共模滤波电感原理分析
非常详细的共模电感及滤波器的设计!(转载)精选全文完整版
⾮常详细的共模电感及滤波器的设计!(转载)看点1 ⼏个简单的实例测验与分析!01 这是⼀个共模电感,如下测量,你觉得测得的电感量是多少?可能有⼀部分会答错。
下⾯来说明⼀下我们知道共模电感的绕法有两种,1 双线并绕,2 两组线圈分开绕。
我们知道共模电感的绕法有两种,1 双线并绕,2 两组线圈分开绕。
1 双线并绕2 两组线圈分开绕正确的答案应该是10mH,下图所⽰。
⼀楼所⽰的测量和如下测量⼀致。
如仍有怀疑,可找个电感测量⼀下便知。
可以理解成两个电感并联,事实上就是两个电感并联,计算结果和测量结果是⼀样的。
两种绕法有何特点?1 双线并绕有较⼩的差模电感有较⾼的耦合电容有较⼩的漏感2 两组线圈分开绕有较⼩的耦合电容有较⾼的漏感因此要根据实际应⽤情况选择绕法。
02 再看看这样测量出来的电感量是多少?为什么?有的⼈可能会回答0mH,有的⼈可能会回答20mH,有的⼈可能会回答10mH。
不过很遗憾都不是,正确的答案L=40mH。
如下图,按右⼿法则已标上电流⽅向和磁通⽅向,从图中可以看出两个线圈的磁通的⽅向是相同的,也就是说磁通是增加的不是相互抵消。
根据磁环电感量计算公式式中:N = 圈数, Ac = 截⾯积, 分母 Mpl = 磁路长度。
注意 N 有平⽅的,⼀组线圈的圈数是N, 则两组线圈的圈数是 2N,将2N代⼊到公式中分⼦有 4N2, 也就是说电感量为 4 倍。
本例则为40 mH。
03 再看看这样测量得到的电感量应该是多少?这样测得的是什么电感量?这个估计很多⼈都知道是0mH,没错,理想状态下就是 0mH。
实际共模电感总有漏感、或差模电感成份,因此按此连接测量得到的数值就是漏感或者叫差模电感。
共模电感中漏感和差模电感是⼀回事,可以称漏感也可称差模电感。
⼀般做得好点的漏感在1-2%左右。
但有时候会特意将差模电感和共模电感做在⼀起,这时候的差模电感量就按实际需要做了。
看点2 共模电感“Z”字形符号是代表什么?共模电感的这个符号应该很常见吧,但是符号中的的 “Z” ⼀样的符号该怎么读?估计很少有⼈知道。
共模滤波电感原理分析
共模滤波电感器不是电感量越大越好.主要看你要滤除的共模干扰的频率范围,先说一下共模电感器滤波原理:共模电感器对共模干扰信号的衰减或者说滤除有两个原理,一是靠感抗的阻挡作用,但是到高频电感量没有了靠的是磁心的损耗吸收作用;他们的综合效果是滤波的真实效果.当然在低频段靠的是电感量产生的感抗.同样的电感器磁心材料绕制成的电感器,随着电感量的增加,Z阻抗与频率曲线变化的趋势是随着你绕制的电感器的电感量的增加,Z 阻抗峰值电时的频率就会下降,也就是说电感量越高所能滤除的共模干扰的频率越低,换句话说对低频共模干扰的滤除效果越好,对高频共模信号的滤除效果越差甚至不起作用. 这就是为什么有的滤波器使用两级滤波共模电感器的原因一级是用低磁导率(磁导率7K以下铁氧体材料甚至可以使用1000的NiZn材料) 材料作成共模滤波电感器,滤出几十MHz 或更高频段的共模干扰信号,另一级采用高导磁材料(如磁导率10000h00的铁氧体材料或着非晶体材料)来滤除1MHz以下或者几百kHz的共模干扰信号.因此首先要确认你要滤除共模干扰的频率范围然后再选择合适的滤波电感器材料.共模电感的测量与诊断电源滤波器的设计通常可从共模和差模两方面来考虑。
共模滤波器最重要的部分就是共模扼流圈,与差模扼流圈相比,共模扼流圈的一个显著优点在于它的电感值极高,而且体积又小,设计共模扼流圈时要考虑的一个重要问题是它的漏感,也就是差模电感。
通常,计算漏感的办法是假定它为共模电感的1%,实际上漏感为共模电感的 0.5% ~ 4%之间。
在设计最优性能的扼流圈时,这个误差的影响可能是不容忽视的。
漏感的重要性漏感是如何形成的呢?紧密绕制,且绕满一周的环形线圈,即使没有磁芯,其所有磁通都集中在线圈“芯”内。
但是,如果环形线圈没有绕满一周,或者绕制不紧密,那么磁通就会从芯中泄漏出来。
这种效应与线匝间的相对距离和螺旋管芯体的磁导率成正比。
共模扼流圈有两个绕组,这两个绕组被设计成使它们所流过的电流沿线圈芯传导时方向相反,从而使磁场为0。
共模电感 y电容
共模电感y电容共模电感和Y电容是电子电路中常用的无源元件,它们在电路中起到滤波、隔离和抑制干扰的作用。
共模电感主要用于抑制共模干扰,而Y电容则用于抑制差模干扰。
本文将对共模电感和Y电容的原理、特性和应用进行详细介绍。
一、共模电感1. 原理共模电感(Common Mode Choke)是一种用于抑制共模干扰的电感器。
