合应用(作业)1. 若关于x 的不等式组31222x mx n -⎧>-⎪⎨⎪+⎩≤的解集是12x -<≤,则m =_________,n =__________.2. 若关于x 的不等式组1<21x m x m -⎧⎨+⎩≥无解,则m 的取值范围是__________________.3. 若关于x 的不等式组13240x a x ->⎧⎨-⎩≤的解集是2x ≤,则a 的取值范围是__________________.4. 若关于x 的不等式组3123x a x b >-⎧⎨-⎩≤的整数解仅有2和3,则a 的取值范围是___________,b 的取值范围是___________.5. 已知a ,b 为实数,关于x 的不等式组的解集在数轴上的表示如图所示,则这个不等式组可能是( )A .>1>1ax bx ⎧⎨⎩B .>1<1ax bx ⎧⎨⎩C .<1>1ax bx ⎧⎨⎩D .<1<1ax bx ⎧⎨⎩6. 若2a b -=,且1533a b a -<-≤,则a 的取值范围是______________________.7. 若21a b +=-,且3a b ≥,则ab 的最大值是_____________.8. 若(1)(3)0x x -+>,则x 的取值范围是_________________.9. 若2230x x --<,则x 的取值范围是___________________.10. 如图,已知直线y kx b =+经过点A (-2,-1)和点B (-3,0),则关于x 的不等式组12x kx b <+<的解集为___________.第10题图 第11题图11. 已知函数1y x =,2113y x =+,3453y x =-+的图象如图所示,若无论x 取何值,y 总取y 1,y 2,y 3中的最小值,则y 的最大值为_______________.12. 当x =_________时,代数式2610x x -+有最_______值,值为____________;当x =_________时,代数式21x x --+有最_______值,值为____________.13. 用作差法比较大小.(1)24m m -与5-;(2)22x y --与2()3x y ++;(3)253x x ++与251x x ++.不等式(组)应用题(讲义)一、知识点睛1.理解题意,借助表格等梳理信息.2.建立不等式(组)模型.①辨析不等关系类型,列出不等式(组)显性不等关系:不少于、不超过、至少、不空不满等;隐性不等关系:原材料供应型(使用量≤供应量),容器容量型(载重量≥货物量)等.②注意不等式(组)与方程、一次函数的配合方程:共计、总计等;一次函数:最大、最优、最节约等.3.结合实际意义进行求解、验证.二、精讲精练1.某公司有A型产品40件,B型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品时每件的利润(元)如下表:(1)设分配给甲店x件A型产品,这家公司卖出这100件产品的总利润为W(元),求W与x之间的函数关系式,并求出x的取值范围.(2)若公司要求总利润不低于17 560元,请你为这家公司设计销售方案,并分析哪种方案所获利润最多.(3)为了促销,公司决定对甲店A型产品让利销售,每件让利a元,但让利后A型产品的每件利润仍高于甲店B型产品的每件利润.若甲店的B型产品及乙店的A,B型产品的每件利润均不变,该公司又如何设计销售方案,才能使总利润达到最大?2.为了保护环境,某企业决定购买10台污水处理设备.现有A,B两种型号的设备,其中每台的价格、月处理污水量及年消耗费如下表:经预算,该企业购买设备的资金不高于105万元.(1)该企业有哪几种购买方案?请你设计出来.(2)若该企业每月产生的污水量为2 040吨,为节约资金,应选择哪种购买方案?3.某省的家电以旧换新政策规定:消费者在购买政策限定的新家电时,每台新家电可以用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提供,其中三种家电的补贴方式如下表:某商场家电部准备购进电视、洗衣机、冰箱共100台,已知这批家电的进价和售价如下表:设购进的电视机和洗衣机的数量均为x台,这100台家电政府需要补贴y元,商场所获利润为W 元.(利润=售价-进价)(1)请分别求出y与x和W与x之间的函数关系式;(2)若商场决定购进的每种家电均不少于30台,则有哪几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴的金额为多少?4. 为加强对学生的爱国主义教育,某中学计划组织八年级480名师生到爱国主义教育基地参观,乘车往返.经与客运公司联系,他们有座位数不同的A ,B 两型客车供选择,已知A 型客车满载40人,B 型客车满载60人.(1)如果学校同时租用m 辆A 型客车和n 辆B 型客车,师生正好坐满每辆车,请你帮助学校设计所有的租车方案.(2)租车过程中,客运公司负责人向校方介绍:A 型客车是新购进的“低碳”汽车,既节能又环保,每辆租金320元;B 型客车虽然载客量大些,但尾气排放量大,每辆租金460元.已知校方租用的A 型客车多于B 型客车,在(1)的条件下,请你通过计算说明,如何租车学校所付租金最少.5. 某企业欲将n 件产品运往A ,B ,C 三地销售,要求运往C 地的件数是运往A 地件数的2倍,各地的运费如图所示.设安排x 件产品运往A 地.C 地B 地A 地所在地8元/件25元/件企业30元/件(1)当n =200时, ①根据信息填表:②若运往B 地的件数不多于运往C 地的件数,总运费不超过4 000元,则有哪几种运输方案? (2)若总运费为5 800元,求n 的最小值.6. 农村医疗保险制度中,医疗费的报销比例标准如下表:(1)某农民一年的实际医疗费为x 元(50010000x ≤),按标准报销的金额为y 元,试求y 与x 之间的函数关系式;(2)若某农民一年内的自付医疗费为2 600元 (自付医疗费=实际医疗费-按标准报销的金额),则该农民当年的实际医疗费为多少元?(3)若某农民一年内的自付医疗费不少于4 100元,则该农民当年的实际医疗费至少为多少元?不等式(组)应用题(作业)1. 某农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台.现将这50台联合收割机派往A ,B 两地区收割小麦,其中30台派往A 地区,20台派往B 地区.两地区与该农机租赁公司商定的每天租赁价格如下表:(1)设派往A 地区x 台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金总额为y 元,求y 与x 之间的函数关系式,并写出x 的取值范围.(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,则有多少种租赁方案?请将各种方案设计出来.2.某村庄计划建造A,B两种型号的沼气池共20个,以解决该村所有农户的燃料问题.两种型号沼气池的占地面积和可供使用农户数见下表:已知可供建造沼气池的占地面积不超过365m2,该村农户共有492户.(1)如何合理分配建造A,B型号“沼气池”的个数才能满足条件?满足条件的方案有几种?通过计算分别写出各种方案.(2)若A型号“沼气池”每个造价2万元,B型号“沼气池”每个造价3万元,试说明在(1)中的各种建造方案中,哪种建造方案最省钱,最少的费用需要多少万元?3.某家电商场为了响应国家家电下乡的号召,准备用不超过105 700元购进40台电脑,其中A型电脑每台进价2 500元,每台售价3 000元,B型电脑每台进价2 800元,每台售价3 200元,预计销售总额不低于123 200元.设购进A型电脑x台,商场的总利润为y元.(1)商场有哪几种进货方案?请你设计出来.(2)求y与x之间的函数关系式,并说明哪种方案的利润最大,最大利润是多少元?(3)商场准备拿出(2)中最大利润的一部分再次购进相同数量的A型和B型电脑至少各两台,另一部分为地震灾区购买单价为500元的帐篷若干顶.若钱恰好用尽且三样都购买,请直接写出满足条件的购买方案.4.为了鼓励节约用水,某市居民生活用水按阶梯式水价计费.下面是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息:(说明:①每户产生的污水量等于该户自来水用水量;②水费=自来水费用+污水处理费用)已知小王家4月份用水20吨,交水费66元;5月份用水25吨,交水费91元.(1)求a,b的值.(2)随着夏天的到来,用水量将增加,为了节省开支,小王计划把6月份的水费控制在不超过家庭月收入的2%.若小王家的月收入为9 200元,则小王家6月份最多能用水多少吨?。
(完整版)不等式知识结构及知识点

o 不等式知识结构及知识点总结一.知识结构二.知识点1、不等式的基本性质①(对称性)②(传递性)③(可加性)a b b a >⇔>,a b b c a c >>⇒>a b a c b c>⇔+>+(同向可加性) (异向可减性)d b c a d c b a +>+⇒>>,db c a d c b a ->-⇒<>,④(可积性) bc ac c b a >⇒>>0,bc ac c b a <⇒<>0,⑤(同向正数可乘性) (异向正数可除性)0,0a b c d ac bd >>>>⇒>0,0a b a b c d c d>><<⇒>⑥(平方法则) ⑦(开方法则)0(,1)n n a b a b n N n >>⇒>∈>且0,1)a b n N n >>⇒>∈>且⑧(倒数法则)ba b a b a b a 110;110>⇒<<<⇒>>2、几个重要不等式①,(当且仅当时取号).变形公式:()222a b ab a b R +≥∈,a b =""=o 22.2a b ab +≤②(基本不等式),(当且仅当时取到等号).2a b+≥()a b R +∈,a b =变形公式:用基本不等式求最值时(积定和最小,和定a b +≥2.2a b ab +⎛⎫≤ ⎪⎝⎭积最大),要注意满足三个条件“一正、二定、三相等”.③(三个正数的算术—几何平均不等式)(当且仅当3a b c ++()a b c R +∈、、时取到等号).a b c ==④(当且仅当时取到等号).()222a b c ab bc ca a b R ++≥++∈,a b c ==⑤(当且仅当时取到等号).3333(0,0,0)a b c abc a b c ++≥>>>a b c ==⑥(当仅当a=b 时取等号)(当仅当a=b 0,2b aab a b>+≥若则0,2b aab a b<+-若则时取等号)⑦其中规律:小于1同加则变大,大于ban b n a m a m b a b <++<<++<1(000)a b m n >>>>,,1同加则变小.⑧ 220;a x a x a x a x a >>⇔>⇔<->当时,或22.x a x a a x a <⇔<⇔-<<⑨绝对值三角不等式.a b a b a b -≤±≤+3、几个著名不等式①平均不等式:,(当且1122a b a b --+≤≤+()a b R +∈,仅当时取号).(即调和平均几何平均算术平均平方平均).a b =""=≤≤≤ 变形公式: 222;22a b a b ab ++⎛⎫≤≤⎪⎝⎭222().2a b a b ++≥②幂平均不等式:222212121...(...).n n a a a a a a n+++≥++++≥1122(,,,).x y x y R ∈④二维形式的柯西不等式当且仅当22222()()()(,,,).a b c d ac bd a b c d R ++≥+∈时,等号成立.ad bc =⑤三维形式的柯西不等式:2222222123123112233()()().a a a b b b a b a b a b ++++≥++⑥一般形式的柯西不等式:2222221212(...)(...)n n a a a b b b ++++++o r21122(...).n n a b a b a b ≥+++⑦向量形式的柯西不等式:设是两个向量,则当且仅当是零向量,或存在实数,使,αβ ,αβαβ⋅≤ βk 时,等号成立.k αβ=⑧排序不等式(排序原理):设为两组实数.是的任一排列,1212...,...n n a a a b b b ≤≤≤≤≤≤12,,...,n c c c 12,,...,n b b b 则(反序和乱序和12111122......n n n n n a b a b a b a c a c a c -+++≤+++1122....n n a b a b a b ≤+++≤顺序和)≤当且仅当或时,反序和等于顺序和.12...n a a a ===12...n b b b ===⑨琴生不等式:(特例:凸函数、凹函数)若定义在某区间上的函数,对于定义域中任()f x 意两点有则称f(x)为凸(或1212,(),x x x x ≠12121212()()()()()().2222x x f x f x x x f x f x f f ++++≤≥或凹)函数.4、不等式证明的几种常用方法常用方法有:比较法(作差,作商法)、综合法、分析法;其它方法有:换元法、反证法、放缩法、构造法,函数单调性法,数学归纳法等.常见不等式的放缩方法:①舍去或加上一些项,如22131((;242a a ++>+②将分子或分母放大(缩小),如211,(1)k k k <-211,(1)k k k >+==<等.*,1)k N k >∈>5、一元二次不等式的解法求一元二次不等式解集的步骤:20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->一化:化二次项前的系数为正数.二判:判断对应方程的根.三求:求对应方程的根.四画:画出对应函数的图象.五解集:根据图象写出不等式的解集.规律:当二次项系数为正时,小于取中间,大于取两边.6、高次不等式的解法:穿根法.分解因式,把根标在数轴上,从右上方依次往下穿(奇穿偶切),结合原式不等号的方向,写出不等式的解集.7、分式不等式的解法:先移项通分标准化,则()0()()0()()()0()0()0()f x f x g x g x f x g x f x g x g x >⇔⋅>⋅≥⎧≥⇔⎨≠⎩(时同理)<≤“或”规律:把分式不等式等价转化为整式不等式求解.8、无理不等式的解法:转化为有理不等式求解2()0(0)()f x a a f x a ≥⎧>>⇔⎨>⎩2()0(0)()f x a a f x a≥⎧<>⇔⎨<⎩2()0()0()()0()0()[()]f x f x g x g x g x f x g x >⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或2()0()()0()[()]f x g x g x f x g x ≥⎧⎪⇔>⎨⎪<⎩()0()0()()f x g x f x g x ≥⎧⎪⇔≥⎨⎪>⎩规律:把无理不等式等价转化为有理不等式,诀窍在于从“小”的一边分析求解.9、指数不等式的解法:⑴当时,⑵当时,1a >()()()()f x g x aa f x g x >⇔>01a <<()()()()f xg x a a f x g x >⇔<规律:根据指数函数的性质转化.10、对数不等式的解法⑴当时, ⑵当时,1a >()0log ()log ()()0()()a af x f xg x g x f x g x >⎧⎪>⇔>⎨⎪>⎩01a <<()0log ()log ()()0.()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩规律:根据对数函数的性质转化.11、含绝对值不等式的解法:⑴定义法:⑵平方法:(0).(0)a a a a a ≥⎧=⎨-<⎩22()()()().f xg x f x g x ≤⇔≤⑶同解变形法,其同解定理有:①②(0);x a a x a a ≤⇔-≤≤≥(0);x a x a x a a ≥⇔≥≤-≥或③④()()()()()(()0)f x g x g x f x g x g x ≤⇔-≤≤≥()()()()()()(()0)f xg x f x g x f x g x g x ≥⇔≥≤-≥或规律:关键是去掉绝对值的符号.12、含有两个(或两个以上)绝对值的不等式的解法:规律:找零点、划区间、分段讨论去绝对值、每段中取交集,最后取各段的并集.13、含参数的不等式的解法解形如且含参数的不等式时,要对参数进行分类讨论,分类讨论的标20ax bx c ++>准有:⑴讨论与0的大小;⑵讨论与0的大小;⑶讨论两根的大小.a ∆14、恒成立问题⑴不等式的解集是全体实数(或恒成立)的条件是:①当时20ax bx c ++>0a =②当时 ⑵不等式的解集是全0,0;b c ⇒=>0a ≠00.a >⎧⇒⎨∆<⎩20ax bx c ++<体实数(或恒成立)的条件是:①当时②当时0a =0,0;b c ⇒=<0a ≠00.a <⎧⇒⎨∆<⎩⑶恒成立恒成立()f x a <max ();f x a ⇔<()f x a ≤max ();f x a ⇔≤⑷恒成立恒成立()f x a >min ();f x a ⇔>()f x a ≥min ().f x a ⇔≥15、线性规划问题⑴二元一次不等式所表示的平面区域的判断:法一:取点定域法:由于直线的同一侧的所有点的坐标代入0Ax By C ++=后所得的实数的符号相同.所以,在实际判断时,往往只需在直线某一侧任取Ax By C ++一特殊点(如原点),由的正负即可判断出或00(,)x y 00Ax By C ++0Ax By C ++>(表示直线哪一侧的平面区域.0)<即:直线定边界,分清虚实;选点定区域,常选原点.法二:根据或,观察的符号与不等式开口的符号,若同号,0Ax By C ++>(0)<B 或表示直线上方的区域;若异号,则表示直线上方的区域.即:同0Ax By C ++>(0)<号上方,异号下方.⑵二元一次不等式组所表示的平面区域: 不等式组表示的平面区域是各个不等式所表示的平面区域的公共部分.⑶利用线性规划求目标函数为常数)的最值:z Ax By =+(,A B 法一:角点法:如果目标函数 (即为公共区域中点的横坐标和纵坐标)的最值存在,z Ax By =+x y 、则这些最值都在该公共区域的边界角点处取得,将这些角点的坐标代入目标函数,得到一组对应值,最大的那个数为目标函数的最大值,最小的那个数为目标函数的最小值z z z 法二:画——移——定——求:第一步,在平面直角坐标系中画出可行域;第二步,作直线 ,平移直0:0l Ax By +=线(据可行域,将直线平行移动)确定最优解;第三步,求出最优解;第四步,0l 0l (,)x y 将最优解代入目标函数即可求出最大值或最小值 .(,)x y z Ax By =+第二步中最优解的确定方法:利用的几何意义:,为直线的纵截距.z A z y x B B =-+zB①若则使目标函数所表示直线的纵截距最大的角点处,取得最0,B >z Ax By =+z 大值,使直线的纵截距最小的角点处,取得最小值;z ②若则使目标函数所表示直线的纵截距最大的角点处,取得最0,B <z Ax By =+z 小值,使直线的纵截距最小的角点处,取得最大值.z ⑷常见的目标函数的类型:①“截距”型: ②“斜率”型:或;z Ax By =+yz x =;y b z x a-=-③“距离”型:或 或22z x y =+z =22()()z x a y b =-+-z =在求该“三型”的目标函数的最值时,可结合线性规划与代数式的几何意义求解,从而使问题简单化.16. 利用均值不等式:()a b ab a b R a b ab ab a b 222222+≥∈+≥≤+⎛⎝ ⎫⎭⎪+,;;求最值时,你是否注值?(一正、意到“,”且“等号成立”时的条件,积或和其中之一为定a b R ab a b ∈++()()二定、三相等)注意如下结论:()a b a b ab aba ba b R 22222+≥+≥≥+∈+, 当且仅当时等号成立。
高一基本不等式及其应用知识点+例题+练习 含答案

