利用导数研究函数的图像及零点问题(提高)
第06讲 利用导数研究函数的零点(方程的根) (精讲+精练)(学生版)
第06讲利用导数研究函数的零点(方程的根)(精讲+精练)目录第一部分:知识点精准记忆第二部分:课前自我评估测试第三部分:典型例题剖析高频考点一:判断、证明或讨论函数零点的个数高频考点二:证明唯一零点问题高频考点三:根据零点情况求参数①利用最值(极值)研究函数零点问题②利用数形结合法研究函数的零点问题③构造函数研究函数零点问题第四部分:高考真题感悟第五部分:第06讲利用导数研究函数的零点(方程的根)(精练)1、函数的零点(1)函数零点的定义:对于函数()y f x=,把使()0f x=的实数x叫做函数()y f x=的零点.(2)三个等价关系方程0)(=xf有实数根⇔函数)(xfy=的图象与x轴有交点的横坐标⇔函数)(xfy=有零点.2、函数零点的判定如果函数()y f x=在区间[,]a b上的图象是连续不断的一条曲线,并且有()()0f a f b⋅<,那么函数()y f x=在区间(,)a b内有零点,即存在(,)c a b∈,使得()0f c=,这个c也就是()0f x=的根.我们把这一结论称为函数零点存在性定理.注意:单调性+存在零点=唯一零点1.(2022·全国·高二)已知函数()f x的定义域为[]15-,,部分对应值如下表:()f x的导函数()y f x='的图象如图所示,则下列关于函数()f x的命题:① 函数()y f x=是周期函数;② 函数()f x在[]02,是减函数;③ 如果当[]1,x t∈-时,()f x的最大值是2,那么t的最大值为4;④ 当12a<<时,函数()y f x a=-有4个零点.其中真命题的个数是A.4个B.3个C.2个D.1个2.(2022·甘肃·金昌市教育科学研究所高三阶段练习(文))已知函数()2e1xf x x a=+-()a R∈有两个极值点,则实数a的取值范围为()A.1,0e⎛⎫- ⎪⎝⎭B.2,0e⎛⎫- ⎪⎝⎭C.1,e⎛⎫-+∞⎪⎝⎭D.2,e⎛⎫-+∞⎪⎝⎭3.(2022·全国·高二)若函数()3239f x x x x m =--+仅有一个零点,则实数m 的取值范围是( )A .()5,-+∞B .(,27)(5,)-∞-⋃+∞C .(,27)-∞D .(,5)(27,)-∞-⋃+∞4.(2022·甘肃武威·模拟预测(文))函数()326f x x x m =-+有三个零点,则实数m 的取值范围是( )A .(﹣4,4)B .[﹣4,4]C .(﹣∞,﹣4]∪[4,+∞)D .(﹣∞,﹣4)∪(4,+∞)5.(2022·江苏淮安·高二期末)已知函数()e x f x =与()1g x x =+,则它们的图象交点个数为( )A .0B .1C .2D .不确定高频考点一:判断、证明或讨论函数零点(根)的个数1.(2022·全国·高二)设函数f (x )=13x -ln x ,则函数y =f (x )( )A .在区间1(,1)e,(1,e )内均有零点 B .在区间1(,1)e,(1,e )内均无零点C .在区间1(,1)e 内有零点,在区间(1,e )内无零点D .在区间1(,1)e 内无零点,在区间(1,e )内有零点2.(2022·全国·高三专题练习(文))已知函数()()12xx e f x e=-+,其中e 为自然对数的底数, 2.7182818e =……,则()f x 的零点个数为( ) A .0B .1C .2D .33.(2022·全国·高三专题练习(理))函数()()1ln 03f x x x x =->的零点个数为( )A .0B .1C .2D .34.(2022·全国·高二课时练习)求函数3()231f x x x =-+零点的个数为( ) A .1B .2C .3D .45.(2022·江苏淮安·高二期末)已知函数()e x f x =与()1g x x =+,则它们的图象交点个数为( )A .0B .1C .2D .不确定6.(2022·江苏苏州·模拟预测)方程3269100x x x -+-=的实根个数是______ .7.(2022·全国·高三专题练习)函数()1x f x e x =-+的零点个数是__________.8.(2022·广东佛山·高二阶段练习)已知函数()()1ln 2af x x a x x=+---,其中R a ∈. (1)若()f x 存在唯一极值点,且极值为0,求a 的值; (2)若2e a <,讨论()f x 在区间2[1,e ]上的零点个数.9.(2022·新疆·乌苏市第一中学高二阶段练习(文))给定函数()()1e xf x x =+.(1)判断函数()f x 的单调性,并求出()f x 的极值; (2)求出方程()()f x a a R =∈的解的个数.高频考点二:证明唯一零点(根)问题1.(2022·山西省长治市第二中学校高二阶段练习)已知函数321()(1)3=-++f x x a x x .(1)若1a =,求()f x 的单调区间及相应区间上的单调性; (2)证明:()f x 只有一个零点.2.(2022·陕西渭南·高二期末(文))已知函数()ln x axf x x+=,R a ∈. (1)若0a =,求()f x 的最大值;(2)若01a <<,求证:()f x 有且只有一个零点.3.(2022·广西玉林·模拟预测(文))已知函数217()ln 4,()2ln 22f x x x xg x x x =-=++. (1)求函数()f x 的最小值;(2)证明:函数()()()h x f x g x =+仅有一个零点.高频考点三:根据零点(根)情况求参数①利用最值(极值)研究函数零点(根)问题1.(2022·重庆市万州第二高级中学高二阶段练习)已知函数32()34f x x ax bx =+++在1x =-时有极值0. (1)求函数()f x 的解析式;(2)记()()21g x f x k =-+,若函数()g x 有三个零点,求实数k 的取值范围.2.(2022·山东师范大学附中高二阶段练习)已知函数()21xx x f x e+-=. (1)求函数()f x 的单调区间;(2)若函数()y f x a =-(a 为常数)有3个不同的零点,求实数a 的取值范围.3.(2022·宁夏六盘山高级中学高二阶段练习(理))已知函数3()91f x ax x =-+,0a >. (1)若3a =,求函数()f x 的极值;(2)若函数()f x 恰有三个零点,求实数a 的取值范围.4.(2022·北京丰台·一模)已知函数()f x = (1)当1a =时,求曲线()y f x =的斜率为1的切线方程; (2)若函数2()()3ag x f x =-恰有两个不同的零点,求a 的取值范围.5.(2022·广西桂林·二模(理))已知函数()()()211e 2xf x x ax a R =--∈ (1)讨论()f x 的单调性;(2)若()f x 有两个零点,求实数a 的取值范围.②利用数形结合法研究函数的零点(根)问题1.(2022·宁夏·银川二中高二期末(理))已知函数ln ()xf x x= (1)填写函数()f x 的相关性质;2.(2022·四川·阆中中学高二阶段练习(文))设函数3()65f x x x x R =-+∈,. (1)求函数()f x 的单调区间;(2)若关于x 的方程()f x a =有三个不等实根,求实数a 的取值范围.3.(2022·全国·信阳高中高三阶段练习(理))已知函数()2e xf x a x =-(R a ∈,e 为自然对数的底数).(1)若()0f x =有两个不相等的实数根,求a 的取值范围;4.(2022·四川·雅安中学高二阶段练习(文))已知函数()322f x x ax bx =++-在2x =-时取得极值,且在点()()1,1f --处的切线的斜率为3- . (1)求()f x 的解析式;(2)若函数()y f x λ=-有三个零点,求实数λ的取值范围.5.(2022·全国·模拟预测(理))已知函数()()2x x f x e ae a =+∈R(1)讨论()f x 的单调性;(2)设()()21x g x a x e x =-+,若方程()()g x f x =有三个不同的解,求a 的取值范围.6.(2022·四川绵阳·二模(文))已知函数()2()ln 1R f x x ax a =+-∈(1)当2a =时,求函数()f x 的单调区间;(2)若函数()f x 有且只有一个零点,求实数a 的取值范围.③构造函数研究函数零点(根)问题1.(2022·江苏宿迁·高二期末)已知函数()e xf x =(e 为自然对数的底数),()sing x a x =(,22x ππ⎡⎤∈-⎢⎥⎣⎦),a R ∈.(1)若直线:l y kx =与函数()f x ,()g x 的图象都相切,求a 的值; (2)若方程()()f x g x =有两个不同的实数解,求a 的取值范围.2.(2022·重庆南开中学高二期末)已知函数()()2ln ,f x x x g x x ax b ==++.(1)若()f x 与()g x 在1x =处有相同的切线,求实数,a b 的取值;(2)若2b =时,方程()()f x g x =在()1,+∞上有两个不同的根,求实数a 的取值范围.3.(2022·四川·成都七中高三阶段练习(理))已知函数()(1)f x a x =-,()e (1)x g x bx =-,R a ∈. (1)当2b =时,函数()()y f x g x =-有两个零点,求a 的取值范围; (2)当b a =时,不等式()()f x g x >有且仅有两个整数解,求a 的取值范围.4.(2022·全国·高三阶段练习)已知函数()()11ln e f x a x x=+++,()()e x g x x a a =++∈R .(1)试讨论函数()f x 的单调性;(2)若当1≥x 时,关于x 的方程()()f x g x =有且只有一个实数解,求实数a 的取值范围.5.(2022·河南·三模(理))已知函数()()ln 1f x x =+,()e 1xg x =-.(1)判断函数()()()h x f x g x =-的零点个数;6.(2022·江苏南京·高三开学考试)已知函数()(1)x f x e a x =+-,()sin cos g x ax x x =++ (1)求函数()f x 的最值;(2)令()()()h x f x g x =-,求函数()h x 在区间(,)4π-+∞上的零点个数,并说明理由.1.(2021·全国·高考真题(理))已知0a >且1a ≠,函数()(0)a x x f x x a=>.(1)当2a =时,求()f x 的单调区间;(2)若曲线()y f x =与直线1y =有且仅有两个交点,求a 的取值范围.2.(2021·全国·高考真题)已知函数2()(1)x f x x e ax b =--+. (1)讨论()f x 的单调性;(2)从下面两个条件中选一个,证明:()f x 只有一个零点 ①21,222e a b a <≤>;②10,22a b a <<≤.3.(2021·浙江·高考真题)设a ,b 为实数,且1a >,函数()2R ()x f x a bx e x =-+∈(1)求函数()f x 的单调区间;(2)若对任意22b e >,函数()f x 有两个不同的零点,求a 的取值范围;(3)当a e =时,证明:对任意4b e >,函数()f x 有两个不同的零点()1221,,x x x x >,满足2212ln 2b b ex x e b>+.(注: 2.71828e =⋅⋅⋅是自然对数的底数)一、单选题1.(2022·江苏·南京师大附中高三开学考试)已知a ∈R ,则函数()()32113f x x a x x =-++零点的个数为( )A .1B .2C .3D .与a 有关2.(2022·浙江省浦江中学高二阶段练习)已知函数()22x f x xe x x m =---在()0,∞+上有零点,则m 的取值范围是( )A .)21ln 2,-+∞⎡⎣B .)2ln 21,--+∞⎡⎣C .)2ln 2,-+∞⎡⎣D .21ln 2,2-+∞⎡⎫⎪⎢⎣⎭3.(2022·全国·高二)函数32()2f x x x x =-++-的零点个数及分布情况为( ) A .一个零点,在1,3⎛⎫-∞- ⎪⎝⎭内B .二个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,()0,∞+内C .三个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,1,03⎛⎫- ⎪⎝⎭,()1,+∞内D .三个零点,分别在1,3⎛⎫-∞- ⎪⎝⎭,()0,1,()1,+∞内4.(2022·全国·高二)直线y a =与函数33y x x =-的图象有三个不同的交点,则实数a 的取值范围为( ) A .(2,2)-B .[2,2]-C .[2,)+∞D .(,2]-∞-5.(2022·全国·高二)已知函数20()210x e x f x x x x -⎧≤=⎨--+>⎩,若函数()()g x f x kx =-有两个零点,则实数k 等于(e 为自然对数的底数)( ) A .e -B .1-C .2D .2e6.(2022·河南·襄城高中高二阶段练习(理))已知函数()2ln f x x =,()322g x x ex ax =-+,其中e 为自然对数的底数,若方程()()f x g x =存在两个不同的实根,则a 的取值范围为( ) A .2,e ⎛⎫-∞ ⎪⎝⎭B .22,e e ⎛⎫-∞+ ⎪⎝⎭C .()2,e -∞D .22,e e ⎛⎫-∞- ⎪⎝⎭7.(2022·江西·高三阶段练习(理))已知函数22()2(2)e (1)e x x f x a a x x =+-++有三个不同的零点123,,x x x ,且1230x x x <<<,则3122312222e e e x x x x x x ⎛⎫⎛⎫⎛⎫--- ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭的值为( )A .3B .6C .9D .368.(2022·全国·高三专题练习)已知方程|ln |2x kx =+在区间()50,e 上恰有3个不等实数根,则实数k 的取值范围是( ) A .5331,e e ⎛⎫ ⎪⎝⎭B .5331,e e ⎡⎫⎪⎢⎣⎭C .4221,e e ⎛⎫ ⎪⎝⎭D .4221,e e ⎡⎫⎪⎢⎣⎭二、填空题9.(2022·河南焦作·二模(理))函数1()e ln 1x f x a x -=--在(0,)+∞上有两个零点,则实数a 的取值范围是_______. 10.(2022·贵州遵义·高三开学考试(文))已知函数()3112,21ln ,2x m x f x x x m x ⎧--<⎪⎪=⎨⎪-≥⎪⎩恰有3个零点,则m 的取值范围是________.11.(2022·浙江·镇海中学高二期末)已知不等式21e 0x x a +-≥有且只有两个整数解,则实数a 的范围为___________.12.(2022·全国·高二)已知函数3211()(2)1()32xf x ax ax e x a R =---+∈在区间1,22⎛⎫ ⎪⎝⎭上有3个不同的极值点,则实数a的取值范围是__________. 三、解答题13.(2022·河南·栾川县第一高级中学高二阶段练习(理))已知()2()e ()x f x x a a =+∈R .(1)若2是函数()f x 的极值点,求a 的值,并判断2是()f x 的极大值点还是极小值点; (2)若关于x 的方程()2ln e x f x x =在1,22⎡⎤⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围.参考数据:ln 20.693≈14.(2022·陕西宝鸡·二模(文))已知函数()1e x f x ax =--,a ∈R . (1)讨论函数()f x 的单调性;(2)若方程()ln f x x x =在(1,e)上有实根,求实数a 的取值范围.15.(2022·河南·沈丘县第一高级中学高二期末(文))已知函数()ln f x x =. (1)当[)1,x ∞∈+时,证明:函数()f x 的图象恒在函数()322132=-g x x x 的图象的下方; (2)讨论方程()0f x kx +=的根的个数.16.(2022·吉林·长春外国语学校高二阶段练习)若函数()32113f x x ax bx =++-,当2x =时,函数()f x 有极值13-.(1)求函数的解析式;(2)若关于x 的方程()f x k =有三个解,求实数k 的取值范围.17.(2022·浙江浙江·二模)已知函数2()ln (2)f x x a x a =+<. (1)若2a =-,求函数()f x 的极小值点;(2)当2(]0,x ∈时,讨论函数()f x 的图象与函数(2)22y a x a =+--的图象公共点的个数,并证明你的结论.。
专题11 利用导数解决零点问题(解析版)
专题11 利用导数解决零点问题1.(2022·全国·高考真题(理))已知函数()()ln 1e xf x x ax -=++(1)当1a =时,求曲线()y f x =在点()()0,0f 处的切线方程; (2)若()f x 在区间()()1,0,0,-+∞各恰有一个零点,求a 的取值范围. 【答案】(1)2y x = (2)(,1)-∞- 【解析】 【分析】(1)先算出切点,再求导算出斜率即可(2)求导,对a 分类讨论,对x 分(1,0),(0,)-+∞两部分研究 (1)()f x 的定义域为(1,)-+∞当1a =时,()ln(1),(0)0e x x f x x f =++=,所以切点为(0,0)11(),(0)21e xx f x f x ''-=+=+,所以切线斜率为2 所以曲线()y f x =在点(0,(0))f 处的切线方程为2y x = (2)()ln(1)e xaxf x x =++()2e 11(1)()1e (1)e x x x a x a xf x x x '+--=+=++设()2()e 1x g x a x =+-1︒若0a >,当()2(1,0),()e 10x x g x a x ∈-=+->,即()0f x '>所以()f x 在(1,0)-上单调递增,()(0)0f x f <= 故()f x 在(1,0)-上没有零点,不合题意2︒若10a -,当,()0x ∈+∞,则()e 20xg x ax '=->所以()g x 在(0,)+∞上单调递增所以()(0)10g x g a >=+,即()0f x '> 所以()f x 在(0,)+∞上单调递增,()(0)0f x f >= 故()f x 在(0,)+∞上没有零点,不合题意 3︒若1a <-(1)当,()0x ∈+∞,则()e 20x g x ax '=->,所以()g x 在(0,)+∞上单调递增 (0)10,(1)e 0g a g =+<=>所以存在(0,1)m ∈,使得()0g m =,即()0'=f m 当(0,),()0,()x m f x f x '∈<单调递减 当(,),()0,()x m f x f x '∈+∞>单调递增所以当(0,),()(0)0x m f x f ∈<= 当,()x f x →+∞→+∞所以()f x 在(,)m +∞上有唯一零点又(0,)m 没有零点,即()f x 在(0,)+∞上有唯一零点(2)当()2(1,0),()e 1x x g x a x ∈-=+-设()()e 2x h x g x ax '==-()e 20x h x a '=->所以()g x '在(1,0)-单调递增 1(1)20,(0)10eg a g ''-=+<=>所以存在(1,0)n ∈-,使得()0g n '= 当(1,),()0,()x n g x g x '∈-<单调递减当(,0),()0,()x n g x g x '∈>单调递增,()(0)10g x g a <=+< 又1(1)0eg -=> 所以存在(1,)t n ∈-,使得()0g t =,即()0f t '= 当(1,),()x t f x ∈-单调递增,当(,0),()x t f x ∈单调递减 有1,()x f x →-→-∞而(0)0f =,所以当(,0),()0x t f x ∈>所以()f x 在(1,)t -上有唯一零点,(,0)t 上无零点 即()f x 在(1,0)-上有唯一零点 所以1a <-,符合题意所以若()f x 在区间(1,0),(0,)-+∞各恰有一个零点,求a 的取值范围为(,1)-∞-2.(2022·全国·高考真题(理))已知函数()ln xf x x a x x e -=+-.(1)若()0f x ≥,求a 的取值范围;(2)证明:若()f x 有两个零点12,x x ,则121x x <. 【答案】(1)(,1]e -∞+ (2)证明见的解析 【解析】 【分析】(1)由导数确定函数单调性及最值,即可得解;(2)利用分析法,转化要证明条件为1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,再利用导数即可得证.(1)()f x 的定义域为(0,)+∞,2111()e 1x f x x x x ⎛⎫'=--+ ⎪⎝⎭1111e 1e 11x x x x x x x x ⎛⎫-⎛⎫⎛⎫=-+-=+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭令()0f x =,得1x =当(0,1),()0,()x f x f x '∈<单调递减当(1,),()0,()x f x f x >'∈+∞单调递增()(1)e 1f x f a ≥=+-, 若()0f x ≥,则e 10a +-≥,即1a e ≤+ 所以a 的取值范围为(,1]e -∞+ (2)由题知,()f x 一个零点小于1,一个零点大于1 不妨设121x x 要证121x x <,即证121x x < 因为121,(0,1)x x ∈,即证()121f x f x ⎛⎫> ⎪⎝⎭因为()()12f x f x =,即证()221f x f x ⎛⎫> ⎪⎝⎭即证1e 1ln e ln 0,(1,)x x x x x x x x x-+--->∈+∞即证1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦下面证明1x >时,1e 11e 0,ln 02x x x x x x x ⎛⎫->--< ⎪⎝⎭设11(),e e xx g x x xx =->,则11122111111()e e e 1e e 1x x x xx g x x x x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫'=--+⋅-=--- ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭111e 1e 1e e xx x xx x x x x ⎛⎫⎛⎫-⎛⎫=--=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭设()()()22e 1111,e e 0x x xx x x x x x x x ϕϕ-⎛⎫=>=-=⎪⎭'> ⎝所以()()1e x ϕϕ>=,而1e e x <所以1e e 0xx x->,所以()0g x '>所以()g x 在(1,)+∞单调递增 即()(1)0g x g >=,所以1e e 0xx x x-> 令11()ln ,12h x x x x x ⎛⎫=--> ⎪⎝⎭2222211121(1)()10222x x x h x x x x x ----⎛⎫'=-+==< ⎪⎝⎭所以()h x 在(1,)+∞单调递减即()(1)0h x h <=,所以11ln 02x x x ⎛⎫--< ⎪⎝⎭;综上, 1e 11e 2ln 02x x x x x x x ⎡⎤⎛⎫----> ⎪⎢⎥⎝⎭⎣⎦,所以121x x <. 3.(2022·全国·高考真题(文))已知函数1()(1)ln f x ax a x x=--+.(1)当0a =时,求()f x 的最大值;(2)若()f x 恰有一个零点,求a 的取值范围. 【答案】(1)1- (2)()0,+∞ 【解析】 【分析】(1)由导数确定函数的单调性,即可得解; (2)求导得()()()211ax x f x x --'=,按照0a ≤、01a <<及1a >结合导数讨论函数的单调性,求得函数的极值,即可得解. (1)当0a =时,()1ln ,0f x x x x =-->,则()22111xf x x x x-'=-=,当()0,1∈x 时,0f x ,()f x 单调递增; 当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 11f x f ==-;(2)()()11ln ,0f x ax a x x x =--+>,则()()()221111ax x a f x a x x x--+'=+-=, 当0a ≤时,10-≤ax ,所以当()0,1∈x 时,0f x,()f x 单调递增;当()1,x ∈+∞时,0fx,()f x 单调递减;所以()()max 110f x f a ==-<,此时函数无零点,不合题意; 当01a <<时,11a >,在()10,1,,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在11,a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;又()110f a =-<,由(1)得1ln 1x x +≥,即1ln 1x x ≥-,所以ln x x x <<<当1x >时,11()(1)ln 2((2f x ax a x ax a ax a x x=--+>--+-+则存在2312m a a⎛⎫=+> ⎪⎝⎭,使得()0f m >,所以()f x 仅在1,a ⎛⎫+∞ ⎪⎝⎭有唯一零点,符合题意;当1a =时,()()2210x f x x-'=≥,所以()f x 单调递增,又()110f a =-=,所以()f x 有唯一零点,符合题意; 当1a >时,11a <,在()10,,1,a ⎛⎫+∞ ⎪⎝⎭上,0f x,()f x 单调递增;在1,1a ⎛⎫⎪⎝⎭上,0f x,()f x 单调递减;此时()110f a =->,由(1)得当01x <<时,1ln 1xx>-,1>ln 21x ⎛> ⎝, 此时11()(1)ln 2(11)1f x ax a x ax ax x x ⎛=--+<--+-< ⎝ 存在2114(1)n a a=<+,使得()0f n <, 所以()f x 在10,a ⎛⎫ ⎪⎝⎭有一个零点,在1,a ⎛⎫+∞ ⎪⎝⎭无零点,所以()f x 有唯一零点,符合题意; 综上,a 的取值范围为()0,+∞.4.(2022·全国·模拟预测)已知函数()()ln 13f x a x x =+-.(1)讨论函数()f x 的单调性;(2)证明:当1a =时,方程()sin 3f x x x =-在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个实数解.【答案】(1)答案不唯一,具体见解析 (2)证明见解析 【解析】 【分析】(1)先求出函数的定义域,再求出()31af x x '=-+,然后分0a >,0a ≤可得出函数的单调性. (2)设()()ln 1sin g x x x =+-,将问题转化为函数()g x 在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点,又当e 1x >-时,()ln 1lne 1sin x x +>=≥,所以只需证()g x 在,e 12π⎛⎤- ⎥⎝⎦上有且仅有一个零点,求出其导数,由零点存在原理即可证明. (1)函数()()ln 13f x a x x =+-的定义域是()1,-+∞,()31af x x '=-+. 当0a >时,令()0f x '<,得33a x ->;令()0f x '>,得313a x --<<, 故()f x 在31,3a -⎛⎫- ⎪⎝⎭上单调递增,在3,3a -⎛⎫+∞ ⎪⎝⎭上单调递减;当0a ≤时,()0f x '<恒成立,故()f x 在()1,-+∞上单调递减. (2)当1a =时,方程()sin 3f x x x =-即为()ln 13sin 3x x x x +-=-,即()ln 1sin 0x x +-=. 令()()ln 1sin g x x x =+-,则()1cos 1g x x x '=-+, 则“方程()sin 3f x x x =-在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个实数解”等价于“函数()g x 在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点”.当e 1x >-时,()ln 1lne 1sin x x +>=≥,所以()0g x >在()e 1,-+∞上恒成立, 所以只需证()g x 在,e 12π⎛⎤- ⎥⎝⎦上有且仅有一个零点.因为e 1π-<,所以当,e 12x π⎛⎤∈- ⎥⎝⎦时,cos 0x <,101x >+, 所以()0g x '>在,e 12π⎛⎤- ⎥⎝⎦上恒成立.所以()g x 在,e 12π⎛⎤- ⎥⎝⎦上单调递增,又ln 1sin ln 1102222g ππππ⎛⎫⎛⎫⎛⎫=+-=+-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()()e 11sin e 1g -=--,所以()g x 在,e 12π⎛⎤- ⎥⎝⎦上有且仅有一个零点,即()g x 在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个零点.故方程()sin 3f x x x =-在,2π⎛⎫+∞ ⎪⎝⎭上有且仅有一个实数解.5.(2022·湖北·大冶市第一中学模拟预测)已知函数()e sin xf x x ax =+,其中e 是自然对数的底数.(1)若1a =时,试判断f (x )在区间(2π-,0)的单调性,并予以证明;(2)从下面两个条件中任意选一个,试求实数a 的取值范围. ①函数()f x 在区间[0,2π]上有且只有2个零点; ①当2,0x π⎡⎤∈⎢⎥⎣⎦时,()2f x x ≥.【答案】(1)f (x )在(π2-,0)上单调递增,证明见解析;(2)选择①:π22e 1πa -≤<-;选择①:1a ≥-.【解析】 【分析】(1)求导,通过判定导函数在(π2-,0)上的正负确定单调性; (2)选择①:易得()00f =,则因此f (x )在π0,2x ⎛⎤∈ ⎥⎝⎦上有且只有1个零点,求导通过讨论找出符合条件的a 的取值范围;选择①:构造函数2π()e sin ,0,2x m x x ax x x ⎡⎤=+-∈⎢⎥⎣⎦,此时()00m =,可通过端点效应或隐零点等思路求a的取值范围. (1)当1a =时,()e sin ,(,0)2xf x x ax x π=+∈-()πe sin e cos 1sin 14x x xf x x x x ⎛⎫=++=++ ⎪⎝⎭'.当π,02x ⎛⎫∈- ⎪⎝⎭时,πππ,444x ⎛⎫+∈- ⎪⎝⎭,所以sin 1144x x ππ⎛⎫⎛⎫<+<-+< ⎪ ⎪⎝⎭⎝⎭, 又0e 1x <<,πsin 14xx ⎛⎫+>- ⎪⎝⎭,从而()0f x '>,所以,f (x )在(π2-,0)上单调递增. (2) 选择①,由函数()e sin 0π,2xf x x ax x ⎡⎤=+∈⎢⎥⎣⎦,,可知()00f =因此f (x )在π0,2x ⎛⎤∈ ⎥⎝⎦上有且只有1个零点.()e sin e cos x x f x x x a +'=+,令()e sin e cos x x h x x x a =++, 则()2e cos 0xh x x '=≥在[0.π2]上恒成立.即()f x '在[0,π2]上单调递增,()2ππ01e 2f a f a ⎛'⎫=+=⎪⎭'+ ⎝,,当1a ≥-时,()()00f x f '≥'≥,f (x )在[0.π2]上单调递增.则f (x )在(0,π2]上无零点,不合题意,舍去,当π2e a ≤-时,()0π2f x f ⎛⎫'≤'≤ ⎪⎝⎭,()f x 在[0,π2]上单调递减,则()f x 在(0,π2]上无零点,不合题意,舍去,当2e 1a π-<<-时,π2(0)10,()e 2π0f a f a '=+<'=+≥则()f x '在(0,π2)上只有1个零点,设为0x .且当0(0,)x x ∈时,()0f x <′;当0,2x x π⎛⎫∈ ⎪⎝⎭时,()0f x >′ 所以当()00x x ∈,时,()f x 在(0,0x )上单调递减,在(x0,π2)上单调递增,又()π200e ππ22f f a ⎛⎫==+ ⎪⎝⎭,因此只需20π22πe f a ⎛⎫=+≥ ⎪⎝⎭即可,即π22e 1πa -≤<-,综上所述:2π2e 1πα-≤<-选择①,构造函数2π()e sin ,0,2x m x x ax x x ⎡⎤=+-∈⎢⎥⎣⎦此时()2π2e π244π00x m m a ⎛⎫==+- ⎪⎝⎭,则2π()e sin e cos 2(0)π1,(e 2π)xxm x x x a x m a m a'=++-'=+'=-+,易知(1)π)(2m m '>'令()e sin e cos 2,()2e cos 2,(0)0,()2π2x x xt x x x a x t x x t t =++-'=-'='=-令2π()2e cos 2,()2e (cos sin ),(0)2,()2πe 2xxp x x p x x x p p =-=-'='=-', 令()2e (cos sin )x q x x x =-,则()4e sin 0x q x x '=-≤ 所以()2e (cos sin )x q x x x =-在(0,π2)上单调递减.又π20π(0)(0)20,()()2e 22πq p q p ='=>='=-<在(0,π2)上存在唯一实数1x 使得()10q x =,且满足当()10,x x ∈时,()0q x >当1π(,)2x x ∈时.()0q x <即p (x )在(0,x 1)上单调递增,在(x 1,π2)上单调递减.又()()ππ0002022p t p t ⎛⎫⎛⎫==-=-< ⎪'' ⎪⎝⎭⎝⎭,,所以()2e cos 2x p x x =-在1π(,)2x 上存在一实数2x 使得()20p x =,且满足当2(0,)x x ∈时,()0p x >;当2π()2x x ∈⋅时,()0p x <即()()t x m x ='在(0,x2)上单调递增,在(2x ,2π)上单调递减, 当()010m a ='+≥时,即()10a m x ≥-'≥,,函数()2e sin x m x x ax x =+-在[0,π2]上单调递增,又()00m =,因此()2e sin 0x m x x ax x =+-≥恒成立,符合题意,当()010m a '=+<,即1a <-,在π20,x ⎛⎫∈ ⎪⎝⎭上必存在实数3x ,使得当()30,x x ∈时,()0m x '<,又()00m =,因此在()30,x x ∈上存在实数()0m x <,不合题意,舍去 综上所述1a ≥-.6.(2022·浙江湖州·模拟预测)已知函数12()e x f x =(e 为自然对数的底数). (1)令1()||()()g x a x f x f x =--,若不等式()0g x ≤恒成立,求实数a 的取值范围; (2)令3()()x xf x m ϕ=-,若函数()ϕx 有两不同零点()1212,x x x x <. ①求实数m 的取值范围;①证明:21e e 21x x m -<+. 【答案】(1)(,1]-∞;(2)①2,03e m ⎛⎫∈- ⎪⎝⎭;①证明见解析.