共模干扰是指两个输入端或两个输出端之间的干扰信号,这种干扰信号在同一时刻同时作用于两个输入端或输出端,导致电路性能下降。
共模电感通过产生一个与共模干扰信号相反的磁场,从而抵消共模干扰信号,达到抑制干扰的目的。
2. 特性共模电感的主要特性包括:高阻抗、低漏感、高饱和电流、良好的温度稳定性等。
这些特性使得共模电感在抑制共模干扰方面具有很好的效果。
3. 应用共模电感广泛应用于各种电子设备中,如通信设备、计算机、家用电器等。
在这些设备中,共模电感可以有效地抑制电源线、信号线等线路上的共模干扰,提高设备的可靠性和稳定性。
二、Y电容1. 原理Y电容(Y Capacitor)是一种用于抑制差模干扰的电容器。
差模干扰是指两个输入端或两个输出端之间的干扰信号,这种干扰信号在不同时刻分别作用于两个输入端或输出端,导致电路性能下降。
Y电容通过产生一个与差模干扰信号相反的电场,从而抵消差模干扰信号,达到抑制干扰的目的。
2. 特性Y电容的主要特性包括:高电容值、低损耗、良好的频率特性、高电压耐受能力等。
这些特性使得Y电容在抑制差模干扰方面具有很好的效果。
3. 应用Y电容广泛应用于各种电子设备中,如通信设备、计算机、家用电器等。
在这些设备中,Y电容可以有效地抑制电源线、信号线等线路上的差模干扰,提高设备的可靠性和稳定性。
三、共模电感和Y电容的组合应用在实际电路设计中,共模电感和Y电容经常组合使用,以实现更好的干扰抑制效果。
共模电感和Y电容的组合可以有效地抑制电源线、信号线等线路上的共模干扰和差模干扰,提高设备的可靠性和稳定性。
共差模一体化滤波电感
共差模一体化滤波电感
这种滤波电感的核心是一种特殊的磁芯结构。
磁芯由两个部分组成,一部分用于共模滤波,另一部分用于差模滤波。
通过精心设计磁路和绕组,使得共模电流和差模电流在磁芯中产生不同的磁通,从而实现对两种噪声的有效抑制。
与传统滤波器相比,共差模一体化滤波电感具有以下优点:
1. 体积小,重量轻,便于安装和集成。
2. 成本低,只需一个元件即可实现双重滤波功能。
3. 性能好,滤波效果出色,能够满足严格的EMI要求。
4. 设计灵活,可根据不同应用场景进行优化设计。
共差模一体化滤波电感广泛应用于电源滤波、信号线路滤波、电机驱动器滤波等领域,为电子设备的EMC设计提供了一种高效、经济的解决方案。
emc滤波器原理
emc滤波器原理
EMC滤波器是一种用于抑制电磁干扰的装置,它采用特定的
电路设计和元件配置来消除或减弱电磁波的干扰信号,以保证系统正常运行。
EMC滤波器原理主要包括共模滤波和差模滤
波两种方式。
共模滤波是指滤除信号源和设备之间的电磁干扰信号,其工作原理是通过使用共模电感和共模电容来形成一个共模回路,将共模干扰信号引入该回路中,从而实现滤波的效果。
共模回路的电感和电容参数是根据信号源和设备的特性来确定的,以达到最佳的滤波效果。
差模滤波是指滤除设备内部差模信号的干扰,其工作原理是通过使用差模电感和差模电容来形成一个差模回路,将差模干扰信号引入该回路中,隔离差模干扰信号影响正常信号传输。
差模回路的电感和电容参数也是根据设备的特性来确定的,以达到最佳的滤波效果。
EMC滤波器可以根据具体需求设计出不同类型的滤波器,如LC滤波器、RC滤波器、Pi型滤波器等。
这些滤波器都使用
不同的电感、电容和电阻组合来滤除特定频率范围的干扰信号。
此外,EMC滤波器还可以根据不同的工作环境和要求,选择
合适的滤波器安装位置,如在干扰源和设备之间、设备内部甚至电源线上安装滤波器,以增强滤波效果。
总之,EMC滤波器利用共模滤波和差模滤波的原理,通过特
定的电路配置和参数设计来消除电磁干扰信号,确保系统的正
常运行。
不同的滤波器类型和安装位置选择可以根据具体需求来进行定制,以满足不同的电磁兼容性要求。
为什么在电子产品的电源部分经常会有个共模电感?
为什么在电子产品的电源部分经常会有个共模电感?
很高兴,关于电学的问题越来越多了,下面我为题主解答一下。
题主观察的很仔细,确实,共模电感对于电源产品来说是很重要的器件,接下来我就共摸电感简单分析一下。
什么是共模电感?
先上一张图,大家体会一下共模电感
共模电感,又叫电源滤波器,从结构上说是一个铁氧体为磁芯,由两个尺寸相同,匝数相同的线圈,对称缠在磁芯(铁氧体)上,常见管脚数目是四个管脚。
共模电感的等效电路
在PCB原理图上,是这样子的:
在这张原理图上,直流电源输入端就加入了滤波电感,接法在图上也可看出来。
具体接法:
同一个绕组的两个端子避免接在电源的正负极上,请参考PCB原理图接入即可
共模电感的作用?
