双酶切连接反应常见问题分析
双酶切及连接
限制性内切酶的类型
根据限制酶的识别切割特性, 催化条件及是 否具有修饰酶活性可分为Ⅰ、Ⅱ、Ⅲ型三大 类。
限制性内切酶的类型
第一类(I型)限制性内切酶:能识别专一 的核苷酸顺序,它们在识别位点很远的地 方任意切割DNA链,但是切割的核苷酸顺 序没有专一性,是随机的。这类限制性内 切酶在DNA重组技术或基因工程中用处不 大,无法用于分析DNA结构或克隆基因。 这类酶如EcoB、EcoK等。
dna完全没有被内切酶切割原因对策内切酶活性下降内切酶稀释不正确dna不纯反应条件不佳内切酶识别的dna位点上的碱基被甲基化或存在其它修饰部分dna溶液粘在管壁上内切酶溶液粘度大取样不准酶切后dna粘末端退火由于反应溶液温度强烈振荡使内切酶变性过度稀释使酶活性降低反应条件不适识别位点两侧插入了可影响酶切效率的核酸顺序用510倍量过量消化用酶贮藏液或反应缓冲液稀释酶同上同上反应前离心数秒将内切酶稀释增大取样体积电泳前将样品置65保温510分钟取出后置冰浴骤冷使用标准反应缓冲液及温度避免强烈振荡适当稀释酶液反应液稀释的酶不能贮藏使用最佳反应体系加大酶量510倍问题二
限制性内切酶的类型
第二类(III型)限制性内切酶:也有专一的
识别顺序,在识别顺序旁边几个核苷酸对的固 定位置上切割双链。但这几个核苷酸对也不是 特异性的。因此,这种限制性内切酶切割后产 生的一定长度DNA片段,具有各种单链末端。 因此也不能应用于基因克隆。
限制性内切酶的类型
第三类(Ⅱ型)限制性内切酶:就是通常指的DNA限制性 内切酶. 它们能识别双链DNA的特异顺序,并在这个顺序内进行 切割,产生特异的DNA片段; Ⅱ型酶分子量较小,仅需Mg2+作为催化反应的辅助因子,识 别顺序一般为4~6个碱基对的反转重复顺序; Ⅱ型内切酶切割双链DNA产生3种不同的切口--5’端 突出;3’端突出和平末端。 正是得益于限制性的内切酶的发现和应用, 才使得人们能 在体外有目的地对遗传物质DNA进行改造,从而极大地推 动了分子生物学的兴旺和发展。
双酶切连接反应之全攻略(
双酶切连接反应之全攻略(双酶切连接(Double Digestion)是一种常用的分子生物学技术,用于在DNA分子上选择性地切割两个特定的限制性内切酶位点。
它可以用于构建重组DNA,进行基因克隆,等等。
下面是一个全面的双酶切连接反应的攻略,包括实验前的准备工作,实验步骤和注意事项。
实验前的准备工作:1.获得限制性内切酶:选择两个互不相容的限制性内切酶。
确保这两个酶能够在相同的反应缓冲液中活性工作。
2.准备DNA底物:获得需要连接的DNA片段。
可以通过PCR扩增,限制性消化或DNA合成等方法获得。
3.选择连接载体:选择合适的连接载体,如质粒。
确保载体具有想要插入的目标基因的适当特性,如选择性标记物(如抗生素抗性基因)和启动子等。
4.验证限制酶位点:使用限制性内切酶图谱检测DNA片段和连接载体中的限制酶位点。
这有助于确定两个限制酶是否能够溶解目标DNA片段。
实验步骤:1.提取DNA:从细菌培养基中提取所需的DNA片段。
可以使用商用试剂盒或自制提取方法。
2.酶切反应:在适当的反应条件下,将需要连接的DNA片段和连接载体分别与两个限制性内切酶一起孵育。
反应条件包括酶的浓度,缓冲液的类型和pH值,反应温度和孵育时间。
3.酶停止反应:通过加入酶停止缓冲液或加热短暂孵育,停止酶切反应。
这样可以避免过度消化和限制酶反应继续进行。
4.凝胶电泳:将切割后的DNA片段经过琼脂糖凝胶电泳分析。
这一步骤可以检测酶切效率和特异性。
将反应样品和相应的对照样品(未经酶切)加载到琼脂糖凝胶上,然后运行电泳以分离DNA片段。
5.库仑凝胶纯化:根据所选的DNA片段大小,可以选择不同浓度的琼脂糖凝胶切片进行纯化。
将所需大小的DNA片段切割下来并进行库仑凝胶分离。
6.连接反应:将纯化的DNA片段与连接载体进行连接反应。
可以使用商业化的连接试剂盒,其中包含待连接DNA和连接载体之间的连接酶,以及其他必要的试剂。
7.转化:将连接后的DNA样品转化到合适的宿主细胞中。
双酶切连接反应的注意要点
双酶切连接反应的注意要点1.选择适当的酶切位点:在进行双酶切连接反应之前,需要选择适当的酶切位点。
这些酶切位点应该满足以下几个要求:-位点不应该在目标DNA序列中出现,以避免酶切产生剪切产物;-两种酶切位点应该在目标DNA序列中相对靠近,以确保连接的有效性;-酶切位点的序列应该被两种酶同时识别和切割。
2.协议的优化:双酶切连接反应的协议需要进行优化,以确定最适合的条件。
一些重要的实验条件包括反应缓冲液的成分和浓度、酶的浓度和反应温度。
对于每个反应参数,应该进行范围的优化实验,以确定最佳的条件。
3.应用正确的酶切酶:双酶切连接反应需要同时使用两种酶来进行切割。
这些酶应该是互相兼容的,并且能够在相同的反应缓冲液中活性。
此外,酶的纯度和活性也应该得到保证,以确保酶切的效果。
4.反应的时间和温度:双酶切连接反应的时间和温度都需要进行优化。
反应时间应该足够长,以确保两种酶都能充分切割目标DNA序列,并且不会出现过度切割的情况。
反应温度也应该适中,通常在酶的推荐温度范围内选择。
5.质量控制:在完成双酶切连接反应之后,应该进行质量控制以确保反应的成功。
常用的方法包括琼脂糖凝胶电泳和DNA测序。
通过这些方法,可以检测连接产物的大小和纯度,并确认连接的正确性。
6.反应产物的处理:根据实验需要,对双酶切连接反应的产物进行处理。
这可能包括:-凝胶电泳分离:使用琼脂糖凝胶电泳分离不同大小的连接产物;-提取纯化:通过凝胶电泳或商业化学试剂盒,从琼脂糖凝胶中提取并纯化连接产物;-DNA测序:对连接产物进行测序,以确认连接的正确性。
总之,双酶切连接反应是一种常用的分子生物学技术,但在实验中需要注意一系列要点。
选择适当的酶切位点、优化实验条件、正确选择酶切酶、时间和温度的控制,以及进行质量控制和反应产物的处理,对于确保双酶切连接反应的成功至关重要。
这些注意要点的遵守可以确保实验结果的准确性和可靠性。
双酶切及连接
思考题
影响限制性内切酶活性 的因素有哪些?
