心理统计学—7假设检验

合集下载

教育与心理统计学第八章:假设检验

教育与心理统计学第八章:假设检验

临界值
H0值
样本统计量
左侧检验示意图
(显著性水平与拒绝域 )
抽样分布
置信水平
拒绝域
1- 接受域
临界值
H0值
样本统计量
观察到的样本统计量
右侧检验示意图 (显著性水平与拒绝域 )
抽样分布
置信水平
1- 接受域
拒绝域
H0值 观察到的样本统计量
临界值
样本统计量
双侧检验原假设与备择假设的确定
▪ 双侧检验属于决策中的假设检验。即不论是拒绝H0还 是接受H0,都必需采取相应的行动措施。
1、原假设真实, 并接受原假设,判断正确; 2、原假设不真实,且拒绝原假设,判断正确; 3、原假设真实, 但拒绝原假设,判断错误; 4、原假设不真实,却接受原假设,判断错误。
假设检验是依据样本提供的信息进行判断,有犯错误 的可能。所犯错误有两种类型:
第一类错误是原假设H0为真时,检验结果把它当成不 真而拒绝了。犯这种错误的概率用α表示,也称作α错 误(αerror)或弃真错误。
型错误
β错误(取伪错误) 1-β(正确决策)
要使犯这两类错误的概率α 和β都尽可能小, α也不能定
的过低 。
在一般研究中,我们总是控制犯型错误
为什么???
假设检验中人们普遍执行同一准则:首先控制弃真错误(α错 误)。假设检验的基本法则以α为显著性水平就体现了这一原
则。
两个理由: 统计推断中大家都遵循统一的准则,讨论问题会比较方便。
0.076mm。试问新机床加工零件 的椭圆度均值与以前有无显著差
异?(=0.05)
属于决策中 的假设!
解:已知:X0=0.081mm, =.25,n=200,
x 0.076

心理统计学中的假设检验方法

心理统计学中的假设检验方法

心理统计学中的假设检验方法心理学研究中经常会涉及到假设检验方法,它是通过数据的统计分析来验证我们所提出的假设是否成立的一种方法。

假设检验在心理学研究中非常重要,既可以用于确定实验结果的显著性,又可用于检验心理学理论的有效性。

本文将详细介绍心理统计学中的假设检验方法。

1. 研究假设的基本概念假设检验是在实验设计中对研究者提出的假设进行检验,以验证其在概率意义下是否成立的统计检验方法。

在进行假设检验前,研究者需要明确研究假设的基本概念。

研究假设由原假设和备择假设两部分组成。

其中原假设是关于所研究问题的一个陈述或者一个值(如所有样本的平均数相等),而备择假设则是当原假设不成立时的补充假设(如不是所有样本的平均数相等)。

2. 设计检验的方法进行假设检验的方法有很多种,其中最常见的是基于样本平均数的t检验方法。

当我们想要比较两个组的平均数是否相等时,可以通过分别计算两组数据的平均数和方差,然后应用t检验来检验两组数据是否存在差异。

在进行假设检验时,仍需设置显著性水平和检验的方向。

显著性水平a是指用于判断结果是否显著的临界值,通常取0.05或0.01,而检验的方向则取决于所提出的假设,可以选择单侧检验或双侧检验。

3. 假设检验的评价标准进行假设检验时,需要对结果是否显著进行评价。

在判断结果是否显著时,需要根据检验的p值进行比较。

p值是基于假设检验得出的原假设成立条件下的概率,p值越小表示结果越显著。

通常,当p值小于显著性水平时,我们就可以拒绝原假设,认为两组数据之间存在显著差异;而当p值大于显著性水平时,则不能拒绝原假设,即认为两组数据之间不存在显著差异。

4. 总结心理统计学中的假设检验方法是一种常用的统计检验方法,可以用于验证心理学研究中所提出的假设。

在进行假设检验时,需要先明确研究假设的基本概念,然后选择合适的假设检验方法进行实现,并根据检验的p值进行结果评价。

假设检验方法虽然具有实现简单、结果显著等优点,但也存在着多重比较、样本容量不充分等问题,因此在具体实施过程中需要注意其适用范围和实际情况。

教育与心理统计学 第五章 假设检验考研笔记-精品

教育与心理统计学  第五章 假设检验考研笔记-精品
把出现小概率的随机事件称为小概率事件。
假设检验中的小概率原理[一级][16J]
假设检验的基本思想是概率性质的反证法,即其基本思想是基于〃小概率事件在一次实验中不可能发生”这一原理。首先假定虚无假设为
真,在虚无假设为真的前提下,如果小概率事件在一次试验中出现,则表明〃虚无假设为真"的假定是不止确的,因为假定小概率事件在
一次试验中是不可能出现的,所以也就不能接受虚无假设,应当拒绝零假设。若没有导致小概率事件出现,那就认为"虚无假设为真”的
假定是正确的,也就是说要接受虚无假设。假设推断的依据:小概率事件是否出现,这是对假设作出决断的依据。
检验的假设
Ho为真
真实情况
检验的事件发生的概率在99%或95%的范围内
检验的事件发生的概率在5%或1%以内
错误的概率,其前提是“Ho为假
②它们都是在做假设检验的统计决策时可能犯的错误,决策者同时面临犯两种错误的风险,因此都极力想避免或者减少它们,但由于在忠
体间真实差异不变情况下,它们之间是一种此消彼长的关系,即a大时,0小;c(和B不能同时减少。
③在其他条件不变的情况下,不可能同时减小或增大两种错误的发生可能,常用的办法是固定a的情况下尽可能减小B,比如通过增大样本
若进行假设检验时总体的分布形态已知,需要对总体的未知参数进行假设检验,称其为参数假设检验。
(三)非参数检验[一级]
若对总体分布形式所知甚少,需要对未知分布函数的形式及其他特征进行假设检验,通常称为非参数假设检验。
(四)小概率事件和显著性水平
(1)假设推断的依据就是小概率原理
小概率事件:通常情况下,将概率不超过0.05(即5%)的事件当作“小概率事件",有时也定为概率不超过0.01(即1%)或0.001(0.1%\

