实验十函数应用答案

合集下载

人教版高一上学期数学(必修二)《4.6函数的应用》同步测试题及答案

人教版高一上学期数学(必修二)《4.6函数的应用》同步测试题及答案

人教版高一上学期数学(必修二)《4.6函数的应用》同步测试题及答案1.某研究小组在一项实验中获得一组关于y,t的数据,将其整理得到如图所示的图形.下列函数中,最能近似刻画y与t之间关系的是()A.y=2tB.y=2t2C.y=t3D.y=log2t2.某种产品今年的产量是a,如果保持5%的年增长率,那么经过x年(x∈N*),该产品的产量y满足()A.y=a(1+5%x)B.y=a+5%C.y=a(1+5%)x-1D.y=a(1+5%)x3.中国茶文化博大精深.茶水的口感与茶叶类型和水的温度有关.经验表明,某种绿茶用85℃的水泡制,再等到茶水温度降至60℃时饮用,可以产生最佳口感.为分析泡制一杯最佳口感茶水所需的时间,某研究人员每隔1min测量一次茶水的温度,根据所得数据作出如图所示的散点图.观察散点图的分布情况,下列哪个函数模型可以近似地刻画茶水温度y随时间x变化的规律()A.y=mx2+n(m>0)B.y=mx+n(m>0)C.y=ma x+n(m>0,a>0,a≠1)D.y=m log a x+n(m>0,a>0,a≠1)4.大西洋鲑鱼每年都要逆流而上,洄游到产卵地产卵.科学家发现鲑鱼的游速v(单位:m/s)与鲑鱼的耗氧量的单位数P的关系为v=12log3P100,则鲑鱼静止时耗氧量的单位数为()A.1B.100C.200D.3005.国内首个百万千瓦级海上风电场—三峡阳江沙扒海上风电项目宣布实现全容量并网发电,为粤港澳大湾区建设提供清洁能源动力.风速预测是风电出力大小评估的重要工作,通常采用威布尔分布模型,有学者根据某地气象数据得到该地的威布尔分布模型:F(x)=1-e−(x2)k,其中k为形状参数,x为风速.已知风速为1m/s时,F≈0.221,则当风速为4m/s时,F约为(参考数据:ln0.779≈-0.25,e-4≈0.018)() A.0.920B.0.964C.0.975D.0.9826.(多选)某工厂生产一种溶液,按市场要求杂质含量不得超过0.1%,而这种溶液最初的杂质含量为2%,现进行过滤,已知每过滤一次杂质含量减少1,则使产品达到市场要求的过滤次数可以为(参考数据:lg2≈0.301,3lg3≈0.477)()A.6B.9C.8D.77.近来,国内多个城市纷纷加码布局“夜经济”,以满足不同层次的多元消费,并拉动就业、带动创业,进而提升区域经济发展活力.某夜市的一位工艺品售卖者,通过对每天销售情况的调查发现:该工艺品在过去的一个月内(以30天计),日销售量Q(x)(单位:件)与时间x(单位:天)的部分数据如表所示:x 10 15 20 25 30Q(x) 50 55 60 55 50给出以下四个函数模型:①Q(x)=ax+b;②Q(x)=a|x-m|+b;③Q(x)=a·b x;④Q(x)=a log b x.根据表中的数据,最适合用来描述日销售量Q(x)与时间x的变化关系的函数模型是.8.某种放射性元素的原子数N随时间t的变化规律是N=N0e-λt,其中N0,λ为正常数.由放射性元素的这种性质,可以制造高精度的时钟,用原子数表示时间t为.9.(10分)据观测统计,某湿地公园某种珍稀鸟类的现有个数约1000只,并以平均每年8%的速度增加.(1)求两年后这种珍稀鸟类的大约个数;(3分)(2)写出y(珍稀鸟类的个数)关于x(经过的年数)的函数关系式;(3分)(3)约经过多少年以后,这种鸟类的个数达到现有个数的3倍或以上?(结果为整数)(参考数据:lg2≈0.3010,lg 3≈0.4771)(4分)10.(12分)芦荟是一种经济价值很高的观赏、食用植物,不仅可美化居室、净化空气,又可美容保健,因此深受人们欢迎,在国内占有很大的市场.某人准备进军芦荟市场,栽培芦荟,为了了解行情,进行市场调研,从4月1日起,芦荟的种植成本Q(单位:元/10kg)与上市时间t(单位:天)的数据情况如表:t 50 110 250Q 150 108 150(1)根据表中数据,从下列函数中选取一个最能反映芦荟种植成本Q 与上市时间t 的变化关系的函数:Q =at +b ,Q =at 2+bt +c ,Q =a ·b t ,Q =a log b t ;(6分)(2)利用你选择的函数,求芦荟种植成本最低时的上市天数及最低种植成本.(6分)11.白细胞是一类无色、球形、有核的血细胞,正常成人白细胞计数为(4.0~10.0)×109/L ,可因每日不同时间和机体不同的功能状态而在一定范围内变化.若白细胞计数因为感染产生病理性持续升高,则需进一步探查原因,进行药物干预.研究人员在对某种药物的研究过程中发现,在特定实验环境下的某段时间内,可以用对数模型W (m )=-W 0ln(Km )描述白细胞计数W (m )(单位:109/L)与随用药量m (单位:mg)的变化规律,其中W 0为初始白细胞计数对应值,K 为参数.已知W 0=20,用药量m =50时,在规定时间后测得白细胞计数W =14,要使白细胞计数达到正常值,则需将用药量至少提高到(参考数据:e 15≈1.221)( ) A.58B.59 C.60D.6212.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e 为自然对数的底数,k ,b 为常数).若该食品在0 ℃的保鲜时间是192 h ,在22 ℃的保鲜时间是48 h ,则该食品在33 ℃的保鲜时间是( ) A.16 hB.20 h C.24 hD.26 h13.某工厂生产过程中产生的废气必须经过过滤后才能排放,已知在过滤过程中,废气中的污染物含量p (单位:毫克/升)与过滤时间t (单位:小时)之间的关系为p (t )=p 0e -kt (e 为自然对数的底数,p 0为污染物的初始含量).过滤1小时后,检测发现污染物的含量减少了15,要使污染物的含量不超过初始值的110 000,至少还需过滤 小时(参考数据:lg 2≈0.301 0)( ) A.40B.38 C.44D.4214.光线通过一块玻璃,其强度要失掉原来的110,要使通过玻璃的光线强度为原来的12以下,至少需要这样的玻璃板的块数为 .(lg 2≈0.301 0,lg 3≈0.477 1)15.为了预防某种病毒,某商场需要通过喷洒药物对内部空间进行全面消毒.出于对顾客身体健康的考虑,相关部门规定空气中这种药物的浓度不超过0.25毫克/立方米时,顾客方可进入商场.已知从喷洒药物开始,商场内部的药物浓度y (毫克/立方米)与时间t (分钟)之间的函数关系为y ={0.1t,0≤t ≤10,(12)t10−a ,t >10,函数的图象如图所示.如果商场规定9:30顾客可以进入商场,那么开始喷洒药物的时间最迟是( )A.9:00B.8:40C.8:30D.8:0016.(12分)科学家发现某种特殊物质的温度y (单位:摄氏度)随时间x (单位:分钟)的变化规律满足关系式:y =m ·2x +21-x (0≤x ≤4,m >0).(1)若m =2,求经过多少分钟,该物质的温度为5摄氏度;(5分) (2)如果该物质温度总不低于2摄氏度,求m 的取值范围.(7分)参考答案1.D 2.D 3.C 4.B5.D [因为F (1)≈0.221 所以e−12k≈0.779,12k ≈-ln 0.779,2k ≈4,得k ≈2所以F (4)=1-e −2k≈1-e -4≈0.982.]6.BC [设经过n 次过滤,产品达到市场要求,则 2100×⎝⎛⎭⎫23n ≤11 000即⎝⎛⎭⎫23n ≤120,由n lg 23≤-lg 20即n (lg 2-lg 3)≤-(1+lg 2) 得n ≥1+lg 2lg 3-lg 2≈7.4.]7.② 8.t =-1λln NN 09.解 (1)依题意,得一年后这种鸟类的个数为 1 000+1 000×8%=1 080(只)两年后这种鸟类的个数为 1 080+1 080×8%≈1 166(只).(2)由题意可知珍稀鸟类的现有个数约1 000只,并以平均每年8%的速度增加 则所求的函数关系式为 y =1 000×1.08x ,x ∈N .(3)令1 000×1.08x ≥3×1 000,得1.08x ≥3,两边取常用对数得 lg 1.08x ≥lg 3,即x lg 1.08≥lg 3 因为lg 1.08>0,所以x ≥lg 3lg 1.08所以x ≥lg 3lg 108100=lg 3lg 108-2因为lg 108=lg(33×22)=3lg 3+2lg 2 所以x ≥lg 33lg 3+2lg 2-2≈0.477 13×0.477 1+2×0.301 0-2≈14.3故约经过15年以后,这种鸟类的个数达到现有个数的3倍或以上.10.解 (1)由所提供的数据可知,刻画芦荟种植成本Q 与上市时间t 的变化关系的函数不可能是常函数,若用函数Q =at +b ,Q =a ·b t ,Q =a log b t 中的任意一个来反映时都应有a ≠0,且上述三个函数均为单调函数,这与表格所提供的数据不符合,所以应选用二次函数Q =at 2+bt +c 进行描述,将表格所提供的三组数据分别代入函数Q =at 2+bt +c可得⎩⎨⎧150=2 500a +50b +c ,108=12 100a +110b +c ,150=62 500a +250b +c .解得a =1200,b =-32,c =4252.所以刻画芦荟种植成本Q 与上市时间t 的变化关系的函数为 Q =1200t 2-32t +4252.(2)由(1)可得,函数Q 为图象开口向上,对称轴为t =--322×1200=150的抛物线所以当t =150天时,芦荟种植成本最低为Q =1200×1502-32×150+4252=100(元/10 kg). 11.D [由已知W 0=20,m =50,W (50)=14,代入W (m )=-W 0ln(Km ) 则14=-20ln(50K ),解得K =e−71050则W (m )=-20ln (me −71050)因为用药量m =50时,在规定时间后测得白细胞计数W =14,白细胞计数值偏高 所以令W (m )=-20ln (me −71050)≤10 即ln (me−71050)≥-12解得m ≥50e 15≈50×1.221=61.05.所以要使白细胞计数达到正常值,则需将用药量至少提高到62.] 12.C [由题意可知,当x =0时,y =192;当x =22时,y =48 ∴⎩⎨⎧e b=192,e 22k +b =48,解得⎩⎪⎨⎪⎧e b=192,e 11k =12,则当x =33时 y =e 33k +b =(e 11k )3·e b =⎝⎛⎭⎫123×192=24.]13.D [根据题设,得45p 0=p 0e -k ∴e -k =45,所以p (t )=p 0⎝⎛⎭⎫45t ;由p (t )=p 0⎝⎛⎭⎫45t ≤110 000p 0,得⎝⎛⎭⎫45t ≤10-4,两边分别取以10为底的对数 并整理得t (1-3lg 2)≥4 ∴t ≥41-3lg 2≈41.2因此,至少还需过滤42小时.] 14.7解析 设至少需要x 块玻璃板由题意知⎝⎛⎭⎫1-110x <12即⎝⎛⎭⎫910x <12两边取对数lg ⎝⎛⎭⎫910x <lg 12即x ·(lg 9-lg 10)<-lg 2 即x ·(1-2lg 3)>lg 2 x >lg 21-2lg 3≈6.57 ∴x =7.15.A [根据函数的图象,可得函数的图象过点(10,1)代入函数的解析式,可得(12)1−a=1,解得a =1,所以y ={0.1t,0≤t ≤10,(12)t 10−1,t >10,令y ≤0.25,可得0.1t ≤0.25或(12)t10−1≤0.25解得0<t ≤2.5或t ≥30所以如果商场规定9:30顾客可以进入商场,那么开始喷洒药物的时间最迟是9:00.] 16.解 (1)由题意,得m =2 令y =2·2x +21-x =2·2x +22x =5解得x =1(负值舍去)因此,经过1分钟,该物质的温度为5摄氏度. (2)由题意得m ·2x +21-x ≥2对一切0≤x ≤4恒成立 则由m ·2x +21-x ≥2,得m ≥22x -222x 令t =2-x ,则116≤t ≤1且m ≥2t -2t 2构造函数f (t )=2t -2t 2 =-2⎝⎛⎭⎫t -122+12所以当t =12时,函数y =f (t )取得最大值12 则m ≥12.因此,实数m 的取值范围是⎣⎡⎭⎫12,+∞.。

