益阳市2013年初中毕业学业考试数学正卷参考答案定
2013年初中毕业生中考数学试卷及答案
2013年初中毕业生中考数学试卷本试卷共5页,分二部分,共25小题,满分150分。
考试用时120分钟。
注意事项:1、答卷前,考生务必在答题卡上用黑色字迹的钢笔或签字笔填写自己的考生号、姓名;同时填写考场试室号、座位号,再用2B铅笔把对应这两号码的标号涂黑。
2、选择题答案用2B铅笔填涂;将答题卡上选择题答题区中对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案;答案不能答在试卷上。
3、非选择题答案必须用黑色字迹的钢笔或签字笔写在答题卡各题目指定区域内的相应位置上;如需改动,先划掉原来的答案,然后再写上新的答案,改动后的答案也不能超出指定的区域;不准使用铅笔、圆珠笔和涂改液。
不按以上要求作答的答案无效。
4、考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回。
第一部分选择题(共30分)一、选择题:1、比0大的数是()A -1 B12C 0D 12、图1所示的几何体的主视图是()(A)(B) (C) (D)正面3、在6×6方格中,将图2—①中的图形N平移后位置如图2—②所示,则图形N的平移方法中,正确的是()A 向下移动1格B 向上移动1格C 向上移动2格D 向下移动2格4、计算:()23m n的结果是( )A 6m nB 62m nC 52m nD 32m n5、为了解中学生获取资讯的主要渠道,设置“A :报纸,B :电视,C :网络,D :身边的人,E :其他”五个选项(五项中必选且只能选一项)的调查问卷,先随机抽取50名中学生进行该问卷调查,根据调查的结果绘制条形图如图3,该调查的方式是( ),图3中的a 的值是( ) A 全面调查,26 B 全面调查,24 C 抽样调查,26 D 全面调查,246、已知两数x,y 之和是10,x 比y 的3倍大2,则下面所列方程组正确的是( )A 1032x y y x +=⎧⎨=+⎩B 1032x y y x +=⎧⎨=-⎩C 1032x y x y +=⎧⎨=+⎩D 1032x y x y +=⎧⎨=-⎩7、实数a 在数轴上的位置如图4所示,则 2.5a -=( )图42.5aA 2.5a -B 2.5a -C 2.5a +D 2.5a -- 8、若代数式1xx -有意义,则实数x 的取值范围是( ) A 1x ≠ B 0x ≥ C 0x > D 01x x ≥≠且9、若5200k +<,则关于x 的一元二次方程240x x k +-=的根的情况是( ) A 没有实数根 B 有两个相等的实数根 C 有两个不相等的实数根 D 无法判断10、如图5,四边形ABCD 是梯形,AD ∥BC ,CA 是BCD ∠的平分线,且,4,6,AB AC AB AD ⊥==则tan B =( )A 23B 22 C114 D 554图5ADBC第二部分 非选择题(共120分)二.填空题(本大题共6小题,每小题3分,满分18分)11.点P 在线段AB 的垂直平分线上,P A =7,则PB =______________ .12.广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为___________ .13.分解因式:=+xy x 2_______________.14.一次函数,1)2(++=x m y 若y 随x 的增大而增大,则m 的取值范围是___________ . 15.如图6,ABC Rt ∆的斜边AB =16, ABC Rt ∆绕点O 顺时针旋转后得到C B A Rt '''∆,则C B A Rt '''∆的斜边B A ''上的中线D C '的长度为_____________ .16.如图7,在平面直角坐标系中,点O 为坐标原点,点P 在第一象限,P Θ与x 轴交于O,A 两点,点A 的坐标为(6,0),P Θ的半径为13,则点P 的坐标为 ____________.三.解答题(本大题共9小题,满分102分,解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分9分) 解方程:09102=+-x x .18.(本小题满分9分)如图8,四边形ABCD 是菱形,对角线AC 与BD 相交于O,AB =5,AO =4,求BD 的长.CODAB图819.(本小题满分10分)先化简,再求值:yx y y x x ---22,其中.321,321-=+=y xC'图6ACB O A'B'A O 图7yx( 6, 0 )P已知四边形ABCD 是平行四边形(如图9),把△ABD 沿对角线BD 翻折180°得到△A ˊBD.(1) 利用尺规作出△A ˊBD .(要求保留作图痕迹,不写作法);(2)设D A ˊ 与BC 交于点E ,求证:△BA ˊE ≌△DCE .21.(本小题满分12分)在某项针对18~35岁的青年人每天发微博数量的调查中,设一个人的“日均发微博条数”为m ,规定:当m ≥10时为A 级,当5≤m <10时为B 级,当0≤m <5时为C 级.现随机抽取30个符合年龄条件的青年人开展每人“日均发微博条数”的调查,所抽青年人的“日均发微博条数”的数据如下:11 10 6 15 9 16 13 12 0 8 2 8 10 17 6 13 7 5 7 3 12 10 7 11 3 6 8 14 15 12 (1) 求样本数据中为A 级的频率;(2) 试估计1000个18~35岁的青年人中“日均发微博条数”为A 级的人数; (3) 从样本数据为C 级的人中随机抽取2人,用列举法求抽得2个人的“日均发微博条数”都是3的概率.22.(本小题满分12分)如图10, 在东西方向的海岸线MN 上有A 、B 两艘船,均收到已触礁搁浅的船P 的求救信号,已知船P 在船A 的北偏东58°方向,船P 在船B 的北偏西35°方向,AP 的距离为30海里.(1) 求船P 到海岸线MN 的距离(精确到0.1海里);(2) 若船A 、船B 分别以20海里/小时、15海里/小时的速度同时出发,匀速直线前往救援,试通过计算判断哪艘船先到达船P 处.AD图9BCPB A图10北东N M如图11,在平面直角坐标系中,点O 为坐标原点,正方形OABC 的边OA 、OC 分别在x 轴、y 轴上,点B 的坐标为(2,2),反比例函数ky x=(x >0,k ≠0)的图像经过线段BC 的中点D .(1)求k 的值;(2)若点P(x,y)在该反比例函数的图像上运动(不与点D 重合),过点P 作PR ⊥y 轴于点R,作PQ ⊥BC 所在直线于点Q ,记四边形CQPR 的面积为S ,求S 关于x 的解析式并写出x 的取值范围。
2013年湖南省益阳市中考数学试卷(含解析版)
2013年湖南省益阳市中考数学试卷一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)(2013•益阳)据益阳市统计局在网上发布的数据,2012年益阳市地区生产总值(GDP)突破千亿元大关,达到了1020亿元,将102 000 000 000用科学记数法表示正确的是()A.1.02×1011B.10.2×1010C.1.02×1010D.1.2×10112.(4分)(2013•益阳)下列运算正确的是()A.2a3÷a=6 B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2D.(a+b)2=a2+b2 3.(4分)(2013•益阳)分式方程的解是()A.x=3 B.x=﹣3 C.x=D.x=4.(4分)(2013•益阳)实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:组别 1 2 3 4 5 6 7分值90 95 90 88 90 92 85这组数据的中位数和众数分别是()A.88,90 B.90,90 C.88,95 D.90,955.(4分)(2013•益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()A.2个B.3个C.5个D.10个6.(4分)(2013•益阳)如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.A B=CD D.A C⊥BD7.(4分)(2013•益阳)抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)8.(4分)(2013•益阳)已知一次函数y=x﹣2,当函数值y>0时,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.二、填空题(本大题共5小题,每小题4分,共20分.把答案填在答题卡中对应题号后的横线上)9.(4分)(2013•益阳)因式分解:xy2﹣4x= .10.(4分)(2013•益阳)化简:= .11.(4分)(2013•益阳)有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是.12.(4分)(2013•益阳)如图,若AB是⊙O的直径,AB=10cm,∠CAB=30°,则BC= cm.13.(4分)(2013•益阳)下表中的数字是按一定规律填写的,表中a的值应是.1 2 3 5 8 13 a …2 3 5 8 13 21 34 …三、解答题(本大题共2小题,每小题6分,共12分)14.(6分)(2013•益阳)已知:a=,b=|﹣2|,.求代数式:a2+b﹣4c的值.15.(6分)(2013•益阳)如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.四、解答题(本大题共3小题,每小题8分,共24分)16.(8分)(2013•益阳)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?17.(8分)(2013•益阳)某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对全体小组成员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图(图).次数10 8 6 5人数 3 a 2 1(1)表中a= ;(2)请将条形统计图补充完整;(3)从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率有多少?18.(8分)(2013•益阳)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.5°,∠PBA=26.5.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)(参考数据:sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50)五、解答题(本大题共2小题,共22分)19.(10分)(2013•益阳)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.20.(12分)(2013•益阳)如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.六、解答题(本题满分10分)21.(10分)(2013•益阳)阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A(x1,y1),B(x2,y2),AB中点P的坐标为(x p,y p).由x p﹣x1=x2﹣x p,得x p=,同理,所以AB的中点坐标为.由勾股定理得AB2=,所以A、B两点间的距离公式为.注:上述公式对A、B在平面直角坐标系中其它位置也成立.解答下列问题:如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C.(1)求A、B两点的坐标及C点的坐标;(2)连结AB、AC,求证△ABC为直角三角形;(3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.2013年湖南省益阳市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(4分)(2013•益阳)据益阳市统计局在网上发布的数据,2012年益阳市地区生产总值(GDP)突破千亿元大关,达到了1020亿元,将102 000 000 000用科学记数法表示正确的是()A.1.02×1011B.10.2×1010C.1.02×1010D.1.2×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将102 000 000 000用科学记数法表示为:1.02×1011.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(4分)(2013•益阳)下列运算正确的是()D.(a+b)2=a2+b2 A.2a3÷a=6 B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2考点:平方差公式;幂的乘方与积的乘方;完全平方公式;整式的除法.分析:根据单项式的除法法则,以及幂的乘方,平方差公式以及完全平方公式即可作出判断.解答:解:A、2a3÷a=2a2,故选项错误;B、(ab2)2=a2b4,故选项错误;C、正确;D、(a+b)2=a2+2ab+b2,故选项错误.故选C.点评:本题考查了平方差公式和完全平方公式的运用,理解公式结构是关键,需要熟练掌握并灵活运用.3.(4分)(2013•益阳)分式方程的解是()A.x=3 B.x=﹣3 C.x= D.x=考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.4.(4分)(2013•益阳)实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:组别 1 2 3 4 5 6 7分值90 95 90 88 90 92 85这组数据的中位数和众数分别是()A.88,90 B.90,90 C.88,95 D.90,95考点:众数;中位数.分析:根据众数和中位数的定义,结合表格和选项选出正确答案即可.解答:解:把这组数据按从小到大的顺序排列为:85,88,90,90,90,92,95,故中位数为:90,众数为:90.故选B.点评:本题考查了众数和中位数的知识,属于基础题,解答本题的关键是熟练掌握众数和中位数的定义.5.(4分)(2013•益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()A.2个B.3个C.5个D.10个考点:由三视图判断几何体.分析:从主视图与左视图可以得出此图形只有一排,从俯视图可以验证这一点,从而确定个数.解答:解:从主视图与左视图可以得出此图形只有一排,只能得出一共有5个小正方体,从俯视图可以验证这一点,从而确定小正方体总个数为5个.故选;C.点评:此题主要考查了由三视图判定几何体的形状,此问题是中考中热点问题,同学们应熟练掌握.6.(4分)(2013•益阳)如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.A B=CD D.A C⊥BD考点:平行四边形的性质.分析:根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.解答:解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,故此选项正确,不合题意;∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AB=CD,故B,C选项正确,不合题意;无法得出AC⊥BD,故此选项错误,符合题意.故选D.点评:此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.7.(4分)(2013•益阳)抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)考点:二次函数的性质.分析:根据顶点式解析式写出顶点坐标即可.解答:解:抛物线y=2(x﹣3)2+1的顶点坐标是(3,1).故选A.点评:本题考查了二次函数的性质,熟练掌握顶点式解析式是解题的关键.8.(4分)(2013•益阳)已知一次函数y=x﹣2,当函数值y>0时,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;一次函数的性质.分析:由已知条件知x﹣2>0,通过解不等式可以求得x>2.然后把不等式的解集表示在数轴上即可.解答:解:∵一次函数y=x﹣2,∴函数值y>0时,x﹣2>0,解得,x>2,表示在数轴上为:故选B.点评:本题考查了在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.二、填空题(本大题共5小题,每小题4分,共20分.把答案填在答题卡中对应题号后的横线上)9.(4分)(2013•益阳)因式分解:xy 2﹣4x= x (y+2)(y ﹣2) .考点: 提公因式法与公式法的综合运用. 分析: 先提取公因式x ,再对余下的多项式利用平方差公式继续分解. 解答: 解:xy 2﹣4x ,=x (y 2﹣4),=x (y+2)(y ﹣2). 点评:本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.10.(4分)(2013•益阳)化简:= 1 .考点: 分式的加减法. 专题: 计算题. 分析: 由于两分式的分母相同,分子不同,故根据同分母的分式相加减的法则进行计算即可. 解答:解:原式= =1.故答案为:1. 点评: 本题考查的是分式的加减法,即同分母的分式想加减,分母不变,把分子相加减.11.(4分)(2013•益阳)有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是32.考点: 概率公式;轴对称图形;中心对称图形. 分析:由正三角形、正方形、圆中既是中心对称图形又是轴对称图形的是正方形、圆,利用概率公式即可求得答案. 