1.基本不等式ab ≤a +b2(1)基本不等式成立的条件:a ≥0,b ≥0. (2)等号成立的条件:当且仅当a =b 时取等号. 2.几个重要的不等式 (1)a 2+b 2≥2ab (a ,b ∈R ). (2)b a +ab ≥2(a ,b 同号). (3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R ).(4)a 2+b 22≥⎝⎛⎭⎫a +b 22 (a ,b ∈R ). 以上不等式等号成立的条件均为a =b . 3.算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为两个正数的几何平均数不大于它们的算术平均数. 4.利用基本不等式求最值问题 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p .(简记:积定和最小) (2)如果和x +y 是定值p ,那么当且仅当x =y 时,xy 有最大值p 24.(简记:和定积最大)【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)函数y =x +1x 的最小值是2.( × )(2)函数f (x )=cos x +4cos x ,x ∈(0,π2)的最小值等于4.( × ) (3)“x >0且y >0”是“x y +yx ≥2”的充要条件.( × )(4)若a >0,则a 3+1a2的最小值为2a .( × )(5)不等式a 2+b 2≥2ab 与a +b2≥ab 有相同的成立条件.( × )1.(教材改编)设x >0,y >0,且x +y =18,则xy 的最大值为________. 答案 81解析 ∵x >0,y >0,∴x +y2≥xy ,即xy ≤(x +y2)2=81,当且仅当x =y =9时,(xy )max =81.2.若实数x ,y 满足x >y >0,且log 2x +log 2y =1,则x 2+y 2x -y 的最小值为________.答案 4解析 由log 2x +log 2y =1得xy =2,又x >y >0,所以x -y >0,x 2+y 2x -y =(x -y )2+2xy x -y =x -y +4x -y ≥2(x -y )·4x -y =4,当且仅当x -y =2,即x =1+3,y =3-1时取等号,所以x 2+y 2x -y的最小值为4.3.若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a =________.答案 3解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3. 4.(教材改编)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是________ m 2. 答案 25解析 设矩形的一边为x m , 则另一边为12×(20-2x )=(10-x )m ,∴y =x (10-x )≤[x +(10-x )2]2=25,当且仅当x =10-x ,即x =5时,y max =25.5.(教材改编)已知x ,y ∈R +,且x +4y =1,则xy 的最大值为________. 答案116解析 1=x +4y ≥24xy =4xy ,∴xy ≤(14)2=116,当且仅当x =4y =12,即⎩⎨⎧x =12y =18时,(xy )max =116.题型一 利用基本不等式求最值命题点1 配凑法求最值例1 (1)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(2)函数y =x 2+2x -1(x >1)的最小值为________.(3)函数y =x -1x +3+x -1的最大值为________.答案 (1)1 (2)23+2 (3)15解析 (1)因为x <54,所以5-4x >0,则f (x )=4x -2+14x -5=-(5-4x +15-4x )+3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,等号成立.故f (x )=4x -2+14x -5的最大值为1.(2)y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当(x -1)=3(x -1),即x =3+1时,等号成立.(3)令t =x -1≥0,则x =t 2+1,所以y =t t 2+1+3+t =tt 2+t +4.当t =0,即x =1时,y =0; 当t >0,即x >1时,y =1t +4t+1,因为t +4t ≥24=4(当且仅当t =2时取等号),所以y =1t +4t+1≤15,即y 的最大值为15(当t =2,即x =5时y 取得最大值).思维升华 (1)应用基本不等式解题一定要注意应用的前提:“一正”“二定”“三相等”.所谓“一正”是指正数,“二定”是指应用基本不等式求最值时,和或积为定值,“三相等”是指满足等号成立的条件.(2)在利用基本不等式求最值时,要根据式子的特征灵活变形,配凑出积、和为常数的形式,然后再利用基本不等式.命题点2 常数代换或消元法求最值例2 (1)若正数x ,y 满足x +3y =5xy ,则3x +4y 的最小值是________. (2)(高考改编题)设a +b =2,b >0,则12|a |+|a |b 取最小值时,a 的值为________.答案 (1)5 (2)-2解析 (1)方法一 由x +3y =5xy 可得15y +35x=1,∴3x +4y =(3x +4y )(15y +35x )=95+45+3x 5y +12y 5x ≥135+125=5. (当且仅当3x 5y =12y 5x ,即x =1,y =12时,等号成立),∴3x +4y 的最小值是5. 方法二 由x +3y =5xy 得x =3y5y -1, ∵x >0,y >0,∴y >15,∴3x +4y =9y5y -1+4y =13(y -15)+95+45-4y5y -1+4y=135+95·15y -15+4(y -15)≥135+23625=5, 当且仅当y =12时等号成立,∴(3x +4y )min =5.(2)∵a +b =2,∴12|a |+|a |b =24|a |+|a |b =a +b 4|a |+|a |b =a 4|a |+b 4|a |+|a |b ≥a 4|a |+2b 4|a |×|a |b =a4|a |+1, 当且仅当b 4|a |=|a |b 时等号成立.又a +b =2,b >0, ∴当b =-2a ,a =-2时,12|a |+|a |b取得最小值. 思维升华 条件最值的求解通常有两种方法:一是消元法,即根据条件建立两个量之间的函数关系,然后代入代数式转化为函数的最值求解;二是将条件灵活变形,利用常数“1”代换的方法构造和或积为常数的式子,然后利用基本不等式求解最值.(1)已知x ,y ∈(0,+∞),2x -3=(12)y ,若1x +m y(m >0)的最小值为3,则m =________.(2)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________. 答案 (1)4 (2)6解析 (1)由2x -3=(12)y 得x +y =3,1x +m y =13(x +y )(1x +m y ) =13(1+m +y x +mx y ) ≥13(1+m +2m ), (当且仅当y x =mxy 时取等号)∴13(1+m +2m )=3, 解得m =4.(2)由已知得x =9-3y1+y .方法一 (消元法) ∵x >0,y >0,∴y <3, ∴x +3y =9-3y 1+y +3y =3y 2+91+y=3(1+y )2-6(1+y )+121+y =121+y +(3y +3)-6≥2121+y·(3y +3)-6=6, 当且仅当121+y =3y +3,即y =1,x =3时,(x +3y )min =6. 方法二 ∵x >0,y >0,9-(x +3y )=xy =13x ·(3y )≤13·(x +3y 2)2,当且仅当x =3y 时等号成立. 设x +3y =t >0,则t 2+12t -108≥0, ∴(t -6)(t +18)≥0,又∵t >0,∴t ≥6.故当x =3,y =1时,(x +3y )min =6.题型二 基本不等式与学科知识的综合命题点1 用基本不等式求解与其他知识结合的最值问题例3 (1)已知直线ax +by +c -1=0(b ,c >0)经过圆x 2+y 2-2y -5=0的圆心,则4b +1c 的最小值是________.(2)已知a >0,b >0,a ,b 的等比中项是1,且m =b +1a ,n =a +1b ,则m +n 的最小值是________.答案 (1)9 (2)4解析 (1)圆x 2+y 2-2y -5=0化成标准方程, 得x 2+(y -1)2=6, 所以圆心为C (0,1).因为直线ax +by +c -1=0经过圆心C , 所以a ×0+b ×1+c -1=0,即b +c =1. 因此4b +1c =(b +c )(4b +1c )=4c b +bc +5.因为b ,c >0, 所以4c b +b c≥24c b ·bc=4. 当且仅当4c b =bc时等号成立.由此可得b =2c ,且b +c =1,即b =23,c =13时,4b +1c 取得最小值9.(2)由题意知:ab =1,∴m =b +1a =2b ,n =a +1b=2a ,∴m +n =2(a +b )≥4ab =4,当且仅当a =b =1时,等号成立. 命题点2 求参数的值或取值范围例4 已知a >0,b >0,若不等式3a +1b ≥ma +3b 恒成立,则m 的最大值为________.答案 12解析 由3a +1b ≥ma +3b得m ≤(a +3b )(3a +1b )=9b a +ab+6.又9b a +ab +6≥29+6=12, ∴m ≤12,∴m 的最大值为12.思维升华 (1)应用基本不等式判断不等式是否成立:对所给不等式(或式子)变形,然后利用基本不等式求解.(2)条件不等式的最值问题:通过条件转化成能利用基本不等式的形式求解.(3)求参数的值或范围:观察题目特点,利用基本不等式确定相关成立条件,从而得参数的值或范围.(1)已知各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,若存在两项a m ,a n 使得a m a n =4a 1,则1m +4n的最小值为________.(2)已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意x ∈N *,f (x )≥3恒成立,则a 的取值范围是________________________________________________________________________. 答案 (1)32 (2)[-83,+∞)解析 (1)由各项均为正数的等比数列{a n }满足a 7=a 6+2a 5,可得a 1q 6=a 1q 5+2a 1q 4, 所以q 2-q -2=0, 解得q =2或q =-1(舍去). 因为a m a n =4a 1,所以q m +n -2=16, 所以2m +n -2=24,所以m +n =6. 所以1m +4n =16(m +n )(1m +4n )=16(5+n m +4m n ) ≥16(5+2n m ·4m n )=32. 当且仅当n m =4mn 时,等号成立,故1m +4n 的最小值等于32. (2)对任意x ∈N *,f (x )≥3恒成立,即x 2+ax +11x +1≥3恒成立,即知a ≥-(x +8x )+3.设g (x )=x +8x ,x ∈N *,则g (2)=6,g (3)=173.∵g (2)>g (3),∴g (x )min =173.∴-(x +8x )+3≤-83, ∴a ≥-83,故a 的取值范围是[-83,+∞).题型三 不等式的实际应用例5 运货卡车以每小时x 千米的速度匀速行驶130千米,按交通法规限制50≤x ≤100(单位:千米/时).假设汽油的价格是每升2元,而汽车每小时耗油(2+x 2360)升,司机的工资是每小时14元.(1)求这次行车总费用y 关于x 的表达式;(2)当x 为何值时,这次行车的总费用最低,并求出最低费用的值. 解 (1)设所用时间为t =130x(h),y =130x ×2×(2+x 2360)+14×130x,x ∈[50,100].所以,这次行车总费用y 关于x 的表达式是y =130×18x +2×130360x ,x ∈[50,100].(或y =2 340x +1318x ,x ∈[50,100]).(2)y =130×18x +2×130360x ≥2610,当且仅当130×18x =2×130360x ,即x =1810,等号成立.故当x =1810千米/时时,这次行车的总费用最低,最低费用的值为2610元. 思维升华 (1)设变量时一般要把求最大值或最小值的变量定义为函数. (2)根据实际问题抽象出函数的解析式后,只需利用基本不等式求得函数的最值. (3)在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.某工厂某种产品的年固定成本为250万元,每生产x 千件,需另投入成本为C (x ),当年产量不足80千件时,C (x )=13x 2+10x (万元).当年产量不小于80千件时,C (x )=51x +10 000x -1 450(万元).每件商品售价为0.05万元.通过市场分析,该厂生产的商品能全部售完.(1)写出年利润L (x )(万元)关于年产量x (千件)的函数解析式;(2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大? 解 (1)当0<x <80时,L (x )=1 000x ×0.05-(13x 2+10x )-250=-13x 2+40x -250.当x ≥80时,L (x )=1 000x ×0.05-(51x +10 000x-1 450)-250 =1 200-(x +10 000x).∴L (x )=⎩⎨⎧-13x 2+40x -250(0<x <80),1 200-(x +10 000x)(x ≥80).(2)当0<x <80时,L (x )=-13x 2+40x -250.对称轴为x =60,即当x =60时,L (x )最大=950(万元). 当x ≥80时,L (x )=1 200-(x +10 000x )≤1 200-210 000=1 000(万元),当且仅当x =100时,L (x )最大=1 000(万元), 综上所述,当x =100时,年获利最大.9.忽视最值取得的条件致误典例 (1)已知x >0,y >0,且1x +2y =1,则x +y 的最小值是________.(2)函数y =1-2x -3x(x <0)的最小值为________.易错分析 (1)多次使用基本不等式,忽略等号成立的条件.如:1=1x +2y ≥22xy,∴xy ≥22,∴x +y ≥2xy ≥42,得(x +y )min =4 2.(2)没有注意到x <0这个条件误用基本不等式得2x +3x ≥2 6. 解析 (1)∵x >0,y >0, ∴x +y =(x +y )(1x +2y) =3+y x +2x y≥3+22(当且仅当y =2x 时取等号), ∴当x =2+1,y =2+2时,(x +y )min =3+2 2.(2)∵x <0,∴y =1-2x -3x =1+(-2x )+(-3x)≥1+2 (-2x )·3-x=1+26,当且仅当x =-62时取等号,故y 的最小值为1+2 6. 答案 (1)3+22 (2)1+2 6温馨提醒 (1)利用基本不等式求最值,一定要注意应用条件;(2)尽量避免多次使用基本不等式,若必须多次使用,一定要保证等号成立的条件一致.[方法与技巧]1.基本不等式具有将“和式”转化为“积式”和将“积式”转化为“和式”的放缩功能,常常用于比较数(式)的大小或证明不等式,解决问题的关键是分析不等式两边的结构特点,选择好利用基本不等式的切入点.2.对于基本不等式,不仅要记住原始形式,而且还要掌握它的几种变形形式及公式的逆用等,例如:ab ≤(a +b 2)2≤a 2+b 22,ab ≤a +b 2≤ a 2+b 22(a >0,b >0)等,同时还要注意不等式成立的条件和等号成立的条件.3.对使用基本不等式时等号取不到的情况,可考虑使用函数y =x +m x(m >0)的单调性. [失误与防范]1.使用基本不等式求最值,“一正”“二定”“三相等”三个条件缺一不可.2.连续使用基本不等式求最值要求每次等号成立的条件一致.A 组 专项基础训练(时间:30分钟)1.下列不等式一定成立的是________.①lg(x 2+14)>lg x (x >0); ②sin x +1sin x≥2(x ≠k π,k ∈Z ); ③x 2+1≥2|x |(x ∈R );④1x 2+1>1(x ∈R ). 答案 ③解析 当x >0时,x 2+14≥2·x ·12=x , 所以lg(x 2+14)≥lg x (x >0), 故①不正确;运用基本不等式时需保证“一正”“二定“三相等”,而当x ≠k π,k ∈Z 时,sin x 的正负不定,故②不正确;由基本不等式可知,③正确;当x =0时,有1x 2+1=1,故④不正确. 2.设非零实数a ,b ,则“a 2+b 2≥2ab ”是“a b +b a≥2成立”的__________条件. 答案 必要不充分解析 因为a ,b ∈R 时,都有a 2+b 2-2ab =(a -b )2≥0,即a 2+b 2≥2ab ,而a b +b a≥2⇔ab >0, 所以“a 2+b 2≥2ab ”是“a b +b a≥2成立”的必要不充分条件. 3.已知a >0,b >0,a +b =2,则y =1a +4b的最小值是________. 答案 92解析 依题意,得1a +4b =12(1a +4b)·(a +b )=12[5+(b a +4a b )]≥12(5+2b a ·4a b )=92, 当且仅当⎩⎪⎨⎪⎧ a +b =2,b a =4a b ,a >0,b >0,即a =23,b =43时取等号, 即1a +4b 的最小值是92. 4.(2014·重庆改编)若log 4(3a +4b )=log 2ab ,则a +b 的最小值是________.答案 7+4 3解析 由题意得⎩⎪⎨⎪⎧ ab >0,ab ≥0,3a +4b >0,所以⎩⎨⎧a >0,b >0. 又log 4(3a +4b )=log 2ab ,所以log 4(3a +4b )=log 4ab ,所以3a +4b =ab ,故4a +3b=1. 所以a +b =(a +b )(4a +3b )=7+3a b +4b a≥7+23a b ·4b a =7+43, 当且仅当3a b =4b a时取等号. 5.已知正数x ,y 满足x +2y -xy =0,则x +2y 的最小值为________.答案 8解析 由x +2y -xy =0,得2x +1y=1,且x >0,y >0. ∴x +2y =(x +2y )×(2x +1y )=4y x +x y+4≥4+4=8. 6.规定记号“⊗”表示一种运算,即a ⊗b =ab +a +b (a 、b 为正实数).若1⊗k =3,则k 的值为________,此时函数f (x )=k ⊗x x的最小值为________. 答案 1 3解析 1⊗k =k +1+k =3,即k +k -2=0,∴k =1或k =-2(舍去).∴k =1.f (x )=1⊗x x =x +x +1x =1+x +1x≥1+2=3, 当且仅当x =1x ,即x =1时等号成立. 7.已知x >0,y >0,且4xy -x -2y =4,则xy 的最小值为________.答案 2解析 ∵x >0,y >0,x +2y ≥22xy ,∴4xy -(x +2y )≤4xy -22xy ,∴4≤4xy -22xy , 即(2xy -2)(2xy +1)≥0,∴2xy ≥2,∴xy ≥2.8.若正数a ,b 满足1a +1b =1,则1a -1+9b -1的最小值是________. 答案 6解析 ∵正数a ,b 满足1a +1b =1,∴b =a a -1>0,解得a >1.同理可得b >1,所以1a -1+9b -1=1a -1+9a a -1-1=1a -1+9(a -1)≥21a -1·9(a -1)=6,当且仅当1a -1=9(a -1),即a =43时等号成立,所以最小值为6.9.若当x >-3时,不等式a ≤x +2x +3恒成立,则a 的取值范围是________. 答案 (-∞,22-3]解析 设f (x )=x +2x +3=(x +3)+2x +3-3, 因为x >-3,所以x +3>0,故f (x )≥2(x +3)×2x +3-3=22-3, 当且仅当x =2-3时等号成立,所以a 的取值范围是(-∞,22-3].10.若关于x 的方程9x +(4+a )3x +4=0有解,则实数a 的取值范围是________. 答案 (-∞,-8]解析 分离变量得-(4+a )=3x +43x ≥4,得a ≤-8. 11.(2015·南通二模)已知x >0,y >0,且2x +5y =20.(1)求u =lg x +lg y 的最大值;(2)求1x +1y的最小值. 解 (1)∵x >0,y >0,∴由基本不等式,得2x +5y ≥210xy .∵2x +5y =20,∴210xy ≤20,xy ≤10,当且仅当2x =5y 时,等号成立.因此有⎩⎪⎨⎪⎧ 2x +5y =20,2x =5y ,解得⎩⎪⎨⎪⎧x =5,y =2,此时xy 有最大值10.∴u =lg x +lg y =lg(xy )≤lg 10=1.∴当x =5,y =2时,u =lg x +lg y 有最大值1.(2)∵x >0,y >0,∴1x +1y =⎝⎛⎭⎫1x +1y ·2x +5y 20=120⎝⎛⎭⎫7+5y x +2x y ≥120⎝⎛⎭⎫7+2 5y x ·2x y =7+21020, 当且仅当5y x =2x y 时,等号成立. 由⎩⎪⎨⎪⎧ 2x +5y =20,5y x =2x y ,解得⎩⎪⎨⎪⎧ x =1010-203,y =20-4103.∴1x +1y 的最小值为7+21020. B 组 专项能力提升(时间:20分钟)12.设x ,y 均为正实数,且32+x +32+y=1,则xy 的最小值为________. 答案 16解析 由32+x +32+y=1得xy =8+x +y , ∵x ,y 均为正实数,∴xy =8+x +y ≥8+2xy (当且仅当x =y 时等号成立),即xy -2xy -8≥0,解得xy ≥4,即xy ≥16,∴xy 的最小值为16.13.已知m >0,a 1>a 2>0,则使得m 2+1m≥|a i x -2|(i =1,2)恒成立的x 的取值范围是________________________________________________________________________.答案 [0,4a 1] 解析 因为m 2+1m =m +1m≥2(当且仅当m =1时等号成立), 所以要使不等式恒成立,则2≥|a i x -2|(i =1,2)恒成立,即-2≤a i x -2≤2,所以0≤a i x ≤4,因为a 1>a 2>0, 所以⎩⎨⎧ 0≤x ≤4a 1,0≤x ≤4a 2,即0≤x ≤4a 1, 所以使不等式恒成立的x 的取值范围是[0,4a 1]. 14.已知x ,y ∈R 且满足x 2+2xy +4y 2=6,则z =x 2+4y 2的取值范围为________. 答案 [4,12]解析 ∵2xy =6-(x 2+4y 2),而2xy ≤x 2+4y 22, ∴6-(x 2+4y 2)≤x 2+4y 22, ∴x 2+4y 2≥4(当且仅当x =2y 时取等号).又∵(x +2y )2=6+2xy ≥0,即2xy ≥-6,∴z =x 2+4y 2=6-2xy ≤12(当且仅当x =-2y 时取等号).综上可知4≤x 2+4y 2≤12.15.设a >0,b >0,若3是3a 与3b 的等比中项,则1a +1b的最小值为________. 答案 4解析 由题意知3a ·3b =3,即3a +b =3,∴a +b =1,∵a >0,b >0,∴1a +1b =⎝⎛⎭⎫1a +1b (a +b ) =2+b a +a b ≥2+2b a ·a b=4, 当且仅当a =b =12时,等号成立. 16.经市场调查,某旅游城市在过去的一个月内(以30天计),第t 天(1≤t ≤30,t ∈N *)的旅游人数f (t )(万人)近似地满足f (t )=4+1t,而人均消费g (t )(元)近似地满足g (t )=120-|t -20|. (1)求该城市的旅游日收益W (t )(万元)与时间t (1≤t ≤30,t ∈N *)的函数关系式;(2)求该城市旅游日收益的最小值.解 (1)W (t )=f (t )g (t )=(4+1t)(120-|t -20|) =⎩⎨⎧ 401+4t +100t , 1≤t ≤20,559+140t-4t , 20<t ≤30. (2)当t ∈[1,20]时,401+4t +100t ≥401+24t ·100t=441(t =5时取最小值). 当t ∈(20,30]时,因为W (t )=559+140t-4t 递减,所以t=30时,W(t)有最小值W(30)=4432,3所以t∈[1,30]时,W(t)的最小值为441万元.。
基本不等式及其应用(优秀经典专题及答案详解)