• • • • • • DNA的纯度 DNA的甲基化程度 酶切消化反应的温度 DNA的分子结构 溶液中离子浓度及种类 缓冲液的pH值
• 为什么任何时候2种酶 的总量不能超过反应 体系的1/10体积?
• 我们平时所用的酶试剂中 都含有一定量的甘油,用 量过多容易使酶产生星号 活性,即限制性酶的特异 性会受影响。
BgⅢ SaⅡ 10× Buffer 质粒 无菌水 总体积
0.6μL 0.6μL 2μL 16μL 0.8 μL 20μL(无菌水补至 总积)
反应条件:温度37℃,酶切h • 琼脂糖凝胶电泳检测酶切结果 • UVP凝胶成像系统记录结果(电泳图)
结果及分析
• 双酶切结果跑出一条 带,质粒无条带。 • 分析:质粒无条带, 可能是模板问题。 • 双酶切跑出一条带, 可能是酶切后DNA片 段太小,导致结果模 糊。
反应体系
10× Buffer 载体 2.5μL 2μL 2μL 1μL 18.5μL
DNA T 4酶 无菌水
注意事项
• 任何时候2种酶的总量不能超过反应体系的1/10体积。 • 双酶切时如果两种酶反应温度一致而buffer不同时,可查 阅内切酶供应商在目录后的附录中提供的各种酶在不同 buffer中的活力表,如果有一种buffer能同时使2种酶的活 力都超过70%的话,就可以用这种buffer作为反应buffer。 如果两种酶厂家不同无法查时可比较其buffer成份,相似 的话可以考虑各取一半中和。 • 如果2种酶的buffer成份相差较大或2种酶的反应温度不同 则必须分别做酶切 • 特别注意:在双酶切载体时如果2个酶切位点*得很近,必 须注意酶切顺序。因为有的限制性内切酶要求其识别序列 的两端至少保留有若干个碱基才能保证酶的有效切割。有 的酶要求识别序列两端有多个碱基的,则必须先切,否则 就可能造成酶切失败。
双酶切连接反应
【原创】双酶切连接反应之全攻略(原创)双酶切连接反应之全攻略前一阵子一直在做双酶切质粒重组,失败了很多次,不过很快改善了实验方法,用2周重组了14个质粒。
现就自己的体会,结合战友的宝贵经验,谈一下质粒重组的一些个人经验。
1、回收PCR产物:在进行PCR扩增时候,给引物两端设计好酶切位点,一般说来,限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶,如BamHI,HindIII,提前看好各公司的双切酶所用公用的BUFFER,以及各酶在公用BUFFER里的效率。
选好酶切位点后,在各个酶的两边加上保护碱基,其原则可参照:双酶切时间及其体系:需要强调的是很多人建议酶切过夜,其实完全没有必要,我一般酶切3个小时,其实1个小时已经足够。
应用大体系,如100微升。
纯化问题:纯化PCR产物割胶还是柱式,我推荐柱式,因为割胶手法不准,很容易割下大块的胶,影响纯化效率。
现在的柱式纯化号称可以祛除引物,既然如此,酶切掉的几个碱基肯定也会被纯化掉了。
所以,PCR产物和双酶切产物的纯化均可应用柱式纯化。
我用的是TAKARA的纯化柱试剂盒酶量的问题:以TAKARA的为例,其对1单位酶的定义如下:在50 μl 反应液中,30℃温度下反应1小时,将1 μg 的λDNA完全分解的酶量定义为1个活性单位(U)。
而该酶浓度约为15单位/微升,在除外酶降解的因素外,该酶可分解15μg的DNA,而一般从1-4ml菌液提出的DNA约为3μg,而PCR纯化后的产物(50体系)约为3μg,所以即便全部加进去,只要纯化的质量好,酶切完全切得动。
2、酶切、回收后的PCR产物与载体的连接摩尔比的计算,很多人凭经验也可以。
但对于初学者从头认真计算则非常有必要。
回收的载体片段:回收的PCR产物片段=1:10,一般取前者,后者取。
pmol为单位的DNA转换为为µg单位的DNA:(X pmoles×长度bp×650)/ 1,000,000 (注:长度bp×650是该双链DNA的分子量)所得数值即为µg,也可以直接用这个公式套.1pmol 1000bp DNA=μg,如载体是5380bp,则为××=µg。
双酶切
【原创】双酶切连接反应之全攻略(原创)双酶切连接反应之全攻略前一阵子一直在做双酶切质粒重组,失败了很多次,不过很快改善了实验方法,用2周重组了 14个质粒。
现就自己的体会,结合战友的宝贵经验,谈一下质粒重组的一些个人经验。
1、回收PCR产物:在进行PCR扩增时候,给引物两端设计好酶切位点,一般说来,限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶,如BamHI,HindIII,提前看好各公司的双切酶所用公用的BUFFER,以及各酶在公用BUFFER里的效率。
选好酶切位点后,在各个酶的两边加上保护碱基,其原则可参照:/upload/2006/08/13/31219184.pdf。
双酶切时间及其体系:需要强调的是很多人建议酶切过夜,其实完全没有必要,我一般酶切3个小时,其实1个小时已经足够。
应用大体系,如100微升。
纯化问题:纯化PCR产物割胶还是柱式,我推荐柱式,因为割胶手法不准,很容易割下大块的胶,影响纯化效率。
现在的柱式纯化号称可以祛除引物,既然如此,酶切掉的几个碱基肯定也会被纯化掉了。
所以,PCR产物和双酶切产物的纯化均可应用柱式纯化。
我用的是TAKARA的纯化柱试剂盒酶量的问题:以TAKARA的为例,其对1单位酶的定义如下:在50 μl 反应液中,30℃温度下反应1小时,将1 μg 的λDNA完全分解的酶量定义为1个活性单位(U)。
而该酶浓度约为15单位/微升,在除外酶降解的因素外,该酶可分解15μg的DNA,而一般从1-4ml菌液提出的 DNA约为3μg,而PCR纯化后的产物(50体系)约为3μg,所以即便全部加进去,只要纯化的质量好,酶切完全切得动。
2、酶切、回收后的PCR产物与载体的连接摩尔比的计算,很多人凭经验也可以。
但对于初学者从头认真计算则非常有必要。
回收的载体片段:回收的PCR产物片段=1:10 ,一般取前者0.03pmol,后者取0.3pmol。
