人教版九年级数学下册期末测试题及答案【精选】

合集下载

2022—2023年人教版九年级数学下册期末考试【及参考答案】

2022—2023年人教版九年级数学下册期末考试【及参考答案】

2022—2023年人教版九年级数学下册期末考试【及参考答案】 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.13-的绝对值是( ) A .3 B .3- C .13 D .13- 2.若点A (1+m ,1﹣n )与点B (﹣3,2)关于y 轴对称,则m+n 的值是( )A .﹣5B .﹣3C .3D .13.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x ,则可得方程( )A .2560(1)1850x +=B .2560560(1)1850x ++=C .()25601560(1)1850x x +++=D .()25605601560(1)1850x x ++++=4.已知关于x 的一元二次方程(a+1)x 2+2bx+(a+1)=0有两个相等的实数根,下列判断正确的是( )A .1一定不是关于x 的方程x 2+bx+a=0的根B .0一定不是关于x 的方程x 2+bx+a=0的根C .1和﹣1都是关于x 的方程x 2+bx+a=0的根D .1和﹣1不都是关于x 的方程x 2+bx+a=0的根5.已知函数2(3)21y k x x =-++的图象与x 轴有交点.则k 的取值范围是( )A .k<4B .k ≤4C .k<4且k ≠3D .k ≤4且k ≠3 6.对于二次函数,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C.图像的顶点坐标为(-2,-7)D.图像与x轴有两个交点7.如图,点D,E分别在线段AB,AC上,CD与BE相交于O点,已知AB=AC,现添加以下的哪个条件仍不能判定△ABE≌△ACD()A.∠B=∠C B.AD=AE C.BD=CE D.BE=CD8.填在下面各正方形中四个数之间都有相同的规律,根据这种规律m的值为()A.180 B.182 C.184 D.1869.如图,函数y1=﹣2x 与y2=ax+3 的图象相交于点A(m,2),则关于x 的不等式﹣2x>ax+3 的解集是()A.x>2 B.x<2 C.x>﹣1 D.x<﹣110.如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=1,与x轴的一个交点坐标为(-1,0),其部分图象如图所示,下列结论:①4ac<b2;②方程ax2+bx+c=0的两个根是x1=-1,x2=3;③3a+c>0;④当y>0时,x的取值范围是-1≤x<3;⑤当x<0时,y随x增大而增大.其中结论正确的个数是()A .4个B .3个C .2个D .1个二、填空题(本大题共6小题,每小题3分,共18分)1.计算:()()201820195-252+的结果是__________.2.分解因式:3x -x=__________.3.以正方形ABCD 的边AD 作等边△ADE ,则∠BEC 的度数是__________.41.如图,圆锥侧面展开得到扇形,此扇形半径 CA=6,圆心角∠ACB=120°, 则此圆锥高 OC 的长度是__________.5.如图,△ABC 内接于☉O ,∠CAB=30°,∠CBA=45°,CD ⊥AB 于点D ,若☉O 的半径为2,则CD 的长为__________.6.如图,在边长为4的正方形ABCD 中,以点B 为圆心,以AB 为半径画弧,交对角线BD 于点E ,则图中阴影部分的面积是__________(结果保留π)三、解答题(本大题共6小题,共72分)1.解方程: 22142x x x +=--2.计算:()011342604sin π-----+().3.如图,已知二次函数y=ax 2+bx+3的图象交x 轴于点A (1,0),B (3,0),交y 轴于点C .(1)求这个二次函数的表达式;(2)点P 是直线BC 下方抛物线上的一动点,求△BCP 面积的最大值;(3)直线x=m 分别交直线BC 和抛物线于点M ,N ,当△BMN 是等腰三角形时,直接写出m 的值.4.如图,已知AB 是⊙O 的直径,C ,D 是⊙O 上的点,OC ∥BD ,交AD 于点E ,连结BC .(1)求证:AE=ED ;(2)若AB=10,∠CBD=36°,求AC 的长.5.某校为了解学生对中国民族乐器的喜爱情况,随机抽取了本校的部分学生进行调查(每名学生选择并且只能选择一种喜爱乐器),现将收集到的数据绘制如下的两幅不完整的统计图.(1)这次共抽取学生进行调查,扇形统计图中的x .(2)请补全统计图;(3)在扇形统计图中“扬琴”所对扇形的圆心角是度;(4)若该校有3000名学生,请你估计该校喜爱“二胡”的学生约有名.6.文美书店决定用不多于20000元购进甲乙两种图书共1200本进行销售.甲、乙两种图书的进价分别为每本20元、14元,甲种图书每本的售价是乙种图书每本售价的1.4倍,若用1680元在文美书店可购买甲种图书的本数比用1400元购买乙种图书的本数少10本.(1)甲乙两种图书的售价分别为每本多少元?(2)书店为了让利读者,决定甲种图书售价每本降低3元,乙种图书售价每本降低2元,问书店应如何进货才能获得最大利润?(购进的两种图书全部销售完.)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、D3、D4、D5、B6、B7、D8、C9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)122、x(x+1)(x-1)3、30°或150°.4、56、8﹣2π三、解答题(本大题共6小题,共72分)1、x=-32、33、(1)这个二次函数的表达式是y=x2﹣4x+3;(2)S△BCP最大=278;(3)当△BMN是等腰三角形时,m,1,2.4、(1)略;(2)2ACπ=5、(1)200,15%;(2)统计图如图所示见解析;(3)36;(4)900.6、(1)甲种图书售价每本28元,乙种图书售价每本20元;(2)甲种图书进货533本,乙种图书进货667本时利润最大.。

2022—2023年人教版九年级数学下册期末测试卷及答案【完整版】

2022—2023年人教版九年级数学下册期末测试卷及答案【完整版】

2022—2023年人教版九年级数学下册期末测试卷及答案【完整版】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.下列说法中正确的是 ( )A .若0a <0B .x 是实数,且2x a =,则0a >C 有意义时,0x ≤D .0.1的平方根是0.01±3.互联网“微商”经营已成为大众创业新途径,某微信平台上一件商品标价为200元,按标价的五折销售,仍可获利20元,则这件商品的进价为( )A .120元B .100元C .80元D .60元4.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.已知一次函数3y kx =+的图象经过点A ,且y 随x 的增大而减小,则点A 的坐标可以是( )A .()1,2-B .()1,2-C .()2,3D .()3,46.如果关于x 的一元二次方程2310kx x -+=有两个实数根,那么k 的取值范围是( )A .94kB .94k -且0k ≠C .94k 且0k ≠D .94k - 7.老师设计了接力游戏,用合作的方式完成分式化简,规则是:每人只能看到前一人给的式子,并进行一步计算,再将结果传递给下一人,最后完成化简.过程如图所示:接力中,自己负责的一步出现错误的是()A.只有乙B.甲和丁C.乙和丙D.乙和丁8.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.12B.1 C.33D.39.如图,AB∥CD,点E在线段BC上,CD=CE,若∠ABC=30°,则∠D为()A.85°B.75°C.60°D.30°10.如图,四边形ABCD内接于⊙O,F是CD上一点,且DF BC,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为()A.45°B.50°C.55°D.60°二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是 __________.2.分解因式:3x9x-=_______.3.正五边形的内角和等于__________度.4.如图,点A在双曲线1y=x上,点B在双曲线3y=x上,且AB∥x轴,C、D在x轴上,若四边形ABCD为矩形,则它的面积为__________.5.如图,AB是⊙O的直径,弦CD⊥AB于点E,若AB=8,CD=6,则BE=______.6.在平面直角坐标系中,四边形AOBC为矩形,且点C坐标为(8,6),M为BC中点,反比例函数kyx=(k是常数,k≠0)的图象经过点M,交AC于点N,则MN的长度是__________.三、解答题(本大题共6小题,共72分)1.解方程:113 22xx x-=---2.先化简再求值:(a﹣22ab ba-)÷22a ba-,其中2,b=12.3.如图,点E、F在BC上,BE=CF,AB=DC,∠B=∠C,AF与DE交于点G,求证:GE=GF.4.如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?5.胜利中学为丰富同学们的校园生活,举行“校园电视台主待人”选拔赛,现将36名参赛选手的成绩(单位:分)统计并绘制成频数分布直方图和扇形统计图,部分信息如下:请根据统计图的信息,解答下列问题:(1)补全频数分布直方图,并求扇形统计图中扇形D对应的圆心角度数;(2)成绩在D区域的选手,男生比女生多一人,从中随机抽取两人临时担任该校艺术节的主持人,求恰好选中一名男生和一名女生的概率.6.我区“绿色科技公司”研发了一种新产品,该产品的成本为每件3000元.在试销期间,营销部门建议:①购买不超过10件时,每件销售价为3600元;②购买超过10件时,每多购买一件,所购产品的销售单价均降低5元,但最低销售单价为3200元.根据以上信息解决下列问题:(1)直接写出:购买这种产品件时,销售单价恰好为3200元;(2)设购买这种产品x件(其中x>10,且x为整数),该公司所获利润为y 元,求y与x之间的函数表达式;(3)在试销期间销售人员发现:当购买产品的件数超过10件时,会出现随着数量的增多,公司所获利润反而减少这一情况.为使销售数量越多,公司所获利润越大,公司应将最低销售单价调整为多少元?(其它销售条件不变)参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、C5、B6、C7、D8、B9、B10、B二、填空题(本大题共6小题,每小题3分,共18分) 1、22、()()x x 3x 3+-3、5404、25、6、5三、解答题(本大题共6小题,共72分)1、无解2、原式=a b a b -=+3、略.4、羊圈的边长AB ,BC 分别是20米、20米.5、(1)补图见解析;50°;(2)35. 6、(1)90;(2)2200(90)5650(1090)≥⎧=⎨-+<<⎩x x y x x x ;(3)3325元.。

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)

2024年最新人教版初三数学(下册)期末试卷及答案(各版本)一、选择题(每题5分,共20分)1. 若a > b > 0,则下列不等式中成立的是()A. a^2 > b^2B. a^3 < b^3C. 1/a > 1/bD. a^2 b^2 < 02. 已知函数y = 2x 3,若y = 0,则x的值为()A. 1.5B. 1C. 2D. 33. 在直角坐标系中,点A(2, 3),点B(2, 3),则线段AB的中点坐标为()A. (0, 0)B. (2, 3)C. (2, 3)D. (0, 3)4. 若一元二次方程ax^2 + bx + c = 0(a ≠ 0)有两个实数根,则判别式b^2 4ac的值为()A. 正数B. 负数C. 0D. 不确定5. 在等差数列{an}中,已知a1 = 2,d = 3,则a5的值为()A. 5B. 8C. 11D. 14二、填空题(每题5分,共20分)6. 若一个三角形的两边长分别为5cm和8cm,则第三边长的取值范围是______。

7. 已知函数y = x^2 4x + 3,当x = 2时,函数的最小值为______。

8. 在直角坐标系中,点P(x, y)关于x轴的对称点坐标为______。

9. 已知一元二次方程x^2 3x 4 = 0,则该方程的根的判别式为______。

10. 在等比数列{an}中,已知a1 = 2,q = 3,则a4的值为______。

三、解答题(每题10分,共30分)11. 解一元二次方程x^2 5x + 6 = 0。

12. 已知函数y = 2x 3,求当x = 1时,函数的值。

13. 在直角坐标系中,已知点A(2, 3),点B(2, 3),求线段AB的长度。

四、证明题(10分)14. 已知:在等腰三角形ABC中,AB = AC,底边BC上的高为AD,求证:AD垂直于BC。

五、应用题(20分)15. 已知:某工厂生产一批产品,每件产品的成本为100元,销售价格为150元。

2023年人教版初中数学九年级(下)期末综合测试卷及部分答案(共五套)

2023年人教版初中数学九年级(下)期末综合测试卷及部分答案(共五套)