(1)基本不等式成立的条件:a >0,b >0.(2)等号成立的条件:当且仅当a =b .知识点二几个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R);(2)b a +a b ≥2(a ,b 同号);(3)ab ≤⎝⎛⎭⎫a +b 22(a ,b ∈R);(4)⎝⎛⎭⎫a +b 22≤a 2+b 22(a ,b ∈R);(5)2ab a +b ≤ab ≤a +b 2≤ a 2+b 22(a >0,b >0).知识点三算术平均数与几何平均数设a >0,b >0,则a ,b 的算术平均数为a +b 2,几何平均数为ab ,基本不等式可叙述为:两个正数的算术平均数不小于它们的几何平均数.知识点四利用基本不等式求最值问题已知x >0,y >0,则(1)如果xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果x +y 是定值q ,那么当且仅当x =y 时,xy 有最大值是q 24(简记:和定积最大).【特别提醒】1.此结论应用的前提是“一正”“二定”“三相等”.“一正”指正数,“二定”指求最值时和或积为定值,“三相等”指等号成立.2.连续使用基本不等式时,牢记等号要同时成立. 考点一利用基本不等式求最值【典例1】(江西临川一中2019届模拟)已知x <54,则f (x )=4x -2+14x -5的最大值为_______ 【答案】1【解析】因为x <54,所以5-4x >0, 则f (x )=4x -2+14x -5=-⎝⎛⎭⎫5-4x +15-4x +3≤-2+3=1.当且仅当5-4x =15-4x ,即x =1时,取等号. 故f (x )=4x -2+14x -5的最大值为1. 【方法技巧】【方法技巧】1.通过拼凑法利用基本不等式求最值的实质及关键点通过拼凑法利用基本不等式求最值的实质及关键点拼凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.拼凑法的实质是代数式的灵活变形,拼系数、凑常数是关键.2.通过常数代换法利用基本不等式求解最值的基本步骤通过常数代换法利用基本不等式求解最值的基本步骤(1)根据已知条件或其变形确定定值(常数);(2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式;(4)利用基本不等式求解最值.利用基本不等式求解最值.【变式1】(山东潍坊一中2019届模拟)已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.【答案】6【解析】由已知得x +3y =9-xy ,因为x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝⎛⎭⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0. 令x +3y =t ,则t >0且t 2+12t -108≥0,得t ≥6,即x +3y 的最小值为6.【方法技巧】通过消元法利用基本不等式求最值的策略【方法技巧】通过消元法利用基本不等式求最值的策略当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.,最后利用基本不等式求最值.考点二 利用基本不等式解决实际问题【典例2】【2019年高考北京卷理数】年高考北京卷理数】李明自主创业,李明自主创业,李明自主创业,在网上经营一家水果店,在网上经营一家水果店,在网上经营一家水果店,销售的水果中有草莓、销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x 元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.①当x =10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;元;②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x 的最大值为__________.【答案】①130 ;②15.【解析】(1)x=10,顾客一次购买草莓和西瓜各一盒,需要支付60+80-10=130元.(2)设顾客一次购买水果的促销前总价为y 元,120y <元时,李明得到的金额为80%y ⨯,符合要求.120y ≥元时,有()80%70%y x y -⨯≥⨯恒成立,即()87,8yy x y x -≥≤,即min 158y x ⎛⎫≤= ⎪⎝⎭元,所以x 的最大值为15。
不等式的性质及应用

反证法
定义:反证法是一种通过假设相反的结论成立,然后推导出 矛盾的结论,从而证明原结论正确的方法。
步骤
1. 假设相反的结论成立。
2. 推导出矛盾的结论。
3. 得出原结论正确的结论。
例子:例如,要证明一个数不能被3整除,可以先假设它可 以被3整除,然后推导出一些矛盾的结论,从而证明原结论 正确。
放缩法
不等式的性质及应用
2023-11-09
contents
目录
• 不等式的基本性质 • 不等式的证明方法 • 不等式的应用 • 不等式在数学竞赛中的应用 • 不等式的实际应用
01
不等式的基本性质
传递性
总结词
不等式的传递性是指如果a>b且c>d,那么ac>bd。
详细描述
不等式的传递性是基于实数的有序性质,即如果a>b且c>d ,那么ac>bd。但需要注意的是,不等式的传递性不适用于 所有的数学对象,例如在复数域上就不一定成立。
详细描述
不等式的乘法单调性是指当两个数a和b满足a>b且c>0时,那么a与c的乘积大于 b与c的乘积。这个性质在解决一些实际问题时非常有用,例如在经济学中的收益 问题。
正值不等式与严格不等式
总结词
正值不等式是指a>b时,称a>b;严格不等式是指a>b且a≠b时,称a>b。
详细描述
正值不等式是指当a大于b时,我们称a大于b;严格不等式是指当a大于b且a不等于b时,我们称a大于b。在数学 中,我们通常使用严格不等式来描述两个数之间的关系,以保证它们之间没有相等的情况。
利用不等式解决其他问题竞赛题
总结词
不等式在数学竞赛中还可以用来解决其他问题,如最 优化问题、数列问题、解析几何问题等。
第二章 考点9 不等式的综合应用

例1 变1 例2 变2 例3 变3 例4 变4
解:设使用x年的平均费用为y万元,由题意得
10 0.9x 0.2 0.2x x
y
2
1 10
x
1 2
x 10 3,
x
x 10
10 x
当10 x 即x=10时,取等号. x 10
∴使用10年报废最划算.
【回顾反思】 解不等式的应用题,关键是构造不等式模型,即分析题目
例1 变1 例2 变2 例3 变3 例4 变4
【解】 设床价提高10x元/床,则床位减少10x张,由题意得 (50+10x)(200-10x)>15 000⇒5<x<10, 5×10+50=100(元/床),10×10+50=150(元/床).∴价格应定 为100~150元/床.
例1 变1 例2 变2 例3 变3 例4 变4
【提示】
∵ 3a 2b a b 6a 4b 5a 5b a b 0 ,
5
2
10
10
∴a>b.
A组 1 2 3 4 5 6 7 8 9 10 11 12 B组 1 2 3
2.设矩形的长为a,宽为b(a>b),面积为S1,与此矩形周长相
等的正方形的面积为S2,则( A )
A.S1<S2
例1 变1 例2 变2 例3 变3 例4 变4
【例3】 设计一个面积为800 cm2的矩形广告牌,要求左右均 留2 cm的空白,上下边均留1 cm的空白.问:怎样设计使中 间的文字面积最大?并求此最大值.
【思路点拨】 本题是求最值问题,一般选用“基本不等式” 模型或“一元二次函数”模型来解决.
例1 变1 例2 变2 例3 变3 例4 变4
2.常见的应用题类型 (1)分配问题、速度和时间问题、工程问题等一般用一元一次 不等式(组)模型解决. (2)价格问题、面积问题等一般用一元二次不等式(组)模型解 决. (3)最值问题等一般用基本不等式模型(均值定理)解决.
第三节 基本不等式及其应用