pmol为单位的DNA转换为为µg单位的DNA:(X pmoles×长度bp×650)/ 1,000,000 (注:长度bp×650是该双链DNA的分子量)所得数值即为µg,也可以直接用这个公式套.1pmol 1000bp DNA=0.66μg,如载体是5380bp,则0.03pmol为0.03×5.38×0.66=0.106524µg。
酶切若干问题
酶切现象及影响因素详解1 先说一下酶切对象(1) 质粒要是对质粒进行酶切,那么质粒的纯度挺重要,污染有DNase 和残留质粒提取中的酚以及高盐对DNA酶切都不利,还有RNA要去除干净。
以上所提的这些这都会影响酶切效果。
解决方法 DNase污染:质粒提取的试剂都要进行灭菌,提取时不要拖拉,电泳缓冲液要长换,以免电泳液造成DNA降解,电泳液的pH不要偏酸,容易降解DNA.在最后溶解DNA时,可以采用TE和水,建议用TE,TE可以鳌合金属离子,使DNase失活。
酶切时,TE也会有一定影响,但你可以将溶解DNA时的TE少加点。
酶切时,取的DNA的体积就可以减少,经水稀释,就问题不了。
RNA 的去除:一般将RNase加到TE中,经过37度温育一段时间就可以将RNA很好的去除1-2个小时就行。
酚的污染:首先在用酚仿抽提时,就要小心不要吸到下面的有机溶液,要是为了保险可以再用氯仿单独抽提一下,就可以很好的避免酚的残留。
高盐的去除:提取质粒时一般盐的浓度很高,若有人在70%乙醇洗盐这步不做,也会影响后面酶切。
(2)PCR产物 PCR产物经电泳检测是单一目的条带可以直接酶切,若是杂带很多,就要将目的片段回收再酶切。
一般在设计引物的时候,会在5'端引入酶切位点,但是不要忘了在酶切位点外面加几个保护碱基。
加入4个比较保险,如果没有保护碱基,内切酶是无法切断DNA的,即使加入保护碱基,酶切效率也会较低,需要长时间酶切。
(3)基因组DNA 将基因组做酶切一般是在southern blot 时常用,这时酶切体系一般较大,因为基因组中目的基因的比例是很小的,酶切之后转膜又会有损失,因此多做一点酶切产物,才会获得较好的杂交效果。
内切酶也要多加一些,一般都要酶切一夜,才能完全酶切。
2 酶切试剂(1)酶切缓冲液:一般公司会给你的说明书中,告诉你用哪种缓冲液,如果是单酶切,按照说明书上提示即可。
要是双酶切,原则是先找两种酶有没有可以共用的缓冲液,最好两种酶同时酶切比较省事。
双酶切失败的原因
双酶切失败的原因引言:双酶切是分子生物学中常用的技术手段,用于将DNA分子切割成特定的碎片。
然而,在实际操作中,我们常常会遇到双酶切失败的情况。
本文将探讨双酶切失败的原因,并提出相应的解决方案,以帮助读者更好地进行实验。
一、酶切位点缺失或变异双酶切技术是基于酶切位点的特异性识别进行的。
如果待切割DNA 分子中的酶切位点发生缺失或变异,将导致双酶切失败。
这可能是由于DNA序列突变、DNA修复酶的作用或DNA样品质量差等原因造成的。
解决此问题的方法是使用其他酶切酶或设计新的引物。
二、酶切位点结构性变化酶切位点的周围结构性变化也可能导致双酶切失败。
例如,DNA分子可能存在二级结构,如发生环状化、串联或配对等,这会导致酶无法正常切割。
解决此问题的方法是使用特殊的酶切缓冲液或改变酶切反应条件,以使DNA分子解开二级结构。
三、酶切酶活性受抑制酶切酶活性受抑制是双酶切失败的另一个常见原因。
这可能是由于酶切缓冲液中存在抑制剂、酶切酶活性受到抑制剂的影响或酶切酶失活等原因造成的。
解决此问题的方法是优化酶切反应条件,如调整酶切缓冲液的配方、改变酶切反应的温度和时间等。
四、DNA样品质量差DNA样品质量差也是导致双酶切失败的重要原因之一。
DNA样品可能受到污染、降解、修饰或含有抑制物等,这会影响酶切酶的活性和DNA分子的可切割性。
解决此问题的方法是提高DNA样品的纯度和完整性,如使用纯化试剂盒进行DNA提取、优化DNA提取方法或进行适当的DNA修复等。
五、反应条件不适宜反应条件不适宜也是导致双酶切失败的原因之一。
酶切反应的温度、时间、pH值、酶切酶的浓度等都会影响酶切反应的效果。
解决此问题的方法是优化反应条件,如调整反应温度、延长反应时间、优化酶切酶的浓度等。
六、其他因素除了上述原因外,还有一些其他因素也可能导致双酶切失败。
例如,DNA样品中存在RNase或蛋白质等污染物,会降低酶切酶的活性。
解决此问题的方法是进行适当的处理,如去除污染物或使用RNase 抑制剂等。
双酶切连接
前一阵子一直在做双酶切质粒重组,失败了很多次,不过很快改善了实验方法,用2周重组了 14个质粒。
现就自己的体会,谈一下质粒重组的一些个人经验。
1、回收PCR产物:在进行PCR扩增时候,给引物两端设计好酶切位点,一般说来,限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶,如BamHI,HindIII,提前看好各公司的双切酶所用公用的BUFFER,以及各酶在公用BUFFER里的效率。
选好酶切位点后,在各个酶的两边加上保护碱基。
双酶切时间及其体系:需要强调的是很多人建议酶切过夜,其实完全没有必要,我一般酶切3个小时,其实1个小时已经足够。
应用大体系,如100微升。
2.纯化问题:纯化PCR产物割胶还是柱式,我推荐柱式,因为割胶手法不准,很容易割下大块的胶,影响纯化效率。
现在的柱式纯化号称可以祛除引物,既然如此,酶切掉的几个碱基肯定也会被纯化掉了。
所以,PCR产物和双酶切产物的纯化均可应用柱式纯化。
我用的是TAKARA的纯化柱试剂盒3.酶量的问题:以TAKARA的为例,其对1单位酶的定义如下:在50 μl 反应液中,30℃温度下反应1小时,将1 μg 的λDNA完全分解的酶量定义为1个活性单位(U)。
而该酶浓度约为15单位/微升,在除外酶降解的因素外,该酶可分解15μg的DNA,而一般从1-4ml菌液提出的 DNA约为3μg,而PCR纯化后的产物(50体系)约为3μg,所以即便全部加进去,只要纯化的质量好,酶切完全切得动。