解答:解:∵正三角形、正方形、圆中既是中心对称图形又是轴对称图形的是正方形、圆, ∴既是中心对称图形又是轴对称图形的概率是:32. 故答案为:. 点评: 此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.12.(4分)(2013•益阳)如图,若AB 是⊙O 的直径,AB=10cm ,∠CAB=30°,则BC= 5 cm .考点:圆周角定理;含30度角的直角三角形.分析:根据圆周角定理可得出△ABC是直角三角形,再由含30°角的直角三角形的性质即可得出BC的长度.解答:解:∵AB是⊙O的直径,∴∠ACB=90°,又∵AB=10cm,∠CAB=30°,∴BC=AB=5cm.故答案为:5.点评:本题考查了圆周角定理及含30°角的直角三角形的性质,解答本题的关键是根据圆周角定理判断出∠ACB=90°.13.(4分)(2013•益阳)下表中的数字是按一定规律填写的,表中a的值应是21.1 2 3 5 8 13 a …2 3 5 8 13 21 34 …考点:规律型:数字的变化类.分析:根据第一行第3个数是前两个数值之和,进而得出答案.解答:解:根据题意可得出:a=13+5=21.故答案为:21.点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.三、解答题(本大题共2小题,每小题6分,共12分)14.(6分)(2013•益阳)已知:a=,b=|﹣2|,.求代数式:a2+b﹣4c的值.考点:代数式求值.专题:计算题.分析:将a,b及c的值代入计算即可求出值.解答:解:当a=,b=|﹣2|=2,c=时,a2+b﹣4c=3+2﹣2=3.点评:此题考查了代数式求值,涉及的知识有:二次根式的化简,绝对值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.15.(6分)(2013•益阳)如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.考点:相似三角形的判定.专题:证明题.分析:根据等腰三角形三线合一的性质可得AD⊥BC,然后求出∠ADB=∠CEB=90°,再根据两组角对应相等的两个三角形相似证明.解答:证明:在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∵CE⊥AB,∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴△ABD∽△CBE.点评:本题考查了相似三角形的判定,等腰三角形三线合一的性质,比较简单,确定出两组对应相等的角是解题的关键.四、解答题(本大题共3小题,每小题8分,共24分)16.(8分)(2013•益阳)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?考点:反比例函数的应用;一次函数的应用.分析:(1)根据图象直接得出大棚温度18℃的时间为12﹣2=10(小时);(2)利用待定系数法求反比例函数解析式即可;(3)将x=16代入函数解析式求出y的值即可.解答:解:(1)恒温系统在这天保持大棚温度18℃的时间为10小时.(2)∵点B(12,18)在双曲线上,∴18=,∴解得:k=216.(3)当x=16时,y==13.5,所以当x=16时,大棚内的温度约为13.5℃.点评:此题主要考查了反比例函数的应用,求出反比例函数解析式是解题关键.17.(8分)(2013•益阳)某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对全体小组成员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图(图).次数10 8 6 5人数 3 a 2 1(1)表中a=4;(2)请将条形统计图补充完整;(3)从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率有多少?考点:条形统计图;统计表;概率公式.分析:(1)根据条形统计图可知a=4;(2)根据表格数据可知6次的人数是2,然后补全统计图即可;(3)根据概率公式解得即可.解答:解:(1)由条形统计图可知次数为8的有4人,所以,a=4;(2)由表可知,6次的有2人,补全统计图如图;(3)∵小组成员共10人,参加了10次活动的成员有3人,∴P=,答:从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率是.点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.(8分)(2013•益阳)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB ,现决定从小岛架一座与观光小道垂直的小桥PD ,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.5°,∠PBA=26.5.请帮助小张求出小桥PD 的长并确定小桥在小道上的位置.(以A ,B 为参照点,结果精确到0.1米)(参考数据:sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50)考点:解直角三角形的应用. 专题:应用题. 分析:设PD=x 米,在Rt △PAD 中表示出AD ,在Rt △PDB 中表示出BD ,再由AB=80.0米,可得出方程,解出即可得出PD 的长度,继而也可确定小桥在小道上的位置.解答:解:设PD=x 米, ∵PD ⊥AB ,∴∠ADP=∠BDP=90°,在Rt △PAD 中,tan ∠PAD=, ∴AD=≈=45x , 在Rt △PBD 中,tan ∠PBD=,∴DB=≈=2x , 又∵AB=80.0米, ∴45x+2x=80.0, 解得:x ≈24.6,即PD ≈24.6米,∴DB=2x=49.2.答:小桥PD 的长度约为24.6米,位于AB 之间距B 点约49.2米.点评:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数表示出相关线段的长度,难度一般.五、解答题(本大题共2小题,共22分)19.(10分)(2013•益阳)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.考点:一元一次不等式的应用;二元一次方程组的应用. 分析:(1)根据“‘益安’车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石”分别得出等式组成方程组,求出即可;(2)利用“‘益安’车队需要一次运输沙石165吨以上”得出不等式求出购买方案即可.解答:解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x 辆、y 辆, 根据题意得:,解之得:. ∴“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;(2)设载重量为8吨的卡车增加了z 辆,依题意得:8(5+z )+10(7+6﹣z )>165,解之得:z <25 ∵z ≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车不购买,10吨的卡车购买6辆;②载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;③载重量为8吨的卡车购买2辆,10吨的卡车购买4辆.点评:此题主要考查了二元一次方程组的应用以及不等式的应用,根据已知得出正确的不等式关系是解题关键.20.(12分)(2013•益阳)如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.考点:旋转的性质;等腰三角形的性质;等腰梯形的判定.分析:(1)根据等腰三角形的性质以及角平分线的性质得出对应角之间的关系进而得出答案;(2)由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,根据全等三角形证明方法得出即可;(3)分别根据①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,②当点E的像E′与点N重合时,求出α即可.解答:(1)证明:∵AB=BC,∠A=36°,∴∠ABC=∠C=72°,又∵BE平分∠ABC,∴∠ABE=∠CBE=36°,∴∠BEC=180°﹣∠C﹣∠CBE=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BC.(2)证明:∵AC=AB且EF∥BC,∴AE=AF;由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,∵在△CAE′和△BAF′中,∴△CAE′≌△BAF′,∴CE′=BF′.(3)存在CE′∥AB,理由:由(1)可知AE=BC,所以,在△AEF绕点A逆时针旋转过程中,E点经过的路径(圆弧)与过点C且与AB平行的直线l交于M、N两点,如图:①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,∴∠BAM=∠ABC=72°,又∠BAC=36°,∴α=∠CAM=36°.②当点E的像E′与点N重合时,由AB∥l得,∠AMN=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°﹣2×72°=36°,∴α=∠CAN=∠CAM+∠MAN=72°.所以,当旋转角为36°或72°时,CE′∥AB.点评:此题主要考查了旋转的性质以及等腰三角形的性质和等腰梯形的性质等知识,根据数形结合熟练掌握相关定理是解题关键.六、解答题(本题满分10分)21.(10分)(2013•益阳)阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A(x1,y1),B(x2,y2),AB中点P的坐标为(x p,y p).由x p﹣x1=x2﹣x p,得x p=,同理,所以AB的中点坐标为.由勾股定理得AB2=,所以A、B两点间的距离公式为.注:上述公式对A、B在平面直角坐标系中其它位置也成立.解答下列问题:如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C.(1)求A、B两点的坐标及C点的坐标;(2)连结AB、AC,求证△ABC为直角三角形;(3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.考点:二次函数综合题.分析:(1)根据y=2x+2与抛物线y=2x2交于A、B两点,直接联立求出交点坐标,进而得出C点坐标即可;(2)利用两点间距离公式得出AB的长,进而得出PC=PA=PB,求出∠PAC+∠PCB=90°,即∠ACB=90°即可得出答案;(3)点C作CG⊥AB于G,过点A作AH⊥PC于H,利用A,C点坐标得出H点坐标,进而得出CG=AH,求出即可.解答:解:(1)由,解得:。
2013年湖南益阳市初中毕业考试数学试题卷(含答案)
2013年湖南益阳市初中毕业考试数学试题卷(含答案)一、单项选择题,共8 题,每题5分1、据益阳市统计局在网上发布的数据,2012年益阳市地区生产总值(GDP )突破千亿元大关,达到了1020亿元,将102 000 000 000用科学记数法表示正确的是()(A) (B) (C) (D)【答案】A;2、下列运算正确的是()(A) (B)(C) (D)【答案】C;3、分式方程的解是()(A) x = (B) x = (C) x = (D) x =【答案】B;4、实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:这组数据的中位数和众数分别是()(A) 88,90(B) 90,90(C) 88,95(D) 90,95【答案】B;5、一个物体由多个完全相同的小正方体组成,它的三视图如图1所示,那么组成这个物体的小正方体的个数为()(A) 2个(B) 3个(C) 5个(D) 10个【答案】C;6、如图2,在平行四边形ABCD中,下列结论中错误的是()(A) ∠1=∠2(B) ∠BAD=∠BCD(C) AB=CD(D) AC⊥BD【答案】D;7、抛物线的顶点坐标是()(A) (3,1)(B) (3,-1)(C) (-3,1)(D) (-3,-1)【答案】A;8、已知一次函数,当函数值时,自变量的取值范围在数轴上表示正确的是()(A) (B)(C) (D)【答案】B;二、填空题,共 5 题,每题5分1、因式分解:= .【答案】;2、化简:= .【答案】1;3、有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是.【答案】;4、如图3,若是⊙的直径,cm,,则= cm.【答案】5;5、下表中的数字是按一定规律填写的,表中a的值应是.【答案】21;三、解答题,共8 题,每题4分1、已知:,,.求代数式:的值.【答案】当,,时,= ==;2、如图4,在 中,,,于 .【答案】在中, , , ∴,∵ , ∴ , 又, ∴ 求证: ;3、我市某蔬菜生产基地在气温较低时,用装有 恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图5是某天恒温系统从开启到关闭及关闭后,大棚内温度y (℃)随时间x (小时)变化的函数图象,其中BC 段是双曲线 的一部分.请 根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时? (2)求k 的值;(3)当x =16时,大棚内的温度约为多少度? 【答案】 (1)恒温系统在这天保持大棚温度18℃的时间为10小时. (2)∵点(12,18)在双曲线 上, ∴, ∴. (3)当x=16时,, 所以当x=16时,大棚内的温度约为13.5℃ ;4、某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对全体小组成员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图(图6).(1)表中;(2)请将条形统计图补充完整;(3)从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率有多少?【答案】(1)4.(2)如图.(3)∵小组成员共10人,参加了10次活动的成员有3人,∴,答:从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率是.;5、如图7,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道,现决定从小岛架一座与观光小道垂直的小桥,小张在小道上测得如下数据:米,, .请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B为参照点,结果精确到0.1米)(参考数据:,,,,,)【答案】设米,∵,∴.在Rt△PAD中,,∴.在Rt△PBD中,,∴.又AB=80.0,∴.∴,即.∴.[来源:学_科_网Z_X_X_K] 答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.;6、“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出【答案】(1)设“益安”车队载重量为8吨、10吨的卡车分别有x辆、y辆,根据题意得:,解之得.∴“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;(2)设载重量为8吨的卡车增加了z辆,依题意得:,解之得:∵且为整数,∴0,1,2 ;∴6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车不购买,10吨的卡车购买6辆;②载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;③载重量为8吨的卡车购买2辆,10吨的卡车购买4辆;7、如图8,在中,,,的平分线交于.(1)求证:;(2)如图8(2),过点作∥交于,将绕点逆时针旋转角得到,连结, ,求证:;(3)在(2)的旋转过程中是否存在∥?若存在,求出相应的旋转角;若不存在,请说明理由.【答案】(1)证明:∵, , ∴, 又 平分 , ∴, ∴ ∴, , ∴ , ,∴. (2)∵ 且 ∥ ,∴; 由旋转的性质可知: , ,∴≌ , ∴ . (3)存在∥, 由(1)可知 ,所以,在 绕点逆时针旋转过程中, 点经过的路径(圆弧)与过点 且与平行的直线 交于M 、N 两点,如图. ①当点的像与点 重合时,则四边形 为等腰梯形, ∴,又 , ∴. ②当点 的像与点 重合时, 由 得,, ∵ , ∴, ∴ , ∴. 所以,当旋转角为 或时,∥ .;8、阅读材料:如图9,在平面直角坐标系中, 、 两点的坐标分别为,,中点的坐标为.由,得,同理,所以的中点坐标为.由勾股定理得,所以、两点间的距离公式为.注:上述公式对、在平面直角坐标系中其它位置也成立.如图10,直线:与抛物线交于、两点,为的中点,过作轴的垂线交抛物线于点.(1)求、两点的坐标及点的坐标;(2)连结,求证为直角三角形;(3)将直线平移到点时得到直线,求两直线与的距离.【答案】(1)由,解得,. 则,两点的坐标分别为: ,, ∵ 是,的中点,由中点坐标公式得点坐标为 , 又轴交抛物线于 点,将代入中得, ∴点坐标为 . (2)由两点间距离公式得:,,∴, ∴, , ∴,即∴ 为直角三角形. (3)过点 作于 ,过点 作于, 则点的坐标为, ∴, ∴. 又直线 与 之间的距离等于点C 到 的距离CG , ∴直线与 之间的距离为. ;。
2013年湖南省益阳市中考数学试卷及答案解析版
湖南省益阳市2013年中考数学试卷
一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)
1.(4分)(2013•益阳)据益阳市统计局在网上发布的数据,2012年益阳市地区生产总值(GDP)突破千1020亿元,将
练掌握并灵活运用.