第三节 基本不等式及其应用考试要求1.了解基本不等式的证明过程.2.会用基本不等式解决简单的最大(小)值问题.[知识排查·微点淘金]知识点1 基本不等式 不等式 成立的条件 等号成立的条件两个不等式的关系 重要不等式a 2+b 2≥2ab a ,b ∈Ra =b在不等式a 2+b 2≥2ab 中,若a >0,b >0,分别以a ,b 代替a ,b 可得a +b ≥2ab ,即ab ≤a +b2基本不等式ab ≤a +b2a >0,b >0a =b设a >0,b >0,则a ,b 的算术平均数为a +b2,几何平均数为ab ,基本不等式可叙述为两个正数的算术平均数不小于它们的几何平均数.知识点2 利用基本不等式求最值 已知x >0,y >0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值2p (简记:积定和最小). (2)如果x +y 的和是定值p ,那么当且仅当x =y 时,xy 有最大值p 24(简记:和定积最大).[微思考]1.若两个正数的和为定值,则这两个正数的积一定有最大值吗?提示:不一定.若这两个正数能相等,则这两个数的积一定有最大值;若这两个正数不相等,则这两个正数的积无最大值.2.函数y =x +1x的最小值是2吗?提示:不是.因为函数y =x +1x 的定义域是{x |x ≠0},当x <0时,y <0,所以函数y =x+1x无最小值. 常用结论1.基本不等式的两种常用变形形式(1)ab ≤⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ,当且仅当a =b 时取等号).(2)a +b ≥2ab (a >0,b >0,当且仅当a =b 时取等号). 2.几个重要的结论(1)a 2+b 22 ≥⎝ ⎛⎭⎪⎫a +b 22(a ,b ∈R ). (2)b a +ab ≥2(ab >0). (3)21a +1b≤ab ≤a +b2≤ a 2+b 22(a >0,b >0). (4)a 2+b 2+c 2≥ab +bc +ca (a ,b ,c ∈R ).[小试牛刀·自我诊断]1.思考辨析(在括号内打“ √”或“×”)(1)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.(×)(2)(a +b )2≥4ab .(√)(3)“x >0且y >0”是“x y +yx ≥2”的充要条件.(×)(4)函数y =sin x +4sin x,x ∈⎝⎛⎭⎫0,π2的最小值为4.(×) 2.(链接教材必修5 P 99例1(2))设x >0,y >0,且x +y =18,则xy 的最大值为( ) A .80 B .77 C .81D .82解析:选C 因为x >0,y >0,所以x +y 2≥xy ,即xy ≤⎝ ⎛⎭⎪⎫x +y 22=81,当且仅当x =y =9时,(xy )max =81.3.(链接教材必修5 P 100A 组T 2)若把总长为20 m 的篱笆围成一个矩形场地,则矩形场地的最大面积是 m 2.解析:设矩形的一边为x m ,则另一边为12×(20-2x )=(10-x )m ,所以y =x (10-x )≤⎣⎢⎡⎦⎥⎤x +(10-x )22=25,当且仅当x =10-x ,即x =5时,y max =25. 答案:254.(忽视变量的范围)函数f (x )=2x +3x +1(x <0)的最大值为 .解析:∵x <0,∴f (x )=-⎣⎢⎡⎦⎥⎤(-2x )+3(-x )+1≤-26+1.当且仅当-2x =3-x且x <0,即x =-62时等号成立.答案:1-2 65.(忽视基本不等式等号成立的条件)当x ≥2时,x +4x +2的最小值为 .解析:设x +2=t ,则x +4x +2=t +4t -2.又由x ≥2得t ≥4,而函数y =t +4t -2在[2,+∞)上是增函数,因此当t =4时,t +4t -2即x +4x +2取得最小值,最小值为4+44-2=3.答案:3一、综合探究点——利用基本不等式求最值(多向思维)[典例剖析]思维点1 通过配凑法求最值[例1] (1)若0<x <12,则y =x 1-4x 2的最大值为( )A .1B .12C .14D .18解析:∵0<x <12,∴y =x 1-4x 2=x 2(1-4x 2)=124x 2(1-4x 2)≤12×4x 2+1-4x 22=14,当且仅当4x 2=1-4x 2, 即x =24时取等号, 则y =x1-4x 2的最大值为14.答案:C(2)已知函数f (x )=-x 2x +1(x <-1),则( )A .f (x )有最小值4B .f (x )有最小值-4C .f (x )有最大值4D .f (x )有最大值-4解析:f (x )=-x 2x +1=-x 2+1-1x +1=-⎝ ⎛⎭⎪⎫x -1+1x +1=-⎝ ⎛⎭⎪⎫x +1+1x +1-2 =-(x +1)+1-(x +1)+2.因为x <-1,所以x +1<0,-(x +1)>0, 所以f (x )≥21+2=4,当且仅当-(x +1)=1-(x +1),即x =-2时,等号成立.故f (x )有最小值4. 答案:A(3)已知x >54,则f (x )=4x -2+14x -5的最小值为 .解析:∵x >54,∴4x -5>0,∴f (x )=4x -2+14x -5=4x -5+14x -5+3≥21+3=5.当且仅当4x -5=14x -5,即x =32时取等号.答案:5通过配凑法利用基本不等式求最值的实质及关键点配凑法就是将相关代数式进行适当的变形,通过添项、拆项等方法凑成和为定值或积为定值的形式,然后利用基本不等式求解最值的方法.配凑法的实质是代数式的灵活变形,拼系数、凑常数是关键.思维点2 常数代换法求最值[例2] 已知a >0,b >0,a +b =1,则1a +1b 的最小值为 .解析:因为a +b =1,所以1a +1b =⎝⎛⎭⎫1a +1b (a +b )=2+⎝⎛⎭⎫b a +a b ≥2+2b a ·a b =2+2=4.当且仅当a =b =12时,取等号.答案:4常数代换法求解最值的基本步骤(1)根据已知条件或其变形确定定值(常数); (2)把确定的定值(常数)变形为1;(3)把“1”的表达式与所求最值的表达式相乘或相除,进而构造和或积为定值的形式; (4)利用基本不等式求解最值. 思维点3 消元法求最值[例3] [一题多解]已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为 . 解析:解法一(换元消元法):由已知得x +3y =9-xy , 因为x >0,y >0,所以x +3y ≥23xy ,所以3xy ≤⎝ ⎛⎭⎪⎫x +3y 22,当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0.令x +3y =t ,则t >0且t 2+12t -108≥0, 得t ≥6,即x +3y 的最小值为6. 解法二(代入消元法):由x +3y +xy =9,得x =9-3y1+y,所以x +3y =9-3y 1+y +3y =9-3y +3y (1+y )1+y=9+3y 21+y =3(1+y )2-6(1+y )+121+y=3(1+y )+121+y -6≥23(1+y )·121+y-6=12-6=6.当且仅当3(1+y )=121+y ,即y =1时取等号.即x +3y 的最小值为6. 答案:6消元法利用基本不等式求最值的策略当所求最值的代数式中的变量比较多时,通常是考虑利用已知条件消去部分变量后,凑出“和为常数”或“积为常数”,最后利用基本不等式求最值.[学会用活]1.(2021·泉州检测)已知0<x <1,则x (3-3x )取得最大值时x 的值为( ) A .13B .12C .34D .23解析:选B 因为0<x <1,所以x (3-3x )=3x (1-x )≤3⎣⎢⎡⎦⎥⎤x +(1-x )22=34.当且仅当x =1-x ,即x =12时等号成立.2.若直线2mx -ny -2=0(m >0,n >0)过点(1,-2),则1m +2n 的最小值为( )A .2B .6C .12D .3+2 2解析:选D 因为直线2mx -ny -2=0(m >0,n >0)过点(1,-2),所以2m +2n -2=0,即m +n =1,所以1m +2n =⎝⎛⎭⎫1m +2n (m +n )=3+n m +2m n ≥3+22,当且仅当“n m =2m n ,即n =2m ”时取等号,所以1m +2n的最小值为3+22,故选D .3.若正数x ,y 满足x 2+6xy -1=0,则x +2y 的最小值是( ) A .223B .23C .33D .233解析:选A 因为正数x ,y 满足x 2+6xy -1=0,所以y =1-x 26x.由⎩⎪⎨⎪⎧x >0,y >0,即⎩⎨⎧x >0,1-x 26x >0,解得0<x <1.所以x +2y =x +1-x 23x =2x 3+13x ≥22x 3·13x=223,当且仅当2x 3=13x ,即x =22,y =212时取等号. 故x +2y 的最小值为223.二、应用探究点——基本不等式的实际应用(思维拓展)[典例剖析][例4] 要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是 (单位:元).解析:设该长方体容器的长为x m ,则宽为4x m .又设该容器的造价为y 元,则y =20×4+2⎝⎛⎭⎫x +4x ·10,即y =80+20⎝⎛⎭⎫x +4x (x >0).因为x +4x ≥2 x ·4x =4(当且仅当x =4x,即x =2时取“=”),所以y min =80+20×4=160(元).答案:160 [拓展变式]1.[变条件]若本例中容器底面长不小于2.5 m ,则该容器的最低总造价是 元. 解析:由例题的解答可知:总造价S =20⎝⎛⎭⎫x +4x +80(x ≥2.5),因为S ′=20⎝⎛⎭⎫1-4x 2=20·x 2-4x2>0,所以S =20⎝⎛⎭⎫x +4x +80在[2,+∞)上单调递增, 所以当x =2.5 m 时,S min =20×⎝⎛⎭⎫2.5+42.5+80=162(元). 答案:1622.[变条件]若本例中容器底面长不大于1.5 m ,则该容器的最低总造价是 元(精确到十分位).解析:由例题的解答可知:总造价S =20⎝⎛⎭⎫x +4x +80(0<x ≤1.5), 因为S ′=20⎝⎛⎭⎫1-4x 2=20·x 2-4x2<0,所以S =20⎝⎛⎭⎫x +4x +80在(0,2]上单调递减,所以当x =1.5时,S min =20×⎝⎛⎭⎫1.5+41.5+80≈163.3(元).答案:163.3有关函数最值的实际问题的解题技巧(1)根据实际问题抽象出函数的解析式,再利用基本不等式求得函数的最值. (2)解应用题时,一定要注意变量的实际意义及其取值范围.(3)在应用基本不等式求函数最值时,若等号取不到,可利用函数的单调性求解.[学会用活]4.如图,在半径为30 cm 的半圆形(O 为圆心)铝皮上截取一块矩形材料ABCD ,其中点A ,B 在直径上,点C ,D 在圆周上.怎样截取才能使截得的矩形ABCD 的面积最大?并求最大面积. 解:如图,连接OC .设BC =x ,矩形ABCD 的面积为S . 则AB =2900-x 2,其中0<x <30. 所以S =2x900-x 2=2x 2(900-x 2)≤x 2+(900-x 2)=900.当且仅当x 2=900-x 2,即x =152时,S 取最大值900 cm 2.所以,取BC 为15 2 cm 时,矩形ABCD 的面积最大,最大值为900 cm 2.三、综合探究点——基本不等式的创新交汇问题(思维创新)[典例剖析][例5] (1)已知f (x )=13x 3+ax 2+(b -4)x (a >0,b >0)在x =1处取得极值,则2a +1b 的最小值为( )A .3+223B .3+2 2C .3D .2 2解析:由f (x )=13x 3+ax 2+(b -4)x (a >0,b >0),得f ′(x )=x 2+2ax +b -4.由题意得f ′(1)=12+2a +b -4=0, 则2a +b =3,所以2a +1b =⎝⎛⎭⎫2a +1b ·2a +b 3=13⎝⎛⎭⎫2a +1b (2a +b )=13⎝⎛⎭⎫5+2b a +2a b ≥13⎝⎛⎭⎫5+22b a ·2a b =3, 当且仅当2b a =2ab ,即a =b =1时,等号成立.故2a +1b 的最小值为3. 答案:C(2)在Rt △ABC 中,已知∠C =90°,CA =3,CB =4,P 为线段AB 上的一点,且CP →=x ·CA →|CA →|+y ·CB →|CB →|,则1x +1y 的最小值为( )A .76B .712C .712+33D .76+33解析:∵CA =3,CB =4,即|CA →|=3,|CB →|=4, ∴CP →=x CA →|CA →|+y CB →|CB →|=x 3CA →+y 4CB →,∵P 为线段AB 上的一点,即P ,A ,B 三点共线, ∴x 3+y4=1(x >0,y >0), ∴1x +1y =⎝⎛⎭⎫1x +1y ·⎝⎛⎭⎫x 3+y 4=712+x 3y +y 4x ≥712+2112=712+33,当且仅当x 3y =y4x时,等号成立,∴1x +1y 的最小值为712+33,故选C . 答案:C1.当基本不等式与其他知识相结合时,往往是提供一个应用基本不等式的条件,然后合理变形利用基本不等式求最值.2.求参数的值或范围时,要观察题目的特点,利用基本不等式确定相关成立的条件,从而得到参数的值或范围.[学会用活]5.(2021·河南名校联考)已知各项均为正数的等比数列{a n },a 6,3a 5,a 7成等差数列,若{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,则1m +4n的最小值为( )A .4B .9C .23D .32解析:选D 设各项均为正数的等比数列{a n }的公比为q ,q >0, 由a 6,3a 5,a 7成等差数列,可得6a 5=a 6+a 7, 即6a 1q 4=a 1q 5+a 1q 6, 解得q =2(q =-3舍去),由{a n }中存在两项a m ,a n ,使得4a 1为其等比中项,可得16a 21=a m a n =a 21·2m +n -2, 化简可得m +n =6,m ,n ∈N *, 则1m +4n =16(m +n )⎝⎛⎭⎫1m +4n =16⎝⎛⎭⎫5+n m +4m n ≥16⎝⎛⎭⎫5+2 n m ·4m n =32. 当且仅当n =2m =4时,上式取得等号.限时规范训练基础夯实练1.函数f (x )=x 2+4|x |的最小值为( )A .3B .4C .6D .8解析:选B f (x )=x 2+4|x |=|x |+4|x |≥4,当且仅当x =±2时取等号,所以f (x )=x 2+4|x |的最小值为4.故选B .2.(2021·钦州期末测试)已知a ,b ∈R ,a 2+b 2=15-ab ,则ab 的最大值是( ) A .15 B .12 C .5D .3解析:选C 因为a 2+b 2=15-ab ≥2ab ,所以3ab ≤15,即ab ≤5,当且仅当a =b =±5时等号成立.所以ab 的最大值为5.3.(2021·烟台期中测试)已知x ,y ∈R 且x -2y -4=0,则2x +14y 的最小值为( )A .4B .8C .16D .256解析:选B ∵x -2y -4=0,∴x -2y =4, ∴2x +14y ≥22x -2y =8.当且仅当x =2,y =-1时等号成立, ∴2x +14y 的最小值为8.4.(2021·山东师大附中月考)已知x >0,y >0,且1x +9y =1,则xy 的最小值为( )A .100B .81C .36D .9解析:选C 已知x >0,y >0,且1x +9y =1,所以1x +9y≥21x ·9y,即1≥29xy,故xy ≥36,当且仅当⎩⎨⎧1x =9y,1x +9y =1,即⎩⎪⎨⎪⎧x =2,y =18时等号成立,所以xy 的最小值为36.故选C .5.对于使f (x )≤M 成立的所有常数M ,我们把M 的最小值称为f (x )的上确界.若a ,b ∈(0,+∞),且a +b =1,则-12a -2b的上确界为( )A .-92B .92C .14D .-4解析:选A ∵a +b =1,∴-12a -2b =-a +b 2a -2a +2b b =-52-⎝⎛⎭⎫b 2a +2a b ,∵a >0,b >0,∴b 2a +2ab≥2,当且仅当b =2a 时取等号,∴-12a -2b ≤-52-2=-92,∴-12a -2b 的上确界为-92.故选A .6.已知a >0,b >0,且ab +2a +b =4,则a +b 的最小值是 . 解析:∵ab +2a +b =4,a >0,b >0, ∴b =4-2a a +1=6a +1-2,∴a +b =a +6a +1-2=a +1+6a +1-3≥26-3,当且仅当a =6-1时取得最小值, ∴a +b 的最小值是26-3. 答案:26-37.(2021·江西五市九校联考)若正实数a ,b 满足a +b =1,则b 3a +3b 的最小值为 .解析:因为a +b =1,所以b 3a +3b =b 3a +3(a +b )b =b 3a +3a b+3,因为a >0,b >0,所以b 3a +3ab +3≥2b 3a ·3a b +3=5,当且仅当b 3a =3a b ,即a =14,b =34时等号成立,即b 3a +3b的最小值为5.答案:58.设x ,y 为正数,若x +y 2=1,则1x +2y 的最小值是 ,此时x = .解析:因为x +y 2=1,x >0,y >0,所以1x +2y =⎝⎛⎭⎫1x +2y ⎝⎛⎭⎫x +y 2=2+y 2x +2xy≥2+2y 2x ·2xy=4,当且仅当y 2x =2x y ,即x =12,y =1时等号成立,所以1x +2y 的最小值为4,此时x =12.答案:4 129.已知x ,y ∈(0,+∞),x 2+y 2=x +y . (1)求1x +1y的最小值;(2)是否存在x ,y 满足(x +1)(y +1)=5?并说明理由.解:(1)因为1x +1y =x +y xy =x 2+y 2xy ≥2xy xy =2,当且仅当x =y =1时,等号成立,所以1x +1y的最小值为2.(2)不存在.理由如下:因为x 2+y 2≥2xy ,所以(x +y )2≤2(x 2+y 2)=2(x +y ). 又x ,y ∈(0,+∞),所以x +y ≤2.从而有(x +1)(y +1)≤⎣⎢⎡⎦⎥⎤(x +1)+(y +1)22≤4,因此不存在x ,y 满足(x +1)(y +1)=5. 10.设a ,b 为正实数,且1a +1b =2 2.(1)求a 2+b 2的最小值;(2)若(a -b )2≥4(ab )3,求ab 的值. 解:(1)由22=1a +1b ≥21ab 得ab ≥12,当且仅当a =b =22时取等号,故a 2+b 2≥2ab ≥1,当且仅当a =b =22时取等号,所以a 2+b 2的最小值是1. (2)由(a -b )2≥4(ab )3得a 2+b 2-2ab ≥4a 3b 3,不等式两边同除以a 2b 2,得1b 2+1a 2-2ab ≥4ab ,即⎝⎛⎭⎫1a +1b 2-4ab ≥4ab ,从而ab +1ab ≤2,又ab +1ab≥2. 所以ab +1ab=2,所以ab =1.综合提升练11.(2021·湖北十一校联考)设a >0,b >0,则“1a +1b ≤4”是“ab ≥14”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件解析:选A 因为a >0,b >0,所以4≥1a +1b ≥21a ·1b,当且仅当a =b 时取等号, 则2≥1ab,所以ab ≥14;若ab ≥14,取a =14,b =1,则1a +1b =4+1=5>4,即1a +1b ≤4不成立.所以“1a +1b ≤4”是“ab ≥14”的充分不必要条件,故选A .12.(2021·江西重点中学联考)已知直线ax +2by -1=0和x 2+y 2=1相切,则ab 的最大值是( )A .14B .12C .22D .1解析:选A 圆x 2+y 2=1的圆心为(0,0),半径r =1,由直线ax +2by -1=0和x 2+y 2=1相切,得|-1|a 2+4b2=1,则a 2+4b 2=1,又由1=a 2+4b 2≥4ab ,可得ab ≤14,当且仅当a =2b 时等号成立,故ab 的最大值是14.13.(2021·安徽合肥二模)《九章算术》中“勾股容方”问题:“今有勾五步,股十二步,问勾中容方几何?”魏晋时期数学家刘徽在其《九章算术注》中利用出入相补原理给出了这个问题的一般解法:如图1,用对角线将长和宽分别为b 和a 的矩形分成两个直角三角形,每个直角三角形再分成一个内接正方形(黄)和两个小直角三角形(朱、青).将三种颜色的图形进行重组,得到如图2所示的矩形,该矩形的长为a +b ,宽为内接正方形的边长d .由刘徽构造的图形可以得到许多重要的结论.如图3,设D 为斜边BC 的中点,作直角三角形ABC 的内接正方形的对角线AE ,过点A 作AF ⊥BC 于点F ,则下列推断正确的是( )①由图1和图2面积相等可得d =aba +b; ②由AE ≥AF 可得 a 2+b 22≥a +b2; ③由AD ≥AE 可得a 2+b 22≥21a +1b; ④由AD ≥AF 可得a 2+b 2≥2ab . A .①②③④ B .①②④ C .②③④D .①③解析:选A 由题图1和题图2面积相等得ab =(a +b )d ,可得d =aba +b,①正确;由题意知题图3的面积为12ab =12a 2+b 2·AF ,则AF =ab a 2+b2,AD =12BC =12a 2+b 2,设题图3中正方形的边长为x ,由三角形相似,得a -x x =x b -x ,解得x =aba +b ,则AE =2aba +b,可以化简判断②③④都正确,故选A . 14.已知a >b >0,则a 2+1b (a -b )的最小值为 .解析:由a >b >0,得a -b >0,∴b (a -b )≤⎝ ⎛⎭⎪⎫b +a -b 22=a 24.∴a 2+1b (a -b )≥a 2+4a 2≥2a 2·4a2=4, 当且仅当b =a -b 且a 2=4a 2,即a =2,b =22时取等号. ∴a 2+1b (a -b )的最小值为4.答案:415.(2021·湖南岳阳模拟改编)若a >0,b >0,且a +2b -4=0,则ab 的最大值为 ,1a +2b的最小值为 . 解析:∵a >0,b >0,且a +2b -4=0,∴a +2b =4, ∴ab =12a ·2b ≤12·⎝ ⎛⎭⎪⎫a +2b 22=2, 当且仅当a =2b ,即a =2,b =1时等号成立, ∴ab 的最大值为2.∵1a +2b =⎝⎛⎭⎫1a +2b ·a +2b 4=14⎝⎛⎭⎫5+2b a +2a b ≥14·⎝⎛⎭⎫5+22b a ·2a b =94, 当且仅当a =b =43时等号成立,∴1a +2b 的最小值为94. 答案:2 9416.(2021·吉林六校联考)已知lg(3x )+lg y =lg(x +y +1). (1)求xy 的最小值; (2)求x +y 的最小值.解:由lg(3x )+lg y =lg(x +y +1), 得⎩⎪⎨⎪⎧x >0,y >0,3xy =x +y +1.(1)因为x >0,y >0,所以3xy =x +y +1≥2xy +1. 所以3xy -2xy -1≥0,即3(xy )2-2xy -1≥0. 所以(3xy +1)(xy -1)≥0. 所以xy ≥1.所以xy ≥1.当且仅当x =y =1时,等号成立.所以xy 的最小值为1.(2)因为x >0,y >0,所以x +y +1=3xy ≤3·⎝ ⎛⎭⎪⎫x +y 22.所以3(x +y )2-4(x +y )-4≥0. 所以[3(x +y )+2][(x +y )-2]≥0.所以x +y ≥2.当且仅当x =y =1时取等号. 所以x +y 的最小值为2.创新应用练17.某工厂拟建一座平面图为矩形且面积为200 m 2的三级污水处理池(平面图如图所示).如果池四周围墙建造单价为400元/m ,中间两道隔墙建造单价为248元/m ,池底建造单价为80元/m 2,水池所有墙的厚度忽略不计.试设计污水处理池的长和宽,使总造价最低,并求出最低总造价.解:设隔墙的长度为x m ,总造价的函数为y 元,则隔墙造价为2x ·248=496x , 池底造价为200×80=16 000, 四周围墙造价为⎝⎛⎭⎫2x +2×200x ·400=800·⎝⎛⎭⎫x +200x .因此,总造价为y =496x +800⎝⎛⎭⎫x +200x +16 000(0<x <50)=1296x +160 000x + 16 000≥21296x ·160 000x+16 000=28 800+16 000=44 800.当1296x =160 000x ,即x =1009时,等号成立.这时,污水池的长为18 m.故当污水池的长为18 m ,宽为1009 m 时,总造价最低,最低为44 800元.。
不等式的复习