心理统计学知识点完整版资料整理

心理统计学知识点完整版资料整理

心理统计学知识点完整版资料整理1.数据的概念:在心理统计学中,数据是指信息的收集和组织形式。

数据可以是数字,也可以是文字或符号。

数据的收集可以通过实验、调查、观察等方式进行。

2.数据的分布:在心理统计学中,数据的分布是指通过统计方法和图表来展示数据的特征和规律。

常用的数据分布包括正态分布、偏态分布、均匀分布等。

3.描述性统计:描述性统计是用来描述和总结数据的方法。

常见的描述性统计包括均值、中位数、众数、标准差、变异系数等。

4.推论统计:推论统计是根据样本数据来对总体进行推断的方法。

推论统计主要包括参数估计和假设检验两个方面。

5.参数估计:参数估计是用样本数据来估计总体参数的值。

常见的参数估计方法包括点估计和区间估计。

6.假设检验:假设检验是用来判断总体参数是否满足一些假设的方法。

其中包括设置原假设和备择假设、选择显著性水平、计算统计量、确定拒绝域等步骤。

7.相关分析:相关分析用来研究两个或多个变量之间的关系。

其中最常用的是皮尔逊相关系数,可以用来衡量变量之间的线性相关程度。

8.回归分析:回归分析用来研究一个或多个自变量和因变量之间的关系。

通过回归分析可以得到回归方程,进而预测因变量的值。

9.方差分析:方差分析是一种用来研究多个样本之间差异的方法。

方差分析可以判断不同组之间的均值是否存在显著差异。

10.非参数统计:非参数统计是一种不依赖于总体参数的方法。

非参数统计主要包括秩次统计和分布自由度较小的统计方法。

11.实验设计:实验设计在心理统计学中扮演着重要的角色。

良好的实验设计可以保证实验的可靠性和有效性,并排除干扰因素。

12.抽样方法:抽样方法是指如何从总体中选取样本的方法。

常见的抽样方法包括随机抽样、系统抽样、整群抽样等。

以上是心理统计学的一些主要知识点的简要整理。

了解这些知识点可以帮助我们更好地理解和应用统计方法来分析心理学中的数据。

当然,心理统计学的内容还非常广泛,还有更多的知识点值得深入学习和研究。

《假设检验》课件

《假设检验》课件

方差分析
总结词
适用于多组数据比较的检验方法
详细描述
方差分析是一种适用于多组数据比较的假设检验方法。它通过比较不同组之间的变异和 误差来源,计算F值和对应的P值,以判断原假设是否成立。方差分析在很多领域都有
应用,如农业、生物统计学和心理学等。
秩和检验
总结词
适用于等级数据或非参数数据的检验方法
详细描述
秩和检验是一种适用于等级数据或非参数数 据的假设检验方法。它通过将数据排序后进 行比较,计算秩和值和对应的P值,以判断 原假设是否成立。秩和检验在很多领域都有 应用,如医学、生物学和环境科学等。
04 假设检验的实例分析
单样本Z检验实例
总结词
用于检验一个样本的平均值与已知的 某一总体均值之间是否存在显著差异 。
如果样本量过小,可能无 法得出可靠的结论,因为 小样本可能无法代表总体 。
样本量过大
如果样本量过大,可能会 导致统计效率降低,增加 计算复杂度和成本。
样本代表性
在选择样本时,需要确保 样本具有代表性,能
假设检验的结果只能给出拒绝或接受 假设的结论,但无法给出假设正确与 否的确凿证据。
置信区间有助于判断假设的正确性
02
通过比较置信区间和假设值的位置关系,可以判断假设是否成
立。
置信区间与假设检验的互补关系
03
置信区间和假设检验各有优缺点,可以结合使用以更全面地评
估数据的统计性质。
THANKS 感谢观看
提出假设
根据研究问题和目的,提出原 假设和备择假设。
确定临界值
根据统计量的性质和显著性水 平,确定临界值。
做出决策
根据计算出的样本统计量和临 界值,做出接受或拒绝原假设 的决策。

现代心理与教育统计学 第八章-假设检验(张厚粲)

现代心理与教育统计学 第八章-假设检验(张厚粲)

p值 >0.05 ≤0.05 ≤0.01
显著性 不显著 显著 极显著
符号表示
* **
虽然我们比较习惯取α=0.05和α=0.01,但也可以取其 它的显著性水平值,如0.005或0.001。
三、假设检验中的两类错误
(一)定义
错误(I型错误): H0为真时却被拒绝,弃真错误; 错误是 指虚无假设本身是正确的,但由于抽样的随机性而使 检验值落入了拒绝虚无假设的区域,致使我们作出了 拒绝虚无假设的结论,
正解:
1、提出零假设和备择假设 备择假设:用H1表示,即研究假设,希望证实的假设。 H1 : 1 0 (该班智力水平确实与常模有差异) 1100 零假设:用H0表示,即虚无假设、原假设、无差异假 设。 H0: 1=0 1 =100
2、确定适当的检验统计量
用于假设检验问题的统计量称为检验统计量。与参数 估计相同,需要考虑:
又或者是样本统计量与总体参数之间存在真实的差异, 是一种有差假设,用H1表示。 3.表达方式,如:
H1: X 0 或 X ;1 2 或 1 2 0 。
(二)虚无假设
1.研究人员为了证实研究假设是真的而利用概率论的 反证法所进行的假设,即从研究假设的反面进行假设。
第八章 假设检验
李金德
第一节 假设检验的原理 第二节 平均数的显著性检验 第三节 平均数差异的显著性检验 第四节 方差的差异检验 第五节 相关系数的显著性检验 第六节比率的显著性检验
第一节 假设检验的原理
在统计学中,通过样本统计量得出的差异做出一般性 结论,判断总体参数之间是否存在差异,这种推论过 程称作假设检验(hypothesis testing)
β μ0

心理统计学数据分析技巧

心理统计学数据分析技巧

心理统计学数据分析技巧在当今社会,无论是心理学研究、市场调研,还是教育评估等众多领域,数据的收集和分析都变得至关重要。

而心理统计学作为一门专门研究如何对心理数据进行收集、整理、分析和解释的学科,其数据分析技巧更是我们理解和解读数据背后含义的有力工具。

一、数据收集与准备在进行数据分析之前,首先要确保收集到的数据是准确、完整且具有代表性的。

这就需要我们在设计研究方案和收集数据的过程中,精心规划,避免偏差和误差。

比如,在抽样时要遵循随机原则,以确保样本能够反映总体的特征。

同时,对收集到的数据进行初步的整理和清洗也是必不可少的步骤。

这包括检查数据的缺失值、异常值和错误录入。

对于缺失值,可以根据具体情况选择合适的处理方法,如删除含有缺失值的样本、采用均值或中位数进行填充等。

对于异常值,要仔细判断其是真实的极端情况还是数据错误,如果是后者,就需要进行修正或删除。

二、描述性统计分析描述性统计是对数据的基本特征进行概括和描述,让我们对数据有一个初步的了解。

常用的描述性统计量包括均值、中位数、众数、标准差、方差、最小值和最大值等。

均值反映了数据的平均水平,但容易受到极端值的影响。

中位数则是将数据按大小排序后位于中间位置的数值,对极端值不敏感,更能反映数据的集中趋势。

众数是数据中出现次数最多的数值。

标准差和方差用于衡量数据的离散程度,即数据的分布范围。

标准差越大,说明数据的离散程度越大,反之则越小。

通过绘制直方图、箱线图等图形,能够更直观地展示数据的分布情况,帮助我们快速发现数据的特点和规律。

三、相关性分析相关性分析用于研究两个或多个变量之间的线性关系。

常见的相关系数有皮尔逊相关系数(Pearson correlation coefficient)、斯皮尔曼等级相关系数(Spearman rank correlation coefficient)等。

皮尔逊相关系数适用于测量两个连续变量之间的线性关系,其取值范围在-1 到 1 之间。

心理统计学——7 假设检验

心理统计学——7 假设检验

解: H 0 : µ ≤ 40000 H1 : µ > 40000
这是一个单侧假设(右侧), 总体方差未知, 用t统计量 X − µ 0 41000 − 40000 t= = = 2.91, 查t分布表知, S n 5000 120 tα (119) = 1.658, 由于t > tα , 落入拒绝区域, 故拒绝H 0 , 接受H1 , 可以认为该制造商的声称是可信的, 其生产 的轮胎的平均寿命显著地大于40000公里。 若采用Z作为检验统计量,其临界值Zα=1.645, Zα与 tα非常接近,主要原因是样本容量很大。因为t分布的 极限分布是正态分布,所以当样本容量n很大时,选择t 统计量与Z统计量的差别不大。但在小样本情况下, 两个统计量的临界值存在明显的差异,这时要特别 注意不能误用。
7.1 假设检验中的基本问题念
7.1.1 假设检验的步骤:
1. 建立原假设和备择假设; 2. 确定适当的检验统计量; 3. 指定检验中的显著性水平; 4.利用显著性水平根据检验统计量的值建立拒绝原假设的规则; 5. 5.搜集样本数据,计算检验统计量的值; , ; 6.作出统计决策:(两种方法) (1) 将检验统计量的值与拒绝规则所指定的临界值相比较,确定 是否拒绝原假设; (2)由步骤5的检验统计量计算p值,利用p值确定是否拒绝原假 设.
7.1.2 假设检验中的小概率原理
小概率原理:指发生概率很小的随机事件在一次试 验中是几乎不可能发生的。小概率指p<5% 假设检验的基本思想是应用小概率原理.
例如某厂产品合格率为99%,从一批 (100件)产品中随机抽取一件,恰好是次 品的概率为1%。随机抽取一件是次品 几乎是不可能的, 但是这种情况发生了, 我们有理由怀疑该厂的合格率为99%. 这时我们犯错误的概率是1%

心理统计学重点知识

心理统计学重点知识

心理统计学一.描述统计(一)统计图表 1、统计图次数分布图——①直方图:用以矩阵的面积表示连续性随即变量次数分布的图形。

②次数多边形图:一种表示连续性随机变量次数分布的线形图,属于次数分布图。

③累加次数分布图:分为累加直方图和累加曲线图;其中累加曲线的形状大约有三种:一种是曲线的上枝长于下枝(正偏态),另一种是下枝长于上枝(负偏态),第三种是上枝,下枝长度相当(正态分布)。

其他统计图:条形图:用于离散型数据资料; 圆形图:用于间断性资料;线形图:更多用于连续性资料,凡预表示两个变量之间的函数关系,或描述某种现象在时间上的发展趋势,或一种现象随另一种现象变化的情况,用这种方法比较好。