3.(4分)(2013•益阳)分式方程的解是()
4.(4分)(2013•益阳)实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:
5.(4分)(2013•益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()
6.(4分)(2013•益阳)如图,在平行四边形ABCD中,下列结论中错误的是()
据平行四边形的性质,。
2013年湖南省益阳市中考数学试卷及答案(word解析版)
湖南省益阳市中考数学试卷一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是友情提示:一、认真对待每一次复习及考试。
.二、遇到不懂的题目或者知识点就是并解决它就是进步的机会。
三、试题卷中所有试题的答案填涂或书写在答题卷的相应位置,写在试题卷上无效.四、请仔细审题,细心答题,相信你一定会有出色的表现!符合题目要求的)1.(4分)(2013•益阳)据益阳市统计局在网上发布的数据,2012年益阳市地区生产总值(GDP)突破千亿元大关,达到了1020亿元,将102 000 000 000用科学记数法表示正确的是()A.1.02×1011B.10.2×1010C.1.02×1010D.1.2×1011考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将102 000 000 000用科学记数法表示为:1.02×1011.故选:A.点评:此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.2.(4分)(2013•益阳)下列运算正确的是()D.(a+b)2=a2+b2A.2a3÷a=6 B.(ab2)2=ab4C.(a+b)(a﹣b)=a2﹣b2考点:平方差公式;幂的乘方与积的乘方;完全平方公式;整式的除法.分析:根据单项式的除法法则,以及幂的乘方,平方差公式以及完全平方公式即可作出判断.解答:解:A、2a3÷a=2a2,故选项错误;B、(ab2)2=a2b4,故选项错误;C、正确;D、(a+b)2=a2+2ab+b2,故选项错误.故选C.点评:本题考查了平方差公式和完全平方公式的运用,理解公式结构是关键,需要熟练掌握并灵活运用.3.(4分)(2013•益阳)分式方程的解是()A.x=3 B.x=﹣3 C.x= D.x=考点:解分式方程.专题:计算题.分析:分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.解答:解:去分母得:5x=3x﹣6,解得:x=﹣3,经检验x=﹣3是分式方程的解.故选B.点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解.解分式方程一定注意要验根.4.(4分)(2013•益阳)实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:组别 1 2 3 4 5 6 7分值90 95 90 88 90 92 85这组数据的中位数和众数分别是()A.88,90 B.90,90 C.88,95 D.90,95考点:众数;中位数.分析:根据众数和中位数的定义,结合表格和选项选出正确答案即可.解答:解:把这组数据按从小到大的顺序排列为:85,88,90,90,90,92,95,故中位数为:90,众数为:90.故选B.点评:本题考查了众数和中位数的知识,属于基础题,解答本题的关键是熟练掌握众数和中位数的定义.5.(4分)(2013•益阳)一个物体由多个完全相同的小正方体组成,它的三视图如图所示,那么组成这个物体的小正方体的个数为()A.2个B.3个C.5个D.10个考点:由三视图判断几何体.分析:从主视图与左视图可以得出此图形只有一排,从俯视图可以验证这一点,从而确定个数.解答:解:从主视图与左视图可以得出此图形只有一排,只能得出一共有5个小正方体,从俯视图可以验证这一点,从而确定小正方体总个数为5个.故选;C.点评:此题主要考查了由三视图判定几何体的形状,此问题是中考中热点问题,同学们应熟练掌握.6.(4分)(2013•益阳)如图,在平行四边形ABCD中,下列结论中错误的是()A.∠1=∠2 B.∠BAD=∠BCD C.A B=CD D.A C⊥BD考点:平行四边形的性质.分析:根据平行四边形的性质,平行四边形对边平行以及对边相等和对角相等分别判断得出即可.解答:解:∵在平行四边形ABCD中,∴AB∥CD,∴∠1=∠2,故此选项正确,不合题意;∵四边形ABCD是平行四边形,∴∠BAD=∠BCD,AB=CD,故B,C选项正确,不合题意;无法得出AC⊥BD,故此选项错误,符合题意.故选D.点评:此题主要考查了平行四边形的性质,熟练掌握相关的性质是解题关键.7.(4分)(2013•益阳)抛物线y=2(x﹣3)2+1的顶点坐标是()A.(3,1)B.(3,﹣1)C.(﹣3,1)D.(﹣3,﹣1)考点:二次函数的性质.分析:根据顶点式解析式写出顶点坐标即可.解答:解:抛物线y=2(x﹣3)2+1的顶点坐标是(3,1).故选A.点评:本题考查了二次函数的性质,熟练掌握顶点式解析式是解题的关键.8.(4分)(2013•益阳)已知一次函数y=x﹣2,当函数值y>0时,自变量x的取值范围在数轴上表示正确的是()A.B.C.D.考点:在数轴上表示不等式的解集;一次函数的性质.分析:由已知条件知x﹣2>0,通过解不等式可以求得x>2.然后把不等式的解集表示在数轴上即可.解答:解:∵一次函数y=x﹣2,∴函数值y>0时,x﹣2>0,解得,x>2,表示在数轴上为:故选B.点评:本题考查了在数轴上表示不等式的解集.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.二、填空题(本大题共5小题,每小题4分,共20分.把答案填在答题卡中对应题号后的横线上)9.(4分)(2013•益阳)因式分解:xy2﹣4x=x(y+2)(y﹣2).考点:提公因式法与公式法的综合运用.分析:先提取公因式x,再对余下的多项式利用平方差公式继续分解.解答:解:xy2﹣4x,=x(y2﹣4),=x(y+2)(y﹣2).点评:本题主要考查提公因式法分解因式和利用平方差公式分解因式,熟记公式是解题的关键,难点在于要进行二次因式分解.10.(4分)(2013•益阳)化简:=1.考点:分式的加减法.专题:计算题.分析:由于两分式的分母相同,分子不同,故根据同分母的分式相加减的法则进行计算即可.解答:解:原式==1.故答案为:1.点评:本题考查的是分式的加减法,即同分母的分式想加减,分母不变,把分子相加减.11.(4分)(2013•益阳)有三张大小、形状及背面完全相同的卡片,卡片正面分别画有正三角形、正方形、圆,从这三张卡片中任意抽取一张,卡片正面的图形既是轴对称图形又是中心对称图形的概率是.考点:概率公式;轴对称图形;中心对称图形.分析:由正三角形、正方形、圆中既是中心对称图形又是轴对称图形的是正方形、圆,利用概率公式即可求得答案.解答:解:∵正三角形、正方形、圆中既是中心对称图形又是轴对称图形的是正方形、圆,∴既是中心对称图形又是轴对称图形的概率是:.故答案为:.点评:此题考查了概率公式的应用.注意概率=所求情况数与总情况数之比.12.(4分)(2013•益阳)如图,若AB是⊙O的直径,AB=10cm,∠CAB=30°,则BC=5cm.考点:圆周角定理;含30度角的直角三角形.分析:根据圆周角定理可得出△ABC是直角三角形,再由含30°角的直角三角形的性质即可得出BC的长度.解答:解:∵AB是⊙O的直径,∴∠ACB=90°,又∵AB=10cm,∠CAB=30°,∴BC=AB=5cm.故答案为:5.点评:本题考查了圆周角定理及含30°角的直角三角形的性质,解答本题的关键是根据圆周角定理判断出∠ACB=90°.13.(4分)(2013•益阳)下表中的数字是按一定规律填写的,表中a的值应是21.1 2 3 5 8 13 a …2 3 5 8 13 21 34 …考点:规律型:数字的变化类.分析:根据第一行第3个数是前两个数值之和,进而得出答案.解答:解:根据题意可得出:a=13+5=21.故答案为:21.点评:此题主要考查了数字变化规律,根据已知得出数字的变与不变是解题关键.三、解答题(本大题共2小题,每小题6分,共12分)14.(6分)(2013•益阳)已知:a=,b=|﹣2|,.求代数式:a2+b﹣4c的值.考点:代数式求值.专题:计算题.分析:将a,b及c的值代入计算即可求出值.解答:解:当a=,b=|﹣2|=2,c=时,a2+b﹣4c=3+2﹣2=3.点评:此题考查了代数式求值,涉及的知识有:二次根式的化简,绝对值,以及有理数的混合运算,熟练掌握运算法则是解本题的关键.15.(6分)(2013•益阳)如图,在△ABC中,AB=AC,BD=CD,CE⊥AB于E.求证:△ABD∽△CBE.考点:相似三角形的判定.专题:证明题.分析:根据等腰三角形三线合一的性质可得AD⊥BC,然后求出∠ADB=∠CEB=90°,再根据两组角对应相等的两个三角形相似证明.解答:证明:在△ABC中,AB=AC,BD=CD,∴AD⊥BC,∵CE⊥AB,∴∠ADB=∠CEB=90°,又∵∠B=∠B,∴△ABD∽△CBE.点评:本题考查了相似三角形的判定,等腰三角形三线合一的性质,比较简单,确定出两组对应相等的角是解题的关键.四、解答题(本大题共3小题,每小题8分,共24分)16.(8分)(2013•益阳)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?考点:反比例函数的应用;一次函数的应用.分析:(1)根据图象直接得出大棚温度18℃的时间为12﹣2=10(小时);(2)利用待定系数法求反比例函数解析式即可;(3)将x=16代入函数解析式求出y的值即可.解答:解:(1)恒温系统在这天保持大棚温度18℃的时间为10小时.(2)∵点B(12,18)在双曲线y=上,∴18=,∴解得:k=216.(3)当x=16时,y==13.5,所以当x=16时,大棚内的温度约为13.5℃.点评:此题主要考查了反比例函数的应用,求出反比例函数解析式是解题关键.17.(8分)(2013•益阳)某校八年级数学课外兴趣小组的同学积极参加义工活动,小庆对全体小组成员参加活动次数的情况进行统计分析,绘制了如下不完整的统计表和统计图(图).次数10 8 6 5人数 3 a 2 1(1)表中a=4;(2)请将条形统计图补充完整;(3)从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率有多少?考点:条形统计图;统计表;概率公式.分析:(1)根据条形统计图可知a=4;(2)根据表格数据可知6次的人数是2,然后补全统计图即可;(3)根据概率公式解得即可.解答:解:(1)由条形统计图可知次数为8的有4人,所以,a=4;(2)由表可知,6次的有2人,补全统计图如图;(3)∵小组成员共10人,参加了10次活动的成员有3人,∴P=,答:从小组成员中任选一人向学校汇报义工活动情况,参加了10次活动的成员被选中的概率是.点评:本题考查的是条形统计图的综合运用.读懂统计图,从统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.18.(8分)(2013•益阳)如图,益阳市梓山湖中有一孤立小岛,湖边有一条笔直的观光小道AB,现决定从小岛架一座与观光小道垂直的小桥PD,小张在小道上测得如下数据:AB=80.0米,∠PAB=38.5°,∠PBA=26.5.请帮助小张求出小桥PD的长并确定小桥在小道上的位置.(以A,B 为参照点,结果精确到0.1米)(参考数据:sin38.5°=0.62,cos38.5°=0.78,tan38.5°=0.80,sin26.5°=0.45,cos26.5°=0.89,tan26.5°=0.50)考点:解直角三角形的应用.专题:应用题.分析:设PD=x米,在Rt△PAD中表示出AD,在Rt△PDB中表示出BD,再由AB=80.0米,可得出方程,解出即可得出PD的长度,继而也可确定小桥在小道上的位置.解答:解:设PD=x米,∵PD⊥AB,∴∠ADP=∠BDP=90°,在Rt△PAD中,tan∠PAD=,∴AD=≈=x,在Rt△PBD中,tan∠PBD=,∴DB=≈=2x,又∵AB=80.0米,∴x+2x=80.0,解得:x≈24.6,即PD≈24.6米,∴DB=2x=49.2.答:小桥PD的长度约为24.6米,位于AB之间距B点约49.2米.点评:本题考查了解直角三角形的应用,解答本题的关键是构造直角三角形,利用三角函数表示出相关线段的长度,难度一般.五、解答题(本大题共2小题,共22分)19.(10分)(2013•益阳)“二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.考点:一元一次不等式的应用;二元一次方程组的应用.分析:(1)根据“‘益安’车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石”分别得出等式组成方程组,求出即可;(2)利用“‘益安’车队需要一次运输沙石165吨以上”得出不等式求出购买方案即可.解答:解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x辆、y辆,根据题意得:,解之得:.∴“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;(2)设载重量为8吨的卡车增加了z辆,依题意得:8(5+z)+10(7+6﹣z)>165,解之得:z<∵z≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车不购买,10吨的卡车购买6辆;②载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;③载重量为8吨的卡车购买2辆,10吨的卡车购买4辆.点评:此题主要考查了二元一次方程组的应用以及不等式的应用,根据已知得出正确的不等式关系是解题关键.20.(12分)(2013•益阳)如图1,在△ABC中,∠A=36°,AB=AC,∠ABC的平分线BE交AC 于E.(1)求证:AE=BC;(2)如图(2),过点E作EF∥BC交AB于F,将△AEF绕点A逆时针旋转角α(0°<α<144°)得到△AE′F′,连结CE′,BF′,求证:CE′=BF′;(3)在(2)的旋转过程中是否存在CE′∥AB?若存在,求出相应的旋转角α;若不存在,请说明理由.考点:旋转的性质;等腰三角形的性质;等腰梯形的判定.分析:(1)根据等腰三角形的性质以及角平分线的性质得出对应角之间的关系进而得出答案;(2)由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,根据全等三角形证明方法得出即可;(3)分别根据①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,②当点E的像E′与点N重合时,求出α即可.解答:(1)证明:∵AB=BC,∠A=36°,∴∠ABC=∠C=72°,又∵BE平分∠ABC,∴∠ABE=∠CBE=36°,∴∠BEC=180°﹣∠C﹣∠CBE=72°,∴∠ABE=∠A,∠BEC=∠C,∴AE=BE,BE=BC,∴AE=BC.(2)证明:∵AC=AB且EF∥BC,∴AE=AF;由旋转的性质可知:∠E′AC=∠F′AB,AE′=AF′,∵在△CAE′和△BAF′中,∴△CAE′≌△BAF′,∴CE′=BF′.(3)存在CE′∥AB,理由:由(1)可知AE=BC,所以,在△AE F绕点A逆时针旋转过程中,E点经过的路径(圆弧)与过点C且与AB平行的直线l交于M、N两点,如图:①当点E的像E′与点M重合时,则四边形ABCM为等腰梯形,∴∠BAM=∠ABC=72°,又∠BAC=36°,∴α=∠CAM=36°.②当点E的像E′与点N重合时,由AB∥l得,∠AMN=∠BAM=72°,∵AM=AN,∴∠ANM=∠AMN=72°,∴∠MAN=180°﹣2×72°=36°,∴α=∠CAN=∠CAM+∠MAN=72°.所以,当旋转角为36°或72°时,CE′∥AB.点评:此题主要考查了旋转的性质以及等腰三角形的性质和等腰梯形的性质等知识,根据数形结合熟练掌握相关定理是解题关键.六、解答题(本题满分10分)21.(10分)(2013•益阳)阅读材料:如图1,在平面直角坐标系中,A、B两点的坐标分别为A (x1,y1),B(x2,y2),AB中点P的坐标为(x p,y p).由x p﹣x1=x2﹣x p,得x p=,同理,所以AB的中点坐标为.由勾股定理得AB2=,所以A、B两点间的距离公式为.注:上述公式对A、B在平面直角坐标系中其它位置也成立.解答下列问题:如图2,直线l:y=2x+2与抛物线y=2x2交于A、B两点,P为AB的中点,过P作x轴的垂线交抛物线于点C.(1)求A、B两点的坐标及C点的坐标;(2)连结AB、AC,求证△ABC为直角三角形;(3)将直线l平移到C点时得到直线l′,求两直线l与l′的距离.考点:二次函数综合题.分析:(1)根据y=2x+2与抛物线y=2x2交于A、B两点,直接联立求出交点坐标,进而得出C点坐标即可;(2)利用两点间距离公式得出AB的长,进而得出PC=PA=PB,求出∠PAC+∠PCB=90°,即∠ACB=90°即可得出答案;(3)点C作CG⊥AB于G,过点A作AH⊥PC于H,利用A,C点坐标得出H点坐标,进而得出CG=AH,求出即可.解答:(1)解:由,解得:,.则A,B两点的坐标分别为:A(,3﹣),B(,3+),∵P是A,B的中点,由中点坐标公式得P点坐标为(,3),又∵PC⊥x轴交抛物线于C点,将x=代入y=2x2中得y=,∴C点坐标为(,).(2)证明:由两点间距离公式得:AB==5,PC=|3﹣|=,∴PC=PA=PB,∴∠PAC=∠PCA,∠PBC=∠PCB,∴∠PAC+∠PCB=90°,即∠ACB=90°,∴△ABC为直角三角形.(3)解:过点C作CG⊥AB于G,过点A作AH⊥PC于H,则H点的坐标为(,3﹣),∴S△PAC=AP•CG=PC•AH,∴CG=AH=|﹣|=.又直线l与l′之间的距离等于点C到l的距离CG,∴直线l与l′之间的距离为.点评:此题主要考查了二次函数的综合应用以及两点之间距离公式和两函数交点坐标求法等知识,根据数形结合得出H点坐标是解题关键.精品初中数学、英语、语文、物理、化学、等,复习、分类知识点、总结。
