2020-2021学年福建省福州三中高一上学期期末数学试卷 (解析版)

合集下载

福建省2021-2022学年高一数学上学期期末模拟试卷汇编(含解析)

福建省2021-2022学年高一数学上学期期末模拟试卷汇编(含解析)

福建省高一数学上册期末模拟试卷(含答案)考试日期: 年 月 日 完卷时间:120分钟 满分:150分参考公式: 锥体体积公式:13V Sh =;球的体积公式:343V R π=;圆锥侧面积公式:S rl π=;球的表面积公式:24S R π=***** 祝 考 试 顺 利 *****第Ⅰ卷一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,有且只有一个项选是符合题意要求的)(1)设{3,}M a =,{1,2}N =,{}2=N M ,=N M ( )(A ){}2,1 (B ){}3,1 (C ){1,2,3} (D ){1,2,3,}a (2)经过点),2(m P -和)4,(m Q 两点的直线与直线012=--y x l :平行,则实数m 的值是( )(A )2(B )10 (C )0 (D )-8(3)同学们,当你任意摆放手中笔的时候,那么桌面所在的平面一定存在直线..与笔所在的直.线.( ) (A )平行 (B )相交 (C )异面 (D )垂直(4)直线1l 与直线0122=+-y x l :的交点在x 轴上,且21l l ⊥,则直线1l 在y 轴上的截距是( )(A )2 (B )-2 (C )1 (D )-1 (5)设,m n 为两条不同的直线,α为平面,则下列结论正确的是( ) (A ),//m n m n αα⊥⇒⊥ (B ),//m n m n αα⊥⊥⇒(C )//,////m n m n αα⇒ (D )//,m n m n αα⊥⇒⊥(6)已知直线0=-+m y x l :与圆4)1()1(22=++-y x C :交于A ,B 两点,若AB C ∆ 为直角三角形,则=m ( )(A )2 (B )2± (C )22 (D )22± (7)已知奇函数)(x f 在R上是减函数,若)51(log 2f a -=,)6(log 2f b =,(A )c b a << (B ) c a b << (C )a b c << (D )b a c <<(8)已知直线l 的方程为:0123)2(=++++m y x m ,圆622=+y x C :,则直线l 与圆C 的位置关系一定是( )(A )相离 (B )相切 (C )相交 (D )不确定 (9)如图,网格纸上小正方形的边长为2,粗线画出的是某几何体的三视图,则该几何体的体积是( )(A )π6 (B )π7 (C )π12 (D )π14(10)如图,在三棱柱111C B A ABC -中,底面ABC 是等边三角形,1AA ⊥底面ABC ,且1,21==AA AB ,则直线1BC 与平面11A ABB 所成角的正弦值为( )(A )515 (B ) 510 (C ) 552 (D ) 55 (11)已知函数()()log 21x a f x b =+-()0,1a a >≠的图象如图所示,则,a b 满足的关系是( ) (A )1101b a --<<< (B )101b a -<<< (C )101b a -<<< (D )101a b -<<<(12)已知圆C :9)2()3(22=++-y x ,点)0,2(-A ,)2,0(B ,设点P 是圆C 上一个动点,定义:一个动点到两个定点的距离的平方和叫做“离差平方和”,记作2D ,令(A )6 (B )8 (C )12 (D )16第Ⅱ卷二、填空题(本大题共4小题,每小题5分,共20分.请将答案填在答题卡的相应位置)13. 已知函数(),03,0xlnx x f x x >⎧=⎨≤⎩,则1f f e ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦的值是 . 14.在如图所示的长方体1111D D C B A ABC -中,已知1B (1,0,3),D (0,2,0),则点1C 的坐标为_________________.15.长度为4的线段AB 的两个端点A 和B 分别在x 轴和y 轴上滑动,则线段AB 的中点的轨迹方程为 ________________________16.一个半径为2的实心木球加工(进行切割)成一个圆柱,那么加工后的圆柱侧面积...的最大值为____________三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本题满分10分)如图,在三棱柱ABC-A 1B 1C 1中,已知1CC ⊥底面ABC ,AC⊥BC,四边形BB 1C 1C 为正方形。

福建省福州市福清市高中联合体2020-2021学年高一上学期期末考试数学试题(含解析)

福建省福州市福清市高中联合体2020-2021学年高一上学期期末考试数学试题(含解析)

福清市高中联合体2020—12021学年第一学期高一年期末考试数学试卷(完卷时间:120分钟;满分:150分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.3.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}1,0,1,2,3A =-,{}31B x x =-<,则A B =( )A. {}3B. {}1,0,1-C.1,0,1,2D. {}1,0,1,2,3-2. 命题“0x ∀≥,sin x x ≤”的否定是( ) A. 0x ∀≥,sin x x > B. 00x ∃<,00sin x x > C. 00x ∃≥,00sin x x >D. 00x ∃≥,00sin x x ≤3. 函数()f x x =是( ) A. 奇函数,且在R 上单调递减 B. 奇函数,且在R 上单调递增 C. 偶函数,且在R 上单调递减D. 偶函数,且在R 上单调递增4. 若角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点(1,-,则sin 2α=( )A. B. 12-C.12D.25. 函数()38ln f x x x =-+的零点所在区间应是( )A. ()1,2B. ()2,3C. ()3,4D. ()4,56. 要得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 24y x π⎛⎫=-⎪⎝⎭图象上所有点的横坐标( ) A. 向左平移12π个单位长度B. 向右平移12π个单位长度C. 向左平移24π个单位长度D. 向右平移24π个单位长度7. 已知51log 4a =,1514b ⎛⎫= ⎪⎝⎭,41log 5c =,则a ,b ,c 的大小关系为( )A. a b c >>B. b c a >>C. b a c >>D. c b a >>8. 月均温全称月平均气温,气象学术语,指一月所有日气温的平均气温.某城市一年中12个月的月均温y (单位:C )与月份x (单位:月)的关系可近似地用函数()sin 36y A x a π⎡⎤=-+⎢⎥⎣⎦(1,2,3,,12x =)来表示,已知6月份的月均温为29C ,12月份的月均温为17C ,则10月份的月均温为( ) A. 20CB. 20.5CC. 21CD. 21.5C二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9. 下列函数中,最小值是2的有( )A. 1y xx=+B. y =C. 223y x x =++D. e e x x y -=+10. 命题“x R ∀∈,210x ax -+≥”为真命题的一个必要不充分条件可以是( ) A. 22a -≤≤B. 2a ≥-C. 2a ≤D. 22a -<<11. 关于函数()sin cos f x x x =+有下述四个结论,其中正确的是:( ) A. ()f x 的图象关于原点对称 B. ()f x 在区间,4ππ⎛⎫⎪⎝⎭单调递减 C. ()f x 在[],ππ-有2个零点D. ()f x 的最大值为212. 已知定义在R 上的函数()f x 满足()()4f x f x +=,若()1y f x =-的图象关于直线1x =对称,且对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,则下列结论正确的是( ) A. ()f x 是偶函数B. ()f x 在()2018,2020上单调递增C. 4是函数()f x 的周期D. ()f x 在()2018,2020上单调递减第Ⅱ卷注意事项: 用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13. 已知函数()1,12,1x f x x x <⎧=⎨≥⎩则()()0f f =________.14. 已知22tan 31tan αα=--,且α为锐角,则α=________.15. 如图,Rt ABC 的三个顶点A ,B ,C 恰好分别落在函数()21xy x =>,y x =,12log y x =的图象上,且B ,C 两点关于x 轴对称,则点A 的横坐标为________.16. 已知定义在R 上的偶函数()f x ,当0x ≥时,函数()cos ,01,,1,x x f x x x π≤<⎧=⎨-≥⎩则满足()()12f x f x +<的x 的取值范围是________.四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 求下列各式的值: (1)(0312932224-⎛⎫--⨯ ⎪⎝⎭;(2)55251log 3log log 25log 215++⨯. 18. 已知全集U =R ,集合{}20A x x a =+>,()(){}140B x x x =+-≤. (1)当2a =时,求()UA B ;(2)若B A ⊆,求实数a 的取值范围.19. 在①1k =-,②1k =这两个条件中任选一个,补充在下面问题中. 已知函数()kf x kx x=-,且_______, (1)求()f x 的定义域,并判断()f x 的奇偶性;(2)判断()f x 的单调性,并用定义给予证明.20. 已知,2παπ⎛⎫∈ ⎪⎝⎭,且2sin cos 222αα-= (1)求cos α的值; (2)若()4sin 5αβ-=,,2πβπ⎛⎫∈ ⎪⎝⎭,求cos β的值. 21. 某儿童活动中心,为儿童修建一个面积为100平方米的矩形游泳池,为保障儿童生命安全,在其四周都留有宽2米的路面,问所选场地的长和宽各为多少时,才能使占用场地的面积S 最小,并求出该最小值? 22. 已知函数()2sin 36f x x ππ⎛⎫=+⎪⎝⎭.(1)用“五点作图法”在给定的坐标系中,画出函数()f x 在[]0,6上的图象; (2)求()f x 图象的对称轴与单调递增区间; (3)当[]0,x m ∈时,()12f x ≤≤,求实数m 取值范围.福清市高中联合体2020—12021学年第一学期高一年期末考试数学试卷(解析版)(完卷时间:120分钟;满分:150分)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分. 注意事项:1.答题前,考生务必在试题卷、答题卡规定的地方填写自己的准考证号、姓名.考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名”与考生本人准考证号、姓名是否一致.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其它答案标号.第Ⅱ卷用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效.3.考试结束,考生必须将试题卷和答题卡一并交回.第Ⅰ卷一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 已知集合{}1,0,1,2,3A =-,{}31B x x =-<,则A B =( )A. {}3B. {}1,0,1-C.1,0,1,2D. {}1,0,1,2,3-【答案】A 【解析】 【分析】先求得集合B ,再根据交集定义直接得结果.【详解】因为{}()312B x x =-<=+∞,,又{}1,0,1,2,3A =-,所以{}3A B ⋂=, 故选:A.2. 命题“0x ∀≥,sin x x ≤”的否定是( ) A. 0x ∀≥,sin x x > B. 00x ∃<,00sin x x > C. 00x ∃≥,00sin x x > D. 00x ∃≥,00sin x x ≤【答案】C 【解析】 【分析】由全称命题的否定变换形式即可得出结果. 【详解】命题“0x ∀≥,sin x x ≤” 的否定是00x ∃≥,00sin x x >.故选:C3. 函数()f x x =是( ) A. 奇函数,且在R 上单调递减 B. 奇函数,且在R 上单调递增 C. 偶函数,且在R 上单调递减 D. 偶函数,且在R 上单调递增【答案】B 【解析】 【分析】利用函数的奇偶性定义判断奇偶性,根据函数的解析式判断单调性. 【详解】函数的定义域为R ,关于原点对称,又()(()f x x x f x -=-+=-+=-,所以()f x是奇函数,又,y x y ==R 上的增函数,所以()f x 是R 上的增函数, 故选:B4. 若角α的顶点与直角坐标系的原点重合,始边与x 轴的非负半轴重合,终边经过点(1,-,则sin 2α=( )A. B. 12-C.12D.【答案】D 【解析】 【分析】根据任意角的三角函数的定义,求出sin α和cos α,再由二倍角的正弦公式,即可求出结果.【详解】因为角α的顶点与直角坐标系的原点重合,始边与x轴的非负半轴重合,终边经过点(1,-,所以sin 2α==-,1cos 2α==-,因此1sin 22sin cos 22ααα⎛⎛⎫==⨯⨯-= ⎪ ⎝⎭⎝⎭.故选:D.5. 函数()38ln f x x x =-+的零点所在区间应是( )A. ()1,2B. ()2,3C. ()3,4D. ()4,5【答案】B 【解析】 【分析】利用函数的零点存在定理求解.【详解】由函数()38ln f x x x =-+, 因为()()2ln 220,3ln310f f =-<=+>, 所以函数的零点所在区间应是()2,3 故选:B6. 要得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需将函数sin 24y x π⎛⎫=-⎪⎝⎭图象上所有点的横坐标( ) A. 向左平移12π个单位长度B. 向右平移12π个单位长度C. 向左平移24π个单位长度 D. 向右平移24π个单位长度【答案】D 【解析】 【分析】根据sin 2sin 23244y x x πππ⎡⎤⎛⎫⎛⎫=-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,利用平移变换求解. 【详解】因为sin 2sin 23244y x x πππ⎡⎤⎛⎫⎛⎫=-=-- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦, 所以要得到函数sin 23y x π⎛⎫=- ⎪⎝⎭的图象,只需由sin 24y x π⎛⎫=- ⎪⎝⎭图象上所有点横坐标向右平移24π个单位长度,故选:D 7. 已知51log 4a =,1514b ⎛⎫= ⎪⎝⎭,41log 5c =,则a ,b ,c 的大小关系为( )A. a b c >>B. b c a >>C. b a c >>D. c b a >>【答案】C 【解析】 【分析】利用指数函数和对数函数的单调性判断.【详解】因为55510log log 4log 514a >==->-=-,15110144b ⎛⎫⎛⎫<=<= ⎪ ⎪⎝⎭⎝⎭, 4441log log 5log 415c ==-<-=-,所以b a c >> 故选:C8. 月均温全称月平均气温,气象学术语,指一月所有日气温的平均气温.某城市一年中12个月的月均温y (单位:C )与月份x (单位:月)的关系可近似地用函数()sin 36y A x a π⎡⎤=-+⎢⎥⎣⎦(1,2,3,,12x =)来表示,已知6月份的月均温为29C ,12月份的月均温为17C ,则10月份的月均温为( ) A. 20C B. 20.5CC. 21CD. 21.5C【答案】A 【解析】 【分析】由题意得出关于A 、a 的方程组,可得出函数解析式,在函数解析式中令10x =可得结果.【详解】由题意可得sin 2923sin 172A a A a A a a A ππ⎧+=+=⎪⎪⎨⎪+=-=⎪⎩,解得623A a =⎧⎨=⎩,所以,函数解析式为()6sin 3236y x π⎡⎤=-+⎢⎥⎣⎦, 在函数解析式中,令10x =,可得716sin236232062y π⎛⎫=+=⨯-+= ⎪⎝⎭. 因此,10月份的月均温为20C . 故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分.9. 下列函数中,最小值是2的有( )A. 1y xx=+B. y =C. 223y x x =++D. e e x x y -=+【答案】BCD 【解析】 【分析】根据基本不等式逐一判断即可.【详解】对于A ,1y x x =+,当0x >时,12y x x =+≥=,当且仅当1x =时取等号;当0x <时,12y x x ⎛⎫=--+≤-=- ⎪-⎝⎭, 当且仅当1x =-时取等号,故A 不正确;对于B ,2y=≥=,当且仅当1x =时取等号. 对于C ,()2223122y x x x =++=++≥,当1x =-时,取最小值;对于D ,e e 2x x y -=+≥=,当且仅当0x =时取等号; 故选:BCD【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方10. 命题“x R ∀∈,210x ax -+≥”为真命题的一个必要不充分条件可以是( ) A. 22a -≤≤ B. 2a ≥- C. 2a ≤ D. 22a -<<【答案】BC 【解析】 【分析】根据题意,命题为真可得()240a ∆=--≤,求出a 的取值范围,再根据必要不充分条件即可求解. 【详解】由命题“x R ∀∈,210x ax -+≥”为真命题,可得()240a ∆=--≤,解得22a -≤≤, 对于A ,22a -≤≤是命题为真的充要条件; 对于B ,由2a ≥-不能推出22a -≤≤,反之成立, 所以2a ≥-是命题为真的一个必要不充分条件; 对于C ,2a ≤不能推出22a -≤≤,反之成立, 所以2a ≤也是命题为真的一个必要不充分条件; 对于D ,22a -<<能推出22a -≤≤,反之不成立, 22a -<<是命题为真的一个充分不必要条件.故选:BC11. 关于函数()sin cos f x x x =+有下述四个结论,其中正确的是:( ) A. ()f x 的图象关于原点对称 B. ()f x 在区间,4ππ⎛⎫⎪⎝⎭单调递减C. ()f x在[],ππ-有2个零点 D. ()f x 的最大值为2【答案】BC 【解析】 【分析】分sin 0x ≥,sin 0x <,将函数转化(),224sin cos ,2224x k x k f x x x x k x k πππππππππ⎛⎫+≤≤+ ⎪⎝⎭=+=⎛⎫++<<+ ⎪⎝⎭,再逐项求解判断.【详解】当sin 0x ≥,即22k x k πππ≤≤+时,()sin cos 4f x x x x π⎛⎫=+=+ ⎪⎝⎭,当sin 0x <,即222ππππ+<<+k x k 时,()sin cos 4f x x x x π⎛⎫=-+=+ ⎪⎝⎭,所以(),224sin cos ,2224x k x k f x x x x k x k πππππππππ⎛⎫+≤≤+ ⎪⎝⎭=+=⎛⎫++<<+ ⎪⎝⎭,A.因为函数定义域为R ,关于原点对称,又()()()()sin cos sin cos f x x x x x f x -=-+-=+=,所以()f x 是偶函数,其图象关于y 轴对称,故错误;B.当,4x ππ⎛⎫∈⎪⎝⎭时, 53,,42422x πππππ⎛⎫⎛⎫+∈⊆ ⎪ ⎪⎝⎭⎝⎭,因为sin y x =在3,22ππ⎡⎤⎢⎥⎣⎦上单调递减,所以()f x 在区间,4ππ⎛⎫⎪⎝⎭单调递减,故正确; C. 令()04f x x π⎛⎫=+= ⎪⎝⎭,则4x k ππ+=,因为[]0,x π∈,解得34x π=,又因为()f x 是偶函数,所以函数()f x 在[],ππ-有2个零点,故正确; D. ()f x,故错误; 故选:BC【点睛】关键点点睛:将函数变形为(),224,2224x k x k f x x k x k πππππππππ⎛⎫+≤≤+ ⎪⎝⎭=⎛⎫++<<+ ⎪⎝⎭是本题求解的关键.12. 已知定义在R 上的函数()f x 满足()()4f x f x +=,若()1y f x =-的图象关于直线1x =对称,且对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,则下列结论正确的是( ) A. ()f x 是偶函数 B. ()f x 在()2018,2020上单调递增 C. 4是函数()f x 的周期 D. ()f x 在()2018,2020上单调递减【答案】ACD 【解析】 【分析】A. 由()1y f x =-的图象与()y f x =的图象关系判断;C.由()f x 满足()()4f x f x +=判断;BD.由对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,得到()f x 在[]0,2上递增,再结合函数的周期性判断.【详解】因为()1y f x =-的图象关于直线1x =对称,所以()y f x =的图象关于直线0x =对称,所以()f x 是偶函数,故A 正确;()f x 满足()()4f x f x +=,所以4是函数()f x 的周期,故C 正确;因为对任意的[]12,0,2x x ∈,且12x x ≠,都有()()()12120x x f x f x -->⎡⎤⎣⎦,所以()f x 在[]0,2上递增,又()()()()20182,20200f f f f == ,所以()f x 在()2018,2020上单调递减,故D 正确B 错误; 故选:ACD第Ⅱ卷注意事项:用0.5毫米黑色签字笔在答题卡上书写作答.在试题卷上作答,答案无效. 三、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中的横线上.13. 已知函数()1,12,1x f x x x <⎧=⎨≥⎩则()()0f f =________.【答案】2 【解析】 【分析】根据分段函数每段的定义域求解.【详解】因为函数()1,12,1x f x x x <⎧=⎨≥⎩所以()01f =, 所以()()()012ff f ==,故答案为:214. 已知22tan 1tan αα=-α为锐角,则α=________. 【答案】3π 【解析】 【分析】根据二倍角的正切公式,求出tan2α,再由α为锐角,即可求出α.【详解】因为22tan tan 21tan ααα==-α为锐角,所以02απ<<, 因此223πα=, 所以3πα=.故答案为:3π.15. 如图,Rt ABC 的三个顶点A ,B ,C 恰好分别落在函数()21xy x =>,y x =,12log y x =的图象上,且B ,C 两点关于x 轴对称,则点A 的横坐标为________.【答案】2 【解析】 【分析】设出点(),2tA t ,根据题意可知//AB x 轴,从而可得出点B ,进而可得点C ,代入对数函数的解析式即可求解.【详解】设出点(),2tA t ,ABC 是直角三角形,且B ,C 两点关于x 轴对称,∴//AB x 轴,A 和B 纵坐标相同,2t x ∴=4t x ∴=,()4,2t t B ∴,则()4,2t t C -,C 在12log y x =的图象上,则12log 42t t=-,整理可得22t t -=-,()1t >,解得2t =. 故答案为:216. 已知定义在R 上的偶函数()f x ,当0x ≥时,函数()cos ,01,,1,x x f x x x π≤<⎧=⎨-≥⎩则满足()()12f x f x +<的x 的取值范围是________. 【答案】113-<<x【解析】 【分析】根据cos y x =和y x =-的单调性,又 cos 1π=-,得到()f x 在 [0,)+∞上递减,再根据()f x 是偶函数,将不等式()()12f x f x +<转化为()()12fx f x +<求解.【详解】当0x ≥时,函数()cos ,01,,1,x x f x x x π≤<⎧=⎨-≥⎩当01x ≤<时, 0x ππ≤<,因为 cos y x =在 []0,π上递减,所以 ()f x 在 [0,1)上递减,当1≥x 时,y x =-递减,又 cos 1π=-,所以()f x 在 [0,)+∞上递减, 又因为()f x 是定义在R 上的偶函数, 则不等式()()12f x f x +<可化为:()()12f x f x +<,所以12x x +>, 解得113-<<x , 故答案为:113-<<x四、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17. 求下列各式的值: (1)(03129324-⎛⎫--⨯ ⎪⎝⎭;(2)55251log 3log log 25log 215++⨯. 【答案】(1)3;(2)1. 【解析】 【分析】(1)根据指数的运算性质即可求解. (2)利用对数的运算性质即可求解. 【详解】(1)原式=33=+=(2)原式51lg 25lg 2log (3)15lg 2lg5=⨯+⨯ 152lg5lg 2log 5lg 2lg5-=+⨯ 12=-+ 1=.18. 已知全集U =R ,集合{}20A x x a =+>,()(){}140B x x x =+-≤. (1)当2a =时,求()UA B ;(2)若B A ⊆,求实数a 的取值范围. 【答案】(1){}|4x x ;(2)()2,+∞. 【解析】 【分析】(1)由2a =得到{}|1A x x =>-,再利用集合的补集和并集运算求解. (2)化简|2a A x x ⎧⎫=>-⎨⎬⎩⎭,{}|14B x x=-,再由B A ⊆求解.【详解】(1)当2a =时,集合{}|1A x x =>-,{}|1UxA x -=,因为()(){}|140B x x x =+-,所以{}|14B x x=-, 所以{}()|4U A B x x=.(2)因为{}|20A x x a =+>, 所以|2a A x x ⎧⎫=>-⎨⎬⎩⎭, 由(1)知,{}|14B x x=-,又因为B A ⊆,所以12a-<-, 解得2a >,所以实数a 的取值范围()2,+∞.19. 在①1k =-,②1k =这两个条件中任选一个,补充在下面问题中. 已知函数()kf x kx x=-,且_______,(1)求()f x 的定义域,并判断()f x 的奇偶性; (2)判断()f x 的单调性,并用定义给予证明. 【答案】(1)答案见解析;(2)答案见解析. 【解析】 【分析】选择①1k =-,可得1()f x x x =-,选择②1k =,可得1()f x x x=-. (1)使函数()f x 有意义,只需0x ≠;再求出()f x -与()f x 的关系即可求解. (2)根据证明函数单调性的步骤:取值、作差、变形、定号即可证明. 【详解】选择①1k =-,因为()kf x kx x =-,所以1()f x x x=-. (1)要使函数()f x 有意义,只需0x ≠, 所以函数()f x 的定义域为(,0)(0,)-∞+∞.因为11()()()f x x x f x x x-=--=--=--, 所以()f x 为奇函数.⑵ 函数()f x 在区间(,0)-∞和(0,)+∞均为增函数. 证明如下: 12,(0,)x x ∀∈+∞,且12x x <, 则12121211()()()f x f x x x x x -=--- 121212()x x x x x x -=-+12121()1)x x x x =-+( ()121212()1x x x x x x -+=,因为120x x <<,所以120x x -<,120x x >,1210x x +>, 所以12())0(f x f x -<,即12()()f x f x <, 故函数()f x 在区间(0,)+∞为增函数; 同理可证,函数()f x 在区间(,0)-∞为增函数;所以函数()f x 在区间(,0)-∞和(0,)+∞均为增函数. 选择②1k =,因为()kf x kx x =-,所以1()f x x x=-. (1)要使函数()f x 有意义,只需0x ≠, 所以函数()f x 的定义域为(,0)(0,)-∞+∞.因为11()()()()f x x x f x x x-=--=--=--, 所以()f x 奇函数.⑵ 函数()f x 在区间(,0)-∞和(0,)+∞均为减函数. 证明如下:12,(0,)x x ∀∈+∞,且12x x <, 则12121211()()()f x f x x x x x -=--- 212112()x x x x x x -=+- 21121()1x x x x ⎛⎫=-+ ⎪⎝⎭()211212()1x x x x x x -+=,因为120x x <<,所以210x x ->,120x x >,1210x x +>, 所以12())0(f x f x ->,即12()()f x f x >, 故函数()f x 在区间(0,)+∞为减函数; 同理可证,函数()f x 在区间(,0)-∞为减函数; 所以函数()f x 在区间(,0)-∞和(0,)+∞均为减函数.20. 已知,2παπ⎛⎫∈ ⎪⎝⎭,且sin cos 222αα-=. (1)求cos α的值; (2)若()4sin 5αβ-=,,2πβπ⎛⎫∈ ⎪⎝⎭,求cos β的值. 【答案】(1);(2. 【解析】 【分析】(1)将已知条件两边平方,求得sin α的值,进而求得cos α的值.(2)先求得()cos αβ-的值,然后利用cos cos[()]βααβ=--,结合两角差的余弦公式,求得cos β的值.【详解】(1)将sincos222αα-=两边同时平方,得11sin 2α-=,则1sin 2α=,又2παπ∈(,),所以cos 2α==-.(2)由(1)知,1sin ,cos 2αα==, 因为2παπ∈(,),2βπ∈π(,),所以22ππαβ-<-<.又因为4sin()5αβ-=,所以3cos()5αβ-,所以cos cos[)]βααβ=--( cos cos()sin sin()ααβααβ=-+-314525=+⨯, 【点睛】关键点点睛:对于三角函数给值求值的问题,关键在于运用已知角的和,差,二倍的运算表示待求的角,再选择相关公式得以求值.21. 某儿童活动中心,为儿童修建一个面积为100平方米的矩形游泳池,为保障儿童生命安全,在其四周都留有宽2米的路面,问所选场地的长和宽各为多少时,才能使占用场地的面积S 最小,并求出该最小值? 【答案】长为14米,宽为14米;196平方米. 【解析】 【分析】先设泳池的长为x 米,宽为y 米,列出式子,再利用基本不等式即可求解.【详解】解:设游泳池的长为x 米,宽为y 米,则场地长为(4)x +米,宽为(4)y +米,()1000,0xy x y =>>,(4)(4)S x y =++ 4()16xy x y =+++ 100164()x y =+++ 1164()x y =++1168xy ≥+11680=+196=,当且仅当“10x y ==”时取等号.∴当10x y ==时,S 取得最小值为196平方米,此时场地长为14米,宽为14米.22. 已知函数()2sin 36f x x ππ⎛⎫=+⎪⎝⎭.(1)用“五点作图法”在给定的坐标系中,画出函数()f x 在[]0,6上的图象; (2)求()f x 图象的对称轴与单调递增区间;(3)当[]0,x m ∈时,()12f x ≤≤,求实数m 的取值范围.【答案】(1)答案见解析;(2)对称轴方程为()31x k k Z =+∈,递增区间为[]()62,61k k k -+∈Z ;(3)[1,2].【解析】 【分析】(1)由[]0,6x ∈,计算出36x ππ+的取值范围,通过列表、描点、连线,可作出函数()f x 在[]0,6上的图象; (2)解方程()362x k k Z ππππ+=+∈可得出函数()f x 的对称轴方程,解不等式()222362k x k k Z ππππππ-≤+≤+∈可得函数()f x 的单调递增区间;(3)利用(1)中的图象结合()12f x ≤≤可得出实数m 的取值范围. 【详解】(1)因为()2sin 36f x x ππ⎛⎫=+ ⎪⎝⎭,当[]0,6x ∈时,13,3666x ππππ⎡⎤+∈⎢⎥⎣⎦, 列表如下:x0 1 524112636xππ+6π2ππ32π2π136πy 1 2 0 2-0 1作图如下:(2)因为()2sin36f x xππ⎛⎫=+⎪⎝⎭,令()362x k k Zππππ+=+∈,解得()31x k k Z=+∈,令()222362k x k k Zππππππ-≤+≤+∈,解得()6261k x k k Z-≤≤+∈,所以()f x的对称轴方程为()31x k k Z=+∈,递增区间为[]()62,61k k k-+∈Z;(3)[]0,x m∈,,36636mxπππππ⎡⎤∴+∈+⎢⎥⎣⎦,又()12f x≤≤,由(1)的图象可知,12m≤≤,m∴的取值范围是[]1,2.【点睛】方法点睛:函数()()sin0y A x Aωϕω=+>>0,的图象的两种作法是五点作图法和图象变换法:(1)五点法:用“五点法”作()()sin0y A x Aωϕω=+>>0,的简图,主要是通过变量代换,设z xωϕ=+,由z取0、2π、π、32π、2π来求出相应的x,通过列表,计算得出五点坐标,描点后得出图象;(2)三角函数图象进行平移变换时注意提取x的系数,进行周期变换时,需要将x的系数变为原来的ω倍,要特别注意相位变换、周期变换的顺序,顺序不同,其变换量也不同.。