人教版初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(每题3分,共30分)1.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤132.若△ABC ∽△A ′B ′C ′,其相似比为3:2,则△ABC 与△A ′B ′C ′的面积比为( ) A .3:2B .9:4C .2:3D .4:93.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52 C .32 D .2554.反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .无法判断5.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P 到CD 的距离是2 m ,则点P 到AB 的距离是( ) A .13mB .12m C .23m D .1 m6.如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( ) A .-1<x <0B .-1<x <1C .x <-1或0<x <1D .-1<x <0或x >17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm ,到屏幕的距离为60 cm ,且幻灯片中的图形的高度为6 cm ,则屏幕上图形的高度为( ) A .6 cmB .12 cmC .18 cmD .24 cm8.如图,在▱ABCD 中,E 为CD 上一点,连接AE ,BD ,且AE ,BD 交于点F ,S △DEF :S △ABF =4:25,则DE EC =( )A .2:3B .2:5C .3:5D .3:29.如图,在一笔直的海岸线l 上有A ,B 两个观测站,AB =2 km.从A 站测得船C 在北偏东45°的方向,从B 站测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为( )A .4 kmB .(2+2)kmC .22kmD .(4-2)km10.如图,边长为1的正方形ABCD 中,点E 在CB 的延长线上,连接ED 交AB 于点F ,AF =x (0.2≤x ≤0.8),EC =y .则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共30分)11.写出一个反比例函数y =k x(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12m ,那么这栋建筑物的高度为________m.15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1:1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在△ABC 中,DE ∥BC ,分别交AB ,AC 于点D ,E .若AD =1,DB =2,则△ADE 的面积与△ABC 的面积的比是________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.19.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =k x(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A (-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为________________.20.如图,在矩形纸片ABCD 中,AB =6,BC =10,点E 在CD 上,将△BCE 沿BE 折叠,点C恰好落在边AD 上的点F 处;点G 在AF 上,将△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,有下列结论:①∠EBG =45°;②△DEF ∽△ABG ;③S △ABG =32S △FGH ;④AG+DF =FG .其中正确的是________(把所有正确结论的序号都填上).三、解答题(21题4分,22题8分,23题10分,26题14分,其余每题12分,共60分) 21.计算:2cos 245°-(tan 60°-2)2-(sin 60°-1)0+(sin 30°)-2.22.如图所示是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)23.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =k x(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =kx(k ≠0)的图象上,请通过计算说明理由.24.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0)25.如图①,AB 为半圆的直径,O 为圆心,C 为圆弧上一点,AD 垂直于过C 点的切线,垂足为D ,AB 的延长线交直线CD 于点E . (1)求证:AC 平分∠DAB ;(2)若AB =4,B 为OE 的中点,CF ⊥AB ,垂足为点F ,求CF 的长;(3)如图②,连接OD 交AC 于点G ,若CG GA =34,求sin E 的值.26.已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B 落在CD 边上的点P 处.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,O A . ① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1:4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.B 2.B 3.D 4.C 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.1918.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD时,△QCP ∽△ADP ,此时x 4=22,∴x =4.19.y =-x +320.①③④ 点拨:∵△BCE 沿BE 折叠,点C 恰好落在边AD 上的点F 处,∴∠1=∠2,CE =FE ,BF =BC =10.在Rt △ABF 中,∵AB =6,BF =10,∴AF =102-62=8,∴DF =AD -AF =10-8=2.设EF =x ,则CE =x ,DE =CD -CE =6-x .在Rt △DEF 中,∵DE 2+DF 2=EF 2,∴(6-x )2+22=x 2,解得x =103,∴DE =83.∵△ABG 沿BG 折叠,点A 恰好落在线段BF 上的点H 处,∴∠BHG =∠A =90°,∠3=∠4,BH =BA =6,AG =HG ,∴∠EBG =∠2+∠3=12∠ABC =45°,∴①正确;HF =BF -BH =10-6=4,设AG =y ,则GH =y ,GF =8-y .在Rt △HGF 中,∵GH 2+HF 2=GF 2,∴y 2+42=(8-y )2,解得y =3,∴AG =GH =3,GF =5.∵∠A =∠D ,AB DE =94,AG DF =32,∴AB DE ≠AG DF ,∴△ABG 与△DEF 不相似,∴②错误;∵S △ABG =12AB ·AG =12×6×3=9,S △FGH =12GH ·HF =12×3×4=6,∴S △ABG =32S △FGH ,∴③正确;∵AG +DF =3+2=5,而GF =5,∴AG +DF =GF ,∴④正确.三、21.解:原式=2×⎝ ⎛⎭⎪⎫222-(2-3)-1+⎝ ⎛⎭⎪⎫12-2=1-(2-3)-1+4=3+2.22.解:(1)圆柱 (2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570. 23.解:(1)∵四边形OABC 是平行四边形, ∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2). 将(1,2)代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2).由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.24.解:根据题意,得AB ⊥EF ,DE ⊥EF , ∴∠ABC =90°,AB ∥DE ,∴△ABF ∽△DEF ,∴AB DE =BF EF ,即AB 9=44+6,解得AB =3.6 m. 在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 25.(1)证明:连接OC ,如图①. ∵DC 切半圆O 于C ,∴OC ⊥DC , 又AD ⊥CD .∴OC ∥AD .∴∠OCA =∠DAC . ∵OC =OA ,∴∠OAC =∠OCA . ∴∠DAC =∠OAC ,即AC 平分∠DAB .(2)解:∵AB =4,∴OC =2.在Rt △OCE 中,∵OC =OB =12OE ,∴∠E =30°.∴∠COF =60°.∴在Rt △OCF 中,CF =OC ·sin60°=2×32= 3. (3)解:连接OC ,如图②.∵CO ∥AD ,∴△CGO ∽△AGD .∴CG GA =CO AD =34.不妨设CO =AO =3k ,则AD =4k .又易知△COE ∽△DAE ,∴CO AD =EO AE =34=EO3k +EO .∴EO =9k .在Rt △COE 中,sin E =CO EO =3k 9k =13.26.(1)①证明:如图①,∵四边形ABCD 是矩形, ∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1:4,且△OCP ∽△PDA ,∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5.即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .由(1)中可得PC =4,又∵BC =AD =8,∠C =90°. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷及答案(二)一、选择题(每题3分,共30分)1.已知反比例函数y =k x的图象经过点P (-1,2),则这个函数的图象位于( )A .第二、三象限B .第一、三象限C .第三、四象限D .第二、四象限2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是( )3.若Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A.53B.52C.32D.2554.在双曲线y =1-3mx上有两点A (x 1,y 1),B (x 2,y 2),x 1<0<x 2,y 1<y 2,则m 的取值范围是( ) A .m >13B .m <13C .m ≥13D .m ≤135.如图,在等边三角形ABC 中,点D ,E 分别在AB ,AC 边上,如果△ADE ∽△ABC ,AD ∶AB=1∶4,BC =8 cm ,那么△ADE 的周长等于( ) A .2 cmB .3 cmC .6 cmD .12 cm(第5题) (第7题) (第8题)6.小芳和爸爸在阳光下散步,爸爸身高1.8 m ,他在地面上的影长为2.1 m .小芳比爸爸矮0.3 m ,她的影长为( ) A .1.3 mB .1.65 mC .1.75 mD .1.8 m7.一次函数y 1=k 1x +b 和反比例函数y 2=k 2x(k 1k 2≠0)的图象如图所示,若y 1>y 2,则x 的取值范围是( ) A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <18.如图,△ABO 缩小后变为△A ′B ′O ,其中A ,B 的对应点分别为A ′,B ′,点A ,B ,A ′,B ′均在图中格点上,若线段AB 上有一点P (m ,n ),则点P 在A ′B ′上的对应点P ′的坐标为( )A.⎝ ⎛⎭⎪⎫m2,n B .(m ,n )C.⎝ ⎛⎭⎪⎫m ,n 2 D.⎝ ⎛⎭⎪⎫m 2,n2 9.如图,在两建筑物之间有一旗杆GE ,高15 m ,从A 点经过旗杆顶点恰好看到矮建筑物的墙脚C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底部点G 为BC 的中点,则矮建筑物的高CD 为( ) A .20 mB .10 3 mC .15 3 mD .5 6 m(第9题) (第10题)10.如图,已知第一象限内的点A 在反比例函数y =3x的图象上,第二象限内的点B 在反比例函数y =k x 的图象上,且OA ⊥OB ,cos A =33,则k 的值为( ) A .-3B .-6C .- 3D .-2 3二、填空题(每题3分,共24分)11.计算:2cos 245°-(tan 60°-2)2=________.12.如图,山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200 m 到达点B ,则他上升了________m.(第12题) (第13题) (第14题) (第15题)13.如图,在△ABC 中,DE ∥BC ,DE BC =23,△ADE 的面积是8,则△ABC 的面积为________.14.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B的值是__________.15.如图,一艘轮船在小岛A 的北偏东60°方向距小岛80 n mile 的B 处,沿正西方向航行3 h 后到达小岛A 的北偏西45°方向的C 处,则该船行驶的速度为__________n mile/h.16.如图是一个几何体的三视图,若这个几何体的体积是48,则它的表面积是________.(第16题) (第17题) (第18题)17.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x上,点C ,D 在x 轴上,若四边形ABCD为矩形,则它的面积为________.18.如图,正方形ABCD 的边长为62,过点A 作AE ⊥AC ,AE =3,连接BE ,则tan E =________. 三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分)19.如图,△ABC 三个顶点的坐标分别为A (4,6),B (2,2),C (6,4),请在第一象限内,画出一个以原点O 为位似中心,与△ABC 的相似比为12的位似图形△A 1B 1C 1,并写出△A 1B 1C 1各个顶点的坐标.(第19题)20.由几个棱长为1的小立方块搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小立方块的个数.(第20题)(1)请在方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为________个平方单位(包括底面积).21.如图,一棵大树在一次强台风中折断倒下,未折断树干AB与地面仍保持垂直的关系,而折断部分AC与未折断树干AB形成53°的夹角.树干AB旁有一座与地面垂直的铁塔DE,测得BE=6 m,塔高DE=9 m.在某一时刻太阳光的照射下,未折断树干AB落在地面的影子FB长为4 m,且点F,B,C,E在同一条直线上,点F,A,D也在同一条直线上.求这棵大树没有折断前的高度(结果精确到0.1 m,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0).(第21题)22.如图,在平面直角坐标系xOy 中,一次函数y =3x +2的图象与y 轴交于点A ,与反比例函数y =kx()k ≠0在第一象限内的图象交于点B ,且点B 的横坐标为1,过点A 作AC ⊥y 轴,交反比例函数y =k x(k ≠0)的图象于点C ,连接BC .求:(第22题)(1)反比例函数的解析式; (2)△ABC 的面积.23.如图,AB 是⊙O 的直径,过点A 作⊙O 的切线并在其上取一点C ,连接OC 交⊙O 于点D ,BD 的延长线交AC 于点E ,连接AD .(第23题)(1)求证△CDE ∽△CAD ;(2)若AB =2,AC =22,求AE 的长.24.如图,将矩形ABCD 沿AE 折叠得到△AFE ,且点F 恰好落在DC 上.(第24题)(1)求证△ADF ∽△FCE ;(2)若tan ∠CEF =2,求tan ∠AEB 的值.25.如图,直线y =2x +2与y 轴交于点A ,与反比例函数y =kx(x >0)的图象交于点M ,过点M 作MH ⊥x 轴于点H ,且tan ∠AHO =2. (1)求k 的值.(2)在y 轴上是否存在点B ,使以点B ,A ,H ,M 为顶点的四边形是平行四边形?如果存在,求出点B 的坐标;如果不存在,请说明理由.(3)点N (a ,1)是反比例函数y =k x(x >0)图象上的点,在x 轴上有一点P ,使得PM +PN 最小,请求出点P 的坐标.(第25题)答案一、1.D 2.C 3.D 4.B 5.C 6.C7.A 8.D9.A 点拨:∵点G是BC的中点,EG∥AB,∴EG是△ABC的中位线.∴AB=2EG=30.在Rt△ABC中,∠CAB=30°,则BC=AB·tan∠BAC=30×33=10 3.延长CD至F,使DF⊥AF.在Rt△AFD中,AF=BC=103,∠FAD=30°,则FD=AF·tan∠FAD=103×33=10.∴CD=AB-FD=30-10=20(m).10.B 点拨:∵cos A=33,∴可设OA=3a,AB=3a(a>0).∴OB=(3a)2-(3a)2=6a.过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵点A 在反比例函数y =3x的图象上,∴可设点A 的坐标为⎝ ⎛⎭⎪⎫m ,3m .∴OE =m ,AE =3m .易知△AOE ∽△OBF ,∴AE OF =OA OB ,即3m OF =3a 6a,∴OF =32m.同理,BF =2m ,∴点B 的坐标为⎝⎛⎭⎪⎫-32m,2m .把B ⎝⎛⎭⎪⎫-32m,2m 的坐标代入y =k x,得k =-6. 二、11.3-1 12.100 13.18 14.2315.40+403316.88 点拨:由题中的三视图可以判断,该几何体是一个长方体.从主视图可以看出,该长方体的长为6, 从左视图可以看出,该长方体的宽为2. 根据体积公式可知,该长方体的高为486×2=4,∴该长方体的表面积是2×(6×2+6×4+2×4)=88.17.2 点拨:如图,延长BA 交y 轴于点E ,则四边形AEOD ,BEOC 均为矩形.由点A 在双曲线y =1x 上,得矩形AEOD 的面积为1;由点B 在双曲线y =3x上,得矩形BEOC 的面积为3,故矩形ABCD 的面积为3-1=2.(第17题)18.23点拨:∵正方形ABCD 的边长为62,∴AC =12. 过点B 作BF ⊥AC 于点F ,则CF =BF =AF =6.设AC 与BE 交于点M ,∵BF ⊥AC ,AE ⊥AC ,∴AE ∥BF .∴△AEM ∽△FBM . ∴AM FM =AE FB =36=12.∴AM AF =13. ∴AM =13AF =13×6=2.∴tan E =AM AE =23.三、19.解:画出的△A 1B 1C 1如图所示.(第19题)△A 1B 1C 1的三个顶点的坐标分别为A 1(2,3),B 1(1,1),C 1(3,2). 20.解:(1)如图所示.(第20题) (2)2421.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE . ∴△ABF ∽△DEF . ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6.在Rt △ABC 中,∵cos ∠BAC =AB AC, ∴AC =ABcos 53°≈5.98.∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m.22.解:(1)∵点B 在一次函数y =3x +2的图象上,且点B 的横坐标为1,∴y =3×1+2=5. ∴点B 的坐标为(1,5).∵点B 在反比例函数y =k x (k ≠0)的图象上,∴5=k1,则k =5.∴反比例函数的解析式为y =5x.(2)∵一次函数y =3x +2的图象与y 轴交于点A ,当x =0时,y =2, ∴点A 的坐标为(0,2).∵AC ⊥y 轴, ∴点C 的纵坐标为2.∵点C 在反比例函数y =5x的图象上,当y =2时,2=5x ,x =52, ∴AC =52.过点B 作BD ⊥AC 于点D , ∴BD =y B -y C =5-2=3.∴S △ABC =12AC ·BD =12×52×3=154.23.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°. ∴∠ABD +∠BAD =90°. 又∵AC 是⊙O 的切线, ∴AB ⊥AC ,即∠BAC =90°. ∴∠CAD +∠BAD =90°. ∴∠ABD =∠CAD . ∵OB =OD ,∴∠ABD =∠BDO =∠CDE . ∴∠CAD =∠CDE . 又∵∠C =∠C , ∴△CDE ∽△CAD . (2)解:∵AB =2, ∴OA =OD =1.在Rt △OAC 中,∠OAC =90°, ∴OA 2+AC 2=OC 2, 即12+(22)2=OC 2. ∴OC =3,则CD =2. 又由△CDE ∽△CAD ,得CD CE =CACD, 即2CE =222,∴CE = 2. ∴AE =AC -CE =22-2= 2. 24.(1)证明:∵四边形ABCD 是矩形,∴∠B =∠C =∠D =90°.∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴∠AFE =∠B =90°.∴∠AFD +∠CFE =180°-∠AFE =90°. 又∵∠AFD +∠DAF =90°, ∴∠DAF =∠CFE . ∴△ADF ∽△FCE .(2)解:在Rt △CEF 中,tan ∠CEF =CF CE=2,设CE =a ,CF =2a (a >0), 则EF =CF 2+CE 2=5a .∵矩形ABCD 沿AE 折叠得到△AFE ,且点F 在DC 上, ∴BE =EF =5a ,BC =BE +CE =(5+1)a ,∠AEB =∠AEF . ∴AD =BC =(5+1)a . ∵△ADF ∽△FCE , ∴AF FE =AD CF =(5+1)a 2a =5+12. ∴tan ∠AEF =AFFE=5+12. ∴tan ∠AEB =tan ∠AEF =5+12. 25.解:(1)由y =2x +2可知A (0,2),即OA =2.∵tan ∠AHO =2,∴OH =1. ∵MH ⊥x 轴,∴点M 的横坐标为1. ∵点M 在直线y =2x +2上, ∴点M 的纵坐标为4.∴M (1,4).∵点M 在反比例函数y =k x(x >0)的图象上,∴k =1×4=4. (2)存在.如图所示.[第25(2)题]当四边形B 1AHM 为平行四边形时,B 1A =MH =4, ∴OB 1=B 1A +AO =4+2=6,即B 1(0,6). 当四边形AB 2HM 为平行四边形时,AB 2=MH =4, ∴OB 2=AB 2-OA =4-2=2, 此时B 2(0,-2).综上,存在满足条件的点B ,且点B 的坐标为(0,6)或(0,-2). (3)∵点N (a ,1)在反比例函数y =4x(x >0)的图象上,∴a =4,即点N 的坐标为(4,1).如图,作N 关于x 轴的对称点N 1,连接MN 1,交x 轴于点P ,连接PN ,此时PM +PN 最小.[第25(3)题]∵N 与N 1关于x 轴对称,N 点坐标为(4,1), ∴N 1的坐标为(4,-1).设直线MN 1对应的函数解析式为y =k ′x +b (k ′≠0), 由⎩⎪⎨⎪⎧4=k ′+b ,-1=4k ′+b ,解得⎩⎪⎨⎪⎧k ′=-53,b =173. ∴直线MN 1对应的函数解析式为y =-53x +173.令y =0,得x =175,∴点P 的坐标为⎝ ⎛⎭⎪⎫175,0.人教版初中数学九年级(下)期末综合测试卷及答案(三)一、选择题(每题3分,共30分)1.下列四个几何体中,主视图为三角形的是( )2.【教材P 6练习T 2变式】反比例函数y =-m 2-5x的图象位于( )A .第一、三象限B .第二、三象限C .第二、四象限D .第一、四象限3.若△ABC ∽△A ′B ′C ′,其相似比为32,则△ABC 与△A ′B ′C ′的周长比为( )A .3∶2B .9∶4C .2∶3D .4∶94.在Rt △ABC 中,∠C =90°,sin A =23,则tan A 的值为( )A .53B .52C .32D .2555.如图,电灯P 在横杆AB 的正上方,AB 在灯光下的影子为CD ,AB =1 m ,CD =4 m ,点P到CD 的距离是2 m ,则点P 到AB 的距离是( )A .13mB .12mC .23mD .1 m6.【教材P 22复习题T 10改编】如图,反比例函数y 1=k 1x和正比例函数y 2=k 2x 的图象交于A (-1,-3),B (1,3)两点,若k 1x>k 2x ,则x 的取值范围是( )A.-1<x<0 B.-1<x<1C.x<-1或0<x<1 D.-1<x<0或x>17.如图,放映幻灯片时,通过光源,把幻灯片上的图形放大到屏幕上,若光源到幻灯片的距离为20 cm,到屏幕的距离为60 cm,且幻灯片中的图形的高度为6 cm,则屏幕上图形的高度为( )A.6 cm B.12 cm C.18 cm D.24 cm8.如图,在▱ABCD中,E为CD上一点,连接AE,BD,且AE,BD交于点F,S△DEF∶S△ABF=4∶25,则DE∶EC=( )A.2∶3 B.2∶5 C.3∶5 D.3∶29.如图,在一笔直的海岸线l上有A,B两个观测站,AB=2 km.从A站测得船C在北偏东45°的方向,从B站测得船C在北偏东22.5°的方向,则船C离海岸线l的距离(即CD 的长)为( )A.4 km B.(2+2)km C.22km D.(4-2)km10.如图,边长为1的正方形ABCD中,点E在CB的延长线上,连接ED交AB于点F,AF=x (0.2≤x ≤0.8),EC =y ,则在下面函数图象中,大致能反映y 与x 之间函数关系的是( )二、填空题(每题3分,共24分)11.写出一个反比例函数y =kx(k ≠0),使它的图象在每个象限内,y 的值随x 值的增大而减小,这个函数的解析式为____________.12.在△ABC 中,∠B =45°,cos A =12,则∠C 的度数是________.13.如图,AB ∥CD ,AD =3AO ,则OB OC=________.14.【教材P 41练习T 1变式】在某一时刻,测得一根高为2 m 的竹竿的影长为1 m ,同时测得一栋建筑物的影长为12 m ,那么这栋建筑物的高度为________m. 15.活动楼梯如图所示,∠B =90°,斜坡AC 的坡度为1∶1,斜坡AC 的坡面长度为8 m ,则走这个活动楼梯从A 点到C 点上升的高度BC 为________.16.【教材P 102习题T 5变式】如图是由一些完全相同的小正方体搭成的几何体的俯视图和左视图,组成这个几何体的小正方体的个数是________.17.如图,在平面直角坐标系中,一次函数y =ax +b (a ≠0)的图象与反比例函数y =kx(k ≠0)的图象交于第二、四象限的A ,B 两点,与x 轴交于C 点.已知A(-2,m ),B (n ,-2),tan ∠BOC =25,则此一次函数的解析式为____________.18.如图,正方形ABCD 的边长是4,点P 是CD 的中点,点Q 是线段BC 上一点,当CQ =________时,以Q ,C ,P 三点为顶点的三角形与△ADP 相似.三、解答题(19题6分,20题10分,24题14分,其余每题12分,共66分) 19.计算:3tan30°+cos 245°-(sin30°-1)0.20.【教材P 110复习题T 6变式】如图所示的是某几何体的表面展开图.(1)这个几何体的名称是 ________; (2)画出这个几何体的三视图; (3)求这个几何体的体积.(π≈3.14)21.如图,在平面直角坐标系中,▱OABC 的顶点A ,C 的坐标分别为(2,0),(-1,2),反比例函数y =kx(k ≠0)的图象经过点B . (1)求k 的值;(2)将▱OABC 沿x 轴翻折,点C 落在点C ′处,判断点C ′是否在反比例函数y =k x(k ≠0)的图象上,请通过计算说明理由.22.如图,一棵大树在一次强台风中折断倒下,未折断树干AB 与地面仍保持垂直的关系,而折断部分AC 与未折断树干AB 形成53°的夹角.树干AB 旁有一座与地面垂直的铁塔DE ,测得BE =6 m ,塔高DE =9 m .在某一时刻太阳光的照射下,未折断树干AB 落在地面的影子FB 长为4 m ,且点F ,B ,C ,E 在同一条直线上,点F ,A ,D 也在同一条直线上.求这棵大树没有折断前的高度.(结果精确到0.1 m ,参考数据: sin 53°≈0.798 6, cos 53°≈0.601 8,tan 53°≈1.327 0)23.如图,AB 为⊙O 的直径,C 为⊙O 上一点,AD ⊥CE ,垂足为D ,AC 平分∠DAB .(1)求证:CE 是⊙O 的切线;(2)若AD =4,cos ∠CAB =45,求AB 的长.24.【教材P 85复习题T 11拓展】已知矩形ABCD 的一条边AD =8,将矩形ABCD 折叠,使得点B落在CD 边上的点P 处,然后展开.(1)如图①,已知折痕与边BC 交于点O ,连接AP ,OP ,OA .① 求证:△OCP ∽△PDA ;② 若△OCP 与△PDA 的面积比为1∶4,求边AB 的长.(2)如图②,在(1)的条件下,擦去AO 和OP ,连接BP .动点M 在线段AP 上(点M 不与点P ,A 重合),动点N 在线段AB 的延长线上,且BN =PM ,连接MN 交PB 于点F ,作ME ⊥BP 于点E .试问动点M ,N 在移动的过程中,线段EF 的长度是否发生变化?若不变,求出线段EF 的长度;若变化,请说明理由.答案一、1.A 2.C 3.A 4.D 5.B 6.C 7.C 8.A 9.B 10.C 二、11.y =3x (答案不唯一) 12.75° 13.1214.24 15.4 2 m 16.6或7或8 17.y =-x +318.1或4 点拨:设CQ =x .∵四边形ABCD 为正方形,∴∠C =∠D =90°.∵点P 为CD 的中点,∴CP =DP =2.当CQ PD =CP AD 时,△QCP ∽△PDA ,此时x 2=24,∴x =1.当CQ AD =CPPD 时,△QCP∽△ADP ,此时x 4=22,∴x =4.三、19.解:原式=3×33+⎝ ⎛⎭⎪⎫222-1=12. 20.解:(1)圆柱(2)如图所示.(3)这个几何体的体积为πr 2h ≈3.14×⎝ ⎛⎭⎪⎫1022×20=1 570.21.解:(1)∵四边形OABC 是平行四边形,∴OA ∥BC ,OA =BC . 又A (2,0),C (-1,2), ∴点B 的坐标为(1,2).将点B (1,2)的坐标代入y =k x,得k =2.(2)点C ′在反比例函数y =2x的图象上.理由如下:∵将▱OABC 沿x 轴翻折,点C 落在点C ′处,C (-1,2), ∴点C ′的坐标是(-1,-2). 由(1)知,反比例函数的解析式为y =2x.令x =-1,则y =2-1=-2.故点C ′在反比例函数y =2x的图象上.22.解:根据题意,得AB ⊥EF ,DE ⊥EF ,∴∠ABC =90°,AB ∥DE , ∴△ABF ∽△DEF , ∴AB DE =BF EF ,即AB 9=44+6, 解得AB =3.6 m.在Rt △ABC 中,∵cos ∠BAC =AB AC,∠BAC =53°, ∴AC =ABcos 53°≈5.98(m),∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m. 23.(1)证明:连接OC .∵AC 平分∠DAB ,∴∠DAC =∠BAC . ∵OA =OC ,∴∠BAC =∠OCA , ∴∠DAC =∠OCA ,∴AD ∥OC , 又∵AD ⊥CE ,∴OC ⊥CE .又∵OC 是⊙O 的半径,∴CE 是⊙O 的切线.(2)解:连接BC .在Rt △ADC 中,cos ∠DAC =cos ∠CAB =45=AD AC =4AC ,∴AC =5,∵AB 为⊙O 的直径,∴∠ACB =90°. 在Rt △ABC 中,cos ∠CAB =AC AB =5AB =45,∴AB =254. 24.(1)①证明:如图①,∵四边形ABCD 是矩形,∴∠C =∠D =∠B =90°,∴∠1+∠3=90°. 由折叠可得∠APO =∠B =90°, ∴∠1+∠2=90°.∴∠3=∠2. 又∵∠C =∠D ,∴△OCP ∽△PDA .②解:∵△OCP 与△PDA 的面积比为1∶4,且△OCP ∽△PDA , ∴OP PA =CP DA =12.∴CP =12AD =4. 设OP =x ,则易得CO =8-x . 在Rt △PCO 中,∠C =90°, 由勾股定理得 x 2=(8-x )2+42.解得x =5,即OP =5.∴AB =AP =2OP =10.(2)解:线段EF 的长度不发生变化.作MQ ∥AN ,交PB 于点Q ,如图②. ∵AP =AB ,MQ ∥AN ,∴∠APB =∠ABP =∠MQP . ∴MP =MQ .又BN =PM ,∴BN =QM .∵MQ ∥AN ,∴∠QMF =∠BNF ,∠MQF =∠FBN , ∴△MFQ ≌△NFB .∴QF =FB .∴QF =12QB .∵MP =MQ ,ME ⊥PQ ,∴EQ =12PQ .∴EF =EQ +QF =12PQ +12QB =12PB .∵BC =AD =8,∠C =90°,PC =4. ∴PB =82+42=45,∴EF =12PB =2 5.∴在(1)的条件下,动点M ,N 在移动的过程中,线段EF 的长度不变,它的长度恒为2 5.人教版初中数学九年级(下)期末综合测试卷(四)一、选择题:本大题共12个小题,每小题3分,共36分.在每小题给出的四个选项中,只有一项是符合题目要求的。