一、重难点知识归纳(一)知识网络结构(二)不等式的性质1、实数的运算性质和大小顺序之间的关系;a-b>0a>b;a-b=0a=b;a-b<0a<b.2、不等式的基本性质(1)对称性:a>b b<a;(2)传递性:a>b,b>c a>c;(3)可加性:a>b,c∈R a+c>b+c;(4)可乘性:a>b,c>0ac>bc;a>b,c<0ac<bc.3、不等式的运算性质(1)加法:a>b,c>d a+c>b+d;(2)减法:a>b,c<d a-c>b-d;(3)乘法:a>b>0,c>d>0ac>bd;(4)除法:a>b>0,0<c<d;(5)乘方:a>b>0(n∈N*且n>1)(6)开方:a>b>0(n∈N*且n>1)(7)倒数:a>b,ab>0.(三)不等式的证明方法与主要依据1、证明不等式的方法:证明不等式的常用方法有:比较法、综合法、分析法.此外,在证明不等式中,有时还要运用综合分析法、放缩法、换元法、反证法.2、证明不等式的主要依据(1)a-b>0a>b;a-b<0a<b.(2)不等式的性质.(3)重要不等式及定理:①a2≥0(a∈R);②a2+b2≥2ab(a∈R,b∈R);③(a∈R+,b∈R+);④a3+b3+c3≥3abc(a,b,c∈R+);⑤(a,b,c∈R+);⑥|a|-|b|≤|a±b|≤|a|+|b|;⑦|a1+a2+…+an|≤|a1|+|a2|+…+|an|;(注:搞清楚以上定理取“=”号的条件)⑧|x|<a(a>0)x2<a2-a<x<a;⑨|x|>a(a>0)x2>a2x<-a或x>a. (四)不等式的解法1、绝对值不等式、高次不等式的解法2、无理不等式通过以上表解,进一步熟悉不等式的性质、证明、解法. 二、典型例题解析例1.已知四个条件,①b >0>a ②0>a >b ③a >0>b ④a >b >0能推出成立的有( )A.1个B.2个C.3个D.4个解析:运用倒数法则,a >b ,ab >0,②、④正确.又正数大于负数,故选C.例2、已知正数x ,y 满足x+2y=1,求的最小值.分析:利用x+2y=1代换或乘以以便利用基本不等式,注意列出等号成立的条件是解题的必要步骤。
高一数学不等式知识点总结及例题

高一数学不等式知识点总结及例题一、不等式知识点总结。
(一)不等式的基本性质。
1. 对称性:如果a > b,那么b < a;如果b < a,那么a > b。
2. 传递性:如果a > b,b > c,那么a > c。
3. 加法单调性:如果a > b,那么a + c>b + c。
- 推论1:移项法则,如果a + b>c,那么a>c - b。
- 推论2:同向不等式可加性,如果a > b,c > d,那么a + c>b + d。
4. 乘法单调性:如果a > b,c>0,那么ac > bc;如果a > b,c < 0,那么ac < bc。
- 推论1:同向正数不等式可乘性,如果a > b>0,c > d>0,那么ac > bd。
- 推论2:乘方法则,如果a > b>0,那么a^n>b^n(n∈ N,n≥slant1)。
- 推论3:开方法则,如果a > b>0,那么sqrt[n]{a}>sqrt[n]{b}(n∈N,n≥slant2)。
(二)一元二次不等式及其解法。
1. 一元二次不等式的一般形式。
- ax^2+bx + c>0(a≠0)或ax^2+bx + c < 0(a≠0)。
2. 一元二次函数y = ax^2+bx + c(a≠0)的图象与一元二次不等式的解集关系。
- 当a>0时,Δ=b^2-4ac:- 若Δ>0,方程ax^2+bx + c = 0有两个不同的实根x_1,x_2(x_1,则不等式ax^2+bx + c>0的解集为{xx < x_1或x>x_2},不等式ax^2+bx + c < 0的解集为{xx_1。
- 若Δ = 0,方程ax^2+bx + c = 0有两个相同的实根x_0=-(b)/(2a),则不等式ax^2+bx + c>0的解集为{xx≠-(b)/(2a)},不等式ax^2+bx + c < 0的解集为varnothing。
不等式与数列函数综合应用

一、基础梳理1.运用不等式研究函数问题(单调性,最值等).2.运用不等式研究方程解的问题.3.利用函数性质及方程理论研究不等式问题三、例题讲解:1、函数与不等式①设f (x )是定义域为(-∞,0)∪(0,+∞)的奇函数且在(-∞,0)上为增函数.(1)若m ·n <0,m+n ≤0,求证:f (m )+f (n )≤0;(2)若f (1)=0,解关于x 的不等式f (2x -2x-2)>0②.已知f (x )=2x +bx+c (b,c 为常数),方程f (x )=x 的两个实根为1x ,2x 且满足1x >0, 2x -1x >1(1)求证:2b >2(b+2c );(2)设0<t <1x ,比较f (t )与1x 的大小2、数列与不等式对于函数f (x ),若存在0x ∈R ,使f (0x )=0x 成立,则称0x 为f (x )的不动点. 已知函数f (x )= (b,c ∈N )有且仅有两个不动点0,2, 且f (-2)<21- . (1)求函数f (x )的解析式;(2)已知各项均不为零的数列{an}满足4Sn ·f ( na 1 )=1,求数列通项an ; (3)如果数列{bn}满足1b =4, n b +1=f (n b ),求证:当n ≥2时,恒有n b <3成立.②已知数列{an}的前n 项和n s =n 2-2n -1,其中n ∈N*(1)求n s -2n a 的最大值;(2)记n b =n n a 2,数列{n b }的前n 项和为n T .证明:①1+n b <n b + 41 ②n T < 81 n (n-1).2x a bx c +-一、例题讲解1、不等式与解析几何①设直线l:y=k (x+1)(k ≠0)与椭圆2x +32y =2a (a >0)相交于A 、B 两个不同的点,与x 轴相交于点C ,记O 为坐标原点. (1)证明:2a > ; (2)若2=,求△OAB 的面积取得最大值时的椭圆方程.②若不等式 29x -≤k (x+2)-2 的解集为区间[a,b ],且b-a=2,则k=_____.2、不等式的实际应用①某工厂有一个容量为300吨的水塔,每天从早上6时起到晚上10时止供应该厂的生产和生活用水,已知该厂生活用水为每小时10吨,工业用水量W (吨)与时间t (小时,且规定早上6时t =0)的函数关系为W =100 .水塔的进水量分为10级,第一级每小时进水10吨,以后每提高一级,每小时进水量就增加10吨 若某天水塔原有水100吨,在开始供水的同时打开进水管.(1)若进水量选择2级,试问:水塔中水的剩余量何时开始低于10吨?(2)如何选择进水量,既能始终保证该厂的用水(水塔中水不空)又不会使水溢出? ②某食品厂定期购买面粉,已知该厂每天需用面粉6吨,每吨面粉的价格为1 800元,面粉的保管等其他费用为平均每吨每天3元,购买面粉每次需支付运费900元.(1)求该厂每隔多少天购买一次面粉,才能使平均每天所支付的总费用最少?(2)某提供面粉的公司规定:当一次购买面粉不少于210吨时,其价格可享受9折优惠,问该厂是否考虑利用此优惠条件?请说明理由.二、练习1、已知正项数列{}n a 中,对于一切*n N ∈均有2n a ≤1n n a a +-成立. ()1求证:数列{}n a 中的任何一项都小于1;()2探究n a 与1n 的大小,并加以证明.2、经过长期观测得到:在交通繁忙的时段内,某公路段汽车的车流量y (千辆/小时)与汽车的平均速度v (千米/小时)之间的函数关系为:292031600v y v v =++(0)v >.()1在该时段内,当汽车的平均速度v 为多少时,车流量最大?最大车流量为多少?(精确到1.0千辆/小时)()2若要求在该时段内车流量超过10千辆/小时,则汽车站的平均速度应在什么范围内?22313k k +3 、已知关于x 的不等式()1102k x x -+<-的解集为空集,求实数k 的值或取值范围不等式的综合应用(3)一、典例分析:1. 设关于x 的不等式()()221122a a x +--≤和()()2312310x a x a -+++≤的解集依次为A 、B 求使A B ⊆的实数a 的取值范围.2.已知函数()12log xa f x a ⎛⎫= ⎪ ⎪⎝⎭在R 上为减函数,求实数a 的取值范围.3.()1若关于x 的方程4210x xa a +⋅++=有实数解,求实数a 的取值范围. ()2解关于x的不等式:()2111a x x ax +->+(0a >).二、练习1.设数列{}n a 满足12a =,11n n n a a a +=+,(1,23n =,…).()1证明n a >n 成立;()2令1,2,3......)n b n ==,判断1n n b b +与的大小,并说明理由 .2.已知数列{}n a 的前n 项和n S 满足2(1)n n n S a =+-,n ≥1.()1写出数列{}n a 的前三项1a ,2a ,3a ;()2求数列{}n a 的通项公式;()3证明:对任意的整数4>m ,有8711154<+++m a a a .3.设数列{}n a 的前n 项和为n S ,已知1231611a a a ===,,,且1(58)(52)n n n S n S An B +--+=+,123n = ,,,其中A B ,为常数. (Ⅰ)求A 与B 的值;(Ⅱ)证明:数列{}n a 为等差数列;(Ⅲ)1对任何正整数m n ,都成立.4.已知函数f (x )=2x -12|x | ⑴ 若f (x )=2,求x 的值⑵ 若2tf (2t )+m f (t )≥0对于t ∈[1,2]恒成立,求实数m 的取值范围三、作业1.数列{}n a 的通项公式是290n n a n =+,数列{}n a 中最大的项是 .A 第9项 .B 第10项 .C 第8项和第9项 .D 第9项和第10项 2.已知,,x y z R +∈,且满足()1xyz x y z ++=,则()()x y y z ++的最小值为.A 4 .B 3 .C 2 .D 13.若实数,,,m n x y 满足2222,m n a x y b +=+=()a b ≠,则mx ny +的最大值是.A 2a b + .B .C .D ab a b + 4.设,x y R ∈,221x y +=,(1)(1)m xy xy =+-,则m 的取值范围是.A 1[,1]2 .B (0,1] .C 3[,1]4.D 3[,2]4 5.已知,a b 是大于0的常数,则当x R +∈时,函数()()()x a x b f x x++=的最小值为 6.设,,,a b x y R ∈,且223a b +=,226x y +=,求ax by +的范围7.函数()2()lg 1f x x ax =-+在()0,+∞有意义,求a 的取值范围8.1的直角三角形面积的最大值为 .9.设,,a b c R ∈,2ab =且22c a b ≤+恒成立,则c 的最大值为 10.若直线220(,0)ax by a b +-=>始终平分圆224280x y x y +---=的周长,则12a b+的最小值为.A 1 .B 5 .C .D 3+12.对于任意的1,32m ⎡⎤∈⎢⎥⎣⎦,不等式224t mt m +>+恒成立,则实数t 的取值范围是 13.若对一切实数x ,不等式()422242x x m x +++≥1恒成立,求实数m 的取值范围. 14.k 为何实数时,方程220x kx k -+-=的两根都大于1215.光线每通过一块玻璃板,其强度要减少10%,把几块这样的玻璃板重叠起来,能使通过它们的光线强度在原强度的31以下.(lg30.477)= 16.已知函数1()f x a x=-.()1求证:函数()y f x =在(0,)+∞上是增函数 ()2若()2f x x <在(1,)+∞上恒成立,求实数a 的取值范围.()3若函数()y f x =在[,]m n 上的值域是[,]m n ()m n ≠,求实数a 的取值范围.20. 设数列{}n a 满足12a =,11n n n a a a +=+,(1,23n =,…). ()1证明n a >n 成立; ()2令1,2,3......)n b n ==,判断1n n b b +与的大小,并说明理由 .21.已知数列{}n a 的前n 项和n S 满足2(1)n n n S a =+-,n ≥1. ()1写出数列{}n a 的前三项1a ,2a ,3a ; ()2求数列{}n a 的通项公式; ()3证明:对任意的整数4>m ,有8711154<+++m a a a .22.设数列{}n a 的前n 项和为n S ,已知1231611a a a ===,,,且1(58)(52)n n n S n S An B +--+=+,123n = ,,,其中A B ,为常数. (Ⅰ)求A 与B 的值;(Ⅱ)证明:数列{}n a 为等差数列;(Ⅲ)1对任何正整数m n ,都成立.。
高三数学 不等式的证明(比较法、综合法、分析法、反证法、放缩法);不等式的应用知识精讲