2013年安徽省中考数学试卷及答案.doc
2013年安徽省初中毕业学业考试数学试卷及答案一、选择题:(每小题4分,满分40分) 1.-2的倒数是( )A.-21 B.21C.2D.-2 2.用科学记数法表示537万正确的是( )A.537×104B.5.37×105C.5.37×106D.0.537×1073.图中所示的几何体为圆台,其主(正)视图正确的是( )4.下列运算正确的是( )A.2x+3y=5xyB.5m 2·m 3=5m 5C.(a-b)2=a 2-b 2D.m 2·m 3=m 65.已知不等式组⎩⎨⎧≥+〉-0103x x 其解集在数轴上表示正确的是( )6.如图,AB ∥CD,∠A+∠E=750,则∠C 为( )A.600B.65C.750D.8007.目前我国已建立了比较完善的经济困难学生资助体系。
某校去年上半年发给每个经济困难学生398元,今年上半年发放了438元,设每半年...发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是( )A.438(1+x)2=389B.389(1+x)2=438 C.389(1+2x)=438 D.438(1+2x)=389 8.如图,随机闭合开关K 1,K 2,K 3中的两个,则能让两盏灯泡同时..发光的概率为( ) A.61 B.31 C.21 D.32B 12 3O -1 -2 A 12 3O -1 -2 123O -1 -2 D12 3O -1-2C第3题图ABC DEAB CDF9.图1所示矩形ABCD 中,BC=x,CD=y,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过点C ,M 为EF 的中点,则下列结论正确的是( ) A.当x=3时,EC <EM B.当y=9时,EC >EMC.当x 增大时,EC ·CF 的值增大D.当y 增大时,BE ·DF 的值不变10.如图,点P 是等边三角形ABC 外接圆⊙O 上点,在以下判断中,不正确...的是( ) A.当弦PB 最长时,△APC 是等腰三角形 B.当△APC 是等腰三角形时,PO ⊥ACC.当PO ⊥AC 时,∠ACP=300D.当∠ACP=300时,△BPC 是直角三角形二、填空题:11.若x 31 在实数范围内有意义,则x 的取值范围是12.分解因式:x 2y-y=13.如图,P 为平行四边形ABCD 边AD 上一点,E,F 分别是PB,PC 的中点,△PEF,△PDC,△PAB 的面积分别为S,S 1,S 2,若S=2,则S 1+S 2=·OABCPAEF ·MDB C O 33 x y第9题 图1第9题 图2 K 2K 3K 1L 1L 2第8题图14.已知矩形纸片ABCD 中,AB=1,BC=2,将该纸片折叠成一个平面图形,折痕EF 不经过A 点(E,F 是该矩形边界上的点),折叠后点A 落在点A /处,给出以下判断: ①当四边形A /CDF 为正方形时,EF=2;②当EF=2时,四边形A /CDF 为正方形;③当EF=5时,四边形BA /CD 为等腰梯形;④当四边形BA /CD 为等腰梯形时,EF=5.其中正确的是 (把所有正确结论的序号都填在横线上)三、解答题:15.计算:2sin300+(-1)2-2216.已知二次函数图像的顶点坐标为(1,-1),且过原点(0,0),求该函数解析式。
2013年中考数学试题及答案
2013年中考数学试题及答案在2013年的中考数学试题中,我们看到了对基础知识和应用能力的全面考察。
以下是试题及答案的详细内容:一、选择题(每题3分,共30分)1. 以下哪个数是无理数?A. 2.0B. πC. 0.33333D. √4答案:B2. 一个等腰三角形的底边长为6厘米,高为4厘米,那么它的周长是多少?A. 16厘米B. 18厘米C. 20厘米D. 22厘米答案:C3. 以下哪个方程的解是x=2?A. x^2 - 4x + 4 = 0B. x^2 - 4x + 3 = 0C. x^2 - 4x + 2 = 0D. x^2 - 4x + 1 = 0答案:A4. 一个数列的前三项是2,4,8,那么第四项是多少?A. 16B. 32C. 64D. 128答案:A5. 一个圆的半径是5厘米,那么它的面积是多少?A. 25π平方厘米B. 50π平方厘米C. 75π平方厘米D. 100π平方厘米答案:B6. 以下哪个图形是轴对称图形?A. 任意三角形B. 任意四边形C. 任意五边形D. 任意六边形答案:D7. 一个函数f(x) = 2x + 3,那么f(-1)的值是多少?A. -2B. -1C. 1D. 2答案:A8. 以下哪个选项是正确的不等式?A. 2x > x + 1B. 3x ≤ 2x + 1C. 4x < 3x + 1D. 5x ≥ 4x + 1答案:D9. 一个长方体的长、宽、高分别是3厘米、4厘米、5厘米,那么它的体积是多少?A. 60立方厘米B. 120立方厘米C. 180立方厘米D. 240立方厘米答案:A10. 以下哪个选项是正确的比例关系?A. 2:3 = 4:6B. 3:4 = 6:8C. 4:5 = 8:10D. 5:6 = 10:12答案:C二、填空题(每题3分,共15分)11. 如果一个数的平方是25,那么这个数是____。
答案:±512. 一个数的绝对值是5,那么这个数是____。
益阳市2012年普通初中毕业学业考试数学试卷正稿及答案
普通初中毕业学业考试数学试题卷 第1页(共4页)益阳市2012年普通初中毕业学业考试试卷数 学注意事项:1. 本学科试卷分试题卷和答题卡两部分;2. 请将姓名、准考证号等相关信息按要求填写在答题卡上;3. 请按答题卡上的注意事项在答题卡上作答,答在试题卷上无效;4. 本学科为闭卷考试,考试时量为90分钟,卷面满分为120分;5. 考试结束后,请将试题卷和答题卡一并交回。
试 题 卷一、选择题(本大题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.2-的绝对值等于A .2B .2-C .12 D .12-2.下列计算正确的是A .2a +3b =5abB .22(2)4+=+x xC .326()=ab abD .0(1)1-=3.下列图案中是.中心对称图形但不是..轴对称图形的是A .B .C .D .4.已知一组数据:12,5,9,5,14,下列说法不正确...的是 A .平均数是9 B .中位数是9 C .众数是5D .极差是55.下列命题是假命题...的是 A .中心投影下,物高与影长成正比 B .平移不改变图形的形状和大小C .三角形的中位线平行于第三边D .圆的切线垂直于过切点的半径6.如图,数轴上表示的是下列哪个不等式组的解集A .53x x ≥-⎧⎨>-⎩B .53x x >-⎧⎨≥-⎩C .53x x <⎧⎨<-⎩D .53x x <⎧⎨>-⎩7.如图,点A 是直线l 外一点,在l 上取两点B 、C ,分别以A 、C 为圆心,BC 、AB 长为半径画弧,两弧交于点D ,分别连结AB 、AD 、CD ,则四边形ABCD 一定是 A .平行四边形 B .矩形姓 准考证号普通初中毕业学业考试数学试题卷 第2页(共4页)C .菱形D .梯形8.在一个标准大气压下,能反映水在均匀加热过程中,水的温度(T )随加热时间(t )变化的函数图象大致是A .B .C .D .二、填空题(本大题共5小题,每小题4分,共20分.把答案填在答题卡...中对应题号后的横线上) 9.今年益阳市初中毕业生约为33000人,将这个数据用科学记数法可记为 . 10.写出一个在实数范围内能用平方差公式分解因式的多项式: . 11.如图,点A 、B 、C 在圆O 上,∠A =60°,则∠BOC = 度. 12.有长度分别为2cm ,3cm ,4cm ,7cm 的四条线段,任取其中三条能组成三角形的概率是 .13.反比例函数ky =x的图象与一次函数21y =x +的图象的一个交点是(1,k ),则反比例函数的解析式是 .三、解答题(本大题共2小题,每小题6分,共12分)14.计算代数式 的值,其中1a =,2b =,3c =.15.如图,已知AE ∥BC ,AE 平分∠DAC .求证:AB =AC .四、解答题(本大题共3小题,每小题8分,共24分)16.某市每年都要举办中小学三独比赛(包括独唱、独舞、独奏三个类别),右图是 该市2012年参加三独比赛的不完整的 参赛人数统计图.(1)该市参加三独比赛的总人数是人,图中独唱所在扇形的圆心角的度数是 度,并把条形统计图补充完整;(2)从这次参赛选手中随机抽取20人调查,其中有9人获奖,请你估算今年全市约ac bca b a b---第15题图30%普通初中毕业学业考试数学试题卷 第3页(共4页)有多少人获奖?17.超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学尝试用自己所学的知识检测车速,如图,观测点设在A 处,离益阳大道的距离(AC )为30米.这时,一辆小轿车由西向东匀速行驶,测得此车从B 处行驶到C 处所用的时间为8秒,∠BAC =75°.(1)求B 、C 两点的距离;(2)请判断此车是否超过了益阳大道60千米/小时的限制速度?(计算时距离精确到1米,参考数据:sin 75°≈0.9659, cos75°≈0.2588, tan75°≈3.732,1.732 ,60千米/小时≈16.7米/秒)18.为响应市政府“创建国家森林城市”的号召,某小区计划购进A 、B 两种树苗共17棵,已知A 种树苗每棵80元,B 种树苗每棵60元.(1)若购进A 、B 两种树苗刚好用去1220元,问购进A 、B 两种树苗各多少棵? (2)若购买B 种树苗的数量少于A 种树苗的数量,请你给出一种费用最省....的方案,并求出该方案所需费用.五、解答题(本大题共2小题,每小题10分,共20分)19.观察图形,解答问题:(1)按下表已填写的形式填写表中的空格:yx普通初中毕业学业考试数学试题卷 第4页(共4页)(2)请用你发现的规律求出图④中的数y 和图⑤中的数x .20.已知:如图,抛物线2(1)y a x c =-+与x 轴交于点A (1-0)和点B ,将抛物线沿x 轴向上翻折,顶点P 落在点P '(1,3)处. (1)求原抛物线的解析式; (2)学校举行班徽设计比赛,九年级5班的小明在解答此题时顿生灵感:过点P'作x 轴的平行线交抛物线于C 、D 两点,将翻折后得到的新图象在直线CD 以上的部分去掉,设计成一个“W ”型的班徽,“5”的拼音开头字母为W ,“W ”图案似大鹏展翅,寓意深远;而且小明通过计算惊奇的发现这个“W ”图案的高与宽(CD )的比非常接近黄0.618).请你计算这个“W ”图2.236 2.449,结果可保留根号)六、解答题(本题满分12分)21.已知:如图1,在面积为3的正方形ABCD 中,E 、F 分别是BC 和CD 边上的两点,AE ⊥BF 于点G ,且BE =1. (1)求证:△ABE ≌△BCF ;(2)求出△ABE 和△BCF 重叠部分(即△BEG )的面积; (3)现将△ABE 绕点A 逆时针方向旋转到△AB 'E '(如图2),使点E 落在CD 边上的点E '处,问△ABE 在旋转前后与△BCF 重叠部分的面积是否发生了变化?请说明理由.A B A C D B G F D 'B C F 'E E图2图1普通初中毕业学业考试数学试题卷 第5页(共4页)益阳市2012年初中毕业学业考试数学参考答案及评分标准一.选择题(本大题共8小题,每小题4分,共32分)二.填空题(本大题共5小题,每小题4分,共20分)9.4103.3⨯; 10. 答案不唯一,如12-x ; 11.120; 12.41; 13.xy 3= 三.解答题(本大题共2小题,每小题6分,共12分)14.解:b a bc b a ac ---=b a bc ac --=ba cb a --)(=c …………………………………4分 当1=a 、2=b 、3=c 时,原式=3 …………………………………6分(直接代入计算正确给满分)15.证明:∵AE 平分∠DAC ,…………………………………………………………1分∴∠1=∠2. ……………………………………………………………2分∵AE ∥BC ,∴∠1=∠B ,∠2=∠C . ……… …………………………………………4分 ∴∠B =∠C , …………… …………………………………………5分 ∴AB =AC . ………… ……………………………………………………6分四、解答题(本大题共3小题,每小题8分,共24分)16.解:⑴ 400 , 180………………………………………2分………………………………………4分⑵估算今年全市获奖人数约有180209400=⨯(人) ………………8分17.解:⑴法一:在Rt △ABC 中 ,∠ACB =90°,∠BAC =75°,AC =30,普通初中毕业学业考试数学试题卷 第6页(共4页)∴BC=AC ·tan ∠BAC=30×tan75°≈30×3.732≈112(米).…………………5分法二:在BC 上取一点D ,连结AD ,使∠DAB =∠B ,则AD =BD ,∵∠BAC =75°,∴∠DAB =∠B =15°,∠CDA =30°, 在Rt △ACD 中 ,∠ACD =90°,AC =30,∠CDA =30°,∴ AD=60,CD =330,BC =60+330≈112(米) …………………5分⑵ ∵此车速度=112÷8=14(米/秒) <16.7 (米/秒) =60(千米/小时)∴此车没有超过限制速度.…………………………………………………8分18.解:⑴设购进A 种树苗x 棵,则购进B 种树苗(17-x )棵,根据题意得: ……1分80x +60(17- x )=1220 ………………………………………………2分 解得x =10∴ 17- x =7 ……………………………………………3分答:购进A 种树苗10棵,B 种树苗7棵 ……………………………………………4分⑵设购进A 种树苗x 棵,则购进B 种树苗(17-x )棵,根据题意得:17-x < x 解得x >218……………………………………………6分 购进A 、B 两种树苗所需费用为80x +60(17- x )=20 x +1020 则费用最省需x 取最小整数9,此时17- x =8 这时所需费用为20×9+1020=1200(元).答:费用最省方案为:购进A 种树苗9棵,B 种树苗8棵. 这时所需费用为1200元. ……………………8分五、解答题(本大题共2小题,每小题10分,共20分)19.解: ⑴图②:(-60)÷(-12)=5 ……………………………………………1分图③:(-2)×(―5)×17=170,………………………………………2分 (-2)+(―5)+17=17, ……………………………………………3分 170÷10=17 . ……………………………………………4分 ⑵图④:5×(―8)×(―9)=360……………………………………………5分5+(―8)+(―9)=-1……………………………………………6分y=360÷(-12)=-30.……………………………………………7分图⑤:33131-=++⨯⨯x x , ……………………………………………9分解得2-=x ……………………………………………10分20.解:⑴∵P 与P ′(1,3) 关于x 轴对称,∴P 点坐标为(1,-3) ; …………………………………………2分∵抛物线c x a y +-=2)1(过点A (31-,0),顶点是P (1,-3) ,普通初中毕业学业考试数学试题卷 第7页(共4页)∴22(11)0(11)3a c a c ⎧+=⎪⎨-+=-⎪⎩;……………………………… ………………3分解得13a c =⎧⎨=-⎩;………………………………………………………………4分则抛物线的解析式为3)1(2--=x y , …………………………………5分 即222--=x x y .⑵∵CD 平行x 轴,P ′(1,3) 在CD 上,∴C 、D 两点纵坐标为3; ………………………………………6分 由33)1(2=--x 得:611-=x ,612+=x ,……………………7分 ∴C 、D 两点的坐标分别为(61-,3) ,(61+,3)∴CD =62 …………………………………………………8分 ∴“W ”图案的高与宽(CD )的比=(或约等于0.6124)………10分 六、解答题(本题满分12分) 21.⑴证明:∵正方形ABCD 中,∠ABE=∠BCF=900,AB=BC ,∴∠ABF+∠CBF=900,∵AE ⊥BF ,∴∠ABF+∠BAE=900,∴∠BAE=∠CBF , ∴△ABE ≌△BCF. …………………………………………………………………4分⑵解:∵正方形面积为3,∴AB=3, ……………………………………………5分 在△BGE 与△ABE 中, ∵∠GBE=∠BAE, ∠EGB=∠EBA=900∴△BGE ∽△ABE ………………………………………………7分∴2()BGE ABE S BE S AE ∆∆=,又BE=1,∴AE 2=AB 2+BE 2=3+1=4 ∴22BGE ABEBE S S AE ∆∆=⨯=14. …………………………………8分 (用其他方法解答仿上步骤给分).⑶解:没有变化 …………………………………………………………………………9分∵AB=3,BE=1,∴tan ∠,∠BAE=30°, …………………………10分A C DB GF E 图1普通初中毕业学业考试数学试题卷 第8页(共4页)∵AB ′=AD ,∠AB ′E ′=∠ADE '=90°,AE ′公共, ∴Rt △ABE ≌Rt △AB ′E ′≌Rt △ADE ′, ∴∠DAE ′=∠B ′AE ′=∠BAE=30°,∴AB ′与AE 在同一直线上,即BF 与AB ′的交点是G , 设BF 与AE ′的交点为H,则∠BAG=∠HAG=30°,而∠AGB=∠AGH=90°,AG 公共,∴△BAG ≌△HAG,……………………………………………11分 ∴''GHE B S 四边形=''AGH AB E S S ∆∆-=ABE ABG S S ∆∆-=BGE S ∆ .∴△ABE 在旋转前后与△BCF 重叠部分的面积没有变化. ……………………12分。
