汽车车牌识别系统-车牌定位子系统的设计与实现 毕业论文

合集下载

基于深度学习的汽车车牌识别系统的设计与实现

基于深度学习的汽车车牌识别系统的设计与实现

基于深度学习的汽车车牌识别系统的设计与实现摘要:随着智能交通系统的快速发展,汽车车牌识别技术在交通管理、停车场管理等领域发挥着重要作用。

本文设计并实现了一种基于深度学习的汽车车牌识别系统,该系统能够准确、快速地识别汽车车牌号码,提高交通管理的效率和智能化水平。

本文详细介绍了系统的总体设计、关键技术、功能模块以及系统测试等方面的内容。

关键词:深度学习;汽车车牌识别;智能交通系统一、引言汽车车牌识别是智能交通系统中的一个重要组成部分,它可以实现对车辆的自动识别和管理,提高交通管理的效率和准确性。

传统的车牌识别方法主要基于图像处理和模式识别技术,存在识别准确率低、鲁棒性差等问题。

随着深度学习技术的发展,基于深度学习的车牌识别方法逐渐成为研究热点。

深度学习方法具有强大的特征提取能力和泛化能力,可以有效地提高车牌识别的准确率和鲁棒性。

二、系统总体设计(一)设计目标本系统的设计目标是实现一个高效、准确、稳定的汽车车牌识别系统,能够在不同的光照、角度和天气条件下准确识别汽车车牌号码。

具体目标包括:1.识别准确率高:系统的识别准确率应达到 95% 以上。

2.识别速度快:系统的识别速度应在 1 秒以内。

3.鲁棒性强:系统应能够在不同的光照、角度和天气条件下稳定工作。

4.易于部署和维护:系统应具有良好的可扩展性和可维护性,便于部署和维护。

(二)系统架构本系统采用客户端 / 服务器架构,主要由车牌图像采集模块、车牌识别模块和数据库管理模块组成。

车牌图像采集模块负责采集汽车车牌图像,并将图像传输到车牌识别模块进行识别。

车牌识别模块采用深度学习算法对车牌图像进行识别,识别结果存储到数据库管理模块中。

数据库管理模块负责管理车牌识别结果,并提供查询和统计功能。

(三)工作流程1.车牌图像采集:通过摄像头或其他图像采集设备采集汽车车牌图像。

2.图像预处理:对采集到的车牌图像进行预处理,包括图像增强、去噪、二值化等操作,以提高图像质量。

牌照识别系统的设计与实现

牌照识别系统的设计与实现

牌照识别系统的设计与实现随着社会的发展,更多的交通工具进入了人们的日常生活中,而交通问题也日益成为城市管理和公共安全的关注焦点。

在这种情况下,牌照识别系统应运而生,其作用在于识别和跟踪每一辆汽车。

牌照识别系统的设计与实现是一项繁琐的工作,需要合理的算法和高效的设备。

本文将详细介绍牌照识别系统的设计思路和实现方式。

一、牌照识别系统简介牌照识别系统是一种自动化的系统,它可以从摄像头或其它设备获取一帧图像,然后进行处理,提取出图像中的车辆牌照。

牌照识别系统大大提高了警察和交通管理人员的工作效率,同时,也可以对公共安全和交通流量产生积极的影响。

下面是牌照识别系统的工作流程:获取图像—预处理—特征提取—物体检测—牌照识别—结果输出二、车牌的识别方法在牌照识别系统中,车牌的识别是关键环节,它决定了整个系统的性能和准确率。

牌照识别方法主要有以下几种:1. 基于模板匹配的方法这种方法基于已知的模板图像,通过对比图像相似值来识别车牌。

该方法在识别过程中需要与大量的模板图像进行匹配,所以需要很强的计算能力。

同时,如果摄像头的角度和位置变化较大,模板匹配的效果会大打折扣,很难识别车牌。

2. 基于字符分割的方法这种方法将车牌的图像分成多个字符块,然后通过字符识别来判断每一个字符是什么,最后将字符拼接起来得到车牌号。

这种方法需要进行大量的图像处理和分割操作,而且对车牌的位置和角度较为敏感,准确率有待提高。

3. 基于深度学习的方法深度学习是现代计算机视觉领域的核心研究方向,其通过学习数据来发现数据之间的内在联系,进而实现对图像的自动分析和理解。

近年来,基于深度学习的牌照识别方法不断地被提出和改进,并在实际应用中得到了很好的效果。

目前,基于深度学习的车牌识别系统已经成为了业界的主流解决方案。

三、牌照识别系统的实现在实现牌照识别系统时,需要考虑以下几个方面:1. 硬件设备的选择牌照识别系统的硬件设备需要满足高清晰度的图像采集,同时具备较强的处理能力和大容量的存储空间。

汽车车牌识别系统-车牌定位子系统的设计与实现大学毕业论文外文文献翻译及原文

汽车车牌识别系统-车牌定位子系统的设计与实现大学毕业论文外文文献翻译及原文

毕业设计(论文)外文文献翻译文献、资料中文题目:汽车车牌识别系统-车牌定位子系统的设计与实现文献、资料英文题目:文献、资料来源:文献、资料发表(出版)日期:院(部):专业:班级:姓名:学号:指导教师:翻译日期: 2017.02.14汽车车牌识别系统---车牌定位子系统的设计与实现摘要汽车车牌识别系统是近几年发展起来的计算机视觉和模式识别技术在智能交通领域应用的重要研究课题之一。

在车牌自动识别系统中,首先要将车牌从所获取的图像中分割出来实现车牌定位,这是进行车牌字符识别的重要步骤,定位的准确与否直接影响车牌识别率。

本次毕业设计首先对车牌识别系统的现状和已有的技术进行了深入的研究,在此基础上设计并开发了一个基于MATLAB的车牌定位系统,通过编写MATLAB文件,对各种车辆图像处理方法进行分析、比较,最终确定了车牌预处理、车牌粗定位和精定位的方法。

本次设计采取的是基于微分的边缘检测,先从经过边缘提取后的车辆图像中提取车牌特征,进行分析处理,从而初步定出车牌的区域,再利用车牌的先验知识和分布特征对车牌区域二值化图像进行处理,从而得到车牌的精确区域,并且取得了较好的定位结果。