函数模型及其应用

函数模型及其应用

函数模型及其应用1.几类函数模型2.三种函数模型的性质概念方法微思考请用框图概括解函数应用题的一般步骤. 提示 解函数应用题的步骤题组一 思考辨析1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)某种商品进价为每件100元,按进价增加10%出售,后因库存积压降价,若按九折出售,则每件还能获利.( × )(2)函数y =2x 的函数值比y =x 2的函数值大.( × ) (3)不存在x 0,使0xa <x n 0<log a x 0.( × )(4)“指数爆炸”是指数型函数y =a ·b x +c (a ≠0,b >0,b ≠1)增长速度越来越快的形象比喻.( × )题组二 教材改编2.某工厂一年中各月份的收入、支出情况的统计图如图所示,则下列说法中错误的是( )A.收入最高值与收入最低值的比是3∶1B.结余最高的月份是7月C.1至2月份的收入的变化率与4至5月份的收入的变化率相同D.前6个月的平均收入为40万元 答案 D解析 由题图可知,收入最高值为90万元,收入最低值为30万元,其比是3∶1,故A 正确;由题图可知,7月份的结余最高,为80-20=60(万元),故B 正确;由题图可知,1至2月份的收入的变化率与4至5月份的收入的变化率相同,故C 正确;由题图可知,前6个月的平均收入为16×(40+60+30+30+50+60)=45(万元),故D 错误.3.生产一定数量的商品的全部费用称为生产成本,某企业一个月生产某种商品x 万件时的生产成本为C (x )=12x 2+2x +20(万元).一万件售价为20万元,为获取更大利润,该企业一个月应生产该商品数量为 万件. 答案 18解析 利润L (x )=20x -C (x )=-12(x -18)2+142,当x =18时,L (x )有最大值.4.用长度为24的材料围一矩形场地,中间加两道隔墙,要使矩形的面积最大,则隔墙的长度为 . 答案 3解析 设隔墙的长度为x (0<x <6),矩形面积为y , 则y =x ×24-4x2=2x (6-x )=-2(x -3)2+18,∴当x =3时,y 最大.5.一枚炮弹被发射后,其升空高度h 与时间t 的函数关系为h =130t -5t 2,则该函数的定义域是 . 答案 [0,26]解析 令h ≥0,解得0≤t ≤26,故所求定义域为[0,26]. 题组三 易错自纠6.某市生产总值连续两年持续增加.第一年的增长率为p ,第二年的增长率为q ,则该市这两年生产总值的年平均增长率为 . 答案(p +1)(q +1)-1解析 设年平均增长率为x ,则(1+x )2=(1+p )(1+q ), ∴x =(1+p )(1+q )-1.7.已知某种动物繁殖量y (只)与时间x (年)的关系为y =a log 3(x +1),设这种动物第2年有100只,到第8年它们发展到 只. 答案 200解析 由题意知100=a log 3(2+1),∴a =100, ∴y =100log 3(x +1).当x =8时,y =100log 39=200.题型一 用函数图像刻画变化过程1.高为H ,满缸水量为V 的鱼缸的轴截面如图所示,其底部破了一个小洞,满缸水从洞中流出,若鱼缸水深为h 时水的体积为v ,则函数v =f (h )的大致图像是( )答案 B解析v=f(h)是增函数,且曲线的斜率应该是先变大后变小,故选B.2.设甲、乙两地的距离为a(a>0),小王骑自行车匀速从甲地到乙地用了20分钟,在乙地休息10分钟后,他又匀速从乙地返回到甲地用了30分钟,则小王从出发到返回原地所经过的路程y和其所用的时间x的函数图像为()答案 D解析y为“小王从出发到返回原地所经过的路程”而不是位移,故排除A,C.又因为小王在乙地休息10分钟,故排除B,故选D.3.汽车的“燃油效率”是指汽车每消耗1升汽油行驶的里程.下图描述了甲、乙、丙三辆汽车在不同速度下的燃油效率情况.下列叙述中正确的是()A.消耗1升汽油,乙车最多可行驶5千米B.以相同速度行驶相同路程,三辆车中,甲车消耗汽油量最多C.甲车以80千米/时的速度行驶1小时,消耗10升汽油D.某城市机动车最高限速80千米/时,相同条件下,在该市用丙车比用乙车更省油答案 D解析根据图像所给数据,逐个验证选项.根据图像知,当行驶速度大于40千米/时时,消耗1升汽油,乙车最多行驶里程大于5千米,故选项A错;以相同速度行驶时,甲车燃油效率最高,因此以相同速度行驶相同路程时,甲车消耗汽油最少,故选项B错;甲车以80千米/时的速度行驶时燃油效率为10千米/升,行驶1小时,里程为80千米,消耗8升汽油,故选项C 错;最高限速80千米/时,丙车的燃油效率比乙车高,因此相同条件下,在该市用丙车比用乙车更省油,故选项D 对. 思维升华 判断函数图像与实际问题变化过程相吻合的两种方法(1)构建函数模型法:当根据题意易构建函数模型时,先建立函数模型,再结合模型选图像. (2)验证法:根据实际问题中两变量的变化快慢等特点,结合图像的变化趋势,验证是否吻合,从中排除不符合实际的情况,选择出符合实际情况的答案. 题型二 已知函数模型的实际问题例1 (1)加工爆米花时,爆开且不糊的粒数占加工总粒数的百分比称为“可食用率”.在特定条件下,可食用率p 与加工时间t (单位:分钟)满足函数关系p =at 2+bt +c (a ,b ,c 是常数),如图记录了三次实验的数据.根据上述函数模型和实验数据,可以得到最佳加工时间为 分钟.答案 3.75解析 根据图表,把(t ,p )的三组数据(3,0.7),(4,0.8),(5,0.5)分别代入函数关系式, 联立方程组得⎩⎪⎨⎪⎧0.7=9a +3b +c ,0.8=16a +4b +c ,0.5=25a +5b +c ,消去c 化简得⎩⎪⎨⎪⎧7a +b =0.1,9a +b =-0.3,解得⎩⎪⎨⎪⎧a =-0.2,b =1.5,c =-2.所以p =-0.2t 2+1.5t -2=-15⎝⎛⎭⎫t 2-152t +22516+4516-2=-15⎝⎛⎭⎫t -1542+1316,所以当t =154=3.75时,p 取得最大值,即最佳加工时间为3.75分钟.(2)某商场从生产厂家以每件20元的价格购进一批商品,若该商品零售价定为p 元,销售量为Q 件,则销售量Q (单位:件)与零售价p (单位:元)有如下关系:Q =8 300-170p -p 2,则最大毛利润为(毛利润=销售收入-进货支出)( ) A.30元 B.60元 C.28 000元 D.23 000元答案 D解析设毛利润为L(p)元,则由题意知L(p)=pQ-20Q=Q(p-20)=(8 300-170p-p2)(p-20)=-p3-150p2+11 700p-166 000,所以L′(p)=-3p2-300p+11 700.令L′(p)=0,解得p=30或p=-130(舍去).当p∈(0,30)时,L′(p)>0,当p∈(30,+∞)时,L′(p)<0,故L(p)在p=30时取得极大值,即最大值,且最大值为L(30)=23 000.思维升华求解所给函数模型解决实际问题的关注点(1)认清所给函数模型,弄清哪些量为待定系数.(2)根据已知利用待定系数法,确定模型中的待定系数.(3)利用该模型求解实际问题.跟踪训练1(1)拟定甲、乙两地通话m分钟的电话费(单位:元)由f(m)=1.06(0.5[m]+1)给出,其中m>0,[m]是不超过m的最大整数(如[3]=3,[3.7]=3,[3.1]=3),则甲、乙两地通话6.5分钟的电话费为元.答案 4.24解析∵m=6.5,∴[m]=6,则f(6.5)=1.06×(0.5×6+1)=4.24.(2)某工厂生产某种产品固定成本为2 000万元,并且每生产一单位产品,成本增加10万元.又知总收入K是单位产品数Q的函数,K(Q)=40Q-120Q2,则总利润L(Q)的最大值是万元. 答案 2 500解析L(Q)=40Q-120Q 2-10Q-2 000=-120Q2+30Q-2 000=-120(Q-300)2+2 500.则当Q=300时,L(Q)的最大值为2 500万元.题型三构建函数模型的实际问题命题点1构造一次函数、二次函数模型例2(1)某航空公司规定,乘飞机所携带行李的质量x(kg)与其运费y(元)之间的关系由如图所示的一次函数图像确定,那么乘客可免费携带行李的质量最大为kg.答案 19解析 由图像可求得一次函数的解析式为y =30x -570,令30x -570=0,解得x =19. (2)在某种新型材料的研制中,实验人员获得了下列一组实验数据,现准备用下列四个函数中的一个近似地表示这些数据的规律,其中最接近的一个是( )A.y =2x -2B.y =12(x 2-1)C.y =log 2xD.y =12log x答案 B解析 由题中表可知函数在(0,+∞)上是增函数,且y 的变化随x 的增大而增大的越来越快,分析选项可知B 符合,故选B.命题点2 构造指数函数、对数函数模型例3 一片森林原来面积为a ,计划每年砍伐一些树,且每年砍伐面积的百分比相等,当砍伐到面积的一半时,所用时间是10年,为保护生态环境,森林面积至少要保留原面积的14,已知到今年为止,森林剩余面积为原来的22. (1)求每年砍伐面积的百分比;(2)到今年为止,该森林已砍伐了多少年? 解 (1)设每年降低的百分比为x (0<x <1), 则a (1-x )10=12a ,即(1-x )10=12,解得x =1-11012⎛⎫⎪⎝⎭. (2)设经过m 年剩余面积为原来的22, 则a (1-x )m =22a ,即1012m ⎛⎫ ⎪⎝⎭=1212⎛⎫ ⎪⎝⎭,即m 10=12,解得m =5. 故到今年为止,该森林已砍伐了5年. 引申探究若本例的条件不变,试计算:今后最多还能砍伐多少年? 解 设从今年开始,以后砍了n 年, 则n 年后剩余面积为22a (1-x )n . 令22a (1-x )n ≥14a ,即(1-x )n ≥24, 1012n ⎛⎫ ⎪⎝⎭≥3212⎛⎫⎪⎝⎭,即n 10≤32,解得n ≤15. 故今后最多还能砍伐15年. 命题点3 构造y =x +ax(a >0)型函数例4 (1)某汽车运输公司购买了一批豪华大客车投入营运,据市场分析,每辆客车营运的总利润y (万元)与营运年数x 的关系如图所示(抛物线的一段),则为使其营运年平均利润最大,每辆客车营运年数为.答案 5解析 根据图像求得y =-(x -6)2+11, ∴年平均利润yx=12-⎝⎛⎭⎫x +25x , ∵x +25x ≥10,当且仅当x =5时等号成立.∴要使平均利润最大,客车营运年数为5.(2)某地区要建造一条防洪堤,其横断面为等腰梯形,腰与底边夹角为60°(如图),考虑防洪堤坚固性及石块用料等因素,设计其横断面要求面积为9 3 平方米,且高度不低于 3 米.记防洪堤横断面的腰长为x 米,外周长(梯形的上底线段BC 与两腰长的和)为y 米.要使防洪堤的上面与两侧面的水泥用料最省(即横断面的外周长最小),则防洪堤的腰长x =米.答案 2 3解析 由题意可得BC =18x -x2(2≤x <6),∴y =18x +3x 2≥218x ×3x2=6 3. 当且仅当18x =3x2(2≤x <6),即x =23时等号成立.命题点4 构造分段函数模型例5 已知某公司生产某款手机的年固定成本为40万美元,每生产1万只还需另投入16万美元.设该公司一年内共生产该款手机x 万只并全部销售完,每万只的销售收入为R (x )万美元,且R (x )=⎩⎪⎨⎪⎧400-6x ,0<x ≤40,7 400x-40 000x 2,x >40.(1)写出年利润W (万美元)关于年产量x (万只)的函数解析式;(2)当年产量为多少万只时,该公司在该款手机的生产中所获得的年利润最大?并求出最大年利润.解 (1)当0<x ≤40时,W =xR (x )-(16x +40)=-6x 2+384x -40, 当x >40时,W =xR (x )-(16x +40)=-40 000x -16x +7 360.所以W =⎩⎪⎨⎪⎧-6x 2+384x -40,0<x ≤40,-40 000x -16x +7 360,x >40.(2)①当0<x ≤40时,W =-6(x -32)2+6 104, 所以W max =W (32)=6 104;②当x >40时,W =-40 000x -16x +7 360,由于40 000x+16x ≥240 000x×16x =1 600, 当且仅当40 000x =16x ,即x =50∈(40,+∞)时,取等号,所以W 取最大值5 760.综合①②,当年产量为32万只时,W 取最大值6 104万美元.思维升华 构建数学模型解决实际问题,要正确理解题意,分清条件和结论,理顺数量关系,将文字语言转化成数学语言,建立适当的函数模型,求解过程中不要忽略实际问题对变量的限制.跟踪训练2 (1)某化工厂生产一种溶液,按市场要求杂质含量不超过0.1%,若初时含杂质2%,每过滤一次可使杂质含量减少13,至少应过滤 次才能达到市场要求.(参考数据:lg2≈0.301 0,lg 3≈0.477 1) 答案 8解析 设至少过滤n 次才能达到市场要求, 则2%⎝⎛⎭⎫1-13n ≤0.1%,即⎝⎛⎭⎫23n ≤120, 所以n lg 23≤-1-lg 2,所以n ≥7.39,所以n =8.