人教版九年级下册数学期末测试卷(含解析)

人教版九年级下册数学期末测试卷(含解析)

人教版九年级下册数学期末测试卷一、单选题(共15题,共计45分)1、一个矩形按如图1的方式分割成三个直角三角形,最小三角形的面积为S,把较大两个三角形纸片按图2方式放置,图2中的阴影部分面积为S2,1若S2=2S1,则矩形的长宽之比()A.2B.C.D.2、某物体三视图如图,则该物体形状可能是( ) .A.长方体.B.圆锥体.C.立方体.D.圆柱体.3、如图,夜晚路灯下有一排同样高的旗杆,离路灯越近,旗杆的影子()A.越长B.越短C.一样长D.随时间变化而变化4、同圆的内接正三角形与内接正方形的边长的比是()A. B. C. D.5、如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,点A的坐标为(1,0),则E点的坐标为().A.( ,0)B.( ,)C.( ,)D. (2,2)6、在Rt△ABC中,∠C=90°,若斜边上的高为h,sinA=,则AB的长等于()A. hB. hC. hD. h7、太阳光线与地面成60°的角,照射在地面上的一只皮球上,皮球在地面上的投影长是,则皮球的直径是()A. B.15 C.10 D.8、如图几何体的主视图是()A. B. C. D.9、如图,在矩形ABCD中,E是AD边的中点,BE⊥AC,垂足为点F,分析下列四个结论:①△AEF∽△CAB;②CF=2AF;③S△AEF :S△CAB=1:4;④AF2=2EF2.其中正确的结论有()A.4个B.3个C.2个D.1个10、如图,在正方形中,对角线相交于点O,点E在BC边上,且,连接AE交BD于点G,过点B作于点F,连接OF并延长,交BC于点M,过点O作交DC于占N,,现给出下列结论:① ;② ;③ ;④ ;其中正确的结论有()A.①②③B.②③④C.①②④D.①③④11、函数y=- ,当x>0时的图象为()A. B. C. D.12、如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点D为对角线OB的中点,反比例函数y=,在第一象限内的图象经过点D,且与AB、BC 分别交于E、F两点.若四边形BEDF的面积为6,则k的值为()A.3B.4C.5D.613、如图,某一时刻,小宁站在斜坡AC上的A处,小李在大楼FD的楼顶F 处,此时小宁望小李的仰角为18.43°.5秒后,小宁沿斜坡AC前进到达C处,小李从大楼F处下楼到大楼E处,此时小李望小宁的俯角为22.6°;然后小李继续下楼,小宁沿CD前往楼底D处,已知小宁的速度为5.2米/秒,大楼FD的高度为30米,斜坡AC的坡度为1:2.4,小李、小宁都保持匀速前进,若斜坡、大楼在同一平面内,小李、小宁的身高忽略不计,则当小李达到楼底D处时,小宁距离D处的距离为()米.(已知:tan18.43°≈ ,sin18.43°≈ ,cos22.6°≈ ,tan22.6≈ )A.10B.15.6C.20.4D.2614、如图1是一个手机的支架,由底座、连杆和托架组成(连杆始终在同一平面内),垂直于底座且长度为的长度为的长度可以伸缩调整.如图2,保持不变,转动,使得,假如时为最佳视线状态,则此时的长度为(参考数据:)()A. B. C. D.15、如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠CB.∠ADB=∠ABCC.D.二、填空题(共10题,共计30分)16、如图,在矩形OAHC中,OC=8,OA=12,B为CH中点,连接AB,动点M从点O出发沿OA边向点A运动,动点N从点A出发沿AB边向点B运动,两个动点同时出发,速度都是每秒1个单位长度,连接CM、CN、MN,设运动时间为t (秒)(0<t<10).则________时,△CMN为直角三角形.17、若是反比例函数,则m=________ .18、如图,在Rt△ABC中,∠ACB=90°,CD是高,如果∠A=α,AC=4,那么BD=________.(用锐角α的三角比表示)19、等腰三角形中,腰和底的长分别是10和13,则三角形底角的度数约为________.(用科学计算器计算,结果精确到0.1°)20、如图,△ABC与△DEF是位似图形,位似比为2:3,若AB=6,那么DE=________21、如图,下列图形都是几何体的平面展开图,你能说出这些几何体的名称吗?________ ________________ ________22、如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是________.23、近视眼镜的度数y(度)与镜片焦距x(m)成反比例,已知400度近视眼镜镜片的焦距为0.25m,则眼镜度数与镜片焦距之间的函数关系式为________.24、已知y=是反比例函数,那么k的值是________ .25、如图,点是函数图象上的一点,连接,交函数的图象于点,点是轴上的一点,且,则的面积为________.三、解答题(共5题,共计25分)26、先化简,再求代数式的值,其中x=4cos60°+3tan30°.27、如图,是某市一座人行天桥的示意图,天桥离地面的高BC是10米,坡面10米处有一建筑物HQ,为了方便使行人推车过天桥,市政府部门决定降低坡度,使新坡面DC的倾斜角∠BDC=30°,若新坡面下D处与建筑物之间需留下至少3米宽的人行道,问该建筑物是否需要拆除(计算最后结果保留一位小数).(参考数据:=1.414,=1.732)28、已知:y=y1+y2, y1与x成正比例,y2与x成反比例,当x=2时,y=﹣4;当x=﹣1时,y=5,求y与x的函数表达式.29、如图,游客在点A处坐缆车出发,沿A﹣B﹣D的路线可至山顶D处,假设AB和BD都是直线段,且AB=BD=600m,α=75°,β=45°,求DE的长.(参考数据:sin75°≈0.97,cos75°≈0.26,≈1.41)30、如图,甲、乙两座建筑物的水平距离为,从甲的顶部处测得乙的顶部处的俯角为48°,测得底部处的俯角为53°,求甲、乙建筑物的高度和(结果用含非特珠角的三角函数表示即可).参考答案一、单选题(共15题,共计45分)1、A2、D3、B4、A5、C6、C7、B8、B9、B10、D11、B13、A14、C15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、30、。