【解析】 【分析】(1)根据()g x 为偶函数,将问题转化为0x ≥时()0g x ≤恒成立,根据(0)0g =及参变分离求0x >有1122ee x x a x--≤恒成立,求参数范围;(2)①利用导数研究()ϕx 的单调性,及区间值域情况,进而判断()0x ϕ=有两不同解时m 的范围即可;①由(1)知:0x <时1122e e x x x -≥-且120x x <<,应用放缩法有2()e e x x x ϕ≥-,构造2()e e x x F x =-研究极值并判断()F x m =的两根与12,x x 大小关系得到3214e e e e x x x x -<-即可证结论. (1)由题设,1122()||e ex x g x a x -=--,则()()g x g x =-,所以()g x 为偶函数,故只需0x ≥时,()0g x ≤恒成立,而(0)0g =满足, 所以0x >有1122ee x x a x--≤恒成立,令02t x =>,则e e 2t ta t--≤,若()e e 2t t h t t -=--,则()e e 220t t h t -'=+-≥=,仅当0=t 时等号成立, 所以()0h t '>,即()h t 在(0,)+∞上递增,则()(0)0h t h >=,即e e 2t t t -->, 所以,在(0,)+∞上e e 12t tt-->,则1a ≤, 综上:a 的范围为(,1]-∞. (2)①由题设,323()1e 2x x x ϕ⎛⎫=+ ⎪'⎝⎭,若()0x ϕ'>得:23x >-,故()ϕx 在2,3⎛⎫-∞- ⎪⎝⎭单调减,在2,3⎛⎫-+∞ ⎪⎝⎭单调增,且x 趋向负无穷()ϕx 趋向于0,x 趋向正无穷()ϕx 趋向于正无穷,又2233e ϕ⎛⎫-=- ⎪⎝⎭,()00ϕ=,则0x <时,()0x ϕ<;0x >时,()0x ϕ>,要使()0x ϕ=有两个不同解12,x x 且120x x <<,则2,03e m ⎛⎫∈- ⎪⎝⎭;①由(1)知:0x <时1122e ex x x -≥-,则1132222()e e e e e x x x x xx ϕ-⎛⎫≥-=- ⎪⎝⎭;记2()e e x x F x =-且0x <,则(()e e 1)2x x F x '=-,所以(,ln 2)-∞-上()0F x '<,(ln 2,0)-上()0F x '>,故()F x 在(,ln 2)-∞-上递减,(ln 2,0)-上递增,且12()(ln 2),043e F x F ⎛⎫≥-=-∈- ⎪⎝⎭,所以()F x m =也有两根,记为34x x <,又(,0)-∞上)(()x F x ϕ≥,则31240x x x x <<<<, 令e x t =,则34e ,e xx 为20t t m --=的两根,故34e e 1x x +=,34e e x x m =-,所以34e e x x -=3124e e e e x x x x <<<,所以3214(41)1e e e e 212x x x xm m ++-<-==+. 7.(2022·湖北·模拟预测)已知()()1ln af x a x x x=-++(1)若0a <,讨论函数()f x 的单调性; (2)()()ln a g x f x x x =+-有两个不同的零点1x ,()2120x x x <<,若12202x x g λλ+⎛⎫'> ⎪+⎝⎭恒成立,求λ的范围.【答案】(1)单调性见解析 (2)(][),22,λ∈-∞-+∞【解析】 【分析】(1)求导可得()()()21x a x f x x +-'=,再根据a -与0,1的关系分类讨论即可;(2)由题()ln g x a x x =+,,设()120,1x t x =∈根据零点关系可得21ln x x a t -=,再代入1222x x g λλ+⎛⎫' ⎪+⎝⎭化简可得()()21ln 02t t t λλ+-+<+恒成立,设()()()21ln 2t ht t t λλ+-=++,再求导分析单调性与最值即可(1)()f x 定义域为()0,∞+()()()()()222211111x a x a x a x a f x a x x x x+--+-'=-+-== ①)01a <-<即10a -<<时,()01f x a x '<⇒-<<,()00f x x a '>⇒<<-或1x > ①)1a -=即1a =-时,()0,x ∈+∞,()0f x '≥恒成立 ①)1a ->即1a <-,()01f x x a '<⇒<<-,()001f x x '>⇒<<或x a >- 综上:10a -<<时,(),1x a ∈-,()f x 单调递减;()0,a -、()1,+∞,()f x 单调递增 1a =-时,()0,x ∈+∞,()f x 单调递增1a <-时,()1,x a ∈-,()f x 单调递减;()0,1、(),a -+∞,()f x 单调递增(2)()ln g x a x x =+,由题1122ln 0ln 0a x x a x x +=⎧⎨+=⎩,120x x <<则()1221ln ln a x x x x -=-,设()120,1x t x =∈ ①212112ln ln ln x x x xa x x t--==-()1a g x x'=+ ①122112122221122ln 2x x x x g a x x t x x λλλλλλ+-++⎛⎫'=+=⋅+ ⎪+++⎝⎭()()()21102ln t t tλλ+-=+>+恒成立()0,1t ∈,①ln 0t < ①()()21ln 02t t t λλ+-+<+恒成立设()()()21ln 2t h t t t λλ+-=++,①()0h t <恒成立()()()()()()()()22222224122241222t t t t h t t t t t t t λλλλλλλ⎛⎫-- ⎪++-+⎝⎭'=-==+++ ①)24λ≥时,204t λ-<,①()0h t '>,①()h t 在()0,1上单调递增 ①()()10h t h <=恒成立, ①(][),22,λ∈-∞-+∞合题①)24λ<,20,4t λ⎛⎫∈ ⎪⎝⎭,①()0h t '>,①()h t 在20,4λ⎛⎫⎪⎝⎭上单调递增2,14t λ⎛⎫∈ ⎪⎝⎭时,()0h t '<, ①()h t 在2,14λ⎛⎫⎪⎝⎭上单调递减①2,14t λ⎛⎫∈ ⎪⎝⎭,()()10h t h >=,不满足()0h t <恒成立综上:(][),22,λ∈-∞-+∞【点睛】本题主要考查了分类讨论分析函数单调性的问题,同时也考查了双零点与恒成立问题的综合,需要根据题意消去参数a ,令()120,1x t x =∈,再化简所求式关于t 的解析式,再构造函数分析最值.属于难题 8.(2022·浙江绍兴·模拟预测)设a 为实数,函数()e ln 1=++x f x a x x . (1)当1a e=-时,求函数()f x 的单调区间;(2)判断函数()f x 零点的个数.【答案】(1)减区间为()0,∞+,无增区间. (2)当0a ≥,函数()f x 在(0,)+∞上没有零点;当210e a -≤<,函数()f x 在(0,)+∞上有1个零点;当21e a <-,函数()f x 在(0,)+∞上有2个零点. 【解析】 【分析】(1)利用二次求导研究函数()f x 的单调性,进而得出结果; (2)利用分类讨论的思想,根据函数()f x 与()()f x g x x=具有相同的零点,结合导数分别研究当0a ≥、210e a -≤<、21e a <-时()g x 的单调性,利用零点的存在性定理即可判断函数()g x 的零点个数,进而得出结果. (1)函数()f x 的定义域为(0,)+∞, 当1a e=-时,1()e ln 1e xf x x x =-++,则1()e ln 1x f x x -'=-++,且()01f '=, 有1111e ()ex x x f x x x---''=-+=,令()01f x x ''=⇒=, 所以当(0,1)x ∈时()0f x ''>,则()'f x 单调递增, 当(1,)x ∈+∞时()0f x ''<,则()'f x 单调递减, 所以max ()(1)0f x f ''==,即()0f x '≤,则函数()f x 在(0,)+∞上单调递减, 即函数()f x 的减区间为(0,)+∞,无增区间; (2)由(1)知当1a e=-时函数()f x 在(0,)+∞上单调递减,又(1)0f =,此时函数()f x 只有1个零点; 因为函数()f x 的定义域为(0,)+∞,所以()f x 与()f x x具有相同的零点, 令()e 1()ln (0)x f x a g x x x x x x ==++>, 则222(1)e 11(1)(e 1)()x x a x x a g x x x x x --+'=+-=, 当0a ≥时,e 10x a +>,令()01g x x '=⇒=,则函数()g x 在(0,1)上单调递减,在(1,)+∞上单调递增,所以min ()(1)e 10g x g a ==+>,此时函数()g x 无零点,即函数()f x 无零点;当0a <时,令()01g x x '=⇒=或1ln()x a=-,若10e a -<<,则11ln()a<-,列表如下:当211e ea -≤≤-时,222e 2e 222e 4222e e e (e )2e 2e e 2e 0e ea g ------=++<++=-++<, 当210e a -<<即21e a ->时,131e ()a a->-,1121111()e ln()[e ln()1]aa g a a a a a a a a---=-+--=---+3111[()(1)1]0a a a a a <-----+<,又(1)0g >,此时函数()g x 有1个零点,则函数()f x 有1个零点; 若1e <-a ,则11ln()a>-,列表如下:所以ln()min 1e 111()(ln())ln ln()ln ln()ln1011ln()ln()aa g x g a a a a a -=-=+-+=-<=--, 又(1)0g >,2(e )0g <,则此时函数()g x 有2个零点,即函数()f x 有2个零点; 综上,当0a ≥时,函数()f x 在(0,)+∞上没有零点, 当210ea -≤<时,函数()f x 在(0,)+∞上有1个零点, 当21e a <-时,函数()f x 在(0,)+∞上有2个零点.【点睛】与函数零点有关的参数范围问题,往往利用导数研究函数的单调区间和极值点,并结合特殊点,从而判断函数的大致图像,讨论其图像与x 轴的位置关系,进而确定参数的取值范围;或通过对方程等价变形转化为两个函数图像的交点问题.9.(2022·河南·开封市东信学校模拟预测(理))已知函数()ln 12a af x x x =+-+,其中R a ∈. (1)讨论函数()f x 的单调性;(2)讨论函数()f x零点的个数.【答案】(1)当4a ≤时,函数()f x 的增区间为(0,)+∞,没有减区间;当4a >时,函数()f x 的增区间为,⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,减区间为⎝⎭(2)当4a ≤,函数()f x 有且仅有一个零点;当4a >时,函数()f x 有且仅有3个零点 【解析】 【分析】(1)求导,再分0a <,04a ≤≤和4a >分类讨论即可;(2)根据单调性及零点存在性定理分析即可. (1)函数()f x 的定义域为(0,)+∞,2221(2)1()(1)(1)a x a x f x x x x x +-+'=-=++,在一元二次方程2(2)10x a x +-+=中,22Δ(2)44(4)a a a a a =--=-=-, ①当0a <时,()0f x '≥,此时函数()f x 单调递增,增区间为(0,)+∞,没有减区间; ①当04a ≤≤时,()0f x '≥,此时函数()f x 单调递增,增区间为(0,)+∞,没有减区间; ①当4a >时,一元二次方程2(2)10x a x +-+=有两个不相等的根, 分别记为()1221,x x x x >,有122x x a +=-,1210x x =>,可得210x x >>, 有12x x ==可得此时函数()f x 的增区间为()()120,,,x x +∞减区间为()12,x x , 综上可知,当4a ≤时,函数()f x 的增区间为(0,)+∞,没有减区间;当4a >时,函数()f x 的增区间为,⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭,减区间为⎝⎭; (2)由(1)可知:①当4a ≤时,函数()f x 单调递增,又由(1)0f =,可得此时函数只有一个零点为1x =; ①当4a >时,由122110,x x x x =>>,可得1201x x <<<,又由(1)0f =,由函数的单调性可知()()12(1)0,(1)0f x f f x f >=<=, 当01x <<且20e ax -<<时,可得2ln ln e ax -<,有ln 02ax +<, 可得()ln ln 022a af x x a x <+-=+<, 当2e ax >时,2()ln ln e 02222aa a a af x x >->-=-=可知此时函数()f x 有且仅有3个零点,由上知,当4a ≤时,函数()f x 有且仅有一个零点; 当4a >时,函数()f x 有且仅有3个零点.10.(2022·贵州·贵阳一中模拟预测(文))已知函数()323.f x ax x a b =-++(1)讨论()f x 的单调性;(2)当()f x 有三个零点时a 的取值范围恰好是()()()3,22,00,1,--⋃-⋃求b 的值. 【答案】(1)答案见解析 (2)3b = 【解析】 【分析】(1)求函数()f x 的导函数()'f x ,讨论a ,并解不等式()0f x '>,()0f x '<可得函数的单调区间;(2)由(1)结合零点存在性定理可求b . (1)()f x 的定义域为R ,()()23632,f x ax x x ax =-=-'若0a =,则()0600f x x x '>⇒->⇒<,()00f x x <⇒>'∴ ()f x 在(),0∞-单调递增,()0,∞+单调递减,若0a >,则()00'>⇒<f x x 或2x a>, ()200f x x a>⇒<<', ()f x ∴在(),0∞-单调递增,20,a ⎛⎫ ⎪⎝⎭单调递减,2,a ⎛⎫+∞ ⎪⎝⎭单调递增,若0a <,则()200f x x a'>⇒<< ()20f x x a>⇒<'或0x >, ()f x ∴在2,a ⎛⎫-∞ ⎪⎝⎭单调递减,2,0a ⎛⎫⎪⎝⎭单调递增,()0,∞+单调递减.(2)可知()f x 要有三个零点,则0a ≠, 且2(0)0f f a ⎛⎫< ⎪⎝⎭由题意也即是()200f f a ⎛⎫< ⎪⎝⎭的解集就是()()()3,22,00,1--⋃-⋃,也就是关于a 的不等式()()()32224400a b a ba a b a b a a ++-⎛⎫++-<⇒< ⎪⎝⎭的解集就是()()()3,22,00,1--⋃-⋃, 令()()()32240a b a ba h a a+++=<,时()()()()()1114130h b b b b =++-=+-=, 所以有1b =-或3b =, 当3b =时,()()()()()323222233434400a a a a a a a h a aa++-+-+-=<⇒<,()()()2231440a a a a a+-++<的解是()()()3,22,00,1--⋃-⋃,满足条件,当1b =-时,()()()322140a a a h a a---=<,当1a =-时,()1120h -=>,不满足条件, 故1b ≠-,综合上述3b =.11.(2022·河南·平顶山市第一高级中学模拟预测(理))已知函数()()e 12()exx xf x a a =+--∈R . (1)若()e ()=⋅x g x f x ,讨论()g x 的单调性; (2)若()f x 有两个零点,求实数a 的取值范围. 【答案】(1)答案见解析;(2)()0,1. 【解析】 【分析】(1)对函数进行求导,分为0a ≤和0a >两种情形,根据导数与0的关系可得单调性;(2)函数有两个零点即()e ()=⋅x g x f x 有两个零点,根据(1)中的单调性结合零点存在定理即可得结果. (1)由题意知,()()()e ()e e 12e e 12e e x x x x x xx x g x f x a a x ⎡⎤=⋅=⋅+--=+--⎢⎥⎣⎦,()g x 的定义域为(,)-∞+∞,()e (e 1)e e 2e 1(2e 1)(e 1)x x x x x x x g x a a a '=++⋅--=+-.若0a ≤,则()0g x '<,所以()g x 在(,)-∞+∞上单调递减; 若0a >,令()0g x '=,解得ln x a =-.当(,ln )x a ∈-∞-时,()0g x '<;当(ln ,)x a ∈-+∞时,()0g x '>, 所以()g x 在(,ln )a -∞-上单调递减,在(ln ,)a -+∞上单调递增. (2)因为e 0x >,所以()f x 有两个零点,即()e ()=⋅x g x f x 有两个零点. 若0a ≤,由(1)知,()g x 至多有一个零点.若0a >,由(1)知,当ln x a =-时,()g x 取得最小值,最小值为1(ln )1ln g a a a-=-+. ①当1a =时,由于(ln )0g a -=,故()g x 只有一个零点: ①当(1,)∈+∞a 时,由于11ln 0a a-+>,即(ln )0g a ->,故()g x 没有零点; ①当(0,1)a ∈时,11ln 0a a-+<,即(ln )0g a -<. 又2222(2)e (e 1)2e 22e 20g a -----=+-+>-+>,故()g x 在(,ln )a -∞-上有一个零点.存在03ln 1,x a ⎛⎫⎛⎫∈-+∞ ⎪ ⎪⎝⎭⎝⎭,则0000000000()e (e 1)2e e (e 2)e 0x x x x x xg x a x a a x x =+--=+-->->.又3ln 1ln a a ⎛⎫->- ⎪⎝⎭,因此()g x 在(ln ,)a -+∞上有一个零点.综上,实数a 的取值范围为(0,1).12.(2022·青海·大通回族土族自治县教学研究室三模(理))已知函数()ln 1f x ax x =++. (1)若()f x 在(0,)+∞上仅有一个零点,求实数a 的取值范围; (2)若对任意的0x >,2()e x f x x ≤恒成立,求实数a 的取值范围. 【答案】(1)0a ≥或1a =- (2)(,2]-∞ 【解析】 【分析】(1)求导1()f x a x'=+,0x >,分0a ≥和0a <讨论求解; (2)对任意的0x >,2()e x f x x ≤恒成立,转化为2ln 1e xx a x+≤-在(0,)+∞上恒成立求解. (1)解:1()f x a x'=+,0x >, 当0a ≥时,()0f x '>恒成立,所以()f x 在(0,)+∞上单调递增.又()11ee 11a af a a ----=--+()1e 10a a --=-≤,(1)10f a =+>, 所以此时()f x 在(0,)+∞上仅有一个零点,符合题意; 当0a <时,令()0f x '>,解得10x a <<-;令()0f x '<,解得1x a>-, 所以()f x 在10,a ⎛⎫- ⎪⎝⎭上单调递增,所以()f x 在1,a ∞⎛⎫-+ ⎪⎝⎭上单调递减.要使()f x 在(0,)+∞上仅有一个零点,则必有10f a ⎛⎫-= ⎪⎝⎭,解得1a =-.综上,当0a ≥或1a =-时,()f x 在(0,)+∞上仅有一个零点. (2)因为()ln 1f x ax x =++,所以对任意的0x >,2()e x f x x ≤恒成立,等价于2ln 1e xx a x+≤-在(0,)+∞上恒成立. 令2ln 1()e (0)xx m x x x+=->,则只需min ()a m x ≤即可, 则2222e ln ()+'=x x xm x x ,再令22()2e ln (0)x g x x x x =+>,则()221()4e 0'=++>xg x x x x, 所以()g x 在(0,)+∞上单调递增.因为12ln 204g ⎛⎫=< ⎪⎝⎭,2(1)2e 0g =>,所以()g x 有唯一的零点0x ,且0114x <<, 所以当00x x <<时,()0m x '<,当0x x >时,()0m x '>, 所以()m x 在()00,x 上单调递减,在()0,x +∞上单调递增. 因为022002eln 0x x x +=,所以()()()00002ln 2ln ln ln x x x x +=-+-,设()ln (0)S x x x x =+>,则1()10'=+>S x x, 所以函数()S x 在(0,)+∞上单调递增.因为()()002ln S x S x =-,所以002ln x x =-,即0201ex x =.所以()0()m x m x ≥=02000000ln 1ln 11e 2x x x x x x x +-=--=, 则有2a ≤.所以实数a 的取值范围为(,2]-∞.13.(2022·福建省福州第一中学三模)已知函数()e sin 1x f x a x =--在区间0,2π⎛⎫⎪⎝⎭内有唯一极值点1x .(1)求实数a 的取值范围;(2)证明:()f x 在区间(0,)π内有唯一零点2x ,且212x x <. 【答案】(1)(1,)+∞ (2)证明见解析 【解析】 【分析】(1)先求导,再讨论1a 时,函数单增不合题意,1a >时,由导数的正负确定函数单调性知符合题意; (2)先由导数确定函数()f x 在区间(0,)π上的单调性,再由零点存在定理即可确定在区间(0,)π内有唯一零点;表示出()12f x ,构造函数求导,求得()120f x >,又由()20f x =,结合()f x 在()1,x x π∈上的单调性即可求解. (1)()e cos x f x a x '=-,当0,2x π⎛⎫∈ ⎪⎝⎭时,cos (0,1)x ∈,21e e x π<<,①当1a 时,()0f x '>,()f x 在0,2π⎛⎫⎪⎝⎭上单调递增,没有极值点,不合题意,舍去;①当1a >时,显然()'f x 在0,2π⎛⎫ ⎪⎝⎭上递增,又因为(0)10f a '=-<,2e 02f ππ⎛⎫'=> ⎪⎝⎭,所以()'f x 在0,2π⎛⎫ ⎪⎝⎭上有唯一零点1x ,所以()10,x x ∈,()0f x '<;1,2x x π⎛⎫∈ ⎪⎝⎭,()0f x '>,所以()f x 在0,2π⎛⎫⎪⎝⎭上有唯一极值点,符合题意.综上,(1,)∈+∞a .(2)由(1)知1a >,所以,2x ππ⎡⎫∈⎪⎢⎣⎭时,()e cos 0x f x a x '=->,所以()10,x x ∈,()0f x '<,()f x 单调递减;()1,x x π∈,()0f x '>,()f x 单调递增,所以()10,x x ∈时,()(0)0f x f <=,则()10<f x ,又因为()e 10f ππ=->,所以()f x 在()1,πx 上有唯一零点2x ,即()f x 在(0,)π上有唯一零点2x .因为()112211112e sin 21e 2sin cos 1x x f x a x a x x =--=--,由(1)知()10f x '=,所以11e cos xa x =,则()112112e 2e sin 1x xf x x =--,构造2()e 2e sin 1,0,2t t p t t t π⎛⎫=--∈ ⎪⎝⎭,所以()2()2e 2e (sin cos )2e e sin cos t t t t p t t t t t '=-+=--,记()e sin cos ,0,2tt t t t πϕ⎛⎫=--∈ ⎪⎝⎭,则()e cos sin t t t t ϕ'=-+,显然()t ϕ'在0,2π⎛⎫ ⎪⎝⎭上单调递增,所以()(0)0t ϕϕ''>=,所以()t ϕ在0,2π⎛⎫ ⎪⎝⎭上单调递增,所以()(0)0t ϕϕ>=,所以()0p t '>,所以()p t 在0,2π⎛⎫⎪⎝⎭上单调递增,所以()(0)0p t p >=,所以()()1220f x f x >=,由前面讨论可知:112x x π<<,12x x π<<,且()f x 在()1,x x π∈单调递增,所以122x x >.【点睛】本题关键点在于先表示出()12f x ,构造函数()p t 求导,令导数为新的函数再次求导,进而确定函数()p t 的单调性,从而得到()120f x >,再结合()20f x =以及()f x 在()1,x x π∈上的单调性即可证得结论. 14.(2022·安徽·合肥市第八中学模拟预测(文))已知函数()e (sin cos )sin .x f x x x a x =+-.(1)当1a =时,求函数f (x )在区间[0]2π,上零点的个数; (2)若函数()y f x =在(0,2π)上有唯一的极小值点,求实数a 的取值范围 【答案】(1)2个(2)2]∞-⋃(,3222[2e ,)2e ,2e πππ⎧⎫+∞⋃⎨⎬⎩⎭【解析】 【分析】(1)利用导数判断函数f x ()在[0]2π,上的单调性,结合零点存在性定理确定零点个数;(2)利用导数,通过分类讨论确定函数f x ()的单调性及极值,由此确定a 的取值范围.(1)因为1a =,所以()e (sin cos )sin .x f x x x x =+-()(2e 1)cos x f x x '=-,则当02x π⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在02π⎛⎫⎪⎝⎭,上单调递增,当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在322ππ⎛⎫⎪⎝⎭,上单调递减, 当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在322ππ⎛⎫⎪⎝⎭,单词递增, 又32223(0)10,()e 10,()1e 0,(2)e 022f f f f ππππππ=>=->=-<=>,则f x ()在322ππ⎛⎫ ⎪⎝⎭,,322ππ⎛⎫⎪⎝⎭,上各有一个零点,所以f x ()在区间[0]2π,上共有两个零点, (2)2()(2e )cos ,(02),22e 2e x x f x a x x ππ'=-∈<<,①当2a ≤时,当02x π⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在02π⎛⎫⎪⎝⎭,上单调递增,当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在322ππ⎛⎫⎪⎝⎭,上单调递减, 当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在322ππ⎛⎫⎪⎝⎭,单词递增, 此时f x ()在32x π=的时候取得极小值,则2a ≤时符合题意: ①当22e a π≥时,当02x π⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在02π⎛⎫⎪⎝⎭,上单调递减,当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '>,f x ()在322ππ⎛⎫⎪⎝⎭,上单调递增, 当322x ππ⎛⎫∈ ⎪⎝⎭,时,()0f x '<,f x ()在322ππ⎛⎫⎪⎝⎭,单词递减, 此时f x ()在2x π=的时候取得极小值,则22a e π≥时符合题意①当222e a π<<时,0ln 22a π<<,此时f x ()在0,ln 2a ⎛⎫ ⎪⎝⎭上单调递减,在ln ,22a π⎛⎫ ⎪⎝⎭,上单调递增,在3,22ππ⎛⎫ ⎪⎝⎭上单调递减,在3(,2)2ππ上单调递增,此时有两个极小值点,不符合题意: ①当22e a π=时,ln22a π=,此时f x ()在(0,32π)上单调递减,在3,22ππ⎛⎫ ⎪⎝⎭上单调递增,此时f x ()在32x π=的时候取得极小值,则22e a π=时符合题意;①当3222e 2e a ππ<<时,3ln 222a ππ<<,此时f x ()在02π⎛⎫ ⎪⎝⎭,上单调递减,在,ln 22a π⎛⎫ ⎪⎝⎭上单调递增,在3ln 22a π⎛⎫⎪⎝⎭,上单调递减,在3,22ππ⎛⎫⎪⎝⎭上单调递增,此时有两个极小值点,不符合题意; ①当322e a π=时,3ln22a π=,此时f x ()在02π⎛⎫ ⎪⎝⎭,上单调递减,在22ππ⎛⎫ ⎪⎝⎭,上单调递增,此时f x ()在2x π=的时候取得极小值,则322e a π=时符合题意;①当322e 2e a ππ<<时,3ln 222a ππ<<,此时f x ()在02π⎛⎫ ⎪⎝⎭,上单调递减,在322ππ⎛⎫⎪⎝⎭,上单调递增,在3(,ln )22a π上单调递减,在(ln ,2)2aπ上单调递增,此时有两个极小值点,不符合题意;综上所述3222(,22e ,)2 ][e ,2e a πππ⎧⎫∈-∞+∞⎨⎬⎩⎭.【点睛】(1)可导函数y =f (x )在点x 0处取得极值的充要条件是f ′(x 0)=0,且在x 0左侧与右侧f ′(x )的符号不同. (2)若f (x )在(a ,b )内有极值,那么f (x )在(a ,b )内绝不是单调函数,即在某区间上单调增或减的函数没有极值.15.(2022·江西·上高二中模拟预测(理))已知函数()()2ln 0ax af x x a x -=->.(1)讨论()f x 的单调性;(2)设()()2ag x f x x=-+有两个零点12,x x ,若212x x >,证明:3312672e x x +>. 【答案】(1)答案见解析 (2)证明见解析 【解析】 【分析】(1)求导得()2221b ax x af x a x x x -+-=--=',对导函数进行分情况讨论其正负,即可得()f x 的单调性. (2)通过函数有两个零点,转化成1212ln 2ln 2x x a x x ++==,然后根据比例,构造出221111ln 2ln()2ln 2ln 2x x tx x x x ++==++,得到122111,e t x t x t x --==,进而构造函数33313ln ()ln[(1)]ln(1)1t t h t t t t t -=+=++-,利用导数处理单调性,进而可求. (1))()2221b ax x af x a x x x -+-=--=' 令2()F x ax x a =-+- ,则()00F a =-< ,且对称轴102x a=> 而214a ∆=-易知当10,2a ⎛⎫∈ ⎪⎝⎭ 时()f x 在0⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭ 单调递减,在⎝⎭单调递增当)12a ∞⎡∈+⎢⎣, 时()f x 在()0+∞,单调递减. (2)()g x 有两个零点12,x x 且0x >,则1212ln 2ln 2ln 2ln 20x x x x ax a a x x x +++-+=⇒=⇒==, 设21x t x =, 212x x >,2t ∴> ∴221111ln 2ln()2ln 2ln 2x x tx x x x ++==++,∴11ln ln 2ln 2t x t x ++=+,所以12111ln ln 2e 1t t x x t t --=-⇒=-, ∴33333631121(1)e (1)t x x t x t t --+=+=+,设33313ln ()ln[(1)]ln(1)1t t h t tt t t -=+=++-,2t >,则222331(1)()[1ln ](1)1t t h t t t t t -'=--+-+, 设2231(1)()1ln 1t t t t t tϕ-=--++,则7437323223211()(441)[(1)4(1)](1)(1)t t t t t t t t t t t t t ϕ--'=+--=-+-++, 当(1,)t ∈+∞时,()0t ϕ'>,所以函数()t ϕ在(1,)t ∈+∞上递增,()()10t ϕϕ∴>=,则()0h t '>,()h t ∴在(1,)+∞递增,又2t >,∴()(2)ln72h t h >=,故3361272e x x -+>. 【点睛】本题考查了含参函数的单调性,最值问题,方程与函数零点的综合问题,利用导数解决单调性的问题,分情况讨论,转化,构造函数证明不等式,二阶求导等综合性的函数知识,在做题时要理清思路,是一道导数的综合题.16.(2022·山东师范大学附中模拟预测)已知函数()()ln h x x a x a =-∈R . (1)若()h x 有两个零点,a 的取值范围;(2)若方程()e ln 0xx a x x -+=有两个实根1x 、2x ,且12x x ≠,证明:12212e ex x x x +>. 【答案】(1)()e,+∞ (2)证明见解析 【解析】 【分析】(1)分析可知0a ≠,由参变量分离法可知直线1y a=与函数()ln xf x x=的图象有两个交点,利用导数分析函数()f x 的单调性与极值,数形结合可求得实数a 的取值范围;(2)令e 0x t x =>,其中0x >,令111e x t x =,222e xt x =,分析可知关于t 的方程ln 0t a t -=也有两个实根1t 、2t ,且12t t ≠,设120t t >>,将所求不等式等价变形为12112221ln 1t t t t t t ⎛⎫- ⎪⎝⎭>+,令121t s t =>,即证()21ln 1s s s ->+,令()()21ln 1s g s s s -=-+,其中1s >,利用导数分析函数()g s 的单调性,即可证得结论成立. (1)解:函数()h x 的定义域为()0,∞+.。
人教A版高中数学选修二第五章《一元函数的导数及其应用》提高训练题 (49)(含答案解析)