益阳市2013年普通初中毕业学业考试试卷
益阳市2013年普通初中毕业学业考试试卷一、选择题(本大题共25小题,每小题2分共50分,每小题只有一个正确答案) 1.2013年6月1日,国家主席习近平访问特立尼这和多巴哥,对于这个国家许多同学感到陌生,要在地图上找到该国的位置虽好选用A地形图B.交通图c.导游图D.世界政治地图2.读右面“某地等高线地形图”,下列叙述不正确的是A、③表示陡崖B、①山顶和②地相对高度为220米C、④线易形成河流D、该图所示山地的南坡比北坡陡3、2013年3月份.我国北方地区多次出现严重的雾霾天气,严重影响人们的健康和交通出行,下列现象与引起雾霾天气无关的是A、降水多B、地表植被差C、汽车尾气和工业废气排放多D、地表开挖和建筑施工4.沙漠地区的聚落大多分布在沙漠边缘的绿洲上,其考虑的主要因素是A.地形B.气候C.水源D.生活习俗5.下列各地区域的文化或民族习俗与当地自然条件组合正确的是A、也门的住房大多是平顶——气候湿热的自然条件B、孟加拉国人以船为交通工具——地势低平,河网密布C、加里曼丹岛的达雅克人多住高脚屋——多地震D、沙特贝都因人居住帐篷,身着宽大袍子.过着游牧生涪一嘀纬度地区,气候严寒6.“莽原缠玉带,田野织彩绸”,亚洲分布着肥沃的原野。
F列平原不属于亚洲的是A、东北平原B、恒河平原C、西西伯利亚平原D、亚马孙平原7、今年日本加速对缅甸的投资,建立生产与销售基地,其原因不正确的是A、缅甸有丰富且廉价的劳动力B、缅甸有廉价的土地资源C、缅甸有先进的科学技术D、日本国内市场有限8、下列旅游胜地与所在国家搭配不正确的是A、缅甸——大金塔B、新加坡——婆罗浮屠C、越南——下龙湾D、柬埔寨一吴哥窟9、下列有关俄罗斯工业叙述正确的是A、俄罗斯轻重工业都发达B、俄罗斯工业区主要分布在亚洲C、圣彼得堡工业区是俄罗斯工业最发达的地区D、俄罗斯自然资源丰富,为工业发展奠定了良好的物质基础10、欧洲两部地区自西向东气候变化为A、海洋性逐渐增强B、大陆性逐渐增强C、气温年较差逐渐减小D、降水最逐渐增多11、粮食供应不足成为撒哈拉以南非洲各国普遍遇到的问题,造成该问题的原因不包括A 、农业生产落后B 、高原为主的地形C 、常受旱灾威胁D 、快速的人口增长12、读漫画“大难临头”,下列问蹰不属于该现象将带来 “太难”的是A 、水十流失加剧B 、淡水资源遭到破坏C 、野生动物失去栖息场所D 、酸雨污染13、美国是世界上的农业大国,农业生产效率高,成本低,产品市场竞争力强,主要原因是①耕地广阔,土壤肥沃 ②农业科技发达③气候条件优越 ④高度机械化和专业化A 、①②B 、①⑧C 、②④D 、③④14、下列关于美国和巴西叙述正确的一组是①都是所在太洲面积最大国 ②都有热带领土 ③都临大西洋 ④都是发达国家 ⑤人口和城市都集中在东南沿海 ⑥首都都不是本国最大城市A 、①③⑤B 、②④⑥C 、①②⑤D 、②③⑥15、关于南极洲叙述错误的是A 、比北极地区温暖B 、覆盖着很厚的冰层C 、纬度最高的大洲D 、严寒、干燥、烈风16.某中学举办“祖国省区万里行”社会实践主题班会,王灿同学的演讲中有一处表述错误,请你找出来A 、夏季最早看到日出的省是黑龙江省B 、全国第六次人口普查数据统计人口第一大省是广东C 、面积最大的省区是新疆D 、与云南省相邻的国家有缅甸、泰国、老挝读右面“我国水土资源资料图”,完成17——18题17、我国水资源和耕地资源分布的特点是A 、南方地多水少B 、南方地少水多C 、北方地多水多D 、北方地少水少18、针对资料反映出的问题而实施的重大工程是 A 、长江三峡工程 B 、淮河治理工程C 、南水北调工程D 、塔里木河治理工程19、某地地形平坦、土壤肥沃、夏季高温多雨,从自然条件考虑,最适宜发展的农业是A 、畜牧业B 、种植业C 、渔业D 、林业20、我国东部沿海四大工业基地的共同优势是( )①交通便利 ②人口稠密 ③工业基础好 ④矿产资源丰富A 、①②⑤B 、①②④C 、①③④D 、②③④21、北京市发展旅游业的最大优势是A 、优越的地理位置B 、便利的交通条件C 、众多的名胜古迹D 、全国的科技中心22 、2013年6月2日台湾南投县发生6. 7级地震,台湾多地震的原因是A 、位于亚欧板块内部B 、位于亚欧板块与太平洋板块交界处C 、位于太平洋板块内部D 、人为填海造陆引起23.珠江三角洲经济高速发展主要得益于A 、成本较高的劳动力资源B 、毗邻港澳的地理位置C 、丰富的矿产资源D 、发达的重工业24、在湖南省株洲相交的铁路干线正确的一组是①京广线 ②焦柳线 ③湘黔线 ④石长线 ⑤浙赣线A 、①②⑤B 、②③④C 、③④⑤D 、①③⑤25下列美称不符合湖南省的是A .天府之国 B.有色金属之乡 C.芙蓉国 D .鱼米之乡二、综合题(本大题共7个一1、题,共50分)26.读右图,回答下列问题 (6分)(1)图中A 、B 、C 分别代表地球五带中某一带,B 代表的是 带;跨纬度最广的是 (填代号)(2)2013年6月17日,A 、B 、C 三带中.白昼最长的是 (填代号)。
2013年安徽省中考数学试卷及答案解析
2013年安徽省初中毕业学业考试数学试题(含答案全解全析)(满分150分,考试时间120分钟)第Ⅰ卷(选择题,共40分)一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C、D的四个选项,其中只有一个是正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的(不论是否写在括号内)一律得0分.1.-2的倒数是()A.-12B.12C.2D.-22.用科学记数法表示537万正确的是()A.537×104B.5.37×105C.5.37×106D.0.537×1073.如图所示的几何体为圆台,其主(正)视图正确的是()4.下列运算正确的是()A.2x+3y=5xyB.5m2·m3=5m5C.(a-b)2=a2-b2D.m2·m3=m65.已知不等式组{x-3>0,x+1≥0.其解集在数轴上表示正确的是()6.如图,AB∥CD,∠A+∠E=75°,则∠C为()A.60°B.65°C.75°D.80°7.目前我国已建立了比较完善的经济困难学生资助体系.某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元.设每半年...发放的资助金额的平均增长率为x,则下面列出的方程中正确的是()A.438(1+x)2=389B.389(1+x)2=438C.389(1+2x)=438D.438(1+2x)=3898.如图,随机闭合开关K1,K2,K3中的两个,则能让两盏灯泡同时..发光的概率为()A.16B.13C.12D.239.图1所示矩形ABCD中,BC=x,CD=y,y与x满足的反比例函数关系如图2所示,等腰直角三角形AEF的斜边EF过C点,M为EF的中点,则下列结论正确的是()图1图2A.当x=3时,EC<EMB.当y=9时,EC>EMC.当x增大时,EC·CF的值增大D.当y增大时,BE·DF的值不变10.如图,点P是等边三角形ABC外接圆☉O上的点.在以下判断中,不正确...的是()A.当弦PB最长时,△APC是等腰三角形B.当△APC是等腰三角形时,PO⊥ACC.当PO⊥AC时,∠ACP=30°D.当∠ACP=30°时,△BPC是直角三角形第Ⅱ卷(非选择题,共110分)二、填空题(本大题共4小题,每小题5分,满分20分)11.若√1-3x在实数范围内有意义,则x的取值范围是.12.因式分解:x2y-y=.13.如图,P为平行四边形ABCD边AD上一点,E,F分别为PB,PC的中点,△PEF,△PDC,△PAB的面积分别为S,S1,S2.若S=2,则S1+S2=.14.已知矩形纸片ABCD中,AB=1,BC=2.将该纸片折叠成一个平面图形,折痕EF不经过A点(E,F是该矩形边界上的点),折叠后点A落在点A'处,给出以下判断:①当四边形A'CDF为正方形时,EF=√2;②当EF=√2时,四边形A'CDF为正方形;③当EF=√5时,四边形BA'CD为等腰梯形;④当四边形BA'CD为等腰梯形时,EF=√5.其中正确的是(把所有正确结论的序号都填在横线上).三、(本大题共2小题,每小题8分,满分16分)15.计算:2sin30°+(-1)2-|2-√2|.16.已知二次函数图象的顶点坐标为(1,-1),且经过原点(0,0),求该函数的解析式.四、(本大题共2小题,每小题8分,满分16分)17.如图,已知A(-3,-3),B(-2,-1),C(-1,-2)是直角坐标平面上三点.(1)请画出△ABC关于原点O对称的△A1B1C1;(2)请写出点B关于y轴对称的点B2的坐标.若将点B2向上平移h个单位,使其落在△A1B1C1内部,指出h的取值范围.18.我们把正六边形的顶点及其对称中心称作如图(1)所示基本图的特征点,显然这样的基本图共有7个特征点.将此基本图不断复制并平移,使得相邻两个基本图的一边重合,这样得到图(2),图(3),…(1)观察以上图形并完成下表:图形的名称基本图的个数特征点的个数图(1)17图(2)212图(3)317图(4)4………猜想:在图(n)中,特征点的个数为(用n表示);(2)如图,将图(n)放在直角坐标系中,设其中第一个基本图的对称中心O1的坐标为(x1,2),则x1=;图(2013)的对称中心的横坐标为.图(n)五、(本大题共2小题,每小题10分,满分20分)19.如图,防洪大堤的横断面是梯形ABCD,其中AD∥BC,坡角α=60°.汛期来临前对其进行了加固,改造后的背水面坡角β=45°.若原坡长AB=20m,求改造后的坡长AE.(结果保留根号)20.某校为了进一步开展“阳光体育”活动,购买了一批乒乓球拍和羽毛球拍.已知一副羽毛球拍比一副乒乓球拍贵20元,购买羽毛球拍的费用比购买乒乓球拍的2000元要多,多出的部分能购买25副乒乓球拍.(1)若每副乒乓球拍的价格为x元,请你用含x的代数式表示该校购买这批乒乓球拍和羽毛球拍的总费用;(2)若购买的两种球拍数一样,求x.六、(本题满分12分)21.某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1到8这八个整数.现提供统计图的部分信息如图,请解答下列问题:(1)根据统计图,求这50名工人加工出的合格品数的中位数;(2)写出这50名工人加工出合格品数的众数的可能取值;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训.已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.七、(本题满分12分)22.某大学生利用暑假40天社会实践参与了一家网店的经营,了解到一种成本为20元/件的新型商品在第x 天销售的相关信息如下表所示.销售量p(件) p=50-x销售单价q(元/件)当1≤x ≤20时,q=30+12x;当21≤x ≤40时,q=20+525x.(1)请计算第几天该商品的销售单价为35元/件? (2)求该网店第x 天获得的利润y 关于x 的函数关系式; (3)这40天中该网店第几天获得的利润最大?最大利润是多少?八、(本题满分14分)23.我们把由不平行于底边的直线截等腰三角形的两腰所得的四边形称为“准等腰梯形”.如图1,四边形ABCD 即为“准等腰梯形”.其中∠B=∠C.(1)在图1所示的“准等腰梯形”ABCD 中,选择合适的一个顶点引一条直线将四边形ABCD 分割成一个等腰梯形和一个三角形或分割成一个等腰三角形和一个梯形(画出一种示意图即可);(2)如图2,在“准等腰梯形”ABCD 中,∠B=∠C,E 为边BC 上一点,若AB ∥DE,AE ∥DC.求证:AB DC =BE EC; (3)在由不平行于BC 的直线AD 截△PBC 所得的四边形ABCD 中,∠BAD 与∠ADC 的平分线交于点E,若EB=EC,请问当点E 在四边形ABCD 内部时(即图3所示情形),四边形ABCD是不是“准等腰梯形”,为什么?若点E不在四边形ABCD内部时,情况又将如何?写出你的结论.(不必说明理由)图1图2图3答案全解全析:1.A ∵-2×(-12)=1,∴-2的倒数是-12.2.C 537万=5 370 000=5.37×106,故选C.评析此题主要考查了科学记数法的定义.3.A 从这个几何体正面看,是上宽下窄的梯形,故选A.4.B A项: 2x与3y不是同类项,不能合并,故本选项错误;B项: 5m2·m3=5m5,故本选项正确;C项:(a-b)2=a2-2ab+b2,故本选项错误;D项:m2·m3= m5, 故本选项错误.故选B.5.D 解不等式x-3>0得x>3,解不等式x+1≥0得x≥-1,∴原不等式组的解集为x>3,在数轴上表示大于3的任何实数.故选D.6.C 如图所示,设AB与CE交于点F.∵AB∥CD,∴∠EFB=∠C,又∵∠EFB=∠A+∠E=75°,∴∠C=75°,故选C.7.B 依题意,得389(1+x)2=438,故选B.8.B 画出树状图.任意闭合其中两个开关的情况共有6种,其中能使两盏灯泡同时发光的情况有2种,故概率.是139.D ∵反比例函数图象过(3,3),,∴y=9x∵△AEF是等腰直角三角形,∴△EBC、△CDF都是等腰直角三角形,A项:在矩形ABCD中,BC=3时,CD=3,此时矩形ABCD是边长为3的正方形,∴当x=3时,EC=EM=3√2,故本选项错误;B项:∵当y=9时,x=1,∴EC=√2,CF=9√2,∴EM=5√2,即EC<EM,故本选项错误;C项:∵EC·CF=√2x·√2y=2xy=18,值不变,故本选项错误;D项:∵BE·DF=xy=9,值不变,故本选项正确.故选D.评析此题主要考查了矩形、等腰直角三角形、反比例函数的性质,是综合性较强的题. 10.C A项:∵弦PB是☉O的直径时最长,此时∠BCP=∠BAP=90°,∴∠ACP=∠CAP=30°,∴△APC是等腰三角形,故本选项正确;B项:若点P与点B不重合,当△APC是等腰三角形时,△PBA≌△PBC,∴∠BAP=∠BCP=90°,∠BPA=∠BPC,∴PB是☉O的直径,又∵∠BPA=∠BPC且AP=CP,∴PB⊥AC,即PO⊥AC,若点P与点B重合,由于△ABC是等边三角形,∴BO⊥AC,即PO⊥AC,故本选项正确;C项:当点P与点B重合时满足PO⊥AC,但此时∠ACP=60°,故本选项错误; D项:当∠ACP=30°时,则∠BCP或∠PBC=90°,∴△BPC一定是直角三角形,故本选项正确.故选C.11.答案x≤13.解析∵1-3x≥0,∴x≤1312.答案y(x+1)(x-1)解析x2y-y=y(x2-1)=y(x+1)(x-1).13.答案8解析∵P为平行四边形ABCD边AD上一点,∴△PDC、△PAB的面积之和与△PBC的面积相等,又∵E、F分别为PB、PC的中点,∴△PEF∽△PBC且相似比为1∶2,∴△PBC的面积是△PEF面积的四倍,∴S1+S2=4S=8.