2020全国Ⅲ卷高考数学考前绝密押题试卷(文)一

合集下载

2020年高考押题卷(新课标Ⅲ卷)-文科数学-解析

2020年高考押题卷(新课标Ⅲ卷)-文科数学-解析

文科数学 第 1页(共 8页)
7.C【解析】从 30 以内的素数有 2,3,5,7,11,13,17,19,组成的孪生素数对有:(3,5),(5,7),
(11,13),(17,19),共 4 个,这对孪生素数的积不超过 20 的有:(3,5),共 1 个,
∴这对孪生素数的积不超过 20 的概率是 ph tl.故选:C.
t
>0,f′(x)<0⇒0<x<1,函数 f(x)在(0,1)上为减函数;
f′(x)>0⇒x>1,函数 f(x)在(1+∞)上为增函数;
所以 f(x)极小值=f(1)=1 ,无极大值.(5 分)
(2)由(1)可得 f′(x)h
t t (x>0),
∵a<0,由 f′(x)=0,可得 x1h t,x2=1,(6 分)
13. 1 【解析】 ∵f(1﹣x)=f(1+x), 8
∴f(x)关于直线 x=1 对称,又 f(x)为奇函数,
∴f(x)的最小正周期为 4,∴ t h t l h
t h t h t.故答案为:− t.
14. 【解析】由
3
h
,且

所以( )• h •
h0,
所以 • h ;所以 cosθh 﫰 h 﫰
2.B【解析】∵z 是纯虚数∴
th t
,解得 a=﹣1,∴z=﹣2i,∴|z|=2,故选:B.
3.A【解析】lg(x+1)>lg(y+1)⇔x+1>y+1>0,解得:x>y>﹣1.
∴“x>y>0”是“lg(x+1)>lg(y+1)”成立的充分不必要条件.故选:A.
4.C【解析】因为某家庭 2019 年全年的收入与 2015 年全年的收入相比增加了一倍,设 2015 年全年的收入

2020年高考数学押题导航卷文科数学-01(新课标Ⅲ卷)(解析版)

2020年高考数学押题导航卷文科数学-01(新课标Ⅲ卷)(解析版)

押题导航卷01(新课标Ⅲ卷)文科数学一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一个选项是符合题目要求的)1.集合}2|{-≥=x x M ,}012|{>-=xx N ,则=)(N C M R I ( )。

A 、}02|{<≤-x xB 、}02|{≤≤-x xC 、}2|{-≥x xD 、}0|{>x x 【答案】B【解析】∵}0|{}12|{>==>=x x N x N x,∴}0|{≤=x x N C R ,∵}02|{)(≤≤-=x x N C M R I ,故选B 。

2.已知i z i 32)33(-=⋅+(i 是虚数单位),那么复数z 对应的点位于复平面内的( )。

A 、第一象限B 、第二象限C 、第三象限D 、第四象限 【答案】C 【解析】∵i z i 32)33(-=⋅+,∴i i i i i i i i z 232112366)33)(33()33(323332--=--=-+--=+-=,∴对应的点的坐标是)23,21(-,∴对应的点在第三象限,故选C 。

3.如图所示,在正方体1111D C B A ABCD -中,E 、F 分别为BC 、1BB 的中点,则下列直线中与直线EF 相交的是( )。

A 、直线1AAB 、直线11B AC 、直线11D A D 、直线11C B 【答案】D【解析】根据异面直线的概念可看出直线1AA 、11B A 、11D A 都和直线EF 是异面直线,而直线11C B 和直线EF 在同一平面C C BB 11内,且这两直线不平行,∴直线11C B 与直线EF 相交,故选D 。

4.王老师是高三的班主任,为了在新型冠状病毒疫情期间更好地督促班上的学生完成作业,王老师特地组建了一个学习小组的钉钉群,群的成员由学生、家长、老师共同组成。

已知该钉钉群中男学生人数多于女学生人数,女学生人数多于家长人数,家长人数多于教师人数,教师人数的两倍多于男学生人数。

河北省衡水中学2020届高三高考押题三文数试题

河北省衡水中学2020届高三高考押题三文数试题

河北衡水中学 2020 年高考押题试卷文数(三)第Ⅰ卷(共 60 分)一、选择题:本大题共12 个小题 , 每题 5 分, 共 60 分.在每题给出的四个选项中,只有一项为哪一项切合题目要求的.1.已知会合A x x2 2x 0 , B y y log 2 x 2 , x A ,则 A I B 为()A.0,1 B .0,1 C .1,2 D .1,22.已知i 是虚数单位, z 2 i i 2017,且 z 的共轭复数为z ,则 z 在复平面内对应的点在()2 iA.第一象限 B .第二象限 C .第三象限 D .第四象限r r r1 r r3.已知平面向量a,b的夹角为,且 a 1 , b ,则 a 2b ()3.3 2A. 1 B . 3 C.2 D24.已知命题p:“对于x的方程x2 4x a 0 有实根” ,若p为真命题的充分不用要条件为 a 3m 1,则实数 m 的取值范围是()A.1, B . 1, C .,1 D .,1x y 3 0,5.已知实数x,y知足x 2 y 6 0, 则z x y 的最小值为()3x y 2 0,A. 0 B . 1 C. 3 D . 56.若x 表示不超出 x 的最大整数,则图中的程序框图运转以后输出的结果为()A. 48920 B . 49660 C . 49800 D . 518677.数列a 知足 a1 2 , a n 1 a n2( a n 0),则 a n ()nA.10n 2 B . 10n 1 C.102n 1 D .22n 18.《中国诗词大会》的播出引起了全民的念书热,某小学语文老师在班里展开了一次诗词默写竞赛,班里40 名学生得分数据的茎叶图以下图. 若规定得分不小于85 分的学生获取“诗词达人”的称呼,小于85 分且不小于 70 分的学生获取“诗词好手”的称呼,其余学生获取“诗词喜好者”的称呼,依据该次竞赛的成绩依据称呼的不一样进行分层抽样抽选10 名学生,则抽选的学生中获取“诗词好手”称呼的人数为()A. 2 B . 4 C.5D . 69.某几何体的正视图和侧视图如图( 1),它的俯视图的直观图是矩形O1 A1B1C1(如图(2)),此中 O1 A1 3 ,O1C1 1,则该几何体的侧面积及体积为()A. 24,24 2 B . 32,8 2 C.48,24 2 D.64,64 210.已知函数 f x 3sin x cos x 4cos 2 x (0 )的最小正周期为,且 f 1 ,则2f2()A.5B .9C .11D13 2 2 2.211.已知双曲线x2 y 21(a 0 , b 0 )的左、右焦点分别为F1, F2,点P在双曲线的右支上,且a2 b2uuur uuur2PF1PF2( 1 ), PF1 PF2 0 ,双曲线的离心率为,则()A. 2 B . 2 3 C.2 2 D.2 312.已知函数 f x x2 4x 5, x 1,若对于 x 的方程 f x kx 1 恰有四个不相等的实数根,则实ln x, x 1, 2 数 k 的取值范围是()A . 1, eB . 1, eC . 1, e22 2 eD. 1 , e2 e第Ⅱ卷(共 90 分)二、填空题(每题 5 分,满分 20 分,将答案填在答题纸上)13.在锐角 V ABC 中,角 A ,B 所对的边长分别为 a ,b ,若 2asin B3b ,则 cos3A.214.以下图,在棱长为 2 的正方体 ABCD A 1 B 1C 1D 1 中, E , F 分别是 CC 1 , AD 的中点,那么异面直线 D 1E 和 A 1 F 所成角的余弦值等于.15.若 x , y 都是正数,且 xy 3 ,则41 的最小值为.x 1 y116.已知函数 2x 1, x0,若函数 gxf x 3m 有 3 个零点,则实数 m 的取值范围f x2 2x, xx 0,是.三、解答题 (本大题共 6 小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)17.在 V ABC 中,角 A , B , C 的对边分别是 a , b , c ,且 3a cosC 2b 3c cos A .( 1)求角 A 的大小;( 2)已知等差数列a n 的公差不为零,若 a 1 sin A 1,且 a 2 , a 4 , a 8 成等比数列, 求4的前 n 项a nan 1和 S n .18.如图,将直角三角形PAO 绕直角边 PO 旋转组成圆锥,四边形 ABCD 是 e O 的内接矩形, M 为母线PA 的中点, PA 2 AO .( 1)求证: PC ∥ 平面 MBD ;( 2)当 AM CD 2 时,求点 B 到平面 MCD 的距离 .19.在中学生综合素质评论某个维度的测评中,分优异、合格、尚待改良三个等级进行学生互评. 某校高一年级有男生 500 人,女生 400 人,为了认识性别对该维度测评结果的影响,采纳分层抽样方法从高一年级抽取了 45 名学生的测评结果,并作出频数统计表以下:表一:男生表二:女生( 1)从表二的非优异学生中随机抽取 2 人谈话,求所选 2 人中恰有 1 人测评等级为合格的概率;( 2)由表中统计数据填写下边的 2 2 列联表,并判断能否有90%的掌握以为“测评结果优异与性别相关”.n ad bc 2参照公式:K 2a b c b ,此中 n a b c d .c d a d参照数据:P K 2 k0 0.10 0.05 0.01 k0 2.706 3.841 6.63520.已知椭圆C:y2 x2 1(a b 0 )的上、下两个焦点分别为F1, F2,过 F1的直线交椭圆于M ,a2 b2N 两点,且V MNF2的周长为8,椭圆C的离心率为 3 .2 ( 1)求椭圆C的标准方程;( 2)已知O为坐标原点,直线l:y kx m 与椭圆C有且仅有一个公共点,点M , N 是直线 l 上的两点,且 F1M l , F2 N l ,求四边形F1M N F2面积S的最大值.21.已知函数 f x bx 1 e x a (a,b R ).( 1)假如曲线y f x 在点 0, f 0 处的切线方程为 y x ,求a, b 的值;( 2)若a 1,b 2 ,对于x的不等式 f x ax 的整数解有且只有一个,求 a 的取值范围.请考生在 22、 23 两题中任选一题作答,假如多做,则按所做的第一题记分.22.选修 4-4 :坐标系与参数方程x 1 3t, 2已知直线 l 的参数方程为(t 为参数),在以坐标原点为极点、x 轴的非负半轴为极轴成立1 ty2的极坐标系中,圆 C 的极坐标方程为 2 2 .( 1)求直线l被圆C截得的弦长;( 2)若M的坐标为1,0,直线l与圆C交于A,B两点,求MA MB 的值.23.选修 4-5 :不等式选讲已知 f x x 1 x a (a为常数).( 1)若f 2 f a 1,务实数a的取值范围;( 2)若f x 的值域为 A ,且 A2,3 ,务实数 a 的取值范围.文科数学(Ⅲ)答案一、选择题1-5:DAABD6-10:CDBCB11、12:BA二、填空题13. 3 14.215 .916 .1,02 5 5 3三、解答题17.解:( 1)由正弦定理可得 3 sin A cosC 2sin B cos A 3 sin C cos A ,进而可得3sin A C 2sin B cos A ,即 3 sin B 2sin B cos A .又 B 为三角形的内角,因此sin B 0 ,于是cos A 3,2又 A 为三角形的内角,因此 A .61( 2)设a n 的公差为 d ,由于a1sin A 1,且a2,a4,a8 成等比数列,因此 a1 2 ,且 a42 a2 a8,sin A因此 a12a1 d a1 7d ,且 d 0 ,解得 d 2 ,3d因此 a n4 1=112n ,因此n n+1 n,anan 1 n 1因此 S n 1 1 1 1 1 1 L 1 1 1 1 n .2 23 34 n n 1 n 1 n 118.( 1)证明:由于四边形ABCD 为矩形,因此连结AC ,则 BD 与 AC 订交于圆心 O .连结 MO ,由于 O , M 分别为 AC , PA 的中点,因此 PC ∥ MO .又 MO 平面 MBD , PC 平面 MBD ,因此 PC ∥平面 MBD .( 2)解:当AM CD 2 时, PA 2 AM 2 AO 4 ,因此 AO BO AB 2 ,因此 V AOB 是等边三角形 .连结 PD ,则 PA PD AC BD 4 ,易求得AD CM 2 3 ,又 AM CD , DM DM ,因此V AMD≌VCDM ,因此 S V CDM SV AMD1S V PAD 39 .2 2又点 M 到平面 BCD 的距离1PO3,SV BCD 2 3 ,V B CDM 1SV CDM 点 B 到平面 MCD 的距2 3离VM BCD 1S V BCD 3 ,因此点 B 到平面 MCD 的距离为439 .3 1319.解:( 1)设从高一年级男生中抽出m 人,则m45 ,m 25,则从女生中抽取 20 人,500 500 400因此 x 25 15 5 5 ,y 20 15 3 2 .表二中非优异学生共 5 人,记测评等级为合格的 3 人为a,b,c,尚待改良的 2 人为A,B,则从这 5 人中任选 2 人的全部可能结果为a, b , a,c , b, c , A, B , a, A , a, B , b, A , b, B , c, A ,c, B ,共 10 种,设事件 C 表示“从表二的非优异学生中随机选用 2 人,恰有 1 人测评等级为合格”,则C的结果为a, A,a, B , b, A , b, B , c, A , c, B ,共6种,因此P C 6 3 ,即所求概率为 3 .10 5 5( 2)2 2 列联表以下:由于 1 0.9 0.1,P K2 2.706 0.10 ,45 15 5 15 10 2 2 2而 K 2 45 15 5 9 1.125 2.706 ,因此没有90%的掌握以为“测评30 15 25 20 2530 15 20 8结果优异与性别相关” .20.解:( 1)由于V MNF2 8,因此4a 8 ,因此 a c 3,因此 c 3 ,因此的周长为 2 .又由于2ab a2 c2 1 ,因此椭圆 C 的标准方程为x2y 21. 4( 2)将直线 l 的方程 ykx m 代入到椭圆方程 x 2y 2 1中,得 4 k 2 x 2 2kmx m 2 4 0 .4由直线与椭圆仅有一个公共点,知4k 2 m 2 4 4 k 2m 24 0,化简得 m 2 4 k 2 .3 m3 m设 d 1FMk 2, d 2 F 2Nk 2,112232 k 2 7因此 d 12d 22m3 m 3 2 m 2 ,k 2 1k 21k 21 k2 1d 1d 23 m3 mm 23 1,k21 k21 k21因此 M NF 1F 222d 1 d 212d 12 d 22 2d 1d 212k 2k 2.1F 1M N F 2 的面积 S1 由于四边形 M N d 1 d2 ,2因此 S 21 12k2 d 12 d 22 2d 1d 24 k 2 13k 2 4k 2 162k 2 1.令 k 21 t ( t 1 ),则3 t 14 t 1 1612 t 1 t 312 t 22t 32S 212 12 3 11 1 ,t 2t 2t 2t3 3因此当11 时, S2 获得最大值为 16,故 S max 4 ,即四边形 F 1M N F 2 面积的最大值为4.t321.解:( 1)函数 f x 的定义域为 R ,f x be xbx 1 e x bx b 1 e x .由于曲线 yf x 在点 0,f 0 处的切线方程为 yx ,因此f 00,a 1 0, a 1,f0 1,得1 解得b2.b1,2 x (),( 2)当时, 1 eb 2 f x x a a 1对于 x 的不等式 f x ax 的整数解有且只有一个,等价于对于 x 的不等式2x 1 e x a ax 0 的整数解有且只需一个. 结构函数F x 2x 1 e x a ax , x R ,因此 F x e x 2x 1 a .①当 x 0 时,由于e x 1 ,2 x 1 1,因此 e x 2x 1 1,又 a 1 ,因此 F x 0 ,因此 F x 在 0,内单一递加 .由于 F 0 1 a 0 , F 1 e>0 ,因此在0,上存在独一的整数x00 使得F x00 ,即f x0 ax0.②当 x 0 时,为知足题意,函数 F x 在,0 内不存在整数使 F x 0 ,即 F x 在, 1 上不存在整数使 F x 0 .由于 x 1 ,因此 e x 2x 1 0 .当 0 a 1时,函数 F x 0 ,因此 F x 在, 1 内为单一递减函数,因此 F 1 0 ,即3a 1;2e当 a 0 时, F 1 32a 0 ,不切合题意. e综上所述, a 的取值范围为3,1. 2e22.解:( 1)将直线l的参数方程化为一般方程可得x 3y 1 0 ,而圆C的极坐标方程可化为 2 8 ,化为一般方程可得x2 y2 8 ,圆心 C 到直线 l 的距离为 d 1 1 ,1 3 22故直线 l 被圆 C 截得的弦长为 2 8 1 31. 2x 1 3 t,( 2)把2 代入 x 2 y 2 8 ,可得1y t2t2 3t 7 0 .(*)设 t1, t2 是方程( * )的两个根,则t1t2 7 ,故MA MB t1t 2 7 .23.解:( 1)由f2 f a 1可得 1 a 2 a 1 1 ,即 a 1 a 2 2 .(*)①当②当a 1 时,( * )式可化为 1 a 2 a 2 ,解之得 a1 1,因此 a ;2 2 1 a 2时,(*)式可化为 a 1 2 a 2 ,即 1 2 ,因此 a ;③当 a 2 时,( * )式可化为 a 1 a 2 2 ,解之得 a 5 5,因此 a.2 2综上知,实数 a 的取值范围为1U5. , ,2 2( 2)由于 f x x 1 x a x 1 x aa 1 ,因此 a 1 f x a 1 ,a 1 2,1 2 ,由条件只需a 1 3,即 a解之得 1 a 3 ,即实数a的取值范围是1,3 .。