(2)大学毕业生小赵想开一家服装专卖店,经过预算,该门面需要装修费为20 000元,每天需要房租、水电等费用100元,受经营信誉度、销售季节等因素的影响,专卖店销售总收益R (元)与门面经营天数x 的关系是R (x )=⎩⎪⎨⎪⎧400x -12x 2,0≤x ≤400,80 000,x >400,则当总利润最大时,该门面经营的天数是 . 答案 300解析 由题意,总利润y =⎩⎪⎨⎪⎧400x -12x 2-100x -20 000,0≤x ≤400,60 000-100x ,x >400, 当0≤x ≤400时,y =-12(x -300)2+25 000,所以当x =300时,y max =25 000; 当x >400时,y =60 000-100x <20 000.综上,当门面经营的天数为300时,总利润最大为25 000元.用数学模型求解实际问题数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程,主要包括从数量,图形关系中抽象出数学概念,并且用数学符号和术语予以表征.例 (1)调查表明,酒后驾驶是导致交通事故的主要原因,交通法规规定,驾驶员在驾驶机动车时血液中酒精含量不得超过0.2 mg /mL.某人喝酒后,其血液中酒精含量将上升到3 mg/mL ,在停止喝酒后,血液中酒精含量以每小时50%的速度减少,则至少经过 小时他才可以驾驶机动车.(精确到小时) 答案 4解析 设n 小时后他才可以驾驶机动车,由题意得3(1-0.5)n ≤0.2,即2n ≥15,故至少经过4小时他才可以驾驶机动车.(2)已知某房地产公司计划出租70套相同的公寓房.当每套房月租金定为3 000元时,这70套公寓房能全部租出去;当月租金每增加50元时(设月租金均为50元的整数倍),就会多一套房子不能出租.设已出租的每套房子每月需要公司花费100元的日常维修等费用(设没有出租的房子不需要花这些费用),则要使公司获得最大利润,每套房月租金应定为 元. 答案 3 300解析 设利润为y 元,租金定为3 000+50x (0≤x ≤70,x ∈N )元.则y =(3 000+50x )(70-x )-100(70-x )=(2 900+50x )(70-x )=50(58+x )(70-x )≤50⎝⎛⎭⎫58+x +70-x 22,当且仅当58+x =70-x ,即x =6时,等号成立,故每月租金定为3 000+300=3 300(元)时,公司获得最大利润.素养提升 例题中通过用字母表示变量,将酒后驾车时间抽象为不等式问题,将租房最大利润抽象为函数的最值问题.1.某工厂6年来生产某种产品的情况是:前3年年产量的增长速度越来越快,后3年年产量保持不变,则该厂6年来这种产品的总产量C 与时间t (年)的函数关系图像正确的是( )答案 A解析 前3年年产量的增长速度越来越快,说明呈高速增长,只有A ,C 图像符合要求,而后3年年产量保持不变,故选A.2.某辆汽车每次加油都把油箱加满,下表记录了该车相邻两次加油时的情况.注:“累计里程”指汽车从出厂开始累计行驶的路程. 在这段时间内,该车每100千米平均耗油量为( )A.6升B.8升C.10升D.12升 答案 B解析 5月1日到5月15日,汽车行驶了35 600-35 000=600(千米),实际耗油48升,所以该车每100千米平均耗油量为486=8(升).3.将进货单价为80元的商品按90元一个出售时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了赚得最大利润,每个售价应定为( ) A.85元 B.90元 C.95元 D.100元答案 C解析 设每个售价定为x 元,则利润y =(x -80)[400-(x -90)·20]=-20·[(x -95)2-225],∴当x =95时,y 最大.4.国家规定某行业征税如下:年收入在280万元及以下的税率为p %,超过280万元的部分按(p +2)%征税,有一公司的实际缴税比例为(p +0.25)%,则该公司的年收入是( ) A.560万元 B.420万元 C.350万元 D.320万元 答案 D解析 设该公司的年收入为x 万元(x >280), 则有280×p %+(x -280)(p +2)%x =(p +0.25)%,解得x =320.故该公司的年收入为320万元.5.某大型民企为激励创新,计划逐年加大研发资金投入.若该民企2016年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该民企全年投入的研发资金开始超过200万元的年份是(参考数据:lg 1.12≈0.05,lg 1.3≈0.11,lg 2≈0.30)( ) A.2017年 B.2018年 C.2019年 D.2020年 答案 D解析 设从2016年起,过了n (n ∈N +)年该民企全年投入的研发资金超过200万元,则130×(1+12%)n ≥200,则n ≥lg2013lg 1.12≈0.30-0.110.05=3.8,由题意取n =4,则n +2 016=2 020.故选D.6.某单位为鼓励职工节约用水,作出了以下规定:每位职工每月用水不超过10 m 3的,按每立方米m 元收费;用水超过10 m 3的,超过部分加倍收费.某职工某月缴水费16m 元,则该职工这个月实际用水为( ) A.13 m 3 B.14 m 3 C.18 m 3D.26 m 3答案 A解析 设该职工用水x m 3时,缴纳的水费为y 元,由题意得y =⎩⎪⎨⎪⎧mx ,0<x ≤10,10m +(x -10)·2m ,x >10,则10m +(x -10)·2m =16m ,解得x =13.7.某食品的保鲜时间y (单位:小时)与储藏温度x (单位:℃)满足函数关系y =e kx +b (e =2.718…为自然对数的底数,k ,b 为常数).若该食品在0℃的保鲜时间是192小时,在22 ℃的保鲜时间是48小时,则该食品在33 ℃的保鲜时间是 小时. 答案 24解析 由题意得⎩⎪⎨⎪⎧e b=192,e 22k +b =48,∴e 22k =48192=14,∴e 11k =12,∴x =33时,y =e 33k +b =(e 11k )3·e b =⎝⎛⎭⎫123·192=18×192=24(小时). 8.某人根据经验绘制了2018年春节前后,从12月21日至1月7日自己种植的西红柿的销售量y (千克)随时间x (天)变化的函数图像,如图所示,则此人在12月26日大约卖出了西红柿 千克.答案1909解析 前10天满足一次函数关系,设为y =kx +b (k ≠0),将点(1,10)和点(10,30)代入函数解析式得⎩⎪⎨⎪⎧10=k +b ,30=10k +b ,解得k =209,b =709,所以y =209x +709,则当x =6时,y =1909.9.在如图所示的锐角三角形空地中,欲建一个面积最大的内接矩形花园(阴影部分),则其边长x 为 m.答案 20解析 设内接矩形另一边长为y m ,则由相似三角形性质可得x 40=40-y40,解得y =40-x ,所以面积S =x (40-x )=-x 2+40x =-(x -20)2+400(0<x <40), 所以当x =20时,S max =400.10.“好酒也怕巷子深”,许多著名品牌是通过广告宣传进入消费者视线的.已知某品牌商品广告销售的收入R 与广告费A 之间满足关系R =a A (a 为常数),广告效应为D =a A -A .那么精明的商人为了取得最大的广告效应,投入的广告费应为 .(用常数a 表示) 答案 14a 2解析 令t =A (t ≥0),则A =t 2, ∴D =at -t 2=-⎝⎛⎭⎫t -12a 2+14a 2, ∴当t =12a ,即A =14a 2时,D 取得最大值.11.某市用37辆汽车往灾区运送一批救灾物资,假设以v km/h 的速度直达灾区,已知某市到灾区公路线长400 km ,为了安全起见,两辆汽车的间距不得小于⎝⎛⎭⎫v202 km ,那么这批物资全部到达灾区的最少时间是 h.(车身长度不计) 答案 12解析 设全部物资到达灾区所需时间为t h ,由题意可知,t 相当于最后一辆车行驶了⎣⎡⎦⎤36×⎝⎛⎭⎫v 202+400 km 所用的时间,因此,t =36×⎝⎛⎭⎫v 202+400v ≥12, 当且仅当36v 400=400v ,即v =2003时取“=”.故这些汽车以2003km/h 的速度匀速行驶时,所需时间最少,最少时间为12 h.12.一艘轮船在匀速行驶过程中每小时的燃料费与速度v 的平方成正比,且比例系数为k ,除燃料费外其他费用为每小时96元.当速度为10海里/时时,每小时的燃料费是6元.若匀速行驶10海里,当这艘轮船的速度为 海里/时时,总费用最小. 答案 40解析 设每小时的总费用为y 元, 则y =k v 2+96,又当v =10时,k ×102=6,解得k =0.06,所以每小时的总费用y =0.06v 2+96, 匀速行驶10海里所用的时间为10v 小时,故总费用为W =10v y =10v (0.06v 2+96)=0.6v +960v ≥20.6v ×960v =48,当且仅当0.6v =960v , 即v =40时等号成立.故总费用最小时轮船的速度为40海里/时.13.商家通常依据“乐观系数准则”确定商品销售价格,即根据商品的最低销售限价a ,最高销售限价b (b >a )以及实数x (0<x <1)确定实际销售价格c =a +x (b -a ).这里,x 被称为乐观系数.经验表明,最佳乐观系数x 恰好使得(c -a )是(b -c )和(b -a )的等比中项.据此可得,最佳乐观系数x = . 答案5-12解析 由题意得x =c -ab -a ,(c -a )2=(b -c )(b -a ),∵b -c =(b -a )-(c -a ), ∴(c -a )2=(b -a )2-(b -a )(c -a ), 两边同除以(b -a )2,得x 2+x -1=0, 解得x =-1±52.∵0<x <1,∴x =5-12. 14.某书商为提高某套丛书的销售量,准备举办一场展销会.据市场调查,当每套丛书售价定为x 元时,销售量可达到(15-0.1x )万套.现出版社为配合该书商的活动,决定进行价格改革,将每套丛书的供货价格分成固定价格和浮动价格两部分,其中固定价格为30元,浮动价格(单位:元)与销售量(单位:万套)成反比,比例系数为10.假设不计其他成本,即销售每套丛书的利润=售价-供货价格,问:(1)每套丛书售价定为100元时,书商能获得的总利润是多少万元? (2)每套丛书售价定为多少元时,单套丛书的利润最大?解 (1)每套丛书售价定为100元时,销售量为15-0.1×100=5(万套),此时每套供货价格为30+105=32(元),书商所获得的总利润为5×(100-32)=340(万元).(2)每套丛书售价定为x 元时,由⎩⎪⎨⎪⎧15-0.1x >0,x >0, 解得0<x <150. 依题意,单套丛书利润 P =x -⎝⎛⎭⎫30+1015-0.1x=x -100150-x-30,所以P =-⎣⎡⎦⎤(150-x )+100150-x +120.因为0<x <150, 所以150-x >0, 则(150-x )+100150-x≥2(150-x )·100150-x=2×10=20,当且仅当150-x =100150-x,即x =140时等号成立,此时,P max=-20+120=100.所以每套丛书售价定为140元时,单套丛书的利润最大,最大值为100元.15.物体在常温下的温度变化可以用牛顿冷却规律来描述:设物体的初始温度是T 0,经过一定时间t (单位:min)后的温度是T ,则T -T a =(T 0-T a )12th⎛⎫⎪⎝⎭,其中T a 称为环境温度,h 称为半衰期.现有一杯用85 ℃热水冲的速溶咖啡,放在21 ℃的房间中,如果咖啡降到37 ℃需要16 min ,那么这杯咖啡要从37 ℃降到29 ℃,还需要 min. 答案 8解析 由题意知T a =21 ℃. 令T 0=85 ℃,T =37 ℃, 得37-21=(85-21)·1612h⎛⎫⎪⎝⎭,∴h =8. 令T 0=37 ℃,T =29 ℃,则29-21=(37-21)·812t ⎛⎫⎪⎝⎭,∴t =8. 16.某禁毒机构测定,某种毒品服用后每毫升血液中的含毒量y (微克)与时间t (小时)之间近似满足如图所示的曲线.(1)写出服用毒品后y 与t 之间的函数关系式;(2)据进一步测定,每毫升血液中含毒量不少于0.50微克时会有重度躁动状态,求服用毒品后重度躁动状态的持续时间.解 (1)由题中图像,设y =⎩⎪⎨⎪⎧kt ,0≤t ≤1,⎝⎛⎭⎫12t -a ,t >1.当t =1时,由y =4,得k =4; 由⎝⎛⎭⎫121-a=4,得a =3. 所以y =⎩⎪⎨⎪⎧4t ,0≤t ≤1,⎝⎛⎭⎫12t -3,t >1.(2)由y ≥0.50,得⎩⎪⎨⎪⎧0≤t ≤1,4t ≥0.50或⎩⎪⎨⎪⎧t >1,⎝⎛⎭⎫12t -3≥0.50,解得18≤t ≤4,因此服用毒品后重度躁动状态持续4-18=318(小时).。