散点图: 2、统计表①简单次数分布表 ②分组次数分布表③相对次数分布表:将次数分布表中各组的实际次数转化为相对次数,即用频数比率表示。

④累加次数分布表⑤双列次数分布表:对有联系的两列变量用同一个表来表示其次数分布。

(二)集中量数 1、算术平均数M1nii XX N==∑优点:反应灵敏;计算严密;计算简单;简明易解;适合于进一步用代数方法演算;较少受抽样变动的影响;缺点:受极端数据的影响;若出现模糊不清的数据时,无法计算平均数; 计算和运用平均数的原则: 同质性原则;平均数与个体数值相结合的原则; 平均数与标准差、方差相结合原则; 性质:①在一组数据中每个变量与平均数之差的总和等于零②在一组数据中,每一个数都加上一个常数C ,所得的平均数为原来的平均数加常数C ③在一组数据中,每一个数都乘以一个常数C ,所得的平均数为原来的平均数乘以常数C 2、中数:Md 按顺序排列在一起的一组数据中居于中间位置的数,即这组数据中,一般数据比它大,一般数据比它小。

注意计算方法;3、众数:Mo 是指在次数分布中出现次数最多的那个数值;三者的关系:正偏态分布中,M>Md>Mo 负偏态分布中,M<Md<MoMo=3Md-2M (自己推导一下)(三)差异量数差异量数就是对一组数据的变异性,即离中趋势特点进行度量和描述的统计量,也称为离散量数。

心理统计学公式汇总

心理统计学公式汇总

心理统计学公式汇总在心理统计学的领域中,各种公式犹如工具,帮助我们理解、分析和解释数据。

下面就为大家汇总一些常见且重要的心理统计学公式。

一、集中趋势的测量1、算术平均数算术平均数是最常用的集中趋势测量指标,其公式为:\\bar{X} =\frac{\sum_{i=1}^{n} X_{i}}{n}\其中,\(\bar{X}\)表示算术平均数,\(X_{i}\)表示第\(i\)个观测值,\(n\)表示观测值的数量。

2、中位数当数据呈现偏态分布时,中位数比平均数更能代表数据的集中趋势。

对于未排序的数据,首先将其从小到大排序。

如果数据个数\(n\)为奇数,中位数就是位于中间位置的那个数;如果\(n\)为偶数,中位数则是中间两个数的平均值。

3、众数众数是数据中出现次数最多的数值。

二、离散程度的测量1、极差极差是一组数据中最大值与最小值之差,公式为:\(R =X_{max} X_{min}\)。

2、方差方差反映了数据相对于平均数的离散程度,其公式为:\S^2 =\frac{\sum_{i=1}^{n} (X_{i} \bar{X})^2}{n 1}\3、标准差标准差是方差的平方根,公式为:\(S =\sqrt{\frac{\sum_{i=1}^{n} (X_{i} \bar{X})^2}{n 1}}\)。

三、正态分布相关公式1、正态分布的概率密度函数\f(x) =\frac{1}{\sigma \sqrt{2\pi}} e^{\frac{(x \mu)^2}{2\sigma^2}}\其中,\(\mu\)是均值,\(\sigma\)是标准差。

2、标准正态分布若\(X\)服从正态分布\(N(\mu, \sigma^2)\),则\(Z =\frac{X \mu}{\sigma}\)服从标准正态分布\(N(0, 1)\)。

四、相关分析1、皮尔逊积差相关系数用于测量两个连续变量之间的线性关系,公式为:\r =\frac{\sum_{i=1}^{n} (X_{i} \bar{X})(Y_{i} \bar{Y})}{\sqrt{\sum_{i=1}^{n} (X_{i} \bar{X})^2 \sum_{i=1}^{n} (Y_{i} \bar{Y})^2}}\2、斯皮尔曼等级相关系数适用于测量两个顺序变量之间的相关性,公式为:\r_s = 1 \frac{6 \sum_{i=1}^{n} d_{i}^2}{n(n^2 1)}\其中,\(d_{i}\)是两个变量的等级差。

心理统计——假设检验

心理统计——假设检验
s2 p

均值分布的方差的计算
s
2 x1
s1df1 s2df2 df1 df2
s
2 x2
s2 p n1
s2 p n2

样本均值差异的方差和标准差
2 2 2 sx s s x 1 2 1 2

独立样本差异的t统计量的计算
t ( x1 x2 ) ( 1 2 ) x1 x2 s x1 x2 s x1 x2



一位组织管理心理学研究者对员工性别和工作满意度的关 系十分感兴趣,他想知道在同一个企业文化环境和薪酬标 准当中,男性员工和女性员工对工作的满意程度是否不同? 他选用了一份工作满意度问卷,对一家企业中的18名员工 进行了测量,男女各半,所得结果如下所示: 男性:67 73 74 70 70 75 73 68 69 女性:69 63 67 64 61 66 60 63 63 请问:不同性别员工的工作满意度是否有差异呢?
解这组学生是否比过去的学生错误更少。过去学 生的平均错误次数是9.0。9位学生的平均错误次 数为8,标准差为1.225。

请问这组学生是否比过去的学生错误更少呢?
心理统计和SPSS
21
平均数的显著性检验(t检验)
适用条件:

总体正态分布,总体方差未知时,使用t分布及t分 数。 此时,利用样本标准差作为总体标准差的无偏点 估计量,计算抽样分布的标准误。
注意:此时自由度为 df n 1
心理统计和SPSS 30
独立样本和相关样本t检验的比较
独立样本 假设 df 方差
H 0 : 1 2 0
相关样本
H0 : D 0
H1 : 1 2 0

心理统计学第08讲 假设检验_Password_Removed

心理统计学第08讲  假设检验_Password_Removed

n
=a
Z
n
n
(Z Z )2 (0 -a )2
2
3、样本容量的估计
I型错误说明,如果货物中电池寿命 均值为=120时,那么我们愿冒=.05 的风险概率拒绝这批货物。
假定货物中电池寿命的均值比规格要求 少5小时(也就是能允许的误差) 那么,我们愿冒多大的风险 接受这批均值可能不足120的货物呢? 如果我们能承受的 风险概率为0.10(即=0.10) 那么所需样本容量为多少呢?
解: H0:μ1= μ2
SED
2 1
2 2
n1 n2
(或SED
S12 S22 ) n1 n2
Z ( X1 X 2 ) (1 2 ) SED
X1 X 2 D1 X1 X 2 D2 ……
X1 X 2 Dk
学Ha: μ1≠ μ2
Z ( X1 X 2 ) (1 2 ) (82 78.2) 0 3.185
n
(Z Z )2 2 (0 2 (120 115)2
49.3

一、总体服从正态分布
教 第二节 单总体均值的假设检验
(一)大样本的情形( n≥30 ):Z检验
1、双侧检验
(1)假设形式: H0:μ=μ0 Ha:μ≠ μ0
危机域
(2)理论模型:正态分布
/2
/2
学(3)检验统计量:σ已知:Z
X
/
0 n
Z / 2
Z / 2
σ未知:Z X 0 S/ n
(4)统计决策:Z>Zα/2或Z<-Zα/2 ,则拒绝H0 ,否则无充分理
由拒绝H0
资 (5)示例
一、总体服从正态分布
料 一、总体服从正态分布
2、单侧检验

第八讲 心理统计学-假设检验

第八讲 心理统计学-假设检验
3年级学生的ABC记忆考试的平均成绩低于5年 级学生的平均成绩。
1422:16
零假设和相应的研究假设
零假设
3年级学生的ABC记忆 考试的平均成绩和5年 级学生的平均成绩没有 差异。
由社区长期照料老人的 效率和由家庭长期照料 老人的效果没有差异。
无方向研究假设
有方向研究假设
3年级学生的ABC记忆 3年级学生的ABC记忆 考试的平均成绩不同于 考试的平均成绩低于5 5年级学生的平均成绩。 年级学生的平均成绩。
¾需要考虑的条件
总体分布 总体方差 样本容量
46
¾1.总体正态分布,总体方差已知; ¾2.总体正态分布,总体方差未知; ¾3.总体非正态分布。
47
1.总体正态分布,总体方差已知
¾ 大样本和小样本的检验方法与步骤是相同 的。都是用样本平均数分布的标准误差按 正态分布去计算Z值。
¾ 检验方法:Z检验。
1622:16
¾ 举例:某班级进行瑞文智力测验,结果平均分X =100,已知瑞文测验的常模μ0=100;σ0= 16,问该班智力水平(不是这一次测验结果) 是否确实与常模水平有差异。
¾ 样本分布理论:多次抽样,得到多次测验的结 果的总平均为μ
¾ 检验目的是证明H1 :μ≠ μ0
17
二、假设检验的步骤
第1步:提出虚无和对立假设 第2步:确定适当的检验统计量 第3步:规定显著性水平 第4步:计算检验统计量的值 第5步:做出统计决策
1822:16
3
第一步 提出假设
¾定义
虚无假设(H0 ):原假设、无差假设、零假设 对立假设(H1 ):备择假设,研究假设
¾例子 测量女大学生是否有性别歧视的倾向
IV. 作为好的研究者,我们的工作是解释观察到的差异时消除偶然 性因素,并评价其他可能导致群体差异的因素