关键词:图像采集,图像预处理,边缘检测,二值化,车牌定位ENGLISH SUBJECTABSTRACTThe subject of the automatic recognition of license plate is one of the most significant subjects that are improved from the connection of computer vision and pattern recognition. In LPSR, the first step is for locating the license plate in the captured image which is very important for character recognition. The recognition correction rate of license plate is governed by accurate degree of license plate location.Firstly, the paper gives a deep research on the status and technique of the plate license recognition system. On the basis of research, a solution of plate license recognition system is proposed through the software MATLAB,by the M-files several of methods in image manipulation are compared and analyzed. The methods based on edge map and das differential analysis is used in the process of the localization of the license plate, extracting the characteristics of the license plate in the car images after being checked up for the edge, and then analyzing and processing until the probably area of license plate is extracted,then come out the resolutions for localization of the car plate.KEY WORDS:imageacquisition,image preprocessing,edge detection,binarization,licence,license plate location前言 (1)第1章绪论 (2)§1.1 课题研究的背景 (2)§1.2 车牌的特征 (2)§1.3 国内外车辆牌照识别技术现状 (3)§1.4车牌识别技术的应用情况 (4)§1.5 车牌识别技术的发展趋势 (5)§1.6车牌定位的意义 (6)第2章 MATLAB简介 (7)§2.1 MATLAB发展历史 (7)§2.2 MATLAB的语言特点 (7)第3章图像预处理 (10)§3.1 灰度变换 (10)§3.2 图像增强 (11)§3. 3 图像边缘提取及二值化 (13)§3. 4 形态学滤波 (18)第4章车牌定位 (21)§4.1车牌定位的主要方法 (21)§4.1.1基于直线检测的方法 (22)§4.1.2 基于阈值化的方法 (22)§4.1.3 基于灰度边缘检测方法 (22)§4.1.4 基于彩色图像的车牌定位方法 (25)§4.2 车牌提取 (26)结论 (30)参考文献 (31)致谢 (33)随着交通问题的日益严重,智能交通系统应运而生。

车牌定位-本科毕业设计论文

车牌定位-本科毕业设计论文

交通图象检测与处理方法研究对于交通安全、交通管理与控制具有非常重要的理论意义和实用价值。

通过视频图象的检测与识别,可以实时检测交通违章现象、识别违章车辆的车牌号码,为公安交通管理部门提供强有力的执法证据。

因此,研究交通图象检测与处理方法对智能交通运输系统的发展具有重要的推动作用。

本系统着力对车牌的识别过程进行研究和实现。

主要能够对带有车牌的图片灰度化,二值化,中值滤波等处理,并能够截取车牌图片。

车牌定位是指将车牌区域从车辆图像中分割出来,是实现整个系统的关键环节。

而车牌定位主要包含两个关键技术问题:图像的预处理和车牌定位的算法。

本论文主要应用VC语言编程,对其车牌图像进行预处理,有效的解决一些导致识别、定位错误的问题。

关键词:车牌定位,二值化,预处理Traffic image processing method for testing and research, traffic safety management and control has important theoretical significance and practical value. Through video images of detection and recognition can real-time detection and identification of violate the traffic violations phenomenon plate number for public security traffic management department, provide strong evidence of law enforcement.The focus on the license plate identification system research and implementation process. Mainly with the license plate on the picture to gray level transformation, binarization, median filtering and other processing, and can intercept license plate image.License plate location is license plate recognition technology a vital part . License plate location refers to the license plate out from the vehicle image segmentation is the key to the entire system. The license plate location primarily consists of two key technologies: image preprocessing and license plate location algorithm. Main application VC language program, to the license plate identification, orientation, image analysis, processing. And some of the mistakes in recognition, positioning problem.Keywords:Plate Positioning,Binarization ,Pretreatment目录1 前言 (1)2 车牌定位系统概述 (2)2.1 车牌定位系统基础 (2)2.1.1 我国车辆与车牌现状 (2)2.1.2 车牌定位的研究意义 (2)2.1.3 国内外学者研究现状 (3)2.2 图像处理技术基础 (4)2.2.1 数字图像基本知识 (4)2.2.2 数字图像预处理 (4)2.2.3 数字图像问题剖析 (6)2.2.4 开发相关知识 (6)3 车牌定位于提取技术 (7)3.1 车牌定位与提取流程 (7)3.2 预处理过程 (8)3.2.1 图像的灰度化处理 (8)3.2.2 直方图均衡化 (9)3.2.3 图像的二值化 (11)3.2.4 中值滤波 (14)3.3 车牌区域定位与分割 (17)3.3.1 车牌特征 (17)3.3.2 车牌分割 (18)3.3.3 彩色分割 (20)3.3.4 基于投影的精确定位 (23)4 总结 (29)4.1 论文总结 (29)4.2 问题改进与展望 (30)4.3 心得体会 (31)致谢 (32)参考文献 (33)1 前言随着国民经济的飞速发展,交通状况日益恶化,这几乎成为所有大中城市的通病。

车牌照识别系统设计与实现毕业设计论文

车牌照识别系统设计与实现毕业设计论文

车牌照识别系统设计与实现Design and Implementation of Car License Plate Recognition System毕业论文(设计)原创性声明本人所呈交的毕业论文(设计)是我在导师的指导下进行的研究工作及取得的研究成果。

据我所知,除文中已经注明引用的内容外,本论文(设计)不包含其他个人已经发表或撰写过的研究成果。

对本论文(设计)的研究做出重要贡献的个人和集体,均已在文中作了明确说明并表示谢意。

作者签名:日期:毕业论文(设计)授权使用说明本论文(设计)作者完全了解**学院有关保留、使用毕业论文(设计)的规定,学校有权保留论文(设计)并向相关部门送交论文(设计)的电子版和纸质版。

有权将论文(设计)用于非赢利目的的少量复制并允许论文(设计)进入学校图书馆被查阅。

学校可以公布论文(设计)的全部或部分内容。

保密的论文(设计)在解密后适用本规定。

作者签名:指导教师签名:日期:日期:注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

3.附件包括:任务书、开题报告、外文译文、译文原文(复印件)。

4.文字、图表要求:1)文字通顺,语言流畅,书写字迹工整,打印字体及大小符合要求,无错别字,不准请他人代写2)工程设计类题目的图纸,要求部分用尺规绘制,部分用计算机绘制,所有图纸应符合国家技术标准规范。

图表整洁,布局合理,文字注释必须使用工程字书写,不准用徒手画3)毕业论文须用A4单面打印,论文50页以上的双面打印4)图表应绘制于无格子的页面上5)软件工程类课题应有程序清单,并提供电子文档5.装订顺序1)设计(论文)2)附件:按照任务书、开题报告、外文译文、译文原文(复印件)次序装订3)其它摘要汽车牌照自动识别系统是智能交通系统的重要组成部分,是高科技的公路交通监控管理系统的主要功能模块之一,汽车牌照识别技术的研究有重要的现实应用意义。