福州市2020-2021学年高一数学期末试卷答案

福州市2020-2021学年高一数学期末试卷答案

福州市2020—2021年第二学期质量检查数学参考答案及评分细则评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分标准制定相应的评分细则。

2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应给分数的一半;如果后继部分的解答有较严重的错误,就不再给分。

3.解答右端所注分数,表示考生正确做到这一步应得的累加分数。

4.只给整数分数。

一、单项选择题:本题共8小题,每小题5分,共40分.1.B 2.A 3.A 4.D 5.B6.B7.C8.C二、多项选择题:本题共4小题,每小题5分,共20分.9.BCD10.BD11.CD12.AB三、填空题:本大题共4小题,每小题5分,共20分.13.814.20π 15.13;5239,2525⎛⎫ ⎪⎝⎭或1252392525+e e 16.0.84612.【解答】因为()2c b a b bc =+>,所以c b >,故A 正确;由余弦定理得,2222cos 2222a c b a ab a b cB ac ac c b+-++====,所以2cos c b B =, 由正弦定理得,sin sin c C b B =,所以sin cos 2sin C B B=,即sin 2sin cos C B B =,所以sin sin 2C B =,所以2C B =或2C B +=π,因为A B C ++=π,若2C B +=π,可得A B =,所以a b =, 又()2c b a b =+,所以222c a b =+,此时2C π=,4A B π==,满足2C B =,故B 正确;当4A B π==,2C π=时,a c <,故C 错误;由B 选项可知2C B =,故)2)0A B C B B =π-(+=π-(+>,即3B π<,故D 错误. 15.【解答】因为()2,7=-a ,()4,3=b ,所以13⋅=a b ,向量a 在向量b 上的投影向量为5239,2525⋅⎛⎫⋅⋅= ⎪⋅⎝⎭a b b a a b b . 16.【解答】将A ,B ,C 型电子元件分别接入3号位,1号位,2号位,或者将A ,B ,C 型电子元件分别接入3号位,2号位,1号位时,该电路子模块能正常工作的概率最大,记事件E =“A 元件正常工作”,事件F =“B 元件正常工作”,记事件G =“C 元件正常工作”, 记事件H = “电路子模块能正常工作”,则()()[1()()]P H P E P F P G =-=0.9[1(10.8)(10.7)]0.846⨯--⨯-=.四、解答题:本大题共6小题,共70分.17. 【命题意图】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系;考查空间想象能力、逻辑推理能力;考查化归与转化思想、数形结合思想;考查直观想象、逻辑推理等核心素养;体现基础性和综合性. 【解答】(1)因为平面ABD ⊥平面BCD ,平面ABD平面BCD BD =,BC ⊂平面BCD ,BC BD ⊥,所以BC ⊥平面ABD . ························································· 2分因为AD ⊂平面ABD ,所以BC AD ⊥,又AB AD ⊥,而AB BC B =,AB ⊂平面ABC ,BC ⊂平面ABC ,所以AD ⊥平面ABC . ·················································· 4分又因为AC ⊂平面ABC ,所以AD AC ⊥.················································· 5分(2)存在点G ,满足2DG GB =时,使得平面EFG平面ABC . ················· 6分理由如下:在平面ABD 内,因为2DE EA =,2DG GB =,即DG DEGB EA=, 所以EGAB . ················································································· 7分 又因为EG ⊄平面ABC ,AB ⊂平面ABC ,所以EG 平面ABC ,同理可得FG平面ABC . ··································································· 9分BDC又EG FG G =,EG ⊂平面EFG ,又FG ⊂平面EFG ,故平面EFG 平面ABC .故存在点G ,满足2DG GB =时,使得平面EFG平面ABC . ···················· 10分18. 【命题意图】本小题主要考查同角三角函数的关系、三角恒等变换等基础知识;考查运算求解能力,逻辑推理能力;考查化归与转化思想、函数与方程思想;考查逻辑推理、数学运算等核心素养;体现基础性.【解答】解法一:(1)由221sin cos ,5sin cos 1,αααα⎧+=⎪⎨⎪+=⎩联立可得225sin 5sin 120αα--=, ······················································ 1分 解得4sin 5α=或3sin 5α=-, ······························································· 3分 又()0,α∈π,sin 0α>,故3sin 5α=-不合题意,舍去. ······························· 4分13cos sin 55αα=-=-, ········································································ 5分 于是4tan 3α=-. ··············································································· 6分(2)由sin β=0,2βπ⎛⎫∈ ⎪⎝⎭,可得cos β=, ······························· 7分 所以()43sin sin cos cos sin 5105102αβαβαβ⎛⎫+=+=⨯+-⨯=⎪⎝⎭. ············· 9分 又因为()0,α∈π,3cos 05α=-<,所以,2απ⎛⎫∈π ⎪⎝⎭,所以3,22αβππ⎛⎫+∈ ⎪⎝⎭, ······· ··································································································· 10分 所以34αβπ+=. ·············································································· 12分 解法二:(1)由1sin cos 5αα+=,可知21(sin cos )12sin cos 25αααα+=+=, 所以12sin cos 25αα=- ········································································ 2分 即222sin cos tan 1225sin cos tan 1αααααα==-++ ······················································· 3分解得4tan 3α=-或3tan 4α=-. ······························································ 4分又()0,α∈π,则sin 0α>,当4tan 3α=-时,4sin 5α=,3cos 5α=-,符合题意.当3tan 4α=-时,3sin 5α=,4cos 5α=-,不合题意,舍去. ························· 5分终上所述,4tan 3α=-. ······································································· 6分(2)同解法一. ··············································································· 12分 19. 【命题意图】本小题主要考查频率分布直方图、数字特征、古典概型等基础知识;考查运算求解能力;考查化归与转化思想、必然与或然的思想;考查数据分析、数学运算、数学建模、数学抽象等核心素养;体现基础性、综合性、应用性. 【解答】解法一:(1)由频率分布直方图可得,()0.0050.02520.01101a +⨯++⨯=,解得0.035a =. ··································· 2分 样本数据的平均数为:500.05600.25700.35800.25900.171⨯+⨯+⨯+⨯+⨯=. ···································································································· 5分 (2)由频率分布直方图可知,成绩在[)75,85,[]85,95内的频率分别为0.25,0.1,所以采用分层抽样的方法从样本中抽取的7人中,成绩在[)75,85内的有5人,成绩在[]85,95的有2人. ············································································· 7分 从这7人中随机抽取2人进行调查分析,记事件A =“2人中至少有1人成绩在[]85,95内”, 事件1A =“2人中恰有1人成绩在[]85,95内”, 事件2A =“2人成绩都在[]85,95内”,则12A A A = .因为1A 与2A 互斥,所以根据互斥事件的概率加法公式,可得()()()12P A P A P A =+.将成绩在[)75,85内的5个人分别记为12345,,,,B B B B B ,将成绩在[]85,95内2个人分别记为12,C C ,设从这7人中第一次抽取的人记为1x ,第二次抽取的人记为2x ,则可用数组12(,)x x 表示样本点.可知样本空间{}121314151112(,),(,),(,),(,),(,),...,(,)B B B B B B B B B C C C Ω=,{}1111221223125(,),(,),(,),(,),(,),...,(,)A B C B C B C B C B C C B =,{}21221(,),(,)A C C C C =,因为样本空间包含的样本点个数为()42n Ω=, ········································ 8分 且每个样本点都是等可能的,又因为()120n A =,()22n A =, ···················· 10分 由古典概型公式可得()20211424221P A =+=. ·············································· 12分 解法二:(1)同解法一 ······································································· 5分 (2)由频率分布直方图可知,成绩在[)75,85,[]85,95内的频率分别为0.25,0.1,所以采用分成抽样的方法从样本中抽取的7人中,成绩在[)75,85内的有5人,成绩在[]85,95的有2人. ············································································· 7分 从这7人中随机抽取2人进行调查分析,记事件A =“2人中至少有1人成绩在[]85,95内”, 事件1A =“2人中恰有1人成绩在[]85,95内”, 事件2A =“2人成绩都在[]85,95内”,则12A A A = .因为1A 与2A 互斥,所以根据互斥事件的概率加法公式,可得()()()12P A P A P A =+.将成绩在[)75,85内的5个人分别记为1,2,3,4,5,将成绩在[]85,95内2个人分别记为6,7,设从这7人中抽取的2个人记为1x ,2x ,不妨设12x x <,则可用数组12(,)x x 表示样本点.可知样本空间{}121212(,)|,{1,2,3,4,5,6,7},x x x x x x Ω=∈<且,{}1(1,6),(2,6),(3,6),(4,6),(5,6),...,(5,7)A =,{}2(6,7)A =,因为样本空间包含的样本点个数为()21n Ω=, ········································ 8分 且每个样本点都是等可能的,又因为()110n A =,()21n A =, ····················· 10分 由古典概型公式可得()10111212121P A =+=. ·············································· 12分 20. 【命题意图】本小题主要考查函数的奇偶性、单调性、函数与方程等基础知识;考查逻辑推理能力、直观想象能力、运算求解能力;考查化归与转化思想、数形结合思想、函数与方程思想;考查直观想象、逻辑推理、数学运算等核心素养;体现基础性、综合性.【解答】解法一:(1)()f x 的定义域为(),-∞+∞,对任意的x ,有()()e e x x f x f x --=+=,所以函数()e e x x f x -=+为偶函数.························· 1分 考虑()f x 在()0,+∞上的单调性: ()12,0,x x ∀∈+∞,且12x x <,有()()()()112212e e e e x x x x f x f x ---=+-+ ················································ 2分 ()()1212e e e e x x x x --=-+- ()211212e e e e ex x x x x x +-=-+()()121212ee e 1e x x x x x x ++--=····················································· 4分由210x x >>,得12e e 0x x -<,12e 1x x +>,12e 0x x +>,于是()()120f x f x -<, 即()()12f x f x <,所以()f x 在()0,+∞上单调递增. ·································· 5分 又因为()f x 是偶函数,所以()f x 在(),0-∞上单调递减.综上所述,()f x 在区间()0,+∞上单调递增,在(),0-∞上单调递减. ············· 6分 (2)因为()()2112e e x x g x x x a --+=-++()()211=1e e 1x x x a ---⎡⎤-++-⎣⎦将()g x 的图像向左平移1个单位得到()()2e e 1x x h x x a -=++-, ················· 7分 对任意的x ,有()()h x h x -=,故()h x 是偶函数. ······································ 9分 要使()g x 有唯一零点,即()h x 有唯一零点,而()h x 的图像关于y 轴对称,故()00h =,求得12a =. ····················································································· 11分 由(1)可知,当12a =时,()h x 在区间()0,+∞上单调递增,在(),0-∞上单调递减,又()00h =,故可知()h x 有唯一零点0,符合题意,故12a =. ····················· 12分 解法二:(1)同解法一. ··································································· 6分 (2)因为()()2112e e x x g x x x a --+=-++()()211=1e e 1x x x a ---⎡⎤-++-⎣⎦()()()()221212222e e x x g x x x a --+--⎡⎤-=---++⎣⎦()2114442e e x x x x x a --=-+-+++()211=2e e x x x x a --+-++,所以()()2g x g x -=,即1x =为()g x 的对称轴. ········································ 9分 要使函数()g x 有唯一零点,所以()g x 的零点只能为1x =, ························ 10分 即()()211111121e e 0g a --+=-⋅++=,解得12a =. ······································ 11分 由(1)可知,当12a =时,()g x 在区间()1,+∞上单调递增,在(),1-∞上单调递减,又()10g =,故可知()g x 有唯一零点1,符合题意,故12a =. ························ 12分 21. 【命题意图】本小题主要考查正弦定理等基础知识;考查逻辑推理能力、运算求解能力;考查化归与转化思想、数形结合思想;考查直观想象、逻辑推理、数学运算、数学建模、数学抽象等核心素养;体现基础性、综合性、创新性、应用性. 【解答】解法一:①作图如下······························································ 3分选择一条水平基线HG (如图),使得,,H G B 三点在同一条直线上. ··············· 4分 在,H G 两点用测角仪测得A 的仰角分别为,αβ. ········································ 5分 用米尺测得HG a =,即CD a =,测得测角仪的高度是h .(若没有做出DH ,扣掉1分) ···································································································· 6分 ②在ACD ∆中,由正弦定理,可得()sin sin AC CD βαβ=-,即()sin sin a AC βαβ=-, ········ ···································································································· 8分 在Rt ACD ∆中,有()sin sin sin sin a AE AC αβααβ==-,····································· 10分所以建筑物的高度()sin sin sin a AB AE h h αβαβ=+=+-.(若漏掉h ,扣一分) ············ 12分 解法二:①同解法一. ········································································· 6分 ②在Rt ACE ∆,Rt ADC ∆中分别有tan AE DE β=,tan AECE α=, ····················· 8分所以(tan tan )tan tan tan tan AE AE AE CD DE CE αββααβ-=-=-=, 所以tan tan tan tan a AE αβαβ=-. ····································································· 10分所以建筑物的高度tan tan tan tan a AB AE h h αβαβ=+=+-.(若漏掉h ,扣一分) ··········· 12分22. 【命题意图】本小题主要考查直线与直线、直线与平面、平面与平面的位置关系、平面与平面所成角等基础知识;考查空间想象能力、逻辑推理能力、运算求解能力;考查化归与转化思想、数形结合思想;考查直观想象、逻辑推理、数学运算等核心素养;体现基础性和综合性.【解答】解法一:(1)连接DB 交AC 于O ,连接OM , ····························· 1分 因为M ,O 分别为SB ,DB 的中点,所以SDMO . ································ 2分又因为SD ⊄平面MAC ,MO ⊂平面MAC ,所以SD平面MAC . ················ 4分(2)因为SC BC AB SA SB a =====,所以CM SB ⊥,AM SB ⊥,故AMC ∠为二面角A SB C --的平面角. ················································· 6分因为AC =,AM CM ==, 所以由余弦定理可得,2221cos 23AM CM AC AMC AM CM +-∠==-⋅. ······················· 7分 取S B ''的中点N ,连接A N ',C N ',因为S C B C B A S A a ''''''''====,所以A N S B '''⊥,C N S B '''⊥,故A NC ''∠为二面角A S B C ''''--的平面角. ·············································· 9分因为A N C N ''==, 由余弦定理可得,2221cos 23A N C N A C A NC A N C N ''''+-''∠==''⋅. ···························· 10分OBCSADM故180AMC A NC ''∠+∠=, 即二面角A SB C --的平面角与二面角A S B C ''''--的平面角互补.······················································································· 11分 故当S 与S ',B 与B ',C 与C '重合时,正四面体S A B C ''''-的侧面S A B '''与正四棱锥S ABCD -的侧面SAB 为同一平面,由对称性同理可得,正四面体S A B C ''''-的侧面S A C '''与正四棱锥S ABCD -的侧面SDC 为同一平面,故拼成的新的几何体由5个面组成. ····························· 12分解法二:(1)同解法一. ····································································· 4分(2)如图所示,由于S ∈平面SAB ,S ∈平面SCD ,故设平面SAB平面SCD l =,在直线l 上取一点A ',使其在S 点的右侧,并满足SA SB SC a '===,连接A C '与A B ',下证A SBC'-是棱长为a 的正四面体: 因为DCAB ,DC ⊄平面SAB ,AB ⊂平面SAB ,所以DC 平面SAB . ······· 6分又因为平面SCD 平面SAB SA '=,DC ⊂平面SCD ,所以DC SA ',所以60A SC SCD '∠=∠=.········································································· 8分又SA SC a '==,故SA C '∆为边长为a 的正三角形,所以A C a '=. ················· 10分 同理可得A B a '=,所以A SBC '-是棱长为a 的正四面体,所以正四面体A SBC '-的侧面SA C '与正四棱锥S ABCD -的侧面SDC 为同一平面, 正四面体A SBC '-的侧面SA B '与正四棱锥S ABCD -的侧面SAB 为同一平面,故拼成N B'A’C'S'A’(S')(B')(C')B C S AD D ASCBlA’。