评析此题考查了平行四边形的性质、中位线的性质、相似三角形的性质.14.答案①③④解析①当四边形A'CDF为正方形时,如图1所示,A'是BC的中点,F是AD的中点,因此点E 与点B重合,此时EF=√2,故①正确;②当EF=√2时,除①这种情况外,还有其他情况,如图2所示,四边形A'CDF不一定为正方形,故②错误;③当EF=√5时,如图3所示,EF与BD重合,四边形BA'CD为等腰梯形,故③正确;④当四边形BA'CD为等腰梯形时,只有一种情况,即EF 与BD重合,EF=√5,故④正确.故填①③④.图1图2图3评析此题既考查学生的动手操作能力,又考查学生的推理能力.+1+√2-2=√2.(8分)15.解析原式=2×12评析此题主要考查了特殊角的三角函数值、乘方、绝对值,属基础题.16.解析由题意可设二次函数的解析式为y=a(x-1)2-1(a≠0).∵函数图象经过原点(0,0),∴a·(0-1)2-1=0,∴a=1.∴该函数的解析式为y=(x-1)2-1(或y=x2-2x).(8分)17.解析(1)如图所示.(4分)(2)点B 2的坐标为(2,-1);(6分) h 的取值范围为2<h<3.5.(8分) 18.解析 (1)22;5n+2.(4分) (2)√3;2 013√3.(8分) 19.解析 作AF⊥BC 于F. 在Rt△ABF 中,∠ABF=∠α=60°, AF=AB·sin 60°=20×√32=10√3(m).(5分)在Rt△AEF 中,∵∠β=45°,∴AF=EF.(7分) 于是AE=√AF 2+EF 2=10√6(m). 即坡长AE 为10√6 m.(10分) 20.解析 (1)(4 000+25x)元.(2分)(2)每副乒乓球拍的价格为x 元,则每副羽毛球拍的价格为(x+20)元. 由题意得2 000x=2 000+25x x+20,解得x 1=40,x 2=-40.经检验x 1,x 2都是原方程的根.(8分)但x>0,∴x=40.即每副乒乓球拍的价格为40元.(10分)评析 由题意找出等量关系,把有关量用含有未知数的代数式表示,列出方程是解题的关键所在,本题属于基础题.21.解析 (1)∵把合格品数从小到大排列,第25,26个数都是4,∴中位数为4.(4分)(2)众数的可能值为4,5,6.(7分)(3)这50名工人中,合格品数低于3件的有8人.因为400×850=64,所以该厂约有64人将接受技能再培训.(12分)评析 本题是统计的频数分布直方图问题,解题时要能从所给的统计图中获取有用的信息,难度较小.22.解析 (1)当1≤x≤20时,令30+12x=35,得x=10;当21≤x≤40时,令20+525x=35,得x=35.即第10天或第35天该商品的销售单价为35元/件.(4分) (2)当1≤x≤20时,y=(30+12x -20)(50-x)=-12x 2+15x+500, 当21≤x≤40时,y=(20+525x -20)(50-x)=26 250x-525.∴y={-12x 2+15x +500 (1≤x ≤20),26 250x-525 (21≤x ≤40).(8分)(3)当1≤x≤20时,y=-12x 2+15x+500=-12(x-15)2+612.5. ∵-12<0,∴当x=15时,y=-12x 2+15x+500有最大值y 1,且y 1=612.5.当21≤x≤40时,∵26 250>0,∴26 250x随着x 的增大而减小,∴当x=21时,y=26 250x-525最大.于是,当x=21时,y=26 250x-525有最大值y 2,且y 2=26 25021-525=725.∵y 1<y 2.∴这40天中第21天该网店获得的利润最大,最大利润为725元 .(12分) 评析 此题难点是第(3)问要分别在不同范围内计算函数的最大值,然后再比较这两个最大值,取其中较大的.23.解析 (1)如图所示:(画出其中一种即可)(2)证明:∵AE∥CD,∴∠AEB=∠C,又∵AB∥ED,∴∠B=∠DEC,∴△ABE∽△DEC.∴AECD =BE EC.又∠B=∠C,∴∠B=∠AEB,∴AB=AE.故ABCD =BEEC.(6分)(3)是.理由如下:过E点分别作EF⊥AB,EG⊥AD,EH⊥CD,垂足分别为F,G,H(如图).∵AE平分∠BAD,∴EF=EG,又∵DE平分∠ADC,∴EG=EH,∴EF=EH,又∵EB=EC,∴Rt△BFE≌Rt△CHE,∴∠3=∠4,又∵EB=EC,∴∠1=∠2,∴∠1+∠3=∠2+∠4,即∠ABC=∠DCB.又∵四边形ABCD为AD截某三角形所得,且AD不平行于BC,∴四边形ABCD为“准等腰梯形”.当点E不在四边形ABCD内部时,有两种情况:当点E在四边形ABCD的边BC上时,如图①所示,四边形ABCD为“准等腰梯形”;当点E在四边形ABCD的外部时,如图②所示,四边形ABCD仍为“准等腰梯形”.图①图②。
【精校】2013年江西省初中毕业暨中等学校招生考试数学(含答案)
机密★2013年6月19日江西省2013年初中毕业暨中等学校招生考试数学试题说明:1.本卷共有六个大题,24个小题,全卷满分120分,考试时间120分钟.2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分.一、选择题(共6小题,每小题3分,满分18分)说明:1.本卷共有七个大题,24个小题,全卷满分120分,考试时间120分钟。
2.本卷分为试题卷和答题卷,答案要求写在答题卷上,不得在试题卷上作答,否则不给分。
一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项.1.-1的倒数是().A.1 B.-1 C.±1D.02.下列计算正确的是().A.a2+a2=a5 B.(3a-b)2=9a2-b2 C.a6b÷a2=a3b D.(-ab3)2=a2b6 3.下列数据是2013年3月7日6点公布的中国六大城市的空气污染指数情况:则这组数据的中位数和众数分别是().A.164和163 B.105和163 C.105和164 D.163和164 4.如图,直线y=x+a-2与双曲线y=交于A,B两点,则当线段AB的长度取最小值时,a 的值为().A.0 B.1 C.2 D.55.一张坐凳的形状如图所示,以箭头所指的方向为主视方向,则他的左视图可以是().6.若二次涵数y=ax+bx+c(a≠0)的图象与x轴有两个交点,坐标分别为(x1,0),(x2,0),且x1<x2,图象上有一点M (x0,y0)在x轴下方,则下列判断正确的是().A.a>0 B.b2-4ac≥0C.x1<x0<x2D.a(x0-x1)( x0-x2)<0二、填空题(本大题共8小题,每小题3分,共24分)7.分解因式x2-4= .8.如图△ABC中,∠A=90°点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为.9.某单位组织34人分别到井冈山和瑞金进行革命传统教育,到井冈山的人数是到瑞金的人数的2倍多1人,求到两地的人数各是多少?设到井冈山的人数为x人,到瑞金的人数为y人,请列出满足题意的方程组是.10.如图,矩形ABCD中,点E、F分别是AB、CD的中点,连接 DE和BF,分别取DE、BF 的中点M、N,连接AM,CN,MN,若AB=22,BC=23,则图中阴影部分的面积为.11.观察下列图形中点的个数,若按其规律再画下去,可以得到第n个图形中所有的个数为(用含n的代数式表示).12.若一个一元二次方程的两个根分别是Rt△ABC的两条直角边长,且S△ABC=3,请写出一个..符合题意的一元二次方程.13.如图,□ABCD与□DCFE的周长相等,且∠BAD=60°,∠F=110°,则∠DAE的度数为.14.平面内有四个点A、O、B、C,其中∠AOB=120°,∠ACB=60°,AO=BO=2,则满足题意的OC长度为整数的值可以是.三、(本大题共2小题,每小题5分,共10分)15.解不等式组⎩⎨⎧>-+≥+,33)3(2,12x x x 并将解集在数轴上表示出来.16.如图AB 是半圆的直径,图1中,点C 在半圆外;图2中,点C 在半圆内,请仅用无刻度...的直尺按要求画图. (1)在图1中,画出△ABC 的三条高的交点; (2)在图2中,画出△ABC 中AB 边上的高.四、(本大题共2小题,每小题6分,共12分)17.先化简,再求值:12244222+-÷+-xxx x x x ,在0,1,2,三个数中选一个合适的,代入求值.18.甲、乙、丙3人聚会,每人带了一件从外盒包装上看完全相同的礼物(里面的东西只有颜色不同),将3件礼物放在一起,每人从中随机抽取一件. (1)下列事件是必然事件的是( ). A .乙抽到一件礼物B .乙恰好抽到自己带来的礼物C .乙没有抽到自己带来的礼物D .只有乙抽到自己带来的礼物(2)甲、乙、丙3人抽到的都不是自己带来的礼物(记为事件A ),请列出事件A 的所有可能的结果,并求事件A 的概率.五、(本大题共2小题,每小题8分,共16分) 19.如图,在平面直角坐标系中,反比例函数xky(x>0)的图象和矩形ABCD 的第一象限,AD 平行于x 轴,且AB=2,AD=4,点A 的坐标为(2,6) . (1)直接写出B 、C 、D 三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.20.生活中很多矿泉水没有喝完便被扔掉,造成极大的浪费,为此数学兴趣小组的同学对某单位的某次会议所用矿泉水的浪费情况进行调查,为期半天的会议中,每人发一瓶500ml 的矿泉水,会后对所发矿泉水的情况进行统计,大至可分为四种:A .全部喝完;B .喝剩约;C .喝剩约一半;D .开瓶但基本未喝.同学们根据统计结果绘制如下两个统计图,根据统计图提供的信息,解答下列问题:(1)参加这次会议的有多少人?在图(2)中D 所在扇形的圆心角是多少度?并补全条形统计图;(计算结果请保留整数).(2)若开瓶不但基本未喝算全部浪费,试计算这次会议平均每人浪费的矿泉水约多少毫升..? (3)据不完全统计,该单位每年约有此类会议60人,每次会议人数约在40至60人之间,请用(2)中计算的结果,估计该单位一年中因此类会议浪费的矿泉水(500ml/瓶)约有多少瓶.?(可使用科学计算器)21.如图1,一辆汽车的背面,有一种特殊形状的刮雨器,忽略刮雨器的宽度可抽象为一条折线OAB ,如图2所示,量得连杆OA 长为10cm ,雨刮杆AB 长为48cm,∠OAB=120°.若启动一次刮雨器,雨刮杆AB 正好扫到水平线CD 的位置,如图3所示.(1)求雨刮杆AB 旋转的最大角度及O 、B 两点之间的距离;(结果精确到0.01) (2)求雨刮杆AB 扫过的最大面积.(结果保留π的整数倍) (参考数据:sin60°=23,cos60°=,tan60°=3,721≈26.851,可使用科学计算器)22.如图,在平面直角坐标系中,以点O 为圆心,半径为2的圆与y 轴交于点A ,点P (4,2)是⊙O 外一点,连接AP ,直线PB 与⊙O 相切于点B ,交x 轴于点C . (1)证明PA 是⊙O 的切线; (2)求点B 的坐标; (3)求直线AB 的解析式.七、(本大题共2小题,第23题10分,第24 题12分,共22分)23.某数学活动小组在作三角形的拓展图形,研究其性质时,经历了如下过程:●操作发现:在等腰△ABC中,AB=AC,分别以AB和AC为斜边,向△ABC的外侧作等腰直角三角形,如图1所示,其中DF⊥AB于点F,EG⊥AC于点G,M是BC的中点,连接MD和ME,则下列结论正确的是(填序号即可)①AF=AG=AB;②MD=ME;③整个图形是轴对称图形;④∠DAB=∠DMB.●数学思考:在任意△ABC中,分别以AB和AC为斜边,向△ABC的外侧..作等腰直角三角形,如图2所示,M是BC的中点,连接MD和ME,则MD和ME具有怎样的数量和位置关系?请给出证明过程;●类比探索:在任意△ABC中,仍分别以AB和AC为斜边,向△ABC的内侧作等腰直角三角形,如图3所示,M是BC的中点,连接MD和ME,试判断△MED的形状.答:.24.已知抛物线y n=-(x-a n)2+a n(n为正整数,且0<a1<a2<…<a n)与x轴的交点为A n-1(b n-1,0)和A n(b n,0),当n=1时,第1条抛物线y1=-(x-a1)2+a1与x轴的交点为A0(0,0)和A1(b1,0),其他依此类推.(1)求a1,b1的值及抛物线y2的解析式;(2)抛物线y3的顶点坐标为(,);依此类推第n条抛物线y n的顶点坐标为(,);所有抛物线的顶点坐标满足的函数关系是;(3)探究下列结论:①若用A n-1A n表示第n条抛物线被x轴截得得线段长,直接写出A0A1的值,并求出A n-1A n;②是否存在经过点A(2,0)的直线和所有抛物线都相交,且被每一条抛物线截得得线段的长度都相等?若存在,直接写出直线的表达式;若不存在,请说明理由.参考答案一、选择题(本大题共6个小题,每小题3分,共18分)每小题只有一个正确选项. 1.B 2.D 3.A 4.C 5.C 6.D 二、填空题(本大题共8小题,每小题3分,共24分) 7.(x+2)(x -2) 8.65° 9.⎩⎨⎧+==+12,34y x y x 10.6 11. (n+1)2 12.x 2-5x+6=013.25° 14. 2,3,4三、(本大题共2小题,每小题5分,共10分) 15.解:由x+2≥1得x≥-1,由2x+6-3x 得x<3,∴不等式组的解集为-1≤x<3. 将解集在数轴上表示为:16.解:在图1中,点P 即为所求;在图2中,CD 即为所求.四、(本大题共2小题,每小题6分,共12分)17.解:原式=xx 2)2(2-·)2(2-x x x +1=12+-xx =. 当x=1时,原式=. 18.解:(1)A(2)依题意可画树状图(下列两种方式均可):(直接列举出6种可能结果也可) 符合题意的只有两种情况: ①乙丙甲②丙甲乙(按左图)或①(甲乙),(乙丙),(丙甲);②(甲丙),(乙甲),(丙乙)(按右图) ∴P (A)= = .五、(本大题共2小题,每小题8分,共16分) 19.解:(1)B (2,4),C (6,4),D (6,6)如图,矩形ABCD 平移后得到矩形A′B′C′D′, 设平移距离为a ,则A′(2,6-a ),C′(6,4-a ) ∵点A′,点C′在y=的图象上, ∴2(6-a)=6(4-a), 解得a=3, ∴点A′(2,3),∴反比例函数的解析式为6y x. 20.解:(1)根据所给扇形统计图可知,喝剩约的人数是总人数的50%,∴25÷50%=50,参加这次会议的总人数为50人, ∵505×360°=360°, ∴D 所在扇形圆心角的度数为36°, 初全条形统计图如右;(2)根据条形统计图可得平均每人浪费矿泉水量约为:(25××500+10×500×+5×500)÷50 =327500÷50≈183毫升; (3)该单位每年参加此类会议的总人数约为24000人~3600人,则浪费矿泉水约为3000×183÷500=1098瓶.六、(本大题共2小题,每小题9分,共18分)21.解:(1)雨刮杆AB 旋转的最大解度为180° .连接OB ,过O 点作AB 的垂线交BA 的延长线于EH 噗,∵∠OAB=120°,∴∠OAE=60°在Rt△OAE 中,∵∠OAE=60°,OA=10, ∴sin∠OAE=OA OE =10OE , ∴OE=53,∴AE=5∴EB=AE+AB=53,在Rt△OEB 中,∵OE=53,EB=53,∴OB=22BE OE =2884=2721≈53.70;(2)∵雨刮杆AB 旋转180°得到CD ,即△OCD 与△OAB 关于点O 中心对称, ∴△BAO≌△OCD,∴S △BAO =S △DCO ,(直接证明全等得到面积相等的也给相应的分值) ∴雨刮杆AB 扫过的最大面积S=π(OB 2-OA 2) =1392π22.解:(1)证明:依题意可知,A (0,2)∵A(0,2),P (4,2),∴AP∥x 轴,∴∠OAP=90°,且点A 在⊙O 上,∴PA 是⊙O 的切线;(2)解法一:连接OP ,OB ,作PE⊥x 轴于点E ,BD⊥x 轴于点D ,∵PB 切⊙O 于点B ,∴∠OBP=90°,即∠OBP=∠PEC又∵OB=PE=2,∠OCB=∠PEC∴△OBC≌△PEC∴OC=PC(或证Rt△OAP≌△OBP,再得到OC=PC 也可)设OC=PC=x ,则有OE=AP=4,CE=OE -OC=4-x ,在Rt△PCE 中,∵PC 2=CE 2+PE 2,∴x 2=(4-x)2+22,解得x=,∴BC=CE=4-=,∵OB·BC=OC·BD,即×2×=××BD,∴BD= ∴OD=22BD OB -=25364-=, 由点B 在第四象限可知B (,56-); 解法二:连接OP ,OB ,作PE⊥x 轴于点E ,BD⊥y 轴于点D ,∵PB 切⊙O 于点B ,∴∠OBP=90°即∠OBP=∠PEC又∵OB=PE=2,∠OCB=∠PEC∴△OBC≌△PEC∴OC=PC(或证Rt△OAP≌△OBP,再得到OC=PC 也可)设OC=PC=x ,则有OE=AP=4,CE=OE -OC=4-x ,在Rt△PCE 中,∵PC 2=CE 2PE 2,∴x 2=(4-x)2+22,解得x=,∴BC=CE=4-=,∵BD∥x 轴,∴∠COB=∠OBD,又∵∠OBC=∠BDO=90°,∴△OBC∽△BDO, ∴BD OB =OD CB =BO OC , 即BD 2=BD 23=225, ∴BD=,OD=,由点B 在第四象限可知B (,56-); (3)设直线AB 的解析式为y=kx+b ,由A (0,2),B (,56-),可得⎪⎩⎪⎨⎧-=+=5658,2b k b ; 解得⎩⎨⎧-==,2,2k b ∴直线AB 的解析式为y=-2x+2.