高等数学实验教材答案

高等数学实验教材答案

高等数学实验教材答案高等数学实验教材答案是学习高等数学实验课程的重要参考资料。

在这篇文章中,我将为大家提供一份高等数学实验教材的答案,以帮助学生更好地理解和掌握相关知识。

一、微分与导数1.1 定义与性质1.2 基本微分法则1.3 乘积法则、商法则与链式法则1.4 高阶导数与隐函数求导1.5 几何应用:切线与法线二、积分与不定积分2.1 定义与性质2.2 基本积分法则2.3 分部积分法2.4 有理函数的积分2.5 几何应用:定积分与曲线下面积三、微分方程3.1 一阶常微分方程3.2 高阶常微分方程3.3 可降阶的高阶常微分方程3.4 几何应用:曲线的凹凸性与拐点四、级数与幂级数4.1 数项级数与收敛性4.2 幂级数的收敛半径与收敛区间4.3 函数展开为幂级数4.4 幂级数展开与微分、积分的关系五、多元函数与偏导数5.1 多元函数的概念与性质5.2 偏导数及其计算5.3 隐函数与参数方程求导5.4 多元函数的极值与条件极值5.5 几何应用:方向导数与梯度六、重积分6.1 重积分的定义与性质6.2 二重积分的计算6.3 三重积分的计算6.4 极坐标、柱坐标与球坐标下的积分6.5 几何应用:质量、重心与转动惯量七、曲线积分与曲面积分7.1 第一类曲线积分7.2 第二类曲线积分7.3 常见曲线的参数方程与弧长7.4 曲面积分的概念与性质7.5 几何应用:质量、重心与转动惯量的曲面积分表示八、常微分方程与拉普拉斯变换8.1 齐次与非齐次线性常微分方程8.2 求解常系数齐次线性常微分方程8.3 非齐次线性常微分方程的常数变易法8.4 拉普拉斯变换的定义与性质8.5 拉普拉斯变换与求解微分方程以上是高等数学实验教材的答案大纲。