初中数学(新人教版)九年级下册同步测试:期末测评(同步测试)【含答案及解析】

初中数学(新人教版)九年级下册同步测试:期末测评(同步测试)【含答案及解析】

期末测评(时间:120分钟,满分:120分)一、选择题(每小题3分,共36分.下列各小题给出的四个选项中,只有一项符合题目要求)1.由两个正方体组成的几何体如图所示,则该几何体的俯视图为()2.如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的.若AB∶FG=2∶3,则下列结论正确的是()A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F3.在△ABC中,∠C=90°,∠B=50°,AB=10,则BC的长为()A.10tan 50°B.10sin 40°C.10sin 50°D.10cos50°的图象相交于A,C两点,过点A作x轴的垂线交x轴于点4.如图,正比例函数y=kx与反比例函数y=4xB,连接BC,则△ABC的面积等于()A.8B.6C.4D.25.(2020·四川凉山州中考)如图所示,△ABC的顶点在正方形网格的格点上,则tan A的值为()A.12B.√22C.2D.2√26.如图,在Rt △ABC 中,AB ⊥AC ,AB=3,AC=4,P 是BC 边上一点,作PE ⊥AB 于点E ,PD ⊥AC 于点D.设BP=x ,则PD+PE 等于( )A.x 5+3B.4-x 5C.72D.12x 5−12x 2257.如图,在斜坡的顶部有一铁塔AB ,B 是CD 的中点,CD 是水平的,在阳光的照射下,塔影DE 留在坡面上.已知铁塔底座宽CD 为12 m,塔影长DE 为18 m,小明和小华的身高都是1.6 m,同一时刻,小明站在点E 处,影子在坡面上,小华站在平地上,影子也在平地上,两人的影长分别为2 m 和1 m,则塔高AB 为( )A.24 mB.22 mC.20 mD .18 m8.如图,在Rt △ABC 中,∠ACB=90°,BC=4,AC=3,CD ⊥AB 于点D.设∠ACD=α,则cos α的值为( )A.45B.34C.43D.359.如图,在x 轴的上方,∠AOB 为直角,且绕原点O 按顺时针方向旋转.若∠AOB 的两边分别与函数y=-1x ,y=2x的图象交于B ,A 两点,则∠OAB 大小的变化趋势为( )A.逐渐变小B.逐渐变大C.时大时小D.保持不变10.由7个小立方块所搭成的几何体的俯视图如图所示,小正方形中的数字表示该位置小立方块的个数,这个几何体的左视图是()11.如图,A,B是反比例函数y=2x的图象上的两点.AC,BD都垂直于x轴,垂足分别为C,D,AB的延长线交x轴于点E.若C,D的坐标分别为(1,0),(4,0),则△BDE的面积与△ACE的面积的比值是()A.12B.14C.18D.11612.如图,在平行四边形ABCD中,E是AB的中点,CE和BD交于点O.设△OCD的面积为m,△OEB的面积为√5,则下列结论正确的是()A.m=5B.m=4√5C.m=3√5D.m=10二、填空题(每小题3分,共18分)13.在一个可以改变体积的密闭容器内装有一定质量的某种气体,当改变容器的体积时,气体的密度也会随之改变,密度ρ(单位:kg/m3)与体积V(单位:m3)满足函数关系式ρ=kV(k为常数,k≠0),其图象如图所示,则k的值为.14.如图,在Rt △ABC 中,∠ACB=90°,∠A<∠B ,沿△ABC 的中线CM 将△CMA 折叠,使点A 落在点D 处.若CD 恰好与MB 垂直,则tan A 的值为 .15.在某一时刻,测得一根高为1.8 m 的竹竿的影长为3 m,同时测得一根旗杆的影长为25 m,那么这根旗杆的高度为 m .16.已知由几块小正方块搭成的几何体的主视图与左视图如图所示,则这个几何体最多可能有 个小正方块.17.将三角形纸片(△ABC )按如图所示的方式折叠,使点B 落在边AC 上,记为点B',折痕为EF.已知AB=AC=3,BC=4,若以点B',F ,C 为顶点的三角形与△ABC 相似,则BF 的长度是 .18.已知函数y=x 的图象与函数y=4x的图象在第一象限内交于点B ,点C 是函数y=4x在第一象限的图象上的一个动点(不与点B 重合),则当△OBC 的面积为3时,点C 的横坐标是 .三、解答题(共66分)19.(4分)计算:sin 30°+cos 245°-12tan 260°+1cos30°.20.(6分)双曲线y=kx (k 为常数,且k ≠0)与直线y=-2x+b 交于A (-12m ,m -2),B (1,n )两点.(1)求k与b的值;(2)如图,直线AB交x轴于点C,交y轴于点D.若点E为CD的中点,求△BOE的面积.21.(8分)如图,在△ABC中,点D,E分别在AB,AC上,∠AED=∠B,射线AG分别交线段DE,BC于点F,G,且ADAC =DFCG.(1)求证:△ADF∽△ACG;(2)若ADAC =12,求AFFG的值.22.(8分)如图,为了测得某建筑物的高度AB,在C处用高为1 m的测角仪CF,测得该建筑物顶端A的仰角为45°,再向建筑物方向前进40 m,又测得该建筑物顶端A的仰角为60°,求该建筑物的高度AB.(结果保留根号)23.(8分)如图,在△ABC中,∠C=90°,点D,E分别在AC,AB上,BD平分∠ABC,DE⊥AB于点E,AE=6,cos A=3.5(1)求DE,CD的长;(2)求tan∠DBC的值.24.(10分)(2020·江苏南京中考)如图,在港口A处的正东方向有两个相距6 km的观测点B,C.一艘轮船从A处出发,沿北偏东26°方向航行至D处,在B,C处分别测得∠ABD=45°,∠C=37°.求轮船航行的距离AD.(参考数据:sin 26°≈0.44,cos 26°≈0.90,tan 26°≈0.49,sin 37°≈0.60,cos 37°≈0.80,tan 37°≈0.75)25.(10分)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M,M',N',N.小明在探究线段MM'与N'N的数量关系时,从点M',N'向对应边作垂线段M'E,N'F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题.请你参考小明的思路解答下列问题:(1)当直线l与方形环的对边相交时(如图①),直线l分别交AD,A'D',B'C',BC于M,M',N',N,小明发现MM'与N'N相等,请你帮他说明理由.(2)当直线l与方形环的邻边相交时(如图②),l分别交AD,A'D',D'C',DC于M,M',N',N,l与DC的夹角为α,你认为MM'与N'N还相等吗?若相等,说明理由;若不相等,求出MM'的值.(用含α的三角函数表示)N'N26.(12分)如图,双曲线y=k(x>0)经过△OAB的顶点A和OB的中点C,AB∥x轴,点A的坐标为(2,3).x(1)确定k的值;(2)若点D(3,m)在双曲线上,求直线AD的解析式;(3)计算△OAB的面积.期末测评一、选择题1.D2.B3.B4.C5.A6.A 由题意知DP ∥AB ,EP ∥AC.∴△BEP ∽△BAC. ∴PECA =BPBC ,即PE=CA ·BP BC =4x5.∵△CDP ∽△CAB ,∴DPAB =CPBC , ∴DP=3(5-x )5.∴PD+PE=x5+3. 7.A8.A 由条件知,∠B=∠ACD=α,斜边AB=5,cos α=cos B=BC AB=45.9.D 过点A 作AF ⊥x 轴于点F ,过点B 作BE ⊥x 轴于点E (图略),则S △AOF =1,S △OBE =0.5.易证△AOF ∽△OBE ,则BOAO =√0.51=√22,即tan ∠OAB=√22是个定值,所以∠OAB 大小保持不变. 10.A11.D 解出A ,B 两点的坐标分别为A (1,2),B (4,0.5),∴AC=2,BD=0.5.∵△BDE ∽△ACE ,∴它们面积的比值为116.12.B 二、填空题13.9 由题图知ρ=1.5,V=6,则k=ρ·V=9.14.√33 由CM 是Rt △ABC 斜边的中线,可得CM=AM ,则∠A=∠ACM.由折叠可知∠ACM=∠DCM.又∠A+∠B=∠BCD+∠B=90°,则∠A=∠BCD.所以∠A=∠ACM=∠DCM=∠BCD=30°,因此tan A=tan 30°=√33. 15.15 16.9 17.127或218.1或4 连接OC ,BC ,过点C 作CD ⊥x 轴于点D ,过点B 作BE ⊥x 轴于点E.由于函数y=x 的图象与函数y=4x 的图象在第一象限内交于点B ,故易知B (2,2).设点C 的坐标为(m ,4m ),又点B ,C 都在y=4x 的图象上,所以S △ODC =S △BOE .如图①所示,当点C 在点B 左方的图象上时,S △OBC =S △ODC +S 梯形BCDE -S △BOE =S 梯形BCDE =12(2+4m)(2-m )=3,解得m 1=1,m 2=-4(不合题意,舍去),即点C 的横坐标是1.如图②所示,当点C 在点B 右方的图象上时,同理,有S △OBC = S 梯形BCDE =12(2+4m )(m-2)=3,解得m 1=4,m 2=-1(不合题意,舍去),即点C 的横坐标是4.综上可知,点C 的横坐标为1或4.三、解答题19.解 原式=12+(√22)2−12×(√3)2+√32=12+12−32+2√33=-12+2√33. 20.解 如图.21.(1)证明 ∵∠AED=∠B ,∠DAE=∠CAB ,∴△ADE ∽△ACB ,∴∠ADE=∠C.又AD AC=DFCG,∴△ADF ∽△ACG. (2)解 ∵△ADF ∽△ACG ,∴AD AC =AF AG =12,∴AFFG =1.22.解 由题意知∠PAO=60°,∠B=30°.在Rt △POA 中,tan ∠PAO=PO OA ,tan 60°=30OA ,OA=30÷√3=10√3(m).在Rt △POB 中,tan B=POOB ,tan 30°=30OB ,OB=30÷√33=30√3(m),所以AB=OB-OA=30√3-10√3=20√3(m),即商店与海源阁宾馆之间的距离为20√3 m .23.解 (1)在Rt △ADE 中,由AE=6,cos A=35,得AD=10.由勾股定理得DE=8.利用三角形全等或角平分线的性质,得DC=DE=8.(2)方法1:由(1)AD=10,DC=8,得AC=18. 利用△ADE ∽△ABC ,得DE BC=AE AC ,即8BC=618,BC=24,得tan ∠DBC=13.方法2:由(1)得AC=18,又cos A=ACAB=35,得AB=30.由勾股定理,得BC=24,得tan ∠DBC=13.24.解 如图,过点D 作DH ⊥AC 于点H ,在Rt △DCH 中,∠C=37°,∴CH=DHtan37°.在Rt △DBH 中,∠DBH=45°,∴BH=DHtan45°. ∵BC=CH-BH , ∴DHtan37°−DHtan45°=6,解得DH=18.在Rt △DAH 中,∠ADH=26°,∴AD=DHcos26°≈20.答:轮船航行的距离AD 约为20 km .25.解 (1)在方形环中,∵M'E ⊥AD ,N'F ⊥BC ,AD ∥BC ,∴M'E=N'F ,∠M'EM=∠N'FN=90°,∠EMM'=∠N'NF. ∴△MM'E ≌△NN'F ,∴MM'=N'N.(2)∵∠NFN'=∠MEM'=90°,∠FNN'=∠EM'M=α,∴△NFN'∽△M'EM.∴MM 'N 'N=M 'ENF. ∵M'E=N'F ,∴MM 'N 'N =N 'FNF=tan α. ①当α=45°时,tan α=1,则MM'=NN'. ②当α≠45°时,MM'≠NN',且MM 'N 'N =tan α.26.解 (1)将点A (2,3)代入解析式y=k x ,解得k=6.(2)将D (3,m )代入反比例解析式y=6x ,得m=63=2,所以点D 的坐标为(3,2).设直线AD 的解析式为y=k 1x+b (k 1≠0),将A (2,3)与D (3,2)代入,得{2k 1+b =3,3k 1+b =2,解得k 1=-1,b=5. 所以直线AD 的解析式为y=-x+5.(3)过点C 作CN ⊥y 轴,垂足为N ,延长BA ,交y 轴于点M.因为AB ∥x 轴,所以BM ⊥y 轴.所以MB ∥CN ,△OCN ∽△OBM.因为C 为OB 的中点,即OC OB =12,S △OCNS △OBM =(12)2.因为A ,C 都在双曲线y=6x 上,所以S △OCN =S △AOM =3.由33+S △AOB =14,得S △AOB =9,故△AOB 的面积为9.。

2023年人教版九年级数学(下册)期末试卷含答案

2023年人教版九年级数学(下册)期末试卷含答案

2023年人教版九年级数学(下册)期末试卷含答案班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.2020的相反数是( )A .2020B .2020-C .12020D .12020- 2.多项式2mx m -与多项式221x x -+的公因式是( )A .1x -B .1x +C .21x -D .()21x -3.如果a b -=22()2a b a b a a b+-⋅-的值为( )A B .C .D .4.若关于x 的一元二次方程2(2)26k x kx k --+=有实数根,则k 的取值范围为( )A .0k ≥B .0k ≥且2k ≠C .32k ≥D .32k ≥且2k ≠ 5.关于x 的不等式组314(1){x x x m->-<的解集为x <3,那么m 的取值范围为( )A .m=3B .m >3C .m <3D .m ≥36.在实数范围内定义运算“☆”:1a b a b =+-☆,例如:232314=+-=☆.如果21x =☆,则x 的值是( ).A .1-B .1C .0D .27.如图,点D ,E 分别在线段AB ,AC 上,CD 与BE 相交于O 点,已知AB=AC ,现添加以下的哪个条件仍不能判定△ABE ≌△ACD ( )A .∠B=∠CB .AD=AEC .BD=CED .BE=CD8.已知二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①abc >0;②2a+b >0;③b 2﹣4ac >0;④a ﹣b+c >0,其中正确的个数是( )A .1B .2C .3D .49.扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯ B .()()130********x x --=⨯⨯ C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 10.如图,有一块直角三角形纸片,两直角边6cm AC =,8cm BC =.现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )A .2cmB .3cmC .4cmD .5cm二、填空题(本大题共6小题,每小题3分,共18分)1.364 的平方根为__________.2.分解因式:2x 2﹣8=_______.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.如图,在直角△ABC 中,∠C=90°,AC=6,BC=8,P 、Q 分别为边BC 、AB 上的两个动点,若要使△APQ 是等腰三角形且△BPQ 是直角三角形,则AQ =________.5.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点E ,若AB=8,CD=6,则BE=______.6.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.关于x 的一元二次方程x 2+3x+m-1=0的两个实数根分别为x 1,x 2.(1)求m 的取值范围.(2)若2(x 1+x 2)+ x 1x 2+10=0.求m 的值.3.如图,一次函数1y k x b =+的图象与反比例函数2k y x=的图象相交于A 、B 两点,其中点A 的坐标为()1,4-,点B 的坐标为()4,n .(1)根据图象,直接写出满足21k k x b x+>的x 的取值范围; (2)求这两个函数的表达式; (3)点P 在线段AB 上,且:1:2AOP BOP S S ∆∆=,求点P 的坐标.4.如图,BD 是菱形ABCD 的对角线,75CBD ∠=︒,(1)请用尺规作图法,作AB 的垂直平分线EF ,垂足为E ,交AD 于F ;(不要求写作法,保留作图痕迹)(2)在(1)条件下,连接BF ,求DBF ∠的度数.5.我市某中学举行“中国梦•校园好声音”歌手大赛,高、初中部根据初赛成绩,各选出5名选手组成初中代表队和高中代表队参加学校决赛.两个队各选出的5名选手的决赛成绩如图所示.(1)根据图示填写下表;平均数(分)中位数(分)众数(分)初中部85高中部85 100(2)结合两队成绩的平均数和中位数,分析哪个队的决赛成绩较好;(3)计算两队决赛成绩的方差并判断哪一个代表队选手成绩较为稳定.平均数(分)中位数(分)众数(分)初中部85 85 85高中部85 80 1006.学校需要添置教师办公桌椅A、B两型共200套,已知2套A型桌椅和1套B型桌椅共需2000元,1套A型桌椅和3套B型桌椅共需3000元.(1)求A,B两型桌椅的单价;(2)若需要A型桌椅不少于120套,B型桌椅不少于70套,平均每套桌椅需要运费10元.设购买A型桌椅x套时,总费用为y元,求y与x的函数关系式,并直接写出x的取值范围;(3)求出总费用最少的购置方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、A4、D5、D6、C7、D8、D9、D10、B二、填空题(本大题共6小题,每小题3分,共18分)1、±22、2(x+2)(x ﹣2)3、0或14、154或3075、6、245三、解答题(本大题共6小题,共72分)1、x=32、(1)m ≤134. (2)m=-3.3、(1)1x <-或04x <<;(2)4y x =-,3y x =-+;(3)27,33P ⎛⎫ ⎪⎝⎭ 4、(1)答案略;(2)45°.5、(1)(2)初中部成绩好些(3)初中代表队选手成绩较为稳定6、(1)A ,B 两型桌椅的单价分别为600元,800元;(2)y=﹣200x+162000(120≤x≤130);(3)购买A型桌椅130套,购买B型桌椅70套,总费用最少,最少费用为136000元.。

2024年人教版初三数学下册期末考试卷(附答案)

2024年人教版初三数学下册期末考试卷(附答案)

2024年人教版初三数学下册期末考试卷(附答案)一、选择题(每题1分,共5分)1. 若一个数的立方根是3,则这个数是()。

A. 3B. 9C. 27D. 812. 下列各数中,不是有理数的是()。

A. 3/4B. √2C. 0.25D. 3/53. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是()。

A. 34厘米B. 32厘米C. 30厘米D. 28厘米4. 一个正方体的边长是5厘米,那么它的体积是()。

A. 25立方厘米B. 125立方厘米C. 50立方厘米D. 100立方厘米5. 下列函数中,是一次函数的是()。

A. y = x^2B. y = 3x + 2C. y = 1/xD. y = x^3二、判断题(每题1分,共5分)1. 一个数的平方根有两个,一个是正数,一个是负数。

()2. 两个相似的三角形,它们的面积比等于它们对应边的长度比。

()3. 一个等差数列的通项公式是an = a1 + (n1)d,其中an表示第n项,a1表示首项,d表示公差。

()4. 两个平行线上的任意一点,到这两条平行线的距离相等。

()5. 一个数的立方根和它的平方根是同一个数。

()三、填空题(每题1分,共5分)1. 若a > b,则a^2 > b^2。

()2. 一个等腰三角形的底边长是10厘米,腰长是12厘米,那么这个三角形的周长是34厘米。

()3. 一个正方体的边长是5厘米,那么它的体积是125立方厘米。

()4. 下列函数中,是一次函数的是y = 3x + 2。

()5. 一个数的立方根和它的平方根是同一个数。

()四、简答题(每题2分,共10分)1. 简述一次函数的定义。

2. 简述相似三角形的性质。

3. 简述等差数列的定义。

4. 简述平行线的性质。

5. 简述立方根和平方根的区别。

五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长是10厘米,腰长是12厘米,求这个三角形的周长。

2023年人教版九年级数学(下册)期末试题(附答案)

2023年人教版九年级数学(下册)期末试题(附答案)

2023年人教版九年级数学(下册)期末试题(附答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15C .﹣5D .52.下列分解因式正确的是( )A .24(4)x x x x -+=-+B .2()x xy x x x y ++=+C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-3.如果a b -=22()2a b a b a a b+-⋅-的值为( )A B .C .D .4.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5)5.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.已知12a b +=,则代数式223a b +﹣的值是( ) A .2 B .-2 C .-4 D .132- 7.如图,某小区计划在一块长为32m ,宽为20m 的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m 2.若设道路的宽为xm ,则下面所列方程正确的是( )A .(32﹣2x )(20﹣x )=570B .32x+2×20x=32×20﹣570C .(32﹣x )(20﹣x )=32×20﹣570D .32x+2×20x ﹣2x 2=5708.如图,AB 是⊙O 的直径,BC 与⊙O 相切于点B ,AC 交⊙O 于点D ,若∠ACB=50°,则∠BOD 等于( )A .40°B .50°C .60°D .80°9.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上10.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是( ) A . B .C .D .二、填空题(本大题共6小题,每小题3分,共18分)19=__________.2.分解因式:a 3-a =___________3.若实数a ,b 满足(4a +4b)(4a +4b -2)-8=0,则a +b =__________.4.如图,抛物线2y ax c =+与直线y mx n =+交于A(-1,P),B(3,q)两点,则不等式2ax mx c n ++>的解集是__________.5.如图,四边形ABCD 的对角线相交于点O ,AO=CO ,请添加一个条件_________(只添一个即可),使四边形ABCD 是平行四边形.6.如图是一张矩形纸片,点E 在AB 边上,把BCE 沿直线CE 对折,使点B 落在对角线AC 上的点F 处,连接DF .若点E ,F ,D 在同一条直线上,AE =2,则DF =_____,BE =__________.三、解答题(本大题共6小题,共72分)1.解分式方程:1x x -﹣1=233x x -2.先化简,再求值:22121244x x x x x x +-⎛⎫-÷ ⎪--+⎝⎭,其中3x =3.如图,在▱ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF;(2)连接DE,若AD=2AB,求证:DE⊥AF.4.在▱ABCD中,∠BAD的平分线交直线BC于点E,交直线DC于点F(1)在图1中证明CE=CF;(2)若∠ABC=90°,G是EF的中点(如图2),直接写出∠BDG的度数;(3)若∠ABC=120°,FG∥CE,FG=CE,分别连接DB、DG(如图3),求∠BDG 的度数.5.在“慈善一日捐”活动中,为了解某校学生的捐款情况,抽样调查了该校部分学生的捐款数(单位:元),并绘制成下面的统计图.(1)本次调查的样本容量是________,这组数据的众数为________元;(2)求这组数据的平均数;(3)该校共有600学生参与捐款,请你估计该校学生的捐款总数.6.某商店销售A型和B型两种电脑,其中A型电脑每台的利润为400元,B型电脑每台的利润为500元.该商店计划再一次性购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍,设购进A型电脑x台,这100台电脑的销售总利润为y元.(1)求y关于x的函数关系式;(2)该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大利润是多少?(3)实际进货时,厂家对A型电脑出厂价下调a(0<a<200)元,且限定商店最多购进A型电脑60台,若商店保持同种电脑的售价不变,请你根据以上信息,设计出使这100台电脑销售总利润最大的进货方案.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、A4、D5、B6、B7、A8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分)1、32、(1)(1)a a a -+3、-12或14、3x <-或1x >.5、BO=DO .6、 1三、解答题(本大题共6小题,共72分)1、分式方程的解为x=1.5.2、3x3、详略.4、(1)略;(2)45°;(3)略.5、(1)30,10;(2)平均数为12元;(3)学生的捐款总数为7200元.6、(1) =﹣100x+50000;(2) 该商店购进A 型34台、B 型电脑66台,才能使销售总利润最大,最大利润是46600元;(3)见解析.。