4.酶切、回收后的PCR产物与载体的连接:摩尔比的计算,很多人凭经验也可以。
但对于初学者从头认真计算则非常有必要。
回收的载体片段:回收的PCR产物片段=1:10 ,一般取前者0.03pmol,后者取0.3pmol。
pmol为单位的DNA转换为为µg单位的DNA:(X pmoles×长度bp×650)/ 1,000,000 (注:长度bp×650是该双链DNA的分子量)所得数值即为µg,也可以直接用这个公式套.1pmol 1000bp DNA=0.66μg,如载体是5380bp,则0.03pmol为0.03×5.38×0.66=0.106524µg。
双酶切连接
前一阵子一直在做双酶切质粒重组,失败了很多次,不过很快改善了实验方法,用2周重组了 14个质粒。
现就自己的体会,谈一下质粒重组的一些个人经验。
1、回收PCR产物:在进行PCR扩增时候,给引物两端设计好酶切位点,一般说来,限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶,如BamHI,HindIII,提前看好各公司的双切酶所用公用的BUFFER,以及各酶在公用BUFFER里的效率。
选好酶切位点后,在各个酶的两边加上保护碱基。
双酶切时间及其体系:需要强调的是很多人建议酶切过夜,其实完全没有必要,我一般酶切3个小时,其实1个小时已经足够。
应用大体系,如100微升。
2.纯化问题:纯化PCR产物割胶还是柱式,我推荐柱式,因为割胶手法不准,很容易割下大块的胶,影响纯化效率。
现在的柱式纯化号称可以祛除引物,既然如此,酶切掉的几个碱基肯定也会被纯化掉了。
所以,PCR产物和双酶切产物的纯化均可应用柱式纯化。
我用的是TAKARA的纯化柱试剂盒3.酶量的问题:以TAKARA的为例,其对1单位酶的定义如下:在50 μl 反应液中,30℃温度下反应1小时,将1 μg 的λDNA完全分解的酶量定义为1个活性单位(U)。
而该酶浓度约为15单位/微升,在除外酶降解的因素外,该酶可分解15μg的DNA,而一般从1-4ml菌液提出的 DNA约为3μg,而PCR纯化后的产物(50体系)约为3μg,所以即便全部加进去,只要纯化的质量好,酶切完全切得动。
4.酶切、回收后的PCR产物与载体的连接:摩尔比的计算,很多人凭经验也可以。
但对于初学者从头认真计算则非常有必要。
回收的载体片段:回收的PCR产物片段=1:10 ,一般取前者0.03pmol,后者取0.3pmol。
pmol为单位的DNA转换为为µg单位的DNA:(X pmoles×长度bp×650)/ 1,000,000 (注:长度bp×650是该双链DNA的分子量)所得数值即为µg,也可以直接用这个公式套.1pmol 1000bp DNA=0.66μg,如载体是5380bp,则0.03pmol为0.03×5.38×0.66=0.106524µg。
双酶切连接反应常见问题分析
前一阵子一直在做双酶切质粒重组,失败了很多次,不过很快改善了实验方法,用2周重组了14个质粒。
现就自己的体会,谈一下质粒重组的一些个人经验。
1. 回收PCR产物:在进行PCR扩增时候,给引物两端设计好酶切位点,一般说来,限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶。
选好酶切位点后,在各个酶的两边加上保护碱基。
双酶切时间及其体系:需要强调的是很多人建议酶切过夜,其实完全没有必要,我一般酶切3个小时,其实1个小时已经足够。
应用大体系,如100微升。
2. 纯化问题:纯化PCR产物割胶还是柱式,我推荐柱式,因为割胶手法不准,很容易割下大块的胶,影响纯化效率。
现在的柱式纯化号称可以祛除引物,既然如此,酶切掉的几个碱基肯定也会被纯化掉了。
所以,PCR产物和双酶切产物的纯化均可应用柱式纯化。
3. 酶量的问题:对1单位酶的定义如下:在50pl反应液中,30°C温度下反应1小时,将1pg的入DNA完全分解的酶量定义为1 个活性单位(U)。
而该酶浓度约为15单位/微升,在除外酶降解的因素外,该酶可分解15pg的DNA,而一般从1-4ml 菌液提出的DNA约为3pg,而PCR纯化后的产物(50体系)约为3pg,所以即便全部加进去,只要纯化的质量好,酶切完全切得动。
4. 酶切、回收后的PCR产物与载体的连接:摩尔比的计算,很多人凭经验也可以。
但对于初学者从头认真计算则非常有必要。
回收的载体片段:回收的PCR产物片段=1: 10,一般取前者0.03pmol,后者取0.3pmol。
pmol为单位的DNA转换为为pg单位的DNA:(X pmolesx长度bpx650)/ 1,000,000 (注:长度bpx650是该双链DNA的分子量)所得数值即为pg,也可以直接用这个公式套。
1pmol 1000bp DNA=0.66pg,如载体是5380b p,则0.03pmol 为0.03x5.38x0.66=0.106524pg。
双酶切连接反应的注意要点
双酶切连接反应的注意要点双酶切:1、在双酶切载体时如果2个酶切位点靠得很近,必须注意酶切顺序。
因为有的限制性内切酶要求其识别序列的两端至少保留有若干个碱基才能保证酶的有效切割。
有的酶要求识别序列两端有多个碱基的,则必须先切,否则就可能造成酶切失败。
2、回收PCR产物:回收的PCR产物片段=1:10,一般取前者0.03pmol,后者取0.3pmol。
pmol为单位的DNA转换为为?g单位的DNA:(X pmoles×长度bp×650)/ 1,000,000 (注:长度bp×650是该双链DNA的分子量)所得数值即为?g,也可以直接用这个公式套.1pmol 1000bp DNA=0.66μg,如载体是5380bp,则0.03pmol为0.03×5.38×0.66=0.106524?g。
3、双酶切时间及其体系:需要强调的是很多人建议酶切过夜,其实完全没有必要,一般酶切3个小时,对于PCR产物,可以过夜酶切,效果会很好。
酶切体系不宜过大,会影响质粒和酶的碰撞机会,效果降低;质粒量不应该超过酶切要求的最大量,否则酶切不完全,酶的用量控制在1U酶在15-20ul体系中酶解1ugDNA。