高三数学不等式的证明(比较法、综合法、分析法、反证法、放缩法);不等式的应用知识精讲(一)不等式的证明1. 实数大小的性质(1)a b a b ->⇔>0;(2)a b a b -=⇔=0;(3)a b a b -<⇔<0。
2. 比较法证明的步骤(1)求差比较法步骤:作差——变形——判别差的符号,在运用求差比较法证明时其关键是变形,通常变形方法是分解因式、配方、利用判别式及把差化为若干个非负数的和。
(不能分解时证明有恒定符号可配方)(2)求商比较法步骤:作商——变形——判别商与1的大小,在运用求商比较法证明不等式时要根据已知条件灵活采用函数的单调性及基本不等式进行放缩。
3. 基本不等式定理1:如果a b R ,∈,那么a b ab 222+≥(当且仅当a b =时取等号)。
定理2:如果a b c R ,,∈+,那么a b c abc 3333++≥(当且仅当a b c ==时取等号)。
推论1:如果a b R ,∈+,那么a b ab +≥2(当且仅当a b =时取“=”号)。
推论2:如果a b c R ,,∈+,那么a b c abc ++≥33(当且仅当a b c ==时取“=”号)。
4. 综合法:利用某些已经证明过的不等式作为基础,再运用不等式的性质推导出所要求证的不等式,这种证明方法叫做综合法。
综合法的证明思路是:由因导果,也就是从一个(组)已知的不等式出发,不断地用必要条件替代前面的不等式,直到推导出要证的不等式。
5. 分析法:从求证的不等式出发分析这个不等式成立的充分条件,把证明这个不等式的问题转化为这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立。
这种证明方法叫做分析法。
分析法的证明思路是:“执果索因”,即从求证的不等式出发,不断地用充分条件来代替前面的不等式,直至找到已知不等式为止。
用分析法证明不等式要把握以下三点:(1)寻找使不等式成立的充分条件时,往往是先寻找使不等式成立的必要条件,再考虑这个必要条件是否充分。
不等式知识点总结

不等式知识点总结不等式知识点总结上学的时候,相信大家一定都接触过知识点吧!知识点是传递信息的基本单位,知识点对提高学习导航具有重要的作用。
你知道哪些知识点是真正对我们有帮助的吗?以下是小编收集整理的不等式知识点总结,仅供参考,欢迎大家阅读。
不等式知识点总结篇1不等式:①用符号〉,=,〈号连接的式子叫不等式。
②不等式的两边都加上或减去同一个整式,不等号的方向不变。
③不等式的两边都乘以或者除以一个正数,不等号方向不变。
④不等式的两边都乘以或除以同一个负数,不等号方向相反。
不等式的解集:①能使不等式成立的未知数的值,叫做不等式的解。
②一个含有未知数的不等式的所有解,组成这个不等式的解集。
③求不等式解集的过程叫做解不等式。
一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是1的不等式叫一元一次不等式。
一元一次不等式组:①关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。
②一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。
③求不等式组解集的过程,叫做解不等式组。
一元一次不等式的符号方向:在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算改变。
在不等式中,如果加上同一个数(或加上一个正数),不等式符号不改向;例如:AB,A+CB+C在不等式中,如果减去同一个数(或加上一个负数),不等式符号不改向;例如:AB,A-CB-C在不等式中,如果乘以同一个正数,不等号不改向;例如:AB,AxCBxC(C0)在不等式中,如果乘以同一个负数,不等号改向;例如:AB,AxC 如果不等式乘以0,那么不等号改为等号所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,如果出现了,那么不等式乘以的数就不等为0,否则不等式不成立。
不等式知识点总结篇21.不等式性质比较大小方法:(1)作差比较法(2)作商比较法不等式的基本性质①对称性:a>bb>a②传递性:a>b,b>ca>c③可加性:a>ba+c>b+c④可积性:a>b,c>0ac>bc⑤加法法则:a>b,c>da+c>b+d⑥乘法法则:a>b>0,c>d>0ac>bd⑦乘方法则:a>b>0,an>bn(n∈N)⑧开方法则:a>b>02.算术平均数与几何平均数定理:(1)如果a、b∈R,那么a2+b2≥2ab(当且仅当a=b时等号)(2)如果a、b∈R+,那么(当且仅当a=b时等号)如果为实数,则重要结论(1)如果积xy是定值P,那么当x=y时,和x+y有最小值2;(2)如果和x+y是定值S,那么当x=y时,和xy有最大值S2/4。
一元一次不等式(组)知识总结及经典例题分析

二、一元一次不等式的解法:解一元一次不等式,要根据不等式的性质,将不等式逐步化为x a <(x a >或 )x a x a ³£或或的形式,其一般步骤为:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)系数化为1。
说明:解一元一次不等式和解一元一次方程类似.不同的是:一元一次不等式两边同乘以(或除以或除以))同一个负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.负数时,不等号的方向必须改变,这是解不等式时最容易出错的地方.例如:131321£---x x 解不等式: 解:去分母,得解:去分母,得 6)13(2)13£---x x ((不要漏乘!每一项都得乘) 去括号,得去括号,得去括号,得 62633£+--x x (注意符号,不要漏乘!)移移 项,得项,得项,得 23663-+£-x x (移项,每一项要变号;但符号不改变) 合并同类项,得合并同类项,得合并同类项,得 73£-x (计算要正确)系数化为系数化为1, 得 37-³x (同除负,不等号方向要改变,分子分母别颠倒了)三、一元一次不等式组含有同一个未知数的含有同一个未知数的几个一元一次不等式所组成的不等式组,叫做一元一次不等式组。
一元一次不等式所组成的不等式组,叫做一元一次不等式组。
说明:判断一个不等式组是一元一次不等式组需满足两个条件:判断一个不等式组是一元一次不等式组需满足两个条件:①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;①组成不等式组的每一个不等式必须是一元一次不等式,且未知数相同;②不等式组中不等式的个数至少是2个,也就是说,可以是2个、个、33个、个、44个或更多.个或更多.四、一元一次不等式组的解集一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组中,几个不等式解集的公共部分.叫做这个一元一次不等式组的解集.一元一次不等式组的解集通常利用数轴来确定.一元一次不等式组的解集通常利用数轴来确定.五、不等式组解集的确定方法,可以归纳为以下四种类型(b a <) a a a a x <ax >a x ≤a x ≥a 一元一次不等式和不等式组【知识要点】一、一元一次不等式1. 一元一次不等式定义:含有一个未知数,并且未知数的最高次数是1的不等式叫做一元一次不等式。
方程与不等式综合复习—知识讲解及经典例题解析