新人教版九年级数学(下册)期末试卷及答案(完整)

新人教版九年级数学(下册)期末试卷及答案(完整)

新人教版九年级数学(下册)期末试卷及答案(完整) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.下列运算正确的是( )A .224a a a +=B .3412a a a ⋅=C .3412()a a =D .22()ab ab =2.已知平面内不同的两点A (a +2,4)和B (3,2a +2)到x 轴的距离相等,则a 的值为( ) A .﹣3 B .﹣5 C .1或﹣3 D .1或﹣53.如果23a b -=,那么代数式22()2a b a b a a b+-⋅-的值为( ) A .3 B .23 C .33 D .434.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上5.下列对一元二次方程x 2+x ﹣3=0根的情况的判断,正确的是( )A .有两个不相等实数根B .有两个相等实数根C .有且只有一个实数根D .没有实数根6.正十边形的外角和为( )A .180°B .360°C .720°D .1440° 7.下面四个手机应用图标中是轴对称图形的是( )A .B .C .D .8.如图,已知∠ABC=∠DCB ,下列所给条件不能证明△ABC ≌△DCB 的是( )A .∠A=∠DB .AB=DC C .∠ACB=∠DBCD .AC=BD9.如图,△ABC 中,AD 是BC 边上的高,AE 、BF 分别是∠BAC 、∠ABC 的平分线,∠BAC=50°,∠ABC=60°,则∠EAD+∠ACD=( )A .75°B .80°C .85°D .90°10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)181__________.2.分解因式:2x 3﹣6x 2+4x =__________.3.若式子x 1x+有意义,则x 的取值范围是_______. 4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD的周长为_____________.5.如图,直线y=x+2与直线y=ax+c相交于点P(m,3),则关于x的不等式x+2≤ax+c的解为__________.6.如图,菱形ABCD顶点A在例函数y=3x(x>0)的图象上,函数y=kx(k>3,x>0)的图象关于直线AC对称,且经过点B、D两点,若AB=2,∠DAB=30°,则k 的值为______.三、解答题(本大题共6小题,共72分)1.解分式方程:122 11xx x+= -+2.先化简,再求值(32m++m﹣2)÷2212m mm-++;其中m=2+1.3.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B(1)求证:△ADF∽△DEC;(2)若AB=8,AD=63,AF=43,求AE的长.4.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.5.随着社会的发展,通过微信朋友圈发布自己每天行走的步数已经成为一种时尚.“健身达人”小陈为了了解他的好友的运动情况.随机抽取了部分好友进行调查,把他们6月1日那天行走的情况分为四个类别:A(0~5000步)(说明:“0~5000”表示大于等于0,小于等于5000,下同),B(5001~10000步),C(10001~15000步),D(15000步以上),统计结果如图所示:请依据统计结果回答下列问题:(1)本次调查中,一共调查了位好友.(2)已知A类好友人数是D类好友人数的5倍.①请补全条形图;②扇形图中,“A”对应扇形的圆心角为度.③若小陈微信朋友圈共有好友150人,请根据调查数据估计大约有多少位好友6月1日这天行走的步数超过10000步?6.某商店在2014年至2016年期间销售一种礼盒.2014年,该商店用3500元购进了这种礼盒并且全部售完;2016年,这种礼盒的进价比2014年下降了11元/盒,该商店用2400元购进了与2014年相同数量的礼盒也全部售完,礼盒的售价均为60元/盒.(1)2014年这种礼盒的进价是多少元/盒?(2)若该商店每年销售这种礼盒所获利润的年增长率相同,问年增长率是多少?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、A3、A4、B5、A6、B7、D8、D9、A10、C二、填空题(本大题共6小题,每小题3分,共18分)1、±32、2x (x ﹣1)(x ﹣2).3、x 1≥-且x 0≠4、10.5、x ≤1.6、三、解答题(本大题共6小题,共72分)1、3x =2、11m m +-,原式=.3、(1)略(2)64、(1)略;(2)4.95、(1)30;(2)①补图见解析;②120;③70人.6、(1)35元/盒;(2)20%.。

2022—2023年人教版九年级数学下册期末试卷及参考答案

2022—2023年人教版九年级数学下册期末试卷及参考答案

2022—2023年人教版九年级数学下册期末试卷及参考答案 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.把38a 化为最简二次根式,得( )A .22a aB .342aC .322aD .24a a2.对某市某社区居民最爱吃的鱼类进行问卷调查后(每人选一种),绘制成如图所示统计图.已知选择鲳鱼的有40人,那么选择黄鱼的有( )A .20人B .40人C .60人D .80人3.实数a ,b ,c 在数轴上的对应点的位置如图所示,则正确的结论是( )A .||4a >B .0c b ->C .0ac >D .0a c +>4.如果1m n +=,那么代数式()22221m n m n m mn m +⎛⎫+⋅-⎪-⎝⎭的值为( ) A .-3 B .-1 C .1 D .35.函数y=ax 2+2ax+m (a <0)的图象过点(2,0),则使函数值y <0成立的x 的取值范围是( )A .x <﹣4或x >2B .﹣4<x <2C .x <0或x >2D .0<x <26.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( )A .k >﹣1B .k <1且k ≠0C .k ≥﹣1且k ≠0D .k >﹣1且k ≠07.如图,直线AB ∥CD ,∠C =44°,∠E 为直角,则∠1等于( )A .132°B .134°C .136°D .138°8.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是( )A .1<x<5-B .x>5C .x<1-且x>5D .x <-1或x >59.如图,数轴上的点A ,B ,O ,C ,D 分别表示数-2,-1,0,1,2,则表示数25-的点P 应落在( )A .线段AB 上 B .线段BO 上C .线段OC 上D .线段CD 上10.如图,在四边形ABCD 中,AD BC ∥,90D ︒∠=,4=AD ,3BC =.分别以点A ,C 为圆心,大于12AC 长为半径作弧,两弧交于点E ,作射线BE 交AD 于点F ,交AC 于点O .若点O 是AC 的中点,则CD 的长为( )A .2B .4C .3D 10二、填空题(本大题共6小题,每小题3分,共18分)1.16的算术平方根是 __________.2.分解因式:2218x -=______.3.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.4.如图,∠MAN=90°,点C 在边AM 上,AC=4,点B 为边AN 上一动点,连接BC ,△A ′BC 与△ABC 关于BC 所在直线对称,点D ,E 分别为AC ,BC 的中点,连接DE 并延长交A ′B 所在直线于点F ,连接A ′E .当△A ′EF 为直角三角形时,AB 的长为__________.5.为增强学生身体素质,提高学生足球运动竞技水平,我市开展“市长杯”足球比赛,赛制为单循环形式(每两队之间赛一场).现计划安排21场比赛,应邀请多少个球队参赛?设邀请x 个球队参赛,根据题意,可列方程为_______.6.如图,在菱形ABCD 中,对角线AC ,BD 交于点O ,∠ABC=60°,AB=2,分别以点A 、点C 为圆心,以AO 的长为半径画弧分别与菱形的边相交,则图中阴影部分的面积为__________.(结果保留π)三、解答题(本大题共6小题,共72分)1.解分式方程:22x 1x 4x 2+=--2.若二次函数y=ax 2+bx+c 的图象的顶点是(2,1)且经过点(1,﹣2),求此二次函数解析式.3.如图,直线y 1=﹣x +4,y 2=34x +b 都与双曲线y =k x交于点A (1,m ),这两条直线分别与x 轴交于B ,C 两点.(1)求y 与x 之间的函数关系式;(2)直接写出当x >0时,不等式34x +b >k x的解集; (3)若点P 在x 轴上,连接AP 把△ABC 的面积分成1:3两部分,求此时点P 的坐标.4.如图,甲、乙两座建筑物的水平距离BC 为78m ,从甲的顶部A 处测得乙的顶部D 处的俯角为48︒,测得底部C 处的俯角为58︒,求甲、乙建筑物的高度AB 和DC (结果取整数).参考数据:tan 48 1.11︒≈,tan58 1.60︒≈.5.老师随机抽查了本学期学生读课外书册数的情况,绘制成条形图(图1)和不完整的扇形图(图2),其中条形图被墨迹遮盖了一部分.(1)求条形图中被遮盖的数,并写出册数的中位数;(2)在所抽查的学生中随机选一人谈读书感想,求选中读书超过5册的学生的概率;(3)随后又补查了另外几人,得知最少的读了6册,将其与之前的数据合并后,发现册数的中位数没改变,则最多补查了人.61.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、D3、B4、D5、A6、D7、B8、D9、B10、A二、填空题(本大题共6小题,每小题3分,共18分) 1、22、2(3)(3)x x +-3、22()1y x =-+4、 45、12x (x ﹣1)=216、23π 三、解答题(本大题共6小题,共72分)1、x 3=-2、231211y x x =-+-3、(1)3y x =;(2)x >1;(3)P (﹣54,0)或(94,0) 4、甲建筑物的高度AB 约为125m ,乙建筑物的高度DC 约为38m .5、(1)条形图中被遮盖的数为9,册数的中位数为5;(2)选中读书超过5册的学生的概率为512;(3)36、(1)y=﹣5x2+800x﹣27500(50≤x≤100);(2)当x=80时,y最大值=4500;(3)70≤x≤90.。

2023年人教版(五四制)初中数学九年级(下)期末综合测试卷及部分答案(3套)

2023年人教版(五四制)初中数学九年级(下)期末综合测试卷及部分答案(3套)