前面说了那么多,还没有说共模电感到底是干嘛用的。
下面说一下共模电感的具体用法,一言以蔽之,共模电感用来抑制共模噪声的
为什么需要抑制共模噪声呢?
共模信号是作用在运放两个输入端信号(a,b)的相同成分,一般由于线路传导和磁场干扰产生的。
共模 (a b)/2
一般情况下,我们不希望这种信号存在。
相反,差模信号是两个输入端信号的差,(a-b)/2
因此,如果共模信号很大,会影响到实际需要的差模信号的传输。
怎么衡量共模抑制的能力呢?
在这里要引入一个概念,共模抑制比CMRR。
共模抑制比CMRR:是用来来衡量差分放大电路抑制共模信号的能力。
具体概念比较绕口,它是运放对差模信号的电压放大倍数与对共模信号的电压放大倍数之比。
当然,CMRR越大,放大器的性能越好。
最后再送一张,共模电感的示意图。
一文读懂开关电源中的共模电感
一文读懂开关电源中的共模电感1、电感器作为磁性元件的重要组成部分,被广泛应用于电力电子线路中。
尤其在电源电路中更是不可或缺的部分。
如工业控制设备中的电磁继电器,电力系统之电功计量表(电度表)。
开关电源设备输入和输出端的滤波器,电视接收与发射端之调谐器等等均离不开电感器。
电感器在电子线路中主要的作用有:储能、滤波、扼流、谐振等。
在电源电路中,由于电路处理的均是大电流或高电压的能量传递,故电感器多为“功率型”电感。
正是因为功率电感不同于小信号处理电感,在设计时因开关电源的拓扑方式不一样,设计方式也就各有要求,造成设计的困难。
当前电源电路中的电感器主要用于滤波、储能、能量传递以及功率因数校正等。
电感器设计涵盖了电磁理论,磁性材料以及安规等诸多方面的知识,设计者需对工作情况和相关参数要求(如:电流、电压、频率、温升、材料特性等)有清楚了解以作出最合理的设计。
2、电感器的分类:电感器以其应用环境、产品结构、形状、用途等可分为不同种类,通常电感器设计是以用途及应用环境作为出发点而开始的。
在开关电源中以其用途不同,电感器可分为:共模滤波电感器(Common Mode Choke)常模滤波电感器(Normal Mode Choke)功率因数校正电感(Power Factor Correction - PFC Choke)交链耦合电感器(Coupler Choke)储能平波电感(Smooth Choke)磁放大器线圈(MAG AMP Coil)共模滤波电感器因要求两线圈具有相同的电感值,相同的阻抗等,故该类电感均采用对称性设计,其形状多为TOROID、UU、ET等形状。
3、共模电感的工作原理:共模滤波电感器又称共模扼流线圈(以下简称共模电感或CM.M.Choke)或Line Filter。
在开关电源中,由于整流二极管和滤波电容以及电感中的电流或电压急剧变化,产生电磁。
共模emi滤波电感
共模emi滤波电感
共模EMI滤波电感,也称为共模扼流圈,是一种电子元件,主要用于抑制高速信号线产生的电磁波向外辐射发射。
在板卡设计中,共模电感起到EMI滤波的作用,能够滤除信号线上的共模电磁干扰,同时抑制本身不向外发出电磁干扰,避免影响同一电磁环境下其他电子设备的正常工作。
共模电感的滤波电路由两个线圈绕在同一铁芯上组成,匝数和相位都相同,这样当电路中的正常电流流经共模电感时,产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响。
当有共模电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向磁场而增大线圈的感抗,从而抑制共模噪声。
除了共模电感,还有一种共模滤波器电感/EMI滤波器电感采用铁氧体磁心,双线并绕,具有杂讯抑制对策佳、高共模噪音抑制和低差模噪声信号抑制、低差模噪声信号抑制干扰源、在高速信号中难以变形、体积小、平衡度佳、使用方便和品质高等优点。
广泛应用于抑制电子设备EMI噪音、个人电脑及外围设备的USB线路、DVC、STB的IEEE1394线路、液晶显示面板、低压微分信号等领域。
一文详解共模电感原理及选型
一文详解共模电感原理及选型
1共模电感原理
在介绍共模电感之前先介绍扼流圈,扼流圈是一种用来减弱电路里面高频电流的低阻抗线圈。
为了提高其电感扼流圈通常有一软磁材料制的核心。
共模扼流圈有多个同样的线圈,电流在这些线圈里反向流,因此在扼流圈的芯里磁场抵消。
共模扼流圈常被用来压抑干扰辐射,因为这样的干扰电流在不同的线圈里反向,提高系统的EMC。
对于这样的电流共模扼流圈的电感非常高。
共模电感的电路图如图1所示。
共模信号和差模信号只是一个相对量,共模信号又称共模噪声或者称对地噪声,指两根线分别对地的噪声,对于开关电源的输入滤波器而言,是零线和火线分别对大地的电信号。
虽然零线和火线都没有直接和大地相连,但是零线和火线可以分别通过电路板上的寄生电容或者杂散电容又或者寄生电感等来和大地相连。
差模信号是指两根线直接的信号差值也可以称之为电视差。