选修二第五章《一元函数的导数及其应用》提高训练题 (49)1.若定义在R 上的函数()f x 满足()()1f x f x '+>,(0)4f =,则不等式()3x x e f x e ⋅>+ (其中e 为自然对数的底数)的解集为( ) A .(,0)(0,)-∞+∞ B .(,0)(3,)-∞⋃+∞ C .(0,)+∞D .(3,)+∞2.已知定义在R 上的函数f (x )满足f (2)=20,且f (x )的导函数()'f x 满足2()62f x x '>+,则不等式f (x )>2x 3+2x 的解集为( ) A .{x |x >-2}B .{x |x >2}C .{x |x <2}D .{x |x <-2或x >2}3.已知函数()f x 的定义域为R ,且()()1f x f x >'+,()03f =,则不等式()21xf x e >+的解集为( )A .(),0-∞B .()0,∞+C .(),1-∞D .()1,+∞4.已知函数()()f x x R ∈及其导函数()'f x 满足()()2 '0f x xf x +<且()0f x ≠.若()()230f x mf x ++≥⎡⎤⎣⎦恒成立,则( )A .m ≥-B .m ≥C .m ≤≤D .m ≤5.已知函数()f x 的导函数为()f x ',()ln 3(1)f x x x xf '=+,则(e)f '=( ) A .32-B .e 2-C .12D .12-6.设函数()y f x ''=是()y f x '=的导数,经过探究发现,任意一个三次函数()()320ax bx d a f x cx =+++≠的图象都有对称中心()()00,x f x ,其中0x 满足()00f x ''=,已知函数()3272392f x x x x =-+-,则12320212022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭( ) A .2021 B .20212C .2022D .402127.已知当2(0,)3x π∈时,sin sin 2cos x x bx x +≥恒成立,则正实数b 的取值范围为( ) A .()0,1B .(]0,1C .[]1,3D .(]0,38.已知(0,)2x π∈,函数cos )22tan (x f x x x π=+--,则下列选项正确的是( )A .存在0(0,)2x π∈使()00f x >B .存在0(0,)2x π∈使()01f x ≥C .对任意(0,)2x π∈,都有()0f x >D .对任意(0,)2x π∈,都有()1f x <-9.若函数()21xax bx f x e +-=的最小值为1-,则( ) A .1a b +≥ B .1a b +≤C .1a b -≤D .1a b -≥10.已知()4f x x x=+,()22g x x x a =-+,若对[]11,3x ∀∈,[]21,3x ∃∈,使得()()12f x g x =,则a 的取值范围是( ) A .[2,5] B .4,53⎡⎤⎢⎥⎣⎦C .162,3⎡⎤⎢⎥⎣⎦D .416,33⎡⎤⎢⎥⎣⎦11.已知函数()f x 满足2132()2mx x m f x f x x --⎛⎫+-= ⎪⎝⎭,若()2,x ∀∈+∞,()x f x e ≤,则m 的取值范围为( )A .21,2e ⎛⎤+-∞ ⎥⎝⎦B .21,2e ⎛⎫+-∞ ⎪⎝⎭C .()1,e ++∞D .[)1,e ++∞12.设f '(x )是函数f (x )的导函数,若f '(x )>0,且∀x 1,x 2∀R (x 1≠x 2),f (x 1)+f (x 2)<2f (122x x +),则下列各项中不一定正确的是( )A .f (2)<f (e )<f (π)B .f ′(π)<f ′(e )<f ′(2)C .f (2)<f ′(2)﹣f ′(3)<f (3)D .f ′(3)<f (3)﹣f (2)<f ′(2)13.设函数'()f x 是偶函数()()f x x R ∈的导数,(1)1f = ,当0x <时,'()()0xf x f x +> ,则使|f (x )|>1||x 成立的x 的取值范围是( )A .(10)(1)⋃+∞﹣,, B .(1,1)- C .(,1)(1,)-∞-+∞ D .(,1)(0,1)-∞-14.下列函数中,既是奇函数又在区间()0,1上单调递增的是( ) A .324y x x =+ B .()sin y x x =+- C .2log y x =D .22x x y -=-15.已知函数()2sin 1xf x x =+,则下列选项正确的有( ) A .函数()f x 的零点是x k π=(k Z ∈) B .函数()f x 是奇函数,且在()0,∞+上单调递增C .若x 0是函数()f x 在0,2π⎛⎫⎪⎝⎭上的极值点,则014x π<<D .()2f x π<16.已知f '(x )为函数f (x )的导函数,f '(x )=3x 2+6x +b ,且f (0)=0,若g (x )=f (x )﹣2xlnx ,求使得g (x )>0恒成立b 的值可能为( )A .﹣2ln2﹣74B .﹣ln2﹣74C .0D .ln2﹣3417.已知函数()21ln 12g x x x =-+,则当1,x e e ⎡⎤∈⎢⎥⎣⎦时的极大值为__________,若()21ln 12f x x x m =-+-在1,x e e ⎡⎤∈⎢⎥⎣⎦(0m >,e 为自然对数的底)的最大值为22e ,则实数m 的值为__________.18.不与x 轴重合的直线l 与曲线3y x =与2yx 均相切,则l 的斜率为___________.19.若函数()()321403f x x ax x a =-+>存在两个极值点1x 和2x ,则()()12f x f x +取值范围为____.20.若函数2()2ln f x m x x =-+在21,e e ⎡⎤⎢⎥⎣⎦上有两个零点,则实数m 的取值范围为___________.21.已知正数a ,b 满足5﹣3a ≤b ≤4﹣a ,ln b ≥a ,则ba的取值范围是___.22.已知函数()()()229f x x x mx n =-++的图象关于直线1x =对称,()f x '为()f x 的导函数,则()()00f f '-=________.23.已知a 为常数,且函数()cos f x x a x +,0,3x π⎛⎤∈ ⎥⎝⎦的最小值为a ,则a =___________.24.若关于x 不等式()1xx ke x >+的解集中的正整数有且只有一个,则k 的取值范围是______.25.已知函数21,1()ln ,1x x f x x x x ⎧-<⎪=⎨>⎪⎩,关于x 的方程212[()]2()02f x tf x t ++-=有5个不同的实数根,则实数t 的取值范围是______.26.已知直线2y x =-+分别与函数1e 2x y =和ln(2)y x =的图象交于点()11,A x y ,()22,B x y ,则下列说法正确的是______. ∀12e 2e x x e +>;∀12x x > ∀1221ln ln 0x x x x +>; ∀()12e ln 22xx +>.27.已知函数()()2ln 21af x x a R x =+-∈+,讨论函数()f x 的单调性. 28.已知函数()()32e Rf x x ax a =-∈,讨论函数()f x 的单调性.29.已知函数3()f x x ax b =--,讨论()f x 在[0,1]上的单调性; 30.已知函数()()22e 2x a f x x x ax =--+,R a ∈,讨论函数()f x 的单调性. 31.已知函数()()()()22e 20x f x x a x x a =-+->,讨论()f x 的单调区间:32.已知函数21()ln (1)2f x x ax a x =-+-,a ∈R ,讨论()f x 的单调性;33.已知函数()()()1e R xf x ax a =-∈,讨论()f x 的单调区间.34.已知函数1()e ax f x x -=⋅(R a ∈),讨论函数()f x 的单调性. 35.已知函数()e x f x x a =-,0x ≥,a R ∈,讨论函数()f x 的单调性. 36.已知函数2()ln f x mx x =-,讨论()f x 的单调性; 37.函数()e ()x f x ax a =-∈R ,讨论()f x 的单调性; 38.求下列函数的导数:(1)22()2f x a ax x =+-; (2)sin ()ln x xf x x=. (3)()2(34)21y x x x =-+;(4)2sin 12cos 24x x y ⎛⎫=- ⎪⎝⎭;(5)y =2ln 1xx +.(6)221()(31)y x x =-+;(7)sin 2cos 2y x x x =-; (8)cos x y e x =; (9)y =ln(21)x x+. (10)n 1l y x x=+ (11)sin xy x=(12)22(1e )2x y x x -=+-. 39.求下列函数的导数:(1)23cos =+y x x ; (2)()1ln =+y x x ; (3)sin cos 22x y xx =-;(4)()221y x =+; (5)2cos2x y =. 40.已知函数()1xe f x ax alnx x =+-+,其中a R ∈.(1)当0a ≤时,求()f x 的单调区间;(2)若()f x 在(0,1)内有极值,试判断极值点的个数并求a 的取值范围. 41.已知函数()()x f x e ax a a R =++∈.(1)当1a =时,求曲线()y f x =在点(0,(0))f 处的切线方程; (2)若存在[1x ∈,2],使得不等式2()ln (21)2xx f x a x e a x -+-++成立,求a 的取值范围.42.已知函数()4ln ()af x x x a R x=+-∈. (1)当3a =-时,求()f x 的单调区间;(2)若()f x 在区间()0,∞+上单调递增,求a 的取值范围. 43.已知函数()()ln 1,f x x m x m R =++∈. (1)若1m =-,求函数()f x 的极值;(2)若()()0()f p f q p q ==≠,证明:1pq >.44.已知函数()e 1xf x ax =--.(1)当1a =时,求()f x 的极值;(2)若()2f x x ≤在[)0,x ∈+∞上有解,求实数a 的取值范围.45.设函数()()24143xf x ax a x a e ⎡⎤=-+++⋅.(1)若曲线()y f x =在点()()1,1f 处的切线与x 轴平行,求a ; (2)若f (x )在x =2处取得极小值,求a 的取值范围. 46.已知函数()2sin (4ln )f x x x a x =-+-.(1)若0a =,求曲线()y f x =在点()(),f ππ处的切线方程.(2)若存在实数b ,使得()()g x f x b =+有两个不同的零点m ,n ,证明:2mn a <.47.已知函数()2xf x e ax =-.(1)讨论函数()f x 的单调性; (2)若0a =,证明:当0x >时,曲线2yx 恒在曲线()f x 的下方;(3)讨论函数()()21xH x x te t e =-<<零点的个数.48.已知函数()ln 1f x x x x =-+. (∀)求()f x 的单调区间和最值;(∀)设1a >,证明:当()1,x a ∈时,()1log 1a a x x ->-.49.我国西部某省4A 级风景区内住着一个少数民族村,该村投资了800万元修复和加强民俗文化基础设施,据调查,修复好村民俗文化基础设施后任何一个月内(每月按30天计算)每天的旅游人数()f x 与第x 天近似地满足8()8f x x=+(千人),且参观民俗文化村的游客人均消费()g x 近似地满足()143|22|g x x =--(元)(1)求该村的第x 天的旅游收入()p x (单位千元,130x ,*x ∈N )的函数关系;(2)若以最低日收入的20%作为每一天纯收入的计量依据,并以纯收入的5%的税率收回投资成本,试问该村在两年内能否收回全部投资成本?(一年以365天计) 50.设()ln f x x a x =-,a ∈R .(1)当2a =时,求函数()f x 的图象在点()()1,1f 处的切线方程; (2)记函数()()1a g x f x x-=-,若当1x =时,函数()g x 有极大值,求a 的取值范围.【答案与解析】1.C 【解析】构造函数()()3x x g x e f x e =⋅--,求导结合题干条件可证明()g x 在R 上单调递增,又(0)0g =,故()0(0)0g x g x >=⇒>,即得解令()()3x x g x e f x e =⋅--,则()()()[()()1]0x x x x g x e f x e f x e e f x f x '''=⋅+⋅-=+-> 所以()g x 在R 上单调递增, 又因为00(0)(0)30g e f e =⋅--=, 所以()0(0)0g x g x >=⇒>, 即不等式的解集是(0,)+∞ 故选:C 2.B 【解析】根据给定条件构造函数3()()22g x f x x x =--并判断其单调性,再利用()g x 的单调性即可求出不等式f (x )>2x 3+2x 的解集.令3()()22g x f x x x =--,因2()62f x x '>+,则2()()620g x f x x ''=-->,即()g x 在R 上单调递增, 因3(2)(2)22220g f =-⋅-⋅=,则不等式f (x )>2x 3+2x 等价于()(2)g x g >,于是得x >2, 所以原不等式的解集为{x |x >2}. 故选:B 3.A 【解析】 设g (x )=()1xf x e -,根据已知条件可得函数()g x 在定义域上单调递减,从而将不等式()21xf x e >+转化为()()0g x g >的解集,从而可得出答案. 解:设()g x =()1xf x e -, 则()g x '=()()1xf x f x e '---,∀()()1f x f x >'+,∀()()10f x f x '-->,∀()0g x '<,∀y =g (x )在定义域上单调递减,∀()21xf x e >+∀()g x =()12x f x e ->, 又()0g =(0)12f e -=, ∀()()0g x g >, ∀0x <,∀()21xf x e >+的解集为(),0-∞.故选:A . 4.D 【解析】构造函数()()2g x x f x =,通过题意,可得函数的单调区间,以及()0g x ≤,从而可得()0f x ≠,再通过分离参数,即可求解.解:设()()2g x x f x =,则()()()()()'2'2g x xf x xf x x f x xf x ⎡⎤⎣⎦'=+=+,∴当0x <时,()'0g x >,当0x >时,()'0,g x <()g x ∴在(),0-∞上单调递增,在(0,)+∞上单调递减, ()00,g =()0,g x ∴≤()0f x ≠,()0,f x ∴<不等式()()230f x mf x ++≥⎡⎤⎣⎦可转化为()()3m f x f x ≤--, 该不等式恒成立,则()()min 3m f x f x ⎡⎤≤--=⎢⎥⎣⎦故选:D. 5.C 【解析】先求出()()1ln 31f x x f ''=++,然后令1x =求出()1f ',然后即可求出(e)f '. 因为()ln 3(1)f x x x xf '=+所以()()1ln 31f x x f ''=++令1x =时有()()1131f f ''=+,所以()112f '=-所以3()ln 2f x x x x =-所以()311ln 22f e e '=+-= 故选:C 6.B 【解析】通过条件,先确定函数()f x 图象的对称中心点,进而根据对称性求出函数值的和.由()3272392f x x x x =-+-,可得()2669f x x x '=-+,()126f x x ''=-,令()1260f x x ''=-=,得12x =,又32111171239222222f ⎛⎫⎛⎫⎛⎫=⨯-⨯+⨯-= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,所以对称中心为11,22⎛⎫ ⎪⎝⎭,所以12021220201,12022202220222022f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+=+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,…,11010102022202122f f ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,1201011222f ⎛⎫= ⎪⎝⎭. 所以12320211202110101202220222022202222f f f f ⎛⎫⎛⎫⎛⎫⎛⎫+++⋅⋅⋅+=⨯+=⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. 故选:B. 7.D 【解析】先讨论不等式在2[,)23ππ上恒成立,在(0,)2x π∈时,变形不等式并构造函数()tan 2sin h x x x bx =+-,利用导数探求()0h x ≥的正数b 即可.当2[,)23x ππ∈时,而0b >,sin sin 2sin (12cos )0cos x x x x bx x +=+>≥,原不等式恒成立,当(0,)2x π∈时,cos 0x >,不等式等价变形为:tan 2sin x x bx +≥,令()tan 2sin h x x x bx =+-,(0,)2x π∈,而(0)0h =,求导得21()2cos cos h x x b x '=+-, 令()()g x h x '=,则3332sin 2sin (1cos )()2sin 0cos cos x x x g x x x x-'=-=>,则()h x '在(0,)2π上单调递增, (0)3h b '=-,若3b >,则(0)0h '<,记cosθ=,(0,)2πθ∈,则()0h b b θ'==>, 则存在()00,x θ∈,使得()00h x '=,当()00,x x ∈时,()0h x '<,()h x 单调递减,即当()00,x x ∈时,()(0)0h x h <=,不符合题意,若3b ≤,()(0)0h x h ''>≥,即当(0,)2x π∈时,()h x 单调递增,则有()(0)0h x h >=,符合题意,综上得,3b ≤,所以正实数b 的取值范围是(]0,3. 故选:D 8.B 【解析】对于A 、C 记cos 0,),2(2g x x x x ππ⎛⎫∈ ⎪⎝=+⎭-,tan ,(0,)2()x x h x x π∈=-,则()()()f x g x h x =+,利用导数分别判断出()()g x h x 、的单调性,证明出02cos x x π+-<,tan 0x x -<即可判断;对于B :取特殊值05=12x π,代入验证;对于D :取特殊值0=4x π,代入验证; 对于A 、C : 记cos 0,),2(2g x x x x ππ⎛⎫∈ ⎪⎝=+⎭-,tan ,(0,)2()x x h x x π∈=-,则()()()f x g x h x =+, n 0()1si g x x '=>-,所以2co )s (g x x x π=+-在(0,)2π上单增,当2x π<时,()02g x g π⎛⎫<= ⎪⎝⎭,即0cos ()2g x x x π=+-<,即02cos x x π+-<, 同理可证:t (n )a x h x x =-在(0,)2π上单减,所以当02x π<<时,都有()(0)0h x h <=,即tan 0x x -<.又02cos x x π+-<,所以s ()2n 2co ta 0x f x x x π=+--<.故A 、C 错误.对于B :取05=12x π,所以5cos =cos =cos cos sin sin 12646464πππππππ⎛⎫+-= ⎪⎝⎭,tantan564tan=tan =212641tan tan 64πππππππ+⎛⎫+= ⎪⎝⎭-, 则有()012=5f x f π⎛⎫ ⎪⎝⎭555cos tan 612122=ππππ+--,(5=262ππ+-,(=2213π<-<-.故B 正确; 对于D :取0=4x π,则有()0cos tan 1142442==f x f πππππ⎫+-⎛ ⎪⎝⎭->-.故D 错误. 故选:B 9.D【解析】根据0x =为()f x 的极值点可求得b ;分别在0a <,0a =和0a >三种情况下,判断()0f 是否为()f x 最小值,确定a 的范围,进而得到结论. 由题意知:()()221xax a b x bf x e -+-++'=,()f x 的最小值为()01f =-,0x ∴=是()f x 的一个极值点,()010f b '∴=+=,解得:1b =-,()()()22121x xax a x x ax a f x e e-++-++'∴==; 若0a <,当x →-∞时,()f x →-∞,不符合题意. 若0a =,则()x xf x e'=,∴当0x <时,()0f x '<;当0x >时,()0f x '>; ()f x ∴在(),0-∞上单调递减,在()0,∞+上单调递增,()01f ∴=-是()f x 的最小值,满足题意; 若0a >,令()0f x '=,解得:0x =或210a x a+=>; ∴当0x <或21a x a +>时,()0f x '<;当210a x a +<<时,()0f x '>;()f x ∴在()0,∞+,21,a a +⎛⎫+∞ ⎪⎝⎭上单调递减,在210,a a +⎛⎫⎪⎝⎭上单调递增,又()01f =-,当x →+∞时,()0f x →;()01f ∴=-是()f x 的最小值,满足题意; 综上所述:0a ≥,1a b ∴-≥. 故选:D.关键点点睛:本题解题关键是能够明确()f x 最值点即为其极值点,即导函数的零点;通过对含参数的函数单调性的讨论确定符合题意的参数的范围,从而得到结论. 10.A 【解析】结合导数求得()f x 在区间[]1,3上的值域.结合二次函数的性质求得()g x 在[]1,3上的值域,结合“任意、存在”列不等式,由此求得a 的取值范围.()()()2'22222441x x x f x x x x +--=-==, 所以()4f x x x=+在[1,2]递减,在(2,3]递增,()()()41315,24,3333f f f ===+=,可得()f x 的值域为[]4,5A =,()22g x x x a =-+对称轴为1x =,在[1,3]递增,可得()g x 的值域为[]1,3B a a =-+, 若对[]11,3x ∀∈,[]21,3x ∃∈,使得()()12f x g x =, 可得()f x 的值域A 为()g x 的值域B 的子集. 则14a -≤,且35a +≥,解得25a ≤≤, 故选:A. 11.A 【解析】由题设可得()1f x mx =-,可将问题转化为1x m e x x ≤+在2,上恒成立,构造1()x e g x x x=+,利用导数研究最值,即可求m 的范围.∀2132()2mx x mf x f x x --⎛⎫+-= ⎪⎝⎭,∀∀21232()mx x m f f x x x --⎛⎫-+= ⎪⎝⎭,∀由∀、∀可得,()1f x mx =-.由()xf x e ≤,得1x m e x x ≤+恒成立,令1()x eg x x x=+,则2(1)1()x x x x e g '--=. ∀()2,x ∈+∞,∀()0g x '>,即()g x 在2,上单调递增,∀21()(2)2e g x g +>=,∀212m e +≤.故选:A 12.C 【解析】f ′(x )>0,∀f (x )在R 上单调递增,由12121212,(),()()2()2x x x R x x f x f f x x ++∀∈≠<,可得12()()2f x f x +<12()2x x f +,可得y =f (x )的图象如图所示,图象是向上凸.进而判断出正误. 解:∀f ′(x )>0,∀f (x )在R 上单调递增, ∀12121212,(),()()2()2x x x R x x f x f f x x ++∀∈≠<,∀12()()2f x f x +<12()2x xf +,∀y =f (x )的图象如图所示,图象是向上凸.∀f (2)<f (e )<f (π),f ′(π)<f ′(e )<f ′(2),可知:A ,B 正确. ∀f (3)﹣f (2)=(3)(2)32f f --,表示点A (2,f (2)),B (3,f (3))的连线的斜率.由图可知:f ′(3)<k AB <f ′(2),故D 正确. C 项无法推出, 故选:C .13.C 【解析】设()()F x xf x =,根据函数的单调性和奇偶性问题转化为()()1|1|F x F =>,求出不等式的解集即可. 解:设F (x )=xf (x ),易知函数F (x )为奇函数,且当x <0时,F ′(x )=xf ′(x )+f (x )>0, 故函数F (x )在R 递增,将目标不等式转化为|F (x )|>F (1)=1,结合函数的单调性得:|x |>1,解得:1x <-或x >1, 故不等式的解集是(﹣∞,﹣1)∀(1,+∞), 故选:C . 14.ABD 【解析】先根据奇偶性定义分析函数的奇偶性,然后再利用导数判断函数的单调性,由此作出判断即可.对于选项A ,定义域为R 关于原点对称,且()()324f x x x f x -=--=-,故为奇函数,又2640y x '=+>,所以324y x x =+在()0,1上单调递增,故满足; 对于选项B ,定义域为R 关于原点对称,sin f x x xf x ,故为奇函数,又1cos 0y x '=-≥,且y '不恒为0,所以()sin y x x =+-在()0,1上单调递增,故满足;对于选项C ,定义域为{}0x x ≠关于原点对称,()()2log f x x f x -==,故为偶函数,不满足;对于选项D ,定义域为R 关于原点对称,()()22x xf x f x --=-=-,为奇函数,又2ln 22ln 20x x y -=+>',所以22x x y -=-在()0,1上单调递增,故满足. 故选:ABD . 15.ACD 【解析】直接利用求函数的零点的方法判定A 的结论,利用函数的导数和函数的单调性的关系判定B 的结论,利用函数的导数和函数的单调性的关系及零点的应用判定C 的结论,利用函数的关系式的变换和函数的单调区间的确定的应用和存在性的问题的应用判定D 的结论. 解:对于A :令函数()2sin 01xf x x ==+,得x k π=(k Z ∈),故函数的零点为x k π=(k Z ∈),故A 正确;对于B :函数()()()()2sin 1x f x f x x --==-+-,所以函数为奇函数,()()()2221cos 2sinx 1x x x f x x +-+'=,令()()21cos 2sin x x x g x x =+-,所以()()()221sin 2cos 2sin 2cos 3sin g x x x x x x x x x x =-++--=-+',当0,2x π⎛⎫∈ ⎪⎝⎭时,则()0g x '<恒成立,所以()g x 单调递减.2104162g πππ⎫⎛⎫=+->⎪ ⎪⎝⎭⎝⎭,21cos 2sin 22222g ππππππ⎛⎫⎛⎫⎛⎫=+-⋅⋅=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, ()f x '在()0,∞+上不是恒大于0,故函数()f x 在()0,∞+上单调递增错误,故B 错误; 对于C :由B 的结论,函数()g x 在0,2π⎛⎫ ⎪⎝⎭上单调递减,所以0x 为()g x 在0,2π⎛⎫⎪⎝⎭上的唯一零点.由于2104162g πππ⎫⎛⎫=+->⎪ ⎪⎝⎭⎝⎭,()2cos121sin10g =-<所以则014x π<<.故C 正确;对于D :当()0,x π∈时,对任意的0k >,且k ∈Z ,有()2sin 1x f xx =+, ()()22sin()sin 1()1()x k xf x x k x k f x k ππππ+==<+++++,故仅讨论()f x 在()0,π上的取值即可,选项C 的分析中,()()23sin x x g x =-+',当()0,x π∈时,()0g x '<,故函数()g x 单调递减,从而()f x 在()00,x x ∈上单调递增,在0,2x x π⎛⎫∈ ⎪⎝⎭上单调递减,所以()212212f f x πππ⎛⎫=< ⎪⎝⎭⎛⎫+ <⎪⎝⎭,故D 正确.故选:ACD. 16.BCD 【解析】求出函数f (x )的解析式,从而求出g (x )的解析式,问题转化为b >2lnx ﹣x 2﹣3x ,设φ(x )=2lnx ﹣x 2﹣3x (x ∀(0,+∞)),根据函数的单调性求出b 的范围即可. 解:∀f '(x )=3x 2+6x +b ,∀设f (x )=x 3+3x 2+bx +c ,又f (0)=0,故c =0, 从而f (x )=x 3+3x 2+bx ,∀g (x )=f (x )﹣2xln x =x 3+3x 2+bx ﹣2xln x ,则g (x )的定义域是(0,+∞), 则g (x )>0可化为x 2+3x +b ﹣2ln x >0,即b >2ln x ﹣x 2﹣3x , 设φ(x )=2ln x ﹣x 2﹣3x (x ∀(0,+∞)),则φ′(x )=2x﹣2x ﹣3=(21)(2)x x x --+,令φ′(x )>0,解得:0<x <12,令φ′(x )<0,解得:x >12, 故φ(x )在(0,12)递增,在(12,+∞)递减,故当x =12时,φ(x )取得最大值φ(12)=﹣2ln 2﹣74,要使g (x )>0恒成立,则b >﹣2ln2﹣74即可,故选:BCD . 17.12 2 【解析】利用导数分析函数()g x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的单调性,可求得函数()g x 在区间1,e e ⎡⎤⎢⎥⎣⎦上的极大值;分12m ≥、102m <<两种情况讨论,分析函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上的单调性,或作出函数()f x 在1,e e ⎡⎤⎢⎥⎣⎦上的图象,可得出()max f x ,再结合已知条件可求得实数m 的值. ()21ln 12g x x x =-+,则()211x g x x x x-'=-=,当11x e≤<时,()0g x '>,此时函数()g x 单调递增, 当1x e <≤时,()0g x '<,此时函数()g x 单调递减,所以,当1,x e e ⎡⎤∈⎢⎥⎣⎦时,函数()g x 的极大值为()112g =,21102g e e ⎛⎫=-< ⎪⎝⎭,()2202e g e =-<,作出函数()g x 的图象如下图所示:∀当12m ≥时,()()f x m g x =-, 此时,函数()f x 在1,1e ⎡⎫⎪⎢⎣⎭上单调递减,在(]1,e 上单调递增,2112f m e e ⎛⎫=+ ⎪⎝⎭,()222e f e m =+-,当1,x e e ⎡⎤∈⎢⎥⎣⎦时,()()()22max 1max ,222e e f x ff e f e m e ⎧⎫⎛⎫===+-=⎨⎬ ⎪⎝⎭⎩⎭,解得2m =,合乎题意;∀当102m <<时,作出函数()()f x m g x =-的图象如下图所示:2112f m e e ⎛⎫=+ ⎪⎝⎭,()112f m =-,()222e f e m =+-,因为()22112022e f e f e e ⎛⎫-=--> ⎪⎝⎭,()()2257120222e e f e f m --=-->>,所以,()()()()22max1max ,1,222e e f x ff f e f e m e ⎧⎫⎛⎫===+-=⎨⎬ ⎪⎝⎭⎩⎭,可得2m =(舍).综上所述,2m =. 故答案为:12;2. 18.6427【解析】设直线l 与曲线3y x =相切的切点坐标为()300,x x ,根据导数的几何意义可得l 的斜率,从而求得l的方程,再根据不与x 轴重合的直线l 与曲线3y x =与2yx 均相切,联立2300232y x x x y x ⎧=-⎨=⎩,得22300320x x x x -+=,0∆=,求得0x ,即可得出答案.解:设直线l 与曲线3y x =相切的切点坐标为()300,x x ,()23f x x '=,则()2003f x x '=,则切线方程为230032y x x x =-,因为不与x 轴重合的直线l 与曲线3y x =与2y x 均相切,则2300232y x x x y x⎧=-⎨=⎩,得22300320x x x x -+=, 4300980x x ∆=-=,得00x =(舍去),或089x =, l ∴的斜率为2064327x =. 故答案为:6427. 19.16,3⎛⎫-∞ ⎪⎝⎭【解析】由'0f x写出根与系数关系、判别式,求得()()12f x f x +的表达式,并转化为用a 来表示,利用构造函数法,结合导数求得()()12f x f x +的取值范围.令()'2240f x x ax =-+=,则12122,4x x a x x +==,由24160a ∆=->且0a >,解得2a >.()()12f x f x +3232111222114433x ax x x ax x =-++-+ ()()()3322121212143x x a x x x x =+-+++ ()()()()2212121212121213243x x x x x x a x x x x x x ⎡⎤⎡⎤=++--+-++⎣⎦⎣⎦ ()()221243448423a a a a a =⨯⨯-⨯--+⨯ 3483a a =-+.令()()34823g a a a a =-+>,()('24840g a a a a =-+=-<,()g a 在区间()2,+∞上递减,()()3416228233g a g <=-⨯+⨯=. 所以()()12f x f x +取值范围是16,3⎛⎫-∞ ⎪⎝⎭.故答案为:16,3⎛⎫-∞ ⎪⎝⎭20.411,4e ⎛⎤+ ⎥⎝⎦【解析】参变分离法得22ln m x x =-,再令2()2ln g x x x =-,对函数()g x 求导并研究单调性,根据最小值和单调区间,作出函数()g x 的图象,利用数形结合,即可求出结果. 令2()2ln 0f x m x x =-+=,则22ln m x x =-, 令2()2ln g x x x =-,则22(1)(1)()2x x g x x x x-+'=-=,∀在21,1e ⎡⎤⎢⎥⎣⎦上()0g x '<,()g x 递减,在[]1,e 上()0g x '>,()g x 递增,且()(1)1g x g ≥=,24114e e g ⎛⎫=+ ⎪⎝⎭,()2e e 2g =-.由24145e 2e +<<-,即()21e e g g ⎛⎫< ⎪⎝⎭,作出函数()g x 的图像,如下图所示:∀()f x 在21,e e ⎡⎤⎢⎥⎣⎦上有两个零点,则实数m 的取值范围为411,4e ⎛⎤+ ⎥⎝⎦.故答案为:411,4e ⎛⎤+ ⎥⎝⎦.21.[e ,7] 【解析】 由题意可求得ba≤7;由ln b ≥a 可得b b a lnb ≥(b 12e ≥),设函数f (x )x lnx =(x 12e ≥),利用其导数可求得f (x )的极小值,也就是ba的最小值.∀正数a ,b 满足5﹣3a ≤b ≤4﹣a , ∀5﹣3a ≤4﹣a , ∀a 12≥. ∀5﹣3a ≤b ≤4﹣a , ∀5a-34b a a ≤≤-1.从而ba≤7,∀ln b ≥a ,∀b ba lnb≥(b 12e ≥), 设f (x )x lnx =(x 12e ≥),则f ′(x )21lnx lnx -=(), 当0<x <e 时,f ′(x )<0,当x >e 时,f ′(x )>0,当x =e 时,f ′(x )=0, ∀当x =e 时,f (x )取到极小值,也是最小值. ∀f (x )min =f (e )=e . ∀ba≥e , ∀ba的取值范围是[e ,7]. 故答案为:[e ,7]. 22.9 【解析】根据3和3-是()f x 的两个零点和()f x 关于直线1x =对称,可确定1-和5是20x mx n ++=的两个实根,利用韦达定理可求得,m n ,得到()f x 和()f x ',由此可求得结果. 由题意知:3和3-是()f x 的两个零点,()f x 的图象关于直线1x =对称,1∴-和5也是()f x 的零点,1∴-和5是20x mx n ++=的两个实根,()154155m n ⎧=--+=-∴⎨=-⨯=-⎩, ()()()22945f x x x x ∴=---,()()()()22322459244122836f x x x x x x x x x '∴=--+--=--+,()045f ∴=,()036f '=,()()009f f '∴-=. 故答案为:9. 23.3 【解析】首先对函数()f x 进行求导,然后对参数a 分类讨论,利用导函数求()f x 的单调区间,进而分析()f x 的最值,即可求解.