人教版(五四制)初中数学九年级(下)期末综合测试卷及答案(一)一、选择题(共10题,共30分)1.(3分)关于x的方程kx2−6x+9=0有实数根,k的取值范围是( )A.k<1且k≠0B.k<1C.k≤1且k≠0D.k≤12.(3分)如图,△ABC是一张纸片,∠C=90∘,AC=6,BC=8,现将其折叠,使点B与点A重合,折痕为DE,则DE的长为( )A.1.75B.3C.3.75D.43.(3分)如果x,y之间满足的关系是xy=−6,那么y是x的( )A.正比例函数B.反比例函数C.一次函数D.二次函数4.(3分)在做“抛掷一枚质地均匀的硬币”试验时,下列说法正确的是( )A.随着抛掷次数的增加,正面朝上的频率越来越小B.当抛掷的次数很多时,正面朝上的次数一定占总抛掷次数的12C.不同次数的试验,正面朝上的频率可能会不相同D.连续抛掷11次硬币都是正面朝上,则第12次抛掷出现正面朝上的概率小于12 5.(3分)甲队修路120m与乙队修路100m所用天数相同,已知甲队比乙队每天多修10m,设甲队每天修路x m.依题意,下面所列方程正确的是( )A.120x =100x−10B.120x=100x+10C.120x−10=100xD.120x+10=100x6.(3分)如图,菱形ABCD的边长为13,对角线AC=24,点E,F分别是边CD,BC的中点,连接EF并延长与AB的延长线相交于点G,则EG=( )A.13B.10C.12D.57.(3分)如图,AB是⊙O的直径,CD是弦,AE⊥CD于点E,BF⊥CD于点F,若FB=FE=2,FC=1,则AC的长是( )A.5√22B.3√52C.4√53D.5√238.(3分)如图,已知AB∥CD,OE平分∠BOC,OF⊥OE,OP⊥CD,∠ABO=α,则下列结论中不正确的是( )A.∠BOE=12(180∘−α)B.OF平分∠BODC.∠POE=∠BOF D.∠POB=2∠DOF9.(3分)如图,在△ABC中,BD,BE分别是高和角平分线,点F在CA的延长线上,FH⊥BE交BD于G,交BC于H,下列结论:① ∠DBE=∠F;② 2∠BEF=∠BAF+∠C;③ ∠F=12(∠BAC−∠C);④ ∠BGH=∠ABE+∠C,其中正确的是( )A.①②④B.①③④C.①②③D.①②③④10.(3分)如图,AB⊥BC,AE平分∠BAD交BC于点E,AE⊥DE,∠1+∠2=90∘,M,N分别是BA,CD延长线上的点,∠EAM和∠EDN的平分线交于点F.下列结论:①AB∥CD;②∠AEB+∠ADC=180∘;③DE平分∠ADC;④∠F为定值,其中结论正确的有( )A.1个B.2个C.3个D.4个二、填空题(共7题,共28分)11.(4分)18和30的最小公倍数是.12.(4分)近似数7.30×104精确到位.13.(4分)小明爸爸把10000元按一年期定期储蓄存入银行,年利率为1.95%,到期后可得本利和为元.14.(4分)如图,在直角坐标系中,⊙A的圆心的坐标为(−2,0),半径为2,点P为x+6上的动点,过点P作⊙A的切线,切点为Q,则切线长PQ的直线y=−34最小值是.15.(4分)如图,△ABC的两条高线BD,CE相交于点F,已知∠ABC=60∘,AB=a,CF=EF,则△ABC的面积为(用含a的代数式表示).16.(4分)三个连续奇数,中间一个为a,则它们的积为.17.(4分)将正方形ABCD的各边按如图延长,从射线AB开始,分别在各射线上标记点A1,A2,A3,⋯,按此规律,点A2019在射线上.三、解答题(共8题,共62分)18.(6分)目前节能灯在城市已基本普及,今年某省面向农村地区推广,为响应号召,某商场用3300元购进节能灯100只,这两种节能灯的进价、售价如表:进价(元/只)售价(元/只)甲种节能灯3040乙种节能灯3550(1) 求甲、乙两种节能灯各进多少只?(2) 全部售完100只节能灯后,该商场获利多少元?19.(6分)解答下列问题.(1) 计算:4sin60∘−√12+(√3−1)0;).(2) 化简(x+1)÷(1+1x20.(7分)计算:(1) 37∘49ʹ+44∘28ʹ.(结果用度、分、秒表示)(2) 108∘18ʹ−56.5∘.(结果用度表示)21.(7分)我们约定:如果身高在选定标准的±2%范围之内都称为“普通身高”.为了了解某校九年级男生中具有“普通身高”的人数,我们从该校九年级男生中随机抽出10名男生,分别测量出他们的身高(单位:cm),收集并整理如下统计表:男生序号①②③④⑤⑥⑦⑧⑨⑩根据以上信息,身高x(cm)163171173159161174164166169164解答如下问题:(1) 计算这组数据的三个统计量:平均数、中位数、众数;(2) 请你选择其中一个统计量作为选定标准,找出这10名男生中具有“普通身高”是哪几位男生?并说明理由.22.(8分)如图,先把一矩形ABCD纸片对折,设折痕为MN,再把B点叠在折痕线上,得到△ABE.过B点折纸片使D点叠在直线AD上,得折痕PQ.(1) 求证△PBE∽△QAB;(2) 你认为△PBE和△BAE相似吗?如果相似给出证明,若不相似请说明理由.23.(8分)果子成熟从树上落到地面,它落下的高度与经过的时间有如下的关系:时间t/秒0.50.60.70.80.91⋯高度ℎ/米 4.9×0.25 4.9×0.36 4.9×0.49 4.9×0.64 4.9×0.81 4.9×1⋯(1) 上表反映了哪两个变量之间的关系?其中自变量是什么?因变量是什么?(2) 请你按照表中呈现的规律,列出果子落下的高度ℎ(米)与时间t(秒)之间的关系式.(3) 如果果子经过2秒落到地上,请计算这果子开始落下时离底面的高度是多少米?24.(10分)在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(−3,0),B(1,0),与y轴交于点D(0,3),过顶点C作CH⊥x轴于点H.(1) 求抛物线的解析式和顶点C的坐标;(2) 连接AD,CD,若点E为抛物线上一动点(点E与顶点C不重合),当△ADE与△ACD面积相等时,求点E的坐标;(3) 若点P为抛物线上一动点(点P与顶点C不重合),过点P向CD所在的直线作垂线,垂足为点Q,以P,C,Q为顶点的三角形与△ACH相似时,求点P的坐标.25.(10分)已知:四边形ABCD中,AD∥BC,AD=AB=CD,∠BAD=120∘,点E是射线CD上的一个动点(与C、D不重合),将△ADE绕点A顺时针旋转120∘后,得到△ABEʹ,连接EEʹ.(1) 如图1,∠AEEʹ=∘;(2) 如图2,如果将直线AE绕点A顺时针旋转30∘后交直线BC于点F,过点E作EM∥AD交直线AF于点M,写出线段DE、BF、ME之间的数量关系;(3) 如图3,在(2)的条件下,如果CE=2,AE=2√7,求ME的长.答案一、选择题(共10题,共30分)1. 【答案】D2. 【答案】C3. 【答案】B4. 【答案】C5. 【答案】A6. 【答案】B7. 【答案】B8. 【答案】D9. 【答案】D10. 【答案】C二、填空题(共7题,共28分) 11. 【答案】 9012. 【答案】百13. 【答案】 1019514. 【答案】 4√215. 【答案】√3a 2516. 【答案】 a 3−a17. 【答案】 AB三、解答题(共8题,共62分)18. 【答案】(1) 设商场购进甲种节能灯 x 只,购进乙种节能灯 y 只,根据题意,得{30x +35y =3300,x +y =100.解这个方程组,得{x =40,y =60.答:甲、乙两种节能灯分别购进 40,60 只.(2) 商场获利=40×(40−30)+60×(50−35)=1300(元).答:商场获利1300元.19. 【答案】(1) 原式=4×√32−2√3+1=2√3−2√3+1=1.(2) 原式=(x+1)÷(xx+1x)=(x+1)÷x+1x=(x+1)⋅xx+1=x.20. 【答案】(1) 82∘17ʹ.(2) 51.8∘21. 【答案】(1) 平均数为:163+171+173+159+161+174+164+166+169+16410=166.4(cm);10名同学身高从小到大排列如下:159,161,163,164,164,166,169,171,173,174,中位数:166+1642=165(cm);众数:164(cm).(2) 选平均数作为标准:身高x满足166.4×(1−2%)≤x≤166.4×(1+2%),即163.072≤x≤169.728时为普通身高,此时⑦⑧⑨⑩男生的身高具有“普通身高”.选中位数作为标准:身高x满足165×(1−2%)≤x≤165×(1+2%),即161.7≤x≤168.3时为普通身高,此时①⑦⑧⑩男生的身高具有“普通身高”.选众数作为标准:身高x满足164×(1−2%)≤x≤164×(1+2%),即160.72≤x≤167.28时为普通身高,此时①⑤⑦⑧⑩男生的身高具有“普通身高”.22. 【答案】(1) ∵∠PBE+∠ABQ=90∘,∠PBE+∠PEB=90∘,∴∠ABQ=∠PEB.又∵∠BPE=∠AQB=90∘,∴△PBE∽△QAB.(2) 相似,理由如下:∵△PBE∽△QAB,∴BEAB =PEBQ,又∵BQ=PB,∴BEAB =PEPB,即BEEP=ABPB,又∵∠ABE=∠BPE=90∘,∴△PBE∽△BAE.23. 【答案】(1) 上表反映了果子成熟从树上落到地面时落下的高度ℎ与经过的时间t的关系;其中时间t是自变量,高度ℎ是因变量.(2) 观察可知,下落t秒时,高度为4.9t2,即ℎ=4.9t2.(3) 当t=2时,ℎ=4.9×22=19.6(m).故果子开始落下时离底面的高度是19.6米.24. 【答案】(1) 把点A,B,D的坐标代入二次函数表达式得:{a+b+c=0,9a−3b+c=0,c=3,解得:{a=−1,b=−2,c=3,则抛物线的表达式为:y=−x2−2x+3 ⋯⋯①,函数的对称轴为:x=−b2a=−1,则点C的坐标为(−1,4);(2) 过点C作CE∥AD交抛物线于点E,交y轴于点H,则△ADE与△ACD面积相等,直线AD过点D,则其表达式为:y=mx+3,将点A的坐标代入上式得:0=−3m+3,解得:m=1,则直线AD的表达式为:y=x+3,CE∥AD,则直线CE表达式的k值为1,设直线CE的表达式为:y=x+n,将点C的坐标代入上式得:4=−1+n,解得:n=5,则直线CE的表达式为:y=x+5 ⋯⋯②,则点H的坐标为(0,5),联立①②并解得:x=−1或−2(x=1为点C的横坐标),即点E的坐标为(−2,3);在y轴取一点Hʹ,使DH=DHʹ=2,过点 Hʹ 作直线 EʹEʺ∥AD ,则 △ADEʹ,△ADEʺ 与 △ACD 面积相等,同理可得直线 EʹEʺ 的表达式为:y =x +1 ⋯⋯③, 联立 ①③ 并解得:x =−3±√172, 则点 Eʺ,Eʹ 的坐标分别为 (−3+√172,−1+√172),(−3−√172,−1−√172), 点 E 的坐标为:(−2,3) 或 (−3+√172,−1+√172),(−3−√172,−1−√172);(3) 设:点 P 的坐标为 (m,n ),n =−m 2−2m +3,把点 C ,D 的坐标代入一次函数表达式:y =kx +b 得:{4=−k +b,b =3, 解得:{k =−1,b =3,即直线 CD 的表达式为:y =−x +3 ⋯⋯④,直线 AD 的表达式为:y =x +3,直线 CD 和直线 AD 表达式中的 k 值的乘积为 −1, 故 AD ⊥CD ,而直线 PQ ⊥CD ,故直线 PQ 表达式中的 k 值与直线 AD 表达式中的 k 值相同, 同理可得直线 PQ 表达式为:y =x +(n −m ) ⋯⋯⑤, 联立 ④⑤ 并解得:x =3+m−n2, 即点 Q 的坐标为 (3+m−n 2,3−m+n2),则:PQ 2=(m −3+m−n2)2+(n −3−m+n2)=(m+n−3)22=12(m +1)2⋅m 2.同理可得:PC 2=(m +1)2[1+(m +1)2], AH =2,CH =4,则 AC =2√5, 当 △ACH ∽△CPQ 时, PCPQ =ACAH =√52,即:4PC 2=5PQ 2,整理得:3m 2+16m +16=0,解得:m =−4 或 −43, 点 P 的坐标为 (−4,−5) 或 (−43,359);当 △ACH ∽△PCQ 时,同理可得:点 P 的坐标为 (−23,359) 或 (2,−5),故:点 P 的坐标为:(−4,−5) 或 (−43,359) 或 (−23,359) 或 (2,−5).25. 【答案】(2) 当点E在线段CD上时,DE+BF=2ME;∵∠EʹAE=120∘,AE=AEʹ,∴∠AEEʹ=∠AEʹE=30∘.∵∠EAF=30∘,∴AN=EN,∠EʹAF=90∘,∴AN=12NEʹ,EN=12NEʹ.即NEʹ=2EN.∵EM∥AD∥BC,∴△EMN∽△EʹFN,∴MEFEʹ=ENEʹN=12.∵DE=BEʹ,∴DE+BF=BEʹ+BF=FEʹ=2ME.即DE+BF=2ME.当点E在CD的延长线上,0∘<∠EAD<30∘时,BF−DE=2ME;∵△ADE旋转到△ABEʹ,∴ED=BEʹ.EʹF=BF−BEʹ=BF−ED同上可证:△MEN∽△FEʹN,AN=EN=12NEʹ∴EʹFME =EʹNEN=2.即BF−DE=2ME.30∘<∠EAD≤90∘时,DE+BF=2ME;∵EM∥BC,∴△EMN∽△EʹFN,∴EʹFEM =EʹNEN=2.同上可证:AN=EN=12NEʹ,∴EʹF=2EM.∵ED=BEʹ,∴DE+BF=BEʹ+BF=EʹF=2EM.90∘<∠EAD<120∘时,DE−BF=2ME.∵ED=BEʹ,DE−BF=BEʹ−BF=EʹF,EM∥BC,∴△EMN∽△EʹFN,EʹF EM =EʹNEN,AN=EN=12NEʹ,∴EʹF=2EM,DE−BF=2ME.(3) 作AG⊥BC于点G,作DH⊥BC于点H.由AD∥BC,AD=AB=CD,∠BAD=120∘,得∠ABC=∠DCB=60∘,易知四边形AGHD是矩形和两个全等的直角三角形△ABG、△DCH.则GH=AD,BG=CH.∵∠ABEʹ=∠ADC=120∘,∴点Eʹ、B、C在一条直线上.设AD=AB=CD=x,则GH=x,BG=CH=12x,.作EQ⊥BC于Q.在Rt△EQC中,CE=2,∠C=60∘,∴CQ=1,EQ=√3.∴EʹQ=BC−CQ+BEʹ=2x−1+x−2=3x−3.作AP⊥EEʹ于点P.∵△ADE绕点A顺时针旋转120∘后,得到△ABEʹ.∴△AEEʹ是等腰三角形,∠AEʹE=30∘,AEʹ=AE=2√7.∴在Rt△APEʹ中,EʹP=√21.∴EEʹ=2EʹP=2√21.∴在Rt△EQEʹ中,EʹQ=√EʹE2−EQ2=9.∴3x−3=9.∴x=4.∴DE=BEʹ=2,BC=8,BG=2.∴EʹG=4在Rt△EʹAF中,AG⊥BC,∴Rt△AGEʹ∽Rt△FAEʹ.∴AEʹEʹG =EʹFAEʹ∴EʹF=7.∴BF=EʹF−EʹB=5.由(2)知:DE+BF=2ME.∴ME=72人教版(五四制)初中数学九年级(下)期末综合测试卷(二)一、单项选择题:本大题总共8小题,每小题3分,共24分。

2023年人教版九年级数学(下册)期末试题及答案(各版本)

2023年人教版九年级数学(下册)期末试题及答案(各版本)

2023年人教版九年级数学(下册)期末试题及答案(各版本) 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.2的倒数是( )A .2B .12C .12-D .-22.已知25523y x x =-+--,则2xy 的值为( )A .15-B .15C .152-D .1523.关于x 的一元一次不等式≤﹣2的解集为x ≥4,则m 的值为( )A .14B .7C .﹣2D .24.已知一个多边形的内角和等于900º,则这个多边形是( )A .五边形B .六边形C .七边形D .八边形5.如图,二次函数2y ax bx c =++的图象经过点1,0A ,()5,0B ,下列说法正确的是( )A .0c <B .240b ac -<C .0a b c -+<D .图象的对称轴是直线3x = 6.已知二次函数y=x 2﹣x+14m ﹣1的图象与x 轴有交点,则m 的取值范围是( )A .m ≤5B .m ≥2C .m <5D .m >27.如图,将长方形纸片ABCD 折叠,使边DC 落在对角线AC 上,折痕为CE ,且D 点落在对角线D ′处.若AB=3,AD=4,则ED 的长为( )A .32B .3C .1D .438.如图,已知,5,3AB AC AB BC ===,以AB 两点为圆心,大于12AB 的长为半径画圆,两弧相交于点,M N ,连接MN 与AC 相较于点D ,则BDC ∆的周长为( )A .8B .10C .11D .139.扬帆中学有一块长30m ,宽20m 的矩形空地,计划在这块空地上划出四分之一的区域种花,小禹同学设计方案如图所示,求花带的宽度.设花带的宽度为xm ,则可列方程为( )A .()()3302020304x x --=⨯⨯ B .()()130********x x --=⨯⨯ C .130********x x +⨯=⨯⨯ D .()()33022020304x x --=⨯⨯ 10.如图,P 为等边三角形ABC 内的一点,且P 到三个顶点A ,B ,C 的距离分别为3,4,5,则△ABC 的面积为( )A.25394+B.25392+C.18253+D.253182+二、填空题(本大题共6小题,每小题3分,共18分)1.计算:205-=__________.2.分解因式:3244a a a-+=__________.3.若一个多边形的内角和是其外角和的3倍,则这个多边形的边数是______.4.如图,∠MAN=90°,点C在边AM上,AC=4,点B为边AN上一动点,连接BC,△A′BC与△ABC关于BC所在直线对称,点D,E分别为AC,BC的中点,连接DE并延长交A′B所在直线于点F,连接A′E.当△A′EF为直角三角形时,AB的长为__________.5.如图,△ABC中,AB=BC,∠ABC=90°,F为AB延长线上一点,点E在BC上,且AE=CF,若∠BAE=25°,则∠ACF=__________度.6.如图,在边长为4的正方形ABCD中,以点B为圆心,以AB为半径画弧,交对角线BD于点E,则图中阴影部分的面积是__________(结果保留π)三、解答题(本大题共6小题,共72分)1.解分式方程:33122xx x -+=--2.先化简代数式1﹣1xx-÷2212xx x-+,并从﹣1,0,1,3中选取一个合适的代入求值.3.某市推出电脑上网包月制,每月收取费用y(元)与上网时间x(小时)的函数关系如图所示,其中BA是线段,且BA∥x轴,AC是射线.(1)当x≥30,求y与x之间的函数关系式;(2)若小李4月份上网20小时,他应付多少元的上网费用?(3)若小李5月份上网费用为75元,则他在该月份的上网时间是多少?4.某市为节约水资源,制定了新的居民用水收费标准.按照新标准,用户每月缴纳的水费y(元)与每月用水量x(m3)之间的关系如图所示.(1)求y关于x的函数解析式;(2)若某用户二、三月份共用水40m3(二月份用水量不超过25m3),缴纳水费79.8元,则该用户二、三月份的用水量各是多少m3?5.在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?6.去年在我县创建“国家文明县城”行动中,某社区计划将面积为23600m的一块空地进行绿化,经投标由甲、乙两个工程队来完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化面积的1.8倍,如果两队各自独立完成面积为2450m区域的绿化时,甲队比乙队少用4天.甲队每天绿化费用是1.05万元,乙队每天绿化费用为0.5万元.(1)求甲、乙两工程队每天各能完成多少面积(单位:2m)的绿化;(2)由于场地原因,两个工程队不能同时进场绿化施工,现在先由甲工程队绿化若干天,剩下的绿化工程由乙工程队完成,要求总工期不超过48天,问应如何安排甲、乙两个工程队的绿化天数才能使总绿化费用最少,最少费用是多少万元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、A3、D4、C5、D6、A7、A8、A9、D10、A二、填空题(本大题共6小题,每小题3分,共18分)12、2(2)a a -;3、84、 45、706、8﹣2π三、解答题(本大题共6小题,共72分)1、x=12、-11x +,-14. 3、(1)y=3x ﹣30;(2)4月份上网20小时,应付上网费60元;(3)5月份上网35个小时.4、(1) 1.8(015)2.49(15)x x x x >≤≤⎧⎨-⎩(2)该用户二、三月份的用水量各是12m 3、28m 3 5、(1)当天该水果的销售量为33千克;(2)如果某天销售这种水果获利150元,该天水果的售价为25元.6、(1)甲、乙两工程队每天各完成绿化的面积分别是90m 2、50m 2;(2)甲队先做30天,乙队再做18天,总绿化费用最少,最少费用是40.5万元.。

新】人教版九年级数学下册期末试卷及答案

新】人教版九年级数学下册期末试卷及答案

新】人教版九年级数学下册期末试卷及答案九年级数学下册期末测试卷(B卷)测试时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.已知 $\frac{b^5-a^b}{a^{13}+b}$ 的值是$\frac{2394}{3249}$,则 $\frac{a^2}{b^2}$ 的值是()A。

$\frac{2394}{3249}$ B。

$\frac{3249}{2394}$ C。

$\frac{13}{5}$ D。

$\frac{5}{13}$2.如图是由4个大小相同的正方体搭成的几何体,其俯视图是()A。

B。

C。

D。

3.如图,在△ABC中,E、F分别是AB、AC上的点,EF∥BC,且 $S_{\triangle AEF}=2$,则四边形EBCF的面积为()A。

4 B。

6 C。

16 D。

184.在Rt△ABC中,$\angle C=90°$,若 $\sinA=\frac{3}{5}$,则 $\cos B$ 的值是()A。

$\frac{3}{5}$ B。

$\frac{4}{5}$ C。

$\frac{5}{4}$ D。

$\frac{5}{3}$5.如图,点A(t,3)在第一象限,OA与x轴所夹的锐角为α,$\tan\alpha=\frac{3}{2}$,则t的值是()A。

1 B。

1.5 C。

2 D。

36.反比例函数 $y=\frac{k}{x}$ 的定义域是 $x\neq 0$,则当 $x_1<x_2$ 时,有 $\frac{y_1}{y_2}$ ()A。

$1$ D。

不确定7.已知长方形的面积为20cm²,设该长方形一边长为ycm,另一边的长为xcm,则y与x之间的函数图象大致是()A。

B。

C。

D。

8.某同学的身高为1.6米,某一时刻他在阳光下的影长为1.2米,与他相邻的一棵树的影长为3.6米,则这棵树的高度为()。

A。

5.3米 B。

4.8米 C。

4.0米 D。

2.7米9.如图,在矩形ABCD中,E、F分别是DC、BC边上的点,且 $\angle AEF=90°$,则下列结论正确的是()。

2023年人教版九年级数学下册期末考试卷(参考答案)

2023年人教版九年级数学下册期末考试卷(参考答案)