2023年高考押题预测卷03卷-文科数学(全国乙卷)(原卷及解析版)

2023年高考押题预测卷03卷-文科数学(全国乙卷)(原卷及解析版)

绝密★启用前2023年高考押题预测卷03(全国乙卷)文科数学(考试时间:150分钟 试卷满分:120分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

评卷人 得分一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集U =R ,2{|60}A x x x =--<,{|ln(1)}B x y x ==-,则()UA B =( )A .[)1,3B .(]1,3C .()1,3D .(]2,1-2.设复数z 的共轭复数为z ,且满足11iz z i+-=-,i 为虚数单位,则复数z 的虚部是( ) A .12B .2C .12-D .2-3.已知函数2()log 164x f x x =-()f x 的定义域为( ) A .(,4]-∞B .(,2]-∞C .(0,2]D .(0,4]4.“湖畔波澜飞,耕耘战鼓催”,合肥一六八中学的一草一木都见证了同学们的成长.某同学为了测量澜飞湖两侧C ,D 两点间的距离,除了观测点C ,D 外,他又选了两个观测点12,P P ,且12PP a =,已经测得两个角1221,PP D P PD αβ∠=∠=,由于条件不足,需要再观测新的角,则利用已知观测数据和下面三组新观测的角的其中一组,就可以求出C ,D 间距离的有( )组①1DPC ∠和1DCP ∠;②12PP C ∠和12PCP ∠;③1PDC ∠和1DCP ∠ A .0B .1C .2D .35.设向量(0,2),(2,2)a b ==,则( ) A .||||a b =B .()//a b b -C .a 与b 的夹角为3πD .()a b a -⊥ 6.已知双曲线22144x y a a -=+-(a >4)的实轴长是虚轴长的3倍,则实数a =( )A .5B .6C .8D .97.在等比数列{}n a 中,若25234535,44a a a a a a =-+++=,则23451111a a a a +++= A .1B .34-C .53-D .43-8.某三棱锥的三视图如图所示,该三棱锥表面上的点M 、N 、P 、Q 在三视图上对应的点分别为A 、B 、C 、D ,且A 、B 、C 、D 均在网格线上,图中网格上的小正方形的边长为1,则几何体MNPQ 的体积为( )A .14B .13C .12D .239.已知角α的顶点与原点O 重合,始边与x 轴的非负半轴重合,它的终边经过点A (1,-3),则tan()4πα+=( )A .12B .12-C .1D .-110.2021年电影春节档票房再创新高,其中电影《唐人街探案3》和《你好,李焕英》是今年春节档电影中最火爆的两部电影,这两部电影都是2月12日(大年初一)首映,根据猫眼票房数据得到如下统计图,该图统计了从2月12日到2月18日共计7天的累计票房(单位:亿元),则下列说法中错误的是( )A .这7天电影《你好,李焕英》每天的票房都超过2.5亿元B .这7天两部电影的累计票房的差的绝对值先逐步扩大后逐步缩小C .这7天电影《你好,李焕英》的当日票房占比逐渐增大D .这7天中有4天电影《唐人街探案3》的当日票房占比超过50%11.已知函数()()sin 02f x x πωω⎛⎫=+> ⎪⎝⎭,将()f x 的图象向右平移3ωπ个单位得到函数()g x 的图象,点A ,B ,C 是()f x 与()g x 图象的连续相邻的三个交点,若ABC 是钝角三角形,则ω的取值范围是( ) A .3,⎫+∞⎪⎪⎝⎭B .2,⎫+∞⎪⎪⎝⎭C .2⎛⎫⎪ ⎪⎝⎭ D .3⎛⎫⎪ ⎪⎝⎭12.已知球O 的半径为R ,A ,B ,C 三点在球O 的球面上,球心O 到平面ABC 的距离为12R ,3AB AC ==,120BAC ∠=︒,则球O 的表面积为( )A .48πB .16πC .64πD .36π评卷人 得分二、填空题:本题共4小题,每小题5分,共20分.13.已知1e ,2e 均为单位向量,若123e e -=,则1e 与2e 的夹角为______.14.已知椭圆22221(0)x y a b a b +=>>2,直线l 与椭圆交于A ,B 两点,当AB 的中点为()1,1M 时,直线l 的方程为___________.15.已知锐角ABC 内角A ,B ,C 的对边分别为a ,b ,c ,已知sin sin 4sin sin b C c B a B C +=,2228b c a +-=,则ABC 的面积是__________.16.在四面体ABCD 中,ABC 与ACD △都是边长为3G 为AC 的中点,且2BGD π∠=,则该四面体ABCD 外接球的表面积为___________. 评卷人 得分三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(12分)已知一个由正数组成的数阵,如下图各行依次成等差数列,各列依次成等比数列,且公比都相等,1214332,4,12a a a ===. 第一行111213141,,,n a a a a a 第二行212223242,,,n a a a a a第三行313233343,,,n a a a a a……第n 行1234,,,n n n n nn a a a a a (1)求数列{}2n a 的通项公式; (2)设()()()12122,1,2,3,11n n n n b n a a -+==-⋅-,求数列{}n b 的前n 项和n S .18.(12分)为纪念建党100周年,某校举办党史知识竞赛,现从参加竞赛的同学中,选取200名同学并将其成绩(百分制,均为整数)分成六组:第1组[)40,50,第2组[)50,60,第3组[)60,70,第4组[)70,80,第5组[)80,90,第6组[]90,100.得到如图所示的频率分布直方图.(1)求a 的值,并估计这200名学生成绩的中位数;(2)若先用分层抽样的方法从得分在[)40,50和[)50,60的学生中抽取5人,然后再从抽出的5人中任意选取2人,求此2人得分恰在同一组的概率. 19.(12分)如图,四棱锥E ABCD -中,底面ABCD 为直角梯形,其中AB BC ⊥,//CD AB ,面ABE ⊥面ABCD ,且224AB AE BE BC CD =====,点M 在棱AE 上.(1)若直线//CE 平面BDM ,求:EM AM 的值. (2)当AE ⊥平面MBC 时,求点C 到平面BDM 的距离. 20.(12分)已知椭圆方程为221259y x +=,若抛物线22(0)x py p =>的焦点是椭圆的一个焦点.(1)求该抛物线的方程;(2)过抛物线焦点F 的直线l 交抛物线于A ,B 两点,分别在点A ,B 处作抛物线的切线,两条切线交于P 点,则PAB △的面积是否存在最小值?若存在,求出这个最小值及此时对应的直线l 的方程;若不存在,请说明理由. 21.(12分)已知函数()1e xf x ax -=-,(1)讨论函数()f x 的单调性;(2)若函数()f x 在()0,2上有两个不相等的零点12,x x ,求证:121x x a>. (二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4-4:坐标系与参数方程](10分)已知直线l 的参数方程为cos sin x t y t αα=⎧⎨=⎩(其中t 为参数),以坐标原点O 为极点,以x 轴正半轴为极轴,建立极坐标系,曲线C 的极坐标方程为22cos 40m ρρθ--=(其中m 0>). (1)若点M 的直角坐标为()3,3,且点M 在曲线C 内,求实数m 的取值范围; (2)若3m =,当α变化时,求直线l 被曲线C 截得的弦长的取值范围. 23.[选修4-5:不等式选讲](10分) 已知函数()241f x x x =++-.(1)求不等式()6f x >的解集;(2)设函数()f x 的最小值为m ,正实数a ,b 满足229a b m +=,求证:326a b ab +≥.2023年高考押题预测卷03(全国乙卷)文科数学·全解全析1 2 3 4 5 6 7 8 9 10 11 12 DBACDDBDDDAD1.D解:∵{}12A x x =<<,{}12B x x =≤≤, ∵{}12A B x x ⋂=<<, 故选:D . 2.B因为()()()221i 1i 12i i i 1i 1i 1i 2++++===--+, 所以其共轭复数为i -,则其虚部为1-, 故选:B 3.A 当14a >,0x >时,由基本不等式可知21a ax x a x x +≥⋅=, 故“14a >”是“对任意的正数x ,均有1ax x+≥”的充分条件; 当14a =时,114a a x x x x +≥⋅=成立,14a >不成立, 故“14a >”是“对任意的正数x ,均有1ax x+≥”的不必要条件. 故选:A 4.C解:因为函数()f x 是定义域为R 的偶函数, 所以()()f x f x =-, 又因为()()11f x f x +=-, 所以()()2f x f x -=,则()()2f x f x -=-,即()()2f x f x +=, 所以周期为2T =,因为112f ⎛⎫= ⎪⎝⎭,33121222f f f ⎛⎫⎛⎫⎛⎫-=-== ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,故选:C 5.D对于A :当2a =,4b =-时不成立,故A 错误;对于B :当12a =-,1b =-,所以2ba =,101b a +=+,即11b b a a +>+,故C 错误;对于C :当0c 时不成立,故C 错误;对于D :因为a b >,所以330a b >>,又30b ->,所以33332332b b a b b b ---≥⨯+>+=(等号成立的条件是0b =),故D 正确. 故选:D. 6.D函数的定义域为{x |x ≠0},11()ln ||cos(3)ln ||cos3()22f x x x x x f x -=--==,则f (x )是偶函数,图象关于y 轴对称,排除B ,C ,当06x π<<时,f (x )<0,排除A ,D 符合要求.故选:D. 7.B设AF x =,则3DF x =,BD AF x ==,4AD x =,120ADB ∠=, 在ABD △中,根据余弦定理得,22222212cos 1624212AB AD BD AD BD ABD x x x x x ∠⎛⎫=+-⋅⋅=+-⋅⋅⋅-= ⎪⎝⎭,∵221393sin60(3)24EFDS DF DE x =⋅⋅⋅==, 2213213sin602124ABCSAB BC x =⋅⋅⋅==, ∵73ABC EFDSS=,∵图中阴影部分与空白部分面积之比为34.故选:B. 8.D设2,x a y b =+=,则2,a x b y =-=,故28x y +=,其中2,0x y >>,()2212214226288x y x y a b x y y x ⎛⎫⎛⎫+=++=++ ⎪ ⎪+⎝⎭⎝⎭, 由4242x yy x+≥ 当且仅当(422422x yy x x y x=⇒=⇒=,()821y =时等号成立,此时2x >,0y >满足, 故222a b ++的最小值为(13264284+= 故选:D. 9.D当受血者为B 型血时,供血者可以为B 型或O 型,所以一位供血者能为这位受血者正确输血的概率为41%+24%=65%=0.65. 故选:D 10.D∵等差数列{an }中,a 1,a 6为函数2()914f x x x =-+的两个零点, ∵a 1=2,a 6=7,或a 1=7,a 6=2, 当a 1=2,a 6=7时,61161a a d -==-,a 3=4,a 4=5,所以a 3a 4=20. 当a 1=7,a 6=2时,61161a a d -==--,a 3=5,a 4=4,所以a 3a 4=20. 故选:D . 11.A双曲线22271x y -=,273c =+=, 所以(3,0)F ,3,2122pp ==,所以抛物线2:12C y x =. 设11(,)A x y ,22(,)B x y ,直线l 的方程为()(3)0y k x k =->.联立2(3)12y k x y x =-⎧⎨=⎩消去y ,化简整理得()222261290k x k x k -++=.设()()1122,,,A x y B x y ,则122126x x k +=+,129x x =. ∵||3||AF BF =,()12333x x +=+,∵1236x x -= ∵122126x x k +=+,∵1296x k =+,223x k=,又129x x =,∵23k =, ∵0k >,∵3k =因此直线l 3330x y --=. 