七、(本大题共2小题,第23题10分,第24 题12分,共22分)23.解:●操作发现:①②③④答:MD=ME ,MD⊥ME,先证MD=ME ;如图2,分别取AB ,AC 的中点F ,G ,连接DF ,MF ,MG ,EG ,∵M 是BC 的中点,∴MF∥AC,MF=AC ,又∵EG 是等腰Rt△AEC 斜边上的中线,∴EG⊥AC 且EG=AC ,∴MF=EG,同理可证DF=MG ,∵MF∥AC,∠MFA=∠BAC=180°同事可得∠MGA+∠BAC=180°,∴∠MFA=∠MGA,又∵EG⊥AC,∴∠EGA=90°,同理可得∠DFA=90°,∴∠MFA+∠DFA=∠MGA=∠EGA,即∠DFM=∠MEG,又MF=EG,DF=MG,∴△DFM≌△MGE(SAS),∴MD=ME,再证MD⊥ME;证法一:∵MG∥AB,∴∠MFA+∠FMG=180°,又∵△DFM≌△MGE,∴∠MEG=∠MDF,∴∠MFA+∠FMD+∠DME+∠MDF=180°,其中∠MFA+∠FMD+∠MDF=90°,∴∠DME=90°,即MD⊥ME;证法二:如图2,MD与AB交于点H,∵AB∥MG,∴∠DHA=∠DMG,又∵∠DHA=∠FDM+∠DFH即∠DHA=∠FDM+90°∵∠DMG=∠DME+∠GME,∴∠DME=90°即MD⊥ME;●类比探究答:等腰直角三解形24.解:(1)∵y1=―(x―a1)2+a1与x轴交于点A0(0,0),∴―a12+ a1=0,∴a1=0或1,由已知可知a1>0,∴a1=1,即y1=―(x―1)2+1方法一:令y1=0代入得:―(x―1)2+1=0,∴x1=0,x2=2,∴y1与x轴交于A0(0,0),A1(2,0)∴b1=2,方法二:∵y1=―(x―a1)2+a1与x轴交于点A0(0,0),∴―(b1―1)2+1=0,b1=2或0,b1=0(舍去),∴b1=2,又∴抛物线y2=―(x―a2)2+a2与x轴交于点A1(2,0),∴―(2―a2)2+ a2=0,∴a2=1或4,∵a2> a1,∴a2=1(舍去),∴取a2=4,抛物线y2=―(x―4)2+4.(2)(9,9);(n2,n2)y=x.详解如下:∵抛物线y2=―(x―4)2+4令y2=0代入得:―(x―4)2+4=0,∴x1=2,x2=6,∴y2与x轴交于点A1(2,0),A2(6,0),又∵抛物线y3=―(x―a3)2+a3与x轴交于A2(6,0),∴―(6―a3)2+a3=0∴a3=4或9,∵a3> a3,∴a3=4(舍去),只取a3=9,招物线y3的顶点坐标为(9,9),∵由y1的顶点坐标为(1,1),y2的顶点坐标为(4,4),抛物线y3的的顶点坐标为(9,9),依次类推抛物线y n的顶点坐标为(n2,n2).∵所有抛物线的顶点的横坐标等于纵坐标,∴顶点坐标满足的函数关系式是:y= x;③∵A0(0,0),A1(2,0),∴A0 A1=2,又∵y n=―(x―n2)2+n2,令y n=0,∴―(x―n2)2+n2=0,即x1=n2+n,x2=n2-n,∴A n-1(n2-n,0),A n(n2+n,0),即A n-1 A n=( n2+n)-( n2-n)=2 n②存在,是平行于y=x且过A1(2,0)的直线,其表达式为y=x-2.考试高分秘诀是什么?试试这四个方法,特别是中考和高考生谁都想在考试中取得优异的成绩,但要想取得优异的成绩,除了要掌握好相关的知识定理和方法技巧之外,更要学会一些考试技巧。
2013年安徽省初中毕业学业考试数学试题及参考答案(电子稿)
2013年安徽省初中毕业学业考试数学试题及参考答案(电子稿)1 / 72013年安徽省初中毕业学业考试数学试题本试卷共八大题,计23小题,满分150分,考试时间120分钟。
一、选择题(10×4分=40分)1、―2的倒数是()A 、―21 B 、21 C 、2 D 、―2 2、用科学记数法表示537万正确的是()A 、537×104B 、5.37×105C 、5.37×106D 、0.537×1073、图中所示的几何体为圆台,其主(正)视图正确的是()4、下列运算正确的是()A 、2x+3y=5xyB 、5m 2・m 3=5m 5C 、(a ―b )2=a 2―b 2D 、m 2・m 3=m 65、已知不等式组???≥+-0103x x 其解集在数轴上表示正确的是()6、如图,AB ∥CD ,∠A+∠E=750,则∠C 为()A 、600,B 、650,C 、750,D 、8007、目前我国已建立了比较完善的经济困难学生资助体系,某校去年上半年发放给每个经济困难学生389元,今年上半年发放了438元。
设每半年...发放的资助金额的平均增长率为x ,则下面列出的方程中正确的是() A 、438(1+x )2=389 B 、389(1+x )2=438 C 、389(1+2x )=438 D 、438(1+2x )=3898、如图,随机闭合开关K 1、K 2、K 3中的两个,则能让两盏灯泡同时发光的概率为()A 、61B 、31C 、21D 、329、图1所示矩形ABCD 中,BC=x ,CD=y ,y 与x 满足的反比例函数关系如图2所示,等腰直角三角形AEF 的斜边EF 过C 点,M 为EF 的中点,则下列结论正确的是()A 、当x=3时,EC <EMC >EMC 、当x 增大时,E C ・CF 的值增大。
D 、当y 增大时,BE ・DF 的值不变。
2013年数学中考试卷及答案
2013年数学中考试卷及答案2013年中考数学试卷包括三个部分:①阅读理解,②解答题,③计算题和填空题。
各部分题量如下:①阅读理解1道;②解答题1道;③计算题1道;④计算题2道。
其中填空1道、解答题1道。
这道试卷主要考查了学生的知识迁移能力,即学生在解决实际问题的过程中发现问题、解决问题能力,同时也考察了学生语言表达能力。
答题时间为45分钟。
①阅读理解2个大题、②解答题2个小题,③计算题1个小题。
要求学生能较熟练地运用所学知识解决问题,能从自己或他人熟悉的情境中发现新问题并提出不同观点、结论,以及能进行简单地推理、判断、证明。
一、试题主要考查了数形结合和空间想象能力。
这是对学生数形结合、空间想象能力的有力考查。
例如第2、3题有一个明显的特征,就是考查了关于物体的面积的计算;第8、9、10题考查了坐标系知识;第9、10、11题和第20题考查了椭圆的面积计算;第22题考查了圆锥曲线与圆锥坐标系之间的联系;第23题考查了三角形的面积计算两种方法中的一种;第24题解答了一道关于四线段的平行四边形的图形,用三角形的基本性质求直线(圆)与直角三角形(直角)的值;第25题在解答一道关于圆锥曲线的问题中,以圆上一个坐标为圆心,画出一个圆并作线段证明了这个圆的面积;第26题考查了一个关于抛物线的图形求点坐标的问题;第26题考查了一道利用图象(点)表示三角形内角的面积;第27题以圆为背景考查了一枚圆心和圆对称方程组)的求解过程、求圆面积的方法;这就涉及了圆锥曲线的画法和圆几何图形、圆与平行四边形等数学知识和概念的考查。
同时通过这些题目也让学生充分感受到学习数学的乐趣和快乐。
这体现了中考数学命题在知识考查中体现了回归教材这一特点。
特别是在一些重要章节与重点内容中体现了数形结合、空间想象等考查特点。
例如第1、2、3、5题分别考查了点的坐标及面积。
第3、5、6题考查了圆的面积计算和坐标系中相关公式的掌握或应用等。
二、考查了学生的运算能力,也包括空间想象能力。
湖南省2013年最新中考数学试题及答案
ABCDEO(第5题图) 2121-2013湖南省初中数学试题在考试过程中请你注意以下几点:1.答选择题时,请将答案直接填在选择题答题表中.2.试卷共8页,满分120分,考试时间120分钟.一、选择题(本大题共有8个小题,每小题3分,满分24分.) 1.2-的倒数是A. 2B.C. 2-D.2.2008年5月12日,四川汶川发生里氏8.0级地震,国内外社会各界纷纷向灾区捐款捐物,抗震救灾.截止6月4日12时,全国共接收捐款约为43 681 000 000元人民币.这笔款额用科学记数法表示(保留三个有效数字)正确的是A. 1110437.0⨯ B. 10104.4⨯ C. 101037.4⨯ D. 9107.43⨯ 3.在下面的四个几何体中,它们各自的左视图与主视图不相同的是4.对于反比例函数xk y 2=(0≠k ),下列说法不正确...的是 A. 它的图象分布在第一、三象限 B. 点(k ,k )在它的图象上 C. 它的图象是中心对称图形D. y 随x 的增大而增大5.如图,四边形ABCD 是菱形,过点A 作BD 的平行线交CD 的延长线于点E ,则下列式子不成立...的是 A. DE DA = B. CE BD = C. 90=∠EAC ° D. E ABC ∠=∠26.如图,抛物线)0(2>++=a c bx ax y 的对称轴是直线1=x ,且经过点P (3,0),则c b a +-的值为 A. 0 B. -1 C. 1 D. 27.如图,三个大小相同的正方形拼成六边形ABCDEF ,一动点P正方体长方体圆柱 圆锥 A B C D(第8题图)从点A 出发沿着A →B →C →D →E 方向匀速运动,最后到 达点E .运动过程中PEF ∆的面积(s )随时间(t )变化的图 象大致是8.如图,小明从半径为5cm 的圆形纸片中剪下40%圆周的一个扇形,然后利用剪下的扇形制作成一个圆锥形玩具纸 帽(接缝处不重叠),那么这个圆锥的高为 A.3cm B.4cmC.21cmD.62cm 二、填空题(本大题共8个小题,每小题3分,满分24分)将结果直接填写在每题的横线上.9.分解因式:92-x = . 10.化简211xx x -÷的结果是 . 11. “五一”期间,某服装商店举行促销活动,全部商品八折销售.小华购买一件标价为180 元的运动服,打折后他比按标价购买节省了 元.12. 关于x 的一元二次方程022=+-m mx x 的一个根为1,则方程的另一根为13.如图是我们生活中经常接触的小刀,刀柄外形是一个直角梯形(下底挖去一小半圆),刀片上、下是平行的,转动刀片时会形成∠1、∠2,则∠1+∠2= 度.40%5=R (图1) (图2)(第13题图) A B C 1OD1C 2O 2C …… (第15题图) y60% ABDC(第7题图) A BC DE. F.P.·14.2008年6月2日,奥运火炬在荆州古城传递,208名火炬手参加了火炬传递,其中8位火炬手所跑的路程(单位:米)如下:60,70,100,60,80,70,90,100,则这组数据的中位数是 .15.如图,矩形ABCD 的面积为5,它的两条对角线交于点1O ,以AB 、1AO 为两邻边作 平行四边形11O ABC ,平行四边形11O ABC 的对角线交于点2O ,同样以AB 、2AO 为两邻边作平行四边形22O ABC ,……,依次类推,则平行四边形n n O ABC 的面积 为 .16.如图,ABC ∆中,点A 的坐标为(0,1),点C 的坐标为(4,3),如果要使ABD ∆与ABC ∆ 全等,那么点D 的坐标是 .三、解答题(本大题共9个小题,满分72分.) 17.(本题满分5分)计算:20)21(8)21(3--+-+-18.(本题满分5分)解不等式组⎪⎩⎪⎨⎧>+-≥+x x x 1102 并把解集表示在下面的数轴上.C19. (本题满分7分)为了降低能源消耗,减少环境污染,国务院办公厅下发了“关于限制生产销售使用塑料购物袋的通知”(简称“限塑令”),并从2008年6月1日起正式实施.小宇同学为了了解“限塑令”后使用购物袋的情况,6月8日到某集贸市场对部分购物者进行了调查,据了解该市场按塑料购物袋的承重能力提供了0.1元,0.2元,0.3元三种质量不同的塑料袋.下面两幅图是这次调查得到的不完整的统计图(若每人每次只使用一个购物袋),请你根据图中的信息,回答下列问题:(1)这次调查的购物者总人数是 ;(2)请补全条形统计图,并说明扇形统计图中20 元部分所对应的圆心角是 度0.3元部分所对应的圆心角是 度;(3)若6月8日到该市场购物的人数有3000人次,则该市场需销售塑料购物袋多少个?并根据调查情况,谈谈你的看法.20.(本题满分7分)在数学活动课上,九年级(1)班数学兴趣小组的同学们测量 校园内一棵大树的高度,设计的方案及测量数据如下:(1)在大树前的平地上选择一点A ,测得由点A 看大树顶端C 的仰角为35°; (2)在点A 和大树之间选择一点B (A 、B 、D 在同一直线上),测得由点B 看大树顶端C 的仰角恰好为45°; (3)量出A 、B 两点间的距离为4.5米. 请你根据以上数据求出大树CD 的高度.(可能用到的参考数据:sin35°≈0.57 cos35°≈0.82 tan35°≈0.70)类别21. (本题满分8分)A 箱中装有3张相同的卡片,它们分别写有数字1,2,4;B 箱中也装有3张相同的卡片,它们分别写有数字2,4,5;现从A 箱、B 箱中各随机 地取出1张卡片,请你用画树形(状)图或列表的方法求: (1)两张卡片上的数字恰好相同的概率.(2)如果取出A 箱中卡片上的数字作为十位上的数字,取出B 箱中卡片上的数字作为个位上的数字,求两张卡片组成的两位数能被3整除的概率.22. (本题满分8分)如图,AB 为半圆O 的直径,点C 在半圆O 上,过点O 作BC 的平行线交AC 于点E ,交过点A 的直线于点D ,且BAC D ∠=∠.(1)求证:AD 是半圆O(2)若2=BC ,2=CE ,求23. (本题满分10分)小华将一张矩形纸片(如图1)沿对角线2),其中α=∠ACB ,然后将这两张三角形纸片按如图3所示的位置摆放,∆EFD 纸片的直角顶点D 落在∆ACB 纸片的斜边AC 上,直角边DF 落在AC 所在的直线上.(1) 若ED 与BC 相交于点G ,取AG 的中点M ,连接MB 、MD ,当∆EFD 纸片沿CA 方向平移时(如图3),请你观察、测量MB 、MD 的长度,猜想并写出MB与MD 的数量关系,然后证明你的猜想;(2) 在(1)的条件下,求出BMD ∠的大小(用含α的式子表示),并说明当45=α°时, BMD ∆是什么三角形?(3) 在图3的基础上,将∆EFD 纸片绕点C 逆时针旋转一定的角度(旋转角度小于90°),此时CGD ∆变成CHD ∆,同样取AH 的中点M ,连接MB 、MD (如图4),请继续探究MB 与MD 的数量关系和BMD ∠的大小,直接写出你的猜想,不需要证明,并说明α为何值时,BMD ∆为等边三角形.24.(本题满分10分)华宇公司获得授权生产某种奥运纪念品,经市场调查分析,该纪念品的销售量1y (万件)与纪念品的价格x (元/件)之间的函数图象如图所示,该公司纪念品的生产数量2y (万件)与纪念品的价格x (元/件)近似满足函数关系式85232+-=x y .,若每件纪念品的价格不小于20元,且不大于40元.请解答下列问题:(1) 求1y 与x 的函数关系式,并写出x 的取值范围;(2) 当价格x 为何值时,使得纪念品产销平衡(生产量与销售量相等); (3) 当生产量低于销售量时,政府常通过向公司补贴纪念品的价格差来提高生产A B A BCD EF 图1图2A BCDE FGM 图3ABCDEFMH图4量,促成新的产销平衡.若要使新的产销平衡时销售量达到46万件,政府应对该纪念品每件补贴多少元?25.(本题满分12分)如图,直角梯形OABC 中,AB ∥OC ,O 为坐标原点,点A 在y 轴正半轴上,点C 在x 轴正半轴上,点B 坐标为(2,23),∠BCO = 60°,BC OH ⊥于点H .动点P 从点H 出发,沿线段HO 向点O 运动,动点Q 从点O 出发,沿线段OA 向点A 运动,两点同时出发,速度都为每秒1个单位长度.设点P 运动的时间为t 秒.(1) 求OH 的长;(2) 若OPQ ∆的面积为S (平方单位). 求S 与t 之间的函数关系式.并求t 为何值时,OPQ ∆的面积最大,最大值是多少?x (元/件))(3)设PQ与OB交于点M.①当△OPM为等腰三角形时,求(2)中S的值.②探究线段OM长度的最大值是多少,直接写出结论.参考答案及评分标准说明:本试卷中的解答题一般只给出一种解法,对于其它解法,只要推理严谨、运算合理、结果正确,均给满分.对部分正确的,参照本评分说明酌情给分.一、选择题(每小题3分,共24分) 1—8 D C B D B A B C 二、填空题(每小题3分,共24分)9. )3)(3(-+x x 10.x -1 11. 36 12.2- 13. 90 14. 75 15.n2516.)14(-, )31(,- )1,1(-- (第14题不写单位不扣分) 三、解答题(共72分)17.(5分)解:原式=42213-++ ………………………………………………(3分)=22………………………………………………………………(5分) 18.