2020-2021学年福建省福州市罗源县(协作体三校)高一上学期期末考试数学试题(解析版)

2020-2021学年福建省福州市罗源县(协作体三校)高一上学期期末考试数学试题(解析版)

2020-2021学年福建省福州市罗源县(协作体三校)高一上学期期末考试数学试题一、单选题1.设全集{}{},0,1,2,3,1,0,1U R M N ===-,则图中阴影部分所表示的集合是A .{}1B .{}0,1C .{}0D .{}1-【答案】D【解析】阴影部分表示的集合为在集合N 中去掉集合M ,N 的交集,即得解. 【详解】由维恩图可知,阴影部分表示的集合为在集合N 中去掉集合M ,N 的交集, 由题得{0,1}M N ⋂=,所以阴影部分表示的集合为{}1-. 故选:D【点睛】本题主要考查维恩图,考查集合的运算,意在考查学生对这些知识的理解掌握水平,属于基础题.2.函数()()()200x x f x x x ⎧≥⎪=⎨-<⎪⎩,,的零点所在的区间是( )A .()2,1--B .1,2C .0,1D .()1,1-【答案】D【分析】题目中函数较为简单,可以直接求得对应的零点,从而判断所在区间即可 【详解】当0x ≥时,令0f x ,即20x =,所以0x =;当0x <时,令0f x,即x 0-=,0x =,不在定义域区间内,舍所以函数()f x 零点所在的区间为()1,1- 故选:D 3.“1sin 2x =”是“2()6x k k Z ππ=+∈”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【答案】B【分析】首先根据1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈,再判断即可得到答案. 【详解】由1sin 2x =可得:2()6x k k Z ππ=+∈或52()6x k k Z ππ=+∈, 即2()6x k k Z ππ=+∈能推出1sin 2x =, 但1sin 2x =推不出2()6x k k Z ππ=+∈ “1sin 2x =”是“2()6x k k Z ππ=+∈”的必要不充分条件 故选:B【点睛】本题主要考查必要不充分条件的判断,同时考查根据三角函数值求角,属于简单题.4.已知30.60.6log 3,0.6,3a b c ===,则( ) A .a <b <c B .a <c <b C .c <a <b D .b <c <a【答案】A【解析】找中间量0或1进行比较大小,可得结果【详解】300.600.60.6log 3log 10,00.60.61,331a b c =<=<=<==>=,所以a b c <<,故选:A .【点睛】此题考查利用对数函数、指数函数的单调性比较大小,属于基础题5.若5cos 12πα⎛⎫- ⎪⎝⎭sin 12πα⎛⎫+= ⎪⎝⎭( )A B .23-C .23D 【答案】A【分析】令512πθα=-,则cos θ=sin sin 122ππαθ⎛⎫⎛⎫+=+ ⎪ ⎪⎝⎭⎝⎭,由诱导公式可得结果.【详解】令512πθα=-,则512παθ=+,且cos θ=sin sin cos 122ππαθθ⎛⎫⎛⎫+=+==⎪ ⎪⎝⎭⎝⎭故选:A.6.函数()22sin x xy x -=-在[,]-ππ的图象大致为( )A .B .C .D .【答案】A【分析】根据函数解析式,结合特殊值,即可判断函数图象.【详解】设()()22sin x xf x x -=-,则()()22sin()()x x f x x f x --=--=,故()f x 为[],ππ-上的偶函数,故排除B .又222202f πππ-⎛⎫=-> ⎪⎝⎭,(0)0f =,排除C 、D .故选:A .【点睛】本题考查图象识别,注意从函数的奇偶性、单调性和特殊点函数值的正负等方面去判断,本题属于中档题.7.要得到函数3sin 24y x π⎛⎫=+ ⎪⎝⎭的图象,只需将函数3sin 2y x =的图象向( )平移( )个单位长度. A .左4πB .右4π C .左8π D .右8π 【答案】C【分析】因为3sin 23sin 248y x x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,由此可得结果.【详解】因为3sin 23sin 248y x x ππ⎡⎤⎛⎫⎛⎫=+=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,所以其图象可由3sin 2y x =向左平移8π个单位长度得到. 故选:C.8.已知函数221,0()2,0x x f x x x x ⎧->=⎨--≤⎩,若函数()()g x f x m =-有3个零点,则实数m 的取值范围( ) A .()1,0- B .[]1,0-C .(0,1)D .[]0,1【答案】C【分析】函数()()g x f x m =-有3个零点,所以()()0g x f x m =-=有三个实根,即直线y m =与函数()y f x =的图象有三个交点,作出图象,即可求出实数m 的取值范围.【详解】因为函数()()g x f x m =-有3个零点,所以()()0g x f x m =-=有三个实根,即直线y m =与函数()y f x =的图象有三个交点.作出函数()y f x =图象,由图可知,实数m 的取值范围是(0,1). 故选:C .二、多选题9.下列命题为真命题的是( ) A .若a b >,则22ac bc > B .若23,12a b -<<<<,则42a b -<-< C .若0,0b a m <<<,则m ma b> D .若,a b c d >>,则ac bd >【答案】BC【分析】由不等式的性质对合选项一一进行判断可得答案.【详解】解:A 项,若a b >,取0c ,可得22ac bc =,故A 不正确; B 项, 若23,12a b -<<<<,可得:21b -<-<-,故42a b -<-<,故B 正确;C 项,若0,b a <<可得011b a>>,由0m <可得:m m a b >,故C 正确;C 项,举反例,虽然52,12>->-,但是5-<-4,故D 不正确; 故选:BC.【点睛】本题主要考查利用不等式的性质比较大小,属于基础题型. 10.若sin α=45,且α为锐角,则下列选项中正确的有( )A .tan α=43B .cos α=35C .s 4in(60)α++=D .sin α-cos α=15-【答案】ABC 【分析】因为4sin 5α,且α为锐角,可解得3cos 5α=,进而可得结果.【详解】因为4sin 5α,且α为锐角,所以3cos 5α=,sin 4tan cos 3ααα==,()413sin 60sin cos 60cos sin 60525ααα+=+=⨯+⨯=1sin cos 5αα-=. 故选:ABC.11.下列叙述正确的是( )A .已知函数[]22,4,0()2(4),(0,)x x f x f x x ⎧-+∈-=⎨-∈+∞⎩,则()68f =B .命题“对任意的1x >,有21x >”的否定为“存在1x ≤,有21x ≤”C .已知扇形的周长是4 cm ,则扇形面积最大时,扇形的中心角的弧度数是2D .已知250x ax b -+>的解集为{4x x >或1}x <,则5a b += 【答案】ACD【分析】由分段函数可判断A ;由全称命题的否定可判断B ;由扇形面积公式结合二次函数可判断C ;由“三个二次”结合韦达定理可判断D.【详解】对于选项A :()()()62242428f f f ==-=⨯=,故A 正确;对于选项B :命题“对任意的1x >,有21x >”的否定为“存在1x >,有21x ≤”,故B 错误;对于选项C :设扇形半径为r ,弧长为l ,则扇形周长24l r +=,从而扇形面积()()211421122S lr r r r ==-=--+,所以当1r =时,S 最大,此时422l r =-=,扇形中心角的弧度数是2lr=,故C 正确;对于选项D :由选项可知1和4是方程250x ax b -+=的两实根,所以14514a b+=⎧⎨⨯=⎩,解得1a =,4b =,所以5a b +=,故D 正确.故选:ACD.12.知函数()sin 23f x x π⎛⎫=- ⎪⎝⎭,则下列说法正确的是( )A .函数()f x 的最小正周期是2πB .函数()f x 增区间是5,()26212k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦C .函数()f x 是奇函数D .函数图象关于直线23x π=对称 【答案】ABD【分析】先由图象得出函数sin y x =的性质,进而可得出()sin 23f x x π⎛⎫=- ⎪⎝⎭的性质.【详解】函数sin y x =的图象如下图:由图可知,函数sin y x =的最小正周期为π,单调递增区间是(),Z 2k k k πππ⎡⎤⎢⎥⎣⎦+∈,对称轴是()Z 2k x k π=∈. ()sin 23f x x π⎛⎫=- ⎪⎝⎭,()f x 的最小正周期是2π,故A 正确; 令232k x k ππππ≤-≤+得526212k k x ππππ+≤≤+,所以()f x 的增区间是5,(Z)26212k k k ππππ⎡⎤++∈⎢⎥⎣⎦,故B 正确; 因为(0)0f ≠,所以()f x 不是奇函数,故C 错误; 令232k x ππ-=得(Z)46k x k ππ=+∈,取2k =得对称轴方程为23x π=,故D 正确. 故选:ABD. 三、填空题13.已知1sin cos 3θθ+=-,则sin 2θ=_______.【答案】89-【解析】将条件平方可得答案.【详解】因为1sin cos 3θθ+=-,所以()21sin cos 1sin 29θθθ+=+=,所以8sin 29θ=-故答案为:89-14.若函数f (x )R ,则实数a 的取值范围是:_____________. 【答案】[]0,4【解析】根据题意,有20x ax a ++≥在R 上恒成立,则240a a ∆=-≤,即可得解.【详解】若函数f (x )的定义域为R , 则20x ax a ++≥在R 上恒成立, 则240a a ∆=-≤, 解得:04a ≤≤, 故答案为:[]0,4.15.函数212()log ()f x x x =-的单调增区间为________【答案】1,12⎡⎫⎪⎢⎣⎭.【分析】结合定义域由复合函数的单调性可解得结果. 【详解】由20x x ->得()f x 定义域为()0,1,令2t x x =-,则t 在112⎡⎫⎪⎢⎣⎭,单调递减,又12log y t =在()0,∞+单调递减, 所以()f x 的单调递增区间是112⎡⎫⎪⎢⎣⎭,. 故答案为:112⎡⎫⎪⎢⎣⎭,. 16.水葫芦又名凤眼莲,是一种原产于南美洲亚马逊河流域属于雨久花科,凤眼蓝属 的一种漂浮性水生植物,繁殖极快,广泛分布于世界各地,被列入世界百大外来入侵种之一.某池塘中野生水葫芦的面积与时间的函数关系图象如图所示.假设其函数关系为指数函数,并给出下列说法:①此指数函数的底数为2;②在第5个月时,野生水葫芦的面积就会超过30m 2; ③野生水葫芦从4m 2蔓延到12m 2只需1.5个月;④设野生水葫芦蔓延至2m 2、3m 2、6m 2所需的时间分别为t 1、t 2、t 3,则有t 1+t 2=t 3; ⑤野生水葫芦在第1到第3个月之间蔓延的平均速度等于在第2到第4个月之间蔓延的平均速度.其中,正确的是________.(填序号). 【答案】①②④【分析】设(0x y a a =>且1)a ≠,根据图像求出2x y =,结合计算进而可判断①②③④; 根据第1到第3个月、第2到第4个月的面积即可求出对应的平均速度,进而判断⑤. 【详解】因为其关系为指数函数, 所以可设(0x y a a =>且1)a ≠,又图像过点(416),,所以41622x a a y =⇒=⇒=. 所以指数函数的底数为2,故①正确; 当5t =时,523230s ==>,故②正确;当y =4时,1422tt =⇒=;当y =12时,222122log 122log 3tt =⇒==+;所以212log 3 1.5t t -=≠,故③错误; 因为122321log 3log 6t t t ===,,,所以122231log 3log 6t t t +=+==,故④正确;第1到第3个月之间的平均速度为:18922+=, 第2到第4个月之间的平均速度为:416102+=, 9102≠,故⑤错误. 故答案为:①②④ 四、解答题17.计算:(171233log 203113lg 25lg 47864π-⎛⎫⎛⎫--++++ ⎪ ⎪⎝⎭⎝⎭();(2)已知1tan 2α=,求()()()2212sin cos 2sin sin 2παπαππαα+--+⎛⎫+-- ⎪⎝⎭的值【答案】(1)20;(2)3-【分析】(1)利用指对数的运算化简(2)利用三角函数诱导公式,以及弦化切的运算 【详解】(1)对原式进行计算如下:71233log 23113lg 25lg 4786453116lg100222162220-⎛⎫⎛⎫--++++ ⎪ ⎪⎝⎭⎝⎭=--+++=++=π()(2)对原式进行化简如下: ()()()()()()2222212sin cos 2sin cos 12sin cos sin cos sin cos sin cos sin sin 2sin cos tan 1sin cos tan 1+--+++==-+-⎛⎫+-- ⎪⎝⎭++==--παπαααααπααααααπαααααααα 将1tan 2α=代入上式得:原式1123112+==-- 18.已知集合203x A xx ⎧⎫-=≥⎨⎬+⎩⎭,2{|230}B x x x =--<,{|1}C x a x a =<<+. (1)求集合A ,B 及A B .(2)若()C A B ⊆⋂,求实数a 的取值范围.【答案】(1){}32A x x =-<≤, {}13B x x =-<<,{}33A B x x ⋃=-<<; (2)[]1,1-.【分析】(1)解不等式得到集合A ,B ,进而可得A B ;(2)先求{}|12A B x x =-<≤,再根据()C A B ⊆⋂得到112a a ≥-⎧⎨+≤⎩,由此可解得实数a的取值范围. 【详解】(1)∵203xx-≥+,∴()()230x x -+≥且3x ≠-,解得32x -<≤,故集合{}|32A x x =-<≤.∵2230x x --<,∴()()130x x +-<,解得13x ,故集合{}|13B x x =-<<. ∴{}|33A B x x ⋃=-<<.(2)由(1)可得集合{}|32A x x =-<≤,集合{}|13B x x =-<<,则{}|12A B x x =-<≤.又集合{}|1C x a x a =<<+,由()C A B ⊆⋂得112a a ≥-⎧⎨+≤⎩,解得11a -≤≤,故实数a 的取值范围是[]1,1-.19.已知函数2()sin sin 2f x x x x π⎛⎫=+ ⎪⎝⎭.(1)求()f x 的最小正周期; (2)求函数()f x 的单调增区间;(3)求函数()f x 在区间20,3π⎡⎤⎢⎥⎣⎦上的值域.【答案】(1)π;(2)()πππ,πZ 63k k k ⎡⎤-++∈⎢⎥⎣⎦;(3)30,2⎡⎤⎢⎥⎣⎦. 【分析】(1)根据二倍角公式和诱导公式,结合辅助角公式可求得()f x 解析式,从而利用周期公式可求得周期;(2)利用整体代换即可求单调增区间;(3)由20,3x π⎡⎤∈⎢⎥⎣⎦得72,666x πππ⎡⎤-∈-⎢⎥⎣⎦,从而可得()f x 的取值范围.【详解】(1)2()sin sin 2f x x x x π⎛⎫=+ ⎪⎝⎭1cos 212sin 2262x x x π-⎛⎫==-+ ⎪⎝⎭,所以最小正周期22T ππ==. (2)由222262k x k πππππ-+≤-≤+,得 ,Z 63k x k k ππππ-+≤≤+∈,所以函数()f x 的单调递增区间是,,Z 63k k k ππππ⎡⎤-++∈⎢⎥⎣⎦.(3)由20,3x π⎡⎤∈⎢⎥⎣⎦得72,666x πππ⎡⎤-∈-⎢⎥⎣⎦,则1sin 2,162x π⎛⎫⎡⎤-∈- ⎪⎢⎥⎝⎭⎣⎦,所以3()0,2f x ⎡⎤∈⎢⎥⎣⎦.20.已知函数()()2R 2x x af x a =+∈为定义在R 上的奇函数.(1)求实数a 的值;(2)判断函数()f x 的单调性,并证明; 【答案】(1)1a =-;(2)()f x 是R 上的增函数,证明详见解析. 【分析】(1)由奇函数定义可解得a ;(2)1()22x xf x =-是R 上的增函数,可用定义证明. 【详解】(1)因为()22xxaf x =+为定义在R 上的奇函数, 所以对任意R x ∈,()()f x f x -=-,即()()0f x f x ,所以()1()()22120222x x x xxxa a f x f x a --⎛⎫⎛⎫⎛⎫-+=+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭, 因为1202x x+≠,所以10a +=,即1a =-. (2)由(1)知1()22xxf x =-,则()f x 是R 上的增函数,下用定义证明. 任取12,R x x ∈,且12x x <,()()()121212121211122221222x x x x x x x x f x f x +⎛⎫⎛⎫⎛⎫-=---=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,当12x x <时,12220x x -<,又121102x x ++>,所以()()120f x f x -<,即()()12f x f x <,故1()22xxf x =-是R 上的增函数. 21.(1)已知函数()sin()f x A x ωϕ=+(其中0A >,0>ω,||2ϕπ<)的图象与x 轴的交于A ,B 两点,A ,B 两点的最小距离为2π,且该函数的图象上的一个最高点的坐标为,212π⎛⎫⎪⎝⎭.求函数()f x 的解析式(2)已知角α的终边在直线y =上,求下列函数的值:sin ,cos ,tan ααα 【答案】(1)()π2sin 23f x x ⎛⎫=+ ⎪⎝⎭;(2)当α为第一象限角时:1sin ,tan 2ααα==当 α为第三象限角时:1sin ,tan 2ααα==-=【分析】(1)由题意得A ,T ,进而求得ω,根据最高点,212π⎛⎫⎪⎝⎭结合2πϕ<可得ϕ,进而可求得()f x 的解析式;(2)由题意得α为第一或第三象限角,分两种情况由同角三角函数关系可解得结果.【详解】(1)由题意得2A =,22T π=,则2T ππω==,解得2ω=. 根据最高点,212π⎛⎫ ⎪⎝⎭得2sin 2212πϕ⎛⎫⨯+= ⎪⎝⎭,所以2=2122k ππϕπ⨯++,即2,Z 3k k πϕπ=+∈,因为2πϕ<,所以,取0k =得3πϕ=.所以2n 2)3(si f x x π⎛⎫=+ ⎪⎝⎭.(2)由题意得tan α=α为第一或第三象限角.当α为第一象限角时:由tan α=sin αα=,代入22sin cos 1αα+=得21cos 4α=, 又cos 0α>,所以1cos 2α=,则sin cos tan ααα=.所以1sin ,tan 2ααα=== 当α为第三象限角时:同理可得1sin ,tan 2ααα==-=22.某企业开发生产了一种大型电子产品,生产这种产品的年固定成本为2500万元,每生产x 百件,需另投入成本()c x (单位:万元),当年产量不足30百件时,()210100c x x x =+;当年产量不小于30百件时,()100005014500c x x x=+-;若每件电子产品的售价为5万元,通过市场分析,该企业生产的电子产品能全部销售完. (1)求年利润y (万元)关于年产量x (百件)的函数关系式; (2)年产量为多少百件时,该企业在这一电子产品的生产中获利最大?【答案】(1)2104002500,030100002000,30x x x y x x x ⎧-+-<<⎪=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩;(2)100百件 【解析】(1)根据收益=总收入-成本,进行分情况讨论,构建出分段函数; (2)对分段函数每一段进行研究最大值,然后再求出整个函数的最大值.【详解】解:(1)当030x <<时,22500101002500104002500y x x x x x =---=-+-; 当30x ≥时,1000010000500501450025002000y x x x x x ⎛⎫=--+-=-+ ⎪⎝⎭;2104002500,030100002000,30x x x y x x x ⎧-+-<<⎪∴=⎨⎛⎫-+≥ ⎪⎪⎝⎭⎩; (2)当030x <<时,()210201500y x =--+,∴当20x时,max 1500y =;当30x ≥时,100002000200020002001800y x x ⎛⎫=-+≤-=-= ⎪⎝⎭, 当且仅当10000x x=,即100x =时,max 18001500y =>. ∴年产量为100百件时,该企业获得利润最大,最大利润为1800万元.【点睛】本题考查了数学建模问题、分段函数最值问题,数学建模要能准确地从题意中抽象出函数模型,分段函数是一个函数,分段不分家,一般需要分情况讨论。