故选:A 12.D由0ln 2lne 1x <=<=,10lg 2102y <=<可得2211log e,log 10x y ==,故()22211log e log 10log 10e 1x y +=+=>,即x y xy +>,2221110log 10log e log 1e y x ⎛⎫-=-=> ⎪⎝⎭,即x y xy ->,又(0,)2x π∈时,tan x x >,3022x y π<+<<,故()tan x y x y +>+,综上()tan x y x y x y xy +>+>->. 故选:D. 13.23π因为1e ,2e 均为单位向量,且123e e -=, 所以22212112223e e e e e e -=-⋅+=,即121cos ,2e e =-,因为[]12,0,e e π∈, 所以122,3e e π=, 故答案为:23π 14.230x y +-=由题可知直线AB 的斜率存在;设()()1122,,,A x y B x y ,由于点,A B 都在椭圆上,所以2211221x y a b+=①, 2222221(0)x y a b a b +=>>②,-①②,化简得2221222212y y b a x x --=-;22221b a -所以2212b a =,即()()()()221212122212121212y y y y y y x x x x x x -+-==---+; 又线段AB 的中点为()1,1M ,所以()()()()()()()()121212121212121212121222y y y y y y y y y y x x x x x x x x x x +--+-===-+-+--, 所以直线AB 的斜率为12-,故所求直线l 的方程为()1112y x =--+,即230x y +-=.故答案为:230x y +-=. 1523因为sin sin 4sin sin b C c B a B C +=,所以由正弦定理可得sin sin sin sin 4sin sin sin B C C B A B C +=,由0,0B C ππ<<<<,则1sin 2A =,而三角形ABC为锐角三角形,所以3cos 6A A π=⇒=. 由余弦定理,222383cos 223b c a A bc bc bc +-==11123sin 2223ABCSbc A ===. 2316.28π过点D 作DE ∵BG ,易得DE ∵平面ABC , 记ABC 的中心为O 1,几何体的球心为O , 连接OO 1,过点O 作OF //O 1E 交DE 于点F ,如图所示,由题可得BG =DG =3,∵DGB =23π, 333,2EG DE ==,111,2,O G O A == 设1OO x =,外接球的半径为R ,所以2221222R O A x R DF OF ⎧=+⎨=+⎩,即2222222335()2R xR x ⎧=+⎪⎨⎛⎫=-+⎪ ⎪⎝⎭⎩, 解得73R x ⎧=⎪⎨=⎪⎩ 所以该四面体外接球的表面积为28π. 17.(1)解:由题意,设第一行的公差为1d ,第三列的公比为q , 则由122a =,144a =,可得1141222d a a =-=, ∵11d =,∵133a =,又3312a =,∵331324a a q ==,∵2q ,∵11212222n n nn a a q --=⋅=⨯=;(2)解:∵()()()()()()()()()11111212121212222121212111n nn n n n n n n n n b a a +--+++⎡⎤---⎣⎦===------111122121n n +⎡⎤=-⎢⎥--⎣⎦. ∵121223111111112212121212121n n n n S b b b +⎡⎤=++⋅⋅⋅+=-+-+⋅⋅⋅+-⎢⎥------⎣⎦1121111122121222n n ++⎡⎤=-=-⎢⎥---⎣⎦. 18.(1)由频率分布直方图可得:()0.028 2 0.0232 0.0156 0.004101a +⨯+++⨯=,解得0.006a =;由频率分布的直方图可得设中位数为m ,故可得()()0.004 0.006 0.023210 700.0280.5m ++⨯+-⨯=,解得76m =,所以这200名学生成绩中位数的估计值为76; (2)由频率分布直方图可知:得分在[40,50)和[50,60)内的频率分别为0.04和0.06, 采用分层抽样知,抽取的5人,在[40,50)内的人数为2人,在[50,60)内的人数为3人. 设分数在[ 40,50 )内的2人为12,a a ,分数在[ 50,60 )内的3人为123,,b b b ,则在这5人中抽取2人的情况有:()12,a a ,()11,a b ,()12,a b ,()13,a b ,()21,a b ,()22,a b ,()23,a b ,()12,b b ,()13,b b ,()23,b b ,共有10种情况,其中分数在同一组的2人有()12,a a ,()12,b b ,()13,b b ,()23,b b ,有4种情况, 所以概率为42105P ==. 19. (1)连接AC 与BD 交于点N ,连接MN ,//AB CD ,24AB CD ==,CND ANB ∴△∽△,12CD CN AB AN ∴==, 又//CE 平面BDM ,CE ⊂平面ACE ,且平面ACE 平面BDM MN =//CE MN ∴12EM CN MA AN ∴==.(2)AE 平面MBC ,BM ⊂平面MBC ,AE BM ∴⊥,AB AE BE ==,M ∴是AE 的中点,面ABE ⊥面ABCD ,∴点E 到面ABCD 的距离为3423d ==∴点M 到面ABCD 的距离为32dh ==11123223332C BDM M BCD BCD V V S h --∴==⋅=⋅⋅⋅△ BDM 中,22BD =,22DM =23BM =1235152BDM S ⋅∴==△∴点C 到平面BDM 的距离满足123153h =,所以距离25h =20. (1)由椭圆221259y x +=,知222594c a b --.又抛物线22(0)x py p =>的焦点是椭圆的一个焦点. 所以42p=,则8p =. 所以抛物线的方程为216x y =. (2)由抛物线方程216x y =知,焦点(0,4)F .易知直线l 的斜率存在,则设直线l 的方程为4y kx =+.由2416y kx x y =+⎧⎨=⎩消去y 并整理,得216640x kx --=.22(16)4(64)2562560k k ∆=---=+>. 设11(,)A x y ,22(,)B x y ,则1216x x k +=,1264x x =-.对216x y =求导,得8x y '=,∵直线AP 的斜率18AP x k =, 则直线AP 的方程为111()8x y y x x -=-,即211816x x y x =-.同理得直线BP 的方程为222816x x y x =-.设点00(,)P x y ,联立直线AP 与BP 的方程,()012120182416x x x k x x y ⎧=+=⎪⎪⎨⎪==-⎪⎩即(8,4)P k -. 2222121212||11()41AB k x k x x x x k +-=++-+22(16)256161()k k +=+,点P到直线AB 的距离22288811k d k k +==++所以PAB △的面积32222116(1)164(1)642S k k k =⨯+⨯+=+,当且仅当0k =时等号成立.所以PAB △面积的最小值为64,此时直线l 的方程为4y =. 21.(1)()1e x f x a -='-,x ∈R .①当0a ≤时,()0f x '>恒成立,()f x 单调递增;②当0a >时,由()0f x '>得,()1ln ,x a ∈++∞,()f x 单调递增, 由()0f x '<得,(),1ln x a ∈-∞+,()f x 单调递减.综上:当0a ≤时,()f x 单调递增;当0a >时,()f x 在()1ln ,x a ∈++∞上单调递增,在(),1ln x a ∈-∞+上单调递减.(2)∵()f x 在()0,2上有两个不相等的零点1x ,2x ,不妨设12x x <, ∵1e x a x-=在()0,2上有两个不相等的实根,令()1e x g x x -=,()0,2x ∈,∵()()12e 1x x g x x --'=,由()0g x '<得,()0,1x ∈,()g x 单调递减,由()0g x '>得,()1,2x ∈,()g x 单调递增,()11g =,()e22g =,0x →,()g x ∞→+, ∵e 1,2a ⎛⎫∈ ⎪⎝⎭要证121x x a>,即证121ax x >,又∵()()12g x g x a ==,只要证211e1x x ->,即证211e x x ->,∵121x x ,即证()()211e xg x g -<即证()()212ex g x g -<,即证12221e 112e e ex x x x ----<,即证212e ln 10x x -+->令()1eln 1xh x x -=+-,()1,2x ∈,∵()11e x h x x-'=-+,令()e e x x x ϕ=-,()1,2x ∈,则()e e x x ϕ'=-,当()1,2x ∈时,()e e>0xx ϕ'=-恒成立,所以()e e x x x ϕ=-在()1,2x ∈上单调递增,又()()10x ϕϕ>=,∵e e x x >,∵11e xx-<,∵()0h x '> ∵()h x 在()1,2上递增,∵()()10h x h >>,∵1e ln 10x x -+-> ∵121x x a>. 22. 试题解析:(1)由cos sin x y ρθρθ=⎧⎨=⎩得曲线C 对应的直⻆角坐标⽅方程为:()2224x m y m -+=+由点M 在曲线C 的内部,()22394m m ∴-+<+, 求得实数m 的取值范围为7,3⎛⎫+∞ ⎪⎝⎭.(2)直线l 的极坐标⽅方程为θα=,代入曲线C 的极坐标⽅方程整理理得26cos 40ρρα--=,设直线l 与曲线C 的两个交点对应的极径分别为1212126cos 4ρρρραρρ+==-,,,, 则直线l 截得曲线C 的弦长为:()22121212436cos 164,213ρρρρρρα⎡⎤-=+-+⎣⎦. 即直线l 与曲线C 截得的弦长的取值范围是4,213⎡⎣.23. (1)由条件可知原不等式可化为①12416x x x ≥⎧⎨++->⎩,②()212416x x x -<<⎧⎨+-->⎩,③()()22416x x x ≤-⎧⎨-+-->⎩,解①得1x >;解②得x ∈∅;解③得3x <-, 所以原不等式的解集为()(),31,-∞-⋃+∞. (2)因()33,12415,2133,2x x f x x x x x x x +≥⎧⎪=++-=+-<<⎨⎪--≤-⎩,所以当2x =-时,函数()f x 的最小值为3m =,于是2293a b +=,∵a >0,b >0而2239236a b a b ab=+≥⨯=,于是1 02ab<≤.∵313326 a bab b a ab≥+=+≥∵326a b ab+≥,原不等式得证。

2020年高考真题——数学(文)(全国卷Ⅲ) Word版含答案

2020年高考真题——数学(文)(全国卷Ⅲ) Word版含答案

姓名,年级:时间:绝密★启用前2020年普通高等学校招生全国统一考试文科数学注意事项:1。

答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上.写在本试卷上无效。

3。

考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1已知集合A ={1,2,3,5,7,11},B ={x|3〈x<15},则A ∩B 中元素的个数为 A.2 B.3 C.4 D 。

5 2.若(1)1z i i +=-,则z =A.1-i B 。

1+i C 。

-i D.i3.设一组样本数据x 1,x 2,…,x n 的方差为0.01,则数据10x 1,10x 2,…,10x n 的方差为A 。

0.01 B.0。

l C 。

1 D.104.Logistic 模型是常用数学模型之一,可应用于流行病学领域,有学者根据公布数据建立了某地区新冠肺炎累计确诊病例数I(t)(t 的单位:天)的Logistic 模型:()0.23(53)1t K I t e --=+,其中K 为最大确诊病例数。