4、两种酶切的条件不同时,分别进行两次酶切,切完一个纯化后再切:温度要求不同,先酶切低温要求的,再酶切高温要求的;若盐浓度要求不同,先酶切低盐浓度要求的,再酶切高盐浓度要求的。
5、若质粒是在TE中保存的,TE 中的EDTA可能与酶的激活因子螯合,影响酶切效果,可放大酶切体积或重新浓缩质粒。
6、限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶,提前看好各公司的双切酶所用公用的BUFFER,以及各酶在公用BUFFER里的效率。
选好酶切位点后,在各个酶的两边加上保护碱基。
7、纯化问题:纯化PCR产物割胶还是柱式,推荐柱式,因为割胶手法不准,很容易割下大块的胶,影响纯化效率。
双酶切反应
双酶切buffer的选择:1、U :Supplied with its own unique reaction buffer that is different from the four standard NEBuffers. Its compatibility with the four standard NEBuffers is indicated by the chart.2、BSA :Supplied with a separate vial of bovine serum albumin (10 mg/ml). To obtain 100% activity BSA should be added to the 1X reaction mix to a final concentration of 100 μg/ml.3、SAM :Supplied with a separate vial of S-adenosyl-methionine (SAM). To obtain 100% activity, SAM should be added to the 1X reaction mix as specified on the product data card.4、dd :When performing a double digest with this enzyme, this NEBuffer is recommended because it minimizes star activity. Purified by scientists at SibEnzyme and supplied with a SibEnzyme buffer (B, K, O, W or Y) which ensures 100% activity. Its compatibility with the NEBuffer System is indicated on the chart.5、NR :This buffer is not recommended for use with with this enzyme。
双酶切
【原创】双酶切连接反应之全攻略(原创)双酶切连接反应之全攻略前一阵子一直在做双酶切质粒重组,失败了很多次,不过很快改善了实验方法,用2周重组了 14个质粒。
现就自己的体会,结合战友的宝贵经验,谈一下质粒重组的一些个人经验。
1、回收PCR产物:在进行PCR扩增时候,给引物两端设计好酶切位点,一般说来,限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶,如BamHI,HindIII,提前看好各公司的双切酶所用公用的BUFFER,以及各酶在公用BUFFER里的效率。
选好酶切位点后,在各个酶的两边加上保护碱基,其原则可参照:/upload/2006/08/13/31219184.pdf。
双酶切时间及其体系:需要强调的是很多人建议酶切过夜,其实完全没有必要,我一般酶切3个小时,其实1个小时已经足够。
应用大体系,如100微升。
纯化问题:纯化PCR产物割胶还是柱式,我推荐柱式,因为割胶手法不准,很容易割下大块的胶,影响纯化效率。
现在的柱式纯化号称可以祛除引物,既然如此,酶切掉的几个碱基肯定也会被纯化掉了。
所以,PCR产物和双酶切产物的纯化均可应用柱式纯化。
我用的是TAKARA的纯化柱试剂盒酶量的问题:以TAKARA的为例,其对1单位酶的定义如下:在50 μl 反应液中,30℃温度下反应1小时,将1 μg 的λDNA完全分解的酶量定义为1个活性单位(U)。
而该酶浓度约为15单位/微升,在除外酶降解的因素外,该酶可分解15μg的DNA,而一般从1-4ml菌液提出的 DNA约为3μg,而PCR纯化后的产物(50体系)约为3μg,所以即便全部加进去,只要纯化的质量好,酶切完全切得动。
2、酶切、回收后的PCR产物与载体的连接摩尔比的计算,很多人凭经验也可以。
但对于初学者从头认真计算则非常有必要。
回收的载体片段:回收的PCR产物片段=1:10 ,一般取前者0.03pmol,后者取0.3pmol。
pmol为单位的DNA转换为为µg单位的DNA:(X pmoles×长度bp×650)/ 1,000,000 (注:长度bp×650是该双链DNA的分子量)所得数值即为µg,也可以直接用这个公式套.1pmol 1000bp DNA=0.66μg,如载体是5380bp,则0.03pmol为0.03×5.38×0.66=0.106524µg。
双酶切连接反应
双酶切连接反应1、回收PCR产物:在进行PCR扩增时候,给引物两端设计好酶切位点,一般说来,限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶,如BamHI,HindIII,提前看好各公司的双切酶所用公用的BUFFER,以及各酶在公用BUFFER里的效率。
选好酶切位点后,在各个酶的两边加上保护碱基。
双酶切时间及其体系:需要强调的是很多人建议酶切过夜,其实完全没有必要,我一般酶切3个小时,其实1个小时已经足够。
应用大体系,如100微升。