车牌识别毕业设计论文

车牌识别毕业设计论文

车牌识别毕业设计论文车牌识别是一项实用的技术,已广泛应用于交通管理、安全监控和智能导航等领域。

本毕业设计旨在研究和实现一种高效准确的车牌识别系统,通过图像处理和模式识别的方法,实现车牌的自动检测、字符分割和识别。

在车牌识别系统中,图像处理是最关键的环节之一、首先,需要对图像进行预处理,包括二值化、滤波和去噪等操作,以提高后续处理的准确性。

然后,通过边缘检测和形态学操作,可以实现车牌的自动检测。

通过比较不同车牌的特征,可以找到最佳的车牌位置。

在车牌的字符分割过程中,一般采用基于垂直和水平投影的方法。

首先,通过垂直投影,可以得到每个字符的位置和宽度。

然后,通过水平投影,可以得到字符的高度和行间距。

通过这些信息,可以将车牌字符逐个分割出来,为后续的字符识别提供准备。

字符识别是车牌识别系统的最后一步,也是最复杂的一步。

常用的方法包括基于模板匹配和基于机器学习的方法。

在模板匹配中,需要提前准备一组字符模板,并将待识别的字符与模板进行比较,找出最佳匹配的字符。

在机器学习方法中,常用的算法包括支持向量机(SVM)和深度学习等,通过训练大量的样本数据,建立一个分类模型,实现字符的自动识别。

在实际应用中,车牌识别系统还需要考虑到诸多因素,如车牌大小的变化、光线条件的差异和图像角度的旋转等。

为了提高系统的鲁棒性,可以采用自适应阈值处理、学习算法和特征提取等技术手段。

通过本毕业设计,可以深入了解车牌识别的原理和实现方法,并通过实验验证其准确性和效率。

此外,还可以进一步优化和改进车牌识别系统,以提高其性能和适应性。

《2024年针对雾霾天气的车牌识别系统的设计与实现》范文

《2024年针对雾霾天气的车牌识别系统的设计与实现》范文

《针对雾霾天气的车牌识别系统的设计与实现》篇一一、引言在如今城市环境污染日益严重的情况下,雾霾天气频繁出现给城市交通管理和车辆监管带来了巨大的挑战。

因此,开发一套针对雾霾天气的车牌识别系统,成为了迫切的需求。

该系统不仅可以有效提升交通管理的智能化水平,还可以加强车辆的安全监管,减少交通事故的发生。

本文将详细介绍针对雾霾天气的车牌识别系统的设计与实现过程。

二、系统设计1. 系统架构设计本系统采用模块化设计思想,主要包括图像预处理模块、车牌定位模块、车牌字符识别模块和系统管理模块。

其中,图像预处理模块负责对输入的图像进行去噪、增强等处理,以便后续的识别工作;车牌定位模块通过图像处理技术,自动定位并提取出车牌区域;车牌字符识别模块负责对提取出的车牌进行字符分割和识别;系统管理模块则负责整个系统的运行管理和数据维护。

2. 图像预处理图像预处理是车牌识别系统的重要环节,主要目的是提高图像的质量,以便后续的识别工作。

预处理过程包括去噪、对比度增强、二值化等操作。

其中,去噪是去除图像中的无用信息,如雾霾、光线干扰等;对比度增强则是通过调整图像的亮度、对比度等参数,使车牌区域更加清晰;二值化则是将图像转换为黑白二值图像,以便后续的图像处理工作。

3. 车牌定位车牌定位是车牌识别系统的关键环节,主要通过图像处理技术自动定位并提取出车牌区域。

常用的车牌定位方法包括颜色特征法、边缘检测法、模板匹配法等。

在实际应用中,本系统采用了多种方法的组合应用,以提高车牌定位的准确性和稳定性。

4. 车牌字符识别车牌字符识别是车牌识别系统的核心环节,主要负责对提取出的车牌进行字符分割和识别。

该过程主要包括字符分割和字符识别两个步骤。

字符分割是通过图像处理技术将车牌上的每个字符分割出来;字符识别则是通过机器学习、深度学习等技术对分割出的字符进行识别。

为了提高识别的准确性和效率,本系统采用了多种算法的组合应用。

三、系统实现在系统实现过程中,我们采用了多种技术和工具。

车牌识别系统的设计与实现

车牌识别系统的设计与实现

车牌识别系统的设计与实现摘要智能交通系统是21世纪道路交通管理的发展趋势。

高速公路的不断发展和车辆管理体制的不断完善,为智能交通管理系统进入实际应用领域提供了契机。

牌照自动识别监控系统正是在这种应用下研制出来的,它能够自动、实时地检测车辆、识别汽车牌照,从而监控车辆的收费、闯关、欠费以及各种舞弊现象。

作为智能交通系统的重要组成部分,汽车牌照识别技术(License Plate Recognition, LPR,简称“车牌通”)是一个以特定目标为对象的专用计算机视觉系统,该系统能从一幅图像中自动提取出车牌图像,自动分割字符,进而对字符进行识别,它运用模式识别、人工智能技术,对采集到的汽车图像,能够实时准确地自动识别出车牌的数字、字母及汉字字符,并以计算机可直接运行的数据形式给出识别结果,使得车辆的电脑化监控和管理成为现实。

关键词:牌照识别,智能交通管理系统,车牌定位,字符分割License Plate Location and Recognition SystemAbstractIntelligent Transportation System is a developing trendence of Transportation Management in the 21st century. The expressway is developing constantly, and vehicle management system is perfecting. It has offered the opportunity for the fact that the Management System of the intelligent transportation entering the application actually. The License Plate Recognition system just developed out under this application, it can measure vehicle , discern automobile license plate automaticly in real-time, thus control charge of vehicle, make a breakthrough, owe fee and various kinds of not to practice fraud the phenomenon. Important component as the intellectual traffic system, LPR is a computer visual system for special purpose of object, this system can draw License Plate image and separate character automaticly from a image , and then distinguishes for characters, it utilizes template recognition and the technology of artificial intelligence, that automobile image carries out that arrives for collection can distinguish character, character and the figure of License Plate accurately, may give identification result with data directly, make the monitoring of vehicle become realistic.Key words:LPR( License Plate Recognition); ITS (Intelligent Transportation System) ;template operation目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1 引言 (1)1.2 研究背景及意义 (1)1.3 论文主要研究内容 (3)第二章车牌识别系统简介 (4)2.1 车牌识别系统概述 (4)2.2 图像的灰度化 (5)2.3 图像的二值化和阈值处理 (6)2.4 图像的锐化 (7)2.5 图像的去噪 (7)2.6 灰度拉伸 (7)2.7 图像的倾斜矫正 (7)2.8 车牌字符分割 (8)2.9 字符识别 (8)第三章 LPR系统的设计与分析 (9)3.1 引言 (9)3.2 LPR中的关键技术及其算法实现 (9)3.2.1 车牌区域提取 (9)3.2.2 牌照图像二值化 (22)3.2.3 模板运算 (28)第四章系统实现 (31)4.1 主要数据结构 (31)4.2 硬件支持 (31)4.3 软件的安装及系统的实现 (32)第五章总结 (34)参考文献 (35)致谢 (36)第一章绪论1.1引言伴随着世界各国汽车数量的增加,城市交通状况日益受到人们的重视。