当I(t *)=0。

95K 时,标志着已初步遏制疫情,则t *约为(ln19≈3)A 。

60 B.63 C 。

66 D.69 5。

已知sinθ+sin (θ+3π)=1,则sin (θ+6π)= A.12B 。

3 C 。

23 D.26.在平面内,A ,B 是两个定点,C 是动点,若AC BC ⋅=1,则C 的轨迹为 A.圆 B 。

椭圆 C 。

抛物线 D.直线7.设O 为坐标原点,直线x =2与抛物线C :y 2=2px (p 〉0)交于D ,E 两点,若OD ⊥OE,则C 的焦点坐标为A 。

(14,0) B.(12,0) C.(1,0) D 。

2020年全国高考数学临考押题试卷(文科)-含答案与解析

2020年全国高考数学临考押题试卷(文科)-含答案与解析

2020年全国高考数学临考押题试卷(文科)一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知z=a+bi(i为虚数单位,a,b∈R),(1+ai)(2﹣i)=3+bi,则|z|=()A2 B C D12已知集合A={x∈Z|x2﹣2x﹣3≤0},B={x|y=},则A∩B=()A{0,1,2,3} B{1,2,3} C{﹣1,0,1} D{﹣1,0}32020年2月29日人民网发布了我国2019年国民经济和社会发展统计公报图表,根据报表中2015年至2019年三次产业增加值占国内生产总值比重等高图,判断下列说法不正确的是()A2015年至2019年这五年内每年第二产业增加值占国内生产总值比重比较稳定B2015年至2019年每年第一产业产值持续下降C第三产业增加值占国内生产总值比重从2015年至2019年连续五年增加D第三产业增加值占国内生产总值比重在2015年至2019年这五年每年所占比例均超过半数4在等差数列{a n}中,a3=5,S3=12,则a10=()A10 B11 C12 D135已知sin2()=,则sin()=()A B﹣C D﹣6若a=5,b=0.70.2,c=0.30.5,则()A a>b>cB c>b>aC b>a>cD b>c>a7“m<4”是“∀x∈[3,+∞),x2﹣mx+4>0恒成立”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件8过圆O;x2﹣2x+y2﹣15=0内一点M(﹣1,3)作两条相互垂直的弦AB和CD,且AB=CD,则四边形ACBD的面积为()A16 B17 C18 D199将函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的图象向左平移个单位长度得到函数y=g(x)的图象,函数y=g(x)的周期为π,且函数y=g(x)图象的一条对称轴为直线x=,则函数y=f(x)的单调递增区间为()A,k∈Z B,k∈ZC,k∈Z D,k∈Z10已知P是椭圆=1上第一象限内一点,F1,F2分别是该椭圆的左、右焦点,且满足=0,若点P到直线y+m=0的距离小于,则m的取值范围是()A(﹣∞,7)∪(5,+∞)B(7,5)C(﹣10,0)D(﹣10,5)11在四棱锥P﹣ABCD中,平面PAD⊥底面ABCD,菱形ABCD的两条对角线交于点O,又PA =PD=3,AD=2,则三棱锥P﹣AOD的外接球的体积为()A B C D12已知函数f(x)=lnx﹣x﹣有两个极值点,且x1<x2,则下列选项错误的是()A x1+lnx2>0B x1+x2=1C x2D m二、填空题:本题共4小题,每小题5分,共20分.13已知定义在R上的函数y=f(x)+3是奇函数,且满足f(1)=﹣2,则f(﹣1)=14已知非零向量,满足(+)⊥(﹣),且=,则向量与的夹角为15已知双曲线(a>0,b>0),O为坐标原点,F1,F2分别为双曲线的左、右焦点,过点F2的直线l交双曲线右支于A,B两点,若|OA|=,|BF1|=5a,则双曲线的离心率为16已知数列{a n}满足(a n﹣a n﹣l)•2n2+(5a n﹣1﹣a n)•n﹣a n﹣3a n﹣1=0(n≥2),且a1=,S n 为数列{a n}的前n项和,若S n>,则正整数n的最小值为三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.17(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,且a=b cos C+c (1)求角B(2)若b=3,求△ABC面积的最大值18(12分)如图,在直四棱柱ABCD﹣A1B1C1D1中,四边形ABCD是直角梯形,AB∥CD,AB⊥AD,CD=5AB=5,AD=2(1)求证:BC⊥平面BDD1(2)若二面角A﹣BC﹣D1的平面角的正切值为,求四棱锥D1﹣ABCD的体积19(12分)区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式某校为了了解学生对区块链的了解程度,对高三600名文科生进行了区块链相关知识的测试(百分制),如表是该600名文科生测试成绩在各分数段上的人数分数[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)人数25 125 150 175 75 50 (1)根据表判断某文科生72分的成绩是否达到该校高三年级文科生的平均水平(同一组中的数据用该组区间的中点值为代表)(2)为了让学生重视区块链知识,该校高三年级也组织了800名理科学生进行测试,若学生取得80分及以上的成绩会被认为“对区块链知识有较好掌握”,且理科生中有75人取得了80分及以上的成绩,试完成下列2×2列联表,并判断是否有99.9%的把握认为“对区块链知识有较好掌握与学生分科情况有关”(3)用分层抽样的方式在“对区块链知识有较好掌握”的学生中抽取8人,再在8人中随机抽取2人,求2人中至少有1人学理科的概率文科理科总计较好掌握非较好掌握总计参考公式:,其中n=a+b+c+dP(K2≥k0)0.050 0.010 0.001 k0 3.841 6.635 10.82820(12分)已知抛物线C:y2=2px(p>0),P为C上任意一点,F为抛物线C的焦点,|PF|的最小值为1(1)求抛物线C的方程(2)过抛物线C的焦点F的直线l与抛物线C交于A,B两点,线段AB的垂直平分线与x轴交于点D,求证:为定值21(12分)已知函数f(x)=x﹣sin x(1)求曲线y=f(x)在点(π,f(π))处的切线方程(2)证明:当x∈(0,π)时,6f(x)<x3选考题:共10分,请考生在第22.23题中任选一题作答.如果多做,那么按所做的第一题计分.[选修4-4:坐标系与参数方程]22(10分)在平面直角坐标系xOy中,曲线C的参数方程为(φ为参数)直线l的参数方程为(t为参数)(1)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系求曲线C的极坐标方程,并求曲线C上的点到原点的最大距离(2)已知直线l与曲线C交于A,B两点,若|OA|+|OB|=2,O为坐标原点,求直线l的普通方程[选修4-5:不等式选讲]23已知函数f(x)=|x+2|+|x﹣a|(1)当a=3时,求f(x)≥6的解集(2)若f(x)≥2a恒成立,求实数a的取值范围参考答案与试题解析一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1已知z=a+bi(i为虚数单位,a,b∈R),(1+ai)(2﹣i)=3+bi,则|z|=()A2 B C D1【分析】利用复数的运算法则、复数相等可得a,b,再利用模的计算公式即可得出【解答】解:(1+ai)(2﹣i)=3+bi,化为:2+a+(2a﹣1)i=3+bi,∴2+a=3,2a﹣1=b,解得a=1,b=1∴z=1+i,则|z|==,故选:C【点评】本题考查了复数的运算法则、复数相等、模的计算公式,考查了推理能力与计算能力,属于基础题2已知集合A={x∈Z|x2﹣2x﹣3≤0},B={x|y=},则A∩B=()A{0,1,2,3} B{1,2,3} C{﹣1,0,1} D{﹣1,0}【分析】求出集合A,B,再由交集的定义求出A∩B【解答】解:∵集合A={x∈Z|x2﹣2x﹣3≤0}={x∈Z|﹣1≤x≤3}={﹣1,0,1,2,3},B={x|y=}={x|x≤0},∴A∩B={﹣1,0}故选:D【点评】本题考查交集的求法,交集定义等基础知识,考查运算能力,是基础题32020年2月29日人民网发布了我国2019年国民经济和社会发展统计公报图表,根据报表中2015年至2019年三次产业增加值占国内生产总值比重等高图,判断下列说法不正确的是()A2015年至2019年这五年内每年第二产业增加值占国内生产总值比重比较稳定B2015年至2019年每年第一产业产值持续下降C第三产业增加值占国内生产总值比重从2015年至2019年连续五年增加D第三产业增加值占国内生产总值比重在2015年至2019年这五年每年所占比例均超过半数【分析】根据题中给出的图形中的数据,对四个选项逐一分析判断即可【解答】解:由题意,2015年至2019年这五年内每年第二产业增加值占国内生产总值比重都在39%~40.8%,故选项A正确;2015年至2019年每年第一产业增加值占国内生产总值比重先下降后上升,但无法据此判断第一产业产值是否在下降,故选项B错误;第三产业增加值占国内生产总值比重从2015年至2019年连续五年增加,第三产业增加值占国内生产总值比重在2015年至2019年这五年每年所占比例均超过半数,故选项C,D正确故选:B【点评】本题考查了条形图的应用,读懂统计图并能从统计图得到必要的信息是解决问题的关键,属于基础题4在等差数列{a n}中,a3=5,S3=12,则a10=()A10 B11 C12 D13【分析】根据等差数列的通项公式和前n项和公式列方程组求出首项a1和公差d,即可求出a10的值【解答】解:等差数列{a n}中,a3=5,S3=12,所以,解得a1=3,d=1,所以a n=3+(n﹣1)×1=n+2,a10=10+2=12故选:C【点评】本题考查了等差数列的通项公式和前n项和公式应用问题,是基础题5已知sin2()=,则sin()=()A B﹣C D﹣【分析】利用二倍角公式化简已知等式可得cos(2α﹣)=,进而根据诱导公式即可化简求解【解答】解:因为sin2()==,可得cos(2α﹣)=,所以sin()=sin[+(2α﹣)]=cos(2α﹣)=故选:A【点评】本题主要考查了二倍角公式,诱导公式在三角函数化简求值中的应用,考查了转化思想,属于基础题6若a=5,b=0.70.2,c=0.30.5,则()A a>b>cB c>b>aC b>a>cD b>c>a【分析】判断a<0,由幂函数y=x0.2的单调性得出0.70.2>0.30.2,由指数函数y=0.3x 的单调性得出0.30.2>0.30.5,判断b>c>0,即可得出结论【解答】解:因为a=5=﹣log35<0,由幂函数y=x0.2在(0,+∞)上是单调增函数,且0.7>0.3,所以0.70.2>0.30.2,又指数函数y=0.3x是定义域R上的单调减函数,且0.2<0.5,所以0.30.2>0.30.5,所以0.70.2>0.30.5>0,即b>c>0所以b>c>a故选:D【点评】本题考查了根据函数的单调性判断函数值大小的应用问题,是基础题7“m<4”是“∀x∈[3,+∞),x2﹣mx+4>0恒成立”的()A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件【分析】x2﹣mx+4>0对于∀x∈[3,+∞)恒成立,可得m<x+,求出x+的最小值,可得m的取值范围,再根据充要条件的定义即可判断【解答】解:∵x∈[3,+∞),由x2﹣mx+4>0x>0,得m<x+,∵当x∈[3,+∞)时,x+≥,当x=3时,取得最小值∴m<,∵{m|m<4}⫋{m|m}∴“m<4”是“∀x∈[3,+∞),x2﹣mx+4>0恒成立”的充分不必要条件,故选:A【点评】本题考查了不等式恒成立问题和充要条件的判断,属于基础题8过圆O;x2﹣2x+y2﹣15=0内一点M(﹣1,3)作两条相互垂直的弦AB和CD,且AB=CD,则四边形ACBD的面积为()A16 B17 C18 D19【分析】根据题意画出相应的图形,连接OM,OA,过O作OE⊥AB,OF⊥CD,利用垂径定理得到E、F分别为AB、CD的中点,由AB=CD得到弦心距OE=OF,可得出四边形EMFO 为正方形,由M与O的坐标,利用两点间的距离公式求出OM的长,即为正方形的对角线长,求出正方形的边长OE,由圆的方程找出半径r,得OA的长,在直角三角形AOE中,由OA与OE的长,利用勾股定理求出AE的长,进而求出AB与CD的长,再利用对角线互相垂直的四边形面积等于两对角线乘积的一半,即可求出四边形ACBD的面积【解答】解:由x2﹣2x+y2﹣15=0,得(x﹣1)2+y2=16,则圆心坐标为O(1,0),根据题意画出相应的图形,连接OM,OA,过O作OE⊥AB,OF⊥CD,∴E为AB的中点,F为CD的中点,又AB⊥CD,AB=CD,∴四边形EMFO为正方形,又M(﹣1,3),∴|OM|=,∴|OE|=×=,又|OA|=4,∴根据勾股定理得:|AE|=,∴|AB|=|CD|=2|AE|=,则S四边形ACBD=|AB|•|CD|=19故选:D【点评】本题考查了直线与圆相交的性质,涉及的知识有:垂径定理,勾股定理,正方形的判定与性质,两点间的距离公式,以及对角线互相垂直的四边形面积求法,当直线与圆相交时,常常由垂径定理根据垂直得中点,然后由弦心距,弦长的一半及圆的半径构造直角三角形,利用勾股定理来解决问题,是中档题9将函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的图象向左平移个单位长度得到函数y=g(x)的图象,函数y=g(x)的周期为π,且函数y=g(x)图象的一条对称轴为直线x=,则函数y=f(x)的单调递增区间为()A,k∈Z B,k∈ZC,k∈Z D,k∈Z【分析】首先利用关系式的平移变换和伸缩变换的应用,求出函数的关系式,进一步利用正弦函数的性质的应用求出结果【解答】解:将函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的图象向左平移个单位长度得到函数g(x)=sin(ωx+ω+φ)的图象,因为函数y=g(x)的周期为π=,可得ω=2,所以g(x)=sin(2x++φ),因为函数y=g(x)图象的一条对称轴为直线x=,且g(x)是由f(x)的图像向左平移个单位长度得到,所以f(x)的一条对称轴为x=+=,所以2×+φ=kπ+,k∈Z,解得φ=kπ﹣,k∈Z,因为|φ|<,可得φ=,可得f(x)=sin(2x+),令2kπ﹣≤2x+≤2kπ+,k∈Z,解得kπ﹣≤x≤kπ+,k∈Z,函数y=f(x)的单调递增区间为[kπ﹣,kπ+],k∈Z故选:B【点评】本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和转化能力,属于中档题10已知P是椭圆=1上第一象限内一点,F1,F2分别是该椭圆的左、右焦点,且满足=0,若点P到直线y+m=0的距离小于,则m的取值范围是()A(﹣∞,7)∪(5,+∞)B(7,5)C(﹣10,0)D(﹣10,5)【分析】设出点P的坐标,根据椭圆方程求出左右焦点的坐标,然后利用点P在椭圆上以及点P满足的向量关系联立求出点P的坐标,然后利用点到直线的距离公式建立不等关系,进而可以求解【解答】解:设点P的坐标为(x0,y0),则x0>0,y0>0,由椭圆的方程可得:a2=30,b2=5,则c=,所以F1(﹣5,0),F2(5,0),则=(﹣5﹣x0,﹣y0)•(5﹣x0,﹣y0)=x…①又…②,联立①②解得:x(负值舍去),所以点P的坐标为(2,1),则点P到直线AB的距离为d==,解得﹣10,即实数m的取值范围为(﹣10,0),故选:C【点评】本题考查了椭圆的性质以及向量的坐标运算性质,考查了学生的运算能力,属于中档题11在四棱锥P﹣ABCD中,平面PAD⊥底面ABCD,菱形ABCD的两条对角线交于点O,又PA =PD=3,AD=2,则三棱锥P﹣AOD的外接球的体积为()A B C D【分析】取AD中点M,连接PM,ON,MN,求解三角形证明OM=MA=MD=MP,说明三棱锥P﹣AOD的外接球的球心O,在PM上,求出外接球的半径,然后求解外接球的体积【解答】解:如图,取AD中点M,连接PM,∵平面PAD⊥底面ABCD,菱形ABCD的两条对角线交于点O,又PA=PD=3,AD=2,所以M为底面△AOD的外心,PM⊥平面AOD,所以三棱锥P﹣AOD的外接球的球心在PM上,球心为O,设球的半径为R,PM==2,所以R2=(2R)2+12,解得R=,∴PD⊥AD,PD⊥ON,三棱锥P﹣AOD的外接球的体积:=故选:D【点评】本题考查三棱锥的外接球的体积的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题12已知函数f(x)=lnx﹣x﹣有两个极值点,且x1<x2,则下列选项错误的是()A x1+lnx2>0B x1+x2=1C x2D m【分析】利用极值点的定义,结合题意得到方程f'(x)=0有两个正解,从而求解得出正确结论【解答】解:∵函数的定义域为:x∈(0,+∞),∴函数有两个极值点,即得f'(x)=0有两个正解,∵f'(x)=∴方程x2﹣x﹣m=0有两个正解x1,x2,故有x1+x2=1,即得B正确;根据题意,可得△=1+4m>0⇒m>,且有x1•x2=﹣m>0⇒m<0所以可得<m<0,故D正确;又因为根据二次函数的性质可知,函数y=x2﹣x﹣m的对称轴为x=,由上可得0<x1<,<x2<1,故C正确;∴﹣ln2<lnx2<0,∴x1+lnx2∈(﹣ln2,),故A错误故选:A【点评】本题考查函数极值点的定义,以及函数零点与方程的根的关系属于基础题二、填空题:本题共4小题,每小题5分,共20分.13已知定义在R上的函数y=f(x)+3是奇函数,且满足f(1)=﹣2,则f(﹣1)=﹣4【分析】根据y=f(x)+3是R上的奇函数,并且f(1)=﹣2即可得出f(﹣1)+3=﹣(﹣2+3),然后解出f(﹣1)即可【解答】解:∵y=f(x)+3是R上的奇函数,且f(1)=﹣2,∴f(﹣1)+3=﹣[f(1)+3],即f(﹣1)+3=﹣(﹣2+3),解得f(﹣1)=﹣4 故答案为:﹣4【点评】本题考查了奇函数的定义,考查了计算能力,属于基础题14已知非零向量,满足(+)⊥(﹣),且=,则向量与的夹角为【分析】根据条件可得出,进而可求出的值,从而可得出与的夹角【解答】解:∵,∴,∴,且,∴,且,∴故答案为:【点评】本题考查了向量垂直的充要条件,向量数量积的运算,向量夹角的余弦公式,考查了计算能力,属于基础题15已知双曲线(a>0,b>0),O为坐标原点,F1,F2分别为双曲线的左、右焦点,过点F2的直线l交双曲线右支于A,B两点,若|OA|=,|BF1|=5a,则双曲线的离心率为【分析】由|OA|=c,得到AF1⊥AB,运用双曲线的定义和直角三角形的勾股定理,可得a,c的关系,进而得到离心率【解答】解:设双曲线的半焦距为c,由|OA|==c=|OF1|+|OF2|,可得AF1⊥AB,由|BF1|=5a,可得|BF2|=5a﹣2a=3a,设|AF1|=m,可得|AF2|=m+2a,|AB|=m+3a,由直角三角形ABF1,可得(m+3a)2+(m+2a)2=(5a)2,化为m2+5ma﹣6a2=0,解得m=a,则|AF1|=3a,|AF2|=a,所以(3a)2+a2=(2c)2,即为c=a,则离心率e==故答案为:【点评】本题考查双曲线的定义和性质,以及勾股定理法运用,考查方程思想和运算能力,属于中档题16已知数列{a n}满足(a n﹣a n﹣l)•2n2+(5a n﹣1﹣a n)•n﹣a n﹣3a n﹣1=0(n≥2),且a1=,S n 为数列{a n}的前n项和,若S n>,则正整数n的最小值为1010【分析】根据已知关系式推出,然后利用累乘法求出a n,再利用裂项相消法求出S n,进而可以求解【解答】解:由已知(a n﹣a n﹣l)•2n2+(5a n﹣1﹣a n)•n﹣a n﹣3a n﹣1=0(n≥2),则(2n2﹣n﹣1)a,即(2n+1)(n﹣1)a n=(2n﹣3)(n﹣1)a n﹣1,所以,则a×==,则S=,因为S,则,解得n,所以n的最小值为1010,故答案为:1010【点评】本题考查了数列的递推式的应用,涉及到利用累乘法求解数列的通项公式以及裂项相消求和的应用,考查了学生的运算能力,属于中档题三、解答题:共70分.解答应写出文字说明,证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.17(12分)在△ABC中,内角A,B,C所对的边分别为a,b,c,且a=b cos C+c (1)求角B(2)若b=3,求△ABC面积的最大值【分析】(1)由已知结合正弦定理及和差角公式进行化简可求cos B,进而可求B;(2)由余弦定理可求bc的范围,然后结合三角形的面积公式可求【解答】解:(1)因为a=b cos C+c,所以sin A=sin B cos C+sin C=sin(B+C)=sin B cos C+sin C cos B,即sin C=sin C cos B,因为sin C>0,所以cos B=,由B∈(0,π)得B=;(2)由余弦定理得b2=9=a2+c2﹣ac≥ac,当且仅当a=c时取等号,故ac≤9,△ABC面积S==故面积的最大值【点评】本题主要考查了余弦定理,正弦定理,和差角公式在三角化简求值中的应用,还考查了三角形的面积公式的应用,属于中档题18(12分)如图,在直四棱柱ABCD﹣A1B1C1D1中,四边形ABCD是直角梯形,AB∥CD,AB⊥AD,CD=5AB=5,AD=2(1)求证:BC⊥平面BDD1(2)若二面角A﹣BC﹣D1的平面角的正切值为,求四棱锥D1﹣ABCD的体积【分析】(1)由已知可得D1D⊥平面ABCD,则D1D⊥BC,再证明BC⊥BD,由直线与平面垂直的判定可得BC⊥平面BDD1;(2)由(1)可知,∠D1BD为二面角A﹣BC﹣D1的平面角,求得DD1=5,再由棱锥体积公式求四棱锥D1﹣ABCD的体积【解答】(1)证明:已知直四棱柱ABCD﹣A1B1C1D1,则D1D⊥平面ABCD,∵BC⊂平面ABCD,∴D1D⊥BC,在直角梯形ABCD中,过B作BE⊥CD,则BE=AD=2,CE=DC﹣DE=DC﹣AB=4,∴BC=,BD2=AD2+AB2=5,∴BC2+BD2=CD2,即BC⊥BD,∵BD∩DD1=D,∴BC⊥平面BDD1;(2)解:由(1)可知,∠D1BD为二面角A﹣BC﹣D1的平面角,且tan∠D1BD=,则DD1=5∴四棱锥D1﹣ABCD的体积V=【点评】本题考查直线与平面垂直的判定,考查空间想象能力与思维能力,训练了多面体体积的求法,是中档题19(12分)区块链是分布式数据存储、点对点传输、共识机制、加密算法等计算机技术的新型应用模式某校为了了解学生对区块链的了解程度,对高三600名文科生进行了区块链相关知识的测试(百分制),如表是该600名文科生测试成绩在各分数段上的人数分数[40,50)[50,60)[60,70)[70,80)[80,90)[90,100)人数25 125 150 175 75 50 (1)根据表判断某文科生72分的成绩是否达到该校高三年级文科生的平均水平(同一组中的数据用该组区间的中点值为代表)(2)为了让学生重视区块链知识,该校高三年级也组织了800名理科学生进行测试,若学生取得80分及以上的成绩会被认为“对区块链知识有较好掌握”,且理科生中有75人取得了80分及以上的成绩,试完成下列2×2列联表,并判断是否有99.9%的把握认为“对区块链知识有较好掌握与学生分科情况有关”(3)用分层抽样的方式在“对区块链知识有较好掌握”的学生中抽取8人,再在8人中随机抽取2人,求2人中至少有1人学理科的概率文科理科总计较好掌握非较好掌握总计参考公式:,其中n=a+b+c+dP(K2≥k0)0.050 0.010 0.001 k0 3.841 6.635 10.828【分析】(1)求出平均值,由72与平均值比较大小得结论;(2)由题意填写2×2列联表,再求出K2的观测值k,与临界值表比较得结论;(3)利用分层抽样求出8人中文理科所占人数,再由古典概型概率计算公式求解【解答】解:(1)由表可得高三600名文科生的成绩的平均值为:=70,∴某文科生72分的成绩达到该校高三年级文科生的平均水平;(2)2×2列联表:文科理科总计较好掌握125 75 200非较好掌握475 725 1200 总计600 800 1400 K2的观测值k=≈36.762>10.828,故有99.9%的把握认为“对区块链知识有较好掌握与学生分科情况有关”;(3)由分层抽样方法从200名学生中抽取8名,文科所占人数为人,则理科有3人在8人中随机抽取2人,2人中至少有1人学理科的概率为P==【点评】本题考查频率分布表,考查独立性检验,训练了古典概型概率的求法,是中档题20(12分)已知抛物线C:y2=2px(p>0),P为C上任意一点,F为抛物线C的焦点,|PF|的最小值为1(1)求抛物线C的方程(2)过抛物线C的焦点F的直线l与抛物线C交于A,B两点,线段AB的垂直平分线与x轴交于点D,求证:为定值【分析】(1)由抛物线的定义和范围,可得|PF|的最小值为,可得所求抛物线的方程;(2)设直线l的方程为x=my+1,与抛物线的方程联立,运用韦达定理和弦长公式,以及中点坐标公式和两直线垂直的条件,求得|DF|,即可得到定值【解答】解:(1)抛物线C:y2=2px(p>0),焦点F(,0),准线方程为x=﹣,设P(x0,y0),x0≥0,可得x0+的最小值为=1,即p=2,所以抛物线的方程为y2=4x;(2)证明:设直线l的方程为x=my+1,与抛物线的方程y2=4x联立,可得y2﹣4my﹣4=0,设A(x1,y1),B(x2,y2),则y1+y2=4m,y1y2=﹣4,所以AB的中点坐标为(1+2m2,2m),AB的垂直平分线方程为y﹣2m=﹣m(x﹣1﹣2m2),令y=0,解得x=2+2m2,即D(3+2m2,0),|DF|=2(1+m2),又|AB|=x1+x2+2=m(y1+y2)+4=4m2+4,则为定值【点评】本题考查抛物线的定义、方程和性质,以及直线和抛物线的位置关系,考查方程思想和运算能力,属于中档题21(12分)已知函数f(x)=x﹣sin x(1)求曲线y=f(x)在点(π,f(π))处的切线方程(2)证明:当x∈(0,π)时,6f(x)<x3【分析】(1)f′(x)=1﹣cos x,可得f′(π),又f(π)=π,利用点斜式即可得出曲线y=f(x)在点(π,f(π))处的切线方程(2)令g(x)=f(x)﹣x3=x﹣sin x﹣x3,x∈(0,π),g(0)=0多次利用导数研究函数的单调性极值与最值即可证明结论【解答】解:(1)f′(x)=1﹣cos x,f′(π)=1﹣cosπ=2,又f(π)=π﹣sinπ=π,∴曲线y=f(x)在点(π,f(π))处的切线方程为:y﹣π=2(x﹣π),即y=2x ﹣π(2)证明:令g(x)=f(x)﹣x3=x﹣sin x﹣x3,x∈(0,π),g(0)=0 g′(x)=1﹣cos x﹣x2=h(x),h(0)=0,x∈(0,π),h′(x)=sin x﹣x=u(x),u(0)=0,x∈(0,π),u′(x)=cos x﹣1<0,x∈(0,π),∴u(x)在x∈(0,π)上单调递减,∴h′(x)=u(x)<u(0)=0,∴h(x)在x∈(0,π)上单调递减,∴g′(x)=h(x)<h(0)=0,∴函数g(x)在x∈(0,π)单调递减,∴g(x)<g(0)=0∴x﹣sin x﹣x3<0,即当x∈(0,π)时,6f(x)<x3【点评】本题考查了利用导数研究函数的单调性极值、证明不等式,考查了推理能力与计算能力,属于难题选考题:共10分,请考生在第22.23题中任选一题作答.如果多做,那么按所做的第一题计分.[选修4-4:坐标系与参数方程]22(10分)在平面直角坐标系xOy中,曲线C的参数方程为(φ为参数)直线l的参数方程为(t为参数)(1)以坐标原点为极点,x轴的非负半轴为极轴建立极坐标系求曲线C的极坐标方程,并求曲线C上的点到原点的最大距离(2)已知直线l与曲线C交于A,B两点,若|OA|+|OB|=2,O为坐标原点,求直线l的普通方程【分析】(1)直接利用转换关系,在参数方程极坐标方程和直角坐标方程之间进行转换,再利用三角函数的关系式的变换和三角函数的性质的应用求出结果(2)利用直线与圆的位置关系和一元二次方程根和系数关系式的应用求出直线的方程【解答】解:(1)曲线C的参数方程为(φ为参数),转换为直角坐标方程为x2+(y﹣1)2=4,根据,转换为极坐标方程为ρ2﹣2ρsinθ﹣3=设曲线上的点的坐标为P(2cosθ,1+2sinθ),原点的坐标为O(0,0),所以,当(k∈Z)时,|PO|max=3(2)直线l的参数方程为(t为参数),转换为极坐标方程为θ=α(ρ∈R),由于直线与圆相交,故,整理得ρ2﹣2ρsinα﹣3=0,所以ρA+ρB=2sinα,ρAρB=﹣3,故|OA|+|OB|==,整理得sinα=0,所以直线与x轴平行,故直线的方程为y=0【点评】本题考查的知识要点:参数方程,极坐标方程和直角坐标方程之间的转换,三角函数关系式的变换,一元二次方程根和系数关系式的应用,主要考查学生的运算能力和数学思维能力,属于基础题[选修4-5:不等式选讲]23已知函数f(x)=|x+2|+|x﹣a|(1)当a=3时,求f(x)≥6的解集(2)若f(x)≥2a恒成立,求实数a的取值范围【分析】(1)把a=3代入函数解析式,然后根据f(x)≥6,利用零点分段法解不等式即可;(2)根据绝对值不等式性质可得f(x)≥|a+2|,把不等式f(x)≥2a,对任意x∈R 恒成立转化为|a+2|≥2a恒成立,然后求出a的取值范围【解答】解:(1)把a=3代入f(x)=|x+2|+|x﹣a|,可得f(x)=|x+2|+|x﹣3|=,当x≤﹣2时,f(x)≥6等价于﹣2x+1≥6,解得x≤,则x≤﹣,当﹣2<x<3时,f(x)≥6等价于5≥6,此式不成立,当x≥3时,f(x)≥6等价于2x﹣1≥6,解得x,则x综上,不等式f(x)≥6的解集为:(﹣∞,]∪[,+∞)(2)∵f(x)=|x+2|+|x﹣a|=|x+2|+|a﹣x|≥|x+2+a﹣x|=|a+2|,∴不等式f(x)≥2a,对任意x∈R恒成立转化为|a+2|≥2a恒成立,若2a<0,即a<0,则不等式|a+2|≥2a成立,若2a≥0,即a≥0,则a2+4a+4≥4a2,即3a2﹣4a﹣4≤0,解得≤a≤2,则0≤a≤2综上,实数a的取值范围是(﹣∞,2]【点评】本题考查绝对值不等式的解法和不等式恒成立问题,考查分类讨论思想和转化思想,属于中档题。