希望这份答案对广大学生们学习和理解高等数学实验课程有所帮助。

请将这份答案作为参考,并结合教材中的练习题进行实践,以巩固所学知识。

祝大家在高等数学实验课程中取得好成绩!。

C语言实验报告 实验三 参考答案

C语言实验报告 实验三  参考答案

实验十 参考答案(指针)三、实验内容( 按要求完善或设计以下程序,并调试分析运行结果)1. 程序填空题 给定程序BLACK10-1.C 中,函数fun 的功能是:将形参n 所指变量中,各位上为偶数的数去除,剩余的数按原来从高位到低位的顺序组成一个新的数,并通过形参指针n 传回所指变量。

例如,输入一个数:27638496,新的数:为739。

请在程序的下划线处填入正确的内容并把下划线删除,使程序得出正确的结果。

【解题思路】第一处:t 是通过取模的方式来得到*n 的个位数字,所以应填:10。

第二处:判断是否是奇数,所以应填:0。

第三处:最后通形参n 来返回新数x ,所以应填:x 。

2. 程序改错题 给定程序MODI10-1.C 中函数fun 的功能是: 计算n 的5次方的值(规定n 的值大于2、小于8),通过形参指针传回主函数;并计算该值的个位、十位、百位上数字之和作为函数值返回。

例如,7的5次方是16807, 其低3位数的和值是15。

【解题思路】第一处:变量d 的初始值应为1。

第二处:整除的符号是 /。

3. 程序设计题 请编写函数fun ,它的功能是:求出能整除形参x 且不是偶数的各整数,并按从小到大的顺序放在pp 所指的数组中,这些除数的个数通过形参n 返回。

例如,若 x 中的值为: 35,则有 4 个数符合要求,它们是: 1, 5, 7, 35。

【解题思路】本题是求出能整除形参x 且不是偶数的各整数,并按从小到大的顺序放在pp 所指的数组中,这些除数的个数通过形参n 返回。

【参考答案】void fun ( int x, int pp[], int *n ){ int i; *n=0;for(i=1; i <= x; i++)if((x % i== 0) && (i % 2)) pp[(*n)++]=i;}4. 程序填空题 给定程序中,函数fun 的功能是:找出N ×N 矩阵中每列元素中的最大值,并按顺序依次存放于形参b 所指的一维数组中。