心理统计学精析

心理统计学精析

心理统计学一.描述统计(一)统计图表 1、统计图次数分布图——①直方图:用以矩阵的面积表示连续性随即变量次数分布的图形。

②次数多边形图:一种表示连续性随机变量次数分布的线形图,属于次数分布图。

③累加次数分布图:分为累加直方图和累加曲线图;其中累加曲线的形状大约有三种:一种是曲线的上枝长于下枝(正偏态),另一种是下枝长于上枝(负偏态),第三种是上枝,下枝长度相当(正态分布)。

其他统计图:条形图:用于离散型数据资料; 圆形图:用于间断性资料;线形图:更多用于连续性资料,凡预表示两个变量之间的函数关系,或描述某种现象在时间上的发展趋势,或一种现象随另一种现象变化的情况,用这种方法比较好。

散点图: 2、统计表①简单次数分布表 ②分组次数分布表③相对次数分布表:将次数分布表中各组的实际次数转化为相对次数,即用频数比率表示。

④累加次数分布表⑤双列次数分布表:对有联系的两列变量用同一个表来表示其次数分布。

(二)集中量数 1、算术平均数M1nii XX N==∑优点:反应灵敏;计算严密;计算简单;简明易解;适合于进一步用代数方法演算;较少受抽样变动的影响;缺点:受极端数据的影响;若出现模糊不清的数据时,无法计算平均数; 计算和运用平均数的原则: 同质性原则;平均数与个体数值相结合的原则; 平均数与标准差、方差相结合原则; 性质:①在一组数据中每个变量与平均数之差的总和等于零②在一组数据中,每一个数都加上一个常数C ,所得的平均数为原来的平均数加常数C ③在一组数据中,每一个数都乘以一个常数C ,所得的平均数为原来的平均数乘以常数C 2、中数:Md 按顺序排列在一起的一组数据中居于中间位置的数,即这组数据中,一般数据比它大,一般数据比它小。

注意计算方法;3、众数:Mo 是指在次数分布中出现次数最多的那个数值;三者的关系:正偏态分布中,M>Md>Mo 负偏态分布中,M<Md<MoMo=3Md-2M (自己推导一下)(三)差异量数差异量数就是对一组数据的变异性,即离中趋势特点进行度量和描述的统计量,也称为离散量数。

统计学 假设检验

统计学 假设检验
第 8 章
假设检验
雪儿·海蒂(Shere Hite)在1987年出版的《女性与爱情:前进中的文化之旅》一书中给
出了大量数据:
● 84%的女性“在情感上对两性关系不满意”(804页)。
● 95%的女性“在恋爱时会因男友而产生情感及心理上的烦恼”(810页)。
● 84%的女性“在与男友的恋爱中有屈尊感”(809页)。
他对这个问题很感兴趣。他兴奋地说道:“让我
们来检验这个命题吧!”并开始策划一个实验。
在实验中,坚持茶有不同味道的那位女士被奉上
一连串的已经调制好的茶,其中,有的是先加茶
后加奶制成的,有的则是先加奶后加茶制成的。
Hypothesis Testing
接下来,在场的许多人都热心地加入到实验中来。
几分钟内,他们在那位女士看不见的地方调制出
Hypothesis Testing
同样,即便这位女士能做出区分,她仍然有猜错的
可能。或者是其中的一杯与奶没有充分地混合,或
者是泡制时茶水不够热。即便这位女士能做出区分
,也很有可能是奉上了10杯茶,她却只是猜对了
其中的9杯。
Hypothesis Testing
是奶加到茶里,还是茶加到奶里?
假设:她没有这种分辨能力,是碰巧猜对的!
假设其中真有99个白球,摸出
红球的概率只有1/100,这是
小概率事件。
小概率事件在一次试验中竟然发生了,不能不
使人怀疑所作的假设。
这个例子中所使用的推理方法,可以称为
带概率性质的反证法
它不同于一般的反证法
一般的反证法要求在原假设成立的条件
下导出的结论是绝对成立的,如果事实与之
矛盾,则完全绝对地否定原假设。
…99个

心理统计学第七章参数估计与假设检验课件

心理统计学第七章参数估计与假设检验课件

一是作为领导干部一定要树立正确的 权力观 和科学 的发展 观,权 力必须 为职工 群众谋 利益, 绝不能 为个人 或少数 人谋取 私利
其标准误为
6.251.2028
X n 27
当P=0.95时,Z=±1.96
因此,该校10岁女童平均身高95%的置信区间为:
XZ0.05
2
n
XZ0.05
良好的点估计量应具备的条件
一致性 当样本容量无限增大时,估计量的值能越来
越接近它所估计的总体参数值,这种估计是总体 参数一致性估计量。 充分性
一个容量为n的样本统计量,应能充分地反映 全部n个数据所反映的总体的信息。
一是作为领导干部一定要树立正确的 权力观 和科学 的发展 观,权 力必须 为职工 群众谋 利益, 绝不能 为个人 或少数 人谋取 私利
2
n
1.3 2 4 1 .9 6 6 .2 5 1.3 2 4 1 .9 6 6 .25
27
27
13 .8142 13 .5658
一是作为领导干部一定要树立正确的 权力观 和科学 的发展 观,权 力必须 为职工 群众谋 利益, 绝不能 为个人 或少数 人谋取 私利
当P=0.99时,Z=±2.58
一 .总体参数估计的基本原理
根据样本统计量对相应总体参数所作的 估计叫作总体参数估计。 总体参数估计分为点估计和区间估计。 由样本的标准差估计总体的标准差即为 点估计;而由样本的平均数估计总体平均数 的取值范围则为区间估计。
一是作为领导干部一定要树立正确的 权力观 和科学 的发展 观,权 力必须 为职工 群众谋 利益, 绝不能 为个人 或少数 人谋取 私利
二.总体平均数的区间估计
1.总体平均数区间估计的基本步骤