车牌识别设计与实现(毕业论文)

车牌识别设计与实现(毕业论文)

目录摘要 (Ⅰ)Abstract (II)1 绪论 (1)1。

1 课题的来源及意义 (1)1.2 课题主要研究的问题 (2)1。

3 系统设计的目标及基本思路 (2)1.3.1 设计目标 (2)1.3。

2 基本思路 (3)2 图像预处理 (4)2.1 汽车牌照的特征 (4)2。

2 灰度变换 (5)2.3 图像增强 (6)2.4 图像边缘提取及二值化 (7)2。

4。

1 图像边缘提取 (7)2。

4.2 灰度图像二值化 (14)2。

5 形态学滤波 (15)3 车牌定位方法研究 (19)3.1 车牌定位常用方法介绍 (19)3.1.1 基于纹理特征分析的定位方法 (19)3。

1。

2 基于数学形态学的定位方法 (19)3.1。

3 基于边缘检测的定位方法 (19)3.1。

4 基于小波分析的定位方法 (19)3.1。

5 基于图像彩色信息的定位方法 (20)3。

2 基于行扫描灰度跳变分析的车牌定位方法 (20)4 车牌识别方法研究 (22)4。

1 牌照区域的分割和图像进一步处理 (22)4.1.1牌照区域的分割 (22)4。

1.2车牌进一步处理 (22)4.2 字符的分割与归一化 (23)4.2。

1字符分割 (23)4。

2。

2字符归一化 (24)4.3 字符的识别 (24)5 总结与展望 (27)5。

1 总结 (27)5.2心得体会 (27)5。

3展望 (28)致谢 (29)参考文献 (30)附录一 (31)摘要车牌识别系统作为智能交通系统的一个重要组成部分,在交通监控中占有很重要的地位.车牌识别系统可分为图像预处理、车牌定位和字符识别3个部分,其中车牌定位作为获得车辆牌照图像的重要步骤,是后续的字符识别部分能否正确识别车牌字符的关键环节。

车牌定位系统实现对车辆牌照进行定位的功能,即从包含整个车辆的图像中找到车牌区域的位置,并对该车牌区域进行定位显示,将定位信息提供给字符识别部分。

针对车牌本身固有的特征,本文首先介绍了在车牌定位过程中常用的几种数字图像处理技术:图像的二值化处理、边缘检测和图像增强等。

本科毕业论文车牌识别管理系统

本科毕业论文车牌识别管理系统

摘要随着我国道路的迅猛发展,智能交通系统越来越成为现代交通道路管理的强烈需求。

而类区域性的车辆管理更是成为了需求的热点。

不论是小区还是高校,又或则是高速公路的收费站对于车辆管理的智能化都是有着迫切的期望。

本论文研究的主要内容是将高校作为类区域的典型,从高校的安保以及便捷管理出发,设计了一个基于图像识别的车辆管理系统网站。

从网站的功能划分,到网站的重点功能图像识别出发规划出了网站的雏形。

另外为了网站整体的实现,对网站的重点功能车牌识别中的车牌定位编写了一个专门的java程序对车牌识别进行了分析以及实现。

本文所探究的车牌识别,是基于图像识别的大体处理步骤的包括了车牌的定位、分隔、识别。

其中主要是研究车牌的定位,即从图像的灰度、强化边缘最后再到车牌定位。

其中车牌定位后的分割,以及识别,还有与数据库的比对本文并没有涉及。

程序实现结果表明,车牌定位成功效果比较理想,但是还有一些车牌难以定位。

期待根据这个设计做出的智能车辆管理系统。

关键词车辆管理系统图像识别高校安保目录1 前言 (1)1.1 设计背景与意义 (1)1.2 设计目标 (1)2系统开发环境 (2)2.1 系统配置 (2)2.2 图像识别技术简介 (3)2.3 车牌识别技术简介 (3)3 总体设计 (4)4 详细设计 (5)4.1系统功能模块设计 (5)4.2 图像识别功能设计以及实现 (6)4.2.1 灰度化 (6)4.2.2 灰度直方图 (8)4.2.3 图像均衡化 (9)4.2.4 边缘化 (11)4.2.5 找车牌 (13)4.2.6 二值化 (21)4.3 数据库设计 (24)4.4.1 数据库E-R图设计 (24)4.4.2 创建主要数据库 (26)5 运用读取jar包实现车牌号码识别 (27)6 总结与展望 (34)6.1 总结 (34)6.2 展望 (34)致谢 (36)1 前言1.1 设计背景与意义汽车工业产生一百多年来,一直都被当成是工业发达国家的经济指标,在国家的实际成长中发挥着非常重要的作用。

基于opencv的车牌识别系统设计与实现-毕业论文

基于opencv的车牌识别系统设计与实现-毕业论文

---文档均为word文档,下载后可直接编辑使用亦可打印---摘要科技的进步以及人民自身的生活水平的不断提高,使得人们对于日常的出行需求变得不断增长。

汽车作为最常见的交通工具已经越来越成为人们最初的选择。

大量新的车辆在不断地投入到道路中使用,而以传统的人工方式对汽车车辆的管理也变得愈加困难。

因此,使用计算机来代替人来处理相对繁重的工作是必要的。

一个良好的交通管理系统是实现道路管理的基础。

想要对于汽车车辆进行管理,最有效的识别特征之一便是汽车的车牌,作为目前最常见的使用技术,车牌识别广泛应用在交叉路段、停车场、收费站等各种场合的监控与管理之中。

所以需要相应的技术来完成以上的需求。

本文以python为使用语言,OpenCV为主要工具,通过输入带有汽车车牌的图像,根据车牌所特有的一些特征,垂直投影法、SVM的方法来完成对于汽车车辆的车牌定位、车牌的字符分割以及字符识别功能。

最终将所识别到的车牌字符输出显示出来。

关键词:OpenCV;投影法;SVM;车牌识别AbstractThe advancement of science and technology and the continuous improvement of people's own living standards have made people's daily travel needs continue to grow. As the most common mode of transportation, cars have become the initial choice of people. A large number of new vehicles are constantly being put into use on the road, and the management of automobile vehicles by traditional manual methods has become increasingly difficult. Therefore, it is necessary to use a computer instead of a person to handle relatively heavy work. A good traffic management system is the foundation for road management.One of the most effective identification features for the management of automobile vehicles is the license plate of the car. As the most commonly used technology at present, license plate recognition is widely used in monitoring and management of various occasions such as intersections, parking lots, toll stations In. Therefore, corresponding technology is needed to complete the above requirements. This article uses python as the language and OpenCV as the main tool. By inputting an image with a car license plate, according to some characteristics unique to the license plate, vertical projection and SVM are used to complete the license plate positioning, character segmentation and characters of the car license plate. Recognition function. Finally, the recognized license plate characters are displayed.Keywords:OpenCV;SVM;projection method; License Plate Recognition1 绪论1.1选题背景与意义1.1.1选题背景随着人们的生活水平的不断提高以及对日常出行需求的不断增长,汽车成为越来越多人出行所选择的交通工具。