纯化问题:纯化PCR产物割胶还是柱式,我推荐柱式,因为割胶手法不准,很容易割下大块的胶,影响纯化效率。
现在的柱式纯化号称可以祛除引物,既然如此,酶切掉的几个碱基肯定也会被纯化掉了。
所以,PCR产物和双酶切产物的纯化均可应用柱式纯化。
我用的是TAKARA的纯化柱试剂盒酶量的问题:以TAKARA的为例,其对1单位酶的定义如下:在50 μl 反应液中,30℃温度下反应1小时,将1 μg 的λDNA完全分解的酶量定义为1个活性单位(U)。
而该酶浓度约为15单位/微升,在除外酶降解的因素外,该酶可分解15μg的DNA,而一般从1-4ml菌液提出的 DNA约为3μg,而PCR纯化后的产物(50体系)约为3μg,所以即便全部加进去,只要纯化的质量好,酶切完全切得动。
2、酶切、回收后的PCR产物与载体的连接摩尔比的计算,很多人凭经验也可以。
但对于初学者从头认真计算则非常有必要。
回收的载体片段:回收的PCR产物片段=1:10 ,一般取前者0.03pmol,后者取0.3pmol。
pmol为单位的DNA转换为为μg单位的DNA:(X pmoles×长度bp×650)/ 1,000,000 (注:长度bp ×650是该双链DNA的分子量)所得数值即为μg,也可以直接用这个公式套.1pmol 1000bp DNA=0.66μg,如载体是5380bp,则0.03pmol为0.03×5.38×0.66=0.106524μg。
酶切连接经验之谈
酶切本实验室条件下酶切连接经验之谈1、PCR产物可以切胶回收后酶切,用Elution buffer溶解即可,不影响后续实验。
2、50ulPCR产物切胶回收后用35ul Elution buffer溶解后只需取一半体积用于后续实验即可满足要求。
3、PCR产物可以用乙醇沉淀法获得DNA用于后续反应,但需取少于一半的量用于后续实验,否则会不能完全切开而导致实验失败。
4、双酶切时,若2种酶不是同一厂家时,可以根据Thermo厂家该2种酶的共同buffer,选用Tango缓冲液,一般50ul体系各加1ul酶,而快切酶只需0.5ul,切3小时即可。
5、添加酶切试剂时,应先将buffer和样品振荡均匀后再加入相应的酶,轻弹混匀即可。
6、观察酶切后的载体片段会比质粒大很多,PCR产物双酶切后的片段也比未酶切时要大,并且酶切后产物有时会呈现稍微弥散的宽带,由此可以判断是否切开。
7、部分限制性内切酶对甲基化的DNA不能切割,如FbaI和MboI等,一般生物公司提供的内切酶说明中均有说明。
大多数酶切位点的甲基化不影响切割,而有些会影响,如XbaI, BclI等。
而且甲基化只发生在特定序列,以XbaI为例,只有在位点序列旁出现GA或TC,该XbaI位才会被甲基化。
而要解除这种限制修饰作用通常有两种方法:(1)选用上述酶的同功酶,如Sau3AI,DNA识别切割位点与MboI相同;但不受甲基化影响;(2)利用甲基化酶缺失的受体细胞进行DNA的制备,如E.coli JM110和链霉菌等,前者Dam和Dcm甲基化酶已敲出,而后者细胞内本就没有甲基化酶,从这些细胞中抽提的DNA就能被上述酶切割。
8:E.coli JM110要排除dam,dcm甲基化的影响,需要用特定的dam-,dcm-的菌株,如JM110如果由JM110或SCS110等甲基化缺失的菌株产生的质粒,则不会被甲基化.若酶切不成功可以考虑以下因素的影响a)有些内切酶对PCR产物酶切效率较低b)双酶切无共同buffer时,可以采用分步酶切c)PCR产物直接双酶切不成功,可以选择先做TA克隆后再双酶切d)当载体的2个酶切位点很接近,或者其中一个酶切效率很差时,可以对载体进行去磷酸化,该酶为牛小肠碱性磷酸酶,在大多数限制酶缓冲液中均有活性e)导致“星星活性”可能是体系中甘油浓度过高、高PH、较低的离子强度所致。
双酶切连接反应之全攻略
双酶切连接反应之全攻略一、实验原理:1.首先,将待连接的两个DNA片段通过限制性内切酶酶切,产生两个具有互补末端的DNA片段。
2.再利用DNA连接酶,以这些互补末端为引导,将两个DNA片段连接在一起。
3.最后,通过热激励反应,将连接酶不活性化。
二、实验步骤:1.设计引物:根据待连接的两个DNA片段的序列,设计合适的引物,使得限制性内切酶切割后的末端具有互补性。
2.DNA酶切:将待连接的两个DNA片段与限制性内切酶一同反应,根据内切酶的适宜反应条件进行酶切反应。
3.酶切产物纯化:将酶切产物进行电泳分离,通过切胶取带的方式将目标片段分离出来,然后进行片段纯化。
4.连接反应:将纯化后的两个DNA片段与DNA连接酶一同反应,根据连接酶的适宜条件进行连接反应。
一般而言,反应体系中还需要包含ATP供能和缓冲液等。
5.连接产物纯化:对连接反应的产物进行纯化,一般选择柱层析法(如凝胶过滤法、离心柱法等)或酸酶消化法(如酚氯仿法)等方法。
6.验证连接效果:通过DNA测序等方法验证连接效果,确保连接成功。
三、实验注意事项:1.引物设计要合理:引物的设计要充分考虑到限制性内切酶的切割位点和连接效率。
合理选择引物长度和碱基组成,避免引物之间产生非特异性连接。
2.内切酶酶切条件的选择:根据所使用的内切酶的反应条件和切割位点,合理选择反应温度和反应时间,确保内切酶可以有效切割DNA片段。
3.DNA连接酶的选择和反应条件:根据实验需要,选择合适的DNA连接酶,考虑到连接效率和连接酶的活性等因素。
同时需要注意反应缓冲液的pH和温度等条件。
4.连接产物纯化:选择合适的纯化方法,确保连接产物的纯度和浓度。
同时注意纯化过程中的温度和pH等条件,避免产物降解或损失。
5.连接效果的验证:通过DNA测序方法验证连接效果,并且需要对连接的序列进行分析,确保连接正确。
四、实验应用:1.基因克隆:用于将外源基因克隆到载体上,以便于大规模扩增和表达。
连接双酶切