心理学考研之心理统计学笔记

心理学考研之心理统计学笔记

心理学考研之心理统计学笔记The document was prepared on January 2, 2021心理统计学笔记1基本概念总体:具有某些共同的、可观测特征的一类事物的全体,构成总体的每个基本单元称为个体样本:由于不能或没必要对整个总体进行研究,我们只能从总体中选择出一些个体代表总体,这些个体的集合叫样本变量:本身是变化的或者对于不同个体有不同值得特征或条件常量:本身不变且对不同的个体的值也相同参数:描述总体的数值,它可以从一次测量中获得,也可以从总体的一系列测量中推论得到比例:全组中取值为X的比例,p=f/N插值法:一种求两个已知数值之间中间值的方法,其假设所求解点附近数据呈线性变化统计量:描述样本的数值,与参数的获得方式相同随机取样:从总体抽取样本的一种策略,要求总体中的每一个个体被抽到的机会均等取样误差:样本统计量与相应的总体参数之间的差距偏态分布:分数堆积在分布的一端,而另一端成为比较尖细的尾端,其与对称分布对应次数分布:一批数据在某一量度的每一个类目所出现的次数情况离散型变量:由分离的、不可分割的范畴组成,临近范畴之间没有值存在连续型变量:在任何两个观测值之间都存在无限多个可能值,它可被分割成无限多个组成部分2学习建议①将注意放在概念上,心理统计应该是一门概念性的科学,而非纯数学.②一定要将统计方法与心理学研究的情景结合起来学习.③弄懂一个概念再开始学习下一个,心理统计中的概念应用性较差却是之后做题的基础.④做题按照推荐格式能避免出错几率.3统计检验总表数据类型单样本问题独立样本比较相关样本比较多组样本的比较相关问题独立样本重复测量等距型总体正态分布单样本t/z检验独立样本t/z检验相关样本t检验独立样本方差分析重复测量方差分析Pearson积差相关分布形态未知大样本下的相应的t/z检验大样本下的相应的t/z检验大样本下的相应的t检验转化为顺序型转化为顺序型顺序型符号检验法曼-惠特尼维尔克松克-瓦氏单向弗里德曼双向等级SpearmanU检验T检验方差分析方差分析等级相关命名型χ2匹配度检验χ2独立性检验符号检验法χ2独立性检验χ2独立性检验一、描述统计描述统计是指用来整理、概括、简化数据的统计方法,侧重于描述一组数据的全貌,表达一件事物的性质.一统计图表统计表和统计图简单明确、生动直观地表达数量关系,具有一目了然、整洁美观、容易理解等特点.它们是对数据进行初步整理,以简化的形式加以表现的两种最简单的方式.在制定统计图表之前,一般首先要对数据进行以下两种初步整理:①数据排序:按照某种标准,对收集到的杂乱无章的数据按照一定顺序标准进行排列②统计分组:根据被研究对象的特征,将所得到数据划分到各个组别中去1.统计图统计图:用点、线、面的位置、升降或大小来表达统计资料数量关系的一种陈列形式组成:坐标轴、图号、图题、图目、图尺、图形、图例、图注分类:条形图、圆图、线性图、直方图、散点图、茎叶图2.统计表统计表:将要统计分析的事物或指标以表格的形式列出来,以代替烦琐文字描述的一种表现形式组成:隔开线、表号、名称、标目、数字、表注分类:简单表、分组表、复合表二集中量数集中量数又叫集中趋势,是体现一组数据一般水平的统计量.它能反映频数分布中大量数据向某一点集中的情况.1.算数平均数1定义算数平均数:即所有观察值的总和与总频数之商,简称为平均数或均数平均数一般与标准差、方差相结合使用.2特点①在一组数据中每个变量与平均数之差的总和等于零②在一组数据中,每一个数都加上一个常数C,所得的平均数为原来的平均数加常数C③在一组数据中,每一个数都乘以一个常数C,所得的平均数为原来的平均数乘以常数C3意义算数平均数是应用最普遍的一种集中量数,它在大多情况下是真值最好的估计值.4优缺点优点:反应灵敏、计算严密、计算简单、简明易解、适合于进一步用代数方法盐酸、较少受抽样变动的影响缺点:易受极端数据的影响、不能在出现模糊数据时计算2.中数1定义中数:按顺序排列在一起的一组数据中居于中间位置的数,在这组数据中,有一半数据比它大,一般数据比它小,等价于百分位数是50的那个数.2算法①数列总个数为奇数时,第 n+1/2 个数就是中数②数列总个数为偶数时,可取位于中间的两个数的平均数作为中数③分布中有相等的数时,将重复的数字看成一个连续体,利用中间分数的精确上下限使用插值法3优缺点优点:计算简单、容易理解、不受极端值影响、能在有模糊数据情况下使用、可在顺序型数据时使用缺点:代表性低、不够灵敏、稳定性低、需要排序、不能进一步做代数运算3.众数1定义众数:在次数分布中出现次数最多的那个数的数值众数可能不只一个.在正偏态分布时,平均数最靠近尾端,中数位于其与众数之间. 2优缺点优点:能在数据不同质的情况使用,能避免极端值干扰缺点:不稳定、代表性差、不够灵敏、不能做进一步的代数运算三差异量数差异量数就是对一组数据的变异性,即离中趋势特点进行度量和描述的统计量,也称为离散量数.1.离差与平均差离差:分布中的某点到均值得距离,其符号表示了某分属于均值之间的位置关系而数值表示了它们之间的绝对距离离差之和始终为零.平均差:次数分布中所有原始数据与平均数绝对离差的平均值2.方差与标准差和方:每一个离差值平房求和由于离差正负值互相抵消无法代表离中趋势我们引入和方的概念1总体的方差和标准差方差:每个数据与该组数据平均数之差乘方后的均值,即离均差平房后的均数作为样本统计量用符号s2表示,作为总体参数用符号σ2表示,也叫均方.标准差:方差的平方根作为样本统计量用符号s表示,作为总体参数用符号σ表示.2样本的方差和标准差样本的变异性往往比它来自的总体的变异性要小.为了校正样本数据带来的偏差,在计算样本方差时,我们用自由度来矫正样本误差,从而有利于对总体参数更好的无偏差估计:3性质①每一个观测值都加一个相同的常数C之后,计算得到的标准差等于原来的标准差②每一个观测值都乘以一个相同的常数C,所得到的标准差等于原标准差乘以这个常数4意义方差与标准差是表示一组数据离散程度的最好指标,它们是统计描述与统计推断分析中最常用的差异量数,它们的优点有:反应灵敏、计算严谨、计算容易、适合代数运算、受抽样变动影响小、意义简单明了3.变异系数当遇到下列情况时,不能用绝对差异量来比较不同样本的离散程度,而应当使用相对差异量数,最常用的就是差异系数.①两个或两个以上样本所使用的观测工具不同,所测的特质相同②两个或两个以上样本使用的是同种观测工具,所测的特质相同,但样本间水平差异较大差异系数:一种最常用的相对差异量,为标准差对平均数的百分比四相对量数1.百分位数百分位数:在整个分布中,在某一值之下或等于该值的分数的百分比,所对应的分数百分位数和百分等级是同一操作定义的两端.当我们求累计次数占总体的百分比是,所对应的分数和百分比的值分别为百分位数和百分等级.2.百分等级百分等级:常模团体中低于该分数的人所占总体的百分比百分等级一定要对应分数区间的精确上限.百分等级和百分位数都可以由已知数据用差值法求解.3.标准分数1定义标准分数:以标准差为单位表示一个原始分数在团体中所处位置的相对位置量数,也叫Z 分数离平均数有多远,即表示原始分数在平均数以上或以下几个标准差的位置.2性质①Z分数无实际单位,是以平均数为参照点,以标准差为单位的一个相对量②一组原始分数转换得到的Z分数可正可负,所有原始分数的Z分数之和为零③原始数据的Z分数的标准差为1④若原始分数呈正态分布,则转换得到的所有Z分数均值为0,标准差为1的标准正态分布3优点①可比性——不同性质的成绩,一经转换为标准分数,就可在同一背景下比较②可加性——不同性质的原始数据具有相同的参照点,因此可相加③明确性——知道了标准分数,利用分布寒暑表就能知道其百分等级④稳定性——转换成标准分数之后,规定了标准差为1,保证了不同性质分数在总分数中权重一样4应用①比较几个分属性质不同的观测值在各自数据分布中相对位置的高低②计算不同质的观测值得总合或平均值,以表示在团体中的相对位置③若标准分数中有小数、负数等不易被人接受的问题,可通过 Z'=aZ+b 的线性公式将其转化成新的分数如韦氏成人智力量表五相关量数由于实验法适用范围的限制,有的时候我们只能对变量间进行相关研究,也就是看两者是否有互相跟随的变化关系.相关研究所得到的是一种描述统计,我们仅仅能用其描述两个变量互相跟随的程度大小,至于他们之间是否有因果关系或者是共变关系则不可妄下定论.相关系数:两列变量间相关程度的数字表现形式作为样本的统计量用r表示,作为总体参数一般用ρ表示.正相关:两列变量变动方向相同负相关:两列变量中有一列变量变动时,另一列变量呈现出与前一列变量方向相反的变动零相关:两列变量之间没有关系,各自按照自己的规律或无规律变化1.积差相关也就是Pearson相关.1前提①数据要成对出现,即若干个体中每个个体都有两种不同的观测值,并且每队数据与其它对子相互独立②两列变量各自总体的分布都是正态的,至少接近正态③两个相关的变量是连续变量,也即两列数据都是测量数据④两列变量之间的关系应是直线性的2公式r也就等于X和Y共同变化的程度除以X和Y各自变化的程度.2.等级相关也就是Spearman相关1适用范围①当研究考察的变量为顺序型数据时,若原始数据为等比货等距,则先转化为顺序型数据②当研究考察的变量为非线性数据时2公式将原始数据转化为顺序型数据,仍然用Pearson相关公式计算即可.3.肯德尔等级相关1肯德尔W系数也叫肯德尔和谐系数,原始数据资料的获得一般采用等级评定法,即让K个被试对N件实物进行等级评定.其原理是评价者评价的一致性除以最大变异可能性.代表评价对象获得的K个等级之和RiN代表等级评定的对象的树木K代表等级评定者的数目2肯德尔U系数其与肯德尔W系数所处理的问题相同,但评价者采用对偶比较法,即将N件事物两两配对分别进行比较为对偶比较记录表中i>j格中的择优分数rij4.点二列相关与二列相关1点二列相关适用于一列数据为等距正态变量,另一列为离散型二分变量.X是与二分称名变量的一个值对应的连续变量的平均数pX是与二分称名变量的另一个值对应的连续变量的平均数qp与q是二分称名变量两个值各自所占的比率s是连续变量的标准差t2二列相关适用于两列变量都是正态等距变量,但其中一列变量被人为地分成两类.y为标准正态曲线中p值对应的高度,查正态分布表能得到5.