因为()cos f x x a x =+,所以'()sin f x x a x =-, 以下对参数a 进行讨论:∀当0a ≤时,则'()sin 0f x x a x =->对于(0,]3x π∀∈均成立,所以()f x 在(0,]3π单调递增,故()f x 无最小值,不合题意;∀当0a >时,易知0tan x <≤对(0,]3x π∀∈均成立,(i)tan x ≥时,即01a <≤时,易知'()sin 0f x x a x =-≥, 从而()f x 在(0,]3π为单调递增函数,故()f x 无最小值,不合题意;(ii)当0<<1a >时,从而易知,0(0,)3x π∃∈0tan x =, 因为tan y x =在(0,]3π上是单调递增的,所以当0(0,]x x ∈时, 0tan tan x x =>,即'()sin 0f x x a x =->,当0(,]3x x π∈0tan tan x x =<,即'()sin 0f x x a x =-<, 故()f x 在0(0,]x 上单调递增,在0(,]3x π上单调递减, 从而对于0(0,]x x ∀∈,()(0)f x f a >=,故()f x 在0(0,]x 无最小值a ,又因为()f x 在(0,]3π上的最小值为a ,且在0(,]3x π上单调递减,故()f x 的最小值必为()cos 333f a a πππ=+=, 解得,3a =,满足题意.故答案为:3.24.221,32e e ⎡⎫⎪⎢⎣⎭【解析】对k 进行分类讨论,结合构造函数法以及导数,求得k 的取值范围.当0k ≤时,任一正整数都满足不等式()1x x ke x >+,故0k >.当0k >,1≥x 时,不等式()1xx ke x >+等价于()110x e x x k+-<, 令()()11x e x f x x k +=-,1≥x , ∀当1≥x 时,()()'210xe f x x x x =+->恒成立, ∀()f x 在[)1,+∞上单调递增,∀()()2112031202f e k e f k ⎧=-<⎪⎪⎨⎪=-≥⎪⎩,解得22132k e e ≤<. 故答案为:221,32e e ⎡⎫⎪⎢⎣⎭. 25.111,2e 2⎛⎫- ⎪⎝⎭【解析】利用导数得到函数()f x 在1x >的单调性和极值,画出函数()f x 的大致图象,令()m f x =,则212202m tm t ++-=,因式分解求得1m ,2m ,由函数()f x 的图象则只需:1102e t <-<,求出实数t 的取值范围.当1x >时,ln ()x f x x=,则21ln ()x f x x -'=, 令()0f x '=得:e x =,∴当(1,e)x ∈时,()0f x '>,()f x 单调递增,当(e,)x ∈+∞时,()0f x '<,()f x 单调递减;且1(e)e f =,又2()1,1f x x x =-<,故函数()f x 的大致图象如图所示:,令()m f x =,当1m =-或0m =或1e m >时,方程()m f x =有一个解;当10m -<<或1e m =时,方程()m f x =有两个解;当10e m <<时,方程()m f x =有三个解;当1m <-时,方程()m f x =无解;又关于x 的方程212[()]2()02f x tf x t ++-=化为关于m 的方程212202m tm t ++-=,244210m tm t ++-=,又24421(221)(21)m tm t m t m ++-=+-+所以244210m tm t ++-=的两根为112m t =-,21(1,0)2m =-∈-,关于x 的方程212[()]2()02f x tf x t ++-=恰好有5个不相等的实根,则只需:1102et <-<, 所以12211e t -<< 故答案为:111,2e 2⎛⎫- ⎪⎝⎭. 26.∀∀∀【解析】 由函数12x y e =和()ln 2y x =互为反函数,可得12122,2x x y y +=+=,1201,12x x <<<<,利用均值不等式可判断∀ ;利用112122x e x x =-+=,构造函数1111()()2x f x x e =⋅可判断∀;利用均值不等式可得12101x x <<<,构造函数ln ()((0,1))x g x x x=∈,求导研究单调性可判断∀;由122y y +=,可得()121ln 222x e x +=可判断∀ 因为函数12x y e =和()ln 2y x =互为反函数,所以函数12x y e =和()ln 2y x =的图象关于直线y x =的对称,又因为直线y x =的斜率1与直线2y x =-+的斜率1-的乘积为1-,因此直线y x =与直线2y x =-+互相垂直,显然直线2y x =-+也关于直线y x =对称,解方程组211y x x y x y =-=⎧⎧⇒⎨⎨==⎩⎩,所以直线y x =和2y x =-+的交点坐标为:(1,1), 有12122,2x x y y +=+=,1112x y e =,()22ln 2y x =,1201,12x x <<<<. 对∀:因为1201,12x x <<<<,122x x +=,所以122x x e e e +>==,因此本选项正确;对∀:因为()11,A x y ,()22,B x y 关于(1,1)对称, 所以有1111212ln 2ln 42x y e x <<⇒<<⇒<<,因此有1ln 22x >>=, 点()11,A x y 在直线2y x =-+上,而122x x +=,所以112122x e x x =-+=, 因此11211()2x x x x e ⋅=⋅,显然函数1111()()2x f x x e =⋅在101x <<上是单调递增函数,所以当12x >时,有12111()()()222f x f e >=⋅⋅=,故本选项正确; 对∀:因为1201,12x x <<<<,122x x +=,所以212120()12x x x x +<<=, 因此有12101x x <<<,设函数ln ()((0,1))x g x x x =∈,'21ln ()x g x x-=,因为(0,1)x ∈,所以'()0g x > 因此函数ln ()((0,1))x g x x x=∈是单调递增的, 当12101x x <<<时,有121()()g x g x <, 即112222221221lnln 1ln ln()(ln )1x x x x x x x x x x -<===-,因此有1221ln ln 0x x x x +<,故本选项不正确; 对∀:因为()11,A x y ,()22,B x y 关于(1,1)对称,所以122y y +=,因此()121ln 222x e x +=, 所以()()()111122211ln 22ln 2[ln 2]022x x x x e x e x e x e +-=+-+=>, 即()12ln 22xe x +>,故本选项正确; 故答案为:∀∀∀27.答案见解析.【解析】对()2ln 21a f x x x =+-+求导,对0a <,02a ≤≤,2a >分类讨论研究函数()f x 的单调性. 由题意,函数()2ln 21a f x x x =+-+,可得其定义域为(0,)+∞, 且222122(1)1()(1)(1)a x a x f x x x x x --+'=-=++. 令()0f x '=,即22(1)10x a x --+=,由24(1)40a ∆=--=,解得2a =或0a =∀若0a <,则()0f x '>,所以()f x 在(0,)+∞上单调递增,∀若02a ≤≤,此时0∆≤,()0f x '≥在(0,)+∞上恒成立,所以()f x 在(0,)+∞上单调递增.∀若2a >,此时0∆>,方程22(1)10x a x --+=的两根为11x a =-21x a =-1>0x ,20x >,所以()f x在(0,1a -上单调递增,在(11a a --上单调递减,在(1)a -+∞上单调递增.综上所述;若2a ≤,()f x 在(0,)+∞上单调递增﹔若2a >,()f x在(0,1a -,(1)a -+∞上单调递增,在(11a a --上单调递减.28.答案见解析.【解析】对函数求导,进而将导函数因式分解,然后分0a =,0a >和0a <三种情况进行讨论,最后得到函数的单调区间.由题意,R x ∈,()223e 23e 3e a f x x ax x x ⎛⎫'=-=- ⎪⎝⎭ 若0a =,()23e 0f x x '=≥,则函数()f x 在R 上单调递增;若0a >,(),0x ∈-∞时,()0f x '>,()f x 单调递增,20,3e a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减, 2,3e a x ⎛⎫∈+∞ ⎪⎝⎭时,()0f x '>,()f x 单调递增; 若0a <,2,3e a x ⎛⎫∈-∞ ⎪⎝⎭时,()0f x '>,()f x 单调递增,2,03e a x ⎛⎫∈ ⎪⎝⎭时,()0f x '<,()f x 单调递减,()0,x ∈+∞时,()0f x '>,()f x 单调递增.综上:0a =时,()f x 在R 上单调递增;0a >时,()f x 的增区间为:(),0-∞,2,3e a ⎛⎫+∞ ⎪⎝⎭,减区间为:20,3e a ⎛⎫ ⎪⎝⎭; 0a <时,()f x 的增区间为:2,3e a ⎛⎫-∞ ⎪⎝⎭,()0,∞+,减区间为:2,03e a ⎛⎫ ⎪⎝⎭. 29.答案见解析.【解析】求出函数的导函数,分0a ≤,3a ≥,0<<3a 三种情况讨论,根据导函数的符号即可得出结论. 解:由题意得2()3f x x a '=-.当[]0,1x ∈时,[]230,3x ∈.∀若0a ≤,则对任意[]0,1x ∈,()0f x '≥恒成立,()f x ∴在[]0,1上单调递增;∀若3a ≥,则对任意[]0,1x ∈,()0f x '≤恒成立,()f x ∴在[]0,1上单调递减;∀若0<<3a ,则()3(f x x x '=+,当x ⎡∈⎢⎣时()0f x '≤,当x ⎤∈⎥⎦时,()0f x '>,()f x ∴在⎡⎢⎣上单调递减,在⎤⎥⎦上单调递增. 综上,当0a ≤时,()f x 在[]0,1上单调递增;当3a ≥时,()f x 在[]0,1上单调递减;当0<<3a 时,()f x 在⎡⎢⎣上单调递减,在⎤⎥⎦上单调递增. 30.答案见解析.【解析】对函数求导,进而对导函数因式分解,然后分0a ≤,e a =,0e a <<和e a >四种情况进行讨论,最后求得单调区间.由题意,R x ∈,()()()()1e 1e x x f x x ax a x a '=--+=--, 若0a ≤,(),1x ∈-∞时,()0f x '<,()f x 单调递减,()1,x ∈+∞时,()0f x '>,()f x 单调递增; 若e a =,则()0f x '≥,()f x 在R 上单调递增;若0e a <<,(),ln x a ∈-∞时,()0f x '>,()f x 单调递增,()ln ,1x a ∈时,()0f x '<,()f x 单调递减,()1,x ∈+∞时,()0f x '>,()f x 单调递增;若e a >,(),1x ∈-∞时,()0f x '>,()f x 单调递增,()1,ln x a ∈时,()0f x '<,()f x 单调递减,()ln ,x a ∈+∞时,()0f x '>,()f x 单调递增.综上:0a ≤时,()f x 的减区间为:(),1-∞,增区间为:()1,+∞;e a =时, ()f x 在R 上单调递增;0e a <<时,()f x 的减区间为:()ln ,1a ,增区间为:()(),ln ,1,a -∞+∞;e a >时,()f x 的减区间为:()1,ln a ,增区间为:()(),1,ln ,a -∞+∞.31.答案见解析.【解析】求()f x ',令()0f x '=求出对应的两根,再讨论两根的大小关系,解不等式()0f x '>和()0f x '<,即可得单增区间和单间区间.由()()()()22e 20x f x x a x x a =-+->可得 ()()()()()e 2e 21e 22x x x a f x a x x x '=---=--++-,由()0f x '=可得1x =或ln2x a =,当ln21a <即0e 2a <<时, 由()0f x '>可得ln 21a x <<;由()0f x '<可得:ln 2x a <或1x >,所以()f x 的单增区间为()ln 2,1a ;单间区间为(),ln 2a -∞和()1,+∞;当ln21a =即e 2a =时,()()()1e e 0x f x x '=---≤恒成立, 此时()f x 的单减区间为(),-∞+∞;当ln21a >即2e a >时, 由()0f x '>可得1ln 2x a <<;由()0f x '<可得:1x <或ln 2x a >,所以()f x 的单增区间为()1,ln 2a ;单间区间为(),1-∞和()ln 2,a +∞.综上所述: 当0e 2a <<时,()f x 的单增区间为()ln 2,1a ;单间区间为(),ln 2a -∞和()1,+∞; 当e2a =时,()f x 的单减区间为(),-∞+∞; 当2e a >时,()f x 的单增区间为()1,ln 2a ;单间区间为(),1-∞和()ln 2,a +∞. 32.分类讨论,答案见解析.【解析】 求导可得(1)(1)()ax x f x x---'=,只需讨论(1)(1)y ax x =---在(0,)+∞的正负即可,分0a ≥,10a -<<,1a =-,1a <-四种情况讨论,即得解由题意,()f x 的定义域为(0,)+∞,21(1)1(1)(1)()1ax a x ax x f x ax a x x x-+-+---'=-+-==, (1)当0a ≥时,10ax --<,由()0f x '<得1x >,由()0f x '>得01x <<,.∀()f x 的单调递增区间为(0,1),单调减区间为(1,)+∞(2)当10a -<<时,11a>-, 由()0f x '>得01x <<或1x a>-, 由()0f x '<得11x a <<-, ∀()f x 的单调减区间为1(1,)a -,单调增区间为(0,1)和1(,)a-+∞ (3)当1a =-时,11a=-,()0f x '≥在(0,)+∞上恒成立, ∀()f x 单调增区间为(0,)+∞,无减区间;(4)当1a <-时,101a <<-, 由()0f x '>得10x a <<-或1x >, 由()0f x '<得11x a-<<, ∀()f x 的单调减区间为1(,1)a -,单调增区间为1(0,)a-和(1,)+∞. 综上所述,当1a <-时,()f x 的单调减区间为1(,1)a -,单调增区间为1(0,)a-和(1,)+∞; 当1a =-时,()f x 单调增区间为(0,)+∞,无减区间;当10a -<<时,()f x 的单调减区间为1(1,)a -,单调增区间为(0,1)和1(,)a-+∞; 当0a ≥时,()f x 的单调增区间为(0,1),单调减区间为(1,)+∞.33.答案见解析.【解析】对函数求导,进而对参数a 分等于0,大于0和小于0三种情况进行讨论,然后得到单调区间.由题意,R x ∈,()()1e x f x ax a '=+-若a =0,()0e x f x '=-<,则()f x 在R 上单调递减;若a >0,1,1x a ⎛⎫∈-∞- ⎪⎝⎭时,()0f x '<,()f x 单调递减,11,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0f x '>,()f x 单调递增;若a <0,1,1x a ⎛⎫∈-∞- ⎪⎝⎭时,()0f x '>,()f x 单调递增,11,x a ⎛⎫∈-+∞ ⎪⎝⎭时,()0f x '<,()f x 单调递减.综上:a =0时, ()f x 在R 上单调递减;。
2023年高考数学总复习第三章 导数及其应用第5节:利用导数研究函数的零点问题(教师版)
2023年高考数学总复习第三章导数及其应用利用导数研究函数的零点问题题型一判断、证明或讨论函数零点的个数例1已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间;(2)证明:f (x )只有一个零点.(1)解当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3.当x ∈(-∞,3-23)∪(3+23,+∞)时,f ′(x )>0;当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )在(-∞,3-23),(3+23,+∞)单调递增,在(3-23,3+23)单调递减.(2)证明由于x 2+x +1>0,所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2(x 2+2x +3)(x 2+x +1)2≥0,仅当x =0时g ′(x )=0,所以g (x )在(-∞,+∞)单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点.又f (3a -1)=-6a 2+2a -13=-a -162-16<0,f (3a +1)=13>0,故f (x )有一个零点.综上,f (x )只有一个零点.感悟提升利用导数研究方程根(函数零点)的一般方法(1)研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等.(2)根据题目要求,画出函数图像的走势规律,标明函数极(最)值的位置.(3)数形结合法分析问题,可以使问题的求解过程有一个清晰、直观的整体展现.训练1设函数f (x )=ln x +m x ,m 为正数.试讨论函数g (x )=f ′(x )-x 3零点的个数.解由题设g (x )=f ′(x )-x 3=1x -m x 2-x 3(x >0),令g (x )=0,得m =-13x 3+x (x >0).转化为函数y =m 与y =-13x 3+x 的图像的交点情况.设φ(x )=-13x 3+x (x >0),则φ′(x )=-x 2+1=-(x -1)(x +1),当x ∈(0,1)时,φ′(x )>0,φ(x )在(0,1)上单调递增;当x ∈(1,+∞)时,φ′(x )<0,φ(x )在(1,+∞)上单调递减,∴x =1是φ(x )唯一的极值点,且是极大值点,因此x =1也是φ(x )的最大值点,∴φ(x )的最大值为φ(1)=23.结合y =φ(x )的图像(如图),可知①当m >23时,函数g (x )无零点;②当m =23时,函数g (x )有且只有一个零点;③当0<m <23时,函数g (x )有两个零点;综上所述,当m >23时,函数g (x )无零点;当实数m =23时,函数g (x )有且只有一个零点;当0<m <23时,函数g (x )有两个零点.题型二根据零点个数确定参数范围例2(2021·全国甲卷)已知a >0且a ≠1,函数f (x )=x a ax (x >0).(1)当a =2时,求f (x )的单调区间;(2)若函数φ(x )=f (x )-1有且仅有两个零点,求a 的取值范围.解(1)当a =2时,f (x )=x 22x ,定义域为(0,+∞),f ′(x )=x (2-x ln 2)2x(x >0),令f ′(x )>0,则0<x <2ln 2,此时函数f (x )单调递增,令f ′(x )<0,则x >2ln 2,此时函数f (x )单调递减,所以函数f (x )(2)函数φ(x )=f (x )-1有且仅有两个零点,则转化为方程x a a x =1(x >0)有两个不同的解,即方程ln x x =ln a a 有两个不同的解.设g (x )=ln x x (x >0),则g ′(x )=1-ln x x2(x >0),令g ′(x )=1-ln x x 2=0,得x =e ,当0<x <e 时,g ′(x )>0,函数g (x )单调递增,当x >e 时,g ′(x )<0,函数g (x )单调递减,故g (x )max =g (e)=1e,且当x >e 时,g (x )g (1)=0,所以0<ln a a <1e,所以a >1且a ≠e ,故a 的取值范围为(1,e)∪(e ,+∞).感悟提升在解决已知函数y =f (x )有几个零点求f (x )中参数t 的取值范围问题时,经常从f (x )中分离出参数t =g (x ),然后用求导的方法判断g (x )的单调性,再根据题意求出参数t 的值或取值范围.解题时要充分利用导数工具和数形结合思想.训练2已知函数f (x )=ax -2ln x -a x(a ∈R ).(1)讨论函数f (x )的单调性;(2)若函数h (x )=1-a 2x -f (x )2恰有两个不同的零点,求实数a 的取值范围.解(1)函数f(x)=ax-2ln x-ax的定义域是(0,+∞),求导可得f′(x)=a-2x+ax2=ax2-2x+ax2.当a≤0时,f′(x)<0,故函数f(x)在(0,+∞)上单调递减.当a≥1时,4(1-a2)≤0,此时f′(x)=ax2-2x+ax2≥0,故函数f(x)在(0,+∞)上单调递增.当0<a<1时,4(1-a2)>0,令f′(x)=0,得x1=1-1-a2a,x2=1+1-a2a,所以函数f(x)在(0,x1),(x2,+∞)上单调递增;在(x1,x2)上单调递减.综上所述,当a≤0时,函数f(x)在(0,+∞)上单调递减;当a≥1时,函数f(x)在(0,+∞)上单调递增;当0<a<1时,函数f(x)(1-1-a2a,1+1-a2a)上单调递减.(2)由题意得函数h(x)=1-a2x-f(x)2=1-a2x+ln x(x>0),则函数h(x)=1-a2xf(x)2恰有两个不同的零点即方程1-a2x+ln x=0恰有两个不同的根.由1-a2x+ln x=0得a=2(1+ln x)x,所以直线y=a与函数g(x)=2(1+ln x)x的图像有两个不同的交点.由g(x)=2(1+ln x)x,得g′(x)=-2ln xx2,当0<x<1时,g′(x)>0,g(x)单调递增,当x>1时,g′(x)<0,g(x)单调递减,所以g(x)max=g(1)=2.又e-2<1,g(e-2)=2(1+ln e-2)e-2=-2e-2<0,x>1时,g(x)>0,所以实数a的取值范围为(0,2).题型三可化为函数零点的个数问题例3已知函数f(x)=ln x(0<x≤1)与函数g(x)=x2+a的图像有两条公切线,求实数a的取值范围.解设公切线与函数f(x)=ln x的图像切于点A(x1,ln x1)(0<x1≤1),因为f(x)=ln x,所以f′(x)=1 x,所以在点A(x1,ln x1)处切线的斜率k1=f′(x1)=1 x1,所以切线方程为y-ln x1=1x1(x-x1),即y=xx1+ln x1-1,设公切线与函数g(x)=x2+a的图像切于点B(x2,x22+a),因为g(x)=x2+a,所以g′(x)=2x,所以在点B(x2,x22+a)处切线的斜率k2=g′(x)=2x2,所以切线方程为y-(x22+a)=2x2(x-x2),即y=2x2x-x22+a,1x1=2x2,ln x1-1=-x22+a.因为0<x1≤1,所以1x1=2x2≥1,x2≥12.又a=-ln2x2+x22-1,令t=x2∈12,+∞,则h(t)=-ln2t+t2-1=-ln2-ln t+t2-1,所以h′(t)=2t2-1 t.令h′(t)>0且t≥12,得t>22;令h ′(t )<0且t ≥1,得12≤t <22.所以h (t )在12,所以函数f (x )=ln x (0<x ≤1)与函数g (x )=x 2+a 有两条公切线,满足h (t )≤ln2-12<h (t )≤-34,所以a ln 2-12,-34.感悟提升解决曲线的切线条数、两曲线的交点个数、方程根的个数等问题的关键是转化为对应函数的零点个数问题,利用数形结合思想,通过研究函数的零点个数解决相关问题.训练3已知函数f (x )=1+ln x x.(1)求函数f (x )的图像在x =1e 2处的切线方程(e 为自然对数的底数);(2)当x >1时,方程f (x )=a (x -1)+1x(a >0)有唯一实数根,求a 的取值范围.解(1)函数f (x )的定义域为(0,+∞),f ′(x )=-ln x x 2,所以f 2e 4,又e 2,所以函数f (x )的图像在x =1e2处的切线方程为y +e 2=2e 即y =2e 4x -3e 2.(2)当x >1时,f (x )=a (x -1)+1x,即ln x -a (x 2-x )=0.令h (x )=ln x -a (x 2-x ),有h (1)=0,h ′(x )=-2ax 2+ax +1x.令r (x )=-2ax 2+ax +1(a >0),则r (0)=1,r (1)=1-a ,①当a≥1时,r(1)≤0,r(x)在(1,+∞)上单调递减,所以x∈(1,+∞)时,r(x)<0,即h′(x)<0,所以h(x)在(1,+∞)上单调递减,故当x>1时,h(x)<h(1)=0,所以方程f(x)=a(x-1)+1x无实根.②当0<a<1时,r(1)=1-a>0,r(x)在(1,+∞)上单调递减,所以存在x0∈(1,+∞),使得x∈(1,x0)时,r(x)>0,即h(x)单调递增;x∈(x0,+∞)时,r(x)<0,即h(x)单调递减.所以h(x)max=h(x0)>h(1)=0.取x=1+1(x>2),则1+1a ln1+1a a1+1a+a1+1a ln1+1a-1+1a.令t=1+1a>0,故m(t)=ln t-t(t>2),则m′(t)=1t-1<0,所以m(t)在(2,+∞)单调递减,所以m(t)<ln2-2<0,即h 1+1a故存在唯一x1x0,1+1a,使得h(x1)=0.综上,a的取值范围为(0,1).隐零点问题在求解函数问题时,很多时候都需要求函数f(x)在区间I上的零点,但所述情形都难以求出其准确值,导致解题过程无法继续进行时,可这样尝试求解:先证明函数f(x)在区间I上存在唯一的零点(例如,函数f(x)在区间I上是单调函数且在区间I的两个端点的函数值异号时就可证明存在唯一的零点),这时可设出其零点是x0.因为x0不易求出(当然,有时是可以求出但无需求出),所以把零点x0叫作隐零点;若x0容易求出,就叫作显零点,而后解答就可继续进行,实际上,此解法类似于解析几何中“设而不求”的方法.例1设函数f(x)=e x-ax-2.(1)求f(x)的单调区间;(2)若a=1,k为整数,且当x>0时,(x-k)f′(x)+x+1>0,求k的最大值.解(1)f(x)的定义域为R,f′(x)=e x-a.当a≤0时,f′(x)>0恒成立,所以f(x)单调增区间为(-∞,+∞),无单调减区间.当a>0时,令f′(x)<0,得x<ln a,令f′(x)>0,得x>ln a,所以f(x)的单调递减区间为(-∞,ln a),单调递增区间为(ln a,+∞). (2)由题设可得(x-k)(e x-1)+x+1>0,即k<x+x+1e x-1(x>0)恒成立,令g(x)=x+1e x-1+x(x>0),得g′(x)=e x-1-(x+1)e x(e x-1)2+1=e x(e x-x-2)(e x-1)2(x>0).由(1)的结论可知,函数h(x)=e x-x-2(x>0)是增函数.又因为h(1)<0,h(2)>0,所以函数h(x)的唯一零点α∈(1,2)(该零点就是h(x)的隐零点).当x∈(0,α)时,g′(x)<0;当x∈(α,+∞)时,g′(x)>0,所以g(x)min=g(α)=α+1eα-1+α.又h(α)=eα-α-2=0,所以eα=α+2且α∈(1,2),则g(x)min=g(α)=1+α∈(2,3),所以k的最大值为2.例2已知函数f(x)=(x-1)e x-ax的图像在x=0处的切线方程是x+y+b=0.(1)求a,b的值;(2)求证函数f(x)有唯一的极值点x0,且f(x0)>-32.(1)解因为f′(x)=x e x-a,由f′(0)=-1得a=1,又f(0)=-1,所以切线方程为y-(-1)=-1(x-0),即x+y+1=0,所以b=1.(2)证明令g(x)=f′(x)=x e x-1,则g′(x)=(x+1)e x,所以当x<-1时,g(x)单调递减,且此时g(x)<0,则g(x)在(-∞,-1)内无零点;当x≥-1时,g(x)单调递增,且g(-1)<0,g(1)=e-1>0,所以g(x)=0有唯一解x0,f(x)有唯一的极值点x0.由x0e x0=1⇒e x0=1 x0,f(x0)=x0-1x0-x0=1x又=e2-1<0,g(1)=e-1>0⇒12<x0<1⇒2<1x0+x0<52,所以f(x0)>-3 2 .1.已知函数f(x)=e x+(a-e)x-ax2.(1)当a=0时,求函数f(x)的极值;(2)若函数f(x)在区间(0,1)内存在零点,求实数a的取值范围.解(1)当a=0时,f(x)=e x-e x,则f′(x)=e x-e,f′(1)=0,当x<1时,f′(x)<0,f(x)单调递减;当x>1时,f′(x)>0,f(x)单调递增,所以f(x)在x=1处取得极小值,且极小值为f(1)=0,无极大值.(2)由题意得f′(x)=e x-2ax+a-e,设g(x)=e x-2ax+a-e,则g′(x)=e x-2a.若a=0,则f(x)的最大值f(1)=0,故由(1)得f(x)在区间(0,1)内没有零点.若a<0,则g′(x)=e x-2a>0,故函数g(x)在区间(0,1)内单调递增.又g(0)=1+a-e<0,g(1)=-a>0,所以存在x0∈(0,1),使g(x0)=0.故当x∈(0,x0)时,f′(x)<0,f(x)单调递减;当x∈(x0,1)时,f′(x)>0,f(x)单调递增.因为f(0)=1,f(1)=0,所以当a<0时,f(x)在区间(0,1)内存在零点.若a>0,由(1)得当x∈(0,1)时,e x>e x.则f(x)=e x+(a-e)x-ax2>e x+(a-e)x-ax2=a(x-x2)>0,此时函数f(x)在区间(0,1)内没有零点.综上,实数a的取值范围为(-∞,0).2.设函数f(x)=12x2-m ln x,g(x)=x2-(m+1)x,m>0.(1)求函数f(x)的单调区间;(2)当m≥1时,讨论f(x)与g(x)图像的交点个数.解(1)函数f(x)的定义域为(0,+∞),f′(x)=(x+m)(x-m)x.当0<x<m时,f′(x)<0,函数f(x)单调递减;当x>m时,f′(x)>0,函数f(x)单调递增.综上,函数f(x)的单调递增区间是(m,+∞),单调递减区间是(0,m).(2)令F(x)=f(x)-g(x)=-12x2+(m+1)x-m ln x,x>0,题中问题等价于求函数F(x)的零点个数.F′(x)=-(x-1)(x-m)x,当m=1时,F′(x)≤0,函数F(x)为减函数,因为F(1)=32>0,F(4)=-ln4<0,所以F(x)有唯一零点;当m>1时,0<x<1或x>m时,F′(x)<0;1<x<m时,F′(x)>0,所以函数F(x)在(0,1)和(m,+∞)上单调递减,在(1,m)上单调递增,因为F(1)=m+12>0,F(2m+2)=-m ln(2m+2)<0,所以F(x)有唯一零点.综上,函数F(x)有唯一零点,即函数f(x)与g(x)的图像总有一个交点.3.已知函数f(x)=(x-1)e x-ax2+b+12.(1)若a=1,求函数f(x)的单调区间;(2)当a=12时,f(x)的图像与直线y=bx有3个交点,求b的取值范围.解(1)当a=1时,f(x)=(x-1)e x-x2+b+12(x∈R),则f′(x)=e x+(x-1)e x-2x=x(e x-2).令f′(x)>0,解得x<0或x>ln2;令f′(x)<0,解得0<x<ln2,所以函数f(x)的单调递增区间为(-∞,0)和(ln2,+∞),单调递减区间为(0,ln2).(2)因为a=12,所以f(x)=(x-1)e x-12x2+b+12.由(x-1)e x-12x2+b+12=bx,得(x-1)e x-12(x2-1)=b(x-1).当x=1时,方程成立.当x≠1时,只需要方程e x-12(x+1)=b有2个实根.令g(x)=e x-12(x+1),则g′(x)=e x-12.当x <ln 12时,g ′(x )<0,当x >ln 12且x ≠1时,g ′(x )>0,所以g (x )∞,ln 12,(1,+∞)上单调递增,因为=12-12+=12ln 2,g (1)=e -1≠0,所以b 2,e -(e -1,+∞).4.已知函数f (x )=ax cos x -1在0,π6上的最大值为3π6-1.(1)求a 的值;(2)证明:函数f (x )2个零点.(1)解f ′(x )=a (cos x -x sin x ),因为x ∈0,π6,所以cos x >sin x ≥0,又1>x ≥0,所以1·cos x >x sin x ,即cos x -x sin x >0.当a >0时,f ′(x )>0,所以f (x )在区间0,π6上单调递增,所以f (x )max =a ·π6×32-1=3π6-1,解得a =2.当a <0时,f ′(x )<0,所以f (x )在区间0,π6上单调递减,所以f (x )max =f (0)=-1,不符合题意,当a =0时,f (x )=-1,不符合题意.综上,a =2.(2)证明设g (x )=cos x -x sin x ,则g ′(x )=-2sin x -x cos x x所以g (x )又g (0)=1>0,=-π2<0,所以存在唯一的x0g(x0)=0,当0<x<x0时,g(x)>0,即f′(x)=2g(x)>0,所以f(x)在(0,x0)上单调递增;当x0<x<π2时,g(x)<0,即f′(x)=2g(x)<0,所以f(x)0又f(0)=-1<0,=2π4-1>0,1<0,所以f(x)综上,函数f(x).。
2024届新高考一轮复习北师大版 高考专题突破一 第3课时 利用导数研究函数的零点 课件(40张)
在(0,+∞)上单调递增;
当
a>0
时,由
f′(x)>0,得
1 x>a
;由
f′(x)<0,得
1 0<x<a
,
Hale Waihona Puke 返回导航∴函数 f(x)在1a,+∞ 上单调递增,在0,1a 上单调递减. 综上所述,当 a<0 时,函数 f(x)在(0,+∞)上单调递增;当 a>0 时, 函数 f(x)在1a,+∞ 上单调递增,在0,1a 上单调递减. (2)∵当 x∈1e,e 时,函数 g(x)=(ln x-1)ex+x-m 的零点,即当 x∈1e,e 时,方程(ln x-1)ex+x=m 的根.
返回导航
所以 g(x)在(-∞,+∞)单调递增.故 g(x)至多有一个零点, 从而 f(x)至多有一个零点. 又 f(3a-1)=-6a2+2a-13 =-6a-16 2 -16 <0, f(3a+1)=13 >0, 故 f(x)有一个零点. 综上,f(x)只有一个零点.
返回导航
思维升华 讨论函数零点的个数,可先利用函数的导数,判断函数的 单调性,进一步讨论函数的取值情况,根据零点存在定理判断(证明)零点的 存在性,确定函数零点的个数.
综上,a 的取值范围为(0,+∞).
第4章+第4讲+第3课时+利用导数研究函数的零点问题2024高考数学一轮复习+PPT(新教材)
且当 x<-2 时,h(x)<0, 而当 x→(-2)+(从右侧趋近于-2)时,h(x)→+∞, 当 x→+∞时,h(x)→+∞, 所以当 a=x+ex 2有两个解时,有 a>h(-1)=1e, 所以满足条件的 a 的取值范围是1e,+∞.
解
根据函数零点个数确定参数取值范围的核心思想是“数形 结合”,即通过函数图象与x轴的交点个数,或者两个相关函数图象的交点 个数确定参数满足的条件,进而求得参数的取值范围,解决问题的步骤是 “先形后数”.
x2>2.
因为 ln x1+ln x2=a(x1+x2),所以即证 a>x1+2 x2,
证明
ln 所以原问题等价于证明
x1-ln x1-x2
x2>x1+2 x2,即
ln
xx12>2xx11+-xx22,
令
c=xx12(c>1),则不等式变为
ln
2c-1 c> c+1 .
2c-1 令 h(c)=ln c- c+1 ,c>1,
则
1+ln
a>0,可得
1 a>e.
综上,若 f(x)有两个零点,则 a 的取值范围是1e,+∞.