(5分)解:02≥+x 的解集是:2-≥xx x >+-121的解集是:1<x 所以原不等式的解集是:12<≤-x ………………………………………(3分)解集表示如图…………………………………………………………………(5分)19.(7分)解:(1)120……………………………………………………………………(1分)(2)条形统计图,如图所示,…………………………………………………… (2分)0.2元的圆心角是99°,0.3元的圆心角是36°…………………(4分)(3)该市场需销售塑料购物袋的个数是1875120753000=⨯………………(6分) 只要谈的看法涉及环保、节能等方面,且观念积极向上,即可给分……(7分)20.(7分)(1)解:在ACD Rt ∆中,035tan CDAD =在BCD Rt ∆中,045tan CDBD =而5.4=-BD AD类别即5.445tan 35tan 00=-CDCD …………………………………………(5分) 解得:5.10=CD所以大树的高为5.10米………………………………………………(7分)21.(8分)解:(1)由题意可列表:∴两张卡片上的数字恰好相同的概率是92.………………………(4分) (2)由题意可列表:∴两张卡片组成的两位数能被3整除的概率是95………………(8分) (画树状图略)22.(8分)(1)证明:∵AB 为半⊙O 的直径∴90=∠BCA又∵BC ∥OD , ∴AC OE ⊥ ∴090=∠+∠DAE D 而D ∠=∠∴090=∠+∠DAE OAE ∴AD 是半圆O 分)(2)∵AC OE ⊥ ∴222==CE AC 在ABC Rt ∆中,22=+=BC AC AB 分)由DOA ∆∽ABC ∆可得:BC OAAC AD =即2322=AD ∴6=AD …………………………………………………………(8分)23. (10分)解:(1)MB =MD ………………………………………………………(1分)证明:∵AG 的中点为M ∴在ABG Rt ∆中, AG MB 21=在ADG Rt ∆中,AG MD 21=∴MB =MD ………………………………………………(3分)(2)∵BAM ABM BAM BMG ∠=∠+∠=∠21 2 4 2 (1,2) (2,2) (4,2) 4 (1,4) (2,4) (4,4) 5 (1,5) (2,5) (4,5) 1 2 4 2 12 22 42 4 14 24 44 5 15 2545A B A B同理DAM ADM DAM DMG ∠=∠+∠=∠2∴BMD ∠=DAM BAM ∠+∠22=BAC ∠2 而α-=∠090BAC∴α21800-=∠BMD …………………………………………(6分)∴当045=α时,090=∠BMD ,此时BMD ∆为等腰直角三角形.…(8分)(3)当CGD ∆绕点C 逆时针旋转一定的角度,仍然存在MB =MD , α21800-=∠BMD ………………………………………………(9分) 故当060=α时,BMD ∆为等边三角形.…………………………(10分) 24. (10分)解:(1)设y 与x 的函数解析式为:b kx y +=,将点)60,20(A 、)28,36(B代入b kx y +=得:⎩⎨⎧+=+=b k b k 36282060解得:⎩⎨⎧=-=1002b k∴1y 与x 的函数关系式为:⎩⎨⎧≤<=≤≤+-=)4028(28)2820(100211x y x x y ……(3分)(2)当2820≤≤x 时,有⎪⎩⎪⎨⎧+-=+-=10028523x y x y 解得:⎩⎨⎧==4030y x ……………………………………………………(5分)当4028≤≤x 时,有⎪⎩⎪⎨⎧=+-=288523y x y 解得:⎩⎨⎧==2838y x∴当价格为30元或38元,可使公司产销平衡.…………………(7分)(3)当461=y 时,则8523461+-=x ,∴261=x 当462=y 时,则1002462+-=x ,∴272=x∴112=-x x∴政府对每件纪念品应补贴25.(12分)解:(1)∵AB ∥OC ∴ 090=∠=∠AOC OAB 在OAB Rt ∆中,2=AB ,=AO ∴4=OB , 060=∠ABO ∴060=∠BOC 而060=∠BCO∴BOC ∆为等边三角形∴3223430cos 0=⨯==OB OH …(3分) (2)∵t PH OH OP -=-=32∴t OP x p 23330cos 0-== 2330sin 0t OP y p -== ∴)233(2121t t x OQ S p -⋅⋅=⋅⋅==t t 23432+- (320<<t )…………………………(6分)即433)3(432+--=t S ∴当3=t 时,=最大S 433………………………………………(7分)(3)①若OPM ∆为等腰三角形,则:(i )若PM OM =,MOP MPO ∠=∠=∠ ∴PQ ∥OC∴p y OQ =即23tt -= 解得:332=t此时33233223)332(432=⨯+⨯-=S (ii )若OM OP =,75=∠=∠OMP OPM ∴045=∠OQP过P 点作OA PE ⊥,垂足为E ,则有: EP EQ =即t t t 233)213(-=-- 解得:2=t 此时332232432-=⨯+⨯-=S (iii )若PM OP =,AOB PMO POM ∠=∠=∠∴PQ ∥OA 此时Q 在AB 上,不满足题意.……………………………………………(10分)②线段OM 长的最大值为23……………………………………………………(12分)。
益阳市2013年普通初中毕业学业考试试题
益阳市2013年普通初中毕业学业考试试题历史一、选择题(本大题共20小题,每小题2分,共40分。
每小题所列的四个选项中只有一项符合题目要求。
)1.目前我国已发现的最大青铜器是A B C D解析:考查学生的识图能力,目前我国已发现的最大青铜器是司母戊鼎,故答案为:B。
2.经典诵读已成为人们传承历史文化的重要方式。
《三字经》中“魏蜀吴,争汉鼎,号之国……”所包含的史实是A.三国鼎立B.“楚汉之争”C.春秋争霸D.“三家分晋”解析:本题属材料型选择题,根据关键词“魏蜀吴,争汉鼎”,可知A为正确答案。
3.假如穿越时空隧道来到唐朝,你不可能经历的是A.到赵州桥上散步B.阅读《金刚经》C.用纸写诗D.查阅《本草纲目》解析:本题考查了学生的时序问题,《本草纲目》是明代人李时珍所著,故在唐朝不可能查阅,故答案为:D。
4.美国芝加哥的研究人员今年在肯尼亚发掘了一枚“永乐通宝”(见右图)。
研究人员判断此枚钱币铸造年份处于公元1402年至1425年间。
下列所举最有可能将这枚钱币从中国带到肯尼亚的是A.卫温率领的船队B.郑和率领的下西洋船队C.鉴真东渡D.玄奘西行解析:根据钱币铸造年份“公元1402年至1425年间”以及发现的地点“肯尼亚”,可知是郑和率领的下西洋船队,答案为:B。
5.下列人物与其作品搭配正确的是A.司马迁——《史记》B.王羲之——《离骚》C.屈原《论语》D.孔子《兰亭序》解析:《离骚》的作者是屈原,《论语》的作者是孔子,《兰亭序》的作者是王羲之,故答案为:A。
6.小明在历史知识抢答赛活动中,抽到了如下题签。
小明应选择的正确答案是解析:根据题签内容,可知签订的条约为《马关条约》,故答案为:B。
7.下列人物中不属于新文化运动主要代表人物的是A.陈独秀B.李大钊C.康有为D.胡适解析:新文化运动主要代表人物有陈独秀、李大钊、胡适以及鲁迅等,康有为是戊戌变法的代表人物,故答案为:C。
8.下列表述正确的有①《义勇军进行曲》曲作者聂耳②《黄河大合唱》曲作者是冼星海③《奔马》作者是张大千④《阿Q正传》作者是鲁迅A.①③④B.①②③C.②③④D.①②④解析:本题考查历史基本知识,《奔马》的作者为徐悲鸿,故答案为:D。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学参考答案及评分标准第1页(共4页)次数 第17题解图 益阳市2013年普通初中毕业学业考试数学参考答案及评分标准二、填空题(本大题共5小题,每小题4分,共20分).9.)2)(2(-+y y x ;10.1;11.32;12.5;13.21. 三、解答题(本大题共2小题,每小题6分,共12分).14.解:当3=a ,2-=b ,21=c 时, c b a 42-+=2142)3(2⨯--+ =223-+ ······················································································· 5分 =3 ··································································································· 6分15.证明:在ABC Δ中,AC AB =,CD BD =,∴BC AD ⊥, ································································································ 2分 ∵AB CE ⊥,∴︒=∠=∠90CEB ADB , ··············································································· 4分 又B B ∠=∠,∴CBE ABD ΔΔ∽. ······················································································ 6分四、解答题(本大题共3小题,每小题8分,共24分)16. 解:(1)恒温系统在这天保持大棚温度18℃的时间为10小时. ·························· 2分(2)∵点B (12,18)在双曲线x k y =上, ∴1218k =, ∴216=k . ································································································ 5分(3)当x =16时,5.1316216==y , 所以当x =16时,大棚内的温度约为13.5℃. 8分17. 解:(1)a =4. 2分(2)如图. 5分 (3)∵小组成员共10人,参加了10次活动的成员有3人,∴103=P , 答:从小组成员中任选一人向学校汇报义工活动 情况,参加了10次活动的成员被选中的概率是103. ··· 8分数学参考答案及评分标准第2页(共4页)18.解:设x PD =米,∵AB PD ⊥,∴︒=∠=∠90BDP ADP .在Rt △P AD 中,AD x PAD =∠tan , ∴5tan38.50.804x x AD x =≈=︒. ········································································· 3分 在Rt △PBD 中,DB x PBD =∠tan , ∴2tan 26.50.50x x DB x =≈=︒. ······································································ 5分 又AB =80.0, ∴0.80245=+x x . ∴6.24≈x ,即6.24≈PD .∴2.492≈=x DB .答:小桥PD 的长度约为24.6米,位于AB 之间距B 点约49.2米. ···················· 8分五、解答题(本大题共2小题,每小题10分,共20分)19.解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x 辆、y 辆, 根据题意得:⎩⎨⎧=+=+11010812y x y x , ······························································· 2分 解之得⎩⎨⎧==75y x . ∴“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆; ···· 5分(2)设载重量为8吨的卡车增加了z 辆,依题意得:165)67(10)5(8>-+++z z , ·············································· 7分 解之得:25<z ∵0≥z 且为整数,∴=z 0,1,2 ;∴=-z 66,5,4. ······················································································ 8分 ∴车队共有3种购车方案:①载重量为8吨的卡车不购买,10吨的卡车购买6辆;②载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;③载重量为8吨的卡车购买2辆,10吨的卡车购买4辆. ··················· 10分数学参考答案及评分标准第3页(共4页) 20.解:(1)证明:∵AC AB =,︒=∠36A ,∴︒=∠=∠72C ABC , ···································································· 1分又BE 平分ABC ∠,∴︒=∠=∠36CBE ABE ,∴︒=∠-∠-︒=∠72180CBE C BEC∴A ABE ∠=∠,C BEC ∠=∠,∴BE AE =,BC BE =,∴BC AE =. ··················································································· 3分(2)∵AB AC =且EF ∥BC ,∴AF AE =;由旋转的性质可知:AB F AC E '∠='∠,F A E A '=',∴E CA 'Δ≌F BA 'Δ,∴F B E C '='. ··························································································· 6分(3)存在E C '∥AB ,由(1)可知BC AE =,所以,在ΔE 点经过的路径(圆弧)与过点C 且与AB①当点E 的像E '与点M ∴︒=∠=∠72ABC BAM ,又∠BAC ∴︒=∠=36CAM α.······· 8分 ②当点E 的像E '与点N 重合时,由l AB ∥得,︒=∠=∠72BAM AMN ∵AN AM =, ∴︒=∠=∠72AMN ANM ,∴︒=︒⨯-︒=∠36722180MAN , ∴︒=∠+∠=∠=72MAN CAM CAN α. 所以,当旋转角为︒36或︒72时,E C '∥AB . ······································ 10分六、解答题(本题满分12分)21.解:(1)由⎩⎨⎧=+=2222x y x y ,解得⎪⎩⎪⎨⎧-=-=5325111y x ,⎪⎩⎪⎨⎧+=+=5325122y x . 则A ,B 两点的坐标分别为:)53,251(--A ,)53,251(++B , ·········· 2分 ∵P 是A ,B 的中点,由中点坐标公式得P 点坐标为)3,21(, 又x PC ⊥轴交抛物线于C 点,将21=x 代入22x y =中得21=y , ∴C 点坐标为11(,)22. ····················································································· 4分第20题解图)')E '数学参考答案及评分标准第4页(共4页) (2)由两点间距离公式得:5)]53()53[()251251(22=+--++--=AB ,25213=-=PC , ∴PB PA PC ==,·································································································· 6分 ∴PCA PAC ∠=∠,PCB PBC ∠=∠,∴︒=∠+∠90PCB PCA ,即︒=∠90ACB∴ ABC Δ为直角三角形. ···········································(3)过点C 作AB CG ⊥于G ,过点A 作PC AH ⊥于H 则H 点的坐标为)5321(-,, ···································· ∴ AH PC CG AP S PAC ⨯=⨯=2121Δ, ∴2521251=--==AH CG . 又直线l 与l '之间的距离等于点C 到l 的距离CG ,∴直线l 与l '之间的距离为25. ········································································· 12分图10。