假设有两个信号V1、V2
共模信号就为(V1+V2)/2
差模信号就为:对于V1 (V1-V2)/2;对于V2 -(V1-V2)/2
共模信号特点:幅度相等、相位相同的信号。
差模信号特点:幅度相等、相位相反的信号。
如图2所示为差模信号和共模信号的示意图。
图2差模信号和共模信号示意图
2 差模噪声和共模噪声主要来源
对于开关电源而言,如果整流桥后的储能滤波大电容为理想电容,即等效串联电阻为零(忽略所有电容寄生参数),则输入到电源的所有可能的差模噪声源都会被该电容完全旁路或解耦,可是大容量电容的等效串联电阻并非为零。
因此,输入电容的等效串联电阻是从差。
共模电感滤波电路
共模电感滤波电路1. 什么是共模电感滤波电路?共模电感滤波电路是一种用于滤除共模干扰的电路。
在电子设备中,共模干扰是指在信号传输过程中,信号线与地线之间存在的干扰电压。
这种干扰电压通常由电源噪声、电磁辐射等因素引起。
共模电感滤波电路可以通过使用共模电感器来抑制这种共模干扰,从而提高信号的质量和可靠性。
2. 共模电感滤波电路的原理共模电感滤波电路是基于电感器的工作原理设计的。
电感器是一种能够储存磁场能量的元件,当通过电流时,会产生磁场。
在共模电感滤波电路中,共模电感器被连接在信号线与地线之间,起到滤除共模干扰的作用。
当共模干扰信号通过信号线和地线传输时,会在共模电感器上产生电流。
由于共模电感器的特性,它对共模电流具有较高的阻抗,从而使共模干扰电流无法通过电感器,被滤除掉。
而正常的差模信号则不会受到影响,可以正常传输。
3. 共模电感滤波电路的设计设计一个共模电感滤波电路需要考虑以下几个方面:3.1 选择合适的电感器选择合适的电感器是设计共模电感滤波电路的关键。
电感器的参数包括电感值、电流容量等。
根据实际需求,选择合适的电感器可以提高滤波效果。
3.2 确定电路连接方式共模电感滤波电路可以采用串联连接或并联连接的方式。
串联连接方式适用于对共模干扰电流的阻抗要求较高的场景,而并联连接方式适用于对共模干扰电压的阻抗要求较高的场景。
3.3 添加补偿电容为了进一步提高滤波效果,可以在共模电感滤波电路中添加补偿电容。
补偿电容可以与共模电感器并联连接,形成一个LC滤波回路,提高对共模干扰的抑制能力。
4. 共模电感滤波电路的应用共模电感滤波电路在电子设备中有广泛的应用,特别是在高频信号传输和抗干扰性要求较高的场景中。
下面列举几个常见的应用场景:4.1 通信设备在通信设备中,共模电感滤波电路可以用于滤除电源噪声、电磁辐射等干扰,提高信号的传输质量和可靠性。
4.2 模拟信号处理在模拟信号处理中,共模电感滤波电路可以用于滤除共模干扰,提高信号的精确度和稳定性。
贴片共模电感滤波器结构
贴片共模电感滤波器结构贴片共模电感滤波器是一种常用于电子设备中的滤波器,可以有效地抑制共模干扰信号。
本文将从结构、工作原理和应用等方面对贴片共模电感滤波器进行详细介绍。
一、结构贴片共模电感滤波器由电感线圈和贴片电容器组成。
电感线圈通常由多层绕组和铁芯构成,而贴片电容器则采用陶瓷材料制成。
这种结构使得滤波器具有体积小、重量轻、安装方便等特点,非常适合集成在电子设备中。
二、工作原理贴片共模电感滤波器的工作原理基于电感线圈对共模信号的阻抗特性。
共模信号是指同时作用于两个输入端的干扰信号,常常是由于电源的不稳定或外部干扰引起的。
贴片共模电感滤波器通过电感线圈对共模信号产生阻抗,从而将其隔离或降低到一定程度。
在滤波器中,电感线圈起到抑制共模信号的作用,而贴片电容器则起到对差模信号通路的通流作用。
通过合理选择电感线圈和贴片电容器的参数,可以实现对共模信号的滤除和对差模信号的传输。
三、应用贴片共模电感滤波器广泛应用于电子设备中,特别是对于对高频信号要求较高的场合。
以下是几个常见的应用场景:1. 通信设备:在无线通信设备中,贴片共模电感滤波器可以用于抑制电源线上的高频共模干扰,提高通信质量和稳定性。
2. 模拟电路:在模拟电路中,贴片共模电感滤波器可以用于抑制共模噪声,提高信号的纯净度和精确度。
3. 电源管理:在电源管理电路中,贴片共模电感滤波器可以用于对电源线上的共模噪声进行滤除,确保电子设备正常运行。
4. 数据传输:在高速数据传输中,贴片共模电感滤波器可以用于抑制共模噪声,减少数据传输中的误码率。
贴片共模电感滤波器在电子设备中具有重要的应用价值。
它通过合理的结构和工作原理,可以有效地抑制共模干扰信号,提高设备的性能和稳定性。
随着电子技术的不断发展,贴片共模电感滤波器的应用范围将会更加广泛,对于提高电子设备的抗干扰能力具有重要意义。
共模电感、磁珠、以及滤波电容器的工作原理及使用情况
要解决EMC问题,就要了解影响EMC的主要元器件的工作原理,本文将介绍共模电感、磁珠、以及滤波电容器的工作原理及使用情况。