解
解法二:若 f(x)有两个零点,即 ex-a(x+2)=0 有两个解, 显然 x=-2 不成立,即 a=x+ex 2(x≠-2)有两个解, 令 h(x)=x+ex 2(x≠-2),
exx+2-ex exx+1 则有 h′(x)= x+22 = x+22 , 令 h′(x)>0,解得 x>-1, 令 h′(x)<0,解得 x<-2 或-2<x<-1, 所以函数 h(x)在(-∞,-2)和(-2,-1)上单调递减,在(-1,+∞) 上单调递增,
解
专题研究(三)利用导数研究函数的零点习题和答案详解
1.若a>2,则函数f(x)=13x 3-ax 2+1在区间(0,2)上恰好有( )A .0个零点B .1个零点C .2个零点D .3个零点答案 B解析 ∵f′(x)=x 2-2ax ,且a>2,∴当x ∈(0,2)时,f ′(x)<0, 即f(x)在(0,2)上是单调减函数.又∵f(0)=1>0,f(2)=113-4a<0,∴f(x)在(0,2)上恰好有1个零点.故选B.2.(2014·课标全国Ⅰ)已知函数f(x)=ax 3-3x 2+1,若f(x)存在唯一的零点x 0,且x 0>0,则a 的取值范围是( ) A .(2,+∞) B .(-∞,-2) C .(1,+∞) D .(-∞,-1) 答案 B解析 方法一:当a =0时,显然f(x)有两个零点,不符合题意. 当a ≠0时,f ′(x)=3ax 2-6x ,令f′(x)=0,解得x 1=0,x 2=2a.当a>0时,2a >0,所以函数f(x)=ax 3-3x 2+1在(-∞,0)与(2a ,+∞)上为增函数,在(0,2a )上为减函数,因为f(x)存在唯一零点x 0,且x 0>0,则f(0)<0,即1<0,不成立.当a<0时,2a <0,所以函数f(x)=ax 3-3x 2+1在(-∞,2a )和(0,+∞)上为减函数,在(2a ,0)上为增函数,因为f(x)存在唯一零点x 0,且x 0>0,则f(2a )>0,即a·8a 3-3·4a 2+1>0,解得a>2或a<-2,又因为a<0,故a 的取值范围为(-∞,-2).选B. 方法二:f′(x)=3ax 2-6x ,当a =3时,f ′(x)=9x 2-6x =3x(3x -2),则当x ∈(-∞,0)时,f ′(x)>0;x ∈(0,23)时,f ′(x)<0;x ∈(23,+∞)时,f ′(x)>0,注意f(0)=1,f(23)=59>0,则f(x)的大致图像如图(1)所示,不符合题意,排除A ,C.当a =-43时,f ′(x)=-4x 2-6x =-2x(2x +3),则当x ∈(-∞,-32)时,f ′(x)<0,x ∈(-32,0)时,f ′(x)>0,x ∈(0,+∞)时,f ′(x)<0,注意f(0)=1,f(-32)=-54,则f(x)的大致图像如图(2)所示.不符合题意,排除D.故选B.3.已知函数f(x)=e x -2x +a 有零点,则a 的取值范围是________. 答案 (-∞,2ln2-2]解析 由原函数有零点,可将问题转化为方程e x -2x +a =0有解问题,即方程a =2x -e x 有解.令函数g(x)=2x -e x ,则g′(x)=2-e x ,令g′(x)=0,得x =ln2,所以g(x)在(-∞,ln2)上是增函数,在(ln2,+∞)上是减函数,所以g(x)的最大值为g(ln2)=2ln2-2.因此,a 的取值范围就是函数g(x)的值域,所以,a ∈(-∞,2ln2-2].4.函数f(x)=13x 3+ax 2+bx +c(a ,b ,c ∈R )的导函数的图像如图所示.(1)求a ,b 的值并写出f(x)的单调区间; (2)若函数y =f(x)有三个零点,求c 的取值范围.答案 (1)a =-12,b =-2 函数f(x)在(-∞,-1)和(2,+∞)上单调递增,在(-1,2)上单调递减 (2)(-76,103)解析 (1)因为f(x)=13x 3+ax 2+bx +c ,所以f′(x)=x 2+2ax +b.因为f′(x)=0的两个根为-1,2,所以⎩⎪⎨⎪⎧-1+2=-2a ,-1×2=b ,解得a =-12,b =-2,由导函数的图像可知,当-1<x <2时,f′(x)<0,函数单调递减,当x <-1或x>2时,f ′(x)>0,函数单调递增,故函数f(x)在(-∞,-1)和(2,+∞)上单调递增,在(-1,2)上单调递减.(2)由(1)得f(x)=13x 3-12x 2-2x +c ,函数f(x)在(-∞,-1),(2,+∞)上是增函数,在(-1,2)上是减函数,所以函数f(x)的极大值为f(-1)=76+c ,极小值为f(2)=c -103.而函数f(x)恰有三个零点,故必有⎩⎨⎧76+c>0,c -103<0,解得-76<c <103.所以使函数f(x)恰有三个零点的实数c 的取值范围是(-76,103).5.(2019·东北四校联考)已知f(x)=1x +e x e -3,F(x)=lnx +e xe-3x +2.(1)判断f(x)在(0,+∞)上的单调性; (2)判断函数F(x)在(0,+∞)上零点的个数.答案 (1)f(x)在(0,1)上单调递减,在(1,+∞)上单调递增 (2)3个 解析 (1)f′(x)=-1x 2+e x e =x 2e x -eex 2,令f′(x)>0,解得x>1,令f′(x)<0,解得0<x <1, 所以f(x)在(0,1)上单调递减,在(1,+∞)上单调递增. (2)F′(x)=f(x)=1x +e xe -3,由(1)得∃x 1,x 2,满足0<x 1<1<x 2,使得f(x)在(0,x 1)上大于0,在(x 1,x 2)上小于0,在(x 2,+∞)上大于0, 即F(x)在(0,x 1)上单调递增,在(x 1,x 2)上单调递减,在(x 2,+∞)上单调递增, 而F(1)=0,x →0时,F(x)→-∞,x →+∞时,F(x)→+∞, 画出函数F(x)的草图,如图所示.故F(x)在(0,+∞)上的零点有3个. 6.已知函数f(x)=(2-a)(x -1)-2lnx(a ∈R ). (1)当a =1时,求f(x)的单调区间;(2)若函数f(x)在(0,13)上无零点,求a 的取值范围.答案 (1)减区间为(0,2),增区间为(2,+∞) (2)[2-3ln3,+∞) 解析 (1)当a =1时,f(x)=x -1-2lnx ,则f′(x)=1-2x =x -2x ,由f′(x)>0,得x>2,由f′(x)<0,得0<x <2.故f(x)的单调递减区间为(0,2),单调递增区间为(2,+∞). (2)因为f(x)<0在区间(0,13)上恒成立不可能,故要使函数f(x)在(0,13)上无零点,只要对任意的x ∈(0,13),f(x)>0恒成立,即对x ∈(0,13),a>2-2lnxx -1恒成立.令h(x)=2-2lnx x -1,x ∈(0,13),则h′(x)=2lnx +2x -2(x -1)2,再令m(x)=2lnx +2x -2,x ∈(0,13),则m′(x)=-2(1-x )x 2<0,故m(x)在(0,13)上为减函数.于是m(x)>m(13)=4-2ln3>0.从而h′(x)>0,于是h(x)在(0,13)上为增函数,所以h(x)<h(13)=2-3ln3,所以a 的取值范围为[2-3ln3,+∞).7.(2019·蓉城名校4月联考)已知函数f(x)=xe x (x ∈R ). (1)求函数f(x)的单调区间和极值;(2)若g(x)=f(x)-12a(x 2+2x +1)有两个零点,求实数a 的取值范围;(3)已知函数h(x)与函数f(x)的图像关于原点对称,如果x 1≠x 2,且h(x 1)=h(x 2),证明:x 1+x 2>2.答案 (1)函数f(x)的增区间为(-1,+∞),减区间为(-∞,-1);函数f(x)在x =-1处取的极小值f(-1)=-1e ,无极大值 (2)(-∞,0) (3)证明略解析 (1)根据f′(x)=e x +xe x =e x (x +1),令f′(x)=0,解得x =-1,当x 变化时,f ′(x),f(x)的变化情况如下表.∴函数f(x)1处取的极小值f(-1)=-1e,无极大值.(2)由g(x)=xe x -12a(x 2+2x +1),得g′(x)=(x +1)(e x -a).当a =0时,g(x)=xe x ,易知函数g(x)只有一个零点,不符合题意.当a<0时,在(-∞,-1)上g′(x)<0,g(x)单调递减;在(-1,+∞)上g′(x)>0,g(x)单调递增,又g(-1)=-1e <0,g(1)=e -2a>0,当x →-∞时,g(x)→+∞,所以函数g(x)有两个零点.当0<a<1e 时,在(-∞,lna)和(-1,+∞)上g′(x)>0,g(x)单调递增,在(lna ,-1)上g′(x)<0,g(x)单调递减.又g(lna)=alna -12a(lna)2-a(lna +12)=-12a[(lna)2+1]<0,所以函数g(x)至多一个零点,不符合题意.当a>1e 时,在(-∞,-1)和(lna ,+∞)上g′(x)>0,g(x)单调递增;在(-1,lna)上g′(x)<0,g(x)单调递减,又g(-1)=-1e<0,所以函数g(x)至多一个零点,不符合题意.当a =1e 时,g ′(x)≥0,函数在x ∈R 上单调递增,所以函数g(x)至多一个零点,不符合题意.综上,实数a 的取值范围是(-∞,0).(3)由h(x)=-f(-x)=xe -x ,得h′(x)=e -x (1-x),令h ′(x)=0,解得x =1,当x 变化时,h ′(x),h(x)的变化情况如下表.由x 1≠x 2121212令F(x)=h(x)-h(2-x),x ∈(1,+∞),则F′(x)=(x -1)(e 2x -2-1)e -x ,∵x>1,2x -2>0,∴e 2x -2-1>0,则F′(x)>0,∴f(x)在(1,+∞)上单调递增,又∵F(1)=0,∴x>1时,f(x)>F(1)=0,即当x>1时,h(x)>h(2-x),则h(x 1)>h(2-x 1),又h(x 1)=h(x 2),∴h(x 2)>h(2-x 1),∵x 1>1,∴2-x 1<1,∴x 2,2-x 1∈(-∞,1),∵h(x)在(-∞,1)上是增函数,∴x 2>2-x 1,∴x 1+x 2>2得证.。
专题05 利用导数研究函数零点问题 (解析版)
导数及其应用专题五:利用导数研究函数零点问题一、知识储备1、利用导数确定函数零点的常用方法(1)图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需使用极限).(2)利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数. 2、利用函数的零点求参数范围的方法(1)分离参数(()a g x =)后,将原问题转化为()y g x =的值域(最值)问题或转化为直线y a =与()y g x =的图象的交点个数问题(优选分离、次选分类)求解; (2)利用函数零点存在定理构建不等式求解;(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解. 二、例题讲解1.(2022·重庆市秀山高级中学校高三月考)已知函数()e e x x f x x =+. (1)求函数()f x 的单调区间和极值;(2)讨论函数()()()g x f x a a =-∈R 的零点的个数.【答案】(1)单调递减区间是(,2)-∞-,单调递增区间是(2,)-+∞,极小值为21e -,无极大值;(2)详见解析. 【分析】(1)利用导数求得()f x 的单调区间,进而求得极值.(2)由(1)画出()f x 大致图象,由此对a 进行分类讨论,求得()g x 的零点个数. 【详解】(1)函数()f x 的定义域为R ,且()(2)e x f x x '=+, 令()0f x '=得2x =-,则()'f x ,()f x 的变化情况如下表示:(2,)-+∞.当2x =-,()f x 有极小值为21(2)e f -=-,无极大值. (2)令()0f x =有1x =-:当1x <-时,()0f x <;当1x >-时,()0f x >,且()f x 经过212,e A ⎛⎫-- ⎪⎝⎭,(1,0)B -,(0,1)C .当x →-∞,与一次函数相比,指数函数e x y -=增长更快,从而1()0e xx f x -+=→;当x →+∞时,()f x →+∞,()f x '→+∞,根据以上信息,画出大致图象如下图所示.函数()()()g x f x a a =-∈R 的零点的个数为()y f x =与y a =的交点个数. 当2x =-时,()f x 有极小值21(2)e f -=-. ∴关于函数()()()g x f x a a =-∈R 的零点个数有如下结论: 当21e a <-时,零点的个数为0个; 当21e a =-或0a ≥,零点的个数为1个; 当210ea -<<时,零点的个数为2个. 【点睛】求解含参数零点问题,可利用分离常数法,结合函数图象进行求解.感悟升华(核心秘籍)本题讨论()()()g x f x a a =-∈R 零点的个数,将问题分解为()y f x =与y a =交点的个数,注意在利用导函数求()f x 单调性,极值后,画出草图,容易出错,本题利用极限x →-∞时,()0f x →,从而将草图画的更准确;三、实战练习1.(2022·河南高三开学考试(文))若函数()34f x ax bx =+-,当2x =时,函数()f x 有极值43-.(1)求函数的递减区间;(2)若关于x 的方程()0f x k -=有一个零点,求实数k 的取值范围. 【答案】(1)递减区间为()2,2-;(2)428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【分析】(1)对函数进行求导,利用()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩,解方程即可得1,34.a b ⎧=⎪⎨⎪=⎩,对函数求导,根据导数的性质列表,即可得答案;(2)作出函数的图象,直线与函数图象需有1个交点,即可得答案; 【详解】(1)()23f x ax b '=-,由题意知()()2120,42824,3f a b f a b ⎧=-='⎪⎨=-+=-⎪⎩解得1,34.a b ⎧=⎪⎨⎪=⎩ 故所求的解析式为()31443f x x x =-+,可得()()()2422f x x x x '=-=-+,令()0f x '=,得2x =或2x =-,由此可得所以函数的递减区间为2,2-.(2)由(1)知,得到当2x <-或2x >时, ()f x 为增函数; 当22x -<<时, ()f x 为减函数,∴函数()31443f x x x =-+的图象大致如图,由图可知当43k <-或283k >时, ()f x 与y k =有一个交点,所以实数k 的取值范围为428,,33⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭.【点睛】关键点睛:根据函数的单调性做出该函数的大致图像,进而利用数形结合求解,考查利用导数研究函数的极值、单调性、零点,考查函数与方程思想、转化与化归思想、分类讨论思想、数形结合思想,考查逻辑推理能力、运算求解能力.2.(2022·陕西西安中学高三月考(理))已知函数()()1xf x e ax a R =--∈.(1)试讨论函数()f x 的零点个数;(2)若函数()()ln 1ln xg x e x =--,且()()f g x f x <⎡⎤⎣⎦在()0,x ∈+∞上恒成立,求实数a 的取值范围.【答案】(1)当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)(],1-∞【分析】(1)通过求解函数的单调性,然后根据零点存在定理,通过讨论求解得出函数零点的个数;(2)根据(1)中结论,得到函数()f x 在(0,)+∞上单调递增,将不等式转换为自变量的比较,最后得出结论. 【详解】解:(1)根据题意,可得()x f x e a '=-,则有:①若0a ,则()0x f x e a '=->,此时可得函数()f x 在R 上单调递增, 又因为(0)0f =,所以函数只有一个零点; ②若0a >,令()0f x '=,则有ln x a =,所以()0ln f x x a '>⇒>,此时函数()f x 在(ln ,)a +∞上单调递增;()0ln f x x a '<⇒<,此时函数()f x 在(,ln )a -∞上单调递减;即()(ln )1ln min f x f a a a a ==--,则有:()i 当ln 01a a =⇒=时,则()0f x ,此时函数()f x 只有一个零点;()ii 当ln 0a ≠时,即1a ≠时,则(ln )(0)0f a f <=,又因为x →-∞时,()f x →+∞;x →+∞时,()f x →+∞, 根据零点存在定理可得,此时函数()f x 在R 上有两个零点. 综上可得,当0a 或1a =时,函数()f x 只有一个零点;当()()0,11,a ∈+∞时,函数()f x 有两个零点.(2)下面证明:0x ∀>,有()0g x x <<,先证:0x ∀>,有()0g x >,由(1)可知当1a =时,()()00min f x f ==,即当0x >时,1x e x ->,故0x ∀>,()()()1ln 1ln ln ln10x xe g x e x g x x ⎛⎫-=--==>= ⎪⎝⎭,再证0x ∀>,()g x x <;要证0x ∀>,()g x x <,只需证明0x ∀>,1x xe e x-<,即证0x ∀>,1x x e xe -<,即证0x ∀>,10x x xe e -+> 令()1(0)x x H x xe e x =-+>()0x H x xe '=>在(0,)+∞上恒成立,即得函数()H x 在(0,)+∞上单调递增,故有()(0)0H x H >=,即0x ∀>,10x x xe e -+>恒成立,即0x ∀>,有()0g x x <<,当1a ≤时,由(1)得,()f x 在(0,)+∞上单调递增,则由上结论可知,[()]()f g x f x <在(0,)x ∈+∞上恒成立,符合题意;当1a >时,由(1)得,()f x 在(0,ln )a 上单调递减,在(ln ,)a +∞上单调递增, 此时当0ln x a <<时,0()ln [()]()g x x a f g x f x <<<⇔>,不合题意, 综上可得,1a ,即(],1a ∈-∞. 【点睛】导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理.3.(2022·榆林市第十中学高三月考(文))已知函数()2ln f x ax x x =--,0a ≠.(1)试讨论函数()f x 的单调性;(2)若函数()f x 有两个零点,求实数a 的取值范围.【答案】(1)当0a <时,函数()f x 在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)()0,1. 【分析】(1)求出导函数()212121ax x f x ax x x-'-=--=,设()221g x ax x =--,对a 分类讨论:当0a <时,函数()f x在()0,∞+上单调递减;当0a >时,()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)把()f x 有两个零点,转化为2ln x xa x +=有两个解,令()2ln x x h x x+=,二次求导后得到函数()h x 的单调性和极值,即可求出实数a 的取值范围. 【详解】函数()2ln f x ax x x =--的定义域为()0+∞,. (1)()212121ax x f x ax x x-'-=--=,设()221g x ax x =--当0a <时,因为函数()g x 图象的对称轴为104x a=<,()01g =-. 所以当0x >时,()0g x <,()0f x '<,函数()f x 在()0,∞+上单调递减;当0a >时,令()0g x =.得1x =2x =当20x x <<时,()0<g x ,()0f x '<,当2x x >时,()0>g x ,()0f x '>.所以函数()f x 在⎛ ⎝⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增. (2)若()f x 有两个零点,即2ln 0ax x x --=有两个解,2ln x x a x +=.设()2ln x x h x x +=,()312ln x h x xx '-=-, 设()12ln F x x x =--,因为函数()F x 在()0,∞+上单调递减,且()10F =, 所以当01x <<时,()0F x >,()0h x '>,当1x >时,()0F x <,()0h x '<. 以函数()h x 在()0,1上单调递增,在()1,+∞上单调递减, 且 x →+∞时,()0h x →,()11h =, 所以01a <<.即实数a 的取值范围为()0,1.4.(2022·沙坪坝·重庆南开中学)已知函数()e 1xf x x a -=++(R a ∈).(1)讨论()f x 的单调性;(2)若函数()f x 有两个零点,求a 的取值范围.【答案】(1)当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增;(2)()20,e -.【分析】(1)对函数求导,进而讨论a 的符号,进而得到函数的单调区间;(2)由(1)可以判断0a >,根据(1)可知()()min ln 0f x f a =<,进而根据零点存在定理结合放缩法得到答案. 【详解】(1)()f x 的定义域为R ,()1e xf x a -'=-,①当0a ≤时,()0f x '>恒成立,所以()f x 在R 上单调递增; ②当0a >时,令()0f x '=得ln x a =, 当ln x a <时,()0f x '<,()f x 单调递减, 当ln x a >时,()0f x '>,()f x 单调递增,所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增综上所述,当0a ≤时,()f x 在R 上单调递增;当0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增.(2)由(1)可知,0a ≤时,()f x 在R 上单调递增,函数至多有一个零点,不合题意.0a >时,()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,因为函数有2个零点,所以()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=.记()()e 0x g x x x =-<,则()e 1xg x '=-,所以(),0x ∈-∞时,()0g x '<,()g x 单调递减,所以()()010g x g >=>,则e xx >,于是2e2x x ->-,则x <0时,2e 4xx ->. 所以当x <0时,()214ax f x x >++,限定1x <-,则()()212844ax f x x x ax >+=+, 所以当1x <-且8x a<-时,()0f x >.于是,若函数有2个零点,则()20,e a -∈.【点睛】在“()()2min ln ln 200e f x f a a a -==+<⇒<<,且()11e 02f a -+>=”这一步之后,另一个特值不太好找,这时候需要利用e xx >得到2e2x x->-,进而根据放缩法得到结论. 5.(2022·赣州市第十四中学高三月考(文))已知函数()e 2xf x x =+. (1)求函数()y f x =的单调区间;(2)若函数()()()g x f x ax a =-∈R ,在定义域内恰有三个不同的零点,求实数a 的取值范围.【答案】(1)()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数;(2)⎛⎫+∞⎪⎪⎭. 【分析】(1)求出函数()f x 的定义域,利用导数与函数单调性的关系可求得函数()f x 的增区间和减区间;(2)分析可知,直线y a =与函数()22xeh x x x=+(0x ≠且2x ≠-)的图象有三个交点,利用导数分析函数()22xe h x x x=+的单调性与极值,数形结合可得出实数a 的取值范围.【详解】(1)因为()e 2xf x x =+的定义域为{}2x x ≠-,且()()()212x e x f x x +'=+,则当2x <-时,()0f x '<,()f x 为减函数; 当21x -<<-时,()0f x '<,()f x 为减函数; 当1x >-时,()0f x '>,()f x 为增函数,综上可得:()f x 在(),2-∞-和()2,1--上为减函数,在()1,-+∞上为增函数; (2)令函数()()0g x f x ax =-=,因为0x =不是方程的解,所以可得22xe a x x=+,构造函数()22xeh x x x =+(0x ≠且2x ≠-),则()()()22222x e x h x x x -'=+,由()0h x '=可得x =作出函数()h x 的图象如下图所示:由图可知,当a >时,函数y a =与函数()y h x =的图象有三个不同的交点,因此实数a 的取值范围是⎛⎫+∞⎪⎪⎭.【点睛】方法点睛:利用导数解决函数零点问题的方法:(1)直接法:先对函数求导,根据导数的方法求出函数的单调区间与极值,根据函数的基本性质作出图象,然后将问题转化为函数图象与x 轴的交点问题,突出导数的工具作用,体现了转化与化归思想、数形结合思想和分类讨论思想的应用;(2)构造新函数法:将问题转化为研究两函数图象的交点问题;(3)参变量分离法:由()0f x =分离变量得出()a g x =,将问题等价转化为直线y a =与函数()y g x =的图象的交点问题.6.(2022·天津静海一中高三月考)已知函数32()3f x x x ax b =-++在1x =-处的切线与x 轴平行. (1)求a 的值和函数()f x 的单调区间; (2)若函数()y f x =的图象与抛物线231532y x x =-+恰有三个不同交点,求b 的取值范围. 【答案】(1)-9,单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-;(2)1,12⎛⎫⎪⎝⎭.【分析】(1)根据(1)0f '-=即可求得a 的值,利用导函数求解单调区间;(2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,转化为()g x 有三个不同的零点.【详解】(1)由已知得2()36f x x x a '=-+, ∵在1x =-处的切线与x 轴平行 ∴(1)0f '-=,解得9a =-.这时2()3693(1)(3)f x x x x x ==+'--- 由()0f x '>,解得3x >或1x <-; 由()0f x '<,解13x .∴()f x 的单调增区间为(,1)-∞-和(3,)+∞;单调减区间为(1,3)-. (2)令23239()()1536322g x f x x x x x x b ⎛⎫=--+=-++- ⎪⎝⎭,则原题意等价于()g x 图象与x 轴有三个交点. ∵2()3963(1)(2)g x x x x x '=-+=--, ∴由()0g x '>,解得2x >或1x <; 由()0g x '<,解得12x <<.∴()g x 在1x =时取得极大值1(1)2g b =-;()g x 在2x =时取得极小值(2)1g b =-.依题意得10210b b ⎧->⎪⎨⎪-<⎩,解得112b <<.故b 的取值范围为1,12⎛⎫⎪⎝⎭.7.(2022·沙坪坝·重庆南开中学高三月考)已知函数()()2ln =+-∈f x ax x x a R .(1)当1a =时,求()f x 在区间1[,1]3上的最值;(2)若()()g x f x x =-在定义域内有两个零点,求a 的取值范围.【答案】(1)3()=ln 24min f x +,()2max f x =;(2)10,2e ⎛⎫⎪⎝⎭.【分析】(1)当1a =时,求出导函数,求出函数得单调区间,即可求出()f x 在区间1[,1]3上的最值;(2)由()()0g x f x x =-=,分离参数得2ln ()x a h x x ==,根据函数2ln ()xh x x =得单调性作图,结合图像即可得出答案. 【详解】解:(1)当1a =时,()2ln f x x x x =+-,(21)(1)()x x f x x-+'=,∴()f x 在11[,)32单调递减,在1(,1]2单调递增,11114ln ln 339339f ⎛⎫=+-=+ ⎪⎝⎭,()414112ln 993f e f ⎛⎫==+> ⎪⎝⎭,∴13()()ln 224min f x f ==+,()(1)2max f x f ==.(2)()()0g x f x x =-=2ln ()x a h x x ⇔==,则312ln ()xh x x -'=,∴()h x在单调递增,在)+∞单调递减,12h e=,当0x →时,()h x →-∞,当x →+∞时,()0h x →, 作出函数2ln ()x h x x =和y a=得图像, ∴由图象可得,1(0,)2a e∈.8.(2022·全国高三专题练习)已知函数()ln f x a x bx =+的图象在点(1,3)-处的切线方程为21y x =--. (1)若对任意1[,)3x ∈+∞有()f x m 恒成立,求实数m 的取值范围;(2)若函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,求实数k 的范围. 【答案】(1)[ln31--,)+∞;(2)3(ln2,0)4-.【分析】(1)()af x b x'=+,(0)x >,根据函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--.可得f '(1)2=-,f (1)3=-,解得a ,b ,利用导数研究函数的单调性极值与最值即可得出实数m 的取值范围. (2)由(1)可得:2()ln 32g x x x x k =-+++,利用导数研究函数的单调性极值与最值,根据函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点,可得最值满足的条件,进而得出实数k 的取值范围.【详解】解:(1)()a f x b x'=+,(0)x >.函数()f x 的图象在点(1,3)-处的切线的方程为21y x =--. f '∴(1)2=-,f (1)3=-,∴23a b b +=-⎧⎨=-⎩,解得3b =-,1a =.()ln 3f x x x ∴=-.13()13()3x f x x x --=-=',1[,)3x ∈+∞,()0f x '∴.∴当13x =时,函数()f x 取得最大值,1()ln313f =--.对任意1[,)3x ∈+∞有()f x m 恒成立,所以()max m f x ,1[,)3x ∈+∞.ln31m ∴--.∴实数m 的取值范围是[ln31--,)+∞.(2)由(1)可得:2()ln 32g x x x x k =-+++,∴1(21)(1)()23x x g x x x x--'=+-=, 令()0g x '=,解得12x =,1. 列表如下:由表格可知:当1x =时,函数()f x 取得极小值g (1)k =;当2x =时,函数()g x 取得极大值13()ln224g k =-++.要满足函数2()()2g x f x x k =+++在区间(0,)+∞内有3个零点, 3ln2040k k ⎧-++>⎪⎨⎪<⎩, 解得3ln204k -<<, 则实数k 的取值范围3(ln2,0)4-.【点睛】本题考查了利用导数研究函数的单调性极值与最值、方程与不等式的解法、转化方法,考查了推理能力于计算能力,属于难题.9.(2022·全国高三开学考试)已知函数()()()21102f x x a x x =-+>. (1)若()()ln g x f x a x =+,讨论函数()g x 的单调性;(2)已知()()()2ln 222m x f x x x a x a =-++-+,若()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,求a 的取值范围.【答案】(1)答案见解析;(2)9ln 21,105⎛⎤+ ⎥⎝⎦ 【分析】(1)求出导函数,对a 进行分类讨论:①0a ≤;②01a <<;③a =1;④a >1,利用导数研究单调性. (2)把()m x 在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点转化为关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭利用导数判断单调性,求出值域,即可求出a 的范围. 【详解】(1)()f x 的定义域为(0,+∞),()()()()11x x a a f x x a x x--'=-++=. ①当0a ≤时,令()0f x '<,得到01x <<;令()0f x '>,得到1x >,此时()f x 在(0,1)上为减函数,在(1,+∞)上为增函数;②当01a <<时,令()0f x '<,得到1<<a x ;令()0f x '>,得到0x a <<或1x >,此时()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数;③当a =1时,显然()0f x '≥恒成立,此时()f x 在0,+∞)上为增函数;④当a >1时,令()0f x '<,得到1x a <<;令()0f x '>,得到01x <<或x a >.此时()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.综上:①当0a ≤时, ()f x 在(0,1)上为减函数,在(1,+∞)上为增函数; ②当01a <<时, ()f x 在(a ,1)上为减函数,在(0,a )和()1,+∞上为增函数; ③当a =1时,()f x 在0,+∞)上为增函数;④当a >1时,()f x 在(1,a )上为减函数,在(0,1)和(a ,+∞)上为增函数.(2)()()()22ln 222ln 22m x f x x x a x a x ax x x a =-++-+=---+在1,2⎡⎫+∞⎪⎢⎣⎭内有两个零点,即关于x 方程2ln 2=2x x x a x -++在1,2⎡⎫+∞⎪⎢⎣⎭上有两个不相等的实数根.令()2ln 21=,,22x x x h x x x -+⎡⎫∈+∞⎪⎢+⎣⎭则()()2232ln 4=2x x x h x x +--'+, 令()2132ln 4,2p x x x x x ⎡⎫=+--∈+∞⎪⎢⎣⎭,,则()()()212x x p x x-+'=,显然()0p x '≥在1,2⎡⎫+∞⎪⎢⎣⎭上恒成立,故()p x 在1,2⎡⎫+∞⎪⎢⎣⎭上单调递增.因为p (1)=0,所以当1,12x ⎡⎫∈⎪⎢⎣⎭,有()0p x <,即()0h x '<所以()h x 单调递减;当()1x ∈+∞,,有()0p x >,即()0h x '>所以()h x 单调递增; 因为()()9ln 24=,1,0111423ln 21532h h h h ⎛⎫⎛⎫+==-> ⎪ ⎪⎝⎭⎝⎭,所以a 的取值范围9ln 21,105⎛⎤+ ⎥⎝⎦ 10.(2022·贵州贵阳一中(文))已知函数3211()()32f x x ax a =-∈R 在[0,1]上的最小值为16-.(1)求a 的值;(2)若函数()()2()g x f x x b b =-+∈R 有1个零点,求b 的取值范围. 【答案】(1)1a =;(2)76b <-或103b >.【分析】(1)利用导数分0a ,01a <<,1a =和1a >四种情况求出函数的最小值,然后列方程可求出a 的值; (2)由(1)3211()232g x x x x b =--+,可得3211232b x x x =-++,构造函数3211()232h x x x x =-++,利用导数求出函数的单调区间和极值,结合函数图像可得答案 【详解】解:(1)由3211()32f x x ax =-,2()()f x x ax x x a =--'=,当0a 时,()'f x 在[0,)+∞上恒大于等于0,所以()f x 在[0,1]上单调递增, min ()(0)0f x f ==,不合题意;当01a <<时,则[0,]x a ∈时,()0f x '<,()f x 单调递减; [,1]x a ∈时,()0f x '>,()f x 单调递增,所以333min 111()()326f x f a a a a ==-=-,31166a -=-,所以1a =,不满足01a <<;当1a =时,在[0,1]上,()0f x '且不恒为0,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f ==-=-,适合题意;当1a >时,在[0,1]上,()0f x '<,所以()f x 在[0,1]上单调递减,min 111()(1)326f x f a ==-=-,所以1a =,不满足1a >;综上,1a =. (2)由(1)3211()232g x x x x b =--+,所以3211232b x x x =-++,令3211()232h x x x x =-++,则2()2(2)(1)h x x x x x =-++=--+',所以(2)0,(1)0h h ''=-=,且当1x <-时,()0h x '<; 当12x -<<时,()0h x '>;当2x >时,()0h x '<,所以 117()(1)2326h x h =-=+-=-极小, 1110()(2)844323h x h ==-⨯+⨯+=极大,如图:函数()g x 有1个零点,所以76b <-或103b >.。
【数学】利用导数研究函数的零点问题讲评课件
答案见解析
【分析】将函数 的零点转个数化为 =
−
与
=
图像交点个
数,利用导数求得 的单调性和极值,进而求得函数 的零点个
数.
【详解】令 = ,得 = − ,
当 = 时, = − 无解,∴ 无零点,
当 ≠
时,
第10讲 利用导数研究函数零点问题
知识点一 讨论函数的零点问题
知识点二 根据函数的零点求参数的取值
知识点一 讨论函数的零点问题
例1
已知函数f x = ex + 2f ′ 0 x − cosx.
(1)求f x 的解析式;
【答案】 = − −
【分析】对函数求导后令 = 可得 ′ = −,即可求得
2e
a =______
【分析】常数分离得
=
= 有唯一的解,求出 的单调性与
极值,由 有且仅有一个零点可得 = .
【详解】当 = 时, = ≥ 恒成立, 在[, ]上无零点.
当 ≠ 时,即有 = = 在[, ]上有且仅有一个解.
即 ′ 在 , +∞ 上单调递增.
又 ′ = −<, ′ = + − >,
根据零点存在定理可知∃ ∈ , ,使得 ′ = .
当��<< 时, ′ <,所以 在 , 上单调递减;
当> 时, ′ >,所以 在 , +∞ 上单调递增.
上的图象有两个交点,
设两个交点的横坐标分别为 、 ,且 < ,
−
由图可知,当 << 或 <<时,> ,此时,
2024届新高考一轮复习湘教版 高考大题研究课二 利用导数研究函数的零点问题 课件(31张)
题型一 函数零点个数问题 例 1 [2023·皖南八校联考]已知函数f(x)=−ax2+x ln x-x.
(1)若f(x)有两个极值点,求实数a的取值范围; (2)当a=0时,求函数h(x)=f(x)-x+2x的零点个数.
题后师说
利用导数确定函数零点个数的方法
2.[2022·全国乙卷]已知函数f(x)=ax-1x-(a+1)ln x. (1)当a=0时,求f(x)的最大值; (2)若f(x)恰有一个零点,求a的取值范围.
题后师说 解决证明此类问题的思路一般对条件等价转化,构造合适的新函数, 利用导数知识探讨该函数的性质(如单调性、极值情况等)再结合函数 图象.
巩固训练3 已知函数f(x)=13x3-a(x2+2x+2). (1)若a=2,求函数f(x)的单调区间;
(2)证明:函数f(x>0且a≠1,函数f(x)=xaax(x>0). (1)当a=2时,求f(x)的单调区间; (2)若曲线y=f(x)与直线y=1有且仅有两个交点,求a的取值范围.
巩固训练1 设函数f(x)=ln x+mx ,讨论函数g(x)=f′(x)-3x的零点个数.
题型二 利用函数的零点个数求参数范围 例 2[2023·河北沧州模拟]已知函数f(x)=ln x+ax(a∈R). (1)当a=-1时,求f(x)的极值; (2)若f(x)在(0,e2)上有两个不同的零点,求a的取值范围.
题后师说 利用函数的零点个数求参数范围的方法
巩固训练2 已知函数f(x)=13x3-12ax2-2x(a∈R)在x=2处取得极值. (1)求f(x)在[-2,1]上的最小值;
(2)若函数g(x)=f(x)+b(b∈R)有且只有一个零点,求b的取值范围.