车牌识别系统的设计与实现毕业设计论文

车牌识别系统的设计与实现毕业设计论文

本科生毕业设计(论文)题目:车牌识别系统的设计与实现毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。

尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。

对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。

作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。

作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。

除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。

对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。

本人完全意识到本声明的法律后果由本人承担。

作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。

本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。

涉密论文按学校规定处理。

作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。

车牌识别系统算法的研究与实现(小论文).doc

车牌识别系统算法的研究与实现(小论文).doc

基于图像处理的汽车牌照的识别作者:陈秋菊指导老师:李方洲(温州师范学院物理与电子信息学院 325027)摘要:以一幅汽车牌照的识别为例,具体介绍了车牌自动识别的原理。

整个处理过程分为预处理、边缘提取、车牌定位、字符分割、字符识别五大模块,用MATLAB软件编程来实现每一个部分,最后识别出汽车牌照。

在研究的同时对其中出现的问题进行了具体分析,处理。

寻找出对于具体的汽车牌照识别过程的最好的方法。

关键词:汽车牌照车牌提取字符分割字符识别The vehicle license recognition based on the image processingAuthor:Chen QiujuTutor:Li Fangzhou(School of Physics and Electronic Information Wen Zhou Normal College 325027) Abstract:With one vehicle license recognition, the principle of the automobile License recognition is introduced .This process was divided into pre-process,edge extraction, vehicle license location, character division and character recognition, which is implemented separated by using MATLAB. The license is recognized at last. At the same time, the problems are also analyzed And solved in the process. The best method of recognition to the very vehicle license is found.Keywords: vehicle license vehicle license location character segmentationCharacter recognition1.引言1.1 选题意义汽车牌照自动识别系统是以汽车牌照为特定目标的专用计算机视觉系统,是计算机视觉和模式识别技术在智能交通领域应用的重要研究课题之一,是实现交通管理智能化的重要环节,它可广泛应用于交通流量检测,交通控制与诱导,机场、港口、小区的车辆管理,不停车自动收费,闯红灯等违章车辆监控以及车辆安全防盗等领域,具有广阔的应用前景。

毕业设计论文_车牌识别系统的设计与实现参考

毕业设计论文_车牌识别系统的设计与实现参考

毕业设计论文_车牌识别系统的设计与实现参考摘要:车牌识别系统是基于计算机视觉和图像处理技术的智能化交通系统的重要组成部分。

本文基于深度学习算法,结合图像处理技术,设计并实现了一套车牌识别系统。

该系统主要包括图像预处理、车牌定位、字符分割和字符识别四个模块。

经过大量实验和测试,验证了该系统具有较高的准确性和实用性。

本文的研究成果对于智能交通系统的发展和优化有着重要的意义。

关键词:车牌识别系统;深度学习算法;图像预处理;车牌定位;字符分割;字符识别1.引言车牌识别系统是智能交通系统中的一个重要组成部分,具有广泛的应用前景。

但是由于车牌图像的复杂性和多样性,传统的车牌识别方法存在一些问题,如准确率低、鲁棒性差等。

因此,本文基于深度学习算法,结合图像处理技术,设计并实现了一套车牌识别系统。

2.系统设计车牌识别系统主要由图像预处理、车牌定位、字符分割和字符识别四个模块组成。

图像预处理主要包括灰度化、二值化和图像增强等处理,旨在提高车牌图像的质量和清晰度。

车牌定位利用图像处理技术定位出图像中的车牌区域,为后续字符分割和字符识别提供基础。

字符分割将车牌图像中的字符进行分割,以便进行后续的字符识别。

最后,字符识别利用深度学习算法对分割好的字符进行识别。

3.系统实现本文使用Python编程语言和OpenCV、TensorFlow等开发工具实现了车牌识别系统。

首先,对原始图像进行灰度化处理,并使用图像增强技术提高图像的质量。

然后,利用二值化处理将图像转换为二值图像。

接下来,利用图像处理技术对二值图像进行车牌定位,找到车牌区域。

然后,对车牌区域进行字符分割,得到分割好的字符。

最后,利用TensorFlow实现的深度学习模型对字符进行识别。

4.实验结果通过大量实验和测试,本文的车牌识别系统在车牌图像的识别准确率和鲁棒性方面取得了较好的效果。

实验结果表明,该系统在光照条件不同、车牌类型不同等复杂环境下仍能实现较高的识别准确率。

车牌识别毕业论文

车牌识别毕业论文

摘要车牌自动识别技术是实现智能交通系统的关键技术,对我国交通事业的发展起着十分重要的作用,进而影响我国的经济发展速度及人们的生活质量。

车牌识别系统运用模式识别、人工智能技术,能够实时准确地自动识别出车牌的数字、字母及汉字字符,进而实现电脑化监控和管理车辆。

一个车牌识别系统的基本硬件配置有照明装置、摄像机、主控机、采集卡等。

而软件则是由具有车牌识别功能的图像分析和处理软件,以及能够具体满足应用需求的后台管理软件组成。

车牌自动识别系统主要分为图像预处理、车牌定位、字符分割和字符识别等主要模块,也包括后续应用程序的开发。

针对不同的模块,本文研究分析了现有的理论算法,并提出了具有实际应用意义的解决方案。

1.在图像预处理模块,因为人眼对于不同颜色分量的敏感度不同,图像灰度化采用加权平均值法;二值化过程中阈值的选取至关重要,本文采用动态自适应阈值法,效果理想;边缘提取利用了拉普拉斯算子;去噪过程采用的是中值滤波方法;2.车牌定位模块包括粗定位和细定位,本文通过分析车牌的尺寸、类型、颜色,得到不同的特征向量,即车牌的几何特征、灰度分布特征、投影特征和字符排列特征等,利用这些特征进行车牌定位;3.在车牌字符分割模块,提出了双向对比垂直投影分割法,该方法基于车牌的垂直投影,能够将字符准确的分割开,利于车牌字符识别: 4.本文对车牌数字和车牌字母及汉字提出了不同的处理方法,数字识别采用投影技术,汉字和字母识别应用BP神经网络技术,兼顾了识别准确率和识别速度;根据上述方法原理,基于MATLAB软件进行程序设计,编制了车牌自动识别软件。