一、共模电感由于EMC所面临解决问题大多是共模干扰,因此共模电感也是我们常用的有力元件之一,共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。
原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。
因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。
共模电感在制作时应满足以下要求:1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。
2)当线圈流过瞬时大电流时,磁芯不要出现饱和。
3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。
4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的而授能力。
通常情况下,同时注意选择所需滤波的频段,共模阻抗越大越好,因此我们在选择共模电感时需要看器件资料,主要根据阻抗频率曲线选择。
另外选择时注意考虑差模阻抗对信号的影响,主要关注差模阻抗,特别注意高速端口。
二、磁珠在产品EMC设计过程中,我们常常会使用到磁珠,铁氧体材料是铁镁合金或铁镍合金,这种材料具有很高的导磁率,他可以是电感的线圈绕组之间在高频高阻的情况下产生的电容最小。
铁氧体材料通常在高频情况下应用,因为在低频时他们主要程电感特性,使得线上的损耗很小。
在高频情况下,他们主要呈电抗特性比并且随频率改变。
实际应用中,铁氧体材料是作为射频电路的高频衰减器使用的。
实际上,铁氧体较好的等效于电阻以及电感的并联,低频下电阻被电感短路,高频下电感阻抗变得相当高,以至于电流全部通过电阻。
10mh - 30mh 共模电感
10mh - 30mh 共模电感一、概述共模电感是一种特殊电感元件,通常用于电子电路中的滤波、隔离和抑制共模干扰等方面。
它的特点是在通常电感的基础上增加了共模抑制能力,能够有效地抑制输入信号引起的共模干扰,提高整个电子系统的抗干扰能力。
10mh - 30mh 共模电感则是其中的一种规格,本文将对其结构、工作原理、应用范围和选型参数等进行详细介绍。
二、结构和工作原理10mh - 30mh 共模电感的结构通常由磁芯、绕组和外壳组成。
磁芯材料一般采用铁氧体或软磁材料,能够提高电感的磁导率和电感值。
绕组采用导线缠绕在磁芯上,形成双绕组或多绕组结构,用来实现电感的互感作用。
外壳则用来保护磁芯和绕组,同时提供连接引脚,方便与其他电路元件连接。
在工作原理上,共模电感的作用是通过磁耦合实现抑制共模干扰。
当输入信号为差模信号时,通常会引起共模电压的产生,导致共模干扰。
而共模电感的磁芯和绕组能够产生磁耦合作用,抑制共模电压的产生,从而实现对共模干扰的抑制。
三、应用范围10mh - 30mh 共模电感在电子电路中有着广泛的应用范围。
它可以用于电磁兼容(EMC)设计中,用来抑制电磁干扰和提高系统的抗干扰能力。
它还可以用在通信设备、电源设备和工业控制设备等领域,用于滤波、隔离和抑制共模干扰。
10mh - 30mh 共模电感也可以用于传感器和测量仪器中,用来提高信号的稳定性和精度。
四、选型参数选择合适的10mh - 30mh 共模电感需要考虑一些重要的参数。
首先是电感值,一般根据具体的应用需求来确定。
其次是电流和电压的额定值,需要符合实际的工作条件。
还需要考虑电感的尺寸、重量和温度特性等参数,以确保它能够稳定可靠地工作在电子系统中。
五、结论10mh - 30mh 共模电感在电子电路中具有重要的作用,能够有效地抑制共模干扰,提高系统的抗干扰能力。
在选择和应用时,需要充分考虑其结构、工作原理、应用范围和选型参数等因素,以确保能够满足实际的设计需求。
直流电源共模电感滤波电路
直流电源共模电感滤波电路
直流电源共模电感滤波电路是一种常见的电源滤波电路,主要用于去除直流电源输出中的共模噪声。
该电路由共模电感和滤波电容组成,通过共模电感将共模信号与地之间的干扰隔离,然后通过滤波电容对干扰进行滤波,最终得到干净的直流电源输出。
在实际应用中,直流电源常常会受到来自电源线路、开关电源等外界环境的干扰,这些干扰会被直接传递到输出端口,导致输出信号质量下降甚至无法正常工作。
因此,采用直流电源共模电感滤波电路能够有效地去除这些干扰,提高输出信号的质量和稳定性。
直流电源共模电感滤波电路的关键在于共模电感的设计,其主要参数包括电感值、直流电阻和工作频率。
一般来说,电感值越大、直流电阻越小,滤波效果就越好。
但是,电感值过大会增加电路的体积和成本,直流电阻过小则会导致损耗增加。
因此,在设计共模电感时需要兼顾滤波效果、成本和体积等因素。
总之,直流电源共模电感滤波电路是一种重要的电源滤波电路,它能够有效地去除直流电源输出中的共模干扰,提高输出信号的质量和稳定性,对于许多电子设备的正常运行都具有重要的意义。