专题14 利用导数研究函数零点问题(解析版)
专题14利用导数研究函数零点问题一.函数零点问题的常见题型:判断函数是否存在零点或者求零点的个数;根据含参函数零点情况,求参数的值或取值范围.求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图像与x 轴(或直线y k =)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图像;第三步:结合图像判断零点或根据零点分析参数.二.利用导数确定函数零点的常用方法(1)图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需使用极限).(2)利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数.三.利用函数的零点求参数范围的方法(1)分离参数(()a g x =)后,将原问题转化为()y g x =的值域(最值)问题或转化为直线y a =与()y g x =的图象的交点个数问题(优选分离、次选分类)求解;(2)利用函数零点存在定理构建不等式求解;(3)转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解.专项突破一判断函数零点的个数一、单选题1.函数()23322f x x x =-+-所有零点的个数为()A .1B .2C .3D .4【解析】由题可知,2x ≠±,且233()()()22f x x f x x -=--+=--,故函数()f x 为定义域上的偶函数,且(0)0f =,当0x >,且2x ≠时,233()22f x x x =-+-,23()2(2)f x x x '=---当02x <<时,()0f x '<,函数()f x 单调递减,且(0)0f =,故函数()f x 在区间(0,2)上无零点,当2x >时,()0f x '<,函数()f x 单调递减,当2x →时,()f x →+∞,当x →-∞时,()f x →-∞,故函数()f x 在区间(2,)+∞上必存在一点0x ,使得0()0f x =,所以函数()f x 在区间(2,)+∞上有1个零点,又函数()f x 为定义域上的偶函数,则函数()f x 在区间(,2)-∞-上有1个零点,又(0)0f =,所以函数()f x 共有3个零点.故选:C.2.已知函数()31ln 01203x x x f x x x +>⎧⎪=⎨+≤⎪⎩,则函数()()1g x f x x =--的零点个数为()A .1B .0C .3D .2【解析】当0x >时,1ln 10x x x +--=,得ln 1x =,即e x =,成立,当0x ≤时,312103x x +--=,得31103x x -+=,设()3113g x x x =-+,()0x ≤,()()()21110g x x x x '=-=+-=,得1x =-或1x =(舍),当(),1x ∈-∞-时,()0g x ¢>,函数()g x 单调递增,当()1,0x ∈-时,()0g x ¢<,函数()g x 单调递减,所以1x =-时,函数取得最大值,()5103g -=>,()010g =>,()350g -=-<,根据零点存在性定理可知,()3,1x ∈--,存在1个零点,综上可知,函数有2个零点.故选:D3.函数()e ln 1xf x x x x =---的零点个数为()A .0B .1C .2D .3【解析】()()()()()1e 1111e e 1e 11e x xxx x x x x f x x x x x x x x+-+⎛⎫'=+--=+-+-= ⎪⎝⎭,令()e 1x h x x =-,,()0x ∈+∞,则()e e 0x xh x x =+>',故h (x )在(0,)+∞上单调递增,∵()010h =-<,()1e 10h =->,∴存在唯一的()00,1x ∈,使得()0 0h x =,即00 e 10xx -=,即001e x x =,00ln x x =-,∴当00x x <<时,()00h x <,()0f x '<,()f x 单调递减,当0x x >时,()00h x >,()0f x '>,()f x 单调递增,∴()0min 000000()e ln 1011xf x f x x x x x x ==--=+---=,∴函数()e ln 1xf x x x x =---的零点个数为1.故选:B .4.已知()e,a ∈+∞,则函数()ln e x f x a x ax x =+-的零点个数为()A .0B .1C .2D .3【解析】函数()ln e x f x a x ax x =+-定义域为(0,)+∞,求导得:()(1)(e )xa f x x x'=+-,令()e xa g x x=-,0x >,显然()g x 在(0,)+∞上单调递减,而e a >,()1e 0a g a =-<,(1)e>0g a =-,则存在0(1,)x a ∈,使得0()0g x =,即00e x ax =,当00x x <<时,()0>g x ,()0f x '>,当0x x >时,()0g x <,()0f x '<,因此,()f x 在0(0,)x 上单调递增,在0(,)x +∞上单调递减,0max 000000()()ln e (ln 1)0x f x f x a x ax x a x x ==+-=+->,而11111e e e (ln 1ln 110aaaf a a a a a a a a a=+-=-+-<-+-<,则存在101(,)x x a ∈使得1()0f x =,即()f x 在0(0,)x 上存在唯一零点,又()(ln e )a f a a a a =+-,令()ln e ,e x h x x x x =+->,1()1e 0x h x x'=+-<,则()h x 在(e,)+∞上单调递减,e x ∀>,e 2()(e)1e e 1e e 0h x h <=+-<+-<,于是得()0f a <,则存在20(,)x x a ∈使得2()0f x =,即()f x 在0(,)x +∞上存在唯一零点,综上得:函数()ln e x f x a x ax x =+-的零点个数为2.故选:C 5.已知a ∈R ,则函数()()32113f x x a x x =-++零点的个数为()A .1B .2C .3D .与a 有关【解析】令()()321103f x x a x x =-++=,得()3231x a x x =++.令()3231x y x x =++,2y a =,只需看两个图像的交点的个数.()()()()()22232222223121121103311x x x x x x x x y x x x x ++-+++'=⨯=⨯>++++所以()3231x y x x =++在R 上单调递增.当x →-∞时,y →-∞;当x →+∞时,y →+∞;所以2y a =与()3231x y x x =++有且只有一个交点.故选:A6.已知()f x 为R 上的可导函数,当0x ≠时,()()0f x f x x'+>,若()()1F x f x x=+,则函数()F x 的零点个数为()A .0B .1C .2D .0或2【解析】构造函数()()1g x xf x =+,其中0x ≠,则()()()g x f x xf x ''=+,当0x ≠时,()()()()0'+'+=>f x xf x f x f x x x.当0x <时,()()()0g x f x xf x =+'<',此时,函数()g x 单调递减,则()()01g x g >=;当0x >时,()()()0g x f x xf x ''=+>,此时,函数()g x 单调递增,则()()01g x g >=.所以,当0x <时,()()()110xf x F x f x x x +=+=<;当0x >时,()()()110xf x F x f x x x+=+=>.综上所述,函数()F x 的零点个数为0.故选:A.二、填空题7.设函数()f x 满足()()3229f x f x x x +-=-,则函数()()()3g x f f x =+的零点个数为______.【解析】因为()()3229f x f x x x +-=-①,所以()()3229f x f x x x -+=--②,①×2-②,得()32339f x x x =-,即()323f x x x =-,则()()23632'=-=-f x x x x x ,当2x >,或0x <时()0f x '>,)f x 单调递增,当02x <<时()0f x '<,()f x 单调递减,所以()f x 的极小值为()24f =-,极大值为()00f =,因为()323f x x x =-的零点为0或3,所以由()()()30g x f f x =+=,得()30f x +=或()33f x +=,即()3f x =-或()0f x =,因为()f x 的极小值为()24f =-,极大值为()00f =,所以方程()3f x =-有3个不同的实数解,又()0f x =有2个不同的实数解,所以()()()3g x f f x =+的零点个数为5.8.已知函数1e ,0,()2e ln ,0,x x x f x x x x +⎧≤=⎨⎩>则函数()()1g x f x =-零点的个数为___________【解析】0x ≤时,1()(1)x f x x e +¢=+,1x <-时,()0f x '<,()f x 递减;10-<≤x 时,()0f x '>,()f x 递增;则1x =-时,()f x 取极小值也是最小值(1)1f -=-;0x >时,()2(1ln )f x e x ¢=+,10x e<<时,()0f x '<,()f x 递减;1x e >时,()0f x '>,()f x 递增;则1=x e 时,()f x 取极小值也是最小值12f e 骣琪=-琪桫,综上所述,可作出()f x 图象,在作两条直线1y =±,结合图象可知,()f x 与1y =±有4个交点.三、解答题9.已知函数()1e 1xx f x x +=--.(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)判断函数f (x )的零点的个数,并说明理由.【解析】(1)由()()()212e e 031(1)x x x f x f x f x x +''=-⇒=+⇒=--,而()02f =,所以该函数在点(0,f (0))处的切线方程为:23(0)320y x x y -=-⇒-+=;(2)函数()f x 的定义域为(,1)(1,)-∞⋃+∞,由(1)可知:()22e (1)xf x x '=+-,当(,1)x ∞∈-时,()0,()f x f x '>单调递增,因为22111(2)(0)(e )22(03e 3f f --=-⋅=-<,所以函数在(,1)x ∞∈-时有唯一零点;当(1,)x ∈+∞时,()0,()f x f x '>单调递增,因为5245(2)()(e 3)(e 9)04f f =-⋅-<,所以函数在(,1)x ∞∈-时有唯一零点,所以函数f (x )有2个零点.10.设函数()2(21)(21)ln(),f x a x a x a R =-++-∈.(1)讨论()f x 在定义域上的单调性;(2)当0a ≥时,判断()f x 在[1-,1]2-上的零点个数.【解析】(1)由题意,函数()2(21)(21)ln()f x a x a x =-++-的定义域为(,0)-∞,可得221()2a f x a x+'=+,①当0a ≤时,()0f x '<,则()f x 在(,0)-∞上是减函数;②当0a >时,22212()212()2a a x a af x a x x+++'=+=,则当221(,2a x a+∈-∞-时,()0f x '>,()f x 单调递增;当221(2a x a+∈-时,()0f x '<,()f x 单调递减,所以函数()f x 在221(,)2a a +-∞-上单调递增,在221(,0)2a a+-上单调递减;(2)①当0a =时,函数()ln()f x x =-,令ln()0x -=,解得1x =-,故()f x 在[211,]--上有一个零点;②当0a >时,因为22112()21221022a a a a-++-=>,则2121[1,](,0)22a a +--⊆-,即()f x 在[1-,1]2-上单调递减,又(1)30f a -=-<,21()2(21)202f a a ln -=--+<,所以函数()f x 在[211,]--上没有零点.11.已知函数()sin f x x ax =+,其中[]0,x π∈.(1)当12a =-时,求()f x 的极值;(2)当1a ≥时,求()f x 的零点个数.【解析】(1)当12a =-时,()1sin 2f x x x =-,[]0,x π∈,求导得()1cos 2f x x '=-,[]0,x π∈,令()0f x '=,得3x π=,当0,3x π⎡⎫∈⎪⎢⎣⎭时,()0f x '>;当,3x ππ⎛⎤∈ ⎥⎝⎦时,()0f x '<.∴()f x 在区间0,3π⎡⎤⎢⎥⎣⎦上单调递增,在区间,3ππ⎛⎤⎥⎝⎦上单调递减,∴当3x π=时,()f x 取得极大值36f ππ⎛⎫=⎪⎝⎭,无极小值;(2)()cos f x x a '=+,[]0,x π∈,当1a ≥时,∵1cos 1x -≤≤,∴()0f x '≥,∴()f x 在区间[]0,π上单调递增,∴()()00f x f ≥=,故()f x 只有一个零点0.12.已知函数()22ln f x x a x =-,()222ln 2g x x x =-+-.(1)讨论函数()f x 的单调性;(2)当1a =时,判断()()g x f x -的零点个数.【解析】(1)()22a f x x x '=-()22x a x-=,故当0a ≤时,()0f x '≥,所以函数()f x 在()0,∞+上单调递增,当0a >时,令()0f x '>,得x >所以函数()f x 在)+∞上单调递增,令()0f x '<,得x <所以函数()f x 在(上单调递减,综上,当0a ≤时,函数()f x 在()0,∞+上单调递增,当0a >时,函数()f x 在)+∞上单调递增,在(上单调递减.(2)设()()()F x g x f x =-=2ln 22ln 2x x -+-,则()21F x x'=-,令()0F x '=,解得2x =,当()0,2x ∈时,()0F x '>;当()2,x ∈+∞时,()0F x '<;故()F x 最大值为()20F =,所以()()g x f x -有且只有一个零点2.13.已知()()2e 2ln xf x x a x x =-+(1)当e a =时,求()f x 的单调性;(2)讨论()f x 的零点个数.【解析】(1)因为e a =,0x >,()()2e e 2ln xf x x x x =-+所以()()()()()2e 22e 2e e 12e 2e x xx x f x x x x x x x x x x +⎛⎫⎛⎫'=+-+=+-=+- ⎪ ⎪⎝⎭⎝⎭,()10f '=令()e e x g x x x =-,()()2e 1e 0xg x x x'=++>,所以()g x 在()0,+∞单增,且()10g =,当()0,1∈x 时()e e 0xg x x x =-<,当()1,x ∈+∞时()ee 0x g x x x=->,所以当()0,1∈x 时()0f x ¢<,当()1,x ∈+∞时()0f x ¢>,所以()f x 在()0,1单调递减,在()1,+∞单调递增(2)因为()()()2ln 2ln e e 2ln e 2ln 0x x x x f x a x x a x x +=⋅-+=-+=令2ln t x x =+,易知2ln t x x =+在()0,+∞上单调递增,且R t ∈,故()f x 的零点转化为()()2ln e2ln e 0x xt f x a x x at +=-+=-=即e t at =,R t ∈,设()e t g t at =-,则()e t g t a '=-,当0a =时,()e tg t =无零点;当0a <时,()e 0tg t a '=->,故()g t 为R 上的增函数,而()010g =>,11e 10a g a ⎛⎫=-< ⎪⎝⎭,故()g t 在R 上有且只有一个零点;当0a >时,若(),ln t a ∈-∞,则()0g t '<;()ln ,t a ∈+∞,则()0g t '>;故()()()min ln 1ln g t g a a a ==-,若e a =,则()min 0g t =,故()g t 在R 上有且只有一个零点;若0e a <<,则()min 0g t >,故()g t 在R 上无零点;若e a >,则()min 0g t <,此时ln 1a >,而()010g =>,()()22ln 2ln 2ln g a a a a a a a =-=-,设()2ln h a a a =-,e a >,则()20a h a a-'=>,故()h a 在()e,+∞上为增函数,故()()e e 20h a h >=->即()2ln 0g a >,故此时()g t 在R 上有且只有两个不同的零点;综上:当0e ≤<a 时,0个零点;当e a =或0a <时,1个零点;e a >时,2个零点;14.已知函数()[]21sin cos ,0,2f x x x x ax x π=++∈.(1)当0a =时,求()f x 的单调区间;(2)当0a >时,讨论()f x 的零点个数.【解析】(1)当0a =时,函数()[]sin cos ,0,f x x x x x π=+∈,可得()sin cos sin cos f x x x x x x x =+-='.当x 在区间[]0π,上变化时,()f x ',f (x )的变化如下表:x 00,2π⎛⎫ ⎪⎝⎭2π,2ππ⎛⎫ ⎪⎝⎭π()f x '0+0-f (x )极小值1极大值2π -1所以()f x 的单调增区间为0,2π⎛⎫ ⎪⎝⎭;()f x 的单调减区间为,2ππ⎛⎫⎪⎝⎭.(2)由题意,函数()[]21sin cos ,0,2f x x x x ax x π=++∈,可得()()cos cos f x ax x x x a x =+=+'当1a ≥时,cos 0a x +≥在[0,]π上恒成立,所以[0,]x π∈时,()0f x '≥,所以()f x 在[0,]π上单调递增.又因为()01f =,所以f (x )在[0,]π上有0个零点.当01a <<时,令()0f x '=,可得cos x a =-.由10a -<-<可知存在唯一的0,2x ππ⎛⎫∈ ⎪⎝⎭使得0cos x a =-,所以当0[0,)x x ∈时,()0f x '≥,()f x 单调递增;当()0,x x π∈时,()0f x '<,()f x 单调递减,因为()01f =,0()1f x >,()2112f a ππ=-,①当21102a π->,即221a π<<时,()f x 在[0,]π上有0个零点.②当21102a π-≤,即220a π<≤时,()f x 在[0,]π上有1个零点.综上可得,当220a π<≤时,()f x 有2个零点;当22a π>时,()f x 有0个零点.15.已知函数()()()e 12e xxaf x a x a =+---∈R (1)求函数()f x 的单调区间.(2)若(,2]a ∈-∞,求函数()f x 在区间(,2]-∞上的零点个数.【解析】(1)由题意,得()()()()e 1e e 1,e e x x xx xa a f x a x +-=---='∈R当0a ≤时,()0f x '>恒成立,所以()f x 在R 上单调递增.当0a >时,由()0f x '>,得ln x a >,由()0f x '<,得ln x a <,所以()f x 在(,ln )a -∞上单调递减,在(ln ,)a +∞上单调递增.综上所述,当0a ≤时,()f x 的单调递增区间为R ,无单调递减区间,当0a >时,()f x 的单调递减区间为(,ln )a -∞,单调递增区间为(ln ,)a +∞;(2)由(1)可知当0a ≤时,()0f x '>在(,2]-∞上恒成立,所以()f x 在(,2]-∞上单调递增.因为()()22221010,2e 2e 20e e a f a f a a ⎛⎫=-=+-=+- ⎪⎝⎭,所以由零点存在性定理知,函数f 在(,2]-∞上有1个零点,当02a <≤时,若(,ln )x a ∈-∞,则()0f x '<,若(ln ,2]x a ∈,则()0f x '>,所以()f x 在(,ln )a -∞上单调递减,在(ln ,2]a 上单调递增,可得()()()()min ln 11ln f x f a a a ==--,①当1a =时,min ()0f x =,此时()f x 在(,2]-∞上有1个零点②当01a <<时min ()0f x <,因为当x →-∞时()()22,2e 20e af x f a ∞→+=+->,所以此时()f x 在(,2]-∞上有2个零点③当12a <≤时,min ()0f x >,此时()f x 在(,2]-∞上无零点.综上,当0a ≤或1a =时,()f x 在(,2]-∞上有1个零点,当01a <<时()f x 在(,2]-∞上有2个零点,当12a <≤时()f x 在(,2]-∞上无零点.16.已知函数()()e ,xf x ax a R =-∈.(1)讨论()f x 的单调性;(2)讨论()f x 在()0,+∞上的零点个数.【解析】(1)因为()e xf x ax =-,则'()f x e x a =-,当0a ≤时,'()f x 0<,此时()f x 在R 上单调递减;当0a >时,令'()f x 0=,可得ln x a =,则当(),ln x a ∈-∞时,'()f x 0>,()f x 单调递增,当()ln ,x a ∈+∞时,'()f x 0<,()f x 单调递减.综上所述:当0a ≤时,()f x 在R 上单调递减;当0a >时,()f x 在(),ln a -∞单调递增,在()ln ,a +∞上单调递减.(2)当0a ≤时,()f x 在()0,+∞上单调递减,又()01f =-,故当()0,x ∈+∞时,()1f x <-,故此时()f x 在()0,+∞无零点;当01a <≤时,ln 0a <,故()f x 在)0,+∞单调递减,同0a ≤时,此时()f x 在()0,+∞无零点;当1a >时,ln 0a >,故()f x 在()0,ln a 单调递增,在()ln ,a +∞单调递减,()()()ln ln 1f x f a a a ≤=-,若ln 10a -<,即1e a <<时,()ln 0f a <,故()f x 在()0,+∞无零点;若ln 10a -=,即e a =时,()ln 0f a =,此时()f x 在()0,+∞有一个零点ln a ;若ln 10a ->,即e a >时,()ln 0f a >,又因为()010f =-<,故()f x 在()0,ln a 上一定存在一个零点;又因为2ln ln a a >,且()2ln 0f a <,故()f x 在()ln ,2ln a a 上也一定存在一个零点;下证()2ln 0f a <:()()22ln 2ln 2ln ,e f a a a a a a a a =-=->,令2ln ,e y x x x =->,则'y 20xx-=<,即2ln y x x =-在()e,∞+单调递减,故2ln e e 2e 0y <-=-<,即2ln 0,(e)x x x -<>故()()2ln 2ln 0,e f a a a a a =-.故当e a >时,()f x 有两个零点.综上所述:当e a <时,()f x 在()0,+∞无零点;e a =时,()f x 在()0,+∞有一个零点ln a ;e a >时,()f x 有两个零点.专项突破二由函数零点个数求参数一、单选题1.若函数()2ln 2,02,0x x x f x x x a x ->⎧=⎨++≤⎩有且只有2个零点,则实数a 的取值范围为()A .01a <<B .01a <≤C .01a ≤≤D .01a ≤<【解析】根据题意,0x >时,()ln 2(0)f x x x x =->,此时()12f x x'=-()120f x x -'=>时,102x <<;()120f x x -'=<时,12x >,所以()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减0x >时,()1ln 2102max f x f ⎛⎫==--< ⎪⎝⎭,所以()f x 在()0,+∞上无零点从而0x ≤时,()f x 有2个零点,根据二次函数的性质可得()4400100a a f ∆=->⎧∴≤<⎨≥⎩,故选:D.2.若函数3()12f x x x a =-+有三个不同的零点,则实数a 的取值范围是()A .(,8)-∞-B .(,8)-∞C .[16,16]-D .(16,16)-【解析】3()12f x x x a =-+,2()3123(2)(2)f x x x x '=-=+-.令()0f x '=,解得12x =-,22x =.(,2)x ∈-∞-,()0f x '>,()f x 为增函数,(2,2)x ∈-,()0f x '<,()f x 为减函数,(2,)x ∈+∞,()0f x '>,()f x 为增函数.所以()(2)16f x f a =-=+极大值,()(2)16f x f a ==-+极小值.因为函数3()12f x x x a =-+有三个不同的零点,等价于方程()0f x =有三个不同的根.所以160160a a +>⎧⎨-+<⎩,解得1616a -<<.故选:D3.若关于x 的方程ln 0x ax -=有且只有2个零点,则a 的取值范围是()A .1(,e-∞B .1(,)e -∞C .1(0,]e D .1(0,e【解析】由ln 0x ax -=,得ln x a x=(0x >),令ln ()(0)xf x x x =>,所以关于x 的方程ln 0x ax -=有且只有2个零点,等价于函数()f x 的图像与直线y a =有两个交点,由ln ()(0)x f x x x =>,得'21ln ()(0)xf x x x -=>,当0x e <<时,'()0f x >,当x e >,'()0f x <,所以()f x 在(0,)e 上递增,在(,)e +∞上递减,所以max ln 1()()e f x f e e e===,当x e >时,()0f x >,所以当10a e<<时,函数()f x 的图像与直线y a =有两个交点,所以a 的取值范围是1(0,)e,故选:D4.若函数()ln x f x a x e a =++有两个零点,则实数a 的取值范围为()A .(,)e +∞B .(,2)e -∞-C .(,)e -∞-D .(2,)e +∞【解析】因为函数()ln xf x a x e a =++有两个零点,定义域为()0,∞+;所以方程ln 0x a x e a ++=在()0,∞+上有两不等实根,显然0a ≠即方程ln 11x x a e +-=在()0,∞+上有两不等实根,令()ln 1xx g x e +=,则直线1=-y a 与曲线()ln 1xx g x e +=在()0,∞+上有两不同交点;因为()()211ln 1ln 1x x x xe x e x x x g x e e -+--'==,令()1ln 1h x x x=--,则()2110h x x x '=--<在()0,∞+上显然恒成立,因此()1ln 1h x x x=--在()0,∞+上单调递减,又()10h =,所以当()0,1x ∈时,()0h x >,即()0g x '>,所以()ln 1xx g x e +=单调递增;当()1,x ∈+∞时,()0h x <,即()0g x '<,所以()ln 1xx g x e +=单调递减;因此()()max 11g x g e ==,又当1x e >时,()ln 10x x g x e +=>;当10x e <<时,()ln 10xx g x e +=<,所以为使直线1=-y a 与曲线()ln 1xx g x e +=在()0,∞+上有两不同交点,只需110a e<-<,解得a e <-.故选:C.5.设函数()()ln ,0e 1,0xx x f x x x >⎧=⎨+≤⎩,若函数()y f x b =-有两个零点,则实数b 的取值范围是()A .()0,1B .[)0,1C .[]0,1D .[]{}20,1e-⋃-【解析】当0x >时,函数()ln f x x =单调递增;当0x ≤时,()()e 1xf x x =+,则()()e 20x f x x ='+=时,2x =-,所以当2x <-时,()0f x '<,20x -<≤时,()0f x '>,故当0x ≤时,()f x 在(),2-∞-上单调递减,在()2,0-上单调递增,所以()f x 在2x =-处取极小值,极小值为()22e f --=-,作出函数()f x的图象如图:因为函数()y f x b =-有两个零点,所以函数()y f x =与y b =有两个交点,所以当[]{}20,1e b -∈⋃-时函数()y f x =与y b =有两个交点,所以实数b 的取值范围为[]{}20,1e -⋃-.故选:D.6.已知函数()1e xf x x a -=+-有两个零点,则实数a 的取值范围为()A .21,0e ⎛⎫- ⎪⎝⎭B .21,e ⎛⎫-+∞ ⎪⎝⎭C .()2e ,0-D .()2e ,-+∞【解析】由题意,函数()1e xf x x a -=+-的定义域为R ,令()0f x =,即1e 0x x a -+-=,即()1e xa x =+⋅,设()()1e x g x x =+⋅,可得()()()e 1e 2e x x xg x x x '=++⋅=+⋅,当2x <-时,()0g x '<,当2x >-时,()0g x '>,所以()g x 在(,2)-∞-上单调递减,在(2,)-+∞上单调递增.又()212e g -=-,作出简图,如图所示,要使得函数()1e xf x x a -=+-有两个零点,只需y a =与()()1e xg x x =+⋅的图像有两个交点,所以210e a -<<,即实数a 的取值范围是210ea -<<.故选:A.7.已知函数()2e ln x f x a x x =-有两个极值点,则实数a 的取值范围是()A .10,2e ⎛⎫ ⎪⎝⎭B .1,e 2e ⎛⎫ ⎪⎝⎭C .(,2e)-∞D .10,e ⎛⎫ ⎪⎝⎭【解析】因为函数()2e ln x f x a x =-有两个极值点,所以()()2e ln 1xf x a x '=-+有两个相异的零点,即ln 12e xx a +=有两个交点,令()()ln 1,0,ex x g x x +=∈+∞,则()()()1ln 1,0,e xx x g x x -+'=∈+∞,令()()()1ln 1,0,h x x x x =-+∈+∞,则()2110h x x x'=--<恒成立,所以()h x 在()0,x ∈+∞上递减,且()()11ln1101h =-+=,所以()0,1x ∈时,()0h x >;()1,x ∈+∞时,()0h x <;所以()0,1x ∈时,()0g x '>;()1,x ∈+∞时,()0g x '<;所以()0,1x ∈时,()g x 单调递增;()1,x ∈+∞时,()g x 单调递减;()()max ln1111e e g x g +===,又当x →+∞时,()ln 10e x x g x +=→;0x →时,()ln 1e xx g x +=→-∞;所以当ln 12e xx a +=有两个交点时,则有102a e<<,即102e a <<,所以函数()2e ln x f x a x x =-有两个极值点,则实数a 的取值范围是102ea <<,故选:A 8.已知函数()()22e (e =--x xf x x x a )有三个零点,则实数a 的取值范围是()A .(0,1e -)B .(0,2e -)C .(0,1)D .(0,e )【解析】令()()()22e e 0=--=x xf x x x a ,所以22e 0-=x x 或e 0x x a -=,令()22e =-xg x x ,则()()2e '=-x g x x ,令()2(e )=-x h x x ,则()2(1)e '=-xh x ,当(,0)x ∈-∞时,()0h x '>,h (x )在(-∞,0)上单调递增;当,()0x ∈+∞时,()0h x '<,h (x )在(0,+∞)上单调递减,所以()(0)20h x h ≤=-<,即()0g x '<,所以g (x )在R 上单调递减,又()2110g e-=->,g (0)=20-<,所以存在0(1,0)x ∈-使得()00g x =,所以方程e 0x x a -=有两个异于0x 的实数根,则xxa e =,令()x x k x e =,则()1xx e xk -=',当(,1)x ∞∈-时,()0k x '>,k (x )在(-∞,1)上单调递增;当(1,)x ∈+∞时,()0k x '<,k (x )在(1,+∞)上单调递减,且()0k x >.所以()1()1k x k e ≤=,所以()x xk x e=与y a =的部分图象大致如图所示,由图知10a e<<,故选:A .9.函数()()()1e 21xf x a x x =---有两个零点,则a 的取值范围为()A .()32e ,14,⎛⎫-∞+∞ ⎪⎝⎭U B .321,4e ⎛⎫ ⎪⎝⎭C .()320,14e ,⎛⎫⋃+∞ ⎪⎝⎭D .324e ,⎛⎫+∞ ⎪⎝⎭【解析】令()0f x =得(21)(1)e x x a x -=-,令()e (21)x g x x =-,则()e (21)x g x x '=+,∴当12x <-时,()0g x '<,当12x >-时,()0g x '>,()g x ∴在1(,)2-∞-上单调递减,在1(2-,)∞+上单调递增,作出()g x 与(1)y a x =-的函数图象如图所示:设直线(1)y a x =-与()g x 的图象相切,切点为00(,)x y ,则()()()00000001e 1e 21xx y a x y x a x ⎧=-⎪=-⎨⎪=+⎩,解得00x =,01y =-,1a =,或032x =,3202e y =,324e a =,()f x 有两个不同的零点,()g x ∴(1)a x =-的函数图象有两个交点,01a ∴<<或324e a >,即()320,14e ,a ⎛⎫∈⋃+∞ ⎪⎝⎭.故选:C .10.已知()()()212()12e 1ex x f x x a x a --=-+++恰有三个不同的零点,则实数a 的范围为()A .()0,1B .()1,1-C .()0,e D .()1,0-【解析】由()()()()21212e 1e 0x x f x x a x a --=-+++=,得()()2111e e e x x x a x x ----=-,即()()11e1e0x x x x a --⎡⎤--+=⎣⎦.令()1e x g x x -=-,则()11e x g x -'=-,令()11e 0x g x -'=-=可得1x =,当(),1x ∈-∞时,()0g x '>,当()1,+∈∞x 时,()0g x '<,∴()g x 在(),1-∞单调递增,在()1,+∞单调递减,所以()()g 10x g ≤=,即()1e 0x g x x -=-=仅有唯一的解1x =.依题意,方程()11e 0x x a --+=有两个不同的解,即1y a =+与1ex x y -=有两个不同的交点,令()1ex x h x -=,则()11e x xh x --'=,易得()h x 在(),1-∞单调递增,在()1,+∞单调速减,()()11h x h ≤=,画出()h x 的草图观察图象可得01110a a <+<⇒-<<,故选:D .二、多选题11.已知()e xf x x ax b -=--()A .若24eb >,则()0,a ∞∃∈+,使函数()y f x =有2个零点B .若24e b >,则(),0a ∃∈-∞,使函数()y f x =有2个零点C .若240e b <<,则()0,a ∞∃∈+,使函数()y f x =有2个零点D .若240e b <<,则(),0a ∃∈-∞,使函数()y f x =有2个零点【解析】令()0f x =,则e xx ax b =+,所以设()e x x g x =,则()1e x xg x ='-当1x <时,()0g x '>,()g x 单调递增;当1x >时,()0g x '<,()g x 单调递减()g x 在1x =处取得极大值()11eg =当x 趋向于-∞时,()g x 趋向于-∞;当x 趋向于+∞时,()g x 趋向于0又()2ex x g x -''=,()20g ''=且当2x <时,()0g x ''<;当2x >时,()0g x ''>所以,2x =是函数()g x 的拐点,()222e g =,()212e g '=-所以()g x 在2x =处的切线方程为()2122ey x -=--,即2214e e y x =-+如图所示,ACD 正确,B 错误,故选:ACD12.已知函数()ln f x x x a =--有两个零点1x 、2x ,则下列说法正确的是().A .1a >B .121x x >C .121x x <D .122x x +>【解析】由()0f x =可得ln a x x =-,令()ln g x x x =-,其中0x >,所以,直线y a =与曲线()y g x =的图象有两个交点,()111x g x x x-'=-=,令()0gx '=,可得1x =,列表如下:x()0,11()1,+∞()g x '-+()g x 减极小值1增作出函数y a =与()y g x =的图象如下图所示:由图可知,当1a >时,函数y a =与()y g x =的图象有两个交点,A 对;121212ln ln 2x x x xx x -+<<-,其中12x x ≠,且1x 、2x 均为正数.先证明121212ln ln 2x x x x x x -+<-,其中120x x >>,即证()1122112122212ln 1x x x x x x x x x x ⎛⎫- ⎪-⎝⎭>=++,令121x t x =>,()()21ln 1t p t t t -=-+,其中1t >,则()()()()222114011t p t t t t t -'=-=>++,所以,函数()p t 在()1,+∞上为增函数,当1t >时,()()10p t p >=,所以,当120x x >>时,121212ln ln 2x x x xx x -+<-,接下来证明:1212ln ln x x x x --120x x >>,即证12ln x x <=,令1t =>,即证12ln t t t <-,令()12ln h t t t t ⎛⎫=-- ⎪⎝⎭,其中1t >,则()222212110t t h t t t t -+'=--=-<,所以,函数()h t 在()1,+∞上为减函数,当1t >时,()()10h t h <=,所以,当120x x >>时,1212ln ln x x x x ->-由已知可得1122ln ln x x ax x a -=⎧⎨-=⎩,两式作差可得1212ln ln x x x x -=-,所以,12121ln ln x x x x -=-,1212121ln ln 2x x x xx x -+<=<-,故121x x <,122x x +>,B 错,CD 都对.故选:ACD.13.已知函数35,0()2ln ,0x x x f x x x ⎧-≤=⎨>⎩,若函数()()2g x f x x a =+-有3个零点,则实数a 可能的取值有()A .3B .2C .1D .0【解析】函数()()2g x f x x a =+-有3个零点,即方程()2f x x a +=有3个不同的实根,即函数()2y f x x =+与y a =的图象有3个不同的交点,令()()2h x f x x =+=33,02ln 2,0x x x x x x ⎧-≤⎨+>⎩,当0x ≤时,()()()233311h x x x x '=-=+-,当10x -<<时,()0h x '<,当1x <-时,()0h x '>,所以函数()h x 在(),1-∞-上递增,在()1,0-上递减,故当0x ≤时,()()max 12h x h =-=,又()00h =,当x →-∞时,()h x →-∞,当0x >时,()2ln 2h x x x =+在()0,∞+上递增,又1220e e h ⎛⎫=-+< ⎪⎝⎭,当x →+∞时,()h x →+∞,如图,作出函数()h x 的大致图像,结合图像可知,要使函数()2y f x x =+与y a =的图象有3个不同的交点,则a 的范图为02a ≤<.