C语言程序设计 上机实验指导与习题 参考答案

C语言程序设计 上机实验指导与习题 参考答案

C 语言程序设计上机实验指导与习题参考答案仅供教师内部参考华南农业大学目录上机实验1实验1 C 语言程序初步1一实验目的1二实验内容1实验2 基本数据类型运算和表达式3一实验目的3二实验内容3实验3 基本输入与输出5一实验目的5二实验内容5实验4 选择结构程序设计4一实验目的4二实验内容4实验5 循环结构程序设计一9一实验目的9二实验内容9实验6 循环结构程序设计二15一实验目的15二实验内容15实验7 数组17一实验目的17二实验内容17实验8 字符数组的应用22一实验目的22二实验内容22实验9 函数的基本应用24 一实验目的24二实验内容24实验10 指针与结构体26一实验目的26二实验内容26*实验11 链表29一实验目的29二实验内容29*实验12 文件32一实验目的32二实验内容32上机实验实验1 C 语言程序初步一实验目的1了解所用的计算机系统的基本操作方法学会独立使用该系统2 了解在该系统上如何编辑编译连接和运行一个C 程序3 通过运行简单的C 程序初步了解C 程序的特点4 在教师的指导下学会使用JudgeOnline 实验系统二实验内容1 运行第一个C 程序[题目The first C Program]将下列程序输入TC 或VC编译连接和运行该程序void mainprintf "The first C Program\n"[具体操作步骤]以Turbo C 上的操作为例1Windows 进入后按照第一章中介绍的方法进入Turbo C2在编辑窗口中输入程序3保存程序取名为a1c4按照第一章中介绍的方法编译连接和运行程序2 在JudgeOnline 系统中提交实现了计算ab 功能的程序[题目1001计算ab]由键盘输入两个整数计算并输出两个整数的和实现该功能的程序如下void mainint a bscanf "dd" a b1 printf "d" a b1在程序编辑窗口中输入程序2保存程序取名为a2c3按照前二章中介绍的方法编译连接和运行程序4在程序运行过程中输入15 30↙↙表示输入回车符5 如果看到如下输出结果则表明1530 的结果正确如果得不到如下结果则需检查并更正程序456 按照第三章中介绍的方法进入JudgeOnline 实验系统7 显示题目列表点击题号为1001题名为计算ab的题目8 查看完题目要求后点击页面下端的sumbit 参照第二章提交程序的方法提交程序a2c9 查看评判结果如果得到accepted则该题通过否则返回第一步检查程序是否正确2实验2 基本数据类型运算和表达式一实验目的1掌握C 语言数据类型熟悉如何定义一个整型和实型的变量以及对它们赋值的方法2 掌握不同的类型数据之间赋值的规3 学会使用C 的有关算术运算符以及包含这些运算符的表达式特别是自加和自减-- 运算符的使用4 进一步熟悉C 程序的编辑编译连接和运行的过程二实验内容1 变量的定义[题目1117变量定义按要求完成程序]下面给出一个可以运行的程序但是缺少部分语句请按右边的提示补充完整缺少的语句void mainint a b 定义整型变量a 和bint i j 定义实型变量i 和ja 5b 6i 314 j iabprintf "a db di fj f\n" a b i j[具体操作步骤]1将代码补充完整2在TC 或VC上运行通过3在JudgeOnline 实验系统上提交2 赋值表达式与赋值语句[题目1118赋值表达式与赋值语句写出程序运行结果] 阅读下面程序写出运行结果void mainfloat aint b cchar d ea 35b ac 330d c3e \\printf "fddcc" abcde运行结果为35000003330J\[提示]赋值语句具有类型转换的功能但可能会改变数据3 基本运算[题目1119基本运算写出程序运行结果]阅读下面程序写出运行结果void mainint a b cfloat d 15 e fa 357b 1510c be 1510f d10printf "dddfff" abcdef运行结果为0211500000010000001500000[提示]除法分整除与普通除法之分4实验3 基本输入与输出一实验目的1熟练掌握putchargetcharprintf scanf 函数的使用方法2 掌握各种类型数据的输入输出的方法能正确使用各种格式转换符二实验内容[题目1126字符的输入与输出]编程实现由键盘输入一个字符后在屏幕上输出该字符[第一组自测数据] [第二组自测数据] [键盘输入] [键盘输入]a↙↙[正确输出] [正确输出]a参考程序include "stdioh"mainchar chch getcharputchar ch[题目1127计算加法]编程实现由键盘输入一个加法式输出正确的结果两个加数均为整数[第一组自测数据] [第二组自测数据] [键盘输入] [键盘输入]1020 ↙- 1560↙[正确输出] [正确输出]30 45参考程序include "stdioh"mainint a bscanf "dcd" abprintf "d" ab[题目1014求圆面积]由键盘输入圆半径r 请计算该圆的面积注取314159结果保留两位小数位另外程序只要能对r 在0 到10000 范围的情况输出正确答案即可[第一组自测数据] [键盘输入]5652 ↙[键盘输入][正确输出] 112↙1335502 [正确输出][第二组自测数据] 39408[提示]结果保留两位小数可采用printf 函数的格式控制字符来实现参考程序include "stdioh"mainfloat arearscanf "f"rarea 314159rrprintf "02f"area2[题目1015计算摄氏温度值]从键盘输入一个华氏温度值要求按格式输出其对应的摄氏温度值精确到小数点后两位数学公式描述为5C F 329[第一组自测数据] [第二组自测数据][键盘输入] [键盘输入]100↙100↙[正确输出] [正确输出]3778 3778[提示]注意公式中的除为普通除法参考程序includevoid mainfloat fcscanf "f"fc 509 f-32printf "2f"c3实验4 选择结构程序设计一实验目的1了解C 语言表示逻辑的方法以0 代表假以非0 代表真2 学会正确使用逻辑运算符和逻辑表达式3 熟练掌握if 语句和switch 语句4 结合程序掌握一些简单的算法二实验内容[题目1120判断点是否在圆]由键盘输入一个点的坐标要求编程判断这个点是否在单位圆上点在圆上输出Y 不在圆上输出N 使用小数点后3 位精度进行判断[第一组自测数据] [第二组自测数据][键盘输入] [键盘输入]07070707 ↙8>0505↙[正确输出] [正确输出]Y N[提示] 1平面上的点与圆的关系分为在圆内在圆上在圆外三种本题要求判断是否在圆上2判断两实数相等采用判断这两实数的差的绝对值小于规定误差精度本题为0001 的方法实现参考程序include "stdioh"include "mathh"void mainfloat abscanf "ff"abif fabs aabb-1 1e-3printf "Y\n"else printf "N\n"[题目1017求数的位数]由键盘输入一个不多于9 位的正整数要求输出它是几位数[第一组自测数据] [第二组自测数据][键盘输入] [键盘输入]349213 ↙10000↙[正确输出] [正确输出]6 5[提示]划定一位数二位数九位数的范围后用if else if else 语句实现判断4参考程序mainint nplacescanf "ld"nif n 99999999 place 9else if n 9999999 place 8else if n 999999 place 7else if n 99999 place 6else if n 9999 place 5else if n 999 place 4else if n 99 place 3else if n 9 place 2else place 1printf "ld\n"place[题目1018数的排序]由键盘输入三个整数a b c按从小到大的顺序输出这三个数[第一组自测数据] [第二组自测数据] [键盘输入] [键盘输入]654590 ↙963 ↙[正确输出] [正确输出]456590 369参考程序includemainint abctscanf "ddd"abcif a b t aa bb tif a c t aa cc tif b c t bb cc tprintf "ddd"abc[题目1016字符变换]由键盘输入5 个字符将其中的大写字母变成小写其它类型的字符不变并按输入顺序逐个输出[第一组自测数据] [第二组自测数据] [键盘输入] [键盘输入]ApPLe ↙aB 5 ↙[正确输出] [正确输出]apple ab 5[提示]下面代码实现由键盘读入一个字符并按题意处理后输出char aa getcharif a A a Z a a32putchar a5现在题目要求处理5 个字符怎么做呢请自己思考参考程序includemainchar abcdescanf "ccccc"abcdeif a Za A a a32if b Zb A b b32if c Zc A c c32if d Zd A d d32if e Ze A e e32printf "ccccc"abcde[题目1019数的整除]由键盘输入5 个整数逐个判断它们能否被27 整除能的输出YES不能的输出NO 注意输出时一个判断结果占一行5 个数的判断共占5 行[第一组自测数据] [第二组自测数据][键盘输入] [键盘输入]8 27 17577 325 54 ↙8 27 17577 325 54 ↙[正确输出] [正确输出]NO NOYES YESYES YESNO NOYES YES[提示]整除即除得余数为0参考程序include "stdioh"mainint abcdescanf "d d d d d"abcdeif a27 0 printf "YES\n" else printf "NO\n"if b27 0 printf "YES\n" else printf "NO\n"if c27 0 printf "YES\n" else printf "NO\n"if d27 0 printf "YES\n" else printf "NO\n"if e27 0 printf "YES\n" else printf "NO\n"[题目1020正负奇偶判断]由键盘输入非零整数x 判断该数正负正数输出positive 负数输出negative 接着判断该数的奇偶性奇数输出odd偶数输出even[第一组自测数据] negative[键盘输入] odd-43 ↙[第二组自测数据][正确输出] [键盘输入]698 ↙positive[正确输出] even参考程序include "stdioh"mainint nscanf "d"nif n 0 printf "negative\n"else printf "positive\n"if n2 0 printf "even\n"else printf "odd\n"[题目1023简单计算器]下面程序是实现一个简单的运算器保留两位小数点如果由键盘输入1050计算机可以输出结果6000如果输入8 *6计算机输出4800如果输入204 计算机输出500 如果输入8-6计算机输出200 请在空处填上适当的代码运行通过后并提交include "stdioh"void mainfloat abcscanf "fcf"switch opcasecase - _case _case __default printf "error"returnprintf "result " c[第一组自测数据] [第二组自测数据][键盘输入] [键盘输入]452↙501-23 ↙[正确输出] [正确输出]90 27107参考程序includeint mainchar opscanf "fcf"aopbswitch opcase c abbreakcase -c a-bbreakcase c abbreakcase c abbreakdefaultprintf "error"breakprintf "result 2f"c8实验5 循环结构程序设计一一实验目的1熟悉掌握用while 语句do-while 语句和for 语句实现循环的方法2 掌握在程序设计中用循环实现一些常用算法如穷举迭代递推等二实验内容[题目1024计算阶乘]输入正整数n计算n 结果用长整型数表示注n 123n[第一组自测数据] [第二组自测数据][键盘输入] [键盘输入]5 ↙8 ↙[正确输出] [正确输出]120 40320参考程序includemainlong in 1ascanf "ld"afor i 1i ai n niprintf "ld\n"n[题目1025计算数列和]有数列1357911现要求由键盘输入n计算输出该数列的前n 项和[第一组自测数据] [第二组自测数据] [键盘输入] [键盘输入]2 ↙ 5 ↙[正确输出] [正确输出]4 259参考程序includemainlong nsum 0it 1scanf "ld"nfor i 1i nisum sumtt t2printf "ld\n"sum或includemainlong nsumscanf "ld"nsum nnprintf "ld"sum注评判系统不对程序实现细节进行分析只对运行结果进行评测[题目1026 加一行字符中的数字]由键盘输入一行字符总字符个数从1 个至80 个均有可能以回车符表示结束将其中每个数字字符所代表的数值累加起来输出结果[第一组自测数据] [第二组自测数据] [键盘输入] [键盘输入]abc123↙A6H7T65↙[正确输出] [正确输出]6 24[提示] 1可以使用下面程序段逐个读入键盘输入的一行字符char chwhile ch getchar \n2 数字字符转为对应的数值可用a ch-0参考程序includemainchar cint s 0awhile c getchar \nif c 0c 9a c-48s saprintf "d"s10[题目1029求最大公约数]由键盘输入两个正整数mn mn 用长整数表示计算它们的最大公约数[第一组自测数据] [第二组自测数据][键盘输入] [键盘输入]1624↙1725↙[正确输出] [正确输出]8 1[提示]公约数是既能整除m 又能整除n 的数题目要求满足这一条件的最大的一个参考程序includemainlong rmntempscanf "ldld"mnwhile m 0r nmn mm rprintf "ld\n"n或includemainlong mntisscanf "ldld"mnt m nnmfor i t-1i 1i--if mi 0ni 0s i breakprintf "d"s[题目1030字符变换]由键盘输入一个句子总字符个数从1 个至80 个均有可能以回车符表示结束将其中的大写字符变成小写其它类型的字符不变最后输出变换后的句子[第一组自测数据] [第二组自测数据][键盘输入] [键盘输入]How Are You ↙ThiS IS My fIrSt C ProgrAm ↙[正确输出] [正确输出]how are you this is my first c program11参考程序includemainchar cwhile c getchar \nif c Ac Zc c32putchar c[题目1037计算数列和]有数列编程实现由键盘输入n计算输出数列前n 项和结果保留四位小数[第一组自测数据] [第二组自测数据] [键盘输入] [键盘输入]20 ↙30 ↙[正确输出] [正确输出]326603 880403参考程序includemainint itnfloat a 2b 1s 0scanf "d"nfor i 1i nis sabt aa abb tprintf "4f\n"s[题目1044输出最小值]从键盘输入十个整数输出最小值[ 自测数据][键盘输入]12 45 76 87 5 87 43 55 99 21 ↙[正确输出]512参考程序include "stdioh"mainint itminscanf "d" minfor i 1i 10iscanf "d" tif t min min tprintf "d\n"min*[题目1031统计单词个数]由键盘输入一个句子总字符个数从1 个至80 个均有可能以回车符表示结束以空格分割单词要求输出单词的个数[第一组自测数据] [第二组自测数据][键盘输入] [键盘输入]How Are You ↙There are many students and many[正确输出] trees↙3 [正确输出]7参考程序includemainint inum 0word 0char cfor i 0 c getchar \niif c word 0else if word 0word 1numprintf "d"num*[题目1042百万富翁]一个百万富翁遇到一个陌生人陌生人找他谈了一个换钱的计划该计划如下我每天给你m 元而你第一天只需给我一分钱第二天我仍给你m 元你给我2 分钱第三天我仍给你m 元你给我4分钱依次类推你每天给我的钱是前一天的两倍直到一个月38 天百万富翁很高兴欣接受这个契约现要求编写一个程序由键盘输入m计算多少天后百万富翁开始亏钱[第一组自测数据] 18[键盘输入] [第二组自测数据]100↙[键盘输入][正确输出] 10000↙13[正确输出] 25参考程序includeincludemainint nmiscanf "d"mfor i 1i 38iif 001 pow 2i-1 -1 -im 0 breakprintf "d"i-114实验6 循环结构程序设计二一实验目的1进一步熟悉掌握用while 语句do-while 语句和for 语句实现循环的方法2 掌握在程序设计中使用多重循环二实验内容[题目1028求素数]输出2 到200 之间包括2 200 的所有素数注要求1 行1 个素数按由小到大的顺序输出[提示]采用双重循环外层循环产生2 到200 之间的数内层循环对数进行判断是否为素数参考程序includeincludemainint mkifor m 2m 200mk sqrt mfor i 2i kiif mi 0 breakif i k printf "d\n"m[题目1035打印菱形]由键盘输入正数n要求输出2n1 行的菱形图案要求菱形左边紧靠屏幕左边[第一组自测数据] [第二组自测数据] [键盘输入] [键盘输入]3 ↙ 2 ↙[正确输出] [正确输出]15参考程序include "stdioh"include "mathh"mainint nijkscanf "d"nfor i 1i 2n1ik abs n1-ifor j 1j kj printf " "for j 1j 2n1-2kj printf ""printf "\n"[题目1038打印图案]由键盘输入正数n要求输出中间数字为n 的菱形图案要求菱形左边紧靠屏幕左边[第一组自测数据] [第二组自测数据][键盘输入] [键盘输入]4 ↙ 3[正确输出] [正确输出]1 1121 121 12321 12321 1234321 121 12321 1 1211参考程序includeincludemainint nijkhscanf "d"nfor i -n1i n-1ifor j 0j abs i jprintf " "for k 1k n-abs i k printf "d"kfor h n-abs i -1h 1h-- printf "d"hprintf "\n"16实验7 数组一实验目的1掌握一维数组和二维数组的定义赋值和输入输出方法2 掌握与数组有关的算法二实验内容[题目1039倒序]由键盘输入10 个整数倒序输出数字间由一个空格分隔[ 自测数据][键盘输入]70 5 14 20 19 2 99 67 13 66 ↙[正确输出]66 13 67 99 2 19 20 14 5 70参考程序includemainint a [10]int ifor i 0i 10i scanf "d"a[i]for i 9i 0i-- printf "d\n"a[i][题目1040统计不同数字个数]由键盘输入20 个整数统计不同数字的个数[ 自测数据][键盘输入]70 5 14 22 19 2 99 67 13 66 5 93 44 38 22 11 39 22 33 11↙[正确输出]16[提示]上述答案中因为5 有1 个重复数字11 有1 个重复数字22 有2 个重复数字故不同数字有16个分别是70 5 14 22 19 2 99 67 13 66 93 44 38 11 39 3317参考程序include"stdioh"mainint a [20]int itp 0for i 0i 20iscanf "d"a[i]for t 0t itif a[t] a [i] breakif t ipprintf "d"p[题目1062打印矩阵]由键盘输入一个3×4 的矩阵要求输出它的转置矩阵[ 自测数据][键盘输入] [正确输出] 1 6 9 3 1 1 11 1 02 6 1 91 9 8 9 9 0 83 2 9参考程序includemainint a [3][4]b[4][3]ijfor i 0i 3ifor j 0j 4jscanf "d"a[i][j]b[j][i] a [i][j]for i 0i 4ifor j 0j 3jprintf "d "b[i][j]printf "\n"*[题目1047冒泡排序]由键盘输入10 个数用冒泡法对10 个数从小到大排序并按格式要求输出代码如下请填充完整数字间由一个空格分隔incude "stdioh"mainint a[10] i j t18for i 0i 10iscanf "d"___________for ___________for j 0j ____jif ______________________for i 0i 10iprintf "d "a[i][ 自测数据][键盘输入]70 5 14 20 19 2 99 67 13 66 ↙[正确输出]2 5 13 14 19 20 66 67 70 99参考程序includemainint a [10]int ijtfor i 0i 10iscanf "d"a[i]for i 0i 9ifor j 0j 9-ijif a[j] a [j1]t a [j] a [j] a[j1] a[j1] tfor i 0i 10iprintf "d "a[i]*[题目1046计算高精度加法]由键盘输入两个位数很长的整数一行一个数每个数最长不超过80 位试计算并输出这两个数的和[ 自测数据][键盘输入]1XXXXXXXXXX23456789 ↙987654321098765 ↙[正确输出]1XXXXXXXXXX4455555419参考程序include "stdioh"include "stringh"mainint a [100] 0 b[100] 0 c[100] 0char s[101]int i 0n1 0n2 0 0e 0gets sn1 strlen sfor i n1-1i 0i-- a[n1-1-i] s[i]-0gets sn2 strlen sfor i n2-1i 0i-- b[n2-1-i] s[i]-0if n1 n2 n1else n2for i 0i ic[i] a[i]b[i]e 10e a[i]b[i]e 10if c[] 0 printf "d"c[]for i -1i 0i--printf "d"c[i]*[题目找矩阵中的鞍点]由键盘输入一个3 ×4 3 行4 列的矩阵输出矩阵中的鞍点即在矩阵行中最大列中最小的数若没有鞍点输出NO 字样[ 自测数据][键盘输入]87 90 110 98 ↙70 97 210 65 ↙98 45 120 30 ↙[正确输出]11020参考程序includemainint ijka[3][4]jflagfor i 0i 3ifor j 0j 4jscanf "d"a[i][j] for i 0i 3ia [i][0]j 0for j 0j 4jif a[i][j]a [i][j] j jflag 1for k 0k 3kif a [k][j]flag 0 breakif flagprintf "d" breakif flagprintf "NO"21实验8 字符数组的应用一实验目的1掌握字符数组和字符串函数的使用2 掌握与字符串处理有关的算法二实验内容[题目1121定义存贮字符串的字符数组]在下面程序中填充定义字符数组的语句使程序完整include "stringh"void mainchar s[80] 定义字符数组sstrcpy s "abcdefghij klmn"printf "s" s参考程序[题目1123字符串的输入与输出]下面程序实现从键盘读入字符串后输出到屏幕请填充必要的语句include "stdioh"void mainchar s[50]printf "Whats your name"gets s 由键盘读入字符串printf "Your name is "printf "s" s 打印字符串参考程序[题目1122字符串的合并]从键盘输入3 个字符串每个字符串以回车符做为结束标志将3 个字符串以输入先后顺序合并到字符串s 中请填空使用程序完整include "stdioh"include "stringh"mainchar s[100] ""char a [30]gets a strcat s a22gets a strcat s agets a strcat s a可以写多行代码printf "s" s[ 自测数据][键盘输入] [正确输出]123 123abc456abc456参考程序[题目1050寻找字符串]由键盘输入两个字符串假设第一个字符串必包含第二个字符串如第一个字符串为ABCDEF第二个为CDE则CDE 包含在ABCDEF 中现要求编程输出第二字符串在第一行字符串中出现的位置如果第二个字符串在第一个字符串中出现多次则以最前出现的为准[第一组自测数据] [第二组自测数据][键盘输入] [键盘输入]ABCDEFG ↙hellhello ↙DE ↙hello ↙[正确输出] [正确输出]4 5[提示]方法1建立双重循环外层循环变量指示第一个串的查找起始位置内层循环从起始位置开始判断第二个字符中是否出现在此处方法2 使用字符串函数strstr参考程序include "stdioh"mainint ijchar a [80] b[80]gets a gets bfor i 0a[i] \0ifor j 0b[j] \0jif a[ij] b[j] breakif b[j] \0 breakif a[i] \0 printf "d"i1else printf "Not Found"23实验9 函数的基本应用一实验目的1掌握定义函数的方法2 掌握函数实参与参的对应关系以及值传递的方式3 掌握函数的嵌套调用和递归调用的方法4 掌握全局变量和局部变量动态变量静态变量的概念和使用方法二实验内容[题目1059函数定义]下面是使用辗转相除法求最大公约数的程序请补充完整程序中函数的定义与调用include "stdioh"int f int m int nint rwhile r mn 0m nn rreturn nmainint a b nscanf "dd" a bprintf "d\n" f a b[题目1083编写函数计算阶乘]下面程序实现由键盘读入整数n计算并输出n 请补充完整计算阶乘的函数long fanc int along in 1for i 1i ai n nireturn nvoid mainint nscanf "d" n24printf "ld" fanc n[题目1124函数中的变量]写出下面程序的运行结果int f1 int xstatic int z 3y 0yzreturn xyzmainint a 1kfor k 0k 3k printf "4d"f1 a 程序运行结果为6 8 10*[题目1084编写递归调用函数实现十进制数转二进制数]下面程序实现由键盘输入一个正整数不大于100000000 输出其对应的二进制数原码表示请填空include "stdioh"void fun int iif i 1fun i2printf "d" i2mainint nscanf "d" nfun n25实验10 指针与结构体一实验目的1通过实验进一步掌握指针的概念会定义和使用指针变量2 能正确使用数组的指针和指向数组的指针变量3 能正确使用字符串的指针和指向字符中的指针变量4 掌握结构体类型变量的定义和使用二实验内容[题目1091交换两数由大到小输出]下面程序交换两数使两数由大到小输出请填空include "stdioh"void swap int p1 int p2int temptemp p1p1 p2p2 tempint mainint ab int papbscanf "dd" a bpa a pb bif a b swap pa pbprintf "d d\n"ab[题目1065数组中的指针]设有如下数组定义int a[3][4] 1357 9111315 17192123计算下面各项的值设数组a 的首地址为2000一个int 类型数占四个字节注意地址则输出地址变量则输出变量值要求一行一个答案不允许多余空行及空格1a[2][1] 2 a[1] 3 a 4 a 15 a 16 a 17 a[2] 18 a 1 19 a2 226参考程序include "stdioh"mainprintf "19\n"printf "2016\n"printf "2000\n"printf "2016\n"printf "2004\n"printf "2016\n"printf "2036\n"printf "2020\n"printf "21"[题目1092函数实现求字符串长度]下面程序以指针方式传递参数由函数实现求字符串长度请填空完成include "stdioh"include "stringh"int f char preturn strlen pint mainchar s[80]int iscanf "s" si f sprintf "d" i[题目1125定义结构体类型]要求定义一个名为student 的结构体类型其包含如下成员1字符数组name 最多可存放10 个字符2 字符变量sex用于记录性别3 整数类型变量num用于记录学号4 float 类型变量score 用于记录成绩并使下列代码完整定义结构体类型struct studentchar name[20]char sex。