Ф相关适用于两个变量都是只有两个点值或只表示某些质的属性.其中a、b、c、d分别为四格表中左上、右上、左下、右下的数据二、推断统计推论统计就是指运用一系列的数学方法,将从样本数据中获得的结果推广到样本所在的总体.进行推论统计的关键在于所抽取的样本要能够尽量接近所要研究的总体.一推断统计的数学基础1.概率概率:表明随即时间出现可能性大小的客观指标概率的定义包含以下两种,当观测次数够多时他们是相等的.后验概率:对随机事件进行n次观察,某一事件A出现的次数m与观测次数n的比值在n趋近无穷时所稳定在的常数p先验概率:在满足试验可能结果数有限且每一种结果出现的可能性相等的条件下,随机事件包含的结果数除以结果总数2.正态分布当样本量足够大时,我们会发现生活中许多变量的分布都近似于正态曲线,因此有“上帝偏爱正态分布”一说.1特点①正态曲线的形状就像一口挂钟,呈对称分布,其均值、中数、众数实际上对应于同一个数值②大部分的原始分数都集中分布在均值附近,极端值相对而言比较少③曲线两端向靠近横轴处不断延伸,但始终不会与横轴向交④正态分布曲线转化为z分数后人以z分数与零点对应曲线下面积固定2用法①依据Z分数求概率,即已知标准分数求面积②从概率求Z分数,即从面积求标准分数值③已知概率或Z值,求概率密度,即正态曲线的高3.二项分布二项分布:对于一个事件有两种可能A和B,但我们对这一事件观察n次,事件A发生的总次数的概率分布就是二项分布μ=二项分布的均值为pnσ=方差公式为2npq标准差的公式为σ=4.抽样原理与抽样方法1抽样原理抽样的基本原则是随机性原则,所谓随机性原则,是指在进行抽样时,总体中每一个个体是否被抽选的概率完全均等.由于随机抽样使每个个体有同等机会被抽取,因而有相当大的可能使样本保持和总体有相同的结构,或者说,具有最大的可能使总体的某些特征在样本中得以发现,从而保证由样本推论总体.2抽样方法①简单随机取样法②系统随机取样法③分层随机取样法④多段随机取样法5.抽样分布样本分布:样本统计量的分布,是统计推论的重要依据1正态分布及渐近正态分布样本统计量为正态分布或者接近正态分布的情况都可根据正态分布的概率进行统计推论.总体分为正态或接近正态,方差已知,样本平均数和方差的分布为正态分布①样本平均数分布的平均数和方差与母体的平均数和方差有如下关系:②样本的方差及标准差的分布也渐趋于正态分布,其分布的平均数与标准差和总体有如下关系:2t 分布t 分布是一种与方差无关而与自由度有关的分布,很类似正态分布,我们可以将正态分布看作t 分布当自由度为正无穷时的特例.总体分布为正态,方差未知时,样本平均数的分布为t 分布:X σ= 其中1n s -= 3χ2分布χ2分布的构造是从一个服从正态分布的总体中每次抽去n 个随机变量,计算其平方和之后标准化的一个分布.分布曲线下的面积都是1,但伴随着n 取值的不同,自由度改变,曲线分布形状不同,而当自由度趋近于正无穷时χ2分布即为正态分布,因此其于t 分布一样都是一族分布,而正态分布都是其中的特例.4F 分布如果有两个正态分布的总体,我们从其中各自取出两个样本,各自计算出χ2,则: 更多情况下,我们所计算的F 两样本取自相同总体,此时可将上式化简为:二参数估计当在研究中从样本获得一组数据后,如何通过这组信息,对总体特征进行估计,也就是如何从局部结果推论总体的情况,称为总体参数估计.总体参数估计问题可以分为点估计与区间估计.1.点估计、区间估计与标准误良好估计量的标准①无偏性——用多个样本的统计量估计总体参数的估计值,其偏差的平均数为零②有效性——当总体参数的无偏估计不止一个统计量时,无偏估计变异小者有效性高,变异大者有效性低,即方差越小越好③一致性——当样本容量无限增大时,估计值应能够越来越接近它所估计的总体参数④充分性——样本的统计量是否充分地反映了全部n个数据所反映总体的信息点估计:用样本统计量来估计总体参数,因为样本统计量为数轴上某一点值,估计结果也以一个点的数值表示区间估计:根据估计量以一定可靠程度推断总体参数所在的区间范围,这个区间就叫做置信区间,相应的概率成为置信度,这两个量是共通变化的,置信区间越大,置信度越高;区间估计是用数轴上的一段距离表示未知参数可能落入的范围及落入该范围的概率.标准误:样本平均数分布的标准差总体方差未知时用估算的总体方差计算标准误.2.总体平均数的估计当总体方差未知时,则使用t分布对应置信度3.标准差与方差的区间估计1标准差的区间估计2方差的区间估计三假设检验可以说,每一个实验的存在,仅仅是为了给事实一个反驳虚无假设的机会. ——1.假设检验的原理假设检验:统计学中的一种推论过程,通过样本统计量得出的差异作为一般性结论,判断总体参数之间是否存在差异假设检验的实质是对可置信性的评价,是对一个不确定问题的决策过程,其结果在一定概率上正确的,而不是全部.1两类假设对于任何一种研究而言,其结果无外乎有两种可能,即是否符合我们预期.一般来说证伪一件事情比证实一件事容易,在行为科学的研究中,由于我们无法了解总体中除样本以外的个体情况,因此尝试拒绝虚无假设的方法优于证明备择假设.备则假设:因变量的变化、差异却是是由于自变量的作用往往是我们对研究结果的预期,用H1表示.虚无假设:实际上什么也没有发生,我们所预计的改变、差异、处理效果都不存在观察到的差异只是随机误差在起作用,用H0表示.2小概率原理小概率原理:小概率事件在一次试验中几乎是不可能发生的至于什么就算小概率事件,那就是我们在计算前明确的决策标准,也就是显着性水平α.在检验过程中,我们假设虚无假设是真实的,同时计算出观测到的差异完全是由于随机误差所致的概率.之后将其与我们实现界定好的显着性水平比较,从而考虑是否依据小概率原理来拒绝虚无假设.3两类错误本部分内容请参照实心信号检测论对照来看. ——MJ注Ⅰ型错误:当虚无假设正确时,我们拒绝了它所犯的错误,也叫α错误研究者得出了处理有效果的结论,而实际上并没有效果,即所谓“无中生有”Ⅱ型错误:当虚无假设是错误的时候,我们没有拒绝所犯的错误,也叫β错误假设检验未能侦查到实际存在的处理效应,即所谓“失之交臂”两类检验的关系①α+β不一定等于1②在其他条件不变的情况下,α与β不可能同时减小或增大4检验的方向性单侧检验:强调某一方向的检验,显着性的百分等级为α双侧检验:只强调差异不强调方向性的检验,显着性百分等级为α/2对于同样的显着性标准,在某一方向上,单侧检验的临界区域要大于双侧检验,因此如果差异发生在该方向,单侧检验犯β错误的概率较小,我们也说它的检验效力更高.5假设检验的步骤①根据问题要求,提出虚无假设和备择假设②选择适当的检验统计量③确定检验的方向性并规定显着性水平④计算检验统计量的值⑤将统计量的值与临界值对比做出决策2.样本与总体平均数差异的检验1总体正态分布且方差已知obs X X z μσ-=其中X σ=0μ和0σ分别为总体的平均数和方差2总体正态分布而方差未知0obs X X t s μ-=其中X s =S =S 为用样本和方估算出的总体方差3.两样本平均数差异的检验12obs obs D X X X Z t σ-==这是两样本平均数检验的通用公式,所不同的仅在于标准误的计算1总体方差已知①独立样本②相关样本D X σ=r 为两组变量之间的相关系数2总体方差未知①独立样本方差差异不显着时②相关样本a.相关系数未知:D X σ=其中d 为每一对对应数据之差b.相关系数已知:D X σ=4.方差齐性检验1样本方差与总体方差当从正态分布的总体中随机抽取容量为n 的样本时,其样本方差与总体方差比值服从χ2分布:2220ns χσ=由自由度1df n =-查χ2表,依据显着性水平判断2两个样本方差之间①独立样本22s F s =大小其中当两样本自由度相差不大时可用n s 代替n-1s查表时11221,1df n df n =-=-②相关样本22t =其中2df n =-5.相关系数的显着性检验①积差相关a.当ρ=0时:t =其中2df n =-b.当ρ≠0时:先通过查表将r 和ρ转化为费舍Z r 和Z ρ然后进行Z 检验②等级相关和肯德尔W 系数在总体相关系数为零时:查各自的相关系数表,判定样本相关显着四方差分析1.方差分析的原理与基本过程1方差分析的概念方差分析的目的是推断多组资料的总体均数是否相同,也即检验多组数据之间的均数差异是否有统计意义.当我们用多个t 检验来完成这一过程时,相当于从t 分布中随机抽取多个t 值,这样落在临界范围之外的可能大大增加,从而增加了Ⅰ型错误的概率.我们可以把方差分析看作t 检验的增强版.2方差的可分解性方差分析依据的基本原理就是方差的可加性原则.作为一种统计方法,方差分析把实验数据的总变异分解为若干个不同来源的分量.数据的变异由两部分组成:组内变异:由于实验中一些希望加以控制的非实验因素和一些未被有效控制的未知因素造成的变异,如个体差异、随机误差组内变异是具体某一个处理水平之内的,因此在对总体变异进行估计的时候不涉及研究的处理效应.组间差异:不仅包括组内变异的误差因素,还包括了是不同组所接受的实验处理不同造成的影响如果研究数据的总变异是由处理效应造成的,那么组间变异在总变异中应该占较大比例.B MS 表示组间方差,B B B SS MS df =,1B df k =-,k 表示实验条件的个数 W MS 表示组内方差,W W WSS MS df =,()1W df k n =-,n 表示每种实验条件中的被试个数 3方差分析的基本假定①样本必须来自正态分布的总体②每次观察得到的几组数据必须彼此独立③各实验处理内的方差应彼此无显着差异为了满足这一假定,我们可采用最大F 比率法2max max2min s F s =,求出各样本中方差最大值与最小值的比,通过查表判断.4方差分析的基本步骤Ⅰ 求平方和①总平方和是所有观测值与总平均数的离差的平方总和 ()22T G SS X N =-∑其中G 表示所有数据的总合,N 表示总共的数据个数。