连接双酶切连接双酶切PCR鉴定目的片段是否连接上表达载体可能的原因,1.表达载体双切不充分,载体量太大,而酶又加的太少,酶切时间短2.连接最好是12~16小时,因为你的目的片段和载体的浓度比,不是很合适3.回收胶的问题今天酶切时没有和空载体对比,TE,含有EDTA,会抑制连接酶的活性洗下来后要先确定一下浓度,浓度太低可定连不上1:在使用 Wash Buffer 洗涤前,在柱子中加入少量 (200ul) 溶胶液。
室温3-5 分钟后,离心。
再接标准洗涤及以后操作。
该操作针对胶块大的情况。
2:加入 Wash Buffer 后,静置 1-3 分钟后,再离心。
3:增加 Wash Buffer 的洗涤次数 (少量多次)。
胶的残留导致的问题不是单纯的胶残留问题,同时也会导致溶胶液中盐的残留 - 这似乎对连接影响更大。
最好的解决方法是 1;当然,可能会导致得率的小量下降,但质量绝对好。
为了充分去除残留,总结,1.多加一步200ul溶胶液,2.加 Wash Buffer 前空柱离心 30 sec,3.Wash Buffer洗涤时静置及多次柱子允许胶通过的量是有限的,胶越多或是浓度太大,残留就会更明显,所以切胶时应该尽量要小,假如过大的话分到两个柱子里应该比较好,另外就是溶胶液宁可多加也不能少加首先要保证待测质粒的纯度,除PCR外,可以对重组质粒做两个双酶切反应:1.ECoR I与Xh0 I双酶切; 2.选一个插入片段中特异存在的切点酶和质粒ECoRI下游到Xba1间的合适位点酶(插入片段中没有的),进行双切,结果可以预测到.每个双切反应包括酶1单切,酶2单切,双切三个反应,别忘了以空载体做对照.试试看.如果没有得到重组质粒只好再连接反应了.酶是TAKARA的,方法就是按说明书上做的,酶各1微升,buffer 2微升,质粒5微升,20微升体系.遇到双酶切可是两个酶没有共用buffer时两种办法:一是低盐buffer的酶先切,然后乙醇沉淀回收,然后高盐buffer的酶再切,乙醇沉淀或切胶回收。
酶切若干问题
酶切现象及影响因素详解1 先说一下酶切对象(1) 质粒要是对质粒进行酶切,那么质粒的纯度挺重要,污染有DNase 和残留质粒提取中的酚以及高盐对DNA酶切都不利,还有RNA要去除干净。
以上所提的这些这都会影响酶切效果。
解决方法 DNase污染:质粒提取的试剂都要进行灭菌,提取时不要拖拉,电泳缓冲液要长换,以免电泳液造成DNA降解,电泳液的pH不要偏酸,容易降解DNA.在最后溶解DNA时,可以采用TE和水,建议用TE,TE可以鳌合金属离子,使DNase失活。
酶切时,TE也会有一定影响,但你可以将溶解DNA时的TE少加点。
酶切时,取的DNA的体积就可以减少,经水稀释,就问题不了。
RNA 的去除:一般将RNase加到TE中,经过37度温育一段时间就可以将RNA很好的去除1-2个小时就行。
酚的污染:首先在用酚仿抽提时,就要小心不要吸到下面的有机溶液,要是为了保险可以再用氯仿单独抽提一下,就可以很好的避免酚的残留。
高盐的去除:提取质粒时一般盐的浓度很高,若有人在70%乙醇洗盐这步不做,也会影响后面酶切。
(2)PCR产物 PCR产物经电泳检测是单一目的条带可以直接酶切,若是杂带很多,就要将目的片段回收再酶切。
一般在设计引物的时候,会在5'端引入酶切位点,但是不要忘了在酶切位点外面加几个保护碱基。
加入4个比较保险,如果没有保护碱基,内切酶是无法切断DNA的,即使加入保护碱基,酶切效率也会较低,需要长时间酶切。
(3)基因组DNA 将基因组做酶切一般是在southern blot 时常用,这时酶切体系一般较大,因为基因组中目的基因的比例是很小的,酶切之后转膜又会有损失,因此多做一点酶切产物,才会获得较好的杂交效果。
内切酶也要多加一些,一般都要酶切一夜,才能完全酶切。
2 酶切试剂(1)酶切缓冲液:一般公司会给你的说明书中,告诉你用哪种缓冲液,如果是单酶切,按照说明书上提示即可。
要是双酶切,原则是先找两种酶有没有可以共用的缓冲液,最好两种酶同时酶切比较省事。
双酶切连接全攻略
双酶切连接反应之全攻略前一阵子一直在做双酶切质粒重组,失败了很多次,不过很快改善了实验方法,用2周重组了14个质粒。
现就自己的体会,结合丁香园战友的宝贵经验,谈一下质粒重组的一些个人经验。
1、回收PCR产物:在进行PCR扩增时候,给引物两端设计好酶切位点,一般说来,限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶,如BamHI,HindIII,提前看好各公司的双切酶所用公用的BUFFER,以及各酶在公用BUFFER里的效率。
选好酶切位点后,在各个酶的两边加上保护碱基,其原则可参照:/upload/2006/08/13/31219184.pdf。
双酶切时间及其体系:需要强调的是很多人建议酶切过夜,其实完全没有必要,我一般酶切3个小时,其实1个小时已经足够。
应用大体系,如100微升。
纯化问题:纯化PCR产物割胶还是柱式,我推荐柱式,因为割胶手法不准,很容易割下大块的胶,影响纯化效率。
现在的柱式纯化号称可以祛除引物,既然如此,酶切掉的几个碱基肯定也会被纯化掉了。
所以,PCR产物和双酶切产物的纯化均可应用柱式纯化。
我用的是TAKARA的纯化柱试剂盒酶量的问题:以TAKARA的为例,其对1单位酶的定义如下:在50 μl 反应液中,30℃温度下反应1小时,将1 μg 的λDNA完全分解的酶量定义为1个活性单位(U)。
而该酶浓度约为15单位/微升,在除外酶降解的因素外,该酶可分解15μg的DNA,而一般从1-4ml 菌液提出的DNA约为3μg,而PCR纯化后的产物(50体系)约为3μg,所以即便全部加进去,只要纯化的质量好,酶切完全切得动。
2、酶切、回收后的PCR产物与载体的连接摩尔比的计算,很多人凭经验也可以。
但对于初学者从头认真计算则非常有必要。
回收的载体片段:回收的PCR产物片段=1:10,一般取前者0.03pmol,后者取0.3pmol。