2024年中考数学真题汇编专题15 二次函数的实际应用+答案详解

2024年中考数学真题汇编专题15 二次函数的实际应用+答案详解

2024年中考数学真题汇编专题15 二次函数的实际应用+答案详解(试题部分)一、单选题1.(2024·天津·中考真题)从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t t t =−≤≤.有下列结论:①小球从抛出到落地需要6s ; ②小球运动中的高度可以是30m ;③小球运动2s 时的高度小于运动5s 时的高度. 其中,正确结论的个数是( ) A .0B .1C .2D .32.(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰Rt ABC △中,90BAC ∠=︒,12AB =,动点E ,F 同时从点A 出发,分别沿射线AB 和射线AC 的方向匀速运动,且速度大小相同,当点E 停止运动时,点F 也随之停止运动,连接EF ,以EF 为边向下做正方形EFGH ,设点E 运动的路程为()012x x <<,正方形EFGH 和等腰Rt ABC △重合部分的面积为下列图像能反映y 与x 之间函数关系的是( )A .B .C .D .3.(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD 中,6cm AB =,8cm BC =,菱形EFGH 的顶点E ,G 在同一水平线上,点G 与AB 的中点重合,EF =,60E ∠=︒,现将菱形EFGH 以1cm /s的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD 重叠部分的面积()2cm S 与运动时间()s t 之间的函数关系图象大致是( )A .B .C .D .二、填空题4.(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM = m .5.(2024·甘肃·中考真题)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =−++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8m DE =的矩形,则可判定货车 完全停到车棚内(填“能”或“不能”).6.(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙AB CD ⊥于点O (如图),其中AB 上的EO 段围墙空缺.同学们测得 6.6AE =m , 1.4OE =m ,6OB =m ,5OC =m ,3OD =m .班长买来可切断的围栏16m ,准备利用已有围墙,围出一块封闭的矩形菜地,则该菜地最大面积是 2cm .三、解答题7.(2024·陕西·中考真题)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索1L 与缆索2L 均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线FF '为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索1L 所在抛物线与缆索2L 所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离100m OC =,17m AO BC ==,缆索1L 的最低点P 到FF '的距离2m PD =(桥塔的粗细忽略不计)(1)求缆索1L 所在抛物线的函数表达式;(2)点E 在缆索2L 上,EF FF '⊥,且 2.6m EF =,FO OD <,求FO 的长.8.(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m ,篱笆长80m .设垂直于墙的边AB 长为x 米,平行于墙的边BC 为y 米,围成的矩形面积为2cm S .(1)求y 与,x s 与x 的关系式.(2)围成的矩形花圃面积能否为2750cm ,若能,求出x 的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x 的值.9.(2024·河南·中考真题)从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =−+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示). (2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.10.(2024·湖北武汉·中考真题)16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =−+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km . ①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离. (2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .11.(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒. (1)求这两种粽子的进价;(2)设猪肉粽每盒售价x 元()5270x ≤≤,y 表示该商家销售猪肉粽的利润(单位:元),求y 关于x 的函数表达式并求出y 的最大值.12.(2024·贵州·中考真题)某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y(盒)与销售单价x(元)是一次函数关系,下表是y与x的几组对应值.(1)求y与x的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m的值.13.(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)14.(2024·四川遂宁·中考真题)某酒店有A B、两种客房、其中A种24间,B种20间.若全部入住,一天、两种客房均有10间入住,一天营业额为3200元.营业额为7200元;若A B(1)求A B、两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?15.(2024·四川南充·中考真题)2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A 类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A类特产和5件B类特产需540元.(1)求A类特产和B类特产每件的售价各是多少元?(2)A类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A类特产降价x元,每天的销售量为y件,求y与x的函数关系式,并写出自变量x的取值范围.(3)在(2)的条件下,由于B类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w元,求w与x的函数关系式,并求出每件A类特产降价多少元时总利润w最大,最大利润是多少元?(利润=售价-进价)16.(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.17.(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?18.(2024·江西·中考真题)如图,一小球从斜坡O点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:(1)①m =______,n =______; ②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =−+. ①小球飞行的最大高度为______米; ②求v 的值.19.(2024·江苏苏州·中考真题)如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A −,()6,0C ,反比例函数()0,0ky k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值; (2)点P 为反比例函数()0,0ky k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标.20.(2024·青海·中考真题)在如图所示的平面直角坐标系中,有一斜坡OA ,从点O 处抛出一个小球,落到点33,2A ⎛⎫⎪⎝⎭处.小球在空中所经过的路线是抛物线2y x bx =−+的一部分.(1)求抛物线的解析式; (2)求抛物线最高点的坐标;(3)斜坡上点B 处有一棵树,点B 是OA 的三等分点,小球恰好越过树的顶端C ,求这棵树的高度. 21.(2024·天津·中考真题)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠==.(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围;②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可).2024年中考数学真题汇编专题15 二次函数的实际应用+答案详解(答案详解)一、单选题1.(2024·天津·中考真题)从地面竖直向上抛出一小球,小球的高度h (单位:m )与小球的运动时间t (单位:s )之间的关系式是()230506h t t t =−≤≤.有下列结论:①小球从抛出到落地需要6s ; ②小球运动中的高度可以是30m ;③小球运动2s 时的高度小于运动5s 时的高度. 其中,正确结论的个数是( ) A .0 B .1 C .2 D .3令0=解方程即可判断【详解】解:令0=,则30,解得:10t =,∴小球从抛出到落地需要6∵()230553t t x =−−−∴最大高度为45m ,∴小球运动中的高度可以是2t =时,302=⨯−时,305=⨯−∴小球运动2s 时的高度大于运动时的高度,故③错误;2.(2024·黑龙江齐齐哈尔·中考真题)如图,在等腰Rt ABC △中,90BAC ∠=︒,12AB =,动点E ,F 同时从点A 出发,分别沿射线AB 和射线AC 的方向匀速运动,且速度大小相同,当点E 停止运动时,点F 也随之停止运动,连接EF ,以EF 为边向下做正方形EFGH ,设点E 运动的路程为()012x x <<,正方形EFGH 和等腰Rt ABC △重合部分的面积为下列图像能反映y 与x 之间函数关系的是( )A .B .C .D .∴2EF x =,12BE x =−,∵45AEF B ∠=∠=︒,A ∠∴FAE EOB ∽V V , ∴AE EO=,3.(2024·山东烟台·中考真题)如图,水平放置的矩形ABCD 中,6cm AB =,8cm BC =,菱形EFGH 的顶点E ,G 在同一水平线上,点G 与AB 的中点重合,EF =,60E ∠=︒,现将菱形EFGH 以1cm /s 的速度沿BC 方向匀速运动,当点E 运动到CD 上时停止,在这个运动过程中,菱形EFGH 与矩形ABCD 重叠部分的面积()2cm S 与运动时间()s t 之间的函数关系图象大致是( )A .B .C .D .∴HFG是等边三角形,EF=23cm∠=30OEF=EG EO2S=时,重合部分为MNG,依题意,MNG为等边三角形,运动时间为t,则NG⨯⨯NG NG6时,如图所示,12EKJ S =EKJ S S S =菱形 (3333t −−二、填空题4.(2024·广西·中考真题)如图,壮壮同学投掷实心球,出手(点P 处)的高度OP 是7m 4,出手后实心球沿一段抛物线运行,到达最高点时,水平距离是5m ,高度是4m .若实心球落地点为M ,则OM = m .5.(2024·甘肃·中考真题)如图1为一汽车停车棚,其棚顶的横截面可以看作是抛物线的一部分,如图2是棚顶的竖直高度y (单位:m )与距离停车棚支柱AO 的水平距离x (单位:m )近似满足函数关系20.020.3 1.6y x x =−++的图象,点()62.68B ,在图象上.若一辆箱式货车需在停车棚下避雨,货车截面看作长4m CD =,高 1.8m DE =的矩形,则可判定货车 完全停到车棚内(填“能”或“不能”).【答案】能【分析】本题主要考查了二次函数的实际应用,根据题意求出当2x =时,y 的值,若此时y 的值大于1.8,则货车能完全停到车棚内,反之,不能,据此求解即可.【详解】解:∵4m CD =,()62.68B ,, ∴642−=,在20.020.3 1.6y x x =−++中,当2x =时,20.0220.32 1.6 2.12y =−⨯+⨯+=,∵2.12 1.8>,∴可判定货车能完全停到车棚内,故答案为:能.6.(2024·四川自贡·中考真题)九(1)班劳动实践基地内有一块面积足够大的平整空地.地上两段围墙OE=m,6AE=m, 1.4AB CD⊥于点O(如图),其中AB上的EO段围墙空缺.同学们测得 6.6OB=m,OD=m.班长买来可切断的围栏16m,准备利用已有围墙,围出一块封闭的矩形菜地,则该OC=m,35菜地最大面积是2cm.三、解答题7.(2024·陕西·中考真题)一条河上横跨着一座宏伟壮观的悬索桥.桥梁的缆索1L 与缆索2L 均呈抛物线型,桥塔AO 与桥塔BC 均垂直于桥面,如图所示,以O 为原点,以直线FF '为x 轴,以桥塔AO 所在直线为y 轴,建立平面直角坐标系.已知:缆索1L 所在抛物线与缆索2L 所在抛物线关于y 轴对称,桥塔AO 与桥塔BC 之间的距离100m OC =,17m AO BC ==,缆索1L 的最低点P 到FF '的距离2m PD =(桥塔的粗细忽略不计)(1)求缆索1L 所在抛物线的函数表达式;(2)点E 在缆索2L 上,EF FF '⊥,且 2.6m EF =,FO OD <,求FO 的长.8.(2024·湖北·中考真题)学校要建一个矩形花圃,其中一边靠墙,另外三边用篱笆围成.已知墙长42m,篱笆长80m.设垂直于墙的边AB长为x米,平行于墙的边BC为y米,围成的矩形面积为2cmS.(1)求y与,x s与x的关系式.(2)围成的矩形花圃面积能否为2750cm,若能,求出x的值.(3)围成的矩形花圃面积是否存在最大值?若存在,求出这个最大值,并求出此时x的值.∵1940x ≤<,∴25x =;(3)解:()22280220800s x x x =−+=−−+∵20,-<∴s 有最大值,又1940x ≤<,∴当20x =时,s 取得最大值,此时800s =,即当20x =时,s 的最大值为8009.(2024·河南·中考真题)从地面竖直向上发射的物体离地面的高度()m h 满足关系式205h t v t =−+,其中()s t 是物体运动的时间,()0m /s v 是物体被发射时的速度.社团活动时,科学小组在实验楼前从地面竖直向上发射小球.(1)小球被发射后_________s 时离地面的高度最大(用含0v 的式子表示).(2)若小球离地面的最大高度为20m ,求小球被发射时的速度.(3)按(2)中的速度发射小球,小球离地面的高度有两次与实验楼的高度相同.小明说:“这两次间隔的时间为3s .”已知实验楼高15m ,请判断他的说法是否正确,并说明理由.10.(2024·湖北武汉·中考真题)16世纪中叶,我国发明了一种新式火箭“火龙出水”,它是二级火箭的始祖.火箭第一级运行路径形如抛物线,当火箭运行一定水平距离时,自动引发火箭第二级,火箭第二级沿直线运行.某科技小组运用信息技术模拟火箭运行过程.如图,以发射点为原点,地平线为x 轴,垂直于地面的直线为y 轴,建立平面直角坐标系,分别得到抛物线2y ax x =+和直线12y x b =−+.其中,当火箭运行的水平距离为9km 时,自动引发火箭的第二级.(1)若火箭第二级的引发点的高度为3.6km .①直接写出a ,b 的值;②火箭在运行过程中,有两个位置的高度比火箭运行的最高点低1.35km ,求这两个位置之间的距离.(2)直接写出a 满足什么条件时,火箭落地点与发射点的水平距离超过15km .11.(2024·四川内江·中考真题)端午节吃粽子是中华民族的传统习俗.市场上猪肉粽的进价比豆沙粽的进价每盒多20元,某商家用5000元购进的猪肉粽盒数与3000元购进的豆沙粽盒数相同.在销售中,该商家发现猪肉粽每盒售价52元时,可售出180盒;每盒售价提高1元时,少售出10盒. (1)求这两种粽子的进价;(2)设猪肉粽每盒售价x 元()5270x ≤≤,y 表示该商家销售猪肉粽的利润(单位:元),求y 关于x 的函数表达式并求出y 的最大值.∴当60x =时,y 取得最大值为1000元.12.(2024·贵州·中考真题)某超市购入一批进价为10元/盒的糖果进行销售,经市场调查发现:销售单价不低于进价时,日销售量y (盒)与销售单价x (元)是一次函数关系,下表是y 与x 的几组对应值.(1)求y 与x 的函数表达式;(2)糖果销售单价定为多少元时,所获日销售利润最大,最大利润是多少?(3)若超市决定每销售一盒糖果向儿童福利院赠送一件价值为m 元的礼品,赠送礼品后,为确保该种糖果日销售获得的最大利润为392元,求m 的值. 【答案】(1)280y x =−+(2)糖果销售单价定为25元时,所获日销售利润最大,最大利润是450元 (3)2【分析】本题考查了二次函数的应用,解题的关键是: (1)利用待定系数法求解即可;(2)设日销售利润为w 元,根据利润=单件利润×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可;(3)设日销售利润为w 元,根据利润=单件利润×销售量-m ×销售量求出w 关于x 的函数表达式,然后利用二次函数的性质求解即可.【详解】(1)解∶设y 与x 的函数表达式为y kx b =+, 把12x =,56y =;20x =,40y =代入,得12562040k b k b +=⎧⎨+=⎩,解得280k b =−⎧⎨=⎩,∴y 与x 的函数表达式为280y x =−+; (2)解:设日销售利润为w 元, 根据题意,得()10w x y =−⋅()()10280x x =−−+22100800x x =−+−13.(2024·广东·中考真题)广东省全力实施“百县千镇万村高质量发展工程”,2023年农产品进出口总额居全国首位,其中荔枝鲜果远销欧美.某果商以每吨2万元的价格收购早熟荔枝,销往国外.若按每吨5万元出售,平均每天可售出100吨.市场调查反映:如果每吨降价1万元,每天销售量相应增加50吨.该果商如何定价才能使每天的“利润”或“销售收入”最大?并求出其最大值.(题中“元”为人民币)14.(2024·四川遂宁·中考真题)某酒店有A B、两种客房、其中A种24间,B种20间.若全部入住,一天、两种客房均有10间入住,一天营业额为3200元.营业额为7200元;若A B(1)求A B、两种客房每间定价分别是多少元?(2)酒店对A种客房调研发现:如果客房不调价,房间可全部住满;如果每个房间定价每增加10元,就会有一个房间空闲;当A种客房每间定价为多少元时,A种客房一天的营业额W最大,最大营业额为多少元?15.(2024·四川南充·中考真题)2024年“五一”假期期间,阆中古城景区某特产店销售A,B两类特产.A 类特产进价50元/件,B类特产进价60元/件.已知购买1件A类特产和1件B类特产需132元,购买3件A 类特产和5件B 类特产需540元.(1)求A 类特产和B 类特产每件的售价各是多少元?(2)A 类特产供货充足,按原价销售每天可售出60件.市场调查反映,若每降价1元,每天可多售出10件(每件售价不低于进价).设每件A 类特产降价x 元,每天的销售量为y 件,求y 与x 的函数关系式,并写出自变量x 的取值范围.(3)在(2)的条件下,由于B 类特产供货紧张,每天只能购进100件且能按原价售完.设该店每天销售这两类特产的总利润为w 元,求w 与x 的函数关系式,并求出每件A 类特产降价多少元时总利润w 最大,最大利润是多少元?(利润=售价-进价)【答案】(1)A 类特产的售价为60元/件,B 类特产的售价为72元/件 (2)1060y x =+(010x ≤≤)(3)A 类特产每件售价降价2元时,每天销售利润最犬,最大利润为1840元【分析】本题主要考查一元一次方程的应用、函数关系式和二次函数的性质,()1根据题意设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x −元,进一步得到关于x 的一元一次方程求解即可;()2根据降价1元,每天可多售出10件列出函数关系式,结合进价与售价,且每件售价不低于进价得到x得取值范围;()3结合(2)中A 类特产降价x 元与每天的销售量y 件,得到A 类特产的利润,同时求得B 类特产的利润,整理得到关于x 的二次函数,利用二次函数的性质求解即可.【详解】(1)解:设每件A 类特产的售价为x 元,则每件B 类特产的售价为()132x −元. 根据题意得()35132540x x +−=. 解得60x =.则每件B 类特产的售价1326072−=(元).答:A 类特产的售价为60元/件,B 类特产的售价为72元/件. (2)由题意得1060y x =+∵A 类特产进价50元/件,售价为60元/件,且每件售价不低于进价 ∴010x ≤≤.答:1060y x =+(010x ≤≤).(3)(6050)(1060)100(7260)w x x =−−++⨯−22=−++=−−+.x x x1040180010(2)1840Q−<100,∴当2x=时,w有最大值1840.答:A类特产每件售价降价2元时,每天销售利润最大,最大利润为1840元.16.(2024·江苏盐城·中考真题)请根据以下素材,完成探究任务.17.(2024·山东烟台·中考真题)每年5月的第三个星期日为全国助残日,今年的主题是“科技助残,共享美好生活”,康宁公司新研发了一批便携式轮椅计划在该月销售,根据市场调查,每辆轮椅盈利200元时,每天可售出60辆;单价每降低10元,每天可多售出4辆.公司决定在成本不变的情况下降价销售,但每辆轮椅的利润不低于180元,设每辆轮椅降价x元,每天的销售利润为y元.(1)求y与x的函数关系式;每辆轮椅降价多少元时,每天的销售利润最大?最大利润为多少元?(2)全国助残日当天,公司共获得销售利润12160元,请问这天售出了多少辆轮椅?18.(2024·江西·中考真题)如图,一小球从斜坡O 点以一定的方向弹出球的飞行路线可以用二次函数()20y ax bx a =+<刻画,斜坡可以用一次函数14y x =刻画,小球飞行的水平距离x (米)与小球飞行的高度y (米)的变化规律如下表:(1)①m =______,n =______; ②小球的落点是A ,求点A 的坐标.(2)小球飞行高度y (米)与飞行时间t (秒)满足关系25y t vt =−+. ①小球飞行的最大高度为______米; ②求v 的值.19.(2024·江苏苏州·中考真题)如图,ABC 中,AC BC =,90ACB ∠=︒,()2,0A −,()6,0C ,反比例函数()0,0k y k x x=≠>的图象与AB 交于点(),4D m ,与BC 交于点E .(1)求m ,k 的值;(2)点P 为反比例函数()0,0k y k x x=≠>图象上一动点(点P 在D ,E 之间运动,不与D ,E 重合),过点P 作PM AB ∥,交y 轴于点M ,过点P 作PN x ∥轴,交BC 于点N ,连接MN ,求PMN 面积的最大值,并求出此时点P 的坐标. PMN S =()2,0A −)6,0,又AC BC =8BC =.ACB ∠=∴点(6,8B 设直线AB 将(2,0A −AC BC=PN x∥轴,BLN∴∠=PM AB∥MPL∴∠=QMP∴∠QM QP∴=设点P的坐标为PMNS=当3t=20.(2024·青海·中考真题)在如图所示的平面直角坐标系中,有一斜坡OA,从点O处抛出一个小球,落到点33,2A⎛⎫⎪⎝⎭处.小球在空中所经过的路线是抛物线2y x bx=−+的一部分.(1)求抛物线的解析式;(2)求抛物线最高点的坐标;(3)斜坡上点B处有一棵树,点B是OA的三等分点,小球恰好越过树的顶端C,求这棵树的高度.∵BOD AOE ∠=∠,BDO ∠∴OBD OAE ∽△△, ∴OD BD OB OE AE OA==, 又∵点B 是OA 的三等分点,∴1OB =,21.(2024·天津·中考真题)将一个平行四边形纸片OABC 放置在平面直角坐标系中,点()0,0O ,点()3,0A ,点,B C 在第一象限,且2,60OC AOC ∠==.(1)填空:如图①,点C 的坐标为______,点B 的坐标为______;(2)若P 为x 轴的正半轴上一动点,过点P 作直线l x ⊥轴,沿直线l 折叠该纸片,折叠后点O 的对应点O '落在x 轴的正半轴上,点C 的对应点为C '.设OP t =.①如图②,若直线l 与边CB 相交于点Q ,当折叠后四边形PO C Q ''与OABC 重叠部分为五边形时,O C ''与AB 相交于点E .试用含有t 的式子表示线段BE 的长,并直接写出t 的取值范围;②设折叠后重叠部分的面积为S ,当21134t ≤≤时,求S 的取值范围(直接写出结果即可).,再证明EO A'是等边三角形,运用线段的和差关系重合时,和当C'与点,再分别以2 3分别作图,运用数形结合思路列式计算,即可作答.60,(A∴EO A'是等边三角形=AE AO'=−BE AB=−BE AB=−+2BE t∵由①得出EO A '是等边三角形,(122AO t ='3EAO '=,32t ⎛⎫− ⎪⎝⎭3124。