关键字:车牌图像;图像处理;字符分割;BP神经网络AbstractLicense plate recognition technology is to realize the key technology of intelligent transportation system of our country, the development of the cause of traffic plays a very important role, then affects the economic development of our country and speed and people's quality of life. License plate recognition system with pattern recognition, artificial intelligence technology, to real-time accurately recognize the license plate number of automatic, letters and Chinese characters, and achieve computerized monitoring and management vehicles. A license plate recognition system of basic hardware configuration have lighting devices, video camera, master control machine, acquisition card, etc. And software is with license plate identification function by the image analysis and processing software, and can meet the demand of the specific application background management software component. License plate recognition system mainly divided into the image preprocessing, license plate location, character segment and character recognition and other major modules, including the follow-up application development.In view of the different module, this paper analyzed the existing algorithm theory, and puts forward the practical significance of the solution. 1. In the image preprocessing module, for the human eye to different color the sensitivity of the component is different, the image intensity by weighted average method; In the process of binary of the threshold is very important to select is adopted in this paper, dynamic adaptive threshold value method, the effect ideal; Using the Laplace operator edge extraction; Denoising the process is the median filtering method; 2. The license plate localization module contains coarse position and fine positioning, the paper analyzes the license plate size, type, color, get different characteristic vector, namely the geometrical characteristics of the license plate, gray distribution, projection characteristics and characters arrangement characteristics, use these characteristics of the license plate location; 3. In the license plate character segmentation module, and put forward the two-way contrast vertical projection segmentation method, this method is based on the license plate vertical projection, can make the character of accurate separated, beneficial to the license plate character recognition: 4. This article on license plate Numbers and letters and characters put forward different processing methods, number recognition by projection technology, Chinese characters and letters recognition application BP neural network technology, and taking account of the identification accuracy and recognition rate; According to the above method, based on the MATLAB software program design, compiled the license plate recognition software.Keywords License plate image, image processing, character segment, the BP neural network目录摘要............................................. 错误!未定义书签。

车牌识别系统的设计毕业论文

车牌识别系统的设计毕业论文

车牌识别系统的设计毕业论文摘要:随着现代交通的快速发展,车辆数量的剧增,传统的人工车牌识别系统已经无法满足实际需要。

为了解决这一问题,本文提出了一种基于图像处理和机器学习算法的车牌识别系统设计。

该系统由图像采集、图像预处理、车牌定位与分割、字符识别等模块组成。

通过实验证明,该系统具有较高的识别准确度和稳定性,能够有效提高车辆信息的自动化识别能力。

关键词:车牌识别系统;图像处理;机器学习;识别准确度1.引言车牌识别技术是现代交通管理和车辆管理的重要组成部分。

传统的车牌识别系统依靠人工操作,无法满足高效、准确的识别需求。

因此,设计一种基于图像处理和机器学习算法的车牌识别系统具有重要的意义和实际应用价值。

本文将从图像采集、图像预处理、车牌定位与分割、字符识别等方面进行研究,提出一种有效的车牌识别系统设计方案。

2.系统设计2.1图像采集2.2图像预处理车牌识别系统的图像预处理是为了提取图像中的车牌信息,主要包括图像增强、图像去噪和图像分割等。

图像增强可以通过调整图像的亮度、对比度和色彩等参数来提高车牌图像的质量。

图像去噪可以使用滤波算法来消除图像中的噪声,以提高后续处理的准确性。

图像分割是将图像中的车牌区域与其他区域进行分离,主要采用阈值分割和边缘检测等算法。

2.3车牌定位与分割车牌识别系统需要对图像中的车牌进行定位和分割,以便进行后续的字符识别。

车牌定位可以通过车牌的颜色、形状和纹理等特征进行判断。

分割车牌可以采用基于连通区域的分割算法,通过分析车牌区域中的字符间距和字符高度等特征,对车牌字符进行分割。

2.4字符识别车牌字符识别是车牌识别系统的核心部分,一般使用机器学习算法来实现。

可以采用基于模板匹配、基于统计特征、基于神经网络等方法进行字符识别。

通过训练样本和特征提取,建立车牌字符分类模型,对分割好的车牌字符进行识别。

3.实验结果与分析本文设计了一种基于图像处理和机器学习算法的车牌识别系统,并进行了实验验证。

车辆牌照自动识别系统设计及实现

车辆牌照自动识别系统设计及实现
称重系统:把识别的车牌与相关车辆数据一起保存,降低劳动强度。
交通监控系统:通过摄像机设备监视各个路段交通流和车里狼的状况,获得道路上的各种信息,如车辆排队队形、对长和密度。观察和记录下交通事故。同时识别系统可以同测速雷达一起配合使用,可以检测出超速的车辆。当发现有车辆违规,通过车辆牌照自动定位系统识别出该车的车牌号,并向该车发送其违规的警告。
1.1
1
从20世纪80年代开始,因为我国经济的迅猛发展,车辆规模和车流量都大幅度上升,全国车量每年大均增高15%,城市车辆行驶里程每年大均增高7.9%,城市和高速交通的现代化管理技术的提高已经势在必行,迫切的需要高科技来加强道路上交通的管理和控制水平。
智能交通管理系统(Intelligent Transport Systems,ITS)是本世纪交通道路管理发展的主要方向,为智能交通管理系统进入实际应用领域提供了契机。在智能交通管理系统中,车牌识别(License Plate Recognition,LPR)系统是实现智能化交通管理的重要环节,其采用数字图像处理技术以及动态目标自动跟踪技术,对图像进行快速实时的自动识别处理 (车牌自动定位、字符分割、字符识别),是集车辆视频检测、动态模糊消除、车牌自动识别和车辆管理数据库自动检索等先进技术于一体的检测系统。同时采用先进的电脑控制云台镜头智能调节功能,速度快、清晰度高、使用方便。在不影响交通秩序的情况下,能随时随地自动实时检测、识别、检索和记录行进中的车辆车牌。系统在使用时,可以将摄像机放在车顶或路旁,主机与供电系统放在车辆内部,主机对摄像机获得的画面进行处理,自动进行车牌识别并与主机中的数据库进行对比,发现欠费、违章、盗抢、无记录等车辆自动报警,以便及时拦截。主机中的数据库通过移动硬盘、光盘、有线、无线网络及时更新。可以实现远程控制、查询。其具体的应用可概括为:

毕业设计 车牌识别

毕业设计 车牌识别

毕业设计车牌识别车牌识别技术在近年来得到了广泛的应用和研究,它不仅在交通管理、安全监控等领域发挥着重要作用,还在智能驾驶、智慧城市建设等方面展现出巨大的潜力。

本文将从车牌识别技术的原理、应用场景和未来发展等方面进行探讨。

一、车牌识别技术的原理车牌识别技术主要基于计算机视觉和模式识别的理论和方法,通过对车牌图像进行处理和分析,提取出车牌上的字符信息,从而实现对车牌的自动识别。

其主要包括图像采集、图像预处理、特征提取和字符识别等步骤。

在图像采集方面,目前常用的方式是通过摄像头对车辆进行拍摄,获取车牌图像。

而随着摄像头技术的不断进步,高清晰度的图像可以更好地提供给后续处理算法使用。

在图像预处理方面,主要是对车牌图像进行灰度化、二值化、去噪等操作,以便更好地提取和分析车牌上的字符信息。

这一步骤的准确性和效率对于后续的识别结果有着重要的影响。

特征提取是车牌识别技术的核心部分,它通过对车牌图像进行形态学处理、边缘检测和轮廓提取等操作,提取出车牌上的字符特征。

这些特征可以是字符的形状、颜色、纹理等信息,通过对这些特征的分析和匹配,可以实现对车牌上的字符进行识别。

字符识别是车牌识别技术的最后一步,它主要利用机器学习和模式识别的方法,将车牌上的字符与已知的字符模板进行比对和匹配,从而得到最终的识别结果。

目前常用的字符识别算法包括基于模板匹配的方法、基于神经网络的方法和基于深度学习的方法等。

二、车牌识别技术的应用场景车牌识别技术在交通管理、安全监控等领域具有广泛的应用。

在交通管理方面,它可以实现对违章车辆的自动识别和记录,提高交通违法的查处效率;在安全监控方面,它可以用于对车辆的出入口进行监控和管理,提高安全防范的能力。

此外,车牌识别技术还可以应用于智能驾驶和智慧城市建设等领域。

在智能驾驶方面,它可以实现对车辆的自动跟踪和识别,提高自动驾驶系统的安全性和可靠性;在智慧城市建设方面,它可以用于停车场管理、道路拥堵监测等方面,提高城市交通的效率和便利性。

车牌识别毕业论文

车牌识别毕业论文

车牌识别毕业论文车牌识别毕业论文近年来,随着智能交通系统的迅猛发展,车牌识别技术成为了一个备受关注的研究领域。

车牌识别技术的应用范围广泛,不仅可以用于交通管理,还可以应用于停车场管理、车辆追踪等领域。

本篇文章将探讨车牌识别技术的原理、应用以及未来的发展趋势。

一、车牌识别技术的原理车牌识别技术主要依靠计算机视觉和模式识别的方法,通过对车牌图像的处理和分析,将车牌上的字符信息提取出来。

车牌识别的过程可以分为图像获取、预处理、字符分割和字符识别四个步骤。

首先,图像获取是车牌识别的第一步,可以通过摄像头、监控摄像头等设备获取车辆的图像。

然后,对获取到的图像进行预处理,包括灰度化、二值化、噪声去除等操作,以提高后续处理的效果。

接下来,进行字符分割,将车牌上的字符分离出来。

字符分割是车牌识别中的一个关键步骤,需要克服车牌上字符之间的相互干扰和字符形状的多样性等问题。

最后,对分割出的字符进行识别,可以使用模板匹配、神经网络等方法进行字符识别,以得到最终的车牌号码。

二、车牌识别技术的应用车牌识别技术在交通管理中有着广泛的应用。

首先,它可以用于交通违法监控,通过对车辆的车牌进行识别,可以实现对违法车辆的自动抓拍和追踪,提高交通管理的效率。

其次,车牌识别技术还可以应用于停车场管理,实现对车辆的自动进出和停车费的自动结算,方便了车主的停车体验。

此外,车牌识别技术还可以用于车辆追踪。

通过对车辆的车牌进行识别,可以实现对车辆的实时追踪和监控,有助于提高车辆的安全性和防盗能力。

三、车牌识别技术的未来发展趋势随着科技的不断进步,车牌识别技术也在不断发展。

未来,车牌识别技术将朝着以下几个方向进行发展。

首先,车牌识别技术将更加智能化。

随着人工智能技术的发展,车牌识别系统将具备更强的自学习和自适应能力,可以实现对不同类型车牌的自动识别,提高识别的准确性和稳定性。

其次,车牌识别技术将更加高效化。

未来的车牌识别系统将采用更快速、更高效的算法,实现对车牌的实时识别和处理,提高交通管理的效率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车车牌识别系统---车牌定位子系统的设计与实现摘要汽车车牌识别系统是近几年发展起来的计算机视觉和模式识别技术在智能交通领域应用的重要研究课题之一。

在车牌自动识别系统中,首先要将车牌从所获取的图像中分割出来实现车牌定位,这是进行车牌字符识别的重要步骤,定位的准确与否直接影响车牌识别率。

本次毕业设计首先对车牌识别系统的现状和已有的技术进行了深入的研究,在此基础上设计并开发了一个基于MATLAB的车牌定位系统,通过编写MATLAB文件,对各种车辆图像处理方法进行分析、比较,最终确定了车牌预处理、车牌粗定位和精定位的方法。

本次设计采取的是基于微分的边缘检测,先从经过边缘提取后的车辆图像中提取车牌特征,进行分析处理,从而初步定出车牌的区域,再利用车牌的先验知识和分布特征对车牌区域二值化图像进行处理,从而得到车牌的精确区域,并且取得了较好的定位结果。

关键词:图像采集,图像预处理,边缘检测,二值化,车牌定位ENGLISH SUBJECTABSTRACTThe subject of the auto matic recognition of license plate is one of the most significant subjects that are improved fro m the connection o f computer vision and pattern recognition. In LPSR, the first step is for locating the license plate in the captured image which is very important for character recognition. The recognition correctio n rate of license plate is governed by accurate degree of license plate location.Firstly, the paper gives a deep research on the status and techniq ue of the plate license recognition system. On the basis of research, a solution of plate license recognition system is proposed through the software MATLAB,by the M-files several of methods in image manip ulatio n are co mpared and analyzed. The methods based on edge map and das differential analysis is used in the process of the localization of the license plate,extracting the characteristics of the license plate in the car images after being checked up for the edge, and then analyzing and processing until the probably area of license p late is extracted,then come out the resolutions for localization of the car plate.KEY WORDS:imageacquisition,image preprocessing,edge detection,binarizatio n,licence,license plate locatio n目录前言 (4)第1章绪论 (5)§1.1 课题研究的背景 (5)§1.2 车牌的特征 (5)§1.3 国内外车辆牌照识别技术现状 (6)§1.4车牌识别技术的应用情况 (8)§1.5 车牌识别技术的发展趋势 (8)§1.6车牌定位的意义 (9)第2章 MATLAB简介 (10)§2.1 MATLAB发展历史 (10)§2.2 MATLAB的语言特点 (10)第3章图像预处理 (13)§3.1 灰度变换 (13)§3.2 图像增强 (14)§3. 3 图像边缘提取及二值化 (16)§3. 4 形态学滤波 (21)第4章车牌定位 (24)§4.1 车牌定位的主要方法 (24)§4.1.1基于直线检测的方法 (25)§4.1.2 基于阈值化的方法 (25)§4.1.3 基于灰度边缘检测方法 (25)§4.1.4 基于彩色图像的车牌定位方法 (28)§4.2 车牌提取 (29)结论 (33)参考文献 (34)致谢 (36)前言随着交通问题的日益严重,智能交通系统应运而生。