2020-2021福州市高中必修三数学上期末模拟试卷带答案

2020-2021福州市高中必修三数学上期末模拟试卷带答案

2020-2021福州市高中必修三数学上期末模拟试卷带答案一、选择题1.如图阴影部分为曲边梯形,其曲线对应函数为1x y e =-,在长方形内随机投掷一颗黄豆,则它落在阴影部分的概率是( )A .23e - B .13e - C .43e- D .53e- 2.气象意义上的春季进入夏季的标志为连续5天的日平均温度不低于022C .现有甲、乙、丙三地连续5天的日平均气温的记录数据(记录数据都是正整数): ①甲地:5个数据是中位数为24,众数为22; ②乙地:5个数据是中位数为27,总体均值为24;③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8 则肯定进入夏季的地区有( ) A .①②③B .①③C .②③D .①3.将1000名学生的编号如下:0001,0002,0003,…,1000,若从中抽取50个学生,用系统抽样的方法从第一部分0001,0002,…,0020中抽取的号码为0015时,抽取的第40个号码为( ) A .0795B .0780C .0810D .08154.我国古代数学著作《九章算术》中,其意是:“今有器中米,不知其数,前人取半,中人三分取一,后人四分取一,余米一斗五升.问:米几何?右图是源于其思想的一个程序框图,若输出的2S =(单位:升),则输入k 的值为A .6B .7C .8D .95.执行如图的程序框图,如果输入72m =,输出的6n =,则输入的n 是( )A .30B .20C .12D .86.2018年12月12日,某地食品公司对某副食品店某半月内每天的顾客人数进行统计得到样本数据的茎叶图如图所示,则该样本的中位数是( )A .45B .47C .48D .637.在半径为2圆形纸板中间,有一个边长为2的正方形孔,现向纸板中随机投飞针,则飞针能从正方形孔中穿过的概率为( ) A .4π B .3πC .2πD .1π8.已知具有线性相关的两个变量,x y 之间的一组数据如下表所示:x0 1 2 3 4 y 2.24.34.54.86.7若,x y 满足回归方程 1.5ˆˆyx a =+,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加1.5个单位长度 B .x 每增加1个单位长度,y 就减少1.5个单位长度 C .所有样本点的中心为(1,4.5) D .当8x =时,y 的预测值为13.59.类比“赵爽弦图”,可类似地构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设D 为BE 中点,若在大等边三角形中随机取一点,则此点取自小等边三角形的概率是( )A .17B .14C .13D .41310.根据表中提供的全部数据,用最小二乘法得出y 关于x 的线性回归方程是9944y x =+$,则表中m 的值为( ) x 8 10 1112 14 y2125m2835A .26B .27C .28D .2911.下表是某两个相关变量x ,y 的几组对应数据,根据表中提供的数据,求出y 关于x 的线性回归方程ˆ0.70.35yx =+,那么表中t 的值为( ) x 3 4 5 6 y2.5t44.5A .3B .3.15C .3.5D .4.512.已知某班级部分同学一次测验的成绩统计如图,则其中位数和众数分别为( )A .92,94B .92,86C .99,86D .95,91二、填空题13.袋中装有大小相同的总数为5个的黑球、白球若从袋中任意摸出2个球,至少得到1个白球的概率是910,则从中任意摸出2个球,得到的都是白球的概率为______.14.已知2件次品和3件正品放在一起,现需要通过检测将其区分,每次随机检测一件产品,检测后不放回,直到检测出2件次品或者检测出3件正品时检测结束,则恰好检测四次停止的概率为_____(用数字作答).15.执行如图所示的程序框图若输人x的值为3,则输出y的值为______.16.运行如图所示的程序框图,则输出的所有y值之和为___________.17.一只口袋中装有形状、大小都相同的6只小球,其中有3只红球、2只黄球和1只蓝球.若从中1次随机摸出2只球,则2只球颜色相同的概率为____.18.在棱长为2 的正方体内任取一点,则此点到正方体中心的距离不大于1的概率为_____.19.从甲、乙、丙、丁四人中选3人当代表,则甲被选上的概率为______.20.在四位八进制数中,能表示的最小十进制数是__________.三、解答题21.据报道,全国很多省市将英语考试作为高考改革的重点,一时间“英语考试该如何改革”引起广泛关注,为了解某地区学生和包括老师、家长在内的社会人士对高考英语改革的看法,某媒体在该地区选择了3 000人进行调查,就“是否取消英语听力”问题进行了问卷调查统计,结果如下表:态度调查人群应该取消应该保留无所谓在校学生2100人120人y人社会人士 500人 x 人 z 人已知在全体样本中随机抽取1人,抽到持“应该保留”态度的人的概率为0.06. (1)现用分层抽样的方法在所有参与调查的人中抽取300人进行问卷访谈,问应在持“无所谓”态度的人中抽取多少人?(2)在持“应该保留”态度的人中,用分层抽样的方法抽取6人,然后从这6人中随机抽取2人,求这2人中恰好有1个人为在校学生的概率.22.黄冈“一票通”景区旅游年卡,是由黄冈市旅游局策划,黄冈市大别山旅游公司推出的一项惠民工程,持有旅游年卡一年内可不限次畅游全市19家签约景区.为了解市民每年旅游消费支出情况(单位:百元),相关部门对已游览某签约景区的游客进行随机问卷调查,并把得到的数据列成如表所示的频数分布表: 组别 [)0,20[)20,40[)40,60[)60,80[)80,100频数1039040018812()1求所得样本的中位数(精确到百元);()2根据样本数据,可近似地认为市民的旅游费用支出服从正态分布()245,15N ,若该市总人口为750万人,试估计有多少市民每年旅游费用支出在7500元以上;()3若年旅游消费支出在40(百元)以上的游客一年内会继续来该景点游玩现从游客中随机抽取3人,一年内继续来该景点游玩记2分,不来该景点游玩记1分,将上述调查所得的频率视为概率,且游客之间的选择意愿相互独立,记总得分为随机变量X ,求X 的分布列与数学期望.(参考数据:()0.6827P X μσμσ-<<+≈,(22)0.9545P X μσμσ-<<+≈;(33)0.9973)P X μσμσ-<<+≈23.为了解贵州省某州2020届高三理科生的化学成绩的情况,该州教育局组织高三理科生进行了摸底考试,现从参加考试的学生中随机抽取了100名理科生,,将他们的化学成绩(满分为100分)分为[40,50),[50,60),[60,70),[70,80),[80,90),[90,100]6组,得到如图所示的频率分布直方图.(1)求a 的值;(2)记A 表示事件“从参加考试的所有理科生中随机抽取一名学生,该学生的化学成绩不低于70分”,试估计事件A 发生的概率;(3)在抽取的100名理科生中,采用分层抽样的方法从成绩在[60,80)内的学生中抽取10名,再从这10名学生中随机抽取4名,记这4名理科生成绩在[60,70)内的人数为X ,求X 的分布列与数学期望.24.盒子里放有外形相同且编号为1,2,3,4,5的五个小球,其中1号与2号是黑球,3号、4号与5号是红球,从中有放回地每次取出1个球,共取两次. (1)求取到的2个球中恰好有1个是黑球的概率; (2)求取到的2个球中至少有1个是红球的概率.25.某地随着经济的发展,居民收入逐年增长,下表是该地一建设银行连续五年的储蓄存款(年底余额),如下表1:为了研究计算的方便,工作人员将上表的数据进行了处理,2010,5t x z y =-=-得到下表2: (Ⅰ)求z 关于t 的线性回归方程;(Ⅱ)用所求回归方程预测到2020年年底,该地储蓄存款额可达多少?(附:对于线性回归方程ˆˆˆybx a =+,其中1221ˆˆˆ,ni ii nii x y nx yb ay bx xnx ==-⋅==--∑∑) 26.为研究女高中生身高与体重之间的关系,一调查机构从某中学中随机选取8名女高中生,其身高()x cm 和体重()y kg 数据如下表所示:该调查机构绘制出该组数据的散点图后分析发现,女高中生的身高与体重之间有较强的线性相关关系.(1)调查员甲计算得出该组数据的线性回归方程为ˆˆ0.7yx a =+,请你据此预报一名身高为176cm 的女高中生的体重;(2)调查员乙仔细观察散点图发现,这8名同学中,编号为1和4的两名同学对应的点与其他同学对应的点偏差太大,于是提出这样的数据应剔除,请你按照这名调查人员的想法重新计算线性回归话中,并据此预报一名身高为176cm 的女高中生的体重; (3)请你分析一下,甲和乙谁的模型得到的预测值更可靠?说明理由.附:对于一组数据()()()1122,,,,,,n n x y x y x y L ,其回归方程ˆˆˆybx a =+的斜率和截距的最小二乘法估计分别为:()()()121ˆˆ,niii nii x x y y b ay bx x x ==--==--∑∑.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】 【分析】通过定积分可求出空白部分面积,于是利用几何概型公式可得答案. 【详解】由题可知长方形面积为3,而长方形空白部分面积为:()()11001|2x x e dx e x e -=-=-⎰,故所求概率为25133e e---=,故选D. 【点睛】本题主要考查定积分求几何面积,几何概型的运算,难度中等.2.B解析:B 【解析】试题分析:由统计知识①甲地:5个数据的中位数为24,众数为22可知①符合题意;而②乙地:5个数据的中位数为27,总体均值为24中有可能某一天的气温低于22C o ,故不符合题意,③丙地:5个数据中有一个数据是32,总体均值为26,总体方差为10.8.若由有某一天的气温低于22C o 则总体方差就大于10.8,故满足题意,选C 考点:统计初步 3.A解析:A 【解析】分析:先确定间距,再根据等差数列通项公式求结果.详解:因为系统抽样的方法抽签,所以间距为10002050= 所以抽取的第40个数为1520(401)795+⨯-=选A.点睛:本题考查系统抽样概念,考查基本求解能力.4.C解析:C 【解析】分析:执行程序框图,得到输出值4k S =,令24k=,可得8k =. 详解:阅读程序框图,初始化数值1,n S k ==,循环结果执行如下:第一次:14n =<成立,2,22k k n S k ==-=; 第二次:24n =<成立,3,263k k k n S ==-=; 第三次:34n =<成立,4,3124k k k n S ==-=; 第四次:44n =<不成立,输出24kS ==,解得8k =. 故选C.点睛:解决循环结构程序框图问题的核心在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.5.A解析:A【解析】从流程图看,该程序是利用辗转相除法计算,m n 的最大公约数.题设中已知72m =,输入的数为n ,程序给出了它们的最大公约数为6,比较四个数,只有72,30的最大公约数为6,故输入的数n 的值为30,选A. 6.A解析:A 【解析】 【分析】由茎叶图确定所给的所有数据,然后确定中位数即可. 【详解】各数据为:12 20 31 32 34 45 45 45 47 47 48 50 50 61 63, 最中间的数为:45,所以,中位数为45. 本题选择A 选项. 【点睛】本题主要考查茎叶图的阅读,中位数的定义与计算等知识,意在考查学生的转化能力和计算求解能力.7.D解析:D 【解析】 【分析】根据面积比的几何概型,即可求解飞针能从正方形孔中穿过的概率,得到答案. 【详解】由题意,边长为2的正方形的孔的面积为1224S =⨯=, 又由半径为2的圆形纸板的面积为224S ππ=⨯=,根据面积比的几何概型,可得飞针能从正方形孔中穿过的概率为1414S P S ππ===, 故选D. 【点睛】本题主要考查了面积比的几何概型的概率的计算,以及正方形的面积和圆的面积公式的应用,着重考查了推理与运算能力,属于基础题.8.D解析:D 【解析】 【分析】利用回归直线过样本点中心可求回归方程,根据该方程可得正确的选项. 【详解】由$$1.5y x a=+,得x 每增一个单位长度,y 不一定增加1.5,而是大约增加1.5个单位长度,故选项,A B 错误;由已知表格中的数据,可知0123425x ++++==,2.2 4.3 4.5 4.8 6.74.55y ++++==,Q 回归直线必过样本的中心点()2,4.5,故C 错误;又4.5 1.52 1.5ˆˆa a =⨯+⇒=,∴回归方程为$1.5 1.5y x =+, 当8x =时,y 的预测值为1.58 1.513.5⨯+=,故D 正确, 故选:D. 【点睛】本题考查线性回归方程的性质及应用,注意回归直线过(),x y ,本题属于基础题.9.A解析:A 【解析】 【分析】根据几何概型的概率计算公式,求出中间小三角形的面积与大三角形的面积的比值即可 【详解】设DE x =,因为D 为BE 中点,且图形是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形 所以2BE x =,CE x =,120CEB ∠=︒所以由余弦定理得:2222cos BC BE CE BE CE CEB =+-⋅⋅∠222142272x x x x x ⎛⎫=+-⨯⨯⨯-= ⎪⎝⎭即BC =,设DEF V 的面积为1S ,ABC V 的面积为2S因为DEF V 与ABC V 相似所以21217S DE P S BC ⎛⎫=== ⎪⎝⎭故选:A10.A解析:A 【解析】 【分析】首先求得x 的平均值,然后利用线性回归方程过样本中心点求解m 的值即可. 【详解】 由题意可得:810111214115x ++++==,由线性回归方程的性质可知:99112744y =⨯+=,故21252835275m++++=,26m ∴=.故选:A . 【点睛】本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与y 之间的关系,这条直线过样本中心点.11.A解析:A 【解析】 【分析】计算得到 4.5x =,114t y +=,代入回归方程计算得到答案. 【详解】3456 4.54x +++==, 2.54 4.51144t t y ++++==,中心点(),x y 过ˆ0.70.35yx =+, 即114.50.70.354t +=⨯+,解得3t =. 故选:A . 【点睛】本题考查了回归方程的相关问题,意在考查学生的计算能力.12.B解析:B 【解析】由茎叶图可知,中位数为92,众数为86. 故选B.二、填空题13.【解析】因为袋中装有大小相同的总数为5个的黑球白球若从袋中任意摸出2个球共有10种没有得到白球的概率为设白球个数为x 黑球个数为5-x 那么可知白球共有3个黑球有2个因此可知填写为解析:310【解析】因为袋中装有大小相同的总数为5个的黑球、白球,若从袋中任意摸出2个球,共有10种,没有得到白球的概率为110,设白球个数为x,黑球个数为5-x,那么可知白球共有3个,黑球有2个,因此可知填写为14.【解析】由题意可知2次检测结束的概率为3次检测结束的概率为则恰好检测四次停止的概率为解析:35【解析】由题意可知,2次检测结束的概率为22225110A p A ==,3次检测结束的概率为31123232335310A C C A p A +==, 则恰好检测四次停止的概率为231331110105p p p =--=--=. 15.63【解析】【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y 的值模拟程序的运行过程分析循环中各变量值的变化情况可得答案【详解】解:模拟程序的运行可得x=3y=7不满足条件|解析:63 【解析】 【分析】由已知中的程序语句可知:该程序的功能是利用循环结构计算并输出变量y 的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案. 【详解】解:模拟程序的运行,可得 x=3 y=7不满足条件|x-y|>31,执行循环体,x=7,y=15 不满足条件|x-y|>31,执行循环体,x=15,y=31 不满足条件|x-y|>31,执行循环体,x=31,y=63 此时,满足条件|x-y|>31,退出循环,输出y 的值为63. 故答案为63. 【点睛】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题.16.【解析】【分析】模拟执行程序框图只要按照程序框图规定的运算方法逐次计算直到达到输出条件即可得到所有输出的的值然后求和即可【详解】输入第一次循环;第二次循环;第三次循环;第四次循环;退出循环可得所有值解析:10【解析】 【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到所有输出的y 的值,然后求和即可. 【详解】 输入2n =-,第一次循环,8,1y n ==-; 第二次循环,3,0y n ==; 第三次循环,0,1y n ==; 第四次循环,1,2y n =-=; 退出循环,可得所有y 值之和为830110++-=,故答案为10. 【点睛】本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.17.【解析】【分析】由题求得基本事件的总数15种再求得2只颜色相同包含的基本事件的个数根据古典概型及其概率的计算公式即可求解【详解】由题意一只口袋中装有形状大小都相同的6只小球其中有3只红球2只黄球和1 解析:415【解析】 【分析】由题,求得基本事件的总数15种,再求得2只颜色相同包含的基本事件的个数,根据古典概型及其概率的计算公式,即可求解。