2020年全国统一高考押题预测卷03(新课标Ⅰ卷)-文科数学(全解全析)

2020年全国统一高考押题预测卷03(新课标Ⅰ卷)-文科数学(全解全析)

∵ DE EC ,∴ DC EF ,又 AB / /CD ,∴ AB EF ,
∵ BF EF E ,∴ AB 面 BEF , AB Ì 面 ABE ,
∴平面 ABE 平面 BEF ................5 分
(2)∵ DE EC ,∴ DC EF ,又 PD / /EF , AB / /CD ,∴ AB PD ,
ax,x 1
12.A【解析】根据题意,函数
f
x
x
2
4 x
a
ln
x,
x

1
R
上单调递增,
当 x 1, f (x) ax ,若 f x 为增函数,则 a 1①,当 x 1, f (x) x2 4 a ln x ,
x

f
x 为增函数,必有
f
( x)
2x
4 x2
a x
0
在[1, ) 上恒成立,变形可得: a
11
60.1,可得 $y
2.0x2
60.1 ...............12

18.(本小题满分 12 分)
【答案】(1)证明见解析;(2)
2
5 5
,
2
15 5
.
【解析】(1)∵ AB / /CD , CD AD , AD CD 2AB 2 , F 分别为 CD 的中点,
∴ ABFD 为矩形, AB BF ,
0
1 2e
+ 单调递增
易知 f x 1 ..............4 分
min
2e
(Ⅱ)(i) f ' x x2 2lnx 1 a .令 g x x2 2lnx 1 a ,则 g ' x 4x lnx 1 .

2020全国Ⅲ卷高考数学考前猜题试卷(文科)一

2020全国Ⅲ卷高考数学考前猜题试卷(文科)一
1.
【答案】
此题暂无答案
【考点】
交集根助运算
【解析】
此题暂无解析
【解答】
此题暂无解答
2.
【答案】
此题暂无答案
【考点】
命正算否定
【解析】
此题暂无解析
【解答】
此题暂无解答
3.
【答案】
此题暂无答案
【考点】
复三的刺算
【解析】
此题暂无解析
【解答】
此题暂无解答
4.
【答案】
此题暂无答案
【考点】
平面射量长量化的性置及其运算
A.丁没有选化学
B.丙没有选化学
C.这四个人里恰有 个人选化学
D.乙丁可以两门课都相同
10.已知正项等比数列 ,满足 = ,则 • =()
A.
B.
C.
D.
11.已知双曲线 的两条渐近线分别为直线 与 ,若点 , 为直线 上关于原点对称的不同两点,点 为直线 上一点,且 ,则双曲线 的离心率为()
A.
A.
B.
C.
D.
8.已知 , 为两条不同的直线, , , 为三个不同的平面,则下列说法中正确的是()
①若 , ,则 ;②若 , ,则 ;
③若 , ,则 ;④若 , ,则 .
A.②③
B.①③
C.①②③
D.②③④
9.新高考的改革方案开始实施后,某地学生需要从化学,生物,政治,地理四门学科中选课,每名同学都要选择其中的两门课程.已知甲同学选了化学,乙与甲没有相同的课程,丙与甲恰有一门课相同,丁与丙也没有相同课程.则以下说法正确的是()
(1)写出曲线 和直线 的普通方程;
(2)若点 ,求 的值.
已知函数 = .

押新课标全国卷第3题-备战2020年高考数学(文)临考题号押题(原卷版)

押新课标全国卷第3题-备战2020年高考数学(文)临考题号押题(原卷版)

押新课标全国卷第3题高考频度:★★★★★难易程度:★★☆☆☆题号考情分析考查知识点分值预测知识点第3题从近三年高考情况来看,本节内容是高考中的热点内容,常以基本初等函数为载体,与其他知识相结合进行考查,其中函数的奇偶性、单调性和值域(最值)问题依然是命题的重点.函数及其性质 5预计2020年高考新课标全国卷第3题会以指、对函数的性质考查为主.1.(2019年新课标全国卷Ⅰ)已知0.20.32log0.2,2,0.2a b c===,则()A.a b c<<B.a c b<<C.c a b<<D.b c a<<2.(2019年新课标全国卷Ⅱ)若a>b,则()A.ln(a−b)>0 B.3a<3bC.a3−b3>0 D.│a│>│b│3.(2019年新课标全国卷Ⅲ)函数()2sin sin2f x x x=-在[]0,2π的零点个数为()A. 2B. 3C. 4D. 5例1.(2020·福建高三期末(文))已知ln2421log532a b c e===,,,则a b c,,满足()A.a b c<<B.b a c<<C.c a b<<D.c b a<<例2.(2020·河北高三期末(文))若函数()()3log25,01,2xx xf xx⎧+>⎪=⎨≤⎪⎩,则()()1f f-=()A.2B.12C.14D.3log71.幂函数的性质:幂函数的图象一定会出现在第一象限内,一定不会出现在第四象限,至于是否出现在第二、三象限内,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点。

2.指数函数的性质:当a>1时,指数函数对于x的负数值非常平坦,对于x的正数值迅速攀升,在x等于0的时候,y等于1。

2020年高考数学押题(全国III卷)

2020年高考数学押题(全国III卷)

2020年高考数学押题(全国III 卷)时间:120分钟满分:61分命卷人:*审核人:一、选择题(每小题5分,共15分)1. 【本题来自于江西师大附中唐志威】已知椭圆C 的焦点为F 1(−1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B|,|AB|=|BF 1|,则C 的方程为( )A.x 22+y 2=1 B.x 23+y 22=1 C.x 24+y 23=1 D.x 25+y 24=1【答案】B【解析】命题意图: 通过此题来考察学生的对解析几何的基本掌握情况,对椭圆定义与公式的运用。

主要考察数形结合思想 试题分析: 本题主要考察椭圆方程的求解、椭圆与直线的关系。

解法一 由椭圆的焦点为,可知,又,,可设,则,,根据椭圆的定义可知,得,所以,,可知,根据相似可得代入椭圆的标准方程,得,,椭圆的方程为. 解法二 也可以先利用椭圆定义结合余弦定理求解即可.2. 【本题来自于江西师大附中唐志威】关于函数f(x)=sin |x |+|sinx |有下述四个结论: ①f(x)是偶函数 ②f(x)在区间(π2,π)单调递增 ③f(x)在[−π,π]有4个零点 ④f(x)的最大值为2其中所有正确结论的编号是( )A. ①②④B. ②④C. ①④D. ①③ 【答案】C【解析】命题意图: 试题分析: 解法一 因为,所以是偶函数,①正确, 因为,而,所以②错误, 画出函数在上的图像,很容易知道有零点,所以③错误, 结合函数图像,可知的最大值为,④正确,故答案选C. 解法二3. 【本题来自于江西师大附中唐志威】已知三棱锥P −ABC 的四个顶点在球O 的球面上,PA =PB =PC ,ΔABC 是边长为2的正三角形,E,F 分别是PA ,AB 的中点,∠CEF =90∘,则球O 的体积为( )A. 8√6πB. 4√6πC. 2√6πD. √6π 【答案】D【解析】命题意图: 试题分析: 解法一 设,则∴∵,∴,即,解得, ∴又易知两两相互垂直, 故三棱锥的外接球的半径为, ∴三棱锥的外接球的体积为,故选D. 解法二二、填空题(每小题5分,共10分) 4. 【本题来自于江西师大附中唐志威】甲乙两队进行篮球决赛,采取七场四胜制(当一队赢得四场胜利时,该对获胜,决赛结束)根据前期的比赛成绩,甲队的主客场安排依次为“主主客客主客主”设甲队主场取胜的概率为0.6,客场取胜的概率为0.5,且各场比赛相互独立,则甲队以4:1获胜的概率是__________.【答案】【解析】命题意图: 试题分析: 解法一 甲队要以,则甲队在前4场比赛中输一场,第5场甲获胜,由于在前4场比赛中甲有2个主场2个客场,于是分两种情况:. 解法二5. 【本题来自于江西师大附中唐志威】已知双曲线C:x 2a 2−y 2b2=1(a >0,b >0)的左、右焦点分别为F 1,F 2,过F 1的直线与C 的两条渐近线分别交于A,B 两点.若F 1A ⃗⃗⃗⃗⃗⃗⃗ =AB ⃗⃗⃗⃗⃗ ,F 1B ⃗⃗⃗⃗⃗⃗⃗ ∙F 2B ⃗⃗⃗⃗⃗⃗⃗ =0,则C 的离心率为装订线【答案】【解析】命题意图: 试题分析: 解法一 由知是的中点,,又是的中点,所以为中位线且,所以,因此,又根据两渐近线对称,,所以,.解法二三、解答题(每小题12分,共36分)6. 【本题来自于江西师大附中唐志威】已知抛物线C:y 2=3x 的焦点为F ,斜率为32的直线l 与C 的交点为A ,B ,与x 轴的交点为P . (1)若|AF|+|BF|=4,求l 的方程; (2)若AP⃗⃗⃗⃗⃗ =3PB ⃗⃗⃗⃗⃗ ,求|AB|.【答案】(1); (2).【解析】命题意图:试题分析: 解法一 设直线的方程为,设,, (1)联立直线与抛物线的方程:消去化简整理得,,,,依题意可知,即,故,得,满足,故直线的方程为,即. (2)联立方程组消去化简整理得,,,,,,可知,则,得,,故可知满足,. 解法二7. 【本题来自于江西师大附中唐志威】已知函数f(x)=sinx −ln(1+x),f ′(x)为f(x)的导函数.证明: (1)f ′(x)在区间(−1,π2)存在唯一极大值点; (2)f(x)有且仅有2个零点.【答案】略【解析】命题意图: 试题分析: 解法一 (1)对进行求导可得,,取,则, 在内为单调递减函数,且,所以在内存在一个,使得,所以在内,为增函数;在内,为减函数,所以在在区间存在唯一极大值点; (2)由(1)可知当时,单调增,且,可得则在此区间单调减; 当时,单调增,且,则在此区间单调增;又则在上有唯一零点.当时,单调减,且,则存在唯一的,使得,在时,,单调增;当时,单调减,且,所以在上无零点; 当时,单调减,单调减,则在上单调减,,所以在上存在一个零点. 当时,恒成立,则在上无零点. 综上可得,有且仅有个零点. 解法二8. 【本题来自于江西师大附中唐志威】为治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物实验.实验方案如下:每一轮选取两只白鼠对药效进行对比实验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮实验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止实验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮实验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得−1分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得−1分;若都治愈或都未治愈则两种药均得0分.甲、乙班级: 姓名: 线订装两种药的治愈率分别记为α和β,一轮实验中甲药的得分记为X . (1)求X 的分布列; (2)若甲药、乙药在实验开始时都赋予4分,表示“甲药的累计得分为i 时,最终认为甲药比乙药更有效”的概率,则,,,其中,,.假设α=0.5,β=0.8. (i)证明:为等比数列; (ii)求,并根据的值解释这种实验方案的合理性.【答案】(1)略;(2)略【解析】命题意图: 试题分析: 解法一 (1)一轮实验中甲药的得分有三种情况:、、. 得分时是施以甲药的白鼠治愈且施以乙药的白鼠未治愈,则; 得分时是施以乙药的白鼠治愈且施以甲药的白鼠未治愈,则; 得分时是都治愈或都未治愈,则. 则的分布列为:(2)(i)因为,, 则,,. 可得,则, 则,则, 所以为等比数列. (ii)的首项为,那么可得:,, ………………, 以上7个式子相加,得到, 则,则, 再把后面三个式子相加,得, 则.表示“甲药治愈的白鼠比乙药治愈的白鼠多4只,且甲药的累计得分为4”,因为,,,则实验结果中“甲药治愈的白鼠比乙药治愈的白鼠多4只,且甲药的累计得分为4”这种情况的概率是非常小的,而的确非常小,说明这种实验方案是合理的. 解法二。