- 1 -。
共模滤波器和磁珠
共模滤波器和磁珠在抑制电磁干扰方面具有不同的特性和应用。
共模滤波器:主要被应用于抑制信号线缆上的共模噪声,提高信号的抗干扰能力。
其工作原理是利用电感器和电容器的组合来吸收和旁路共模噪声,从而消除信号线缆上的电磁干扰。
共模滤波器通常由两个绕线电感器和两个电容元件组成,它们被放置在铁氧体磁芯上以增强效果。
这种滤波器特别适用于需要高速信号传输的应用,如USB、HDMI等接口。
磁珠:磁珠是一种将噪声转换为热能的元件,常被用于电源线和地线中以抑制噪声。
其工作原理是将噪声的能量吸收并转换为热能,从而达到消除噪声的目的。
磁珠具有电阻和电感的特性,可以吸收高频噪声并将其转换为热能散发掉。
磁珠的应用范围较广,但通常适用于低频信号端口和地线噪声抑制。
总的来说,共模滤波器和磁珠在抑制电磁干扰方面具有不同的特性和应用。
在实际应用中,可以根据具体需求选择适合的元件来达到最佳的抗干扰效果。
单级共模电感滤波电感
单级共模电感滤波电感
2. 共模信号滤除:当共模信号通过电路时,它会感应出一个电磁场,进而在另一个线圈上 感应出一个电压。由于电感的特性,这个电压会与输入信号的共模部分相位相反,从而抵消 共模噪声。
3. 差模信号透传:与共模信号不同,差模信号(即两个输入信号之间的差异)不会在互感 器中感应出电压。因此,差模信号可以通过互感器无阻碍地传输。
单级共模电感滤波电感
单级共模电感滤波电感是一种用于滤除电路中共模噪声的电感器。共模噪声是指同时作用 于电路两个输入端的噪声信号,通常是由于电源干扰、地线干扰或电磁辐射引起的。
单级共模电感滤波电感的工作原理如下:
1. 电感耦合:单级共模电感滤波电感通常由两个线圈(互感器)组成,它们之间通过磁耦 合相连。其中一个线圈连接到电路的共模信号线上,而另一个线圈连接到电路的地线上。
通过以上原理,单级共模电感滤波电感可以有效地滤除电路中的共模噪声,提高信号的纯 净度和抗干扰能力。
单级共模电感滤波电感
需要注意的是,单级共模电感滤波电感的设计和选用需要考虑电路的特性和工作频率。 适的电感器参数(如电感值、电流容量等)可以确保电路的滤波效果和稳定性。
共模电感 滤波
共模电感滤波共模电感滤波是一种常用的电子电路滤波器,用于去除电路中的共模噪声。
在讨论共模电感滤波之前,我们先来了解一下什么是共模噪声。
共模噪声是指同时作用于电路中两个信号引线上的噪声信号。
在现代电子设备中,由于电路的复杂性和高频信号的传输,共模噪声的问题变得越来越严重。
共模噪声会引起电路的干扰和误差,影响电路的性能和可靠性。
共模电感滤波器通过使用共模电感器来滤除共模噪声。
共模电感器是一种特殊的电感器,它是由两个独立的线圈组成的。
这两个线圈分别与两个信号引线相连,并且它们的磁场方向相反。
当共模噪声信号通过这两个线圈时,由于其磁场方向相反,共模电感器会将共模噪声信号抵消掉,从而达到滤除共模噪声的效果。
共模电感滤波器的工作原理可以通过一个简单的例子来说明。
假设我们有一个传输信号的电缆,其中包含了共模噪声。
当信号通过电缆时,共模噪声会与信号发生叠加,从而导致信号的失真。
为了解决这个问题,我们可以在电缆的两端分别连接一个共模电感器。
这样,当共模噪声信号通过电缆时,它会被共模电感器抵消掉,从而保证信号的准确传输。
除了在电缆中使用共模电感滤波器外,它还可以应用于其他电子设备中,比如音频放大器、通信设备等。
在音频放大器中,共模电感滤波器可以有效地滤除电源线上的共模噪声,从而提高音质。
在通信设备中,共模电感滤波器可以去除信号传输中的共模噪声,从而提高通信质量。
需要注意的是,共模电感滤波器并非万能的,它只能对共模噪声起到一定的抑制作用,并不能完全消除。
此外,共模电感滤波器的性能也会受到其自身参数的影响,比如线圈的品质因数、电感值等。
因此,在设计和选择共模电感滤波器时,需要根据具体的应用场景和要求来确定其参数。
共模电感滤波器是一种常用的滤波器,用于去除电路中的共模噪声。
通过使用共模电感器,共模电感滤波器可以抵消共模噪声信号,从而提高电路的性能和可靠性。
然而,需要注意的是共模电感滤波器并不是万能的,其性能受到多种因素的影响。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