中考总复习:方程与不等式综合复习—知识讲解及经典例题解析【考纲要求】1.会从定义上判断方程(组)的类型,并能根据定义的双重性解方程(组)和研究分式方程的增根情况;2.掌握解方程(组)的方法,明确解方程组的实质是“消元降次”、“化分式方程为整式方程”、“化无理式为有理式”;3.理解不等式的性质,一元一次不等式(组)的解法,在数轴上表示解集,以及求特殊解集;4.列方程(组)、列不等式(组)解决社会关注的热点问题;5. 解方程或不等式是中考的必考点,运用方程思想与不等式(组)解决实际问题是中考的难点和热点.【知识网络】【考点梳理】考点一、一元一次方程1.方程含有未知数的等式叫做方程.2.方程的解能使方程两边相等的未知数的值叫做方程的解.3.等式的性质(1)等式的两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式.(2)等式的两边都乘以(或除以)同一个数(除数不能是零),所得结果仍是等式.4.一元一次方程只含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程)为未知数,(0a x 0≠=+b ax 叫做一元一次方程的标准形式,a 是未知数x 的系数,b 是常数项. 5.一元一次方程解法的一般步骤整理方程 —— 去分母—— 去括号—— 移项—— 合并同类项——系数化为1——(检验方程的解).6.列一元一次方程解应用题(1)读题分析法:多用于“和,差,倍,分问题”仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套”,利用这些关键字列出文字等式,并且根据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.(2)画图分析法:多用于“行程问题”利用图形分析数学问题是数形结合思想在数学中的体现,仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从而取得布列方程的依据,最后利用量与量之间的关系(可把未知数看作已知量),填入有关的代数式是获得方程的基础. 要点诠释:列方程解应用题的常用公式:(1)行程问题: 距离=速度×时间 时间距离速度= 速度距离时间=; (2)工程问题: 工作量=工效×工时 工时工作量工效=工效工作量工时=; (3)比率问题: 部分=全体×比率 全体部分比率= 比率部分全体=;(4)顺逆流问题: 顺流速度=静水速度+水流速度,逆流速度=静水速度-水流速度; (5)商品价格问题: 售价=定价·折·101,利润=售价-成本, %100⨯-=成本成本售价利润率;(6)周长、面积、体积问题:C 圆=2πR ,S 圆=πR 2,C 长方形=2(a+b),S 长方形=ab , C 正方形=4a ,S 正方形=a 2,S 环形=π(R 2-r 2),V 长方体=abh ,V 正方体=a 3,V 圆柱=πR 2h ,V 圆锥=31πR 2h.考点二、一元二次方程 1.一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程. 2.一元二次方程的一般形式)0(02≠=++a c bx ax ,它的特征是:等式左边是一个关于未知数x 的二次多项式,等式右边是零,其中2ax 叫做二次项,a 叫做二次项系数;bx 叫做一次项,b 叫做一次项系数;c 叫做常数项. 3.一元二次方程的解法(1)直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法.直接开平方法适用于解形如b a x =+2)(的一元二次方程.根据平方根的定义可知,a x +是b 的平方根,当0≥b 时,b a x ±=+,b a x ±-=,当b<0时,方程没有实数根.(2)配方法配方法是一种重要的数学方法,它不仅在解一元二次方程上有所应用,而且在数学的其他领域也有着广泛的应用.配方法的理论根据是完全平方公式2222()a ab b a b ±+=±,把公式中的a 看做未知数x ,并用x 代替,则有222)(2b x b bx x ±=+±.(3)公式法公式法是用求根公式求一元二次方程的解的方法,它是解一元二次方程的一般方法.一元二次方程)0(02≠=++a c bx ax 的求根公式:21,240)2b x b ac a-±=-≥ (4)因式分解法因式分解法就是利用因式分解的手段,求出方程的解的方法,这种方法简单易行,是解一元二次方程最常用的方法.4.一元二次方程根的判别式一元二次方程)0(02≠=++a c bx ax 中,ac b 42-叫做一元二次方程)0(02≠=++a c bx ax 的根的判别式,通常用“∆”来表示,即ac b 42-=∆. 5.一元二次方程根与系数的关系如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么ab x x -=+21,a cx x =21.也就是说,对于任何一个有实数根的一元二次方程,两根之和等于方程的一次项系数除以二次项系数所得的商的相反数;两根之积等于常数项除以二次项系数所得的商. 要点诠释:一元二次方程的解法中直接开平方法和因式分解法是特殊方法,比较简单,但不是所有的一元二次方程都能用这两种方法去解,配方法和公式法是普通方法,一元二次方程都可以用这两种方法去解.(1)判断一个方程是不是一元二次方程,应把它进行整理,化成一般形式后再进行判断,注意一元二次方程一般形式中0≠a .(2)用公式法和因式分解的方法解方程时要先化成一般形式. (3)用配方法时二次项系数要化1.(4)用直接开平方的方法时要记得取正、负.考点三、分式方程 1.分式方程分母里含有未知数的方程叫做分式方程. 2.解分式方程的一般方法解分式方程的思想是将“分式方程”转化为“整式方程”.它的一般解法是:①去分母,方程两边都乘以最简公分母;②解所得的整式方程;③验根:将所得的根代入最简公分母,若等于零,就是增根,应该舍去;若不等于零,就是原方程的根.口诀:“一化二解三检验”.3.分式方程的特殊解法换元法:换元法是中学数学中的一个重要的数学思想,其应用非常广泛,当分式方程具有某种特殊形式,一般的去分母不易解决时,可考虑用换元法.要点诠释:解分式方程时,有可能产生增根,增根一定适合分式方程转化后的整式方程,但增根不适合原方程,可使原方程的分母为零,因此必须验根.增根的产生的原因:对于分式方程,当分式中,分母的值为零时,无意义,所以分式方程,不允许未知数取那些使分母的值为零的值,即分式方程本身就隐含着分母不为零的条件.当把分式方程转化为整式方程以后,这种限制取消了,换言之,方程中未知数的值范围扩大了,如果转化后的整式方程的根恰好是原方程未知数的允许值之外的值,那么就会出现增根.考点四、二元一次方程(组)1.二元一次方程含有两个未知数,并且未知项的最高次数是1的整式方程叫做二元一次方程,它的一般形式是ax+by=c(a≠0,b≠0).2.二元一次方程的解使二元一次方程左右两边的值相等的一对未知数的值,叫做二元一次方程的一个解.3.二元一次方程组两个(或两个以上)二元一次方程合在一起,就组成了一个二元一次方程组.4.二元一次方程组的解使二元一次方程组的两个方程左右两边的值都相等的两个未知数的值,叫做二元一次方程组的解.5.二元一次方程组的解法①代入消元法;②加减消元法.6.三元一次方程(组)(1)三元一次方程把含有三个未知数,并且含有未知数的项的次数都是1的整式方程叫三元一次方程.(2)三元一次方程组由三个(或三个以上)一次方程组成,并且含有三个未知数的方程组,叫做三元一次方程组.要点诠释:二元一次方程组的解法:消元:将未知数的个数由多化少,逐一解决的想法,叫做消元思想.(1)代入消元法:将一个未知数用含有另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解,这种方法叫做代入消元法,简称代入法.(2)加减消元法:当两个方程中同一未知数的系数相反或相等时,将两个方程的两边分别相加或相减,就能消去这个未知数,这种方法叫做加减消元法,简称加减法.(3)二元一次方程组的解有三种情况,即有唯一解、无解、无限多解.教材中主要是研究有唯一解的情况,对于其他情况,可根据学生的接受能力给予渗透.考点五、不等式(组)1.不等式的概念(1)不等式用不等号表示不等关系的式子,叫做不等式.(2)不等式的解集对于一个含有未知数的不等式,任何一个适合这个不等式的未知数的值,都叫做这个不等式的解.对于一个含有未知数的不等式,它的所有解的集合叫做这个不等式的解的集合,简称这个不等式的解集.求不等式的解集的过程,叫做解不等式.2.不等式基本性质(1)不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向不变;(2)不等式两边都乘以(或除以)同一个正数,不等号的方向不变;(3)不等式两边都乘以(或除以)同一个负数,不等号的方向改变.3.一元一次不等式(1)一元一次不等式的概念一般地,不等式中只含有一个未知数,未知数的次数是1,且不等式的两边都是整式,这样的不等式叫做一元一次不等式.(2)一元一次不等式的解法解一元一次不等式的一般步骤:①去分母;②去括号;③移项;④合并同类项;⑤将x项的系数化为1.4.一元一次不等式组(1)一元一次不等式组的概念几个一元一次不等式合在一起,就组成了一个一元一次不等式组.几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集.求不等式组的解集的过程,叫做解不等式组.当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集.(2)一元一次不等式组的解法①分别求出不等式组中各个不等式的解集;②利用数轴求出这些不等式的解集的公共部分,即这个不等式组的解集.由两个一元一次不等式组成的一元一次不等式组的解集的四种情况如下表.注:不等式有等号的在数轴上用实心圆点表示.要点诠释:用符号“<”“>”“≤ ”“≥”“≠”表示不等关系的式子,叫做不等式.(1)不等式的其他性质:①若a >b ,则b <a ;②若a >b ,b >c ,则a >c ;③若a ≥b ,且b ≥a ,•则a=b ;④若a 2≤0,则a=0;⑤若ab >0或0a b >,则a 、b 同号;⑥若ab <0或0ab<,则a 、b 异号. (2)任意两个实数a 、b 的大小关系:①a -b >O ⇔a >b ;②a -b=O ⇔a=b ;③a-b <O ⇔a <b .不等号具有方向性,其左右两边不能随意交换:但a <b 可转换为b >a ,c ≥d 可转换为d ≤c .【典型例题】类型一、方程的综合运用1.如图所示,是在同一坐标系内作出的一次函数y 1、y 2的图象1l 、2l ,设111y k x b =+,222y k x b =+,则方程组111222,y k x b y k x b =+⎧⎨=+⎩的解是( )不等式组 (其中a >b )图示 解集 口诀x ax b >⎧⎨>⎩ bax a > (同大取大)x ax b <⎧⎨<⎩ b ax b <(同小取小) x ax b <⎧⎨>⎩ bab x a << (大小取中间)x ax b >⎧⎨<⎩ba无解 (空集) (大大、小小找不到)A .2,2x y =-⎧⎨=⎩ B .2,3x y =-⎧⎨=⎩ C .3,3x y =-⎧⎨=⎩ D .3,4x y =-⎧⎨=⎩【思路点拨】图象1l 、2l 的交点的坐标就是方程组的解. 【答案】B ;【解析】由图可知图象1l 、2l 的交点的坐标为(-2,3),所以方程组111222,y k x b y k x b =+⎧⎨=+⎩的解为2,3.x y =-⎧⎨=⎩【总结升华】方程组与函数图象结合体现了数形结合的数学思想,这也是中考所考知识点的综合与相互渗透.2.近年来,由于受国际石油市场的影响,汽油价格不断上涨.请你根据下面的信息,帮小明计算今年5月份汽油的价格.如图所示.【思路点拨】根据“用150元给汽车加油今年比去年少18.75升”列方程. 【答案与解析】解:设今年5月份汽油价格为x 元/升,则去年5月份的汽油价格为(x-1.8)元/升.根据题意,得15015018.751.8x x-=-,整理,得21.814.40x x --=.解这个方程,得x 1=4.8,x 2=-3.经检验两根都为原方程的根,但x 2=-3不符合实际意义,故舍去. 【总结升华】解题的关键是从对话中挖掘出有效的数学信息,构造数学模型,从而解决问题,让同学们更进一步地体会到数学就在我们身边.类型二、解不等式(组)3.已知A =a+2,B =a 2-a+5,C =a 2+5a-19,其中a >2. (1)求证:B-A >0,并指出A 与B 的大小关系; (2)指出A 与C 哪个大?说明理由. 【思路点拨】计算B-A 结果和0比大小,从而判断A 与B 的大小;同理计算C-A ,根据结果来比较A 与C 的大小. 【答案与解析】(1)证明:B-A =a 2-2a+3=(a-1)2+2.∵ a >2,∴ (a-1)2>0,∴ (a-1)2+2>0.∴ a 2-2a+3>0,即B-A >0. 由此可得B >A .(2)解:C-A =a 2+4a-21=(a+7)(a-3). ∵ a >2,∴ a+7>0.当2<a <3时,a-3<0, ∴ (a+7)(a-3)<0.∴ 当2<a <3时,A 比C 大;当a =3时,a-3=0, ∴ (a+7)(a-3)=0.∴ 当a =3时,A 与C 一样大;当a >3时,a-3>0, ∴ (a+7)(a-3)>0.∴ 当a >3时,C 比A 大. 【总结升华】比较大小通常用作差法,结果和0比大小,此时常常用到因式分解或配方法. 本题考查了整式的减法、十字相乘法分解因式,渗透了求差比较大小的思路及分类讨论的思想. 举一反三:【变式1】已知:A=222+-a a ,B=2, C=422+-a a ,其中1>a .(1)求证:A-B>0; (2)试比较A 、B 、C 的大小关系,并说明理由. 【答案】(1)A-B=222222(21)a a a a a a -+-=-=- ∵1>a ,∴0,210a a >-> ∴A-B>0(2) ∵C-B=22224222(1)10a a a a a -+-=-+=-+> ∴C>B∵A-C=22222242(2)(1)a a a a a a a a -+-+-=+-=+- ∵1>a ,∴20,10a a +>-> ∴A>C>B【变式2】如图,要使输出值y 大于100,则输入的最小正整数x 是______.【答案】解:设n 为正整数,由题意得 ⎩⎨⎧>+⨯>-.1001342,100)12(5n n 解得⋅>887n 则n 可取的最小正整数为11.若x 为奇数,即x =21时,y =105; 若x 为偶数,即x =22时,y =101. ∴满足条件的最小正整数x 是21.类型三、方程(组)与不等式(组)的综合应用4.宏志高中高一年级近几年来招生人数逐年增加,去年达到550名,其中有面向全省招收的“宏志班”学生,也有一般普通班的学生.由于场地、师资等限制,今年招生最多比去年增加100人,其中普通班学生可多招20%,“宏志班”学生可多招10%,问今年最少可招收“宏志班”学生多少名? 【思路点拨】根据招生人数列等式,根据今年招生最多比去年增加100人列不等式. 【答案与解析】设去年招收“宏志班”学生x 名,普通班学生y 名,由条件得550,10%20%100.x y x y +=⎧⎨+≤⎩将y =550-x 代入不等式,可解得x ≥100,于是(1+10%)x ≥110. 故今年最少可招收“宏志班”学生110名. 【总结升华】本题属于列方程与不等式组综合题. 举一反三:【变式】为了加强学生的交通安全意识,某中学和交警大队联合举行了“我当一日小交警”活动,星期天选派部分学生到交通路口值勤,协助交通警察维持交通秩序,若每一个路口安排4人,那么还剩下78人;若每个路口安排8人,那么最后一个路口不足8人,但不少于4人.求这个中学共选派值勤学生多少人?共有多少个交通路口安排值勤?【答案】设这个学校选派值勤学生x 人,共到y 个交通路口值勤.根据题意得478,48(1)8.x y x y -=⎧⎨≤--<⎩①②由①可得x =4y+78,代入②,得4≤78+4y-8(y-1)<8,解得19.5<y ≤20.5.根据题意y 取20,这时x 为158,即学校派出的是158名学生,分到了20个交通路口安排值勤.5.已知关于x 的一元二次方程 2(2)(1)0m x m x m ---+=.(其中m 为实数) (1)若此方程的一个非零实数根为k , ① 当k = m 时,求m 的值;② 若记1()25m k k k+-+为y ,求y 与m 的关系式;(2)当14<m <2时,判断此方程的实数根的个数并说明理由. 【思路点拨】(1)由于k 为此方程的一个实数根,故把k 代入原方程,即可得到关于k 的一元二次方程,①把k=m 代入关于k 的方程,即可求出m 的值;②由于k 为原方程的非零实数根,故把方程两边同时除以k ,便可得到关于y 与m 的关系式; (2)先求出根的判别式,再根据m 的取值范围讨论△的取值即可. 【答案与解析】(1)∵ k 为2(2)(1)0m x m x m ---+=的实数根,∴ 2(2)(1)0m k m k m ---+=.※① 当k = m 时,∵ k 为非零实数根,∴ m ≠ 0,方程※两边都除以m ,得(2)(1)10m m m ---+=.整理,得 2320m m -+=.解得 11m =,22m =.∵ 2(2)(1)0m x m x m ---+=是关于x 的一元二次方程, ∴ m ≠ 2. ∴ m= 1.② ∵ k 为原方程的非零实数根,∴ 将方程※两边都除以k ,得(2)(1)0mm k m k---+=. 整理,得 1()21m k k m k +-=-.∴ 1()254y m k k m k=+-+=+.(2)解法一:22[(1)]4(2)3613(2)1m m m m m m m ∆=----=-++=--+ .当14<m <2时,m >0,2m -<0.∴ 3(2)m m -->0,3(2)1m m --+>1>0,Δ>0.∴ 当14<m <2时,此方程有两个不相等的实数根.解法二:直接分析14<m <2时,函数2(2)(1)y m x m x m =---+的图象,∵ 该函数的图象为抛物线,开口向下,与y 轴正半轴相交,∴ 该抛物线必与x 轴有两个不同交点.∴ 当14<m <2时,此方程有两个不相等的实数根.解法三:222[(1)]4(2)3613(1)4m m m m m m ∆=----=-++=--+.结合23(1)4m ∆=--+关于m 的图象可知,(如图)当14<m ≤1时,3716<∆≤4; 当1<m <2时,1<∆<4.∴ 当14<m <2时,∆>0.∴ 当14<m <2时,此方程有两个不相等的实数根. 【总结升华】和一元二次方程的根有关的问题往往可以借助于二次函数图象解决,数形结合使问题简化. 举一反三:【变式1】已知关于x 的一元二次方程2x 2+4x+k ﹣1=0有实数根,k 为正整数.(1)求k 的值(2)当此方程有两个非零的整数根时,将关于x 的二次函数y=2x 2+4x+k ﹣1的图象向右平移1个单位,向下平移2个单位,求平移后的图象的解析式.【答案】解:(1)∵方程2x 2+4x+k ﹣1=0有实数根,∴△=42﹣4×2×(k ﹣1)≥0,∴k≤3.又∵k 为正整数,∴k=1或2或3.(2)当此方程有两个非零的整数根时,当k=1时,方程为2x 2+4x=0,解得x 1=0,x 2=﹣2;不合题意,舍去.当k=2时,方程为2x 2+4x+1=0,解得x 1=﹣1+,x 2=﹣1﹣;不合题意,舍去. 当k=3时,方程为2x 2+4x+2=0,解得x 1=x 2=﹣1;符合题意.因此y=2x 2+4x+2的图象向右平移1个单位,向下平移2个单位,得出y=2x 2﹣2.【变式2】已知:关于x 的方程()0322=-+-+k x k x (1)求证:方程()0322=-+-+k x k x 总有实数根;(2)若方程()0322=-+-+k x k x 有一根大于5且小于7,求k 的整数值; (3)在⑵的条件下,对于一次函数b x y +=1和二次函数2y =()322-+-+k x k x ,当71<<-x 时,有21y y >,求b 的取值范围.【答案】⑴证明:∵△=(k -2)2-4(k -3)=k 2-4k +4-4k +12= k 2-8k +16=(k -4)2≥0∴此方程总有实根。
(完整版)不等式知识点归纳大全

《不等式》知识点归纳一.(1)解不等式是求不等式的解集,最后务必有集合的形式表示;不等式解集的端点值往往是不等式对应方程的根或不等式有意义范围的端点值.(2)解分式不等式()()()0≠>a a x g x f 的一般解题思路是什么?(移项通分,分子分母分解因式,x 的系数变为正值,标根及奇穿过偶弹回);(3)含有两个绝对值的不等式如何去绝对值?(一般是分类讨论、平方转化或换元转化);(4)解含参不等式常分类等价转化,必要时需分类讨论.注意:按参数讨论,最后按参数取值分别说明其解集,但若按未知数讨论,最后应求并集.二、 利用重要不等式ab b a 2≥+ 以及变式2()2a b ab +≤等求函数的最值时,务必注意a ,b +∈R (或a ,b 非负),且“等号成立”时的条件是积ab 或和a +b 其中之一应是定值(一正二定三等四同时).三、.2211a b a b+≥≥≥+(根据目标不等式左右的运算结构选用) a 、b 、c ∈R ,222a b c ab bc ca ++≥++(当且仅当a b c ==时,取等号)四、含立方的几个重要不等式(a 、b 、c 为正数):(,);五、最值定理(积定和最小) ①,则当时和有最小值(和定积最大)②若和,则当是积有最大值. 【推广】:③已知,,,,+∈R y x b a 若1=+by ax ,则有则y x 11+的最小值为:3333a b c abc++≥0ab c ++>等式即可成立时取等或0=++==c b a c b a 3a b c ++⇒3()3a b c abc ++≤3333a b c ++≤,0,x y x y >+≥由()xy P =定值x y =x y +,0,x y x y >+≥由()x y S +=定值x y =xy 214s 21111()()by ax ax by a b a b xy x y x y +=++=+++++=+≥④等式到不等式的转化:已知x >0,y >0,x +2y +2xy =8,则x +2y 的最小值是________. 4)2()2(82)2(822y x y x y x y x xy +≤+-=⋅⇒+-=即0)42)(82(08)2(4)2(2≥-+++⇒≥-+++y x y x y x y x 解得4282≥+-≤+y x y x (舍)或故x +2y 的最小值是4 如果求xy 的最大值,则xy xy y x y x xy 22282)2(82≥-=+⇒+-=, 然后解关于xy 的一元二次不等式,求xy 的范围,进而得到xy 的最大值六、比较大小的方法和证明不等式的方法主要有:差比较法、商比较法、函数性质法、综合法、分析法和放缩法(注意:对“整式、分式、绝对值不等式”的放缩途径, “配方、函数单调性等”对放缩的影响).七、含绝对值不等式的性质:a b 、同号或有0⇔||||||a b a b +=+≥||||||||a b a b -=-;a b 、异号或有0⇔||||||a b a b -=+≥||||||||a b a b -=+.八、不等式中的函数思想不等式恒成立问题“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。
不等式强基知识点

不等式强基知识点一、知识概述《不等式强基知识点》①基本定义:不等式呢,简单说就是表示两个数或者表达式之间大小关系的式子。
不是等于,而是大于、小于、大于等于、小于等于这样的关系。
就好比你和小伙伴比谁零花钱多,有个人钱比另一个人的多,这就可以用不等式表示。
②重要程度:在数学里那是相当重要的。
无论是代数、几何还是函数等很多领域都要用到不等式。
它能帮我们确定取值范围,解决很多实际和理论上关于范围、最值等问题。
③前置知识:需要掌握简单的代数式运算、数的大小比较这些基础知识。
要是连数大小都不会比,那不等式可就太难学啦。
比如说你得知道5比3大这种简单的比较。
④应用价值:在生活中,比如安排预算的时候,你的收入只能小于等于你的总收入,不然就超支了。
在工程里,材料的用量也得考虑不等式关系,总不能用无穷多的材料吧。
二、知识体系①知识图谱:不等式在数学学科里就像是经脉一样,贯穿很多其他知识体系。
像在函数学习里,求函数的定义域、值域就经常用到不等式。
②关联知识:和方程关系就挺紧密的。
有时候方程解完了,要确定一些参数的取值范围就会用到不等式。
还和函数的单调性有关联,如果一个函数单调递增,那自变量的大小关系和函数值的大小关系就可以用不等式来表示。
③重难点分析:- 掌握难度:对一些学生来讲,不等式抽象的概念理解起来有点难,尤其是多个不等式一起的情况。
我就见过有的同学,一看到好几个不等式组成的不等式组,就晕头转向的。
- 关键点:理解不等号两边的数量关系,还有就是移项、变形这些操作的时候,要遵循不等式的基本性质,就像玩游戏得遵守游戏规则一样。
④考点分析:- 在考试中的重要性:那可大了。
不论是小考还是大考,都经常出现不等式的题目。
- 考查方式:会有单纯解不等式的,还有在应用题里需要列不等式求解实际问题的,也有和其他知识点结合起来考查的,像跟函数图像结合,求满足不等式条件的自变量取值范围之类的。
三、详细讲解【理论概念类】①概念辨析:- 核心概念准确含义:不等式最重要的就是表示一种不平衡的关系。
不等式的基本性质知识点总结