故选:CD.14.已知函数()()ln 1f x x x a x x =+-+在区间(1,+∞)内没有零点,则实数a 的取值可以为()A .-1B .2C .3D .4【解析】()()ln 1ln 1a f x x x a x x x x a x ⎛⎫=+-+=+-+ ⎪⎝⎭,设()ln 1a g x x a x =+-+则在1x >上,()y f x =与()y g x =有相同的零点.故函数()f x 在区间()1,+∞内没有零点,即()g x 在区间()1,+∞内没有零点,()221a x ag x x x x-'=-=,当1a ≤时,()20x ag x x -'=>在区间)1,+∞上恒成立,则()g x 在区间()1,+∞上单调递增.所以()()110g x g >=>,显然()g x 在区间()1,+∞内没有零点.当1a >时,令()0g x '>,得x a >,令()0g x '<,得1x a <<所以()g x 在区间()1,a 上单调递减增.在区间(),a +∞上单调递增.所以()()ln 2g x g a a a ≥=+-设()()ln 21h a a a a =+->,则()()11101a h a a a a-=-=<>所以()h a 在()1,+∞上单调递减,且()()3ln 310,4ln 420g g =->=-<所以存在()03,4a ∈,使得()00h a =,要使得()g x 在区间()1,+∞内没有零点,则()ln 20g a a a =+->,所以()013,4a a <<∈,综上所述,满足条件的a 的范围是()03,4a a <∈由选项可知:选项ABC 可使得()g x 在区间()1,+∞内没有零点,即满足题意.故选:ABC15.已知函数()()()1e 21xf x a x x =---在(,1)-∞上有两个不同的零点,则实数a 可能取到的值为()A .1-B .14C .12D .1【解析】令()0f x =,即()()1e 210xa x x ---=,所以()e 211x x a x -=-,因为函数()f x 在(,1)-∞上有两个不同的零点,设()()e 211x x g x x -=-,则y a =与()y g x =在(,1)-∞上有两个不同的交点,因为()()()()()()()222e 23e 21e 21e 2111x x x xx x x x x g x x x ⎡⎤--+⋅---⎣⎦'==--,令()0g x '=,则10x =,232x =,因为在(,1)-∞上,e 0x >,()210x ->,所以()g x 在(),0∞-上单调递增,在()0,1上单调递减,所以()()max 01g x g ==,且当0x <时,()0g x >;当1x →时,()g x →-∞,因为y a =与()y g x =在(,1)-∞上有两个不同的交点,所以01a <<,根据选项,符合条件的为B ,C ,故选:BC 三、填空题16.已知函数()2e e xf x x a =-有三个零点,则实数a 的取值范围是___________.【解析】由2e e 0x x a -=,得21e x a x -=.设()21e xg x x -=,则()()1e 2xg x x x -'=-.当(),0x ∈-∞时,()0g x '<,当()0,2x ∈时,()0g x '>,当()2,x ∈+∞时,()0g x '<,所以函数()g x 在区间(),0∞-上单调递减,在区间()0,2上单调递增,在区间()2,+∞上单调递减,又()()400,2eg g ==,故函数()21e xg x x -=的图象如图所示:故当40e a <<时,函数()2e e xf x a =-有三个零点,即40,e a ⎛⎫∈ ⎪⎝⎭.17.已知函数(2),1()ln(1)2,1x x x f x x x x +≤⎧=⎨--+>⎩,若函数()()g x f x a =-有四个零点,则实数a 的取值范围是______________.【解析】因为函数()()g x f x a =-有四个零点,所以方程()()0g x f x a =-=有4个不同的解,所以函数()f x 的图象与直线y a =有4个不同的交点,①当1x >时,()ln(1)2f x x x =--+,则1112()1111x xf x x x x -+-'=-==---,当12x <<时,()0f x '>,当2x >时,()0f x '<,所以()f x 在(1,2)上递增,在(2,)+∞上递减,所以当1x >时,()f x 有最大值(2)ln1220f =-+=,当1x →时,()f x →-∞,当x →+∞时,()f x →-∞②当1x ≤时,2()(2)(1)1f x x x x =+=+-,当1x =-时,()f x 有最小值1-所以()f x 的图象如图所示由图可知,当10a -<<时,函数()f x 的图象与直线y a =有4个不同的交点,所以实数a 的取值范围是(1,0)-18.已知函数()()e sin 0xf x a x x =->有两个零点,则正实数a 的取值范围为______.【解析】因为函数()()e sin 0,0xf x a x x a =->>有两个零点,所以方程()e sin 00,0xa x x a -=>>有两个根,所以()2,2Nx k k k πππ∈+∈,所以方程e sin xa x =其中()2,2N x k k k πππ∈+∈,有两个根,设e ()sin xg x x=,()2,2N x k k k πππ∈+∈,,所以2e sin cos e ()sin x xx x g x x-'=,令()0g x '=可得e sin cos e 0x x x x -=,化简可得24x k ππ=+,N k ∈,所以当22,N 4k x k k πππ<<+∈时,()0g x '<,函数()g x 单调递减,当22,N 4k x k k ππππ+<<+∈时,()0g x '>,函数()g x 单调递增,作函数()g x 的图象可得,由图象可得,当9((44g a g ππ<<时,直线y a =与函数e()sin xg x x=,()2,2N x k k k πππ∈+∈,,的图象有且仅有两个交点,944a ππ<<时,函数()()e sin 0xf x a x x =->()0a >有两个零点,故答案为:944e e )ππ.19.若函数()ln e 1xf x x ax =--+不存在零点,则实数a 的取值范围是______.【解析】因为函数()ln e 1xf x x ax =--+不存在零点,所以方程ln e 10x x ax --+=无实数根,所以方程ln e ln e xx ax -+=无实数根,即方程ln e 1x x a x-+=无实数根,故令()()'2ln e 1e e ln ,x x x x x xg x g x x x -+-+-==,令()e e ln ,0x x h x x x x =-+->,故()'1e 0xh x x x=--<恒成立,所以,()h x 在()0,∞+上单调递减,由于()10h =,所以,当()0,1x ∈时,()0h x >,即()'0g x >,当()1,x ∈+∞时,()0h x <,即()'0g x <,所以函数()g x 在()0,1x ∈上单调递增,在()1,x ∈+∞上单调递减,所以()()max 11e g x g ==-,所以,当方程ln e 1x x a x-+=无实数根时,1e a >-即可.所以,实数a 的取值范围是()1e,+-∞四、解答题20.已知函数()ln 1xf x m x =-+.(1)求()f x 的导函数;(2)若()f x 在1,12⎡⎤⎢⎥⎣⎦上有零点,求m 的取值范围.【解析】(1)因为()ln 1xf x m x =-+,所以()()()()221111l ln 1n 1x x x x x f x x x ++-'==++-(2)由(1)知()()211ln 1x x f x x +-'=+,因为1,12x ⎡⎤∈⎢⎥⎣⎦,所以ln 0x -≥,所以()()211ln 01x x f x x +-'=>+,从而()f x 在1,12⎡⎤⎢⎥⎣⎦上单调递增,所以()min 12ln 223f x f m ⎛⎫==-- ⎪⎝⎭,()()max 1f x f m ==-.因为()f x 在1,12⎡⎤⎢⎥⎣⎦上有零点,所以02ln203m m -≥⎧⎪⎨--≤⎪⎩,解得2ln 203m -≤≤.21.已知函数()ln R kf x x k k x=--∈,(1)讨论函数()f x 在区间(1,e)内的单调性;(2)若函数()f x 在区间(1,e)内无零点,求k 的取值范围.【解析】(1)()ln k f x x k k R x =--∈ ,,(1,e)x ∈,221()k x k f x x x x+'∴=--=-(Ⅰ)当1k -≤,即1k ≥-时,10x k x +≥->()0f x '∴<,()f x ∴在(1,e)单调递减(Ⅱ)当e k -≥,即e k ≤-时,e 0x k x +≤-<()0f x '∴>,()f x ∴在(1,e)单调递增(Ⅲ)当1e k <-<,即e 1k -<<时,当1x k <<-时,()0f x '>,()f x 单调递增;当e k x -<<时,()0f x '<,()f x 单调递减综上所述,(Ⅰ)当1k ≥-时,()f x 在(1,e)单调递减(Ⅱ)当e k ≤-时,()f x 在(1,e)单调递增(Ⅲ)当e 1k -<<-时,()f x 在(1,)k -单调递增,在(,e)k -单调递减(2)由(1)知:当1k ≥-时,()()10f x f <=即()0f x <,()f x ∴在(1,e)无零点,当e k ≤-时,()(1)0f x f >=即()0f x >,()f x ∴在(1,e)无零点当e 1k -<<-时,()f x 在(1,)k -单调递增,在(,e)k -单调递减()(1)0,(1,)f x f x k ∴>=∈-,()(e)1,(,e)ekf x f k x k >=--∈-∴只需(e)10e k f k =--≥即可,即1(11e k -≤-,1e11e 1ek ∴≤=--,ee 1ek ∴-<≤-综上所述,e(,][1,)1ek ∈-∞-+∞- 22.已知函数()3226185=--+f x x x x .(1)求函数()f x 的单调区间;(2)若函数()()g x f x a =+至多有两个零点,求实数a 的取值范围.【解析】(1)依题意:()()()261218631'=--=-+f x x x x x ,故当(),1x ∈-∞-时,()0f x '>,当()1,3x ∈-时,()0f x '<,当()3,x ∈+∞时,()0f x '>,∴()f x 的单调增区间为(),1-∞-,()3,+∞,单调减区间为()1,3-;(2)令()0g x =,得()a f x -=.∵()115f -=,()349=-f ,结合f (x )单调性,作出f (x )图像:。
【高考理数】利用导数解决函数零点问题(解析版)
2020题型一 利用导数讨论函数零点的个数 【题型要点解析】对于函数零点的个数的相关问题,利用导数和数形结合的数学思想来求解.这类问题求解的通法是:(1)构造函数,这是解决此类题的关键点和难点,并求其定义域; (2)求导数,得单调区间和极值点; (3)画出函数草图;(4)数形结合,挖掘隐含条件,确定函数图象与x 轴的交点情况进而求解.1.已知f (x )=ax 3-3x 2+1(a >0),定义h (x )=max{f (x ),g (x )}=⎩⎪⎨⎪⎧f (x ),f (x )≥g (x ),g (x ),f (x )<g (x ).(1)求函数f (x )的极值;(2)若g (x )=xf ′(x ),且存在x ∈[1,2]使h (x )=f (x ),求实数a 的取值范围; (3)若g (x )=ln x ,试讨论函数h (x )(x >0)的零点个数.【解】 (1)∈函数f (x )=ax 3-3x 2+1,∈f ′(x )=3ax 2-6x =3x (ax -2),令f ′(x )=0,得x 1=0或x 2=2a,∈a >0,∈x 1<x 2,列表如下:∈f (x )的极大值为f (0)=1,极小值为f ⎪⎭⎫⎝⎛a =8a 2-12a 2+1=1-4a 2. (2)g (x )=xf ′(x )=3ax 3-6x 2,∈存在x ∈[1,2],使h (x )=f (x ),∈f (x )≥g (x )在x ∈[1,2]上有解,即ax 3-3x 2+1≥3ax 3-6x 2在x ∈[1,2]上有解, 即不等式2a ≤1x 3+3x 在x ∈[1,2]上有解.设y =1x 3+3x =3x 2+1x 3(x ∈[1,2]),∈y ′=-3x 2-3x 4<0对x ∈[1,2]恒成立,∈y =1x 3+3x 在x ∈[1,2]上单调递减,∈当x =1时,y =1x 3+3x 的最大值为4,∈2a ≤4,即a ≤2.(3)由(1)知,f (x )在(0,+∞)上的最小值为f ⎪⎭⎫⎝⎛a 2=1-4a 2, ∈当1-4a 2>0,即a >2时,f (x )>0在(0,+∞)上恒成立,∈h (x )=max{f (x ),g (x )}在(0,+∞)上无零点.∈当1-4a2=0,即a =2时,f (x )min =f (1)=0.又g (1)=0,∈h (x )=max{f (x ),g (x )}在(0,+∞)上有一个零点. ∈当1-4a2<0,即0<a <2时,设φ(x )=f (x )-g (x )=ax 3-3x 2+1-ln x (0<x <1), ∈φ′(x )=3ax 2-6x -1x <6x (x -1)-1x <0,∈φ(x )在(0,1)上单调递减.又φ(1)=a -2<0,φ⎪⎭⎫ ⎝⎛e 1=a e3+2e 2-3e 2>0,∈存在唯一的x 0∈⎪⎭⎫⎝⎛1,1e ,使得φ(x 0)=0,(∈)当0<x ≤x 0时,∈φ(x )=f (x )-g (x )≥φ(x 0)=0, ∈h (x )=f (x )且h (x )为减函数. 又h (x 0)=f (x 0)=g (x 0)=ln x 0<ln 1=0, f (0)=1>0,∈h (x )在(0,x 0)上有一个零点; (∈)当x >x 0时,∈φ(x )=f (x )-g (x )<φ(x 0)=0, ∈h (x )=g (x )且h (x )为增函数,∈g (1)=0,∈h (x )在(x 0,+∞)上有一零点;从而h (x )=max{f (x ),g (x )}在(0,+∞)上有两个零点,综上所述,当0<a <2时,h (x )有两个零点;当a =2时,h (x )有一个零点; 当a >2时,h (x )无零点.题组训练一 利用导数讨论函数零点的个数 已知函数f (x )=ln x -12ax +a -2,a ∈R .(1)求函数f (x )的单调区间;(2)当a <0时,试判断g (x )=xf (x )+2的零点个数. 【解析】 (1)f ′(x )=1x -a 2=2-ax2x(x >0).若a ≤0,则f ′(x )>0,∈函数f (x )的单调递增区间为(0,+∞);若a >0,当0<x <2a 时,f ′(x )>0,函数f (x )单调递增,当x >2a 时,f ′(x )<0,函数f (x )单调递减,综上,若a ≤0时,函数f (x )的单调递增区间为(0,+∞);若a >0时,函数f (x )的单调递增区间为⎪⎭⎫ ⎝⎛a 2,0,单调递减区间为⎪⎭⎫ ⎝⎛∞+a 2.(2)g (x )=x ln x -12ax 2+ax -2x +2,g ′(x )=-ax +ln x +a -1.又a <0,易知g ′(x )在(0,+∞)上单调递增, g ′(1)=-1<0,g ′(e)=-a e +a =a (1-e)>0, 故而g ′(x )在(1,e)上存在唯一的零点x 0, 使得g ′(x 0)=0.当0<x <x 0时,g ′(x )<0,g (x )单调递减;当x >x 0时,g ′(x )>0,g (x )单调递增, 取x 1=e a ,又a <0,∈0<x 1<1,∈g (x 1)=x 1)2221(ln 111x a ax x +-+-=e a⎪⎭⎫ ⎝⎛+-+-a a e a ae a 2221, 设h (a )=a -12a e a +a -2+2e a ,(a <0),h ′(a )=-12a e a -12e a -2e a +2,(a <0),h ′(0)=-12,h ″(a )=e -a -e a +e -a -12a e a >0,∈h ′(a )在(-∞,0)上单调递增,h ′(a )<h ′(0)<0, ∈h (a )在(-∞,0)上单调递减,∈h (a )>h (0)=0, ∈g (x 1)>0,即当a <0时,g (e a )>0.当x 趋于+∞时,g (x )趋于+∞,且g (2)=2ln2-2<0. ∈函数g (x )在(0,+∞)上始终有两个零点. 题型二 由函数零点个数求参数的取值范围 【题型要点解析】研究方程的根(或函数零点)的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,并借助函数的大致图象判断方程根(函数零点)的情况,这是导数这一工具在研究方程中的重要应用.已知函数f (x )=mxln x ,曲线y =f (x )在点(e 2,f (e 2))处的切线与直线2x +y =0垂直(其中e为自然对数的底数).(1)求f (x )的解析式及单调减区间;(2)若函数g (x )=f (x )-kx 2x -1无零点,求k 的取值范围.【解析】 (1)函数f (x )=mx ln x 的导数为f ′(x )=m (ln x -1)(ln x )2,又由题意有:f ′(e2)=12∈m 4=12∈m =2,故f (x )=2xln x.此时f ′(x )=2(ln x -1)(ln x )2,由f ′(x )≤0∈0<x <1或1<x ≤e ,所以函数f (x )的单调减区间为(0,1)和(1,e].(2)g (x )=f (x )-kx 2x -1∈g (x )=x ⎪⎭⎫ ⎝⎛--1ln 2x kx x ,且定义域为(0,1)∈(1,+∞),要函数g (x )无零点,即要2ln x =kxx -1在x ∈(0,1)∈(1,+∞)内无解,亦即要k ln x -2(x -1)x =0在x ∈(0,1)∈(1,+∞)内无解.构造函数h (x )=k ln x -2(x -1)x ∈h ′(x )=kx -2x2.∈当k ≤0时,h ′(x )<0在x ∈(0,1)∈(1,+∞)内恒成立,所以函数h (x )在(0,1)内单调递减,h (x )在(1,+∞)内也单调递减.又h (1)=0,所以在(0,1)内无零点,在(1,+∞)内也无零点,故满足条件;∈当k >0时,h ′(x )=kx -2x 2∈h ′(x )=22x k x k ⎪⎭⎫ ⎝⎛-, (i)若0<k <2,则函数h (x )在(0,1)内单调递减,在⎪⎭⎫⎝⎛k 2,1内也单调递减,在⎪⎭⎫ ⎝⎛+∞,2k 内单调递增,又h (1)=0,所以在(0,1)内无零点;易知h ⎪⎭⎫ ⎝⎛k 2<0,而h (e 2k )=k ·2k -2+2e2k>0,故在⎪⎭⎫⎝⎛+∞,2k 内有一个零点,所以不满足条件;(ii)若k =2,则函数h (x )在(0,1)内单调递减,在(1,+∞)内单调递增.又h (1)=0,所以x ∈(0,1)∈(1,+∞)时,h (x )>0恒成立,故无零点,满足条件;(iii)若k >2,则函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内单调递减,在⎪⎭⎫⎝⎛1,2k 内单调递增,在(1,+∞)内单调递增,又h (1)=0,所以在⎪⎭⎫⎝⎛1,2k 及(1,+∞)内均无零点. 又易知h ⎪⎭⎫⎝⎛k 2<0,而h (e -k )=k (-k )-2+2e k =2e k -k 2-2,又易证当k >2时,h (e -k )>0,所以函数h (x )在⎪⎭⎫ ⎝⎛k 2,0内有一零点,故不满足条件.综上可得:k 的取值范围为:k ≤0或k =2.题组训练二 由函数零点个数求参数的取值范围 已知函数f (x )=ln x -ax (ax +1),其中a ∈R . (1)讨论函数f (x )的单调性;(2)若函数f (x )在(0,1]内至少有1个零点,求实数a 的取值范围. 【解析】(1)依题意知,函数f (x )的定义域为(0,+∞), 且f ′(x )=1x-2a 2x -a=2a 2x 2+ax -1-x =(2ax -1)(ax +1)-x,当a =0时,f (x )=ln x ,函数f (x )在(0,+∞)上单调递增;当a >0时,由f ′(x )>0,得0<x <12a,由f ′(x )<0,得x >12a ,函数f (x )⎪⎭⎫⎝⎛a 21,0上单调递增, 在⎪⎭⎫⎝⎛+∞,21a 上单调递减. 当a <0时,由f ′(x )>0,得0<x <-1a ,由f ′(x )<0,得x >-1a,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. (2)当a =0时,函数f (x )在(]0,1内有1个零点x 0=1;当a >0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎪⎭⎫⎝⎛+∞,21a 上单调递减. ∈若12a ≥1,即0<a ≤12时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞且f (1)=-a 2-a <0知,函数f (x )在(0,1]内无零点;∈若0<12a <1,即当a >12时,f (x )在⎪⎭⎫ ⎝⎛a 21,0上单调递增,在⎥⎦⎤⎝⎛1,21a 上单调递减,要使函数f (x )在(0,1]内至少有1个零点,只需满足f ⎪⎭⎫⎝⎛a 21≥0,即ln 12a ≥34, 又∈a >12,∈ln 12a <0,∈不等式不成立.∈f (x )在(0,1]内无零点;当a <0时,由(1)知函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎪⎭⎫⎝⎛+∞-,1a 上单调递减. ∈若-1a ≥1,即-1≤a <0时,f (x )在(0,1]上单调递增,由于当x →0时,f (x )→-∞,且f (1)=-a 2-a >0,知函数f (x )在(0,1]内有1个零点;∈若0<-1a <1,即a <-1时,函数f (x )在⎪⎭⎫ ⎝⎛-a 1,0上单调递增,在⎥⎦⎤⎝⎛-1,1a 上单调递减,由于当x →0时,f (x )→-∞,且当a <-1时,f ⎪⎭⎫⎝⎛-a 1=ln ⎪⎭⎫⎝⎛-a 1<0,知函数f (x )在(0,1]内无零点.综上可得a 的取值范围是[-1,0].题型三 利用导数证明复杂方程在某区间上仅有一解 【题型要点解析】证明复杂方程在某区间上有且仅有一解的步骤: (1)在该区间上构造与方程相应的函数; (2)利用导数研究该函数在该区间上的单调性; (3)判断该函数在该区间端点处的函数值的符号; (4)作出结论.已知函数f (x )=(x 2-2x )ln x +ax 2+2.(1)当a =-1时,求f (x )在点(1,f (1))处的切线方程;(2)当a >0时,设函数g (x )=f (x )-x -2,且函数g (x )有且仅有一个零点,若e -2<x <e ,g (x )≤m ,求m 的取值范围.【解析】 (1)当a =-1时,f (x )=(x 2-2x )ln x -x 2+2,定义域为(0,+∞),∈f ′(x )=(2x -2)ln x +x -2-2x =(2x -2)ln x -x -2.∈f ′(1)=-3,又f (1)=1,f (x )在(1,f (1))处的切线方程3x +y -4=0.(2)令g (x )=f (x )-x -2=0,则(x 2-2x )ln x +ax 2+2=x +2,即a =1-(x -2)·ln xx ,令h (x )=1-(x -2)·ln xx,则h ′(x )=-1x 2-1x +2-2ln x x 2=1-x -2ln xx 2.令t (x )=1-x -2ln x ,t ′(x )=-1-2x =-x -2x ,∈t ′(x )<0,t (x )在(0,+∞)上是减函数, 又∈t (1)=h ′(1)=0,所以当0<x <1时,h ′(x )>0, 当x >1时,h ′(x )<0,所以h (x )在(0,1)上单调递增, 在(1,+∞)上单调递减,∈h (x )max =h (1)=1.因为a >0,所以当函数g (x )有且仅有一个零点时,a =1.g (x )=(x 2-2x )ln x +x 2-x ,若e -2<x <e ,g (x )≤m ,只需g (x )max ≤m , g ′(x )=(x -1)(3+2ln x ),令g ′(x )=0得x =1,或x =e -32,又∈e -2<x <e∈函数g (x )在(e -2,e -32)上单调递增,在(e -32,1)上单调递减,在(1,e)上单调递增,又g (e -32)=-12e -3+2e -32,g (e)=2e 2-3e ,∈g (e -32)=-12e -3+2e -32<2e -32<2e<2e ⎪⎭⎫ ⎝⎛-23e =g (e),即g (e -32)<g (e),g (x )max =g (e)=2e 2-3e ,∈m ≥2e 2-3e .题组训练三 利用导数证明复杂方程在某区间上仅有一解 已知y =4x 3+3tx 2-6t 2x +t -1,x ∈R ,t ∈R .(1)当x 为常数时,t 在区间⎥⎦⎤⎢⎣⎡32,0变化时,求y 的最小值φ(x );(2)证明:对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【解析】 (1)当x 为常数时,设f (t )=4x 3+3tx 2-6t 2x +t -1=-6xt 2+(3x 2+1)t +4x 3-1,f ′(t )=-12xt +3x 2+1.∈当x ≤0时,由t ∈⎥⎦⎤⎢⎣⎡32,0知f (t )>0,f (t )在⎥⎦⎤⎢⎣⎡32,0上递增,其最小值φ(x )=f (0)=4x 3-1;∈当x >0时,f (t )的图象是开口向下的抛物线,其对称轴为直线;t =-3x 2+1-12x =3x 2+112x ,若⎩⎪⎨⎪⎧x >0,3x 2+112x ≤13,即13≤x ≤1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为 φ(x )=f ⎪⎭⎫⎝⎛32=4x 3+2x 2-83x -13.若⎩⎪⎨⎪⎧x >0,3x 2+112x >13,即0<x <13或x >1,则f (t )在⎥⎦⎤⎢⎣⎡32,0上的最小值为φ(x )=f (0)=4x 3-1.综合∈∈,得φ(x )=⎩⎨⎧4x 3-1,x <13或x >1,4x 3+2x 2-83x -13,13≤x ≤1.(2)证明:设g (x )=4x 3+3tx 2-6t 2x +t -1,则g ′(x )=12x 2+6tx -6t 2=12(x +t )⎪⎭⎫ ⎝⎛-2t x 由t ∈(0,+∞),当x 在区间(0,+∞)内变化时,g ′(x ),g (x )取值的变化情况如下表:∈当t2≥1,即t ≥2时,g (x )在区间(0,1)内单调递减,g (0)=t -1>0,g (1)=-6t 2+4t +3=-2t (3t -2)+3≤-4(3-2)+3<0.所以对任意t ∈[2,+∞),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0.∈当0<t 2<1,即0<t <2时,g (x )在⎪⎭⎫ ⎝⎛2,0t 内单调递减,在⎪⎭⎫ ⎝⎛1,2t 内单调递增,若t ∈(0,1),则g ⎪⎭⎫⎝⎛2t =-74t 3+t -1≤-74t 3<0,g (1)=-6t 2+4t +3≥-6t +4t +3=-2t +3≥1>0,所以g (x )在⎪⎭⎫⎝⎛1,2t 内存在零点;若t ∈(1,2),则g (0)=t -1>0,g ⎪⎭⎫ ⎝⎛2t =-74t 3+t -1<-74×13+2-1<0,所以g (x )在⎪⎭⎫⎝⎛2,0t 内存在零点.所以,对任意t ∈(0,2),g (x )在区间(0,1)内均存在零点,即存在x 0∈(0,1),使得g (x 0)=0, 综合∈∈,对任意的t ∈(0,+∞),总存在x 0∈(0,1),使得y =0.【专题训练】1.已知函数f (x )=xln x+ax ,x >1.(1)若f (x )在(1,+∞)上单调递减,求实数a 的取值范围; (2)若a =2,求函数f (x )的极小值;(3)若方程(2x -m )ln x +x =0,在(1,e]上有两个不等实根,求实数m 的取值范围. [解析] (1)f ′(x )=ln x -1ln 2x +a ,由题意可得f ′(x )≤0在(1,+∞)上恒成立,∈a ≤1ln 2x -1ln x=221ln 1⎪⎭⎫⎝⎛-x -14.∈x ∈(1,+∞),∈ln x ∈(0,+∞), ∈当1ln x -12=0时,函数t =221ln 1⎪⎭⎫ ⎝⎛-x -14的最小值为-14,∈a ≤-14. 故实数a 的取值范围为⎥⎦⎤ ⎝⎛∞-41,(2)当a =2时,f (x )=xln x +2x ,f ′(x )=ln x -1+2ln 2x ln 2x,令f ′(x )=0,得2ln 2x +ln x -1=0, 解得ln x =12或ln x =-1(舍),即x =e 12.当1<x <e 12时,f ′(x )<0,当x >e 12时,f ′(x )>0,∈f (x )的极小值为f (e 12)=e 1212+2e 1e =4e 12.(3)将方程(2x -m )ln x +x =0两边同除以ln x 得(2x -m )+x ln x =0,整理得xln x+2x =m ,即函数g (x )=xln x +2x 的图象与函数y =m 的图象在(1,e]上有两个不同的交点.由(2)可知,g (x )在(1,e 12)上单调递减,在(e 12,e]上单调递增,g (e 12)=4e 12,g (e)=3e ,在(1,e]上,当x →1时,x ln x →+∞,∈4e 12<m ≤3e ,故实数m 的取值范围为(4e 12,3e].2.已知f (x )=2x ln x ,g (x )=x 3+ax 2-x +2.(1)如果函数g (x )的单调递减区间为⎪⎭⎫⎝⎛-1,31,求函数g (x )的解析式; (2)在(1)的条件下,求函数y =g (x )的图象在点P (-1,g (-1))处的切线方程; (3)已知不等式f (x )≤g ′(x )+2恒成立,若方程a e a -m =0恰有两个不等实根,求m 的取值范围.【解】 (1)g ′(x )=3x 2+2ax -1,由题意知,3x 2+2ax -1<0的解集为⎪⎭⎫⎝⎛-1,31, 即3x 2+2ax -1=0的两根分别是-13,1,代入得a =-1,∈g (x )=x 3-x 2-x +2. (2)由(1)知,g (-1)=1,∈g ′(x )=3x 2-2x -1,g ′(-1)=4,∈点P (-1,1)处的切线斜率k =g ′(-1)=4,∈函数y =g (x )的图象在点P (-1,1)处的切线方程为y -1=4(x +1),即4x -y +5=0.(3)由题意知,2x ln x ≤3x 2+2ax +1对x ∈(0,+∞)恒成立,可得a ≥ln x -32x -12x 对x ∈(0,+∞)恒成立.设h (x )=ln x -32x -12x,则h ′(x )=1x -32+12x 2=-(x -1)(3x +1)2x 2,令h ′(x )=0,得x =1,x =-13(舍),当0<x <1时,h ′(x )>0;当x >1时,h ′(x )<0, ∈当x =1时,h (x )取得最大值,h (x )max =h (1)=-2, ∈a ≥-2.令φ(a )=a e a ,则φ′(a )=e a +a e a =e a (a +1), ∈φ(a )在[-2,-1]上单调递减,在(-1,+∞)上单调递增,∈φ(-2)=-2e -2=-2e 2,φ(-1)=-e -1=-1e ,当a →+∞时,φ(a )→+∞,∈方程a e a -m =0恰有两个不等实根,只需-1e <m ≤-2e 2.3.设函数f (x )=x 3+ax 2+bx +c .(1)求曲线y =f (x )在点(0,f (0))处的切线方程;(2)设a =b =4,若函数f (x )有三个不同零点,求c 的取值范围; (3)求证:a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.【解析】 (1)由f (x )=x 3+ax 2+bx +c ,得f ′(x )=3x 2+2ax +b .因为f (0)=c ,f ′(0)=b ,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =bx +c .(2)当a =b =4时,f (x )=x 3+4x 2+4x +c , 所以f ′(x )=3x 2+8x +4. 令f ′(x )=0,得3x 2+8x +4=0, 解得x =-2或x =-23.f (x )与f ′(x )在区间(-∞,+∞)上的情况如下:所以,当c >0且c -3227<0时,存在x 1∈(-4,-2),x 2∈⎪⎭⎫ ⎝⎛--3,2,x 3∈⎪⎭⎫⎝⎛-0,3,使得f (x 1)=f (x 2)=f (x 3)=0.由f (x )的单调性知,当且仅当c ∈⎪⎭⎫⎝⎛2732,0时,函数f (x )=x 3+4x 2+4x +c 有三个不同零点.(3)证明:当Δ=4a 2-12b <0时,f ′(x )=3x 2+2ax +b >0,x ∈(-∞,+∞),此时函数f (x )在区间(-∞,+∞)上单调递增,所以f (x )不可能有三个不同零点.当Δ=4a 2-12b =0时,f ′(x )=3x 2+2ax +b 只有一个零点,记作x 0. 当x ∈(-∞,x 0)时,f ′(x )>0,f (x )在区间(-∞,x 0)上单调递增; 当x ∈(x 0,+∞)时,f ′(x )>0,f (x )在的区间(x 0,+∞)上单调递增. 所以f (x )不可能有三个不同零点.综上所述,若函数f (x )有三个不同零点,则必有Δ=4a 2-12b >0. 故a 2-3b >0是f (x )有三个不同零点的必要条件.当a =b =4,c =0时,a 2-3b >0,f (x )=x 3+4x 2+4x =x (x +2)2只有两个不同零点,所以a 2-3b >0不是f (x )有三个不同零点的充分条件.因此a 2-3b >0是f (x )有三个不同零点的必要而不充分条件.。
第3章 命题探秘1 第3课时 利用导数解决函数的零点问题 课件(共37张PPT)
第3课时 利用导数解决函数的零点问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
(1)f′(x)=3x2+b.
思维过程
依题意得f′12=0,即34+b=0,故b=-34. (2)证明:由(1)知f(x)=x3-34x+c,f′(x)=3x2-34.
→ 关键1:求f′x=0的根
第3课时 利用导数解决函数的零点问题
∴当x=e时,f(x)取得极小值f(e)=ln e+ee=2,
∴f(x)的极小值为2.
第3课时 利用导数解决函数的零点问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
(2)由题意知g(x)=f′(x)-3x=1x-xm2-3x(x>0),
令g(x)=0,得m=-13x3+x(x>0). 设φ(x)=-13x3+x(x≥0),
第3课时 利用导数解决函数的零点问题
1
2
3
探本朔源·技法示例 典型考题·技法突破 课后限时集训
当a>0时,由f′(x)=0可得x=ln a.当x∈(-∞,ln a)时,
f′(x)<0;当x∈(ln a,+∞)时,f′(x)>0.所以f(x)在(-∞,ln a)单调
递减,在(ln a,+∞)单调递增.故当x=ln a时,f(x)取得最小值,最
[解] (1)当a=1时,f(x)=ex-x-2,则f′(x)=ex-1. 当x<0时,f′(x)<0;当x>0时,f′(x)>0. 所以f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增. (2)f′(x)=ex-a. 当a≤0时,f′(x)>0,所以f(x)在(-∞,+∞)单调递增,故f(x)至 多存在一个零点,不合题意.
函数与导数之零点问题(解析版)
函数与导数之零点问题一.考情分析零点问题涉及到函数与方程,但函数与方程是两个不同的概念,但它们之间有着密切的联系,方程f (x )=0的解就是函数y =f (x )的图像与x 轴的交点的横坐标,函数y =f (x )也可以看作二元方程f (x )-y =0通过方程进行研究.就中学数学而言,函数思想在解题中的应用主要表现在两个方面:①是借助有关初等函数的性质,解有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题:②是在问题的研究中,通过建立函数关系式或构造中间函数,把所研究的问题转化为讨论函数的有关性 质,达到化难为易,化繁为简的目的.许多有关方程的问题可以用函数的方法解决,反之,许多函数问题也可以用方程的方法来解决.函数与方程的思想是中学数学的基本思想,也是各地模考和历年高考的重点.二.经验分享1.确定函数f (x )零点个数(方程f (x )=0的实根个数)的方法:(1)判断二次函数f (x )在R 上的零点个数,一般由对应的二次方程f (x )=0的判别式Δ>0,Δ=0,Δ<0来完成;对于一些不便用判别式判断零点个数的二次函数,则要结合二次函数的图象进行判断.(2)对于一般函数零点个数的判断,不仅要用到零点存在性定理,还必须结合函数的图象和性质才能确定,如三次函数的零点个数问题.(3)若函数f (x )在[a ,b ]上的图象是连续不断的一条曲线,且是单调函数,又f (a )·f (b )<0,则y =f (x )在区间(a ,b )内有唯一零点.2.导数研究函数图象交点及零点问题利用导数来探讨函数)(x f y =的图象与函数)(x g y =的图象的交点问题,有以下几个步骤: ①构造函数)()()(x g x f x h -=; ②求导)('x h ;③研究函数)(x h 的单调性和极值(必要时要研究函数图象端点的极限情况); ④画出函数)(x h 的草图,观察与x 轴的交点情况,列不等式;⑤解不等式得解.探讨函数)(x f y =的零点个数,往往从函数的单调性和极值入手解决问题,结合零点存在性定理求解.三、题型分析(一)确定函数的零点与方程根的个数问题例1.【四川省成都七中2020届高三上半期考试,理科数学,12】函数)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,则方程0log )(2=-x x f 的根个数为( )A.3B.4C.5D.6 【答案】C【解析】)(x f 是定义在R 上的偶函数,周期是4,当[]2,0∈x 时,3)(2+-=x x f ,根据性质我们可以画出函数图像,方程0log )(2=-x x f 的根个数转化成⎩⎨⎧==x y x f y 2log )(的交点个数,有图像可以看出,一共有5个交点,ABCDE.其中我x=8处是要仔细看图,是易错点。
利用导数研究函数的零点问题(市级研究课20201027)
利用导数研究函数的零点(一)
班级
高三(9)班
一、教学目标:
1.使学生理解掌握函数的零点等性质,并能进行方程的根、函数的零点、函数图像的交点间的灵活转化与应用
2.在不断的探究过程中,引导学生归纳总结准确画出函数图像的要素,进一步体会数形结合的思想方法在解决
问题中的应用
3.在一系列的变式训练中,感受函数、方程、不等式间的互相转化应用.
1.函数的零点的定义:
2.函数的零点与方程的根有什么关系?
3.如何用导数法求零点问题?
四、课堂练习:
1.函数 有几个零点?