从20世纪90年代起,我国也逐渐展开了智能交通系统的研究和开发,探讨在现有的交通运输网的基础上,提高运输效率,保障运输安全。

我国加强智能交通系统(ITS)的研究与开发势在必行,特别是考虑到我国的国情和我国经济的快速发展,社会信息化程度日益提高,交通管理智能化成为发展的趋势。

汽车牌照自动识别系统是近几年发展起来的计算机视觉和模式识别技术在智能交通领域应用的重要研究课题之一。

车牌识别的目的是对摄像头获取的汽车图像进行预处理,确定车牌位置,提取车牌上的字符串,并对这些字符进行识别处理,用文本的形式显示出来。

车牌自动识别技术在智能交通系统中具有重要的应用价值。

在车牌自动识别系统中,首先要将车牌从所获取的图像中分割出来,这是进行车牌字符识别的重要步骤,定位准确与否直接影响车牌识别率。

本次设计主要对车牌的定位做了比较详细的研究。

汽车牌照自动识别系统作为一种交通信息的获取技术在交通车辆管理、园区车辆管理、停车场管理有着特别重要的应用价值,受到业内人士的普遍关注。

车牌自动识别的处理有三部分组成,其中车牌定位作为最关键的技术,成为重点研究的对象。

车牌定位的成功与否以及定位的准确程度将会直接决定后期能否进行车牌识别以及识别的准确度。

由于在现实中,汽车的车牌图像受到光照、背景、车型等外界干扰因素以及拍摄角度、远近等人为因素的影响,造成图像受光不均匀,车牌区域不明显,给车牌区域的提取带来了较大的困难。

车牌定位的方法有很多种,目前比较经典的定位方法大都在基于灰度图像的基础上。

本次毕业设计就针对灰度图像的定位进行了研究。

针对不同背景和光照条件下的车辆图像,提出了一种基于灰度图像灰度变化特征进行车牌定位的方法。

依据车牌中不同区域的灰度分布,车牌定位时可以首先将彩色车牌进行灰度化然后再进行车牌定位。

第1章绪论§1.1 课题研究的背景随着21世纪经济全球化的到来,高速度、高效率的生活节奏,使车辆普及成为必然的趋势,交通管理自动化越来越成为亟待解决的问题。

现代智能交通系统 (Intelligent Transportation System,ITS)中,车辆牌照识别(License Plate Recognition,LPR)技术是计算机视觉与模式识别技术在交通领域应用的重要研究课题之一,是实现交通管理能够智能化的重要环节,其任务是分析、处理汽车图像,自动识别汽车牌号。

LPR系统可以广泛应用于电子收费、出入控制、公路流量监控、失窃车辆查询和停车场车辆管理等需要车牌认证的场合;尤其在高速公路收费系统中,实现不停车收费提高公路系统的运行效率,LPR系统更具有不可替代的作用。

因而从事LPR技术的研究具有极其重要的现实意义和巨大的经济价值。

LPR系统中的两个关键子系统是车牌定位系统和车牌字符识别系统。

关于车牌定位系统的研究,国内外学者已经做了大量的工作,但实际效果并不是很理想,比如车牌图像的倾斜、车牌表面的污秽和磨损、光线的干扰等都是影响定位准确度的潜在因素。

为此,近年来不少学者针对车牌本身的特点、车辆拍摄的不良现象及背景复杂状况,先后提出了许多有针对性的定位方法,使车牌定位在技术和方法上都有了很大的改善。

然而现代化交通系统不断提高的快节奏,将对车牌定位的准确率和实时性提出更高的要求,因而进一步加深车牌定位的研究是非常有必要的。

§1.2 车牌的特征车牌的本身具有许多固有特征,这些特征对不同的国家是不同的,我国现在使用的车牌主要根据中华人民共和国机动车牌号GA36-92标准,具有以下特征:(1)形状特征:标准的车牌外轮廓尺寸440*140,字符高90,宽45,字符间距12,间隔符宽10。

整个字符的高宽比例近似为3:1,车牌的边缘是线段围成的有规则的矩形。

主要用在车牌的定位分割。

(2)颜色特征:现有的字符颜色与车牌底色搭配有四种类型,蓝底白字,黄底黑字,白底黑字,黑底白字。

这部分特征主要用在对彩色图像进行车牌的定位。

(3)字符的特征:标准的车牌上有7个字符,呈水平排列,待识别的字符模板可以分为一下三类,汉字,英文字母,阿拉伯数字,主要用于对字符匹配识别方面。

(4)其他国家的汽车牌照格式(如汽车牌照的尺寸大小,牌照上的字符排列等)通常只有一种,而我国则根据不同车辆、车型、用途,规定了多种牌照格式(例如分为军车、警车、普通车等)。

(5)我国汽车牌照的规范悬挂位置不唯一。

(6)由于环境、道路或人为因素造成汽车牌照污染严重,这种情况下,国外发达国家不允许上路,而在我国仍可上路行驶。

车牌与汽车的其它区域相比,还有以下主要特征:(1)车牌区域中的垂直边缘比水平边缘密集,而车身其它部分的水平边缘明显,垂直边缘较少。

(2)灰度变化特征:车牌的底色、边缘颜色,车辆外部的颜色都是不同的,表现在图像中就是灰度级互不相同,这就在车牌边缘形成了灰度突变边界。

实际上,车牌的边缘在灰度上的表现是一种屋脊状边缘。

在车牌区域内部,字符和车牌底的灰度较均匀的呈现波峰波谷。

(3)有相对集中和规则的纹理特征。

由于我国汽车车牌识别的特殊性,这就导致了采用任何单一识别技术都是难以奏效的。

§1.3 国内外车辆牌照识别技术现状目前,国内外有大量关于车牌识别方面的研究报道。

国外在这方面的研究工作开展较早。

在上世纪70 年代,英国就在实验室中完成了“实时车牌检测系统”的广域检测和开发。

同时代,诞生了面向被盗车辆的第一个实时自动车牌监测系统。

相关文档
最新文档