心理统计学》重要知识点

心理统计学》重要知识点

《心理统计学》重要知识点第二章 统计图表简单次数分布表的编制:Excel 数据透视表列联表(交叉表):两个类别变量或等级变量的交叉次数分布,Excel 数据透视表直方图(histogram ):直观描述连续变量分组次数分布情况,可用Excel 图表向导的柱形图来绘制 散点图(Scatter plot ):主要用于直观描述两个连续性变量的关系状况和变化趋向。

条形图(Bar chart ):用于直观描述称名数据、类别数据、等级数据的次数分布情况。

简单条形图:用于描述一个样组的类别(或等级)数据变量次数分布。

复式条形图:用于描述和比较两个或多个样组的类别(或等级)数据的次数分布。

圆形图(circle graph )、饼图(pie graph ):用于直观描述类别数据或等级数据的分布情况。

线形图(line graph ):用于直观描述不同时期的发展成就的变化趋势;第三章 集中量数● 集中趋势和离中趋势是数据分布的两个基本特征。

● 集中趋势:就是数据分布中大量数据向某个数据点集中的趋势。

● 集中量数:描述数据分布集中趋势的统计量数。

● 离中趋势:是指数据分布中数据分散的程度。

● 差异量数:描述数据分布离中趋势(离散程度)的统计量数 ● 常用的集中量数有:算术平均数、众数(M O )、中位数(M d ) 1.算术平均数(简称平均数,M 、X 、Y ):nx X i∑= Excel 统计函数AVERAGE算术平均数的重要特性:(1)一组数据的离均差(离差)总和为0,即0)(=-∑x x i(2)如果变量X 的平均数为X ,将变量X 按照公式bx a y +=转换为Y 变量后,那么,变量Y 2.中位数(median ,M d ):在一组有序排列的数据中,处于中间位置的数值。

中位数上下的数据出现次数各占50%。

3.众数(mode ,M O ):一组数据中出现次数最多的数据。

4.算术平均数、中数、众数之间的关系。

心理统计-假设检验

心理统计-假设检验

概述

Z检验


总体方差 是否已知

样本 大小

t检验和近似 Z检验均可 t检验
总体是否呈 正态分布
大 否
近似Z检验
样本 大小

非参数检验
计算步骤
(1)建立假设 (2)选择公式计算检验统计量
(3)查表决定临界值
(4)将检验统计量与临界值比较,作出决策。
3
总体服从正态分布,总体方差已知时检验
无论是大样本还是小样本,都可用Z检验。
检验两总体平均数μx和μy差异是否显著
一、两总体正态分布,方差已知
Z=
例:在甲乙两校中分别抽取100名16岁的男生进行智商测查,测
得平均分分别为115分和111分。根据常模,该年龄组男生智商的 标准差是15分,请检查两校男生在智商方面是否有显著差异
01
建立假设:H0:μ1=μ2 H1: μ1≠μ2 计算检验统计量
相关样本平均数的差异检验
相关样本:两样本数据之间存在一一对应的 关系。 主要由两种情况: 一、同一批被试在不同条件下形成的两组样本 数据间存在相关(采用同一样本前后测设计) 二、一一严格配对的两组被试其测量值是相关 的(采用配对组实验设计)
序号 甲 乙 d
1 82 72 10
2 58 61 -3
两总体平均数之差的抽样分布
3.两总体正态分布,相互独立的均值差异检验(P121)
检验两总体平均数μx和μy差异是否显著
概述
二、两总体呈正态分布,且相关。 (一)给出原始配对数据 (二)给出相关系数 三、两总体呈非正态分布。 (一) 独立总体 (二)相关总体
一、两总体正态分布,相互独立的均值差异检验

心理统计学 第七章假设检验

心理统计学 第七章假设检验
α和β 的关系就像翘翘板, 的关系就像翘翘板, 就大, α小β 就大, α大β 就小
β
α
四、单侧与双侧检验
• 1.双侧检验:只强调差异 1.双侧检验: 双侧检验 而不强调方向性的检验。 而不强调方向性的检验。
H 0 : µ = µ0
• 2.单侧检验:既强调差异 2.单侧检验: 单侧检验 又强调方向性的检验。 又强调方向性的检验。
• (二)两类错误的关系
• • • • • 1. α+β不等于1 不等于1 是在两个不同前提下的概率。 α和β是在两个不同前提下的概率。 2. α和β不可能同时增大或减小 增大样本容量n 可同时减小两类错误。 增大样本容量n,可同时减小两类错误。 3.统计检验力 统计检验力1 3.统计检验力1-β。
解: 提出假设:用μ1表示受过早期教育的儿童的平均智商。单侧检验,提出假设: ⑴提出假设 Ho: H1: Ho:μ1≤μo=100 H1:μ1>μo=100 选择并计算统计量: ⑵选择并计算统计量:由于总体方差已知,样本平均数服从正态分布。
⑶查表确定临界值:Z0.05=1.645 查表确定临界值: 统计决断: p<0.05。 ⑷统计决断:Z=1.84> Z0.05=1.645 ,p<0.05。 p<0.05 落在拒绝区域,所以拒绝零假设,接受备择假设。 即应该认为受过良好早期教育的儿童智力高于一般水平。 即应该认为受过良好早期教育的儿童智力高于一般水平。
Ⅰ型错误:也称α型错误或弃真错误,即H0为真拒绝H0(拒 为真拒绝H 型错误:也称α型错误或弃真错误, 绝了一个本应接受的假设); 绝了一个本应接受的假设); 型错误:也称β型错误或取伪错误, 为假接受H Ⅱ型错误:也称β型错误或取伪错误,即H0为假接受H0(接 受了一个本应拒绝的假设)。 受了一个本应拒绝的假设)。 负责任的态度是无论做出什么决策, 负责任的态度是无论做出什么决策, 都应该给出该决策可能犯错误的概率。 都应该给出该决策可能犯错误的概率。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(比如随机抽样),会出现测量值时而偏大,时而偏小的误 差现象。
• 是系统误差还是抽样误差导致了李老师所任教班级 的成绩?需要使用假设检验方法来判断。
一、统计检验假设的基本思想
• (二)两种假设
• (1)在进行任何一项研究时,我们都需要根据已有的理论和经验事先对研 究结果作出一种预想的希望证实的假设,这种假设叫科学假设,用统计学 术语表示时叫研究假设,记作H1:如:是李老师的教学能力导致了连个伴 的高分。 • (2)在实际研究中,由于常常不能对H1的真实性进行直接检验,而是需要 检验它的对立形式,即检验虚无假设。虚无假设也叫无差假设、零假设、
• (1)对于固定的n,越小,β 就越大。
• (2)β 的大小与真假值之间的距离(即μ 1与μ 0的距离) 成反比。距离越远越容易拒绝虚无假设,这时是犯第一类
错误,从而减小了第二类错误的概率。
• (3)要想同时减小和β ,一个方法就是增大样本容量n。
三、统计决策中“接受 H ”的含义
0
• 统计学中的假设检验,通常关注的是如何运用小概率事件
• 检验的目的就是要确定两总体平均数之间的差异是由随机
抽样误差造成的,还是由系统误差造成,样本来自于不同 的总体。
六 双总体平均数差异显著性检验(大样本)
六 双总体平均数差异显著性检验(大样本)
六 双总体平均数差异显著性检验(小样本)
2
六 双总体平均数差异显著性检验(小样本)
七 相关样本平均数差异显著性检验
七 相关样本平均数差异显著性检验
八 方差差异显著性检验(单总体)
八 方差差异显著性检验(双总体)
第二节 统计决策时的两类错误
• 一、两类错误 • 二、两类错误的关系 • 三、统计决策中“接受H 0 ” 的含义
一、两类错误的概念
• 1、型错误
• 由于虚无假设本来正确,而统计量却落在了拒绝区
• 1:什么导致两个班的成绩与全级平均成绩有差异? • 2:两个班的成绩是否优于全级平均成绩?
一、统计检验假设的基本思想
• (一)两个误差
• 系统误差:在一定的测量条件下,对同一个对象进行多次重 复测量时,误差值的大小和符号(正值或负值)保持不变, 或者在条件变化时,按一定规律变化的误差。
• 抽样误差:对同一对象进行多次测量,由于各种偶然因素
• 实际上样本均值确实落于此区间之内——H0为真
• 实际上样本均值确实落于此区间之外——H0为假,H1为