pmol为单位的DNA转换为为µg单位的DNA:(X pmoles×长度bp×650)/ 1,000,000 (注:长度bp×650是该双链DNA的分子量)所得数值即为µg,也可以直接用这个公式套.1pmol 1000bp DNA=0.66μg,如载体是5380bp,则0.03pmol为0.03×5.38×0.66=0.106524µg。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
前一阵子一直在做双酶切质粒重组,失败了很多次,不过很快改善了实验方法,用2周重组了14个质粒。
现就自己的体会,谈一下质粒重组的一些个人经验。
1. 回收PCR产物:
在进行PCR扩增时候,给引物两端设计好酶切位点,一般说来,限制酶的选择非常重要,尽量选择粘端酶切和那些酶切效率高的限制酶。
选好酶切位点后,在各个酶的两边加上保护碱基。
双酶切时间及其体系:需要强调的是很多人建议酶切过夜,其实完全没有必要,我一般酶切3个小时,其实1个小时已经足够。
应用大体系,如100微升。
2. 纯化问题:
纯化PCR产物割胶还是柱式,我推荐柱式,因为割胶手法不准,很容易割下大块的胶,影响纯化效率。
现在的柱式纯化号称可以祛除引物,既然如此,酶切掉的几个碱基肯定也会被纯化掉了。
所以,PCR产物和双酶切产物的纯化均可应用柱式纯化。
3. 酶量的问题:
对1单位酶的定义如下:在50μl 反应液中,30℃温度下反应1小时,将1μg 的λDNA完全分解的酶量定义为1个活性单位(U)。
而该酶浓度约为15单位/微升,在除外酶降解的因素外,该酶可分解15μg的DNA,而一般从1-4m l菌液提出的DNA约为3μg,而PCR纯化后的产物(50体系)约为3μg,所以即便全部加进去,只要纯化的质量好,酶切完全切得动。
4. 酶切、回收后的PCR产物与载体的连接:
摩尔比的计算,很多人凭经验也可以。
但对于初学者从头认真计算则非常有必要。
回收的载体片段:回收的PCR 产物片段=1:10,一般取前者,后者取。
pmol为单位的DNA转换为为μg单位的DNA:(X pmoles×长度bp×650)/ 1,000,000(注:长度bp×650是该双链DNA的分子量)所得数值即为μg,也可以直接用这个公式套。
1pmol 1000bp DNA=μg,如载体是5380bp,则为××=μg。
5. 测DNA浓度:
测DNA浓度可以在专用机子上测,注意OD值,一般约另外,如果嫌麻烦,也可用MARKER进行估测,如MARKER 2000,5微升的 MARKER每个条带约50ng。
6. 连接反应:
TAKARA的连接酶上的说明写的过夜,而其对连接酶单位的定义为:在20 μl的连接反应体系中,6 μg的λD NA-Hind III的分解物在16℃下反应30分钟时,有90%以上的DNa段被连接所需要的酶量定义为1个活性单位(U)。
而它的浓度为350 U/μl ,所以完全够用。
连接酶容易失活,注意低温操作,最好在冰上。
时间3个小时足已。
7.转化:
①? 全量(10 μl)加入至100μl JM109感受态细胞中,冰中放置30分钟。
②? 42℃加热45秒钟后,再在冰中放置1分钟。
③ 加入890 μl AMP阴性培养基,37℃振荡培养60分钟。
取100μl铺板。
也可离心后余100μl
几个非常重要的问题:
1 做转化的时候,进行酶连接反应时,注意保持低温状态,因为LIGASE酶很容易降解。
为保险起见,一般连接3小时,16度。
2 对含有AMP-RESISTENCE的质粒铺板时,注意加AMP时的温度,温度过高,会使克隆株无法筛选出来。
我的方法是培基高温消毒后放在烤箱里,烤箱一般温度为55-60度,然后做的时候拿出来,这样好掌握温度。
铺板前后注意用吹风机吹干。
3对照的设立:
为验证双酶切是否成功,可做如下对照:
A 酶切反应时加各单酶分别切,两管,用同一种BUFFER,跑胶,看单切的两管是否成线性。
如两管均成线性可初步判断双酶切成功。
做转化时,也要进行对照。
设4个:
①? 即拿双酶切的质粒产物也进行连接反应,这个对照可进一步看双酶切是否成功,如果长出克隆,说明很有可能只进行了单酶切,如没长出克隆,则证明双酶切成功,当然要保证感受态,培基,连接酶都'正常'的情况下。
② 酶切过的未进行连接反应的双酶切产物,进行转化,这一步可以证明是否有残留的未被任何酶切的原始质粒。
③ 设原始质粒为对照,意为检测整个操作过程中是否有误。
④? AMP阴性板上用同一批感受态细胞铺板20微升足够,检测感受态状况。
4. 所有的试剂切记低温保存。
注意设立对照。
经PCR鉴定,克隆90%-100%的阳性率,所以在后面的挑克隆中,我只挑选4个就足够了。
然后双酶切鉴定,测序。
同步双酶切是一种省时省力的常用方法。
选择能让两种酶同时作用的最佳缓冲液是非常重要的一步。
NEB每一种酶都随酶提供相应的最佳NEBuffer,以保证100%的酶活性。
NEBuffer的组成及内切酶在不同缓冲液中的活性见《内切酶在不同缓冲液里的活性表》及每支酶的说明书。
能在最大程度上保证两种酶活性的缓冲液即可用于双酶切。
由于内切
酶在非最佳缓冲液条件下的切割速率会减缓,因此使用时可根据每种酶在非最优缓冲液中的具体活性相应调整酶量和反应时间。
如果找不到一种可以同时适合两种酶的缓冲液,就只能采用分步酶切。
分步酶切应从反应要求盐浓度低的酶开始,酶切完毕后再调整盐浓度直至满足第二种酶的要求,然后加入第二种酶完成双酶切反应。
使用配有特殊缓冲液的酶进行双酶切也不复杂。
在大多数情况下,采用标准缓冲液的酶也能在这些特殊缓冲液中进行酶切。
这保证了对缓冲液有特殊要求的酶也能良好工作。
由于内切酶在非最佳缓冲液中进行酶切反应时,反应速度会减缓,因此需要增加酶量或延长反应时间。
通过《内切酶在不同缓冲液里的活性表》可查看第二种酶在特殊缓冲液相应盐浓度下的作用活性。
双酶切建议缓冲液
注:
只要其中一种酶需要添加BSA,则应在双酶切反应体系中加入BSA。
BSA不会影响任何内切酶的活性。
注意将甘油的终浓度控制在10%以下,以避免出现星号活性,详见《星号活性》。
可通过增加反应体系的总体积的方法实现这一要求。
某些内切酶的组合不能采用同步双酶切法,只能采用分步法进行双酶切。
上表中这些组合以"seq"标注。