学生作答
学生讨论
学生作答
教师点评
学生总结
教师点评
讨论之后学生独立完成,
归纳总结教师点评
巩固提升
复习回顾
为后边不
做准备
自主探究
相互讨论
让学生体会
让学生勇于展示自我,
树立自信Байду номын сангаас.
归纳总结
4.对含参问题的探究解决,培养学生严谨的科学态度,善于思考、勇于创新的良好品质
二、教学重点难点:
重点:应用导数研究函数的零点。
难点:数形结合思想的应用,函数图像的准确描绘;
函数、方程、不等式间的互相转化;
含参问题的分析解决,分类讨论的严谨性函数图像的准确
三、教学过程:
教学
环节
教学内容
师生活动
设计意图
巩固提升
加深理解
巩固提高
一、例题
引入
二、.例题
分析
一、例题引入:
例1.函数 有几个零点?
问题一:本题考查的知识点是什么?
问题二:函数零点的定义是什么?
问题三:函数的零点与方程的根有什么关系?
导数专题:利用导数研究函数零点的4种常见考法(原卷版)
导数专题:利用导数研究函数零点的4种常见考法一、函数零点问题常规求解步骤:第一步:将问题转化为函数的零点问题,进而转化为函数的图象与x 轴(或y=k)在某区间上的交点问题;第二步:利用导数研究该函数在此区间上的单调性、极值、端点值等性质,进而画出其图象;第三步:结合图象判断零点或根据零点分析参数。
二、利用导数确定函数零点的常用方法1、图象法:根据题目要求画出函数的图象,标明函数极(最)值的位置,借助数形结合的思想分析问题(画草图时注意有时候需要使用极限);2、利用函数零点存在定理:先用该定理判定函数在某区间上有零点,然后利用导数研究函数的单调性、极值(最值)及区间端点值的符号,进而判断函数在该区间上零点的个数。
三、利用函数的零点求参数范围的方法1、分离参数(a=g(x))后,将原问题转化为y=g(x)的值域(最值)问题或转化为直线y=a 与y=g(x)的图象的交点个数问题(优先分离、次选分类)求解;2、利用函数零点存在定理构造不等式求解;3、转化为两个熟悉的函数图象的位置关系问题,从而构建不等式求解。
四、导函数的零点不可直接求时的应对策略1、“特值试探法”:当导函数的零点不可求时,可尝试利用特殊值试探,此时特殊值的选取应遵循一下原则:①当含有ln x 的函数中,通常选取k x e =,特别的,选当0k =时,1x =来试探;②在含有x e 的函数中,通常选取ln x k =,特别的,选取当1k =时,0x =来试探,在探得导函数的一个零点后,结合导函数的单调性,确定导函数在零点左右的符号,进而确定原函数的单调性和极值,使问题得到解决。
2、“虚设和代换法”:当导函数()f x '的零点无法求出显性的表达式时,我们可以先证明零点的存在,再虚设为0x ,接下来通常有两个方向:①由0()0f x '=得到一个关于0x 的方程,再将这个关于0x 的方程的整体或局部代入0()f x ,从而求得0()f x ,然后解决相关的问题;②根据导函数()f x '的单调性,得出0x 两侧导函数的正负,进而得出原函数的单调性和极值,使问题得解。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
利用导数研究函数的图像及零点问题【复习指导】本讲复习时,应注重利用导数来研究函数图像与零点问题,复习中要注意等价转化、分类讨论等数学思想的应用.双基自测1.已知曲线C :x 2+y 2=9(x ≥0,y ≥0)与函数y =ln x 及函数y =e x 的图像分别交于点A (x 1,y 1),B (x 2,y 2),则2212x x +的值为 .92.[10浙江]已知0x 是函数1()21x f x x=+-的一个零点.若10(1,)x x ∈,20(,)x x ∈+∞,则1()f x ,2()f x 的符号分别______________.解:负;正;3.已知函数()ln x f x e x -=+(e 是自然对数的底数),若实数0x 是方程()0f x =的解,且1020x x x <<<,则1()f x 2()f x (填“>”,“≥”,“<”,“≤”).4.已知234101()1234101x x x x f x x =+-+-+⋅⋅⋅+,234101()1234101x x x x g x x =-+-+-⋅⋅⋅-,若函数()f x 有唯一零点1x ,函数()g x 有唯一零点2x ,则1x ,2x 所在的区间为 .1(1,0)x ∈-,2(1,2)x ∈考点一 函数的图像问题【例1】对于三次函数32()(0)f x ax bx cx d a =+++≠.定义:设''()f x 是函数()y f x =的导数'()y f x =的导数,若方程''()0f x =有实数解x 0,则称点(x 0,f (x 0))为函数()y f x =的“拐点”;已知函数32()654f x x x x =-++,请回答下列问题; ⑴.求函数()y f x =的“拐点”A 的坐标;⑵.检验函数()y f x =的图像是否关于“拐点”A 对称,对于任意的三次函数写出一个有关“拐点”的结论;⑶.写出一个三次函数()y G x =,使得它的“拐点”是(1,3)(不要过程).【解】⑴.依题意得:'2()3125f x x x =-+,故''()6120f x x =-=得,x =2,故拐点坐标是(2,-2).⑵.【法一】由⑴知,“拐点”坐标是(2,-2),而f (2+x )+f (2-x )=-4=2f (2),故f (x )=x 3-3x 2+2x +2关于点(2,-2)对称.【法二】设(x 1,y 1)与(x ,y )关于 (2,-2)中心对称,并且(x 1,y 1)在f (x )的图象上,故114,4x x y y=-⎧⎨=--⎩,由321111654y x x x =-++得,-4-y =(4-x )3-6(4-x )2+5(4-x )+4,化简得:y =x 3-6x 2+5x +4,故点(x ,y )也在y =f (x )上,故y =f (x )关于点(2,-2)对称.一般地,三次函数f (x )=ax 3+bx 2+cx +d (a ≠0)的“拐点”是(,())33b b f a a --,它就是函数y =f (x )的对称中心(或者:任何一个三次函数都有拐点;任何一个三次函数都有对称中心;任何一个三次函数平移后可以是奇函数)都可以给分.⑶.G (x )=a (x -1)3+b (x -1)2+3(a ≠0),或写出一个具体函数,如G (x )=x 3-3x 2+3x +2,或G (x )=x 3-3x 2+5x ,实质:任何一个三次函数都有拐点;任何一个三次函数都有对称中心;且任何一个三次函数的“拐点”就是它的对称中心,即:(,())33b b f a a--. 【练习1】[优质试题南通考前押题卷]对于定义在R 上的函数()y f x =,可证明点(,)A m n 是()y f x =图像的一个对称点的充要条件是()()2f m x f m x n -++=,R x ∈.⑴.求函数233)(x x x f +=图像的一个对称点;⑵.函数32()(2)f x ax b x =+-在R 上是奇函数,求a ,b 满足的条件;并讨论在区间[1,1]-上是否存在常数a ,使得2()42f x x x ≥-+-恒成立? ⑶.试写出函数()y f x =的图像关于直线x m =对称的充要条件(不用证明);利用所学知识,研究函数32()(,)f x ax bx a b R =+∈图像的对称性.【解】⑴.设(,)A m n 为函数233)(x x x f +=图像的一个对称点,则()()2f m x f m x n -++=对于x R ∈恒成立.即3232()3()()3()2m x m x m x m x n -+-++++=对于x R ∈恒成立,故232(66)(262)0m x m m n +++-=,由32660,2620m m m n +=⎧⎨+-=⎩,解得1,2m n =-⎧⎨=⎩,故函数()y f x =图像的一个对称点为(1,2)-.⑵.a R ∈,2b =时,()y f x =是奇函数.不存在常数a 使2()42([1,1])f x x x x ≥-+-∈-恒成立.依题意,此时3()f x ax =,令2()42([1,1])g x x x x =-+-∈-,故()[7,1]g x ∈-,若0a =,()0f x =,不合题;若0a >,3()f x ax =,此时为单调增函数,min ()f x a =-.若存在a 合题意,则1a -≥,与0a >矛盾.若0a <,3()f x ax =此时为单调减函数,min ()f x a =,若存在a 合题,则1a ≥,与0a <矛盾.综上可知,符合条件的a 不存在. ⑶.函数()y f x =的图像关于直线x m =对称的充要条件是()()f m x f m x +=-, ①0a b ==时,()0()f x x R =∈,其图像关于x 轴上任意一点成中心对称;关于平行于y 轴的任意一条直线成轴对称图形;②0a =,0b ≠时,2()()f x bx x R =∈,其图像关于y 轴对称图形; ③0a ≠,0b =时,3()f x ax =,其图像关于原点中心对称; ④0a ≠,0b ≠时,32()f x ax bx =+的图像不可能是轴对称图形.设(,)A m n 为函数()f x =32ax bx +图像的一个对称点,则()()2f m x f m x n -++=对于x R ∈恒成立.即3()a m x -+232()()()2b m x a m x b m x n -++++=对于R x ∈恒成立,232(3)()0am b x am bm n +++-=,由3230,0am b am bm n +=⎧⎨+-=⎩得,32,3227b m a b n a ⎧=-⎪⎪⎨⎪=⎪⎩,故函数()y f x =图像的一个对称点为322(,)327b b a a-. 【例2】[镇江市2010届高三第一次调研]已知二次函数2()f x ax bx c =++和“伪二次函数”2()ln (0)g x ax bx c x abc =++≠.⑴.证明:只要0a <,无论b 取何值,函数()g x 在定义域内不可能总为增函数;⑵.同一函数图像上任意取不同两点1122(,),(,)A x y B x y ,线段AB 中点为0(,0)C x ,记直线AB 的斜率为k ,①.对于二次函数2()f x ax bx c =++,求证:0()k f x '=;②.对于“伪二次函数”2()ln g x ax bx c x =++,是否有○1同样的性质?证明你的结论.【解】⑴.如果0,()x g x >为增函数,则22()20c ax bx c g x ax b x x++'=++=>①恒成立,当0x >时恒成立,220ax bx c ++>②,因0a <,由二次函数的性质,②不可能恒成立.则函数()g x 不可能总为增函数.⑵.对于二次函数:2221212102121()()()()2f x f x a x x b x x k ax b x x x x --+-===+--.由()2f x ax b '=+,故00()2f x ax b '=+,则0()k f x '=.不妨设21x x >,对于“伪二次函数”:2()ln ()ln g x ax bx c x f x c x c =++=+-.故2212112121()()ln ()()x f x f x c g x g x x k x x x x -+-==--,如果有○1的性质,则0()g x k '=, 故21210ln x c x c x x x =-,又0c ≠,即:212112ln 2x x x x x x =-+,令21, 1x t t x =>,即ln 211t t t =-+,设22 ()ln 1t s t t t -=-+,则22212(1)2(1)(1)()0(1)(1)t t t s t t t t t +---'=-=>++,故()s t 在(1,)+∞上递增,故()(1)0s t s >=.故0()g x k '≠.故“伪二次函数”2()ln g x ax bx c x =++不具有○1的性质. 【练习2】泰州中学2012-2013学年度第一学期学情诊断2012.10.8 设t >0,已知函数f (x )=x 2(x -t )的图象与x 轴交于A 、B 两点. ⑴.求函数f (x )的单调区间;⑵.设函数y =f (x )在点P (x 0,y 0)处的切线的斜率为k ,当x 0∈(0,1]时,k ≥-12恒成立,求t 的最大值;⑶.有一条平行于x 轴的直线l 恰好..与函数y =f (x )的图象有两个不同的交点C ,D ,若四边形ABCD 为菱形,求t 的值.【解】⑴.f ′(x )=x (3x -2t )>0,因t >0,故当x >2t 3或x <0时,f ′(x )>0,故(-∞,0)和(2t 3,+∞)为函数f (x )的单调增区间;当0<x <2t 3时,f ′(x )<0,故(0,2t 3)为函数f (x )的单调减区间.⑵.因k =3x 02-2tx 0≥-12恒成立,故2t ≤3x 0+12x 0恒成立,因x 0∈(0,1],故3x 0+12x 0≥23x 0×12x 0=6,即3x 0+12x 0≥6,当且仅当x 0=66时取等号.故2t ≤6,即t 的最大值为62.⑶.由⑴得,函数f (x )在x =0处取得极大值0,在x =2t 3处取得极小值-4t 327.因平行于x 轴的直线l 恰好..与函数y =f (x )的图象有两个不同的交点,故直线l 的方程为y =-4t 327.令f (x )=-4t 327,故x 2(x -t )=-4t 327,解得x =2t 3或x =-t 3.故C (2t 3,-4t 327),D (-t 3,-4t 327).因A (0,0),B (t ,0).易知四边形ABCD 为平行四边形.AD =(-t 3)2+(-4t 327)2,且AD =AB =t ,故(-t 3)2+(-4t 327)2=t ,解得:t =3482.考点二 函数的零点问题【例3】已知函数3()||()f x ax x a a R =+-∈.⑴.给出一个实数a ,使得函数()y f x =在]0,(-∞上单调减,在),0[+∞上单调增.⑵.若10<<a ,求函数()y f x =在]1,1[-上的最大值;若32=a ,求函数()y f x =在]1,1[-上的最大值; ⑶.求证:对任意的实数a ,存在0x ,恒有0)(0≠x f ,并求出符合该特征的0x 的取值范围.若4)(x x g =,试求方程)()(x g x f =的解.【解】⑴.当0=a 时,||)(x x f =符合要求;⑵.若10<<a ,33,(),()()ax x a x a f x ax x a x a ⎧-+<=⎨+-≥⎩,当a x <时,13)(2-='ax x f ,2()310f x ax '=-=,x =a x >时,13)(2+='ax x f , ①当310≤<a ,131≥a,此时()y f x =在],1[a -上单调减,在]1,[a 上单调增,则在]1,1[-上1)1()1()(max ==-=f f x f ; ②当33131≤<a ,此时a a ≥31,此时()y f x =在]31,1[a --上单调增,在],31[a a-上单调减,在]1,[a 上单调增,由于)1()1()31(f f a f =->-,则在]1,1[-上max ()(f x f a ==+③当1313<<a ,此时a a <31,则此时()y f x =在]31,1[a --上单调增,在]31,31[a a -上单调减,在]a 上单调增,在]1,[a 上递增,则在]1,1[-上aa a f x f 3132)31()(max +=-=; 综合①②③有:当310≤<a 时,1)(max =x f ;当131<<a 时,aa a a a x f 9323132)(max +=+=. 结合上述讨论,32=a 时,33222,()333()222,()333x x x f x x x x ⎧-+<⎪⎪=⎨⎪+-≥⎪⎩,此时()y f x =在]22,1[--上单调增,在]32,22[-上单调减,在]1,32[上单调增,由于)1()1()22(f f f =->-,则在]1,1[-上322)22()(max +=-=f x f . ⑶.①当0=a 时,||)(x x f =,方程0||)(==x x f 只有0根;②当0>a 时,方程0||)(3=-+=a x ax x f 没有0根和正根,当0>a ,0<x 时,a x ax x f +-=3)(,由方程0)(3=+-=a x ax x f 得13+=x x a ,则3001x x a x <⎧⎪⎨=>⎪+⎩,即310x +<得,1-<x ;③当0<a 时,方程0||)(3=-+=a x ax x f 没有0根和负根,当0<a ,0>x 时,a x ax x f -+=3)(,由方程0)(3=-+=a x ax x f 得13--=x x a ,则3001x x a x >⎧⎪⎨=-<⎪-⎩,310x ->得,1>x ;综上可知,对任意的实数a ,存在]1,0()0,1[0 -∈x ,恒有0)(0≠x f .注:本题也可以用数形结合的思想来做.当0=a 时,||)(x x f =,方程0||)(==x x f 只有0根;当0>a 时,方程0||)(3=-+=a x ax x f 要有解也只能是负解,0)(3=+-=a x ax x f 即x a x 113=+,用数形结合(图1)寻找负解,发现二曲线交点横坐标1-<x ;当0<a 时,方程0||)(3=-+=a x ax x f 要有解也只能是正解,0)(3=-+=a x ax x f 即x ax 113-=-,用数形结合(图2)寻找正解,发现二曲线交点横坐标1>x ;以下同上图1 图2若4)(x x g =,方程)()(x g x f =即43||x a x ax =-+,即)(||3a x x a x -⋅=-,a x =显然是方程的解;若a x >,则13=x ,得1=x ;若a x <,则13-=x ,得1-=x . 综上可知,①.若1-=a 或1=a ,方程的解集是}1,1{-;②.若1-<a ,方程的解集是}1,{a ;③.若11<<-a ,方程的解集是}1,,1{a -;④.若1>a ,方程的解集是}1,{-a .【例4】已知函数2()()f x x x a =-,2()(1)g x x a x a =-+-+(其中a 为常数); ⑴.如果函数()y f x =和()y g x =有相同的极值点,求a 的值; ⑵.设0a >,问是否存在0(1,)3a x ∈-,使得00()()f x g x >,若存在,请求出实数a 的取值范围;若不存在,请说明理由.⑶.记函数()[()1][()1]H x f x g x =-⋅-,若函数()y H x =有5个不同的零点,求实数a 的取值范围.【解】⑴.2322()()2f x x x a x ax a x =-=-+,则()(3)()f x x a x a '=--,令()0f x '=,得x a =或3a ,而()y g x =在12a x -=处有极大值,故112a a a -=⇒=-,或1323a a a -=⇒=;综上:3a =或1a =-. ⑵.假设存在,即存在(1,)3a x ∈-,使得22()()()[(1)]f x g x x x a x a x a -=---+-+ 2()()(1)x x a x a x =-+-+2()[(1)1]0x a x a x =-+-+>,当(1,)3a x ∈-时,又0a >,故0x a -<,则存在(1,)3a x ∈-,使得2(1)10x a x +-+<, 1当123a a ->即3a >时,2()(1)()1033a a a +-+<得,332a a ><-或,故3a >; 2当1123a a --≤≤即03a <≤时,24(1)04a --<得13a a <->或,故无解; 综上:3a >.【法一】存在0(1,)3a x ∈-,使得00()()f x g x >,即存在0(1,)3a x ∈-,使得00()()0f x g x ->,即存在0(1,)3a x ∈-,使得max [()()]0f x g x ->,设2()()()()[(1)1]h x f x g x x a x a x =-=---+,则'22()32(21)(1)h x x a x a a =--+-+,其判别式为4(1)(2)a a ∆=+-,⑴.当02a <≤时,0∆≤,那么'()0h x ≥恒成立,即()y h x =在(1,)3a -上单调递增,要使得存在0(1,)3a x ∈-,使得00()()f x g x >,则须使得2()(23)(3)0327a a h a a =+->,则3a >,与02a <≤矛盾,故这种情况不成立; ⑵.当2a >时,0∆>,令'()0h x =,可得12212133a a x x ---+==, ①.当23a <≤时,13a x ≥,则()y h x =在(1,)3a-上单调递增,则要使得存在0(1,)3a x ∈-,使得00()()f x g x >,则须使得()03a h >,则3a >,与23a <≤矛盾,故这种情况不成立;②.当3a >时,13a x <且23a x >,要使得存在0(1,)3a x ∈-,使得00()()f x g x >,则须使得1()0h x >,即21111()()[(1)1]0h x x a x a x =---+>即可,即211(1)10x a x --+<(*),又213x - 212(21)(1)0a x a a -+-+=(**),由(**)得,22111[2(21)(1)]3x a x a a =---+,将其代入(*),得21(1)(2)0a x a a +---<,即12a x ->,5a >-,若5a ≥,显然成立,若5a <,可解得3a >,即35a <<.综上可得,3a >. 【法二】存在0(1,)3a x ∈-,使得00()()f x g x >的反面是对于任意的0(1,)3a x ∈-,00()()f x g x ≤恒成立,即2()()()(1)0f x g x x a x ax x -=--++≤对于任意的(1,)3a x ∈-恒成立,容易知道,0x a -≤,故问题转化为对于任意的(1,)3a x ∈-,210x ax x -++≥恒成立.则⑴.当2(1)40a ∆=--≤时,即13a -≤≤;⑵.当2(1)40a ∆=-->时,要使得对于任意的(1,)3ax ∈-,210x ax x -++≥恒成立.则11,2(1)1110a h a -⎧≤-⎪⎨⎪-=+-+≥⎩,解得1a =-,或21,23()(1)10393a aa a a h a -⎧≥⎪⎪⎨⎪=--+≥⎪⎩解得3a =,由⑴⑵及已知条件可知,03a <≤,故原问题的解为3a >.【法三】存在0(1,)3a x ∈-,使得00()()f x g x >,则(1)(1)f g ->-或()()33a a f g >,而(1)(1)f g ->-无解,由()()33a a f g >可解得3a >.⑶.据题意有()10f x -=有3个不同的实根,()10g x -=有2个不同的实根,且这5个实根两两不相等.(i).()10g x -=有2个不同的实根,只需满足1()12a g ->,则1a >或3a <-; (ii).()10f x -=有3个不同的实根,1当3aa >即0a <时,()y f x =在x a =处取得极大值,而()0f a =,不符合题意,舍;2当3aa =即0a =时,不符合题意,舍; 3当3a a <即0a >时,()y f x =在3a x =处取得极大值,()13af >得,2a >故2a >;因(i)(ii)要同时满足,故2a >;(注:343>a 也对)下证:这5个实根两两不相等,即证:不存在0x 使得0()10f x -=和0()10g x -=同时成立;若存在0x 使得00()()1f x g x ==,由00()()f x g x =,即220000()(1)x x a x a x a -=-+-+,得20000()(1)0x a x ax x --++=,当0x a =时,00()()0f x g x ==,不符合,舍去;当0x a ≠时,既有200010x ax x -++=①;又由0()1g x =,即200(1)1x a x a -+-+=②;联立①②式得,0a =;而当0a =时,()[()1][()1]H x f x g x =-⋅-=32(1)(1)0x x x ----=没有5个不同的零点,故舍去,故这5个实根两两不相等.综上,当2a >时,函数()y H x =有5个不同的零点.【练习4】[江苏]若函数()y f x =在0x x =处取得极大值或极小值,则称0x 为函数()y f x =的极值点.已知a ,b 是实数,1和-1是函数32()f x x ax bx =++的两个极值点. ⑴.求a 和b 的值;⑵.设函数()y g x =的导函数'()()2g x f x =+,求()y g x =的极值点; ⑶.设()[()]h x f f x c =-,其中[2,2]c ∈-,求函数()y h x =的零点个数. 【解】⑴.由32()f x x ax bx =++得,'2()32f x x ax b =++.又1和-1是函数32()f x x ax bx =++的两个极值点,故'(1)320f a b =++=,'(1)320f a b -=-+=解得,0a =,3b =-.⑵.由⑴得,3()3f x x x =-,故'2()()2(1)(2)g x f x x x =+=-+解得,121x x ==,32x =-.当2x <-时,'()0g x <;当21x -<<时,'()0g x >,即32x =-是()y g x =的极值点.又当21x -<<或1x >时,'()0g x >,故1x =不是()y g x =的极值点.故()y g x =的极值点是-2.⑶.令()f x t =,则()()h x f t c =-.先讨论关于x 的方程()f x d =根的情况:由[2,2]d ∈-,当||2d =时,由⑵可知,()2f x =-的两个不同的根为1和-2,注意到()y f x =是奇函数,故()2f x =的两个不同的根为-1和2.当||2d <时,因(1)(2)20f d f d d --=-=->,(1)f - (2)20d f d d =--=--<,故-2,-1,1,2都不是()f x d =的根.由⑴知,'()3(1)(1)f x x x =+-.①.当(2,)x ∈+∞时,'()0f x >,于是()y f x =是单调增函数,从而()(2)2f x f >=.此时()f x d =在(2,)+∞无实根.②.当x ∈(1,2)时,'()0f x >,于是()y f x =是单调增函数.又(1)0f d -<,(2)0f d ->,又函数()y f x d =-的图象不间断,故()f x d =在(1,2)内有唯一实根.同理,()f x d =在(-2,-1)内有唯一实根.③.当(1,1)x ∈-时,'()0f x <,于是()y f x =是单调减两数.又(1)0f d -->,(1)0f d -<,又函数()y f x d =-的图象不间断,故()f x d =在(-1,1)内有唯一实根.故当||2d =时,()f x d =有两个不同的根1x ,2x 满足1||1x =,2||2x =;当||2d <时,()f x d =有三个不同的根x 3,x 4,x 5,满足||2i x <,i =3,4,5.现考虑函数()y h x =的零点:①.当||2c =时,()f t c =有两个根t 1,t 2,满足1||1t =,2||2t =.而1()f t t =有三个不同的根,2()f t t =有两个不同的根,故()y h x =有5个零点.②.当||2c <时,()f t c =有三个不同的根t 3,t 4,t 5,满足||2i t <,i =3,4,5.而()i f x t = (i =3,4,5)有三个不同的根,故()y h x =有9个零点.综上所述,当||2c =时,函数()y h x =有5个零点;当||2c <时,函数()y h x =有9个零点.【例5】设函数23()1(1)23nnn x x x f x x n=-+-++-,n N *∈.⑴.试确定3()y f x =和4()y f x =的单调区间及相应区间上的单调性; ⑵.说明方程0)(4=x f 是否有解,并且对正整数n ,给出关于x 的方程0)(=x f n 的解的一个一般结论,并加以证明.【解】⑴.321)(323x x x x f -+-=,23()(1)0f x x x '=--+<,)(3x f y =为R 上的减函数,1)(4323x x x x x f +-+-=,24()(1)(1)f x x x '=-+,)(4x f y =)1,(-∞),1(+∞⑵.由⑴可知,4min 45()(1)012f x f ==>,故0)(4=x f 无解.猜想n 为偶数时,0)(=x f n 无解.证明:当n 为偶数时,设)(2*∈=N k k n 则2341()1(1)(1)n n n f x x x x x x x -'=-+-+-++-=-⋅ 2422(1)k x x x -++++在)1,(-∞上减,在),1(+∞上增,min 11()(1)1123n n f x f ==-+-++2111111111(1)()()()()022*********k k k k k k-=-+-++-+>>--,故n 为偶数时,0)(=x f n 无解.猜想n 为奇数时,0)(=x f n 有唯一解.证明:设)(12*∈+=N k k n ,23411[1()]()1(1)1()n nn n x f x x x x x x x --⨯--'=-+-+-++-==--- 21101k x x ++<+;故)(x f y n =为减函数,而0)1(>f ,2111()(1)()(231n n f n n n n n -=-+-++-- )0nn <,故方程有唯一解.【例6】已知二次函数1)(2++=bx ax x f 和函数bx a bx x g 21)(2+-=. ⑴.若()y f x =为偶函数,试判断()y g x =的奇偶性; ⑵.若方程()g x x =有两个不等的实根1x ,212()x x x <,则 ①.证明函数()y f x =在(1,1)-上是单调增函数;②.若方程0)(=x f 的两实根为3x ,434()x x x <,求使4213x x x x <<<成立的a 的取值范围.【解】⑴.因()y f x =为偶函数,故()()f x f x -=,故0bx =,故0b =,故21()g x a x=-,故函数()y g x =为奇函数;⑵.①由x bx a bx x g =+-=21)(2得方程(*)0122=++bx x a 有不等实根,故△0422>-=a b 及0≠a 得||12b a >,即1122b ba a-<-->或,又)(x f 的对称轴(1,1)2bx a=-∉-,故()y f x =在(1,1)-上是单调函数;②1x ,2x 是方程(*)的根,故011212=++bx x a ,故12121--=x a bx ,同理,12222--=x a bx ,故222222111111()1()f x ax bx ax a x a a x =++=-=-,同理,2222()()f x a a x =-,要使4213x x x x <<<,只需⎪⎩⎪⎨⎧<<>0)(0)(021x f x f a ,即⎩⎨⎧<->002a a a ,故1>a ,或⎪⎩⎪⎨⎧>><0)(0)(021x f x f a ,即⎩⎨⎧>-<002a a a ,解集为φ,故a 的取值范围1>a . 【练习6】[10浙江理]已知a 是给定的实常数,设函数2()()(),x f x x a x b R e b =-+∈,x a =是()y f x =的一个极大值点.⑴.求b 的取值范围;⑵.设1x ,2x ,3x 是()y f x =的3个极值点,问是否存在实数b ,可找到4x R ∈,使得1x ,2x ,3x ,4x 的某种排列1i x ,2i x ,3i x ,4i x (其中1234{,,,}{1,2,3,4}i i i i =)依次成等差数列?若存在,求所有的b 及相应的4x ;若不存在,说明理由. 【解】⑴.'2()()[(3)2]x f x e x a x a b x b ab a =-+-++--,令2()(3)2g x x a b x b =+-++- ab a -,则2(1)80a b ∆=+-+>,于是,假设1x ,2x 是()0g x =的两个实数根,且12x x <.(i).当1x a =或2x a =时,则x a =不是()y f x =的极值点,此时不合题意. (ii).当1x a ≠且2x a ≠时,由于x a =是()y f x =的极大值点,故12x a x <<,即()0g a <.即2(3)20a a b a b ab a +-++--<.故b a <-,故b 的取值范围是(,)a -∞-.⑵.由⑴可知,假设存在b 及4x 满足题意,则(i).当21x a a x -=-时,则422x x a =-或412x x a =-,于是1223a x x a b =+=--.即3b a =--.此时4223x x a a b a a =-=--=+或422x x a a b =-=- 3a a -=-.(ii).当21x a a x -≠-时,则212()x a a x -=-或122()a x x a -=-.①.若212()x a a x -=-,则242a x x +=,故123(3)322a b a x x --=+=3(3)a b =-++,于是1a b +-=.此时242a x x +==2(3)3(3)34a a b a b b a +---++=--=+.②.若122()a x x a -=-,则142a x x +=,故2132a x x =+=即3(3)a b =++,于是912a b -+-=,此时142a x x +==2(3)3(3)34a a b a b b a +---++=--=+.综上所述,存在b 满足题意,当3b a =--时,4x a =±当b a =--4x a =;当b a =--时,4x a =+ 【例7】设函数f (x )=x 3+2ax 2+bx +a ,g (x )=x 2-3x +2,其中x ∈R ,a ,b 为常数,已知曲线y =f (x )与y =g (x )在点(2,0)处有相同的切线l . ⑴.求a ,b 的值,并写出切线l 的方程;⑵.若方程f (x )+g (x )=mx 有三个互不相同的实根0,x 1,x 2,其中x 1<x 2,且对任意的12[,]x x x ∈,f (x )+g (x )<m (x -1)恒成立,求实数m 的取值范围.【解】⑴.2()34f x x ax b '=++,()23g x x '=-,由于曲线y =f (x )与y =g (x )在点(2,0)处有相同的切线,故有(2)(2)0f g ==,(2)(2)1f g ''==,由此得8820,1281a b a a b +++=⎧⎨++=⎩,解得2,5a b =-⎧⎨=⎩,故2a =-,5b =,切线l 的方程为20x y --=;⑵.由⑴得,32()452f x x x x =-+-,故32()()32f x g x x x x +=-+,依题意,方程2(32)0x x x m -+-=有三个互不相同的实数0,x 1,x 2,故x 1,x 2是方程2320x x m -+-=的两相异的实根.故140m ∆=+>,即14m >-,又对任意的12[,]x x x ∈,()()(1)f x g x m x +<-成立,特别地,取1x x =时,111()()f x g x mx m+-<-成立得,0m <.由韦达定理得,1230x x +=>,1220x x m =->,故120x x <<,对任意的12[,]x x x ∈有20x x -≤,10x x -≥,0x >,则12()()()()0f x g x mx x x x x x +-=--≤,又111()()0f x g x mx +-=,故函数()()f x g x mx +-在12[,]x x x ∈的最大值为0.于是当0m <时,对任意的12[,]x x x ∈,()()(1)f x g x m x +<-恒成立,综上,m 的取值范围是1(,0)4-.练习1.已知函数sin ()xf x x=,下列命题正确的是____________.(写出所有正确命题的序号)①.()f x 是奇函数; ②.对定义域内任意x ,()1f x <恒成立; ③.当32x π= 时,()f x 取得极小值; ④.(2)(3)f f >; ⑤.当x >0时,若方程|()f x |=k 有且仅有两个不同的实数解α,β(α>β),则β·cos α=-sin β.【答案】②④⑤2.设f 1(x )=cos x ,定义f n +1(x )为f n (x )的导数,即f n +1(x )='()n f x ,n ∈N *,若△ABC 的内角A 满足122013()()()0f A f A f A +++=,则sin A =__________________.【答案】1 南通市2010届高三第二次调研3.设函数421()4f x x bx cx d =+++,当1x t =时,()y f x =有极小值.⑴.若6b =-时,函数()y f x =有极大值,求实数c 的取值范围; ⑵.在⑴的条件下,若存在实数c ,使函数()f x 在闭区间[2,2]m m -+上单调递增,求实数m 的取值范围;⑶.若函数()y f x =只有一个极值点,且存在211(,1)t t t ∈+,使'2()0f t =,证明:函数()g x = 211()2f x x t x -+在区间12(,)t t 内最多有一个零点. 【解】⑴.因421()4f x x bx cx d =+++,故'3()()12h x f x x x c ==-+.由题设,方程()0h x =有三个互异的实根.考察函数3()12h x x x c =-+,则由'()0h x =,得2x =±.故160,160c c +>⎧⎨-<⎩,故1616c -<<.⑵.存在(16,16)c ∈-,使'()0f x ≥,即312x x c -≥-,故31216x x ->-,即2(2)(4)0x x -+>(*)在区间[2,2]m m -+上恒成立.故[2,2]m m -+是不等式(*)解集的子集.即24,22m m ->-⎧⎨+<⎩或2m - 2>,即20m -<<,或4m >.⑶.由题设,可得存在,R αβ∈,使得'321()2()()f x x bx c x t x x αβ=++=-++,且2x x α++ 0β≥恒成立.又'2()0f t =,且在2x t =两侧同号,故。