2020年高考数学押题密卷(含解析)

2020年高考数学押题密卷(含解析)

2020年全国高考数学试卷及答案(名师押题预测试卷+解析答案,值得下载)注意事项:1.答题前,先将自己的姓名、准考证号填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。

2.选择题的作答:每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,写在试题卷、草稿纸和答题卡上的非答题区域均无效。

3.非选择题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域均无效。

4.考试结束后,请将本试题卷和答题卡一并上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合,,则(A B = )A .(1,2)B .(1,)+∞C .(1,2]D .(2,)+∞【解析】解:,,则【答案】A . 2.已知向量,(3,1)b =,若//a b ,则(a b = ) A .1 B .1-C .10-D .1±【解析】解:,(3,1)b =, 若//a b ,则,1m ∴=-,【答案】C .3.已知α是第二象限角,若,则sin (α= )A .223-B .13-C .13D .223【解析】解:α是第二象限角,若可得1cos 3α=-,所以.【答案】D .4.等差数列{}n a 的前项和为n S ,若3a 与8a 的等差中项为10,则10(S = ) A .200B .100C .50D .25【解析】解:由等差数列的性质可得:,则.【答案】B .5.已知m 、n 是不重合的直线,α、β是不重合的平面,有下列命题: ①若m α⊂,//n α,则//m n ; ②若//m α,//m β,则//αβ; ③若n αβ=,//m n ,则//m α且//m β;④若m α⊥,m β⊥,则//αβ. 其中真命题的个数是( ) A .0B .1C .2D .3【解析】解:①若m α⊂,//n α,则m 与n 平行或异面,故不正确; ②若//m α,//m β,则α与β可能相交或平行,故不正确; ③若n αβ=,//m n ,则//m α且//m β,m 也可能在平面内,故不正确;④若m α⊥,m β⊥,则//αβ,垂直与同一直线的两平面平行,故正确 【答案】B .6.执行如图所示的程序框图,则输出的n 值是( )A.11 B.9 C.7 D.5 【解析】解:模拟程序的运行,可得1n=,0S=不满足条件37S,执行循环体,113S=⨯,3n=不满足条件37S,执行循环体,,5n=不满足条件37S,执行循环体,,7n=此时,满足条件37S,退出循环,输出n的值为7.【答案】C.7.在《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,在鳖臑A BCD-中,AB⊥平面BCD,BC CD⊥,且,M为AD的中点,则异面直线BM与CD夹角的余弦值为()A.23B.34C.33D.24【解析】解:以D为原点,DB为x轴,DC为y轴,过D作平面BDC的垂线为z轴,建立空间直角坐标系,设,则(1A,0,1),(1B,0,0),(0C,0,0),(0D,1,0),111 (,,)222 M,则,(0CD =,1,0),设异面直线BM 与CD 夹角为θ,则.∴异面直线BM 与CD 夹角的余弦值为33. 【答案】C .8.设0a >且1a ≠,则“b a >”是“log 1a b >”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【解析】解:充分性:当01a <<时,“b a >”时“log 1a b <”故充分性不成立. 必要性:当log 1a b >时,若01a <<,则0b a <<,故充分性不成立. 综上,“b a >”是“log 1a b >”的既不充分也不必要条件. 【答案】D .9.某空间几何体的三视图如图所示,其中正视图和俯视图均为边长为1的等腰直角三角形,则此空间几何体的表面积是( )A.322+B.312+C.3122++D.23+【解析】解:由题意可知几何体的直观图如图是正方体的一部分,三棱锥A BCD-,正方体的棱长为1,所以几何体的表面积为:.【答案】C.10.程序框图如图,若输入的2a=,则输出的结果为()A .20192B .1010C .20232D .1012【解析】解:模拟程序的运行,可得2a =,0S =,0i = 执行循环体,2S =,12a =,1i = 满足条件2019i ,执行循环体,122S =+,1a =-,2i = 满足条件2019i ,执行循环体,1212S =+-,2a =,3i = 满足条件2019i ,执行循环体,,12a =,4i = ⋯由于,观察规律可知,满足条件2019i ,执行循环体,,12a =,2020i = 此时,不满足条件2019i ,退出循环,输出.【答案】D .11.将三颗骰子各掷一次,设事件A = “三个点数互不相同”, B = “至多出现一个奇数”,则概率()P A B 等于( ) A .14B .3536C .518D .512【解析】解:将三颗骰子各掷一次,设事件A = “三个点数互不相同”, B = “至多出现一个奇数”, 基本事件总数,AB 包含的基本事件个数,∴概率.【答案】C .12.已知定义在R 上的连续可导函数()f x 无极值,且x R ∀∈,,若在3[,2]2ππ上与函数()f x 的单调性相同,则实数m 的取值范围是( ) A .(-∞,2]- B .[2-,)+∞ C .(-∞,2] D .[2-,1]-【解析】解:定义在R 上的连续可导函数()f x 无极值,方程()0f x '=无解,即()f x 为R 上的单调函数,,则()2018x f x +为定值, 设,则,易知()f x 为R 上的减函数,,,又()g x 与()f x 的单调性相同, ()g x ∴在R 上单调递减,则当3[,2]2x ππ∈,()0g x '恒成立, 即,当3[,2]2x ππ∈,则5[63x ππ+∈,13]6π, 则当26x ππ+=时,取得最大值2,此时取得最小值2-,即2m -,即实数m 的取值范围是(-∞,2]-, 【答案】A .第Ⅱ卷二、填空题:本大题共4小题,每小题5分. 13.函数1()x f x e -=在(1,1)处切线方程是 . 【解析】解:函数1()x f x e -=的导数为1()x f x e -'=,∴切线的斜率k f ='(1)1=,切点坐标为(1,1),∴切线方程为1y x -=,即y x =.故答案为:y x =.14.已知P 是抛物线24y x =上一动点,定点(0,22)A ,过点P 作PQ y ⊥轴于点Q ,则||||PA PQ +的最小值是 .【解析】解:抛物线24y x =的焦点坐标(1,0),P 是抛物线24y x =上一动点,定点(0,22)A ,过点P 作PQ y ⊥轴于点Q ,则||||PA PQ +的最小值,就是PF 的距离减去y 轴与准线方程的距离, 可得最小值为:.故答案为:2.15.设n S 是数列{}n a 的前n 项和,点(n ,*)()n a n N ∈在直线2y x =上,则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为 1nn + .【解析】解:点(n ,*)()n a n N ∈在直线2y x =上,2n a n ∴=..∴.则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和.故答案为:1nn +. 16.已知球O 的内接圆锥体积为23π,其底面半径为1,则球O 的表面积为 254π .【解析】解:由圆锥体积为23π,其底面半径为1, 可求得圆锥的高为2, 设球半径为R ,可得方程:,解得54R =, ∴,故答案为:254π. 三、解答题:解答应写出文字说明、证明过程或演算步骤.17.已知a ,b ,c 分别是ABC ∆的三个内角A ,B ,C 的对边,若10a =,角B 是最小的内角,且.(Ⅰ)求sin B 的值;(Ⅱ)若ABC ∆的面积为42,求b 的值. 【解析】(本题满分为12分) 解:(Ⅰ)由、及正弦定理可得:,⋯⋯由于sin 0A >,整理可得:,又sin 0B >, 因此得3sin 5B =.⋯⋯ (Ⅱ)由(Ⅰ)知3sin 5B =, 又ABC ∆的面积为42,且10a =, 从而有,解得14c =,⋯⋯又角B 是最小的内角, 所以03Bπ<,且3sin 5B =,得4cos 5B =,⋯⋯ 由余弦定理得,即62b =.⋯⋯18.“微信运动”是手机APP 推出的多款健康运动软件中的一款,大学生M 的微信好友中有400位好友参与了“微信运动”.他随机抽取了40位参与“微信运动”的微信好友(女20人,男20人)在某天的走路步数,经统计,其中女性好友走路的步数情况可分为五个类别:A 、0~2000步,(说明:“0~2000”表示“大于或等于0,小于2000”,以下同理),B 、2000~5000步,C 、5000~8000步,D 、8000~10000步,E 、步,且A 、B 、C 三种类别的人数比例为1:4:3,将统计结果绘制如图所示的柱形图;男性好友走路的步数数据绘制如图所示的频率分布直方图.若某人一天的走路步数大于或等于8000,则被系统认定为“超越者”,否则被系统认定为“参与者”. (Ⅰ)若以大学生M 抽取的微信好友在该天行走步数的频率分布,作为参与“微信运动”的所有微信好友每天走路步数的概率分布,试估计大学生M 的参与“微信运动”的400位微信好友中,每天走路步数在2000~8000的人数;(Ⅱ)若在大学生M 该天抽取的步数在8000~12000的微信好友中,按男女比例分层抽取9人进行身体状况调查,然后再从这9位微信好友中随机抽取4人进行采访,求其中至少有一位女性微信好友被采访的概率;(Ⅲ)请根据抽取的样本数据完成下面的22⨯列联表,并据此判断能否有95%的把握认为“认定类别”与“性别”有关?参与者超越者 合计 男 20 女20合计 40附:,,20()P K k0.10 0.050 0.010 0k 2.706 3.841 6.635【解析】解:(Ⅰ)所抽取的40人中,该天行走2000~8000步的人数:男12人, 女14人⋯⋯,400位参与“微信运动”的微信好友中,每天行走2000~8000步的人数 约为:人⋯⋯;(Ⅱ)该天抽取的步数在8000~12000的人数:男8人,女4人, 再按男女比例分层抽取9人,则其中男6人,女3人⋯⋯所求概率(或⋯⋯ (Ⅲ)完成22⨯列联表⋯⋯参与者 超越者 合计男 12 8 20女 16 4 20合计 28 12 40计算,⋯⋯因为1.905 3.841<,所以没有理由认为“认定类别”与“性别”有关, 即“认定类别”与“性别”无关 ⋯⋯19.如图,在正三棱柱中,12AB AA ==,E ,F 分别为AB ,11B C 的中点.(Ⅰ)求证:1//B E 平面ACF ;(Ⅱ)求CE 与平面ACF 所成角的正弦值.【解析】证明:(Ⅰ)取AC 的中点M ,连结EM ,FM ,在ABC ∆中, 因为E 、M 分别为AB ,AC 的中点,所以//EM BC 且12EM BC =, 又F 为11B C 的中点,11//B C BC ,所以1//B F BC 且112B F BC =,即1//EM B F 且1EM B F =,故四边形1EMFB 为平行四边形,所以,又MF ⊂平面ACF ,1B E ⊂/平面ACF ,所以1//B E 平面ACF .⋯⋯解:(Ⅱ)取BC 中点O ,连结AO 、OF ,则AO BC ⊥,OF ⊥平面ABC ,以O 为原点,分别以OB 、AO 、OF 为x 轴、y 轴、z 轴,建立空间直角坐标系 ⋯⋯ 则有, 得 设平面ACF 的一个法向量为(n x =,y ,)z则00n CA n CF ⎧=⎪⎨=⎪⎩,即3020x y x z ⎧-=⎪⎨+=⎪⎩,令3z =-,则(23n =,2,3)-,⋯⋯ 设CE 与平面ACF 所成的角为θ,则,所以直线CE 与平面ACF 所成角的正弦值为21919.⋯⋯。