共模滤波电感器不是电感量越大越好.主要看你要滤除的共模干扰的频率范围,先说一下共模电感器滤波原理:共模电感器对共模干扰信号的衰减或者说滤除有两个原理,一是靠感抗的阻挡作用,但是到高频电感量没有了靠的是磁心的损耗吸收作用;他们的综合效果是滤波的真实效果.当然在低频段靠的是电感量产生的感抗.同样的电感器磁心材料绕制成的电感器,随着电感量的增加,Z阻抗与频率曲线变化的趋势是随着你绕制的电感器的电感量的增加,Z 阻抗峰值电时的频率就会下降,也就是说电感量越高所能滤除的共模干扰的频率越低,换句话说对低频共模干扰的滤除效果越好,对高频共模信号的滤除效果越差甚至不起作用.这就是为什么有的滤波器使用两级滤波共模电感器的原因一级是用低磁导率(磁导率7K以下铁氧体材料甚至可以使用1000的NiZn材料) 材料作成共模滤波电感器,滤出几十MHz或更高频段的共模干扰信号,另一级采用高导磁材料(如磁导率10000h00的铁氧体材料或着非晶体材料)来滤除1MHz以下或者几百kHz的共模干扰信号.因此首先要确认你要滤除共模干扰的频率范围然后再选择合适的滤波电感器材料.共模电感的测量与诊断电源滤波器的设计通常可从共模和差模两方面来考虑。
共模滤波器最重要的部分就是共模扼流圈,与差模扼流圈相比,共模扼流圈的一个显著优点在于它的电感值极高,而且体积又小,设计共模扼流圈时要考虑的一个重要问题是它的漏感,也就是差模电感。
通常,计算漏感的办法是假定它为共模电感的1%,实际上漏感为共模电感的 0.5% ~ 4%之间。
在设计最优性能的扼流圈时,这个误差的影响可能是不容忽视的。
漏感的重要性漏感是如何形成的呢?紧密绕制,且绕满一周的环形线圈,即使没有磁芯,其所有磁通都集中在线圈“芯”内。
但是,如果环形线圈没有绕满一周,或者绕制不紧密,那么磁通就会从芯中泄漏出来。
这种效应与线匝间的相对距离和螺旋管芯体的磁导率成正比。
共模扼流圈有两个绕组,这两个绕组被设计成使它们所流过的电流沿线圈芯传导时方向相反,从而使磁场为0。
如果为了安全起见,芯体上的线圈不是双线绕制,这样两个绕组之间就有相当大的间隙,自然就引起磁通“泄漏”,这即是说,磁场在所关心的各个点上并非真正为0。
共模扼流圈的漏感是差模电感。
事实上,与差模有关的磁通必须在某点上离开芯体,换句话说,磁通在芯体外部形成闭合回路,而不仅仅只局限在环形芯体内。
如果芯体具有差模电感,那么,差模电流就会使芯体内的磁通发生偏离零点,如果偏离太大,芯体便会发生磁饱和现象,使共模电感基本与无磁芯的电感一样。
结果,共模辐射的强度就如同电路中没有扼流圈一样。
差模电流在共模环形线圈中引起的磁通偏离可由下式得出:式中,是芯体中的磁通变化量,Ldm是测得的差模电感,是差模峰值电流,n为共模线圈的匝数。
由于可以通过控制B总,使之小于B饱和,从而防止芯体发生磁饱和现象,有以下法则:式中,是差模峰值电流,Bmax是磁通量的最大偏离,n是线圈的匝数,A是环形线圈的横截面积。
Ldm是线圈的差模电感。
共模扼流圈的差模电感可以按如下方法测得:将其一引腿两端短接,然后测量另外两腿间的电感,其示值即为共模扼流圈的差模电感。
共模扼流圈综述滤波器设计时,假定共模与差模这两部分是彼此独立的。
然而,这两部分并非真正独立,因为共模扼流圈可以提供相当大的差模电感。
这部分差模电感可由分立的差模电感来模拟。
为了利用差模电感,在滤波器的设计过程中,共模与差模不应同时进行,而应该按照一定的顺序来做。
首先,应该测量共模噪声并将其滤除掉。
采用差模抑制网络(Differential Mode Rejection Network),可以将差模成分消除,因此就可以直接测量共模噪声了。
如果设计的共模滤波器要同时使差模噪声不超过允许范围,那么就应测量共模与差模的混合噪声。
因为已知共模成分在噪声容限以下,因此超标的仅是差模成分,可用共模滤波器的差模漏感来衰减。
对于低功率电源系统,共模扼流圈的差模电感足以解决差模辐射问题,因为差模辐射的源阻抗较小,因此只有极少量的电感是有效的。
尽管少量的差模电感非常有用,但太大的差模电感可以使扼流圈发生磁饱和。
可根据公式(2)作简单计算来避免磁饱和现象的发生。
用LISN原理测量共模扼流圈饱和特性的方法测量共模线圈磁芯(整体或部分)的饱和特性通常是很困难的。
通过简单的试验可以看出共模滤波器的衰减在多大程度上受由60Hz编置电流引起的电感减小量的影响。
进行此项测试需要一台示波器和一个差模抑制网络(DMRN)。
首先,用示波器来监测线电压。
按如下方法从示波器的A通道输入信号,将示波器的时间基准置为2ms/div,然后将触发信号加在A通道上,在交流电压达到峰值时会有线电流产生,此时滤波器效能的降级是意料中的事情。
差模抑制网络(DMRN)的输入端连接到LISN,输出端用50的阻抗进行匹配且与示波器的B通道相连。
当共模扼流圈工作在线性区时,在输入电流波动期间,B通道监测到的发射增加值不超过6—10dB。
图1为此测试在示波器上显示的结果,上面的曲线为共模发射;下面的曲线为线电压。
在线电压峰值期间,桥式整流器正向导通且传送充电电流。
图1 示波器上显示的由于60Hz充电电流引起的共模扼流圈的降级如果共模扼流圈达到饱和,那么在输入浪涌增加时,发射将会增加。
如果共模扼流圈达到强饱和,发射强度与不加滤波器时的情况是一样的,也就是说很容易达到40dB以上。
这些实验数据可用其他方法来解释。
发射最小值(线电流为0的时候)是滤波器无偏置电流时表现出来的效果。