4.2 实例分析 以一道具体的不等式问题为例,详细分析其 解题过程和思路,展示如何运用不等式的性 质进行解题。通过实例分析,加深对不等式 基本性质的理解和掌握
不等式的常见题型与解题技巧
如何激发对不等式学习的兴趣
A
学习不等式 需要耐心和
毅力
B
当我们遇到困 难时,不要轻 易放弃,而是 要坚持下去, 相信自己能够
解决问题
C
通过不断练习 和反思,我们 可以逐渐提高 自己的解决问
题的能力
总结与展望未来
12.1 总结
01
本文总结了不等式的基本性质、解法与变形、常见题型 与解题技巧等方面的知识点,并探讨了如何进一步提高 不等式问题的解决能力以及学习不等式的重要性和意义。 同时,也提出了一些激发对不等式学习兴趣的方法
不等式在实际生 活中的应用
7.1 经济学中的应用:在经济学中,不等式常被用来描述和解决资 源分配、市场供需、成本与收益等问题。例如,通过比较不同投资 方案的收益与成本,利用不等式来选择最优的投资方案
7.2 物理学中的应用:在物理学中,不等式被广泛应用于力学、 热学、电磁学等领域。例如,牛顿第二定律中的力与加速度的 关系就可以用不等式来描述
10.4 提高综合素质
学习不等式不仅可以提高我 们的数学能力,还可以培养 我们的耐心、毅力和创新精 神
通过解决复杂的问题,我们 可以锻炼自己的意志品质, 提高自己的综合素质
如何激发对不等式学习的兴趣
了解不等式在实际生活中的应用,可以激发我们对不等式学 习的兴趣。当我们知道所学知识能够解决实际问题时,自然 会产生学习的动力 参加数学竞赛和活动,可以让我们更好地了解数学的魅力, 提高解决数学问题的能力。在竞赛和活动中,我们可以结交 志同道合的朋友,共同探讨数学问题,分享解决问题的乐趣 寻找合适的学习资源,如教材、网络课程、学习 app 等, 可以帮助我们更好地学习不等式。同时,也可以通过参加学 习小组或找老师请教等方式,获取更多的学习帮助和支持
高中数学不等式知识点

高中数学不等式知识点不等式知识点归纳:一、不等式的概念与性质1、实数的大小顺序与运算性质之间的关系:0>-⇔>b a b a 0<-⇔<b a b a 0=-⇔=b a b a 2、不等式的性质:(1)a b b a <⇔> , a b b a >⇔< (反对称性) (2)c a c b b a >⇒>>, ,c a c b b a <⇒<<, (传递性) (3)c b c a b a +>+⇒>,故b c a c b a ->⇒>+ (移项法则) 推论:d b c a d c b a +>+⇒>>, (同向不等式相加) (4)bc ac c b a >⇒>>0,,bc ac c b a <⇒<>0, 推论1:bd ac d c b a >⇒>>>>0,0 推论2:n n b a b a >⇒>>0 推论3:n n b a b a >⇒>>0不等式的性质是解、证不等式的基础,对于这些性质,关键是正确理解和熟练运用,要弄清每一个条件和结论,学会对不等式进行条件的放宽和加强。
3、常用的基本不等式和重要的不等式(1)0,0,2≥≥∈a a R a 当且仅当”取“==,0a (2)ab b a R b a 2,,22≥+∈则 (3)+∈R b a ,,则ab b a 2≥+(4)222)2(2b a b a +≤+4、最值定理:设,0,x y x y >+≥由(1)如积P y x P xy 2(有最小值定值),则积+=(2)如积22()有最大值(定值),则积S xy S y x =+即:积定和最小,和定积最大。
运用最值定理求最值的三要素:一正二定三相等 5、均值不等式:证法一:(比较法)a b b a R b a -=∴=+∈1,1,,()()2222259224()22a b a b a b ∴+++-=+++- 2222911(1)4222()0222a a a a a =+-+-=-+=-≥即()()2252222≥+++b a (当且仅当21==b a 时,取等号)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不等式的综合应用【考纲要求】1.在熟练掌握一元一次不等式(组)、一元二次不等式的解法基础上,掌握其它的一些简单不等式的解法.通过不等式解法的复习,提高学生分析问题、解决问题的能力以及计算能力;2.掌握解不等式的基本思路,即将分式不等式、绝对值不等式等不等式,化归为整式不等式(组),会用分类、换元、数形结合的方法解不等式;3.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题;4.通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力;5.能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题.6.通过不等式的基本知识、基本方法在代数、三角函数、数列、复数、立体几何、解析几何等各部分知识中的应用,深化数学知识间的融汇贯通,从而提高分析问题解决问题的能力.在应用不等式的基本知识、方法、思想解决问题的过程中,提高学生数学素质及创新意识..【知识网络】【考点梳理】考点一:不等式问题中相关方法1.解不等式的核心问题是不等式的同解变形,不等式的性质则是不等式变形的理论依据,方程的根、函数的性质和图象都与不等式的解法密切相关,要善于把它们有机地联系起来,互相转化.在解不等式中,换元法和图解法是常用的技巧之一.通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数、数形结合,则可将不等式的解化归为直观、形象的图形关系,对含有参数的不等式,运用图解法可以使得分类标准明晰.2.整式不等式(主要是一次、二次不等式)的解法是解不等式的基础,利用不等式的性质及函数的单调性,将分式不等式、绝对值不等式等化归为整式不等式(组)是解不等式的基本思想,分类、换元、数形结合是解不等式的常用方法.方程的根、函数的性质和图象都与不等式的解密切相关,要善于把它们有机地联系起来,相互转化和相互变用.3.在不等式的求解中,换元法和图解法是常用的技巧之一,通过换元,可将较复杂的不等式化归为较简单的或基本不等式,通过构造函数,将不等式的解化归为直观、形象的图象关系,对含有参数的不等式,运用图解法,可以使分类标准更加明晰.通过复习,感悟到不等式的核心问题是不等式的同解变形,能否正确的得到不等式的解集,不等式同解变形的理论起了重要的作用.4.比较法是不等式证明中最基本、也是最常用的方法,比较法的一般步骤是:作差(商)→变形→判断符号(值).5.证明不等式的方法灵活多样,内容丰富、技巧性较强,这对发展分析综合能力、正逆思维等,将会起到很好的促进作用.在证明不等式前,要依据题设和待证不等式的结构特点、内在联系,选择适当的证明方法.通过等式或不等式的运算,将待证的不等式化为明显的、熟知的不等式,从而使原不等式得到证明;反之亦可从明显的、熟知的不等式入手,经过一系列的运算而导出待证的不等式,前者是“执果索因”,后者是“由因导果”,为沟通联系的途径,证明时往往联合使用分析综合法,两面夹击,相辅相不等式的综合应用 解不等式问题实际应用问题 不等式中的含参问题 不等式证明成,达到欲证的目的.6.证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.考点二:不等式与相关知识的渗透1.不等式这部分知识,渗透在中学数学各个分支中,有着十分广泛的应用.因此不等式应用问题体现了一定的综合性、灵活多样性,这对同学们将所学数学各部分知识融会贯通,起到了很好的促进作用.在解决问题时,要依据题设、题断的结构特点、内在联系、选择适当的解决方案,最终归结为不等式的求解或证明.不等式的应用范围十分广泛,它始终贯串在整个中学数学之中.诸如集合问题,方程(组)的解的讨论,函数单调性的研究,函数定义域的确定,三角、数列、复数、立体几何、解析几何中的最大值、最小值问题,无一不与不等式有着密切的联系,许多问题,最终都可归结为不等式的求解或证明。
2.不等式应用问题体现了一定的综合性.这类问题大致可以分为两类:一类是建立不等式、解不等式;另一类是建立函数式求最大值或最小值.利用平均值不等式求函数的最值时,要特别注意“正数、定值和相等”三个条件缺一不可,有时需要适当拼凑,使之符合这三个条件.利用不等式解应用题的基本步骤:①审题,②建立不等式模型,③解数学问题,④作答。
要点诠释:⑴解不等式的基本思想是转化、化归,一般都转化为最简单的一元一次不等式(组)或一元二次不等式(组)来求解,。
⑵解含参数不等式时,要特别注意数形结合思想,函数与方程思想,分类讨论思想的录活运用。
⑶不等式证明方法有多种,既要注意到各种证法的适用范围,又要注意在掌握常规证法的基础上,选用一些特殊技巧。
如运用放缩法证明不等式时要注意调整放缩的度。
⑷根据题目结构特点,执果索因,往往是有效的思维方法。
【典型例题】类型一:不等式求解问题例1.解关于x 的不等式ax x >-12. 【思路点拨】考虑转化为整式不等式。
解:不等式ax x >-12可化为()a x x -+>-1202. 1)当a=1时,原不等式的解集为{|}x x >2; 2)当a >1时,原不等式的解集为{|}x x x a <->-221或; 3)若a -<10,则原不等式可化为x a x --<-2102, 故当a <<01时,原不等式的解集为{|}x x a<<-221; 当a =0时,原不等式的解集为ϕ;当a <0时,原不等式的解集为{|}x x a<<-221. 【总结升华】分式不等式应移项、通分,转化为整式不等式。
这是解决分式不等式的基本方法和思路。
举一反三:【变式1】己知三个不等式:①x x -<-542 ②12322≥+-+x x x ③0122<-+mx x (1)若同时满足①、②的x 值也满足③,求m 的取值范围;(2)若满足的③x 值至少满足①和②中的一个,求m 的取值范围。
解:记①的解集为A ,②的解集为B ,③的解集为C 。
解①得A=(-1,3);解②得B=][[)3,2()1,0B A ,4,2()1,0⋃=⋂∴⋃(1)因同时满足①、②的x 值也满足③,A ⋂B ⊆C设12)(2++=mx x x f ,由)(x f 的图象可知:方程的小根小于0,大根大于或等于3时,即可满足3170173010)3(0)0(-≤∴⎩⎨⎧≤+<-⎩⎨⎧≤<⊆∴⋂m m f f B A 即 (2)因满足③的x 值至少满足①和②中的一个,]4,1(,-=⋃⋃⊆∴B A B A C 而因此]0124,1(2=-+∴-⊆mx x C 方程小根大于或等于-1,大根小于或等于4,因而(1)1031(4)4310,14144f m f m m m ⎧⎪-=-≥⎪⎪=+≥-≤≤⎨⎪⎪-<-<⎪⎩解之得 【高清课堂:基本不等式394889 典型例题一】【变式2】已知函数2()21()f x ax x a R =++∈(1)若()f x 的图像与x 轴恰有一个公共点,求a 的值;(2)若方程()0f x =至少有一个正跟,求a 的范围。
解:(1)当0a =时函数()f x 为一次函数,符合题意;当0a ≠时,函数()f x 为二次函数,则 440a ∆=-=,所以1a =综上,01a =或.(2)当0a =时,()0f x =为一次方程,不符合题意;当0a ≠时, ()0f x =为二次方程,显然(0)1f =所以0a <时有一正一负根,符合题意;当0a >时,121210100020a x x x a x x aφ⎧⎪≤∆≥⎧⎪⎪⎪⋅>⇒>⇒∈⎨⎨⎪⎪+>⎩⎪->⎪⎩综上,a 的范围0a <.类型二:不等式证明例2.已知△ABC 的三边长是,,a b c ,且m 为正数,求证:a b c a m b m c m+>+++. 【思路点拨】寻找各项的统一性,可以从函数单调性方面来考虑。
证明:设()(0)x f x m x m=>+,易知(0,)+∞是()f x 的递增区间,()()a b c f a b f c +>∴+>,即a b c a b m c m+>+++ 而a b a b a b a m b m a b m a b m a b m++>+=++++++++ a b c a m b m c m ∴+>+++ 【总结升华】函数是高中数学的重要知识,很多问题都可以从函数的角度来思考和分析。
举一反三:【变式1】设函数f (x )定义在R 上,对任意m 、n 恒有f (m +n )=f (m )·f (n ),且当x >0时,0<f (x )<1.(1)求证:f (0)=1,且当x <0时,f (x )>1;(2)求证:f (x )在R 上单调递减;(3)设集合A ={ (x ,y )|f (x 2)·f (y 2)>f (1)},集合B ={(x ,y )|f (ax -g +2)=1,a ∈R },若A ∩B =∅,求a 的取值范围.证明:令m >0,n =0得:f (m )=f (m )·f (0).∵f (m )≠0,∴f (0)=1取m =m ,n =-m ,(m <0),得f (0)=f (m )f (-m )∴f (m )=)(1m f -,∵m <0,∴-m >0,∴0<f (-m )<1,∴f (m )>1 (2)证明:任取x 1,x 2∈R ,则f (x 1)-f (x 2)=f (x 1)-f [(x 2-x 1)+x 1]=f (x 1)-f (x 2-x 1)·f (x 1)=f (x 1)[1-f (x 2-x 1)],∵f (x 1)>0,1-f (x 2-x 1)>0,∴f (x 1)>f (x 2),∴函数f (x )在R 上为单调减函数.(3)由⎩⎨⎧=+-<+⎩⎨⎧θ==+->+021)(1)2()1()(2222y ax y x f y ax f f y x f 得,由题意此不等式组无解, 数形结合得:1|2|2+a ≥1,解得a 2≤3∴a ∈[-3,3]类型三:不等式与相关知识的融合例3.(2015 甘肃一模)已知函数()11ln f x m x x m x ⎛⎫=++- ⎪⎝⎭(其中常数m>0) (1)当m=2时,求()f x 的极大值.(2)时谈论()f x 在区间()0,1上的单调性(3)当[)3,m ∈+∞时,曲线()y f x =上总存在相异两点()()11,P x f x ,()()22,Q x f x ,使得曲线()y f x =在点,Q P 处的切线互相平行,求12x x +的取值范围.【解析】(1)当m=2时,()51ln 2f x x x x=+- ()()()()'22221511022x x f x x x x x--=--=->令()'0f x <可得102x <<或2x > 令()'0f x >解得122x << ()f x ∴在10,2⎛⎫ ⎪⎝⎭和()2,+∞上单调递减,在1,22⎛⎫ ⎪⎝⎭单调递增 故()f x 的极大值为()532ln 222f =- (2) ()()2222111111x m x x m x m m m m f x x x x x ⎛⎫⎛⎫-++--+ ⎪ ⎪⎝⎭⎝⎭=--=-=- ①当01m <<时,则11m>故()0,x m ∈,()'0f x <;(),1x m ∈时,()'0f x > 此时()f x 在()0,m 上单调递减,在(),1m 上单调递增.②当1m =时,11m =故()0,1x ∈有()()2'210x f x x -=-<恒成立, 此时()f x 在()0,1上单调递减③当1m >时,101m << 故10,x m ⎛⎫∈ ⎪⎝⎭时,()'0f x <;1,1x m ⎛⎫∈ ⎪⎝⎭时()'0f x > 此时()f x 在10,m ⎛⎫ ⎪⎝⎭上单调递减,在1,1m ⎛⎫ ⎪⎝⎭上单调递增. (3)由题意,可得()()()''121212,0f x f x x x x x =>=且 即221122111111m m m m x x x x ++--=--所以12121x x m x x m ⎛⎫+=+ ⎪⎝⎭ 12x x ≠由不等式性质可得()212122x x x x +≤恒成立又12,,0x x m > 2121212x x x x m m +⎛⎫⎛⎫∴+<+ ⎪⎪⎝⎭⎝⎭即1241x x m m+>+对[)3,m ∈+∞恒成立 令()()13g m m m m=+>易知()g m 在[)3,+∞上单增()()1033g m g ∴≥=故()446135g m m ≤=+ 1265x x ∴+>12x x ∴+的取值范围为6,5⎛⎫+∞ ⎪⎝⎭举一反三:【变式】(2015 辽宁二模)已知1a b +=,对(),0,a b ∀∈+∞,14+211x x a b≥--+恒成立 (1)求14a b+的最小值; (2)求x 的取值范围. 【解析】(1) 0,0a b >>且1a b +=()1414445529b a b a a b a b a b a b a b ⎛⎫∴+=++=++≥+= ⎪⎝⎭当且仅当2b a =时等号成立,又1a b +=即12,33a b ==时,等号成立 故14a b+的最小值为9. (2)因为对(),0,a b ∈+∞使14+211x x a b ≥--+恒成立 所以2119x x --+≤当1x ≤-时,29x -≤71x ∴-≤≤-当112x -<<时,39x -≤112x ∴-<< 当12x ≥时,29x -≤1112x ∴≤≤ 综上可知x 的取值范围是[]7,11-.类型四:不等式相关应用题例4.如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状。