2020-2021福州市高中必修一数学上期末模拟试卷附答案

2020-2021福州市高中必修一数学上期末模拟试卷附答案

2020-2021福州市高中必修一数学上期末模拟试卷附答案一、选择题1.已知()f x 是偶函数,它在[)0,+∞上是增函数.若()()lg 1f x f <-,则x 的取值范围是( )A .1,110⎛⎫ ⎪⎝⎭B .()10,10,10骣琪??琪桫C .1,1010⎛⎫⎪⎝⎭D .()()0,110,⋃+∞2.若函数()f x =的定义域为R ,则实数m 取值范围是( )A .[0,8)B .(8,)+∞C .(0,8)D .(,0)(8,)-∞⋃+∞3.酒驾是严重危害交通安全的违法行为.为了保障交通安全,根据国家有关规定:100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车,酒精含量达到20~79mg 的驾驶员即为酒后驾车,80mg 及以上认定为醉酒驾车.假设某驾驶员喝了一定量的酒后,其血液中的酒精含量上升到了1mg /mL .如果在停止喝酒以后,他血液中酒精含量会以每小时30%的速度减少,那么他至少经过几个小时才能驾驶汽车?( )(参考数据:lg 0.2≈﹣0.7,1g 0.3≈﹣0.5,1g 0.7≈﹣0.15,1g 0.8≈﹣0.1) A .1B .3C .5D .74.已知定义域R 的奇函数()f x 的图像关于直线1x =对称,且当01x ≤≤时,3()f x x =,则212f ⎛⎫= ⎪⎝⎭( )A .278-B .18-C .18D .2785.已知函数2()log f x x =,正实数,m n 满足m n <且()()f m f n =,若()f x 在区间2[,]m n 上的最大值为2,则,m n 的值分别为A .12,2 B .2C .14,2 D .14,4 6.用二分法求方程的近似解,求得3()29f x x x =+-的部分函数值数据如下表所示:则当精确度为0.1时,方程3290x x +-=的近似解可取为 A .1.6B .1.7C .1.8D .1.97.已知函数()y f x =是偶函数,(2)y f x =-在[0,2]是单调减函数,则( )A .(1)(2)(0)f f f -<<B .(1)(0)(2)f f f -<<C .(0)(1)(2)f f f <-<D .(2)(1)(0)f f f <-<8.函数21y x x =-++的定义域是( ) A .(-1,2]B .[-1,2]C .(-1 ,2)D .[-1,2)9.已知函数()ln f x x =,2()3g x x =-+,则()?()f x g x 的图象大致为( )A .B .C .D .10.下列函数中,其定义域和值域分别与函数y =10lg x 的定义域和值域相同的是( ) A .y =xB .y =lg xC .y =2xD .y x11.已知函数f (x )=x (e x +ae ﹣x )(x ∈R ),若函数f (x )是偶函数,记a=m ,若函数f (x )为奇函数,记a=n ,则m+2n 的值为( ) A .0B .1C .2D .﹣112.若不等式210x ax ++≥对于一切10,2x ⎛⎫∈ ⎪⎝⎭恒成立,则a 的取值范围为( ) A .0a ≥B .2a ≥-C .52a ≥-D .3a ≥-二、填空题13.已知函数241,(4)()log ,(04)x f x xx x ⎧+≥⎪=⎨⎪<<⎩.若关于x 的方程,()f x k =有两个不同的实根,则实数k 的取值范围是____________. 14.已知()|1||1|f x x x =+--,()ag x x x=+,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则实数a 的取值范围是____________.15.已知函数()f x 满足对任意的x ∈R 都有11222⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭f x f x 成立,则 127...888f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= .16.函数()()4log 5f x x =-+________.17.已知偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,则不等式()0xf x >的解集为______.18.若集合{||1|2}A x x =-<,2|04x B x x -⎧⎫=<⎨⎬+⎩⎭,则A B =I ______. 19.若函数()22xf x b =--有两个零点,则实数b 的取值范围是_____. 20.()()sin cos f x x π=在区间[]0,2π上的零点的个数是______.三、解答题21.已知函数f (x )=2x的定义域是[0,3],设g (x )=f (2x )-f (x +2), (1)求g (x )的解析式及定义域; (2)求函数g (x )的最大值和最小值.22.已知函数2()(8)f x ax b x a ab =+--- 的零点是-3和2 (1)求函数()f x 的解析式.(2)当函数()f x 的定义域是[]0,1时求函数()f x 的值域.23.已知函数()(lg x f x =.(1)判断函数()f x 的奇偶性;(2)若()()1210f m f m -++≤,求实数m 的取值范围. 24.已知()1log 1axf x x-=+(0a >,且1a ≠). (1)当(],x t t ∈-(其中()1,1t ∈-,且t 为常数)时,()f x 是否存在最小值,如果存在,求出最小值;如果不存在,请说明理由;(2)当1a >时,求满足不等式()()2430f x f x -+-≥的实数x 的取值范围.25.已知函数()f x 是定义在R 上的奇函数,当()0,x ∈+∞时,()232f x x ax a =++-.(1)求()f x 的解析式;(2)若()f x 是R 上的单调函数,求实数a 的取值范围.26.为弘扬中华传统文化,学校课外阅读兴趣小组进行每日一小时的“经典名著”和“古诗词”的阅读活动. 根据调查,小明同学阅读两类读物的阅读量统计如下:小明阅读“经典名著”的阅读量()f t (单位:字)与时间t (单位:分钟)满足二次函数关系,部分数据如下表所示; t0 10 20 30 ()f t 0270052007500阅读“古诗词”的阅读量()g t (单位:字)与时间t (单位:分钟)满足如图1所示的关系.(1)请分别写出函数()f t 和()g t 的解析式;(2)在每天的一小时课外阅读活动中,小明如何分配“经典名著”和“古诗词”的阅读时间,使每天的阅读量最大,最大值是多少?【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】利用偶函数的性质将不等式()()lg 1f x f <-变形为()()lg 1f x f <,再由函数()y f x =在[)0,+∞上的单调性得出lg 1x <,利用绝对值不等式的解法和对数函数的单调性即可求出结果. 【详解】由于函数()y f x =是偶函数,由()()lg 1f x f <-得()()lg 1f x f <, 又Q 函数()y f x =在[)0,+∞上是增函数,则lg 1x <,即1lg 1x -<<,解得11010x <<. 故选:C. 【点睛】本题考查利用函数的单调性和奇偶性解不等式,同时也涉及了对数函数单调性的应用,考查分析问题和解决问题的能力,属于中等题.2.A解析:A 【解析】 【分析】根据题意可得出,不等式mx 2-mx +2>0的解集为R ,从而可看出m =0时,满足题意,m ≠0时,可得出280m m m ⎧⎨=-<⎩V >,解出m 的范围即可. 【详解】∵函数f (x )的定义域为R ;∴不等式mx 2-mx +2>0的解集为R ; ①m =0时,2>0恒成立,满足题意; ②m ≠0时,则280m m m ⎧⎨=-<⎩V >; 解得0<m <8;综上得,实数m 的取值范围是[0,8) 故选:A . 【点睛】考查函数定义域的概念及求法,以及一元二次不等式的解集为R 时,判别式△需满足的条件.3.C解析:C 【解析】 【分析】根据题意先探究出酒精含量的递减规律,再根据能驾车的要求,列出模型0.70.2x ≤ 求解. 【详解】因为1小时后血液中酒精含量为(1-30%)mg /mL , x 小时后血液中酒精含量为(1-30%)x mg /mL 的,由题意知100mL 血液中酒精含量低于20mg 的驾驶员可以驾驶汽车, 所以()3002%1.x-<,0.70.2x <,两边取对数得,lg 0.7lg 0.2x < ,lg 0.214lg 0.73x >= ,所以至少经过5个小时才能驾驶汽车. 故选:C 【点睛】本题主要考查了指数不等式与对数不等式的解法,还考查了转化化归的思想及运算求解的能力,属于基础题.4.B解析:B 【解析】 【分析】利用题意得到,()()f x f x -=-和2421D kx k =+,再利用换元法得到()()4f x f x =+,进而得到()f x 的周期,最后利用赋值法得到1322f f 骣骣琪琪=琪琪桫桫18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭,最后利用周期性求解即可. 【详解】()f x 为定义域R 的奇函数,得到()()f x f x -=-①;又由()f x 的图像关于直线1x =对称,得到2421D kx k =+②; 在②式中,用1x -替代x 得到()()2f x f x -=,又由②得()()22f x f x -=--; 再利用①式,()()()213f x f x -=+-()()()134f x f x =--=-()4f x =--()()()24f x f x f x ∴=-=-③对③式,用4x +替代x 得到()()4f x f x =+,则()f x 是周期为4的周期函数;当01x ≤≤时,3()f x x =,得1128f ⎛⎫=⎪⎝⎭ 11122f f ⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭Q 13122f f ⎛⎫⎛⎫=+= ⎪ ⎪⎝⎭⎝⎭18=,331228f f ⎛⎫⎛⎫-=-=- ⎪ ⎪⎝⎭⎝⎭, 由于()f x 是周期为4的周期函数,331222f f ⎛⎫⎛⎫∴-=-+ ⎪ ⎪⎝⎭⎝⎭21128f ⎛⎫==- ⎪⎝⎭, 答案选B 【点睛】本题考查函数的奇偶性,单调性和周期性,以及考查函数的赋值求解问题,属于中档题5.A解析:A试题分析:画出函数图像,因为正实数,m n 满足m n <且()()f m f n =,且()f x 在区间2[,]m n 上的最大值为2,所以()()f m f n ==2,由2()log 2f x x ==解得12,2x =,即,m n 的值分别为12,2.故选A .考点:本题主要考查对数函数的图象和性质.点评:基础题,数形结合,画出函数图像,分析建立m,n 的方程.6.C解析:C 【解析】 【分析】利用零点存在定理和精确度可判断出方程的近似解. 【详解】根据表中数据可知()1.750.140f =-<,()1.81250.57930f =>,由精确度为0.1可知1.75 1.8≈,1.8125 1.8≈,故方程的一个近似解为1.8,选C. 【点睛】不可解方程的近似解应该通过零点存在定理来寻找,零点的寻找依据二分法(即每次取区间的中点,把零点位置精确到原来区间的一半内),最后依据精确度四舍五入,如果最终零点所在区间的端点的近似值相同,则近似值即为所求的近似解.7.C解析:C 【解析】 【分析】先根据()2y f x =-在[]0,2是单调减函数,转化出()y f x =的一个单调区间,再结合偶函数关于y 轴对称得[]02,上的单调性,结合函数图像即可求得答案 【详解】()2y f x =-Q 在[]0,2是单调减函数,令2t x =-,则[]20t ,∈-,即()f t 在[]20-,上是减函数 ()y f x ∴=在[]20-,上是减函数Q 函数()y f x =是偶函数,()y f x ∴=在[]02,上是增函数 ()()11f f -=Q ,则()()()012f f f <-< 故选C本题是函数奇偶性和单调性的综合应用,先求出函数的单调区间,然后结合奇偶性进行判定大小,较为基础.8.A解析:A 【解析】 【分析】根据二次根式的性质求出函数的定义域即可. 【详解】 由题意得:2010x x -≥⎧⎨+>⎩解得:﹣1<x≤2,故函数的定义域是(﹣1,2], 故选A . 【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.9.C解析:C 【解析】 【分析】 【详解】因为函数()ln f x x =,()23g x x =-+,可得()()•f x g x 是偶函数,图象关于y 轴对称,排除,A D ;又()0,1x ∈时,()()0,0f x g x <>,所以()()•0f x g x <,排除B , 故选C. 【方法点晴】本题通过对多个图象的选择考查函数的图象与性质,属于中档题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.10.D解析:D 【解析】试题分析:因函数lg 10xy =的定义域和值域分别为,故应选D .考点:对数函数幂函数的定义域和值域等知识的综合运用.11.B解析:B【解析】试题分析:利用函数f(x)=x(e x+ae﹣x)是偶函数,得到g(x)=e x+ae﹣x为奇函数,然后利用g(0)=0,可以解得m.函数f(x)=x(e x+ae﹣x)是奇函数,所以g(x)=e x+ae﹣x为偶函数,可得n,即可得出结论.解:设g(x)=e x+ae﹣x,因为函数f(x)=x(e x+ae﹣x)是偶函数,所以g(x)=e x+ae﹣x为奇函数.又因为函数f(x)的定义域为R,所以g(0)=0,即g(0)=1+a=0,解得a=﹣1,所以m=﹣1.因为函数f(x)=x(e x+ae﹣x)是奇函数,所以g(x)=e x+ae﹣x为偶函数所以(e﹣x+ae x)=e x+ae﹣x即(1﹣a)(e﹣x﹣e x)=0对任意的x都成立所以a=1,所以n=1,所以m+2n=1故选B.考点:函数奇偶性的性质.12.C解析:C【解析】【分析】【详解】210x ax++≥对于一切10,2x⎛⎫∈ ⎪⎝⎭成立,则等价为a⩾21xx--对于一切x∈(0,12)成立,即a⩾−x−1x对于一切x∈(0,12)成立,设y=−x−1x,则函数在区间(0,12〕上是增函数∴−x−1x<−12−2=52-,∴a⩾5 2 -.故选C.点睛:函数问题经常会遇见恒成立的问题:(1)根据参变分离,转化为不含参数的函数的最值问题;(2)若()0f x>就可讨论参数不同取值下的函数的单调性和极值以及最值,最终转化为min ()0f x >,若()0f x <恒成立,转化为max ()0f x <;(3)若()()f x g x >恒成立,可转化为min max ()()f x g x >.二、填空题13.【解析】作出函数的图象如图所示当时单调递减且当时单调递增且所以函数的图象与直线有两个交点时有 解析:(1,2)【解析】作出函数()f x 的图象,如图所示,当4x ≥时,4()1f x x =+单调递减,且4112x<+≤,当04x <<时,2()log f x x =单调递增,且2()log 2f x x =<,所以函数()f x 的图象与直线y k =有两个交点时,有12k <<.14.【解析】【分析】通过去掉绝对值符号得到分段函数的解析式求出值域然后求解的值域结合已知条件推出的范围即可【详解】由题意对于任意的总存在使得或则与的值域的并集为又结合分段函数的性质可得的值域为当时可知的 解析:(,1]-∞【解析】 【分析】通过去掉绝对值符号,得到分段函数的解析式,求出值域,然后求解()ag x x x=+的值域,结合已知条件推出a 的范围即可. 【详解】由题意,对于任意的m R ∈,总存在0x R ∈,使得()0f x m =或()0g x m =,则()f x 与()g x 的值域的并集为R ,又()2,1112,112,1x f x x x x x x ≥⎧⎪=+--=-<<⎨⎪-≤-⎩,结合分段函数的性质可得,()f x 的值域为[]22-,,当0a ≥时,可知()a g x x x =+的值域为(),22,a a ⎤⎡-∞-+∞⎦⎣U , 所以,此时有22a ≤,解得01a ≤≤,当0a <时,()a g x x x=+的值域为R ,满足题意, 综上所述,实数a 的范围为(],1-∞.故答案为:(],1-∞.【点睛】本题考查函数恒成立条件的转化,考查转化思想的应用,注意题意的理解是解题的关键,属于基础题.15.7【解析】【分析】【详解】设则因为所以故答案为7解析:7【解析】【分析】【详解】设, 则, 因为11222⎛⎫⎛⎫++-=⎪ ⎪⎝⎭⎝⎭f x f x , 所以,,故答案为7. 16.【解析】【分析】根据题意列出不等式组解出即可【详解】要使函数有意义需满足解得即函数的定义域为故答案为【点睛】本题主要考查了具体函数的定义域问题属于基础题;常见的形式有:1分式函数分母不能为0;2偶次 解析:[)0,5【解析】【分析】根据题意,列出不等式组50210x x ->⎧⎨-≥⎩,解出即可. 【详解】要使函数()()4log 521x f x x =-+-有意义,需满足50210x x ->⎧⎨-≥⎩,解得05x <≤,即函数的定义域为[)0,5, 故答案为[)0,5.【点睛】本题主要考查了具体函数的定义域问题,属于基础题;常见的形式有:1、分式函数分母不能为0;2、偶次根式下大于等于0;3、对数函数的真数部分大于0;4、0的0次方无意义;5、对于正切函数tan y x =,需满足,2x k k Z ππ≠+∈等等,当同时出现时,取其交集. 17.【解析】【分析】根据函数奇偶性和单调性的性质作出的图象利用数形结合进行求解即可【详解】偶函数的图象过点且在区间上单调递减函数的图象过点且在区间上单调递增作出函数的图象大致如图:则不等式等价为或即或即 解析:()(),20,2-∞-⋃【解析】【分析】根据函数奇偶性和单调性的性质作出()f x 的图象,利用数形结合进行求解即可.【详解】Q 偶函数()f x 的图象过点()2,0P ,且在区间[)0,+∞上单调递减,∴函数()f x 的图象过点()2,0-,且在区间(),0-∞上单调递增,作出函数()f x 的图象大致如图:则不等式()0xf x >等价为()00x f x >⎧>⎨⎩或()00x f x <⎧<⎨⎩, 即02x <<或2x <-,即不等式的解集为()(),20,2-∞-⋃,故答案为()(),20,2-∞-⋃【点睛】本题主要考查不等式的解集的计算,根据函数奇偶性和单调性的性质作出()f x 的图象是解决本题的关键.18.【解析】【分析】先分别求解出绝对值不等式分式不等式的解集作为集合然后根据交集概念求解的结果【详解】因为所以所以;又因为所以所以所以;则故答案为:【点睛】解分式不等式的方法:首先将分式不等式转化为整式 解析:()1,2-【解析】【分析】先分别求解出绝对值不等式、分式不等式的解集作为集合,A B ,然后根据交集概念求解A B I 的结果.【详解】 因为12x -<,所以13x -<<,所以()1,3A =-;又因为204x x -<+,所以()()4204x x x ⎧+-<⎨≠-⎩,所以42x -<<,所以()4,2B =-; 则()1,2A B =-I .故答案为:()1,2-.【点睛】解分式不等式的方法:首先将分式不等式转化为整式不等式,若对应的整式不等式为高次可因式分解的不等式,可采用数轴穿根法求解集.19.【解析】【分析】【详解】函数有两个零点和的图象有两个交点画出和的图象如图要有两个交点那么解析:02b <<【解析】【分析】【详解】函数()22x f x b =--有两个零点,和的图象有两个交点, 画出和的图象,如图,要有两个交点,那么20.5【解析】【分析】由求出的范围根据正弦函数为零确定的值再由三角函数值确定角即可【详解】时当时的解有的解有的解有故共有5个零点故答案为:5【点睛】本题主要考查了正弦函数余弦函数的三角函数值属于中档题 解析:5【解析】【分析】由[]0,2x π∈,求出cos x π的范围,根据正弦函数为零,确定cos x 的值,再由三角函数值确定角即可.【详解】cos x πππ-≤≤Q ,()()sin cos 0f x x π∴==时, cos 0x =,1,1-,当[]0,2x π∈时,cos 0x =的解有3,22ππ, cos 1x =-的解有π,cos 1x =的解有0,2π,故共有30,,,,222ππππ5个零点, 故答案为:5【点睛】本题主要考查了正弦函数、余弦函数的三角函数值,属于中档题.三、解答题21.(1)g (x )=22x -2x +2,{x |0≤x ≤1}.(2)最小值-4;最大值-3.【解析】【分析】【详解】(1)f (x )=2x 的定义域是[0,3],设g (x )=f (2x )-f (x +2),因为f(x)的定义域是[0,3],所以,解之得0≤x≤1.于是 g(x)的定义域为{x|0≤x≤1}.(2)设. ∵x ∈[0,1],即2x ∈[1,2],∴当2x=2即x=1时,g(x)取得最小值-4; 当2x=1即x=0时,g(x)取得最大值-3.22.(1)2()3318f x x x =--+(2)[12,18]【解析】【分析】【详解】(1)832,323,5b a ab a b a a----+=--⨯=∴=-=Q ,()23318f x x x =--+ (2)因为()23318f x x x =--+开口向下,对称轴12x =- ,在[]0,1单调递减, 所以()()max min 0,18,1,12x f x x f x ====当当所以函数()f x 的值域为[12,18]【点睛】本题将函数的零点、解析式、最大小值等有关知识与性质有机整合在一起,旨在考查函数的表示、零点、最大小值等基础知识及综合运用.求解时先依据函数零点与方程的根之间的关系,求出函数解析式中的参数的值;解答第二问时,借助二次函数的图像和性质,运用数形结合的数学思想求出最大小值从而使得问题获解.23.(1)奇函数;(2)(],2-∞-【解析】【分析】(1)根据函数奇偶性的定义,求出函数的定义域及()f x 与()f x -的关系,可得答案; (2)由(1)知函数()f x 是奇函数,将原不等式化简为()()121f m f m -≤--,判断出()f x 的单调性,可得关于m 的不等式,可得m 的取值范围.【详解】解:(1)函数()f x 的定义域是R ,因为()(2lg 1f x x x-=-++, 所以()()((22lg 1lg 1lg10x x x x f x f x =++-+=-=+, 即()()f x f x -=-,所以函数()f x 是奇函数.(2)由(1)知函数()f x 是奇函数,所以()()()12121f m f m f m -≤-+=--,设lg y u =,21u x x =+,x ∈R .因为lg y u =是增函数,由定义法可证21u x x =+在R 上是增函数,则函数()f x 是R 上的增函数.所以121m m -≤--,解得2m ≤-,故实数m 的取值范围是(],2-∞-.【点睛】本题主要考查函数的单调性、奇偶性的综合应用,属于中档题.24.(1)见解析(2)51,3⎛⎫ ⎪⎝⎭【解析】【分析】(1)先判定函数的单调性,结合单调性来进行求解()f x 是否存在最小值;(2)先判断函数的奇偶性及单调性,结合奇偶性和单调性把()()2430f x f x -+-≥进行转化求解.【详解】 (1)由101x x ->+可得1010x x ->⎧⎨+>⎩或1010x x -<⎧⎨+<⎩,解得11x -<<,即函数()f x 的定义域为()1,1-,设1211x x -<<<,则()()()211212122111111x x x x x x x x ----=++++,∵1211x x -<<<,∴210x x ->,()()12110x x ++>,∴12121111x x x x -->++, ①当1a >时()()12f x f x >,则()f x 在()1,1-上是减函数,又()1,1t ∈-,∴(],x t t ∈-时,()f x 有最小值,且最小值为()1log 1a t f t t-=+; ②当01a <<时,()()12f x f x <,则()f x 在()1,1-上是增函数,又()1,1t ∈-, ∴(],x t t ∈-时,()f x 无最小值.(2)由于()f x 的定义域为()1,1-,定义域关于原点对称,且()()111log log 11a a x x f x f x x x -+-⎛⎫-===- ⎪-+⎝⎭,所以函数()f x 为奇函数.由(1)可知,当1a >时,函数()f x 为减函数,由此,不等式()()2430f x f x -+-≥等价于()()234f x f x -≥-,即有2341211431x x x x -≤-⎧⎪-<-<⎨⎪-<-<⎩,解得513x <<,所以x 的取值范围是51,3⎛⎫ ⎪⎝⎭. 【点睛】本题主要考查函数性质的综合应用,奇偶性和单调性常结合求解抽象不等式问题,注意不要忽视了函数定义域,侧重考查数学抽象和逻辑推理的核心素养.25.(1)()2232,00,032,0x ax a x f x x x ax a x ⎧++->⎪==⎨⎪-+-+<⎩;(2)30,2⎡⎤⎢⎥⎣⎦ 【解析】【分析】(1)由奇函数的定义可求得解析式;(2)由分段函数解析式知,函数在R 上单调,则为单调增函数,结合二次函数对称轴和最值可得参数范围.即0x >时要是增函数,且端点处函数值不小于0.【详解】解:(1)因为函数()f x 是定义在R 上的奇函数,所以()00f =,当0x <时,0x ->,则()()()232f x x a x a -=-+-+-()232x ax a f x =-+-=-, 所以()()2320x ax a f x x =-+-+<, 所以()2232,00,032,0x ax a x f x x x ax a x ⎧++->⎪==⎨⎪-+-+<⎩. (2)若()f x 是R 上的单调函数,且()00f =,则实数a 满足02320a a ⎧-≤⎪⎨⎪-≥⎩, 解得302a ≤≤, 故实数a 的取值范围是30,2⎡⎤⎢⎥⎣⎦. 【点睛】本题考查函数的奇偶性与单调性,分段函数在整个定义域上单调,则每一段的单调性相同,相邻端点处函数值满足相应的不等关系.26.(1)见解析;(2)见解析【解析】【分析】(1)设f (t )=2a ?t bt +,代入(10,2700)与(30,7500),解得a 与b. 令()g t =kt ,(040)t ≤<,代入(40,8000),解得k,再令()g t =mt +b ,()4060t ≤≤,代入(40,8000),(60,11000),解得m ,b 的值.即可得到()f t 和()g t 的解析式;(2)由题意知每天的阅读量为()()()h t f t g t =+=28012000t t -++,分020t ≤≤和2060t <≤两种情况,分别求得最大值,比较可得结论.【详解】(1)因为f (0)=0,所以可设f (t )=2a ?t bt +,代入(10,2700)与(30,7500),解得a=-1,b=280.所以()2280f t t t =-+ ,又令()g t =kt ,(040)t ≤<,代入(40,8000),解得k=200,令()g t =mt +b ,()4060t ≤≤,代入(40,8000),(60,11000),解得m=150,b=2000,所以 ()()200(040)150********t t g t t t ≤<⎧=⎨+≤≤⎩. (2)设小明对“经典名著”的阅读时间为()060t t ≤≤,则对“古诗词”的阅读时间为60t -,① 当06040t ≤-<,即2060t <≤时,()()()()228020060h t f t g t t t t =+=-++- =28012000t t -++=()24013600t --+,所以当40t =时,()h t 有最大值13600.当406060t ≤-≤,即020t ≤≤时,h ()()()()2280150602000t f t g t t t t =+=-++-+ =213011000t t -++,因为()h t 的对称轴方程为65t =,所以 当020t ≤≤时,()h t 是增函数,所以 当20t =时,()h t 有最大值为13200.因为 13600>13200,所以阅读总字数()h t 的最大值为13600,此时对“经典名著”的阅读时间为40分钟,对“古诗词”的阅读时间为20分钟.【点睛】本题考查了分段函数解析式的求法及应用,二次函数的图象和性质,难度中档.。

2020-2021学年福建省福州市八县(市、区)一中高一上学期期末数学试卷(含解析)

2020-2021学年福建省福州市八县(市、区)一中高一上学期期末数学试卷(含解析)