2023年人教版九年级数学下册期末考试卷(参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.估计的值应在( )A .5和6之间B .6和7之间C .7和8之间D .8和9之间2.在平面直角坐标系的第二象限内有一点M ,点M 到x 轴的距离为3,到y 轴的距离为4,则点M 的坐标是( )A .(3,4)-B .(4,3)-C .(4,3)-D .()3,4-3.某钢铁厂一月份生产钢铁560吨,从二月份起,由于改进操作技术,使得第一季度共生产钢铁1850吨,问二、三月份平均每月的增长率是多少?若设二、三月份平均每月的增长率为x ,则可得方程( )A .2560(1)1850x +=B .2560560(1)1850x ++=C .()25601560(1)1850x x +++=D .()25605601560(1)1850x x ++++=4.今年一季度,河南省对“一带一路”沿线国家进出口总额达214.7亿元,数据“214.7亿”用科学记数法表示为( )A .2.147×102B .0.2147×103C .2.147×1010D .0.2147×10115.下列方程中,是关于x 的一元二次方程的是( )A .ax 2+bx+c =0(a ,b ,c 为常数)B .x 2﹣x ﹣2=0C .211x x +﹣2=0D .x 2+2x =x 2﹣16.已知二次函数242y x x =-+,关于该函数在﹣1≤x ≤3的取值范围内,下列说法正确的是( )A .有最大值﹣1,有最小值﹣2B .有最大值0,有最小值﹣1C .有最大值7,有最小值﹣1D .有最大值7,有最小值﹣27.如图,∠B=∠C=90°,M 是BC 的中点,DM 平分∠ADC ,且∠ADC=110°,则∠MAB=( )A .30°B .35°C .45°D .60°8.如图,一次函数y 1=x +b 与一次函数y 2=kx +4的图象交于点P (1,3),则关于x 的不等式x +b >kx +4的解集是( )A .x >﹣2B .x >0C .x >1D .x <19.如图,//DE BC ,BE 平分ABC ∠,若170∠=,则CBE ∠的度数为( )A .20B .35C .55D .7010.如图,在平面直角坐标系中,矩形ABCD 的顶点A ,C 分别在x 轴,y 轴的正半轴上,点D (-2,3),AD =5,若反比例函数k y x=(k >0,x >0)的图象经过点B ,则k 的值为( )A .163B .8C .10D .323二、填空题(本大题共6小题,每小题3分,共18分)1.计算(6-18)×13+26的结果是_____________. 2.因式分解:34a a -=____________.3.将二次函数245y x x =-+化成2()y a x h k =-+的形式为__________.4.如图,将周长为8的△ABC 沿BC 方向向右平移1个单位得到△DEF ,则四边形ABFD 的周长为_____________.5.如图,直线y =x +2与直线y =ax +c 相交于点P (m ,3),则关于x 的不等式x +2≤ax +c 的解为__________.6.如图,在Rt △ABC 中,∠ACB=90°,AC=5cm ,BC=12cm ,将△ABC 绕点B 顺时针旋转60°,得到△BDE ,连接DC 交AB 于点F ,则△ACF 与△BDF 的周长之和为_______cm .三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.关于x 的一元二次方程x 2+(2k+1)x+k 2+1=0有两个不等实根12,x x .(1)求实数k 的取值范围.(2)若方程两实根12,x x 满足|x 1|+|x 2|=x 1·x 2,求k 的值.3.如图①,已知抛物线y=ax 2+bx+c 的图像经过点A (0,3)、B (1,0),其对称轴为直线l :x=2,过点A 作AC ∥x 轴交抛物线于点C ,∠AOB 的平分线交线段AC 于点E ,点P 是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P 在直线OE 下方的抛物线上,连结PE 、PO ,当m 为何值时,四边形AOPE 面积最大,并求出其最大值;(3)如图②,F 是抛物线的对称轴l 上的一点,在抛物线上是否存在点P 使△POF 成为以点P 为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.4.如图,AB 是圆O 的直径,O 为圆心,AD 、BD 是半圆的弦,且∠PDA=∠PBD .延长PD 交圆的切线BE 于点E(1)判断直线PD 是否为⊙O 的切线,并说明理由;(2)如果∠BED=60°,3,求PA 的长;(3)将线段PD 以直线AD 为对称轴作对称线段DF ,点F 正好在圆O 上,如图2,求证:四边形DFBE 为菱形.5.随着信息技术的迅猛发展,人们去商场购物的支付方式更加多样、便捷.某校数学兴趣小组设计了一份调查问卷,要求每人选且只选一种你最喜欢的支付方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数为;(2)将条形统计图补充完整.观察此图,支付方式的“众数”是“”;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种支付方式中选一种方式进行支付,请用画树状图或列表格的方法,求出两人恰好选择同一种支付方式的概率.61.某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)求出每天的销售利润y(元)与销售单价x(元)之间的函数关系式;(2)求出销售单价为多少元时,每天的销售利润最大?最大利润是多少?(3)如果该企业要使每天的销售利润不低于4000元,那么销售单价应控制在什么范围内?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、D4、C5、B6、D7、B8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)12、(2)(2)a a a +-3、22()1y x =-+ 4、10.5、x ≤1.6、42.三、解答题(本大题共6小题,共72分)1、x=32、(1)k ﹥34;(2)k=2. 3、(1)y=x 2-4x+3.(2)当m=52时,四边形AOPE 面积最大,最大值为758.(3)P 点的坐标为 :P 1),P 2352,),P 3(2,2),P 4(52-12-). 4、(1)略;(2)1;(3)略.5、(1)200、81°;(2)补图见解析;(3)1 36、(1)y=﹣5x2+800x﹣27500(50≤x≤100);(2)当x=80时,y最大值=4500;(3)70≤x≤90.。

2022—2023年人教版九年级数学下册期末试卷(参考答案)

2022—2023年人教版九年级数学下册期末试卷(参考答案)

2022—2023年人教版九年级数学下册期末试卷(参考答案)班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.13-的绝对值是( ) A .3 B .3- C .13 D .13- 2.某种衬衫因换季打折出售,如果按原价的六折出售,那么每件赔本40元;按原价的九折出售,那么每件盈利20元,则这种衬衫的原价是( )A .160元B .180元C .200元D .220元3.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定5.等腰三角形的一个角是80°,则它的顶角的度数是( )A .80°B .80°或20°C .80°或50°D .20°6.已知二次函数y=x 2﹣x+14m ﹣1的图象与x 轴有交点,则m 的取值范围是( )A .m ≤5B .m ≥2C .m <5D .m >27.如图,AC 是⊙O 的直径,弦BD ⊥AO 于E ,连接BC ,过点O 作OF ⊥BC 于F ,若BD=8cm ,AE=2cm ,则OF 的长度是( )A .3cmB .6 cmC .2.5cmD .5 cm8.如图,已知AB AD =,那么添加下列一个条件后,仍无法判定ABC ADC ∆∆≌的是( )A .CB CD = B .BAC DAC ∠=∠C .BCA DCA ∠=∠D .90B D ∠=∠=︒9.如图,在平行四边形ABCD 中,点E 在边DC 上,DE :EC=3:1,连接AE 交BD 于点F ,则△DEF 的面积与△BAF 的面积之比为( )A .3:4B .9:16C .9:1D .3:110.如图,在矩形ABCD 中,点E 在DC 上,将矩形沿AE 折叠,使点D 落在BC 边上的点F 处.若AB =3,BC =5,则tan ∠DAE 的值为( )A .12B .920C .25 D .13二、填空题(本大题共6小题,每小题3分,共18分)1.27-的立方根是____________.2.分解因式:29a -=__________.3.已知二次函数y =x 2,当x >0时,y 随x 的增大而_____(填“增大”或“减小”).4.如图,点A ,B ,C ,D 在O 上,CB CD =,30CAD ∠=︒,50ACD ∠=︒,则ADB =∠________.5.如图,M 、N 是正方形ABCD 的边CD 上的两个动点,满足AM BN =,连接AC 交BN 于点E ,连接DE 交AM 于点F ,连接CF ,若正方形的边长为6,则线段CF 的最小值是__________.6.如图,圆柱形玻璃杯高为12cm 、底面周长为18cm ,在杯内离杯底4cm 的点C 处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm 与蜂蜜相对的点A 处,则蚂蚁到达蜂蜜的最短距离为___________cm .三、解答题(本大题共6小题,共72分)1.计算:(1)sin30°﹣(π﹣3.14)0+(﹣12)﹣2(2)解方程;13223x x =--2.关于x 的一元二次方程2223()0m x mx m +++=-有两个不相等的实数根.(1)求m 的取值范围;(2)当m 取满足条件的最大整数时,求方程的根.3.如图,一次函数y=x+4的图象与反比例函数y=k x (k 为常数且k ≠0)的图象交于A (﹣1,a ),B 两点,与x 轴交于点C(1)求此反比例函数的表达式;(2)若点P 在x 轴上,且S △ACP =32S △BOC ,求点P 的坐标.4.如图,已知P 是⊙O 外一点,PO 交圆O 于点C ,OC=CP=2,弦AB ⊥OC ,劣弧AB 的度数为120°,连接PB .(1)求BC 的长;(2)求证:PB 是⊙O 的切线.5.某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m= ,n= ,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.6.为了提高产品的附加值,某公司计划将研发生产的1200件新产品进行精加工后再投放市场.现有甲、乙两个工厂都具备加工能力,公司派出相关人员分别到这两个工厂了解情况,获得如下信息:信息一:甲工厂单独加工完成这批产品比乙工厂单独加工完成这批产品多用10天;信息二:乙工厂每天加工的数量是甲工厂每天加工数量的1.5倍.根据以上信息,求甲、乙两个工厂每天分别能加工多少件新产品.参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、A5、B6、A7、D8、C9、B10、D二、填空题(本大题共6小题,每小题3分,共18分)1、-3.2、()()33a a +-3、增大.4、70°5、36、15.三、解答题(本大题共6小题,共72分)1、(1)72;(2)x =32、(1)6m <且2m ≠;(2)12x =-,243x =- 3、(1)y=-3x(2)点P (﹣6,0)或(﹣2,0) 4、(1)2(2)略5、(1)40,补全统计图见详解.(2)10;20;72.(3)见详解.6、甲、乙两个工厂每天分别能加工40件、60件新产品。

2024年人教版九年级数学下册期末考试卷(附答案)

2024年人教版九年级数学下册期末考试卷(附答案)

一、选择题(每题2分,共30分)1. 若直线y=2x+3与x轴交于点A,与y轴交于点B,则△OAB的面积是()A. 3B. 6C. 9D. 122. 下列函数中,是正比例函数的是()A. y=x^2+2x+1B. y=2x+1C. y=2/xD. y=√x3. 若点P(a,b)在第二象限,则a、b的取值范围是()A. a>0, b>0B. a<0, b>0C. a>0, b<0D. a<0, b<04. 若函数y=2x3的图像过点(2,1),则函数的解析式为()A. y=x1B. y=2x1C. y=x2D. y=2x25. 下列图形中,是中心对称图形的是()A. 矩形B. 正方形C. 圆D. 梯形6. 若函数y=2x+3的图像向上平移3个单位,则平移后的函数解析式为()A. y=2x+6B. y=2x+3C. y=2xD. y=2x37. 若函数y=√x的图像关于y轴对称,则对称后的函数解析式为()A. y=√xB. y=√(x)C. y=√xD. y=√(x)二、判断题(每题1分,共20分)8. 函数y=2x+3的图像是一条直线。

()9. 点(3,4)在第一象限。

()10. 一次函数的图像是一条直线。

()11. 二次函数的图像是一条抛物线。

()12. 两个一次函数的图像一定相交。

()13. 两个二次函数的图像一定相交。

()14. 一次函数的图像是一条直线。

()三、填空题(每空1分,共10分)15. 函数y=2x+3的图像与x轴交于点______,与y轴交于点______。

16. 点(3,4)到原点的距离是______。

17. 若函数y=2x+3的图像过点(2,1),则函数的解析式为______。

18. 一次函数的图像是一条______。

19. 二次函数的图像是一条______。

20. 两个一次函数的图像一定______。

四、简答题(每题10分,共10分)21. 简述一次函数的性质。

2023年人教版九年级数学下册期末考试卷及答案【完整】

2023年人教版九年级数学下册期末考试卷及答案【完整】

2023年人教版九年级数学下册期末考试卷及答案【完整】班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.﹣15的绝对值是( ) A .﹣15 B .15 C .﹣5 D .52.某校为了了解家长对“禁止学生带手机进入校园”这一规定的意见,随机对全校100名学生家长进行调查,这一问题中样本是( )A .100B .被抽取的100名学生家长C .被抽取的100名学生家长的意见D .全校学生家长的意见3.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x 名工人生产螺钉,则下面所列方程正确的是( )A .2×1000(26﹣x )=800xB .1000(13﹣x )=800xC .1000(26﹣x )=2×800xD .1000(26﹣x )=800x4.直线y x a =+不经过第二象限,则关于x 的方程2210ax x ++=实数解的个数是( ).A .0个B .1个C .2个D .1个或2个5.菱形不具备的性质是( )A .四条边都相等B .对角线一定相等C .是轴对称图形D .是中心对称图形6.定义运算:21m n mn mn =--☆.例如2:42424217=⨯-⨯-=☆.则方程10x =☆的根的情况为( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .只有一个实数根7.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP的面积y(cm2)关于x(cm)的函数关系的图象是()A.B.C.D.8.如图,已知BD是ABC的角平分线,ED是BC的垂直平分线,90BAC∠=︒,3AD=,则CE的长为()A.6 B.5 C.4 D.339.如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为()A.16 B.17C.18 D.1910.如图,DE∥FG∥BC,若DB=4FB,则EG与GC的关系是()A.EG=4GC B.EG=3GC C.EG=52GC D.EG=2GC二、填空题(本大题共6小题,每小题3分,共18分)1.计算:23⨯=______________.2.因式分解:a 3-ab 2=____________.3.已知关于x 的一元二次方程mx 2+5x+m 2﹣2m=0有一个根为0,则m=_____.4.如图,直线1y x =+与抛物线245y x x =-+交于A ,B 两点,点P 是y 轴上的一个动点,当PAB ∆的周长最小时,PAB S ∆=__________.5.如图,从一块半径为1m 的圆形铁皮上剪出一个圆周角为120°的扇形ABC ,如果将剪下来的扇形围成一个圆锥,则该圆锥的底面圆的半径为_________m .6.某活动小组购买了4个篮球和5个足球,一共花费了435元,其中篮球的单价比足球的单价多3元,求篮球的单价和足球的单价.设篮球的单价为x 元,足球的单价为y 元,依题意,可列方程组为____________.三、解答题(本大题共6小题,共72分)1.解分式方程:12211x x x +=-+2.先化简,再求值(32m ++m ﹣2)÷2212m m m -++;其中m 2+1.3.如图,在Rt △ABC 中,∠ACB=90°,∠A=40°,△ABC 的外角∠CBD 的平分线BE 交AC 的延长线于点E .(1)求∠CBE的度数;(2)过点D作DF∥BE,交AC的延长线于点F,求∠F的度数.4.“扬州漆器”名扬天下,某网店专门销售某种品牌的漆器笔筒,成本为30元/件,每天销售量y(件)与销售单价x(元)之间存在一次函数关系,如图所示.(1)求y与x之间的函数关系式;(2)如果规定每天漆器笔筒的销售量不低于240件,当销售单价为多少元时,每天获取的利润最大,最大利润是多少?(3)该网店店主热心公益事业,决定从每天的销售利润中捐出150元给希望工程,为了保证捐款后每天剩余利润不低于3600元,试确定该漆器笔筒销售单价的范围.5.我国中小学生迎来了新版“教育部统编义务教育语文教科书”,本次“统编本”教材最引人关注的变化之一是强调对传统文化经典著作的阅读.某校对A 《三国演义》、B《红楼梦》、C《西游记》、D《水浒》四大名著开展“最受欢迎的传统文化经典著作”调查,随机调查了若干名学生(每名学生必选且只能选这四大名著中的一部)并将得到的信息绘制了下面两幅不完整的统计图:(1)本次一共调查了_________名学生;(2)请将条形统计图补充完整;(3)某班语文老师想从这四大名著中随机选取两部作为学生暑期必读书籍,请用树状图或列表的方法求恰好选中《三国演义》和《红楼梦》的概率.6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.(1)该商家购进的第一批衬衫是多少件?(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、C3、C4、D5、B6、A7、B8、D9、B10、B二、填空题(本大题共6小题,每小题3分,共18分) 1.2、a (a+b )(a ﹣b )3、24、125.5、136、454353x y x y +=⎧⎨-=⎩三、解答题(本大题共6小题,共72分)1、3x =2、11m m +-,原式=.3、(1) 65°;(2) 25°.4、(1)10700y x =-+;(2)单价为46元时,利润最大为3840元.(3)单价的范围是45元到55元.5、(1)50;(2)见解析;(3)16.6、(1)120件;(2)150元.。