一、统计检验假设的基本思想
反证法 过程
逻辑学 数学 假设检验
假设——推理——是否得到矛盾——决定是否推翻 假设 虚无假设()——推理(抽样平均数在总体平均数 周围变化)——抽样结果与推理结果是否矛盾 ()——推翻原假设——接受对立假设
原假设,记作H0:李老师的教学能力与全级平均水平相同,是随机因素导
致了两个班的高分 • (3)在假设检验中,H0总是作为直接被检验的假设,而H1与 对立,二者择
一,因而H1又叫做对立假设或备择假设。
一、统计检验假设的基本思想
• (三)统计检验假设的逻辑 我们想要证实研究假设,但并不是从研究假设出发进行验证,而 是建立与它对立的虚无假设,并假定虚无假设为真。在虚无假设
一端。这种强调某一方向的检验方法叫做单侧检验方法。
• 问:本章开头的问题是单侧检验还是双侧检验?
三、假设检验的两种方法
• 3.两种检验的区别
目的 双 有无差异 侧 假设 危机域 两块 临界值 两个 灵敏度 高
H 0 : 0 H1 : 0
单 大于或小于 侧
H 0 : 0 H 0 : 0 H1 : 0 H1 : 0
• 例2.某市统一考试的语文平均成绩为0=83分,从
某校随机抽取26名学生的考试成绩,算出其 X 分, 86
S=8分,问该校成绩与全市考生的平均成绩差异是
否显著?( 0.05)
五 单总体平均数差异显著性检验
• (1)建立统计假设
H 0 : 0 H1 : 0
s2 X ~ t ( 0 , ) n 1
率事件的误差限度值(临界值)。
• (4)将检验统计量与临界值比较做出决策:由于
Z 1.67 Z 1.96 ,没有超出误差限度,落在
Z 1.96 和 Z 1.96
2
的中间,表明小概率事件没有发
生,因此没有理由拒绝虚无假设,即接受两者无差别
的虚无假设。
五 单总体平均数差异显著性的Z检验
的原理去拒绝或证伪 H 0 ,因而为拒绝 H 0 设立了较严格的
标准。但需要指出的是,接受 H 0 并不等于 H 0 被证实了, 只是说根据现有的资料,尚无足够的把握推论 H 0 不成立,
只能暂时承认差异不显著的事实。
• 另外需指出的是,接受 H 0 ,也可能犯错误,而犯错误的概
H0 率β 通常是不知道的,如果把“接受 H0 ”当成是“
时也有可能犯错误,因为若实际情况不应当接受虚
无假设,而此时却接受了,把这种错误称为第二类
错误或“纳伪”错误,这类错误的概率以β 表示,
因而又叫β 型错误。
一、两类错误的概念
• 3、假设检验的各种可能结果
接受H0 正确决策,概率=1-= 置信度 拒绝H0 第一类错误,概率== 检验水平
H0为真
H0为假

• (2)计算检验统计量:由于总体方差未知,故 由抽样分布可知,检验统计量为:

,则

X 0 86.5 83 2.19 s 8 / 25 n 1 (3)查表决定临界值:当 0.05 时,查正态分布表可知 t.05 t
2
( 25 )
( 25)
2.06 .
• (4)做出决策:由于 t 2.19 t.05
• 假设H0为真(李老师的能力与全级无差异)——随即抽
样误差导致了分数差异——被抽出样本的均值(两个班
平均分)应与总体均值(全级平均分)无差异——样本 均值应落在总体均值为中心的一个区间内(该区间能覆 盖大部分,95%或99%,的抽样分布)——检验实际情况 (样本平均数的Z值是否大于1.96获2.58)。

证实了”, 推论两总体的平均数是相等的或者是无差异的, 则是在缺乏概率证据的前提下进行的推论,显然是不正确 的。
样本容量的确定
思考与练习
1 统计假设检验的思想是什么? 2 统计假设检验的步骤如何? 3 统计假设检验的决策原理是什么? 4 什么是统计推断中的两类错误?如何控制? 5 统计推断的可靠性主要受哪些因素的影响? 6 在某重点中学对重点班45名学生进行比内智力测验,结 果 X 108 。已知比内测验的常模 0 100, 0 16。能否认为 该重点中学重点班的学生的智力水平确实高于常模水平? • 7 某中学全体初二学生历年来瑞文推理能力测验得到的标 准差为5.24,现从该校随机抽取28名初二学生,得到学生 的测验得分平均分为79分,试估计该校全体初二学生平均 得分0.95和0.99的置信区间。 • • • • • •
F
t F 检验、 等,因此,对应的假设检验方法也分别有 Z检验、
检验。
分布和
分布
t
2
四、假设检验的步骤
• (三)查表决定临界值
• 首先规定显著性水平 ,然后根据 查相应的分布表 来确定临界值,从而确定出 H 0 的拒绝区间或接受区间。
• (四)作出统计决策
• 比较临界值和统计量值,若统计量值落在拒绝 H 0 区间 中,则拒绝 H 0,即推论差异达到显著性水平或差异有 即推论差异不显著或差异没有统计意义。
二、两类错误的关系
• 2、在其它条件不变的情况下,和β 不可能同时增大或减
小。
• 由图中以 错误比

X
0 为分界线所示右边显示 的阴影部分 X
的距离更远时可能犯型的 的距离更近时有更小的概率,但同
的面积可知, X 0 离 离
时犯β 型错误的概率也增大。
二、两类错误的关系
• 3、减小β型错误的条件
域,我们依此拒绝了虚无假设,得出了错误的结论,
称这种错误为第一类错误或“弃真”错误。而拒绝
区域的面积(概率)为,所以当虚无假设正确时
而拒绝虚无假设所犯的第一类错误的概率正是显著
性水平。第一类错误又叫型错误。
一、两类错误的概念
• 2、β 型错误
• 当计算得到
Z Z
2
时,我们接受了虚无假设,这
• 统计假设检验的基本思想是带有概率值保证的反证法。也就是说,
为真的前提下,看实际获得的资料所导致的结果是否与虚无假设
成立时应出现的结果发生矛盾。如果出现了矛盾则表明原先的假 设H0是错误的,应该给予否定,此时接受研究假设H1。如果没有 出现矛盾,则表明没有充分理论否定虚无假设。
二、差异显著性检验的原理
小 结
• 1.总体参数在很多时候是未知的,需要对其进行估
计。利用样本统计量估计总体参数的过程叫做参数
一块
一个

四、假设检验的步骤
• (一)建立假设
• 双侧检验为:H 0 : 0 ;
H1 : 0
• 单侧检验为
H 0 : 0 H1 : 0

H0 : 0 H1 : 0
2
• (二)选择和计算检验统计量
• 常用的抽样分布主要有Z分布、 分布、 检验和
三、假设检验的两种方法
• 1.双侧检验
• 如果关心的是 与 的差异,并不关心 比 0 大还是 0 小,这时在 两侧都需要一个临界点,临界点以外的 区域为 H 的拒绝区域。这种强调差异而不强调方向性的 检验方法叫做双侧检验方法。
0
0
三、假设检验的两种方法源自• 2.单侧检验• 如果关心的是 比 0 大还是小,则区域 集中于 0 的
相关文档
最新文档