2020-2021学年福建省福州市八县(市、区)一中高一上学期期末数学试卷一、单选题(本大题共12小题,共60.0分) 1.sin315°的值为( )A. −√32B. √32C. √22D. −√222.已知直线AB 与抛物线y 2=2x 交于A ,B 两点,M 是AB 的中点,C 是抛物线上的点,且使得CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ 取最小值,抛物线在点C 处的切线为l ,则( )A. CM ⊥ABB. CM ⊥lC. CA ⊥CBD. CM =12AB3.角π5和角6π5有相同的( )A. 正弦线B. 余弦线C. 正切线D. 不能确定4.已知α是第一象限角,tanα=34,则sinα等于( )A. 45B. 35C. −45D. −355.如果函数f(x)=2sinx +acosx 的图象关于直线x =π6对称,那么a =( )A. −2√3B. 2C. 2√3D. √36.函数f(x)=sinx 的图象向右平移3个单位长度,再将图象的横坐标和纵坐标同时扩大为原来的3倍,所得图象的函数解析式为( )A. y =3sin(3x −3)B. y =3sin(3x −9)C. y =13sin(13x −3)D. y =3sin(13x −3)7.若tanθ=−13,则cos2θ=( )A. −45B. −15C. 15D. 458.已知△ABC ,点G ,M 满足GA ⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0,AG ⃗⃗⃗⃗⃗ =3AM ⃗⃗⃗⃗⃗⃗ ,则( ) A. BM ⃗⃗⃗⃗⃗⃗ =−23BA ⃗⃗⃗⃗⃗ +16BC ⃗⃗⃗⃗⃗ B. BM ⃗⃗⃗⃗⃗⃗ =79BA ⃗⃗⃗⃗⃗ +29BC ⃗⃗⃗⃗⃗ C. BM ⃗⃗⃗⃗⃗⃗=23BA ⃗⃗⃗⃗⃗ +16BC ⃗⃗⃗⃗⃗ D. BM ⃗⃗⃗⃗⃗⃗=79BA ⃗⃗⃗⃗⃗ +19BC ⃗⃗⃗⃗⃗ 9.已知函数f(n)={n −3,n ≥10f(f(n +5)),n <10,其中n ∈N ,则f(8)=( )A. 5B. 6C. 7D. 810. 已知函数y =cos(ωx +φ)(ω>0,|φ|<π)的部分图象如图所示,则( )A. ω=1,φ=B. ω=1,φ=−C. ω=2,φ=D. ω=2,φ=−11. 已知a 是实数,则函数f(x)=acosax −1的图象不可能是( )A.B.C.D.12. P 、Q 、R 是等腰直角△ABC(A 为直角)内的点,且满足∠APB =∠BPC =∠CPA ,∠ACQ =∠CBQ =∠BAQ ,AR 和BR 分别平分∠A 和∠B ,则( ) A. PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ >QA ⃗⃗⃗⃗⃗ ⋅QB ⃗⃗⃗⃗⃗⃗ >RA ⃗⃗⃗⃗⃗ ⋅RB ⃗⃗⃗⃗⃗ B. QA ⃗⃗⃗⃗⃗ ⋅QB ⃗⃗⃗⃗⃗⃗ >PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ >RA ⃗⃗⃗⃗⃗ ⋅RB ⃗⃗⃗⃗⃗ C. RA⃗⃗⃗⃗⃗ ⋅RB ⃗⃗⃗⃗⃗ >PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ >QA ⃗⃗⃗⃗⃗ ⋅QB ⃗⃗⃗⃗⃗⃗ D. RA⃗⃗⃗⃗⃗ ⋅RB ⃗⃗⃗⃗⃗ >QA ⃗⃗⃗⃗⃗ ⋅QB ⃗⃗⃗⃗⃗⃗ >PA ⃗⃗⃗⃗⃗ ⋅PB ⃗⃗⃗⃗⃗ 二、单空题(本大题共4小题,共20.0分)13. 如下图所示,在平面直角坐标系xoy 中,角α的终边与单位圆交于点A ,A 的纵坐标为,则cosα=________.14. 如图,在平面直角坐标系xOy 中,角α的始边与x 轴的非负半轴重合且与单位圆相交于A 点,它的终边与单位圆相交于x 轴上方一点B ,始边不动,终边在运动.若α∈[0,2π3],则弓形AB 的面积S 的最大值为______.15. 若a ⃗ =(cosx,sinx),b ⃗ =(√3,−1),且a ⃗ ⊥b ⃗ ,则tan2x =______. 16. 已知α∈(0,π2),且2cosα=cos(π2−α),则sin2α的值为______. 三、解答题(本大题共6小题,共70.0分)17. 在数轴x 上,点A ,B 的坐标分别为a ,b ,AC ⃗⃗⃗⃗⃗ 的坐标为a −2. (1)求BC ⃗⃗⃗⃗⃗ 的坐标;(2)若b =5,求|2AC ⃗⃗⃗⃗⃗ −BC ⃗⃗⃗⃗⃗ |.18. 已知函数f(x)=sinxcos(x −π2)−cosxsin(x +π2),x ∈R . (1)求f(π12)的值;(2)求函数f(x)的单调递增区间.19. 已知△ABC 的顶点分别为A(2,1),B(3,2),C(−3,−1),D 在直线BC 上. (Ⅰ)若BC ⃗⃗⃗⃗⃗ =2BD ⃗⃗⃗⃗⃗⃗ ,求点D 的坐标; (Ⅱ)若AD ⊥BC ,求点D 的坐标.20. 如图,一个铝合金窗分为上、下两栏,四周框架和中间隔栏的材料为铝合金,宽均为6cm ,上栏和下栏的框内高度(不含铝合金部分)的比为1:2,此铝合金窗占用的墙面面积为28800cm2,设该铝合金窗的宽和高分别为a(cm),b(cm),铝合金的透光部分的面积为S(cm2).(1)试用a,b表示S;(2)若要使S最大,则铝合金窗的宽和高分别为多少?21.已知函数f(x)=sin cos+sin2(其中ω>0,0<φ<).其图象的两个相邻对称中心的距离为,且过点.(1)函数f(x)的解析式;(2)在△ABC中,a,b,c分别是角A,B,C的对边,a=,S△ABC=2,角C为锐角.且满足f=,求c的值.22.已知函数f(x)=sin(ωx+φ)(其中ω>0,x=R,|φ|<π)的图象与x轴在原点右侧的第一个交点为N(6,0),又f(2+x)=f(2−x),f(0)<0.(1)求这个函数解析式;(2)设关于x的方程f(x)=k+1在[0,8]内有两个不同根a,β,求a+β的值及k的取值范围.参考答案及解析1.答案:D解析:解:sin315°=sin(360°−45°)=−sin45°=−√22.故选:D .直接利用诱导公式化简求解即可.本题考查诱导公式以及特殊角的三角函数值的求法,是基础题.2.答案:B解析:本题考查了向量的三角形法则和数量积运算、抛物线的性质,考查了推理能力和计算能力,属于难题.利用向量的三角形法则和数量积运算可得:CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ =(CM ⃗⃗⃗⃗⃗⃗ −AM ⃗⃗⃗⃗⃗⃗ )⋅(CM ⃗⃗⃗⃗⃗⃗ −BM ⃗⃗⃗⃗⃗⃗ )=CM ⃗⃗⃗⃗⃗⃗ 2−AM ⃗⃗⃗⃗⃗⃗ 2,当且仅当|CM ⃗⃗⃗⃗⃗⃗ |取得最小值时,CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ 取最小值,只有当CM ⊥l 时,|CM ⃗⃗⃗⃗⃗⃗ |取得最小值. 解:如图所示,CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ =(CM ⃗⃗⃗⃗⃗⃗ −AM ⃗⃗⃗⃗⃗⃗ )⋅(CM ⃗⃗⃗⃗⃗⃗ −BM ⃗⃗⃗⃗⃗⃗ ) =CM⃗⃗⃗⃗⃗⃗ 2−(BM ⃗⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ )⋅CM ⃗⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ ⋅BM ⃗⃗⃗⃗⃗⃗ =CM ⃗⃗⃗⃗⃗⃗ 2−AM ⃗⃗⃗⃗⃗⃗ 2,当且仅当|CM ⃗⃗⃗⃗⃗⃗ |取得最小值时,CA ⃗⃗⃗⃗⃗ ·CB ⃗⃗⃗⃗⃗ 取最小值, 只有当CM ⊥l 时,|CM ⃗⃗⃗⃗⃗⃗ |取得最小值, 故选:B .3.答案:C解析:本题给出两个角π5和6π5,求证它们有相同的正切线,着重考查了终边相同的角、三角函数线的作法等知识,属于基础题.根据角π5和角6π5的终边在一条直线上,结合正切线的作法可得两个角有相同的正切线,得到答案.解:∵6π5=π+π5,∴角π5和角6π5的终边互为反向延长线,即两个角的终边在同一条直线上,设为直线l,因此,过点A(1,0)作单位圆的切线,与直线l有且只有一个交点T,可得tanπ5=tan6π5,都等于有向线段AT的长,即两角有相同的正切线.故选C.4.答案:B解析:解:由因为α是第一象限角,所以α∈(0,π2),而根据同角三角函数间的基本关系得:tanα=sinαcosα=34①;sin2α+cos2α=1②;由①得到sinα=34cosα,因为α为锐角,将其代入②,得sinα=35.故选:B.根据同角的三角函数间的基本关系得到:tanα=sinαcosα=34;sin2α+cos2α=1;由于α是第一象限角,联立求出sinα大于0的值即可.考查学生会利用同角三角函数间的基本关系化简求值,以及会根据象限角判断其三角函数的取值.5.答案:C解析:解:∵函数f(x)=2sinx+acosx=√4+a2(√4+a2√4+a2=√4+a2sin(x+θ),其中,cosθ=√4+a2,sinθ=√4+a2,由于的图象关于直线x=π6对称,则π6+θ=π2,即θ=π3,sinθ=√4+a2=sinπ3,解得a=2√3,故选:C.由题意利用辅助角公式化简函数的解析式,再利用正弦函数的图象的对称性,求得a的值.本题主要考查辅助角公式,正弦函数的图象的对称性,属于基础题.6.答案:C解析:解:函数f(x)=sinx 的图象向右平移3个单位长度,得到:y =sin(x −3), 再将图象的横坐标和纵坐标同时扩大为原来的3倍,得到:y =3sin(13x −3), 故解析式为:y =3sin(13x −3). 故选:C .直接利用三角函数的关系式的平移和伸缩变换求出结果. 本题考查的知识要点:三角函数图象的平移和伸缩变换.7.答案:D解析:本题考查了同角三角函数的基本关系和二倍角的余弦公式,利用同角三角函数中的平方关系,完成弦与切的互化,属于基础题. 解:由tanθ=−13, 得cos2θ=cos 2θ−sin 2θ =cos 2θ−sin 2θcos 2θ+sin 2θ=1−tan 2θ1+tan 2θ=1−(−13)21+(−13)2=45,故选D .8.答案:D解析:解:G 满足GA ⃗⃗⃗⃗⃗ +GB ⃗⃗⃗⃗⃗ +GC ⃗⃗⃗⃗⃗ =0, 所以G 为△ABC 的重心, 因为AG ⃗⃗⃗⃗⃗ =3AM ⃗⃗⃗⃗⃗⃗ ,则BM ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +AM ⃗⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +13AG ⃗⃗⃗⃗⃗ =BA ⃗⃗⃗⃗⃗ +13×23×12(AB ⃗⃗⃗⃗⃗ +AC ⃗⃗⃗⃗⃗ )=BA ⃗⃗⃗⃗⃗ +19AB ⃗⃗⃗⃗⃗ +19AC ⃗⃗⃗⃗⃗ =19AC ⃗⃗⃗⃗⃗ −89AB ⃗⃗⃗⃗⃗ =19AB ⃗⃗⃗⃗⃗ +19BC ⃗⃗⃗⃗⃗ −89AB ⃗⃗⃗⃗⃗ =19BC ⃗⃗⃗⃗⃗ −79AB ⃗⃗⃗⃗⃗ .故选:D .由已知可知G 为△ABC 的重心,然后结合向量的线性运算及三角形重心的性质可求. 本题主要考查了三角形的重心性质,还考查了向量的线性运算,属于基础题.9.答案:C解析:解:∵函数函数f(n)={n −3,n ≥10f(f(n +5)),n <10,∴f(8)=f[f(13)],则f(13)=13−3=10,∴f(8)=f[f(13)]=f(10)=10−3=7,故选:C.根据解析式先求出f(8)=f[f(13)],依次再求出f(13)和f[f(13)],即得到所求的函数值.本题是分段函数求值问题,对应多层求值按“由里到外”的顺序逐层求值,一定要注意自变量的值所在的范围,然后代入相应的解析式求解.10.答案:D解析:试题分析:由图像知:函数的周期为,所以,又点在图像上,代入得φ=−。

2022-2023学年福州第三中学高一上数学期末综合测试模拟试题含解析

2022-2023学年福州第三中学高一上数学期末综合测试模拟试题含解析
2022-2023学年高一上数学期末模拟试卷
请考生注意:
1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。
2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。
一、选择题(本大题共12 小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确答案涂在答题卡上.)
=2sin2 -1-2 sin cos
=-cosωx- sinωx
=-2sin(ωx ),
∵ 是对称中心,
∴- ,
得ω=2-12k,k∈Z,
∵0<ω<6,
∴k=0,ω=2,
∴ ,
其最小正周期为π;
(2)由 ,
得 ,
∴f(x)的单调递增区间为:[ ],k∈Z,
(3)由(2)可知,
f(x)在[ ]递减,在[ ]递增,
⑵根据正弦函数的图象和性质求得函数的最小正周期和单调递增区间
解析:(1)由已知得 ,解得 .
(2) 的最小正周期为 .
由 ,解得 , .
所以 的递增区间是 .
20、 (1)见解析(2) (3) .
【解析】(1)将式子写为: 得证,再通过等比数列公式得到 的通项公式.
(2)根据(1)得到 进而得到数列 通项公式,再利用错位相减法得到前n项和 .
(2)将原不等式分离常数 ,利用函数的单调性,求出 的取值范围.
【详解】(1)由于函数 图像经过 , ,所以 ,解得 ,所以 .
(2)原不等式 为 ,即 在 时恒成立,而 在 时单调递减,故在 时 有最小值为 ,故 .所以实数 的取值范围是 .
【点睛】本小题主要考查待定系数法求函数的解析式,考查不等式恒成立问题的求解策略,考查函数的单调性以及最值,属于中档题.

福建省福州市高一上学期数学期末考试试卷

福建省福州市高一上学期数学期末考试试卷

福建省福州市高一上学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共27分)1. (2分)函数的零点的个数是()A . 0B . 1C . 2D . 32. (2分)已知函数f(x)=|log2|x﹣1||,且关于x的方程[f(x)]2+af(x)+2b=0有6个不同的实数解,若最小的实数解为﹣1,则a+b的值为()A . -2B . -1C . 0D . 13. (2分) (2018高一下·伊通期末) 已知,那么是()A . 第三或第四象限角B . 第二或第三象限角C . 第一或第二象限角D . 第一或第四象限角4. (2分)已知弧度数为的圆心角所对的弦长为2,则这个圆心角所对的弧长是()A .B .C .D .6. (2分) (2019高三上·佛山月考) 已知角的顶点与原点重合,始边与轴的正半轴重合,若它的终边经过点,则()A . -7B .C .D . 77. (2分) (2019高一上·黑龙江月考) 在平面直角坐标系中,角的顶点与原点重合,始边与x轴的非负半轴重合,终边过点,则()A .B .C .D .8. (2分)要得到函数的图象,只要将函数的图象()A . 向左平移单位B . 向右平移单位C . 向左平移单位D . 向右平移单位9. (2分)将函数y=sin(x+)图像上各点的横坐标缩短到原来的倍(纵坐标不变),再向右平移个单位,那么所得图像的一条对称轴方程为()A . x=-B . x=-C . x=D . x=10. (2分)关于函数的四个结论:P1:最大值为;P2:把函数的图象向右平移个单位后可得到函数的图象;P3:单调递增区间为[],;P4:图象的对称中心为(,.其中正确的结论有()A . 1个B . 2个C . 3个D . 4个11. (2分) (2016高一下·淄川期中) 已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,丨φ丨<)的部分图象如图所示,则f(x)的解析式为()A . f(x)=2sin(x+ )B . f(x)=2sin(2x+ )C . f(x)=2sin(2x﹣)D . f(x)=2sin(4x﹣)12. (5分)已知函数f(x)=﹣sinx+3cosx,若x1•x2>0,且f(x1)+f(x2)=0,则|x1+x2|的最小值为()A .B .C .D .二、填空题 (共4题;共4分)13. (1分) (2020高一上·武汉期末) 函数的最大值是________,最小值是________.14. (1分)已知,则tanα=________.15. (1分) (2017高一上·定州期末) 若函数的零点,且,则 ________.三、解答题 (共6题;共50分)17. (5分) (2018高一上·鹤岗月考) 已知角的终边过点,且,求和的值.18. (10分) (2016高一下·邵东期中) 解答(1)已知函数,求函数在区间[﹣2π,2π]上的单调增区间;(2)计算:.19. (10分)(2018·普陀模拟) 已知函数, .(1)若函数在区间上递增,求实数的取值范围;(2)若函数的图像关于点对称,且,求点的坐标.20. (10分) (2020高一上·铜仁期末) 已知函数 .(1)求的值;(2)当时,求的值域;(3)当时,求的单调递减区间.21. (5分) (2016高一上·吉林期中) 若函数f(x)=(a2﹣3a+3)•ax是指数函数,试确定函数y=loga(x+1)在区间(0,3)上的值域.参考答案一、单选题 (共12题;共27分)1-1、2-1、3-1、4-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共4分)13-1、14-1、15-1、三、解答题 (共6题;共50分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、。

2020-2021学年福建省福州市高一上学期期末数学试题 (解析版)

2020-2021学年福建省福州市高一上学期期末数学试题 (解析版)