2023年人教版九年级数学下册期末考试卷及答案【完美版】

2023年人教版九年级数学下册期末考试卷及答案【完美版】

2023年人教版九年级数学下册期末考试卷及答案【完美版】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分) 1.8的相反数的立方根是( ) A .2B .12C .﹣2D .12- 2.已知x+1x =6,则x 2+21x =( ) A .38 B .36 C .34 D .323.某校“研学”活动小组在一次野外实践时,发现一种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是43,则这种植物每个支干长出的小分支个数是( )A .4B .5C .6D .74.把函数y x =向上平移3个单位,下列在该平移后的直线上的点是( )A .()2,2B .()2,3C .()2,4D .(2,5) 5.如果分式||11x x -+的值为0,那么x 的值为( ) A .-1 B .1 C .-1或1 D .1或06.正十边形的外角和为( )A .180°B .360°C .720°D .1440°7.如图,正方形ABCD 的边长为2cm ,动点P 从点A 出发,在正方形的边上沿A →B →C 的方向运动到点C 停止,设点P 的运动路程为x(cm),在下列图象中,能表示△ADP 的面积y(cm 2)关于x(cm)的函数关系的图象是( )A .B .C .D .8.如图,已知BD 是ABC 的角平分线,ED 是BC 的垂直平分线,90BAC ∠=︒,3AD =,则CE 的长为( )A .6B .5C .4D .33 9.如图,已知⊙O 的直径AE =10cm ,∠B =∠EAC ,则AC 的长为( )A .5cmB .52cmC .53cmD .6cm10.如图,矩形ABCD 的对角线AC ,BD 交于点O ,6AB =,8BC =,过点O 作OE AC ⊥,交AD 于点E ,过点E 作EF BD ⊥,垂足为F ,则OE EF +的值为( )A .485B .325C .245D .125二、填空题(本大题共6小题,每小题3分,共18分)1.化简:4=____________.2.分解因式:244m m ++=___________.3.若函数y=mx 2+2x+1的图象与x 轴只有一个公共点,则常数m 的值是_____.4.(2017启正单元考)如图,在△ABC 中,ED ∥BC ,∠ABC 和∠ACB 的平分线分别交ED 于点G 、F ,若FG =4,ED =8,求EB +DC =________.5.如图,已知正方形ABCD 的边长是4,点E 是AB 边上一动点,连接CE ,过点B 作BG ⊥CE 于点G ,点P 是AB 边上另一动点,则PD+PG 的最小值为________.6.现有两个不透明的袋子,一个装有2个红球、1个白球,另一个装有1个黄球、2个红球,这些球除颜色外完全相同.从两个袋子中各随机摸出1个球,摸出的两个球颜色相同的概率是__________.三、解答题(本大题共6小题,共72分)1.解分式方程:2311x x x x +=--2.先化简,再求值:24211326x x x x -+⎛⎫-÷ ⎪++⎝⎭,其中21x =+.3.如图,已知点A (﹣1,0),B (3,0),C (0,1)在抛物线y=ax 2+bx+c 上.(1)求抛物线解析式;(2)在直线BC 上方的抛物线上求一点P ,使△PBC 面积为1;(3)在x 轴下方且在抛物线对称轴上,是否存在一点Q ,使∠BQC=∠BAC ?若存在,求出Q 点坐标;若不存在,说明理由.4.周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D 竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.5.为了了解居民的环保意识,社区工作人员在光明小区随机抽取了若干名居民开展主题为“打赢蓝天保卫战”的环保知识有奖问答活动,并用得到的数据绘制了如图条形统计图:请根据图中信息,解答下列问题:(1)本次调查一共抽取了名居民;(2)求本次调查获取的样本数据的平均数、众数和中位数;(3)社区决定对该小区500名居民开展这项有奖问答活动,得10分者设为“一等奖”,请你根据调查结果,帮社区工作人员估计需准备多少份“一等奖”奖品.6.某商场准备购进A,B两种书包,每个A种书包比B种书包的进价少20元,用700元购进A种书包的个数是用450元购进B种书包个数的2倍,A种书包每个标价是90元,B种书包每个标价是130元.请解答下列问题:(1)A,B两种书包每个进价各是多少元?(2)若该商场购进B种书包的个数比A种书包的2倍还多5个,且A种书包不少于18个,购进A,B两种书包的总费用不超过5450元,则该商场有哪几种进货方案?(3)该商场按(2)中获利最大的方案购进书包,在销售前,拿出5个书包赠送给某希望小学,剩余的书包全部售出,其中两种书包共有4个样品,每种样品都打五折,商场仍获利1370元.请直接写出赠送的书包和样品中,A种,B 种书包各有几个?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、C2、C3、C4、D5、B6、B7、B8、D9、B10、C二、填空题(本大题共6小题,每小题3分,共18分)1、22、()22m+3、0或14、125、6、4 9三、解答题(本大题共6小题,共72分)1、x=32.3、(1)抛物线的解析式为y=﹣13x2+23x+1;(2)点P的坐标为(1,43)或(2,1);(3)存在,理由略.4、河宽为17米5、(1)50;(2)平均数是8.26;众数为8;中位数为8;(3)需要一等奖奖品100份.6、(1)A,B两种书包每个进价各是70元和90元;(2)共有3种方案,详见解析;(3)赠送的书包中,A种书包有1个,B种书包有个,样品中A种书包有2个,B种书包有2个.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二学期期末测试卷时间:120分钟满分:120分一、选择题(每题3分,共30分)1.已知反比例函数y=kx的图象经过点P(-1,2),则这个函数的图象位于() A.第二、三象限B.第一、三象限C.第三、四象限D.第二、四象限2.下列几何体是由4个相同的小正方体搭成的,其中左视图与俯视图相同的是()3.若Rt△ABC中,∠C=90°,sin A=23,则tan A的值为()A.53 B.52 C.32 D.2554.在双曲线y=1-3mx上有两点A(x1,y1),B(x2,y2),x1<0<x2,y1<y2,则m的取值范围是()A.m>13B.m<13C.m≥13D.m≤135.如图,在等边三角形ABC中,点D,E分别在AB,AC边上,如果△ADE∽△ABC,AD∶AB=1∶4,BC=8 cm,那么△ADE的周长等于()A.2 cm B.3 cm C.6 cm D.12 cm(第5题)6.小芳和爸爸在阳光下散步,爸爸身高1.8 m,他在地面上的影长为2.1 m.小芳比爸爸矮0.3 m,她的影长为()A.1.3 m B.1.65 m C.1.75 m D.1.8 m7.一次函数y1=k1x+b和反比例函数y2=k2x(k1k2≠0)的图象如图所示,若y1>y2,则x的取值范围是()A .-2<x <0或x >1B .-2<x <1C .x <-2或x >1D .x <-2或0<x <18.如图,△ABO 缩小后变为△A ′B ′O ,其中A ,B 的对应点分别为A ′,B ′,点A ,B ,A ′,B ′均在图中格点上,若线段AB 上有一点P (m ,n ),则点P 在A ′B ′上的对应点P ′的坐标为( ) A.⎝ ⎛⎭⎪⎫m 2,n B .(m ,n )C.⎝ ⎛⎭⎪⎫m ,n 2 D.⎝ ⎛⎭⎪⎫m 2,n 2 9.如图,在两建筑物之间有一旗杆GE ,高15 m ,从A 点经过旗杆顶点恰好看到矮建筑物的墙脚C 点,且俯角α为60°,又从A 点测得D 点的俯角β为30°,若旗杆底部点G 为BC 的中点,则矮建筑物的高CD 为( ) A .20 mB .10 3 mC .15 3 mD .5 6 m(第7题) (第8题) (第9题) (第10题)10.如图,已知第一象限内的点A 在反比例函数y =3x的图象上,第二象限内的点B 在反比例函数y =k x 的图象上,且OA ⊥OB ,cos A =33,则k 的值为( ) A .-5B .-6C .- 3D .-2 3二、填空题(每题3分,共24分)11.计算:2cos 245°-(tan 60°-2)2=________.12.如图,山坡的坡度为i =1∶3,小辰从山脚A 出发,沿山坡向上走了200 m 到达点B ,他上升了________m.(第12题)(第13题) (第14题) (第15题)13.如图,在△ABC 中,DE ∥BC ,DE BC =23,△ADE 的面积是8,则△ABC 的面积为________.14.如图,⊙O 是△ABC 的外接圆,AD 是⊙O 的直径,若⊙O 的半径为32,AC =2,则sin B 的值是__________.15.如图,一艘轮船在小岛A 的北偏东60°方向距小岛80 n mile 的B 处,沿正西方向航行3 h 后到达小岛A 的北偏西45°方向的C 处,则该船行驶的速度为__________n mile/h.16.如图是一个几何体的三视图,若这个几何体的体积是48,则它的表面积是________.(第16题) (第17题) (第18题)17.如图,点A 在双曲线y =1x 上,点B 在双曲线y =3x 上,点C ,D 在x 轴上,若四边形ABCD 为矩形,则它的面积为________.18.如图,正方形ABCD 的边长为62,过点A 作AE ⊥AC ,AE =3,连接BE ,则tanE =________.三、解答题(19~21题每题8分,22~24题每题10分,25题12分,共66分) 19.如图,△ABC 三个顶点的坐标分别为A (4,6),B (2,2),C (6,4),请在第一象限内,画出一个以原点O 为位似中心,与△ABC 的相似比为12的位似图形△A 1B 1C 1,并写出△A 1B 1C 1各个顶点的坐标.(第19题)20.由几个棱长为1的小立方块搭成的几何体的俯视图如图所示,小正方形中的数字表示在该位置小立方块的个数.(第20题)(1)请在方格纸中分别画出该几何体的主视图和左视图;(2)根据三视图,这个几何体的表面积为________个平方单位(包括底面积).21.如图,一棵大树在一次强台风中折断倒下,未折断树干AB与地面仍保持垂直的关系,而折断部分AC与未折断树干AB形成53°的夹角.树干AB旁有一座与地面垂直的铁塔DE,测得BE=6 m,塔高DE=9 m.在某一时刻太阳光的照射下,未折断树干AB落在地面的影子FB长为4 m,且点F,B,C,E在同一条直线上,点F,A,D也在同一条直线上.求这棵大树没有折断前的高度(结果精确到0.1 m,参考数据:sin 53°≈0.798 6,cos 53°≈0.601 8,tan 53°≈1.327 0).(第21题) 22.如图,在平面直角坐标系xOy中,一次函数y=3x+2的图象与y轴交于点A,与反比例函数y=kx ()k≠0在第一象限内的图象交于点B,且点B的横坐标为1,过点A作AC⊥y轴,交反比例函数y=kx(k≠0)的图象于点C,连接BC.求:(第22题)(1)反比例函数的解析式;(2)△ABC的面积.23.如图,AB是⊙O的直径,过点A作⊙O的切线并在其上取一点C,连接OC交⊙O于点D,BD的延长线交AC于点E,连接AD.(1)求证△CDE∽△CAD;(2)若AB=2,AC=22,求AE的长.(第23题)24.如图,将矩形ABCD沿AE折叠得到△AFE,且点F恰好落在DC上.(1)求证△ADF∽△FCE;(2)若tan ∠CEF=2,求tan ∠AEB的值.(第24题)25.如图,直线y=2x+2与y轴交于A点,与反比例函数y=kx(x>0)的图象交于点M,过点M作MH⊥x轴于点H,且tan ∠AHO=2.(1)求k的值.(2)在y轴上是否存在点B,使以点B,A,H,M为顶点的四边形是平行四边形?如果存在,求出B点坐标;如果不存在,请说明理由.(3)点N(a,1)是反比例函数y=kx(x>0)图象上的点,在x轴上有一点P,使得PM+PN 最小,请求出点P的坐标.(第25题)答案一、1. D 2. C 3. D 4. B 5. C 6. C7.A8. D9.A点拨:∵点G是BC的中点,EG∥AB,∴EG是△ABC的中位线.∴AB=2EG=30.在Rt△ABC中,∠CAB=30°,则BC=AB·tan∠BAC=30×33=10 3.延长CD至F,使DF⊥AF.在Rt△AFD中,AF=BC=103,∠F AD=30°,则FD=AF·tan∠F AD=103×33=10.∴CD=AB-FD=30-10=20(m).10.B点拨:∵cos A=33,∴可设OA=3a,AB=3a(a>0),∴OB=(3a)2-(3a)2=6a.过点A作AE⊥x轴于点E,过点B作BF⊥x轴于点F.∵点A在反比例函数y=3x的图象上,∴可设点A的坐标为⎝⎛⎭⎪⎫m,3m,∴OE=m,AE=3m.易知△AOE∽△OBF,∴AEOF=OAOB,即3mOF=3a6a,∴OF=32m.同理,BF=2m,∴点B的坐标为⎝⎛⎭⎪⎫-32m,2m.把B⎝⎛⎭⎪⎫-32m,2m的坐标代入y=kx,得k=-6.二、11. 3-112. 10013. 1814. 2315.40+403316.88点拨:由题中的三视图可以判断,该几何体是一个长方体.从主视图可以看出,该长方体的长为6;从左视图可以看出,该长方体的宽为2.根据体积公式可知,该长方体的高为486×2=4,∴该长方体的表面积是2×(6×2+6×4+2×4)=88.17.2点拨:如图,延长BA交y轴于点E,则四边形AEOD,BEOC均为矩形.由点A在双曲线y=1x上,得矩形AEOD的面积为1;由点B在双曲线y=3x上,得矩形BEOC的面积为3,故矩形ABCD的面积为3-1=2.(第17题)18. 23点拨:∵正方形ABCD的边长为62,∴AC=12.过点B作BF⊥AC于点F,则CF=BF=AF=6.设AC与BE交于点M,∵BF⊥AC,AE⊥AC,∴AE∥BF.∴△AEM∽△FBM.∴AMFM=AEFB=36=12,∴AMAF=13,∴AM=13AF=13×6=2.∴tan E =AMAE=23.三、19.解:画出的△A1B1C1如图所示.(第19题)△A1B1C1的三个顶点的坐标分别为A1(2,3),B1(1,1),C1(3,2).20.解:(1)如图所示.(第20题)(2)2421.解:根据题意,得AB⊥EF,DE⊥EF,∴∠ABC=90°,AB∥DE.∴△ABF∽△DEF.∴ABDE=BFEF,即AB9=44+6,解得AB=3.6.在Rt△ABC中,∵cos ∠BAC=AB AC,∴AC =ABcos 53°≈5.98.∴AB +AC ≈3.6+5.98≈9.6(m).答:这棵大树没有折断前的高度约为9.6 m.22.解:(1)∵点B 在一次函数y =3x +2的图象上,且点B 的横坐标为1,∴y =3×1+2=5, ∴点B 的坐标为(1,5).∵点B 在反比例函数y =k x 的图象上,∴5=k1,∴k =5. ∴反比例函数的解析式为y =5x.(2)∵一次函数y =3x +2的图象与y 轴交于点A ,当x =0时,y =2, ∴点A 的坐标为(0,2). ∵AC ⊥y 轴, ∴点C 的纵坐标为2.∵点C 在反比例函数y =5x 的图象上, 当y =2时,2=5x ,x =52, ∴AC =52. 过点B 作BD ⊥AC 于点D , ∴BD =y B -y C =5-2=3. ∴S △ABC =12AC ·BD =12×52×3=154.23.(1)证明:∵AB 是⊙O 的直径,∴∠ADB =90°. ∴∠ABD +∠BAD =90°. 又∵AC 是⊙O 的切线, ∴AB ⊥AC ,即∠BAC =90°, ∴∠CAD +∠BAD =90°. ∴∠ABD =∠CAD . ∵OB =OD ,∴∠ABD =∠BDO =∠CDE , ∴∠CAD =∠CDE , 又∵∠C =∠C ,∴△CDE∽△CAD.(2)解:∵AB=2,∴OA=OD=1.在Rt△OAC中,∠OAC=90°,∴OA2+AC2=OC2,即12+(22)2=OC2,∴OC=3,则CD=2.又由△CDE∽△CAD,得CDCE=CACD,即2CE=222,∴CE= 2.∴AE=AC-CE=22-2= 2.24.(1)证明:∵四边形ABCD是矩形,∴∠B=∠C=∠D=90°.∵矩形ABCD沿AE折叠得到△AFE,且点F在DC上,∴∠AFE=∠B=90°.∴∠AFD+∠CFE=180°-∠AFE=90°.又∠AFD+∠DAF=90°,∴∠DAF=∠CFE.∴△ADF∽△FCE.(2)解:在Rt△CEF中,tan ∠CEF=CFCE=2,设CE=a,CF=2a(a>0),则EF=CF2+CE2=5a.∵矩形ABCD沿AE折叠得到△AFE,且点F在DC上,∴BE=EF=5a,BC=BE+CE=(5+1)a,∠AEB=∠AEF,∴AD=BC=(5+1)a.∵△ADF∽△FCE,∴AFFE=ADCF=(5+1)a2a=5+12.∴tan ∠AEF=AFFE=5+12.∴tan ∠AEB=tan ∠AEF=5+1 2.25.解:(1)由y=2x+2可知A(0,2),即OA=2,∵tan ∠AHO=2,∴OH=1.∵MH⊥x轴,∴点M的横坐标为1.∵点M在直线y=2x+2上,∴点M的纵坐标为4,∴M(1,4).∵点M在反比例函数y=kx(x>0)的图象上,∴k=1×4=4. (2)存在.如图所示.(第25(2)题)当四边形B1AHM为平行四边形时,B1A=MH=4,∴OB1=B1A+AO=4+2=6,即B1(0,6).当四边形AB2HM为平行四边形时,AB2=MH=4,∴OB2=AB2-OA=4-2=2,此时B2(0,-2).综上,存在满足条件的点B,且B点坐标为(0,6)或(0,-2).(3)∵点N(a,1)在反比例函数y=4x(x>0)的图象上,∴a=4,即点N的坐标为(4,1).如图,作N关于x轴的对称点N1,连接MN1,交x轴于P,连接PN,此时PM+PN最小.(第25(3)题)∵N与N1关于x轴对称,N点坐标为(4,1),∴N1的坐标为(4,-1).设直线MN 1对应的函数解析式为y =k′x +b (k′≠0),由⎩⎨⎧4=k ′+b ,-1=4k ′+b ,解得⎩⎪⎨⎪⎧k ′=-53,b =173.∴直线MN 1对应的函数解析式为y =-53x +173.令y =0,得x =175,∴P 点坐标为⎝ ⎛⎭⎪⎫175,0.。

相关文档
最新文档