2020年普通高等学校招生全国统一考试(全国Ⅲ卷)压轴卷 数学(文) 含解析

2020年普通高等学校招生全国统一考试(全国Ⅲ卷)压轴卷 数学(文) 含解析
O 为 A1C1 的中点. (1)求证 OB // 平面 ACD1 ; (2)求几何体 ACB1 A1D1 的体积.
20.(12 分)中心在原点的椭圆 E 的一个焦点与抛物线 C : x2 = 4 y 的焦点关于直线 y = x 对
称,且椭圆 E 与坐标轴的一个交点坐标为 (2, 0) .
(I)求椭圆 E 的标准方程;
A.等腰直角三角形 B.等腰三角形 C.直角三角形
D.等边三角形
7.宋元时期,中国数学鼎盛时期中杰出的数学家有“秦﹝九韶﹞、李﹝冶﹞、杨﹝辉﹞、朱
﹝世杰﹞四大家”,朱世杰就是其中之一.朱世杰是一位平民数学家和数学教育家.朱世杰
平生勤力研习《九章算术》,旁通其它各种算法,成为元代著名数学家.他全面继承了前人 数学成果,既吸收了北方的天元术,又吸收了南方的正负开方术、各种日用算法及通俗歌诀, 在此基础上进行了创造性的研究,写成以总结和普及当时各种数学知识为宗旨的《算学启 蒙》,其中有关于“松竹并生”的问题:松长四尺,竹长两尺,松日自半,竹日自倍,松竹
何日而长等.如图,是源于其思想的一个程序框图.若输入的 a, b 分别为 3 ,1,则输出的 n =
()
A. 2
B. 3
C. 4
D. 5
{ } 8.已知等比数列 an 中,公比为 q, a2 = 3 ,且 −1, q, 7 成等差数列,又 bn = log3 an ,
数列{bn} 的前 n 项和为 Tn ,则T9 = ( )
log3
25
=
_________.
x

0,
14.已知 x,y 满足 x + y ≥ 4,若 x + 2 y 的最小值为_________.
x − 2 y ≤1.

2020年高考全国卷考前精品密卷 文科数学测试(三)答案

2020年高考全国卷考前精品密卷 文科数学测试(三)答案

(!%!%,%.%4%6%!!%!!%!,+&!%#%,%+%.’%!" -! 6!0!#’($vwxs.&$!.$!.%01ydcd+z{4%9!&$!.$!.&$!.$!"%p!&.&%(01|cd+45%9
$!.$!.*$!"$!.*!%p.*&*!(}/&#$!.&#$&!%kl/&!&&&.&%%!" 0!
!.!!#!#’($l²3³´+ µ.K*%¶·k#2.+ ·¸¹%&£,-º%»¼µ3# .½¾+¿À*%e ³´ªÀ*#+ · Á + ½ ¾ + -  %T .%+## *1&## &!!%&&&$"%e ¼ µ 3# + , - . !/%$"%k l
’(%(/&6*#,6%\9%&!,$6%/&.,6%¯ªÃµÄ7&!#! )%*/&6*+6% !"!槡,(.#!#’($]¤ÅÆ -8"#9 ǯ¶È %É --!0%& "#9%W -" Ê& "#9 k Ë + £ . "$7%8 9 --! &槡,%p . * - Ê & "#9 + Ì Ã(W .--!" 1
"!’!#’($‘a%*!+".bcd%e8fg %(h+*$i%*!+"*$%e8fg 0(j.*!!"&12#%*!#"&!312.%k

2020年全国卷Ⅲ高考压轴卷数学文科(一)】

2020年全国卷Ⅲ高考压轴卷数学文科(一)】
2 (1)求角 A 的大小;
(2)已知 △ABC 外接圆半径 R 3 ,且 AC 3 ,求 △ABC 的周长. 18.(本小题满分 12 分) 某中学为了丰富学生的课外文体活动,分别开设了阅读、书法、绘画等文化活动;跑步、游泳、健身操等体
育活动.该中学共有高一学生 300 名,要求每位学生必须选择参加其中一项活动,现对高一学生的性别、学习积 极性及选择参加的文体活动情况进行统计,得到数据如下:
12.在边长为 2 的等边 △ABC 中, D 是 BC 的中点,点 P 是线段 AD 上一动点,
您身边的高考专家
则 AP CP 的取值范围是( )
A.
3 4
,
B.
3 4
,
0
C. 1,0
二、填空题:本大题共 4 小题,每小题 5 分.
D. 1,1
13.某校高三科创班共 48 人,班主任为了解学生高考前的心理状况,将学生按 1 至 48 的学号用系统抽样方法抽
6.如图,网格纸上小正方形的边长为 1,粗实线画出的是某
几何体的三视图,
则该几何体的体积为( )
开始
S=1,T=0,n=0 n==0 否 T>S?
S=S+8
n=n+2
是 输出 S 结束
T=T+2n
A.3
B.4
C.5D.6118.已知 a ln23 , b ln33 , c log2 0.7 ,则 a , b , c 的大小关系是( )
D.9
A.25
B.9 C.17
D.20
11.已知 F1 , F2 分别是椭圆 C :
x2 m
y2 4
1 的上下两个焦点,若椭圆上存在四个不同点 P ,使得 △PF1F2 的面积
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

考前绝密押题试卷(文)
B.6
C.16
D.7
f(x)=lnx 4x
的大致图象是( )
B.
D.
f(x)=13ax 3+1
2bx 2−x(a >0, b >0)在x =1处取得极小值,则27ab 2的最大值为( ) B.27 C.1 D.4
C:x 2a 2

y 2b 2
=1(a >0, b >0)的两条渐近线均与圆x 2+y 2−6x +5=0相切,且双曲线的右焦C 的离心率为( )
B.√6
3
C.√52
D.3√55
ABCD 中,AB =BD =AD =CD =3,AC =BC =4,用平行于AB ,CD 的平面截此四面体,得到截EFGH ,则四边形EFGH 面积的最大值为( ) B.43
C.3
D.9
2
4小题,每小题5分,共20分.
{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4=________. x ,y 满足约束条件{x +2y −5≤0
x −y +1≥0y ≥1
,则2x +y 的最小值为________.
M 是AB 的中点,在几何体ADF −BCE 内任取一点,则该点在几何AMCD 内的概率为________.
已知函数f(x)={xsinx,0<x <π
√x,x ≥π
,g(x)=f(x)−x .则方程g(x)=0有________个实数根.
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
某市在开展创建“全国文明城市”活动中,工作有序扎实,成效显著,尤其是城市环境卫生大为改观,深得市民好评.“创文”过程中,某网站推出了关于环境治理和保护问题情况的问卷调查,现从参与问卷调查的人群中随机选出200人,并将这200人按年龄分组:第1组[15, 25),第2组[25, 35),第3组[35, 45),第4组[45, 55),第5组[55, 65),得到的频率分布直方图如图所示.
(1)求出a 的值;
(2)若已从年龄较小的第1,2组中用分层抽样的方法抽取5人,现要再从这5人中随机抽取3人进行问卷调查,求第2组恰好抽到2人的概率.
已知函数f(x)=2sin(x −π
3)cosx +t 的最大值为1. (1)求t 的值;
(2)设锐角△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若a =2√2,△ABC 的面积为√3,且f(A)=√32
,求b +c 的值.
如图,菱形ABCD 与正三角形BCE 的边长均为2,它们所在平面互相垂直,FD ⊥平面ABCD ,EF // 平面ABCD .
(1)求证:平面ACF ⊥平面BDF ;
(2)若∠CBA =60∘,求多面体ADFBCE 的体积.
已知函数f(x)=ae x ,g(x)=lnx −lna ,其中a 为常数,e 是自然对数的底数,曲线y =f(x)在其与y 轴的交点处的切线记作l 1,曲线y =g(x)在其与x 轴的交点处的切线记作l 2,且l 1 // l 2. (1)求l 1,l 2之间的距离;
(2)若存在x 使不等式x−m
f(x)>√x 成立,求实数m 的取值范围.
已知椭圆C:
x 2a +y 2
b =1(a >b >0)的长轴是短轴的两倍,以短轴一个顶点和长轴一个顶点为端点的线段作直
径的圆的周长等于√5π,直线l 与椭圆C 交于A(x 1, y 1),B(x 2, y 2)两点. (1)求椭圆C 的方程;
(2)过点O 作直线l 的垂线,垂足为D .若OA ⊥OB ,求动点D 的轨迹方程.
请考生在第22、23两题中任选一题作答,并用2B 铅笔在答题卡上把所选题目的题号涂黑.注意所做题目的题号必须与所涂题目的题号一致,在答题卡选答区域指定位置答题,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](本小题满分10分)
在平面直角坐标系xOy 中,直线l 的参数方程为{x =1−√3
2t
y =−√3+1
2t
(t 为参数).以坐标原点为极点,以x 轴的正半轴为极轴,建立极坐标系.曲线C 的极坐标方程为ρ=−2√3sinθ. (1)求直线l 的普通方程及曲线C 的直角坐标方程;
(2)设点P(1,−√3),直线l 与曲线C 相交于A ,B 两点,求2
|PA|+2
|PB|的值. [选修4-5:不等式选讲](本小题满分0分)
已知函数f(x)=|x −a|+|2x −1|−1(a ∈R)的一个零点为1. (1)求不等式f(x)≤1的解集;
(2)若1
m +2
n−1=a(m >0, n >1),求证:m +2n ≥11.
参考答案与试题解析
2020全国Ⅲ卷高考数学考前绝密押题试卷(文)一
一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.
1.
【答案】 此题暂无答案 【考点】 交集根助运算 【解析】 此题暂无解析 【解答】 此题暂无解答 2.
【答案】 此题暂无答案 【考点】 复根的务
复验热数术式工乘除运算 【解析】 此题暂无解析 【解答】 此题暂无解答 3.
【答案】 此题暂无答案 【考点】
数量积常断换个平只存量的垂直关系 【解析】 此题暂无解析 【解答】 此题暂无解答 4.
【答案】 此题暂无答案 【考点】 对数值于小的侧较 【解析】 此题暂无解析 【解答】 此题暂无解答 5.
【答案】 此题暂无答案 【考点】
等差数来的通锰公式 【解析】 此题暂无解析 【解答】 此题暂无解答 6.
【答案】 此题暂无答案 【考点】
根据体际省题完择函离类型 【解析】 此题暂无解析 【解答】 此题暂无解答 7.
【答案】 此题暂无答案 【考点】 抛物使之性质 【解析】 此题暂无解析 【解答】 此题暂无解答 8.
【答案】 此题暂无答案 【考点】 程正然图 茎叶图 【解析】 此题暂无解析 【解答】 此题暂无解答 9.
【答案】
此题暂无答案
【考点】
函来锰略也与图象的变换
【解析】
此题暂无解析
【解答】
此题暂无解答
10.
【答案】
此题暂无答案
【考点】
利来恰切研费函数的极值
【解析】
此题暂无解析
【解答】
此题暂无解答
11.
【答案】
此题暂无答案
【考点】
圆锥曲三的综合度题
【解析】
此题暂无解析
【解答】
此题暂无解答
12.
【答案】
此题暂无答案
【考点】
平面的基使性质及钡论
【解析】
此题暂无解析
【解答】
此题暂无解答
二、填空题:本题共4小题,每小题5分,共20分. 【答案】
此题暂无答案
【考点】
等比数使的前n种和
等差明列政快比数坏的综合
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】此题暂无答案
【考点】
简单因性规斯
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【考点】
由三都问求体积
几何概表计声(集长样、角度奇附积、体积有关的几何概型)
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【考点】
函数根助点与驶还根的关系
【解析】
此题暂无解析
【解答】
此题暂无解答
三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.
【答案】
此题暂无答案
【考点】
频率都着直方图
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【考点】
余于视理
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【考点】
平面因平面京直
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【考点】
利用三数定究曲纵上迹点切线方程
利验热数技究女数的最值
【解析】
此题暂无解析
【解答】
此题暂无解答
【答案】
此题暂无答案
【考点】
椭圆较标准划程
直线与椭常画位置关系
椭明的钾用
【解析】
此题暂无解析
【解答】
此题暂无解答
请考生在第22、23两题中任选一题作答,并用2B铅笔在答题卡上把所选题目的题号涂黑.注意所做题目的题号必须与所涂题目的题号一致,在答题卡选答区域指定位置答题,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](本小题满分10分)
【答案】
此题暂无答案
【考点】
圆的较坐标停程
参数较严与普码方脂的互化
【解析】
此题暂无解析
【解答】
此题暂无解答
[选修4-5:不等式选讲](本小题满分0分)
【答案】
此题暂无答案
【考点】
函数零都问判定定理
绝对常不等至的保法与目明
【解析】
此题暂无解析
【解答】
此题暂无解答。

相关文档
最新文档