2020-2021学年福建省福州市高一(上)期末数学试卷一、选择题(共8小题).1.设集合A={x|y=lg(x+1)},B={x|2x>1},则A∩B=()A.(0,+∞)B.(﹣1,0)C.∅D.(﹣1,+∞)2.sin78°sin18°﹣cos78°cos162°=()A.B.C.D.3.若函数f(x)=x3+x2﹣2x﹣2的一个正数零点附近的函数值用二分法逐次计算,参考数据如表:那么方程x3+x2﹣2x﹣2=0的一个近似根(精确度0.04)为()f(1)=﹣2f(1.5)=0.625f(1.25)=﹣0.984f(1,375)=﹣0.260f(1.4375)=0.165f(1.40625)=﹣0.052A.1.5B.1.25C.1.375D.1.43754.设a=log20.8,b=0.82,c=20.8,则a,b,c大小关系正确的是()A.a<b<c B.c<b<a C.c<a<b D.b<a<c5.函数f(x)=的图象大致是()A.B.C.D.6.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解.例如,地震释放出的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.据此推断里氏8.0级地震所释放的能量是里氏5.0级地震所释放的能量的()倍.A.lg4.5B.4.510C.450D.104.57.已知sin(﹣x)=,则cos(x+)等于()A.B.C.﹣D.﹣8.已知关于x的方程a cos2|x|+2sin|x|﹣a+2=0(a≠0)在x∈(﹣2π,2π)有四个不同的实数解,则实数a的取值范围为()A.(﹣∞,0)∪(2,+∞)B.(4,+∞)C.(0,2)D.(0,4)二、多选题(共4小题).9.已知函数,,则下列结论正确的是()A.f(﹣x)=﹣f(x)B.f(﹣2)>f(3)C.f(2x)=2f(x)g(x)D.[f(x)]2﹣[g(x)]2=110.将函数的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变,得到函数y=g(x)的图象.若g(x1)•g(x2)=﹣4,则|x1﹣x2|的值可能为()A.B.C.D.11.设,则下列结论正确的有()A.a+b<0B.C.ab<0D.12.设函数,已知f(x)在[0,2π]有且仅有5个零点.下述四个结论中正确的是()A.ω的取值范围是B.当x∈[0,2π]时,方程f(x)=1有且仅有3个解C.当x∈[0,2π]时,方程f(x)=﹣1有且仅有2个解D.∃ω>0,使得f(x)在单调递增三、填空题(共4小题).13.已知某扇形的周长为9,圆心角为1rad,则该扇形的面积是.14.已知f(x)是定义在R上的偶函数,且满足f(x+4)=f(x),当2≤x≤3,f(x)=x,则f(5.5)=.15.已知角θ的终边经过点P(﹣4,3),则=.16.已知函数f(x)=,则f[f(﹣3)]=;若存在四个不同的实数a,b,c,d,使得f(a)=f(b)=f(c)=f(d),则abcd的取值范围是.三、解答题(共6小题).17.(1)求值:;(2)已知,,求的值.18.已知,,,.(1)求的值;(2)求的值.19.水葫芦原产于巴西,1901年作为观赏植物引入中国.现在南方一些水域水葫芦已泛滥成灾严重影响航道安全和水生动物生长.某科研团队在某水域放入一定量水葫芦进行研究,发现其蔓延速度越来越快,经过2个月其覆盖面积约为18m2,经过3个月其覆盖面积约为27m2.现水葫芦覆盖面积y(单位:m2)与经过时间x(x∈N)个月的关系有两个函数模型y=ka x(k>0,a>1)与y=log a(x+1)+q(a>1)可供选择.(参考数据:lg2≈0.3010,lg3≈0.4771)(1)试判断哪个函数模型更合适,并求出该函数模型的解析式;(2)约经过几个月该水域中水葫芦面积至少是当初投放的100倍?20.已知函数.(1)求函数f(x)的最小正周期和单调递减区间;(2)若函数f(x)的图象关于点(m,n)对称,求正数m的最小值;21.函数的部分图象如图所示.(1)求f(x)的解析式;(2)若,2[f(x)]2﹣mf(x)﹣1≥0,求实数m的取值范围;(3)是否存在实数a,使得函数F(x)=f(x)﹣a在[0,nπ](n∈N*)上恰有2021个零点若存在,求出a和对应的n的值;若不存在,请说明理由.22.已知函数,g(x)=﹣lnx.(1)若函数g[f(x)]的定义域为R,求实数a的取值范围;(2)若函数g[f(x)]在(1,+∞)上单调递减,求实数a的取值范围;(3)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.参考答案一、选择题(共8小题).1.设集合A={x|y=lg(x+1)},B={x|2x>1},则A∩B=()A.(0,+∞)B.(﹣1,0)C.∅D.(﹣1,+∞)解:∵集合A={x|y=lg(x+1)}={x\x>﹣1},B={x|2x>1}={x|x>0},∴A∩B={x|x>0}=(0,+∞).故选:A.2.sin78°sin18°﹣cos78°cos162°=()A.B.C.D.解:sin78°sin18°﹣cos78°cos162°=sin78°sin18°+cos78°cos18°=cos(78°﹣18°)=cos60°=.故选:C.3.若函数f(x)=x3+x2﹣2x﹣2的一个正数零点附近的函数值用二分法逐次计算,参考数据如表:那么方程x3+x2﹣2x﹣2=0的一个近似根(精确度0.04)为()f(1)=﹣2f(1.5)=0.625f(1.25)=﹣0.984f(1,375)=﹣0.260f(1.4375)=0.165f(1.40625)=﹣0.052A.1.5B.1.25C.1.375D.1.4375解:由表格可知,方程x3+x2﹣2x﹣2=0的近似根在(1,1.5),(1.25,1.5),(1.375,1.5),(1.375,1.4375),(1.40625,1.4375),故程x3+x2﹣2x﹣2=0的一个近似根(精确度0.04)为:1.4375,故选:D.4.设a=log20.8,b=0.82,c=20.8,则a,b,c大小关系正确的是()A.a<b<c B.c<b<a C.c<a<b D.b<a<c 解:log20.8<log21=0,0<0.82<1,20.8>20=1;∴a<b<c.故选:A.5.函数f(x)=的图象大致是()A.B.C.D.解:函数的定义域为R,f(x)≥0恒成立,排除C,D,f(﹣x)===f(x),即函数f(x)是偶函数,图象关于y轴对称,排除B,故选:A.6.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解.例如,地震释放出的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.据此推断里氏8.0级地震所释放的能量是里氏5.0级地震所释放的能量的()倍.A.lg4.5B.4.510C.450D.104.5解:设8.0级地震释放出的能量为E1,5.0级地震释放出的能量为E2,则lgE1﹣lgE2=4.5,∴,∴.故选:D.7.已知sin(﹣x)=,则cos(x+)等于()A.B.C.﹣D.﹣解:设﹣x=θ,则x=﹣θ,则sinθ=,则cos(x+)=cos(﹣θ+)=cos(﹣θ)=﹣cos(﹣θ)=﹣sinθ=﹣,故选:C.8.已知关于x的方程a cos2|x|+2sin|x|﹣a+2=0(a≠0)在x∈(﹣2π,2π)有四个不同的实数解,则实数a的取值范围为()A.(﹣∞,0)∪(2,+∞)B.(4,+∞)C.(0,2)D.(0,4)解:当x∈(﹣2π,2π),f(x)=a cos2|x|+2sin|x|﹣a+2=0(a≠0),则有f(﹣x)=f(x),所以函数f(x)为偶函数,偶函数的对称性,只需研究x∈(0,2π)时,f(x)=a cos2x+2sin x﹣a+2=0有两个零点,设t=sin x,则h(t)=at2﹣2t﹣2有一个根t∈(﹣1,1),①当a<0时,h(t)=at2﹣2t﹣2开口向下,对称轴为的二次函数,因为h(0)=﹣2<0,则h(﹣1)=a>0,这与a<0矛盾,不符合题意;②当a>0时,h(t)=at2﹣2t﹣2开口向上,对称轴为的二次函数,因为h(0)=﹣2<0,则h(﹣1)=a>0,则存在t∈(﹣1,0),只需h(1)=a﹣2+2<0,解得a<4,所以0<a<4,综上所述,实数a的取值范围为(0,4).故选:D.二、多选题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分.9.已知函数,,则下列结论正确的是()A.f(﹣x)=﹣f(x)B.f(﹣2)>f(3)C.f(2x)=2f(x)g(x)D.[f(x)]2﹣[g(x)]2=1解:,∴A正确;f(x)在R上是增函数,∴f(﹣2)<f(3),∴B错误;,=,∴f(2x)=2f(x)g(x),∴C正确;[f(x)]2﹣[g(x)]2=,∴D错误.故选:AC.10.将函数的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变,得到函数y=g(x)的图象.若g(x1)•g(x2)=﹣4,则|x1﹣x2|的值可能为()A.B.C.D.解:将函数的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变,得到函数y=g(x)=2sin(4x﹣)的图象,故g(x)的周期为,且g(x)的最大值为2,最小值为﹣2,若g(x1)•g(x2)=﹣4,所以g(x1)和g(x2)是函数g(x)的最大值和最小值,所以|x1﹣x2|=+,k∈Z,当k=0时,|x1﹣x2|=;当k=1时,|x1﹣x2|=.故选:BD.11.设,则下列结论正确的有()A.a+b<0B.C.ab<0D.解:设,则a+b=log26+log3=log26﹣log36>0,故A错误;﹣=log62+log63=log66=1,故B正确;∵a=log26>0,b=log3<0,∴ab<0,故正确;+=(log62)2+(﹣log63)2=(log62)2+(log63)2=(log62+log63)2﹣2log62log63>1﹣2×()2=1﹣=,故D正确.故选:BCD.12.设函数,已知f(x)在[0,2π]有且仅有5个零点.下述四个结论中正确的是()A.ω的取值范围是B.当x∈[0,2π]时,方程f(x)=1有且仅有3个解C.当x∈[0,2π]时,方程f(x)=﹣1有且仅有2个解D.∃ω>0,使得f(x)在单调递增解:对于A,由于ω>0,f(0)=sin>sin0,设t=ωx+,则t∈[,2ωπ+],因为f(x)在[0,2π]上有且仅有5个零点,所以5π≤2ωπ+<6π,解得≤ω<,故A正确,对于B,f(x)=1即此时f(x)取最大值,则满足ωx+=,,的x是f(x)=1的解,共3个,故B正确,对于C,f(x)=﹣1,即此时f(x)取最小值,则满足ωx+=,的x是f(x)=﹣1的解,但当ω接近时,ωx+=<6π,也是f(x)=﹣1的解,这时f(x)=﹣1有3个解,故C错,对于D,当x∈(0,)时,由ω×+=(ω+2)×<<,所以f(x)是递增的,故D正确.故选:ABD.三、填空题:本大题共4小题,每小题5分,共20分.在答题卡上的相应题目的答题区域内作答.13.已知某扇形的周长为9,圆心角为1rad,则该扇形的面积是.解:设扇形的半径为r,弧长为l,则l+2r=9,∵圆心角为1rad的弧长l=r,∴3r=9,则r=3,l=3,则对应的扇形的面积S=lr=×3×3=.故答案是:.14.已知f(x)是定义在R上的偶函数,且满足f(x+4)=f(x),当2≤x≤3,f(x)=x,则f(5.5)= 2.5.解:根据题意,f(x)为偶函数且满足f(x+4)=f(x),则f(5.5)=f(﹣2.5)=f(2.5),又由当2≤x≤3,f(x)=x,则f(2.5)=2.5,则有f(5.5)=f(2.5)=2.5,故答案为:2.5.15.已知角θ的终边经过点P(﹣4,3),则=7.解:因为角θ的终边经过点P(﹣4,3),所以,所以=.故答案为:7.16.已知函数f(x)=,则f[f(﹣3)]=1;若存在四个不同的实数a,b,c,d,使得f(a)=f(b)=f(c)=f(d),则abcd的取值范围是[0,1).解:∵f(x)=,∴f(﹣3)=sin()+1=2,则f[f(﹣3)]=f(2)=|log22|=1;作出函数f(x)的图象如图,若存在四个不同的实数a,b,c,d,使得f(a)=f(b)=f(c)=f(d),不妨设a<b<c<d,由图可知,|log2c|=|log2d|,得log2(cd)=0,即cd=1.a+b=﹣2,且﹣1<b≤0,则abcd=(﹣b﹣2)b=﹣(b+1)2+1∈[0,1),故答案为:2;[0,1).三、解答题:本大题共6小题,共70分,解答题应写出文字说明,证明过程或演算步骤,在答题卡上相应题目的答题区域内作答.17.(1)求值:;(2)已知,,求的值.解:(1)=(2﹣2lg2)+3+(﹣)+lg2=4.(2)因为,,两边平方可得1﹣2sinαcosα=,可得2sinαcosα=,可得sinα+cosα===,可得===﹣.18.已知,,,.(1)求的值;(2)求的值.解:(1)因为,,所以,故=;(2)因为,由(1)可知,=,所以,因为,所以,又,所以,故===19.水葫芦原产于巴西,1901年作为观赏植物引入中国.现在南方一些水域水葫芦已泛滥成灾严重影响航道安全和水生动物生长.某科研团队在某水域放入一定量水葫芦进行研究,发现其蔓延速度越来越快,经过2个月其覆盖面积约为18m2,经过3个月其覆盖面积约为27m2.现水葫芦覆盖面积y(单位:m2)与经过时间x(x∈N)个月的关系有两个函数模型y=ka x(k>0,a>1)与y=log a(x+1)+q(a>1)可供选择.(参考数据:lg2≈0.3010,lg3≈0.4771)(1)试判断哪个函数模型更合适,并求出该函数模型的解析式;(2)约经过几个月该水域中水葫芦面积至少是当初投放的100倍?解:(1)因为函数y=ka x(k>0,a>1)中,y随x的增大而增大的速度越来越快,而函数y=log a(x+1)+q(a>1)中,y随x的增大而增大的速度越来越慢,依题意应选择函数y=ka x(k>0,a>1),则有,解得k=8,a=,所以函数的解析式为y=8•()x(x∈N);(2)由(1)可知,当x=0时,y=8,设经过x个月该水域中水葫芦面积至少是当初投放的100倍,则有8,所以x=log≈11.36,所以约经过12个月该水域中水葫芦面积至少是当初投放的100倍.20.已知函数.(1)求函数f(x)的最小正周期和单调递减区间;(2)若函数f(x)的图象关于点(m,n)对称,求正数m的最小值;解:(1)函数===所以函数f(x)的最小正周期为π,令,解得,所以函数f(x)的单调递减区间为;(2)因为函数f(x)的图象关于点(m,n)对称,所以有,解得,又因为m>0,所以m的最小值为.21.函数的部分图象如图所示.(1)求f(x)的解析式;(2)若,2[f(x)]2﹣mf(x)﹣1≥0,求实数m的取值范围;(3)是否存在实数a,使得函数F(x)=f(x)﹣a在[0,nπ](n∈N*)上恰有2021个零点若存在,求出a和对应的n的值;若不存在,请说明理由.解:(1)由函数图象知,A=1,T=﹣,∴T=π,所以ω==2,∵x=时,f()=cos(2×+φ)=1,∴2×+φ=2kπ,k∈Z,解得φ=2kπ﹣,k∈Z,又∵|φ|<,∴φ=﹣,∴f(x)的解析式为f(x)=cos(2x﹣);(2),2x﹣∈[﹣,],∴f(x)∈[,1],要使2[f(x)]2﹣mf(x)﹣1≥0,恒成立,令t=f(x),则t∈[,1],即2t2﹣mt﹣1≥0,因为g(t)=2t2﹣mt﹣1图象开口向上,且g(0)=﹣1,∴要使t∈[,1]时,2t2﹣mt﹣1≥0,则有,解得m≤﹣1,即实数m的取值范围是(﹣∞,﹣1].(3)由题意可得y=f(x)的图象与直线y=a在[0,nπ](n∈N*)上恰有2021个交点,在[0,π]上,2x﹣∈[﹣,],①当a>1或a<﹣1时,y=f(x)的图象与直线y=a在[0,π]上无交点;②当a=1或a=﹣1时,y=f(x)的图象与直线y=a在[0,π]上仅有一个交点,若此时y=f(x)的图象与直线y=a在[0,nπ](n∈N*)上恰有2021个交点,则n=2021;③当﹣1<a<或<a<1时,y=f(x)的图象与直线y=a在[0,π]上恰有2个交点,y=f(x)的图象与直线y=a在[0,nπ](n∈N*)上有偶数个交点,不可能有2021个交点;④当a=时,y=f(x)的图象与直线y=a在[0,π]上恰有3个交点,若此时y=f(x)的图象与直线y=a在[0,nπ](n∈N*)上恰有2021个交点,则n=1010.综上可得,当a=1或﹣1时,n=2021;当a=时,n=1010.22.已知函数,g(x)=﹣lnx.(1)若函数g[f(x)]的定义域为R,求实数a的取值范围;(2)若函数g[f(x)]在(1,+∞)上单调递减,求实数a的取值范围;(3)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.解:(1)若函数g[f(x)]的定义域为R,则任意x∈R,使得f(x)=x2+ax+>0,所以△=a2﹣4×1×<0,解得﹣1<a<1,所以实数a的取值范围为(﹣1,1).(2)若函数g[f(x)]在(1,+∞)上单调递减,又因为g(x)在(0,+∞)上为减函数,所以f(x)在(1,+∞)上为增函数且任意x∈(1,+∞),f(x)>0,所以﹣≤1,且f(1)>0,即﹣≤1,且1+a+>0,解得a>﹣,所以a的取值范围为(﹣,+∞).(3)因为当x>1时,g(x)=﹣lnx<0,所以h(x)=min{f(x),g(x)}≤g(x)<0,所以h(x)在(1,+∞)上无零点,①当a≥0时,f(x)过(0,)点,且对称轴﹣≤0,作出h(x)的图象,可得h(x)只有一个零点x=1,②当a<0时,f(x)过(0,)点,且对称轴﹣>0,当△=a2﹣4×1×<0,即﹣1<a<0时,h(x)只有一个零点x=1,当△=a2﹣4×1×=0,即a=﹣1时,f(x)的零点为x=﹣=,h(x)由两个零点x=,x=1,当△=a2﹣4×1×>0,即a<﹣1时,令f(x)=0,解得x1=,x2=,且0<x1<1,0<x2,若x2=<1,即﹣<a<﹣1时,函数h(x)有3个零点x=x1,x=x2,x=1,若x2=>1,即a<﹣时,函数h(x)有1个零点x=x1,若若x2==1,即a=﹣时,函数h(x)有2个零点x=x1,x=1,综上所述,当a∈(﹣∞,﹣)∪(﹣1,0)时,h(x)只有一个零点,当a=﹣1或﹣时,h(x)有两个零点,当a∈(﹣,﹣1)时,h(x)有三个零点.。

2020-2021高一数学上期末试卷带答案

2020-2021高一数学上期末试卷带答案

2020-2021高一数学上期末试卷带答案一、选择题1.设a b c ,,均为正数,且122log aa =,121log 2b b ⎛⎫= ⎪⎝⎭,21log 2cc ⎛⎫= ⎪⎝⎭.则( ) A .a b c << B .c b a << C .c a b << D .b a c <<2.已知0.2633,log 4,log 2a b c ===,则,,a b c 的大小关系为 ( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<3.若函数f(x)=a |2x -4|(a>0,a≠1)满足f(1)=19,则f(x)的单调递减区间是( ) A .(-∞,2] B .[2,+∞) C .[-2,+∞) D .(-∞,-2]4.已知131log 4a =,154b=,136c =,则( ) A .a b c >> B .a c b >>C .c a b >>D .b c a >>5.已知函数ln ()xf x x=,若(2)a f =,(3)b f =,(5)c f =,则a ,b ,c 的大小关系是( ) A .b c a <<B .b a c <<C .a c b <<D .c a b <<6.函数()2sin f x x x =的图象大致为( )A .B .C .D .7.设函数()()212log ,0,log ,0.x x f x x x >⎧⎪=⎨-<⎪⎩若()()f a f a >-,则实数的a 取值范围是( )A .()()1,00,1-⋃B .()(),11,-∞-⋃+∞C .()()1,01,-⋃+∞D .()(),10,1-∞-⋃8.函数f (x )=ax 2+bx +c (a ≠0)的图象关于直线x =-对称.据此可推测,对任意的非零实数a ,b ,c ,m ,n ,p ,关于x 的方程m [f (x )]2+nf (x )+p =0的解集都不可能是( )A .{1,2}B .{1,4}C .{1,2,3,4}D .{1,4,16,64}9.已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,210.已知()f x 是定义在R 上的偶函数,且在区间(),0-∞上单调递增。

2021年福建省福州市长乐第三中学高一数学文期末试题含解析

2021年福建省福州市长乐第三中学高一数学文期末试题含解析

2021年福建省福州市长乐第三中学高一数学文期末试题含解析一、选择题:本大题共10小题,每小题5分,共50分。

在每小题给出的四个选项中,只有是一个符合题目要求的1. 已知,则函数的最小值为A.1B.2C.3D.4参考答案:C2. 如果函数f(x)的图象关于原点对称,在区间[1,5]上是减函数,且最小值为3,那么f(x)在区间[﹣5,﹣1]上是()A.增函数且最小值为3 B.增函数且最大值为3C.减函数且最小值为﹣3 D.减函数且最大值为﹣3参考答案:D【考点】奇偶性与单调性的综合.【专题】计算题;函数思想;定义法;函数的性质及应用.【分析】根据函数的奇偶性和单调性之间的关系即可得到结论.【解答】解:由奇函数的性质可知,若奇函数f(x)在区间[1,5]上是减函数,且最小值3,则那么f(x)在区间[﹣5,﹣1]上为减函数,且有最大值为﹣3,故选:D【点评】本题主要考查函数奇偶性和单调性之间的关系的应用,比较基础.3. (5分)沿一个正方体三个面的对角线截得几何体如图所示,则该几何体的侧视图为()A.B.C.D.参考答案:A考点:简单空间图形的三视图.专题:空间位置关系与距离.分析:沿一个正方体三个面的对角线截得的几何体,它的侧视图首先应该是一个正方形,中间的棱在侧视图中表现为一条对角线,分析对角线的方向,并逐一对照四个答案中的视图形状,即可得到答案.解答:由已知中几何体的直观图,我们可得侧视图首先应该是一个正方形,故D不正确;中间的棱在侧视图中表现为一条对角线,故C不正确;而对角线的方向应该从左上到右下,故B不正确故A选项正确.故选:A.点评:本题考查的知识点是简单空间图象的三视图,其中熟练掌握简单几何体的三视图的形状是解答此类问题的关键.4. 已知函数则有()A 、是奇函数,且B 、是奇函数,且C、是偶函数,且D、是偶函数,且参考答案:C5. 一扇形的中心角为2,对应的弧长为4,则此扇形的面积为()A.1 B.2 C.3 D.4参考答案:D∵弧长,由扇形的面积公式可得:故选D.6. 设,集合,则A.1B. -1C.2D. -2参考答案:C因为,,所以,则,所以,.所以.7. 设集合,,则()A.B.C. D.参考答案:A8. 下列四种说法:①等比数列的某一项可以为0;②等比数列的公比取值范围是R;③若,则a,b,c成等比数列;④若一个常数列是等比数列,则这个数列的公比是;其中正确说法的个数为( )A. 0B. 1C. 2D. 3 参考答案:B【分析】根据等比数列的概念,判断①②④的真假;根据等比中项的概念判断③的真假.【详解】从第二项起,每一项与前一项之比均为同一非零常数的数列,称为等比数列;所以,等比数列任一项不能为0,且公比也不为0,故①②错误;若一个常数列是等比数列,则,所以,故④正确;若满足,但,,不成等比数列;故③错误故选B【点睛】本题主要考查与等比数列相关的命题的真假判断,熟记等比数列的概念与等比中项的概念即可,属于基础题型.9. sin(-1050°)的值为()A. B. C. D.参考答案:D故选D10. 已知函数f(x)=sinx﹣cosx,x∈R,若f(x)≥1,则x的取值范围为()A.{x|kπ+≤x≤kπ+π,k∈Z}B.{x|2kπ+≤x≤2kπ+π,k∈Z}C.{x|kπ+≤x≤kπ+,k∈Z}D.{x|2kπ+≤x≤2kπ+,k∈Z}参考答案:B二、填空题:本大题共7小题,每小题4分,共28分11. 如果一扇形的弧长为2πcm,半径等于2cm,则扇形所对圆心角为.参考答案:π【考点】弧长公式.【专题】计算题;对应思想;定义法;三角函数的求值.【分析】直接根据弧长公式解答即可.【解答】解:一扇形的弧长为2πcm,半径等于2cm,所以扇形所对的圆心角为n===π.故答案为:π.【点评】本题主要考查了弧长公式的应用问题,熟记公式是解题的关键.12. 在△ABC内有一点G满足,为边中点,则____,__________________.参考答案:-2;13. 已知,则的值为.参考答案:14. 已知函数在内是减函数,则的取值范围为.参考答案:15. 已知△ABC和点P满足,则△PBC与△ABC的面积之比为_______.参考答案:1:4【分析】根据向量加法的平行四边形法则得出P为AC中线的中点,由此可得面积的比值。

2020-2021福州市高中必修三数学上期末试题附答案

2020-2021福州市高中必修三数学上期末试题附答案

( k 1), Pn 为预测人口数, P0 为初期人口数, k 为预测期内年增长率, n 为预测期间
隔年数.如果在某一时期有 1 k 0,那么在这期间人口数
A.呈下降趋势
B.呈上升趋势
C.摆动变化
D.不变
9.在半径为 2 圆形纸板中间,有一个边长为 2 的正方形孔,现向纸板中随机投飞针,则飞
针能从正方形孔中穿过的概率为( )
组别
0, 20
20, 40
40, 60
60,80
80,100
频数
10
390
400
188
12
1 求所得样本的中位数 ( 精确到百元 ) ;
2 根据样本数据,可近似地认为市民的旅游费用支出服从正态分布 N 45,152 ,若该市
总人口为 750 万人,试估计有多少市民每年旅游费用支出在 7500 元以上;
n C53 10 , 一次性任意取出的 3 个小球中,至少有 1 个白球包含的基本事件数为 m C21C32 C22C31 9 ,
由古典概型的概率计算公式得,一次性任意取出的 3 个小球中,至少有 1 个白球的概率为
Pm 9 . n 10
故选:A 【点睛】 本题考查利用组合数公式和古典概型的概率计算公式求随机事件的概率;正确求出总的基
2020-2021 福州市高中必修三数学上期末试题附答案
一、选择题
1.口袋里装有大小相同的 5 个小球,其中 2 个白球,3 个红的概率为( )
A. 9 10
B. 7 10
C. 3 10
D. 1 10
2.气象意义上的春季进入夏季的标志为连续 5 天的日平均温度不低于 220 C .现有甲、
A. 4
B. 3