峰值发射与最小发射的比率,即降级因子,用来衡量线电流偏移量对滤波器实际效果的影响。
降级因子较大表明共模扼流圈磁芯完全没有得到恰当的使用,较好的滤波器的“固有降级因子”差不多在2—4之间。
它是由两种现象产生的:第一,60Hz充电电流引起的电感减小(如上所述);第二,桥式整流器的正向及反向导通。
共模发射的等效电路由一个阻抗约为200pF的电压源、二极管阻抗和LISN的共模阻抗组成,如图2所示。
当桥式整流器正向偏置时,在源阻抗、25和LISN共模阻抗之间会产生分压现象。
当桥整流器反向偏置时,在源阻抗、整流桥反偏电容、LISN之间产生分压现象。
当二极管整流桥反向偏置电容较小时,对共模滤除有一定效果。
当整流桥正向偏置时则对共模滤除没有影响。
图2 共模辐射等效电路由于产生了分压,固有降级因子的预期值为2左右。
实际值的变化相当大,主要取决于源阻抗和二极管整流桥反向偏置电容的实际大小。
在Flugan发明的一个电路中,正是应用这个原理来减小镇流器的传导发射的。
用电流原理测量共模扼流圈饱和特性的方法如果测试人员相当谨慎,那么就可以采取类似MIL-STD-461中的测试装置来检测共模扼流圈的饱和特性。
这个原理的应用如下:测试时采用两只电流探头,低频探头监测线电流,高频探头仅测量共模发射电流。
线电流监视器作为触发源。
不过,使用电流探头的一个隐患是差模电流衰减是管芯内绕组导线对称性的函数。
如果精心合理安排绕线布局的话,30dB左右的差模电流衰减是能够得到的。
即使达到这个衰减值,测得的差模分量也可能超过预期的共模分量值。
可用如下两项技术来解决这一问题:第一,将一只6kHz转折频率的高阶高通滤波器与示波器串联(注意应用50的终端阻抗进行匹配)。
第二,在每只10μF的电容与电源总线之间接入一根导线。
为了测量共模辐射,电流探头应夹在这些载有极小线电流的导线近旁。
共模扼流圈内存在的差模与共模磁通为了快速且浅显地介绍共模扼流圈的作用,可考虑采用以下论述:“共模扼流圈管芯两侧的磁场相互抵消,因此不存在磁通使管芯饱和。
”尽管这种论述对共模扼流圈作用的直觉叙述具体化了,但实质上并非如此。
参考以下围绕麦克斯韦方程所进行的讨论:* 假设电流密度J产生磁场H,那么就可得出结论:附近的另一个电流不会抵消或阻止磁场或者是由此而产生的电场。
* 同样一个相邻的电流可以导致磁场路径的改变。
* 在环形共模电感的特殊场合中,每条引线中的差模电流密度可假定是相等的,且方向相反。
所以由此而产生的磁场必定在环形磁芯周边上的总和为0,而在其外部则不为0!磁芯的作用就好象它在线圈绕组的间隙处裂为两半时所表现出来的效果一样。
每个绕组在环形线圈一半的区域内产生磁场,意指穿过空气的磁场必定会形成自封闭回路,图3是环形磁芯和差模电流磁路的示意图。
图3 共模环形磁芯中差模磁路示意图漏感综述共模扼流圈能发挥一定的作用是由于μcm比μdm大好几个数量级的缘故,因为共模电流通常很小,可以通过使L/D保持在较低值来获得更小的μdm。
为了得到共模电感,同时又要使差模电感最小,最好是采用横截面积较大的磁芯绕制成多匝线圈。
采用较大的螺旋管磁芯,也并非一定要这样的磁芯,可在共模扼流圈内并入有效的差模电感。
因为差模磁通是远离磁芯(环形结构)的,因此可能会产生极强的辐射。
尤其是滤波器安装在PCB板上的情况下,这种辐射可以耦合到电源线,使传导发射增强。
当磁性材料被带到场内时(例如,环形磁芯放置在铁壳里),差模磁导率就可能会显著地增加,从而由于差模电流而导致磁芯的饱和。
无辐射共模扼流圈结构为了实现有效的滤波器设计,磁通离开磁芯引起的辐射问题必须予以解决。
其办法有是将差模磁通限制在磁性结构物体中(壶形铁芯),或者是为差模磁通(E形铁芯)提供一条高磁导率的路径。
壶形铁芯结构如果共模扼流圈采用壶形铁芯结构,那么就需两个绕轴。
图4示意出了壶形铁芯窗格里的两组线圈及其产生的磁通路径。
同时也表明了同一结构条件下的差模磁通路径。
图4 共模壶形铁芯电感中的磁路注意第一组,所有的磁通均在铁芯内部。
正是由于这种结构,从铁芯外表面到其中心垂直隔板间的空气隙长度决定了纯磁阻的大小。
使用磁导率大于10的垫圈后,就可以通过改变垫圈(其值等于空气隙长度)内外半径的大小来控制纯磁阻。
壶形铁芯的差模电感、共模扼流圈可按如下公式计算:具体尺寸如图5所示。
图5 壶形铁芯计算差模电感时的具体尺寸减小差模路径上的磁阻将使差模电感增加。
使用这种共模扼流圈的最显著的优点就在于壶形铁芯具有固有的“自屏蔽”特性。
E形铁芯结构另外还有一种共模扼流圈,它比环形磁芯线圈更易绕制,但比壶形铁芯线圈的辐射更厉害,E形铁芯线圈如图6所示。
图中表明,共模磁通将外部引线上的两组线圈都联系在一起了。
为了获得较高的磁导率,在外部引线上应没有空气隙。
另一方面,差模磁通将外部引线和中心引线联系起来。
差模路径中的磁导率可以通过使中心引线彼此隔开来取得,中心引线是产生辐射的主要区域。