福建省福州市长乐第三中学2024年高一数学文上学期期末试卷含解析

福建省福州市长乐第三中学2024年高一数学文上学期期末试卷含解析

福建省福州市长乐第三中学2024年高一数学文上学期期末试卷含解析专业课理论基础部分一、选择题:1.下列函数中,奇函数是()A. y=x²B. y=x³C. y=|x|D. y=x⁻²2.已知函数f(x)=x²-2x+1,则f(-1)的值为()A. 0B. 1C. 2D. 33.方程x²+(a-1)x+a=0的解为x₁和x₂,则a的值为()A. 0B. 1C. 2D. 34.已知函数f(x)=2x+1和g(x)=x²-3x+2,则f(g(x))的表达式为()A. x²+x-1B. x²-5x+3C. x²+5x+3D. x²-x-15.设函数f(x)=ax²+bx+c(a≠0),若f(x)的图象上存在两个点A、B关于y轴对称,则b的值为()A. 0B. 1C. 2D. 3二、判断题:1.函数y=2x³-3x²+1是奇函数。

()2.若a>b>0,则a²>b²。

()3.方程x²+(a-1)x+a=0的解为x₁和x₂,则x₁+x₂=1-a。

()4.已知函数f(x)=2x+1和g(x)=x²-3x+2,则f(g(x))=x²+5x+3。

()5.函数y=x²的最小值为0。

()三、填空题:1.若函数f(x)=x²+2x+1的图象向左平移2个单位,得到函数________的图象。

2.函数y=3x²-4x+1中,a的值为________,b的值为________,c的值为________。

3.方程x²-2x-3=0的解为________和________。

4.已知函数f(x)=x²-2x+1,则f(1)的值为________,f(-1)的值为________。

5.若函数f(x)=2x+1和g(x)=x²-3x+2,则f(g(x))的表达式为________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021学年福建省福州三中高一(上)期末数学试卷一、选择题(共8小题).1.设集合A={x|y=lg(x+1)},B={x|2x>1},则A∩B=()A.(0,+∞)B.(﹣1,0)C.∅D.(﹣1,+∞)2.sin78°sin18°﹣cos78°cos162°=()A.B.C.D.3.若函数f(x)=x3+x2﹣2x﹣2的一个正数零点附近的函数值用二分法逐次计算,参考数据如表:那么方程x3+x2﹣2x﹣2=0的一个近似根(精确度0.04)为()f(1)=﹣2f(1.5)=0.625f(1.25)=﹣0.984f(1,375)=﹣0.260f(1.4375)=0.165f(1.40625)=﹣0.052A.1.5B.1.25C.1.375D.1.43754.设a=log20.8,b=0.82,c=20.8,则a,b,c大小关系正确的是()A.a<b<c B.c<b<a C.c<a<b D.b<a<c5.函数f(x)=的图象大致是()A.B.C.D.6.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解.例如,地震释放出的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.据此推断里氏8.0级地震所释放的能量是里氏5.0级地震所释放的能量的()倍.A.lg4.5B.4.510C.450D.104.57.已知sin(﹣x)=,则cos(x+)等于()A.B.C.﹣D.﹣8.已知关于x的方程a cos2|x|+2sin|x|﹣a+2=0(a≠0)在x∈(﹣2π,2π)有四个不同的实数解,则实数a的取值范围为()A.(﹣∞,0)∪(2,+∞)B.(4,+∞)C.(0,2)D.(0,4)二、多选题(共4小题).9.已知函数,,则下列结论正确的是()A.f(﹣x)=﹣f(x)B.f(﹣2)>f(3)C.f(2x)=2f(x)g(x)D.[f(x)]2﹣[g(x)]2=110.将函数的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变,得到函数y=g(x)的图象.若g(x1)•g(x2)=﹣4,则|x1﹣x2|的值可能为()A.B.C.D.11.设,则下列结论正确的有()A.a+b<0B.C.ab<0D.12.设函数,已知f(x)在[0,2π]有且仅有5个零点.下述四个结论中正确的是()A.ω的取值范围是B.当x∈[0,2π]时,方程f(x)=1有且仅有3个解C.当x∈[0,2π]时,方程f(x)=﹣1有且仅有2个解D.∃ω>0,使得f(x)在单调递增三、填空题(共4小题).13.已知某扇形的周长为9,圆心角为1rad,则该扇形的面积是.14.已知f(x)是定义在R上的偶函数,且满足f(x+4)=f(x),当2≤x≤3,f(x)=x,则f(5.5)=.15.已知角θ的终边经过点P(﹣4,3),则=.16.已知函数f(x)=,则f[f(﹣3)]=;若存在四个不同的实数a,b,c,d,使得f(a)=f(b)=f(c)=f(d),则abcd的取值范围是.三、解答题(共6小题).17.(1)求值:;(2)已知,,求的值.18.已知,,,.(1)求的值;(2)求的值.19.水葫芦原产于巴西,1901年作为观赏植物引入中国.现在南方一些水域水葫芦已泛滥成灾严重影响航道安全和水生动物生长.某科研团队在某水域放入一定量水葫芦进行研究,发现其蔓延速度越来越快,经过2个月其覆盖面积约为18m2,经过3个月其覆盖面积约为27m2.现水葫芦覆盖面积y(单位:m2)与经过时间x(x∈N)个月的关系有两个函数模型y=ka x(k>0,a>1)与y=log a(x+1)+q(a>1)可供选择.(参考数据:lg2≈0.3010,lg3≈0.4771)(1)试判断哪个函数模型更合适,并求出该函数模型的解析式;(2)约经过几个月该水域中水葫芦面积至少是当初投放的100倍?20.已知函数.(1)求函数f(x)的最小正周期和单调递减区间;(2)若函数f(x)的图象关于点(m,n)对称,求正数m的最小值;21.函数的部分图象如图所示.(1)求f(x)的解析式;(2)若,2[f(x)]2﹣mf(x)﹣1≥0,求实数m的取值范围;(3)是否存在实数a,使得函数F(x)=f(x)﹣a在[0,nπ](n∈N*)上恰有2021个零点若存在,求出a和对应的n的值;若不存在,请说明理由.22.已知函数,g(x)=﹣lnx.(1)若函数g[f(x)]的定义域为R,求实数a的取值范围;(2)若函数g[f(x)]在(1,+∞)上单调递减,求实数a的取值范围;(3)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.参考答案一、选择题(共8小题).1.设集合A={x|y=lg(x+1)},B={x|2x>1},则A∩B=()A.(0,+∞)B.(﹣1,0)C.∅D.(﹣1,+∞)解:∵集合A={x|y=lg(x+1)}={x\x>﹣1},B={x|2x>1}={x|x>0},∴A∩B={x|x>0}=(0,+∞).故选:A.2.sin78°sin18°﹣cos78°cos162°=()A.B.C.D.解:sin78°sin18°﹣cos78°cos162°=sin78°sin18°+cos78°cos18°=cos(78°﹣18°)=cos60°=.故选:C.3.若函数f(x)=x3+x2﹣2x﹣2的一个正数零点附近的函数值用二分法逐次计算,参考数据如表:那么方程x3+x2﹣2x﹣2=0的一个近似根(精确度0.04)为()f(1)=﹣2f(1.5)=0.625f(1.25)=﹣0.984f(1,375)=﹣0.260f(1.4375)=0.165f(1.40625)=﹣0.052A.1.5B.1.25C.1.375D.1.4375解:由表格可知,方程x3+x2﹣2x﹣2=0的近似根在(1,1.5),(1.25,1.5),(1.375,1.5),(1.375,1.4375),(1.40625,1.4375),故程x3+x2﹣2x﹣2=0的一个近似根(精确度0.04)为:1.4375,故选:D.4.设a=log20.8,b=0.82,c=20.8,则a,b,c大小关系正确的是()A.a<b<c B.c<b<a C.c<a<b D.b<a<c 解:log20.8<log21=0,0<0.82<1,20.8>20=1;∴a<b<c.故选:A.5.函数f(x)=的图象大致是()A.B.C.D.解:函数的定义域为R,f(x)≥0恒成立,排除C,D,f(﹣x)===f(x),即函数f(x)是偶函数,图象关于y轴对称,排除B,故选:A.6.尽管目前人类还无法准确预报地震,但科学家通过研究,已经对地震有所了解.例如,地震释放出的能量E(单位:焦耳)与地震里氏震级M之间的关系为lgE=4.8+1.5M.据此推断里氏8.0级地震所释放的能量是里氏5.0级地震所释放的能量的()倍.A.lg4.5B.4.510C.450D.104.5解:设8.0级地震释放出的能量为E1,5.0级地震释放出的能量为E2,则lgE1﹣lgE2=4.5,∴,∴.故选:D.7.已知sin(﹣x)=,则cos(x+)等于()A.B.C.﹣D.﹣解:设﹣x=θ,则x=﹣θ,则sinθ=,则cos(x+)=cos(﹣θ+)=cos(﹣θ)=﹣cos(﹣θ)=﹣sinθ=﹣,故选:C.8.已知关于x的方程a cos2|x|+2sin|x|﹣a+2=0(a≠0)在x∈(﹣2π,2π)有四个不同的实数解,则实数a的取值范围为()A.(﹣∞,0)∪(2,+∞)B.(4,+∞)C.(0,2)D.(0,4)解:当x∈(﹣2π,2π),f(x)=a cos2|x|+2sin|x|﹣a+2=0(a≠0),则有f(﹣x)=f(x),所以函数f(x)为偶函数,偶函数的对称性,只需研究x∈(0,2π)时,f(x)=a cos2x+2sin x﹣a+2=0有两个零点,设t=sin x,则h(t)=at2﹣2t﹣2有一个根t∈(﹣1,1),①当a<0时,h(t)=at2﹣2t﹣2开口向下,对称轴为的二次函数,因为h(0)=﹣2<0,则h(﹣1)=a>0,这与a<0矛盾,不符合题意;②当a>0时,h(t)=at2﹣2t﹣2开口向上,对称轴为的二次函数,因为h(0)=﹣2<0,则h(﹣1)=a>0,则存在t∈(﹣1,0),只需h(1)=a﹣2+2<0,解得a<4,所以0<a<4,综上所述,实数a的取值范围为(0,4).故选:D.二、多选题:本大题共4个小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,选对但不全的得3分,有选错的得0分.9.已知函数,,则下列结论正确的是()A.f(﹣x)=﹣f(x)B.f(﹣2)>f(3)C.f(2x)=2f(x)g(x)D.[f(x)]2﹣[g(x)]2=1解:,∴A正确;f(x)在R上是增函数,∴f(﹣2)<f(3),∴B错误;,=,∴f(2x)=2f(x)g(x),∴C正确;[f(x)]2﹣[g(x)]2=,∴D错误.故选:AC.10.将函数的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变,得到函数y=g(x)的图象.若g(x1)•g(x2)=﹣4,则|x1﹣x2|的值可能为()A.B.C.D.解:将函数的图象上的所有点的横坐标缩短到原来的,纵坐标保持不变,得到函数y=g(x)=2sin(4x﹣)的图象,故g(x)的周期为,且g(x)的最大值为2,最小值为﹣2,若g(x1)•g(x2)=﹣4,所以g(x1)和g(x2)是函数g(x)的最大值和最小值,所以|x1﹣x2|=+,k∈Z,当k=0时,|x1﹣x2|=;当k=1时,|x1﹣x2|=.故选:BD.11.设,则下列结论正确的有()A.a+b<0B.C.ab<0D.解:设,则a+b=log26+log3=log26﹣log36>0,故A错误;﹣=log62+log63=log66=1,故B正确;∵a=log26>0,b=log3<0,∴ab<0,故正确;+=(log62)2+(﹣log63)2=(log62)2+(log63)2=(log62+log63)2﹣2log62log63>1﹣2×()2=1﹣=,故D正确.故选:BCD.12.设函数,已知f(x)在[0,2π]有且仅有5个零点.下述四个结论中正确的是()A.ω的取值范围是B.当x∈[0,2π]时,方程f(x)=1有且仅有3个解C.当x∈[0,2π]时,方程f(x)=﹣1有且仅有2个解D.∃ω>0,使得f(x)在单调递增解:对于A,由于ω>0,f(0)=sin>sin0,设t=ωx+,则t∈[,2ωπ+],因为f(x)在[0,2π]上有且仅有5个零点,所以5π≤2ωπ+<6π,解得≤ω<,故A正确,对于B,f(x)=1即此时f(x)取最大值,则满足ωx+=,,的x是f(x)=1的解,共3个,故B正确,对于C,f(x)=﹣1,即此时f(x)取最小值,则满足ωx+=,的x是f(x)=﹣1的解,但当ω接近时,ωx+=<6π,也是f(x)=﹣1的解,这时f(x)=﹣1有3个解,故C错,对于D,当x∈(0,)时,由ω×+=(ω+2)×<<,所以f(x)是递增的,故D正确.故选:ABD.三、填空题:本大题共4小题,每小题5分,共20分.在答题卡上的相应题目的答题区域内作答.13.已知某扇形的周长为9,圆心角为1rad,则该扇形的面积是.解:设扇形的半径为r,弧长为l,则l+2r=9,∵圆心角为1rad的弧长l=r,∴3r=9,则r=3,l=3,则对应的扇形的面积S=lr=×3×3=.故答案是:.14.已知f(x)是定义在R上的偶函数,且满足f(x+4)=f(x),当2≤x≤3,f(x)=x,则f(5.5)= 2.5.解:根据题意,f(x)为偶函数且满足f(x+4)=f(x),则f(5.5)=f(﹣2.5)=f(2.5),又由当2≤x≤3,f(x)=x,则f(2.5)=2.5,则有f(5.5)=f(2.5)=2.5,故答案为:2.5.15.已知角θ的终边经过点P(﹣4,3),则=7.解:因为角θ的终边经过点P(﹣4,3),所以,所以=.故答案为:7.16.已知函数f(x)=,则f[f(﹣3)]=1;若存在四个不同的实数a,b,c,d,使得f(a)=f(b)=f(c)=f(d),则abcd的取值范围是[0,1).解:∵f(x)=,∴f(﹣3)=sin()+1=2,则f[f(﹣3)]=f(2)=|log22|=1;作出函数f(x)的图象如图,若存在四个不同的实数a,b,c,d,使得f(a)=f(b)=f(c)=f(d),不妨设a<b<c<d,由图可知,|log2c|=|log2d|,得log2(cd)=0,即cd=1.a+b=﹣2,且﹣1<b≤0,则abcd=(﹣b﹣2)b=﹣(b+1)2+1∈[0,1),故答案为:2;[0,1).三、解答题:本大题共6小题,共70分,解答题应写出文字说明,证明过程或演算步骤,在答题卡上相应题目的答题区域内作答.17.(1)求值:;(2)已知,,求的值.解:(1)=(2﹣2lg2)+3+(﹣)+lg2=4.(2)因为,,两边平方可得1﹣2sinαcosα=,可得2sinαcosα=,可得sinα+cosα===,可得===﹣.18.已知,,,.(1)求的值;(2)求的值.解:(1)因为,,所以,故=;(2)因为,由(1)可知,=,所以,因为,所以,又,所以,故===19.水葫芦原产于巴西,1901年作为观赏植物引入中国.现在南方一些水域水葫芦已泛滥成灾严重影响航道安全和水生动物生长.某科研团队在某水域放入一定量水葫芦进行研究,发现其蔓延速度越来越快,经过2个月其覆盖面积约为18m2,经过3个月其覆盖面积约为27m2.现水葫芦覆盖面积y(单位:m2)与经过时间x(x∈N)个月的关系有两个函数模型y=ka x(k>0,a>1)与y=log a(x+1)+q(a>1)可供选择.(参考数据:lg2≈0.3010,lg3≈0.4771)(1)试判断哪个函数模型更合适,并求出该函数模型的解析式;(2)约经过几个月该水域中水葫芦面积至少是当初投放的100倍?解:(1)因为函数y=ka x(k>0,a>1)中,y随x的增大而增大的速度越来越快,而函数y=log a(x+1)+q(a>1)中,y随x的增大而增大的速度越来越慢,依题意应选择函数y=ka x(k>0,a>1),则有,解得k=8,a=,所以函数的解析式为y=8•()x(x∈N);(2)由(1)可知,当x=0时,y=8,设经过x个月该水域中水葫芦面积至少是当初投放的100倍,则有8,所以x=log≈11.36,所以约经过12个月该水域中水葫芦面积至少是当初投放的100倍.20.已知函数.(1)求函数f(x)的最小正周期和单调递减区间;(2)若函数f(x)的图象关于点(m,n)对称,求正数m的最小值;解:(1)函数===所以函数f(x)的最小正周期为π,令,解得,所以函数f(x)的单调递减区间为;(2)因为函数f(x)的图象关于点(m,n)对称,所以有,解得,又因为m>0,所以m的最小值为.21.函数的部分图象如图所示.(1)求f(x)的解析式;(2)若,2[f(x)]2﹣mf(x)﹣1≥0,求实数m的取值范围;(3)是否存在实数a,使得函数F(x)=f(x)﹣a在[0,nπ](n∈N*)上恰有2021个零点若存在,求出a和对应的n的值;若不存在,请说明理由.解:(1)由函数图象知,A=1,T=﹣,∴T=π,所以ω==2,∵x=时,f()=cos(2×+φ)=1,∴2×+φ=2kπ,k∈Z,解得φ=2kπ﹣,k∈Z,又∵|φ|<,∴φ=﹣,∴f(x)的解析式为f(x)=cos(2x﹣);(2),2x﹣∈[﹣,],∴f(x)∈[,1],要使2[f(x)]2﹣mf(x)﹣1≥0,恒成立,令t=f(x),则t∈[,1],即2t2﹣mt﹣1≥0,因为g(t)=2t2﹣mt﹣1图象开口向上,且g(0)=﹣1,∴要使t∈[,1]时,2t2﹣mt﹣1≥0,则有,解得m≤﹣1,即实数m的取值范围是(﹣∞,﹣1].(3)由题意可得y=f(x)的图象与直线y=a在[0,nπ](n∈N*)上恰有2021个交点,在[0,π]上,2x﹣∈[﹣,],①当a>1或a<﹣1时,y=f(x)的图象与直线y=a在[0,π]上无交点;②当a=1或a=﹣1时,y=f(x)的图象与直线y=a在[0,π]上仅有一个交点,若此时y=f(x)的图象与直线y=a在[0,nπ](n∈N*)上恰有2021个交点,则n=2021;③当﹣1<a<或<a<1时,y=f(x)的图象与直线y=a在[0,π]上恰有2个交点,y=f(x)的图象与直线y=a在[0,nπ](n∈N*)上有偶数个交点,不可能有2021个交点;④当a=时,y=f(x)的图象与直线y=a在[0,π]上恰有3个交点,若此时y=f(x)的图象与直线y=a在[0,nπ](n∈N*)上恰有2021个交点,则n=1010.综上可得,当a=1或﹣1时,n=2021;当a=时,n=1010.22.已知函数,g(x)=﹣lnx.(1)若函数g[f(x)]的定义域为R,求实数a的取值范围;(2)若函数g[f(x)]在(1,+∞)上单调递减,求实数a的取值范围;(3)用min{m,n}表示m,n中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),讨论h(x)零点的个数.解:(1)若函数g[f(x)]的定义域为R,则任意x∈R,使得f(x)=x2+ax+>0,所以△=a2﹣4×1×<0,解得﹣1<a<1,所以实数a的取值范围为(﹣1,1).(2)若函数g[f(x)]在(1,+∞)上单调递减,又因为g(x)在(0,+∞)上为减函数,所以f(x)在(1,+∞)上为增函数且任意x∈(1,+∞),f(x)>0,所以﹣≤1,且f(1)>0,即﹣≤1,且1+a+>0,解得a>﹣,所以a的取值范围为(﹣,+∞).(3)因为当x>1时,g(x)=﹣lnx<0,所以h(x)=min{f(x),g(x)}≤g(x)<0,所以h(x)在(1,+∞)上无零点,①当a≥0时,f(x)过(0,)点,且对称轴﹣≤0,作出h(x)的图象,可得h(x)只有一个零点x=1,②当a<0时,f(x)过(0,)点,且对称轴﹣>0,当△=a2﹣4×1×<0,即﹣1<a<0时,h(x)只有一个零点x=1,当△=a2﹣4×1×=0,即a=﹣1时,f(x)的零点为x=﹣=,h(x)由两个零点x=,x=1,当△=a2﹣4×1×>0,即a<﹣1时,令f(x)=0,解得x1=,x2=,且0<x1<1,0<x2,若x2=<1,即﹣<a<﹣1时,函数h(x)有3个零点x=x1,x=x2,x=1,若x2=>1,即a<﹣时,函数h(x)有1个零点x=x1,若若x2==1,即a=﹣时,函数h(x)有2个零点x=x1,x=1,综上所述,当a∈(﹣∞,﹣)∪(﹣1,0)时,h(x)只有一个零点,当a=﹣1或﹣时,h(x)有两个零点,当a∈(﹣,﹣1)时,h(x)有三个零点.。

相关文档
最新文档