上海复兴实验中学必修一第四单元《函数应用》检测(包含答案解析)

上海复兴实验中学必修一第四单元《函数应用》检测(包含答案解析)

一、选择题1.设()31xf x =-,若关于x 的函数2()()(1)()g x f x t f x t =-++有三个不同的零点,则实数t 的取值范围为( ) A .102⎛⎫ ⎪⎝⎭,B .()0,2C .()0,1D .(]0,12.已知1,0()1,0ax x f x x x x +≤⎧⎪=⎨->⎪⎩,则下列关于[()]1y f f x =+的零点的判断正确的是( ) A .当0a >时,有4个零点,当0a <时,有1个零点; B .当0a >时,有3个零点,当0a <时,有2个零点; C .无论a 为何值,均有2个零点; D .无论a 为何值,均有4个零点.3.已知函数2,0()()21,0x e a x f x a R x x ⎧+=∈⎨->⎩,若函数()f x 在R 上有两个零点,则a 的取值范围是( ) A .(,1)-∞- B .[2,0)- C .(1,0)- D .[1,0)- 4.设函数()243,023,0x x x f x x x ⎧-+≥=⎨+<⎩,若互不相等的实数1x 、2x 、3x ,满足()()()123f x f x f x ==,则123x x x ++的取值范围是( )A .5,62⎛⎫ ⎪⎝⎭B .5,42⎛⎤⎥⎝⎦C .()2,4D .()2,65.已知函数1,0(),0x x m f x e x -⎧=⎪=⎨⎪≠⎩,关于x 的方程23()(23)()20mf x m f x -++=有以下结论:①存在实数m ,使方程有2个解;②当方程有3个解时,这3个解的和为0;③不存在实数m ,使方程有4个解;④当方程有5个解时,实数m 的取值范围是331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭.其中正确结论的个数为( ) A .1B .2C .3D .46.对于函数()f x ﹐若集合()(){}0,x x f x f x >=-中恰有k 个元素,则称函数()f x 是“k 阶准偶函数”.若函数21,()2,xx af x x x a ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩是“2阶准偶函数”,则a 的取值范围是( )A .(),0-∞B .[)0,2C .[)0,4D .[)2,47.已知函数321()232x f x ax bx c =+++的两个极值分别为1()f x 和2()f x ,若1x 和2x 分别在区间(0,1)与(1,2)内,则21b a --的取值范围是( ) A .(1,14)B .1[,1]4C .1(,)(1,)4-∞+∞D .1(,][1,)4-∞+∞8.某工厂生产某产品2019年每月生产量基本保持稳定,2020年由于防疫需要2、3、4、5月份停产,6月份恢复生产时月产量仅为去年同期的一半,随着疫情缓解月产量逐步提高.该工厂如果想8月份产量恢复到去年同期水平,那么该工厂从6月开始月产量平均增长率至少需到达多少个百分点?( ) A .25B .35C .42D .509.若直角坐标平面内的两点P 、Q 满足条件:①P 、Q 都在函数()y f x =的图象上;②P 、Q 关于原点对称,则称点对[]P Q 、是函数()y f x =的一对“友好点对”(点对[]P Q 、与[]Q P 、看作同一对“友好点对”).已知函数22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,则此函数的“友好点对”有( ) A .4对 B .3对 C .2对 D .1对10.已知函数()21xf x x =++,()2log 1g x x x =++,()2log 1h x x =-的零点依次为,,a b c ,则( )A .a b c <<B .a c b <<C .b c a <<D .b a c <<11.若关于x 的方程12xa a -= (a >0,a ≠1)有两个不等实根,则a 的取值范围是( ) A .(0,1)∪(1,+∞) B .(0,1) C .(1,+∞)D .1(0,)212.已知定义在R 上的函数()2ln ,1,1x x f x x x x >⎧⎪=⎨-⎪⎩,若函数()()k x f x ax =-恰有2个零点,则实数a 的取值范围是( ) A .()1,11,0e ⎛-⎫⎪⎝⎭ B .()1,1,1e ⎛⎫-∞- ⎪⎝⎭C .(){}1,1,10e ⎛⎫-∞- ⎪⎝⎭D .(){}11,00,1e ⎛⎫- ⎪⎝⎭二、填空题13.已知函数()1,0ln ,0x x f x x x +≤⎧=⎨>⎩,则函数()1y f f x ⎡⎤=-⎣⎦的零点个数为______.14.函数()e |ln |2x f x x =-的零点个数为______________.15.已知方程24(2)60x a x +--=的两实根为1 x ,2x ,方程2220x x a --=的两实根为3x ,4x ,且3124x x x x <<<,则实数a 的取值范围为________.16.设函数212,2()1,2xx f x x x lnx x ⎧⎪⎪=⎨⎪-->⎪⎩,若函数()()F x f x a =+恰有2个零点,则实数a的取值范围是__.17.方程()2332log log 30x x +-=的解是______.18.已知函数1,0()ln ,0ax x f x x x +≤⎧=⎨>⎩,给出下列三个结论:①当2a =-时,函数()f x 的单调递减区间为(,1)-∞;②若函数()f x 无最小值,则a 的取值范围为(0,)+∞;③若1a <且0a ≠,则b R ∃∈,使得函数()y f x b =-.恰有3个零点1x ,2x ,3x ,且1231x x x =-.其中,所有正确结论的序号是______.19.用符号[]x 表示不超过x 的最大整数,例如:[]0.60=;[]2.32=;[]55=.设函数()()()()2222ln 22ln 2f x ax x ax x =-+-有三个零点1x ,2x ,3x ()123x x x <<且[][][]1233x x x ++=,则a 的取值范围是_____________.20.若函数|1|12x y m -⎛⎫=+ ⎪⎝⎭的图象与x 轴有公共点,则m 的取值范围是__________.三、解答题21.某地为开拓当地的一种农产品销售市场,将该农产品进行网上销售.该地统计了一个月的网上销售情况,在30天内每斤的交易价格P (元)与时间t (天)组成有序数对(),t P ,点(),t P 恰好落在如图中的两条线段上;该农产品在30天内(包括第30天)的日交易量Q (万斤)与时间t (天)满足30Q at =+,且已知第十天的交易量为20万斤. (1)根据提供的图象,写出该农产品每斤交易价格P (元)与时间t (天)所满足的函数关系式;(2)用y (万元)表示该农产品日交易额(日交易额=每斤交易价格×日交易量),求y 关于t 的函数关系式,并求这30天中第几天的日交易额最大,最大值为多少?22.2009年淘宝开始做“双十一”活动,历经11载,每年双十一成交额都会出现惊人的增长,极大拉动消费内需,促进经济发展.已知今年小明在网上买了一部华为手机,据了解手机是从150千米处的地方发出,运货卡车以每小时x 千米的速度匀速行驶,中途不停车.按交通法规限制60120x ≤≤(单位:千米/时).假设汽油的价格是每升5元,而卡车运输过程中每小时耗油2 5400x⎛⎫+⎪⎝⎭升,司机的工资是每小时20元.(1)求这次行车总费用y(单位:元)关于x的表达式;(2)当x为何值时,这次行车的总费用最低?并求出最低费用.23.某企业加工生产一批珠宝,要求每件珠宝都按统一规格加工,每件珠宝的原材料成本为0.5万元,每件珠宝售价(万元)与加工时间t(单位:天)之间的关系满足图1,珠宝的预计销量(件)与加工时间t(天)之间的关系满足图2.原则上,单件珠宝的加工时间不能超过55天,企业支付的工人报酬为这批珠宝销售毛利润的三分之一,其他成本忽略不计算.(1)如果每件珠宝加工天数分别为5,13,预计销量分别会有多少件?(2)设工厂生产这批珠宝产生的纯利润为S(万元),请写出纯利润S(万元)关于加工时间t(天)之间的函数关系式,并求纯利润S(万元)最大时的预计销量.注:毛利润=总销售额—原材料成本,纯利润=毛利润—工人报酬.24.荷兰阿斯麦尔公司(ASML)是全球高端光刻机霸主,最新的EUV(极紫外光源)具备7nm工艺.芯片是手机中重要部件,除此以外还有如液晶屏、电池等配件.如果某工厂一条手机配件生产线的产量ω(单位:百个)与生产成本x(单位:百元)满足如下关系:()213(02)236(25)1x xxxxω⎧+≤≤⎪⎪=⎨⎪-<≤⎪+⎩此外,还需要投入其他成本(如运输、包装成本等)2x百元,已知这种手机配件的市场售价为16元/个(即16百元/百个),且市场需要始终供不应求.记这条生产线获得的利润为()L x(单位:百元).(Ⅰ)求()L x的函数表达式;(Ⅱ)当投入的生产成本为多少时,这条生产线获得的利润最大?最大利润是多少?25.某单位有员工1000名,平均每人每年创造利润10万元.为了增加企业竞争力,决定优化产业结构,调整出()*x x N∈名员工从事第三产业,调整后他们平均每人每年创造利润为310500xa⎛⎫-⎪⎝⎭万元()0a>,剩下的员工平均每人每年创造的利润可以提高0.2%x.(1)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润,则最多调整出多少名员工从事第三产业?(2)若要保证剩余员工创造的年总利润不低于原来1000名员工创造的年总利润条件下,若要求调整出的员工创造出的年总利润始终不高于剩余员工创造的年总利润,则a 的取值范围是多少?26.已知函数()y f x =为二次函数,()04f =,且关于x 的不等式()20f x -<的解集为{}12x x <<(1)求函数()f x 的解析式(2)若关于x 的方程()0f x m -=有一实根大于1,一实根小于1,求实数m 的取值范围 (3)已知()1g x x =+,若存在x 使()y f x =的图象在()y g x =图象的上方,求满足条件的实数x 的取值范围【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由()0g x =得()1f x =或()f x t =,作出函数()f x 的图象,可得()f x t =需有两解,有此可得t 的范围. 【详解】据题意()0g x =有三个解.由()0g x =得()1f x =或()f x t =,易知()1f x =只有一个解, ∴()f x t =必须有两解, 由图象知01t <<. 故选:C .【点睛】关键点点睛:本题考查函数零点个数问题,解题时根据零点的定义化为方程()0g x =的解的个数,进而转化为()f x t =的解的个数,再利用数形结合思想,考虑函数()y f x =的图象与直线y t =的交点个数问题.掌握转化思想是解题关键.2.A解析:A 【分析】按0a >和0a <分类讨论[()]1y f f x =+的零点个数,即确定[()]10f f x +=的解的个数,可得正确选项. 【详解】0x >时,1()f x x x=-是增函数,()(,)f x ∈-∞+∞,此时()f x m =对任意m R ∈均有一解.0x ≤时,若0a >,()1f x ax =+是增函数,()(,1]f x ∈-∞,此时()f x m =在1m 时有一解,1m 时无解,若0a <,()1f x ax =+是减函数,()[1,)f x ∈+∞,此时()f x m =在m 1≥时有一解,1m <时无解,由[())10f f x +=得[()]1f f x =-,设()1f t =-,则0a >时,()1f t =-的解为2t a =-和t =,20a-<,01<<,因此2()f x a =-有两解,()f x =4解.0a <时,()1f t =-只有一解112t =<,1()2f x =只有一解, ∴函数[()]1y f f x =+在0a >时,有4个零点,当0a <时,有1个零点. 故选:A . 【点睛】关键点点睛:本题考查函数的零点,解题方法是转化与化归思想,转化为方程[()]10f f x +=的解.通过换元法,先求得()1f t =-的解,若0t 是其解,再求0()f x t =的解,从而得出结论.3.B解析:B 【分析】当0x >时,()21f x x =-有一个零点12x =,只需当0x ≤时,20x e a +=有一个根,利用“分离参数法”求解即可. 【详解】因为函数()2,021,0x e a x f x x x ⎧+≤=⎨->⎩,当0x >时,()21f x x =-有一个零点12x =, 所以只需当0x ≤时,202xxae a e +==-即有一个根即可, 因为2xy e =单调递增,当0x ≤时,(]0,1xe ∈,所以(]0,2a -∈,即[)2,0a ∈-, 故选:B. 【点睛】已知函数有零点(方程有根),求参数取值范围的三种常用的方法:(1)直接法,直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法,先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法,先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后利用数形结合求解.4.C解析:C 【分析】设123x x x <<,作出函数()f x 的图象,结合图象可得出1x 的取值范围,结合二次函数图象的对称性可得出234x x +=,进而可求得123x x x ++的取值范围. 【详解】设123x x x <<,作出函数()f x 的图象如下图所示:设()()()123f x f x f x m ===,当0x ≥时,()()2243211f x x x x =-+=--≥-,由图象可知,13m -<<,则()()11231,3f x x =+∈-,可得120x -<<, 由于二次函数243y x x =-+的图象的对称轴为直线2x =,所以,234x x +=,因此,12324x x x <++<.故选:C. 【点睛】方法点睛:已知函数有零点(方程有根)求参数值(或取值范围),常用方法如下: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数的取值范围; (2)分离常数法:先将参数分离,转化为求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.5.C解析:C 【分析】将方程的解的个数转化为函数()y f x =的图象与直线23y =和1y m=的交点总数,数形结合即可得解. 【详解】由题意,23()(23)()20[3()2][()1]0mf x m f x f x mf x -++=⇒--=, 解得2()3f x =或1()f x m=, 则方程解的个数即为函数()y f x =的图象与直线23y =和1y m=的交点总数, 作出函数()f x 的图象,如图,由()f x 的图象可知,2()3f x =有两个非零解, 由1(0)f m =得1()f x m=至少有一个解0,故①错; 当方程有3个解时,10m <或11m ≥或123m =,由函数的对称性可得这3个解的和为0, 故②对;不存在实数m ,使方程有4个解,故③对; 当方程有5个解时,则函数()y f x =的图象与直线23y =和1y m=共有五个交点, 所以直线1y m=与函数()y f x =的图象有三个交点, 数形结合可得101123mm ⎧<<⎪⎪⎨⎪≠⎪⎩,解得331,,22m ⎛⎫⎛⎫∈+∞ ⎪ ⎪⎝⎭⎝⎭,故④对.故正确结论有3个. 故选:C . 【点睛】方法点睛:解决函数零点(方程的根)的问题常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.6.B解析:B 【分析】根据“2阶准偶函数”定义,分0a <,0a >,0a =三种情况分析即可得答案. 【详解】解:根据题意,函数21,()2,xx a f x x x a ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩是“2阶准偶函数”, 则集合()(){}0,x x f x f x >=-中恰有2个元素.当0a <时,函数21,()2,xx a f x x x a ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩有一段部分为2,y x x a =>,注意的函数2yx 本身具有偶函数性质,故集合()(){}0,x x f x f x >=-中不止有两个元素,矛盾,当0a >时,根据“2阶准偶函数”的定义得()f x 的可能取值为2x 或12x⎛⎫ ⎪⎝⎭,()f x -为122-⎛⎫= ⎪⎝⎭xx,故当122xx ⎛⎫= ⎪⎝⎭,该方程无解,当22x x =,解得2x =或4x =,故要使得集合()(){}0,x x f x f x >=-中恰有2个元素,则需要满足2a <,即02a <<;当0a =时,函数21,0()2,0xx f x x x ⎧⎛⎫≤⎪ ⎪=⎨⎝⎭⎪>⎩,()f x 的取值为2x ,()f x -为122-⎛⎫= ⎪⎝⎭xx ,根据题意得22x x =满足恰有两个元素,故0a =满足条件. 综上,实数a 的取值范围是[)0,2. 故选:B 【点睛】本题解题的关键是根据新定义的“2阶准偶函数”,将问题转化为研究函数()f x ,()f x -可能取何值,进而根据22x x =方程有两个解2x =或4x =求解.考查运算求解能力与综合分析能力,是中档题.7.A解析:A 【分析】由极值点的所在区间即可知()f x 的导函数2()2f x x ax b '=++的零点区间,应用根的分布可得1310a b ->>-⎧⎨>>⎩,结合目标式的几何意义即可求其范围.【详解】由题意知:2()2f x x ax b '=++,而()f x 两个极值点1x 和2x 分别在区间(0,1)与(1,2)内,∴方程220x ax b ++=两个根在(0,1)与(1,2)内,()'f x 开口向上,∴012020b a b a b >⎧⎪++<⎨⎪++>⎩,可得1310a b ->>-⎧⎨>>⎩,即214122a b ->->-⎧⎨->->-⎩,∴令1,2x a y b =-=-,问题转化为在24,12x y ->>-->>-的可行域内的点与原点所成直线斜率yx的取值范围,如下图示:有1(,1)4y x ∈, 故选:A 【点睛】本题考查了根据函数极值点的所在区间求目标式的范围,应用了极值点与导数关系、根的分布、不等式的性质,结合线性规划及目标式的几何意义求范围,属于中档题.8.C解析:C 【分析】设该工厂从6月开始月产量平均增长率至少需到达x ,8月份产量去年同期水平为a ,则21(1)2a x a +=.由此能求出该工厂从6月开始月产量平均增长率至少需到达多少个百分点. 【详解】设该工厂从6月开始月产量平均增长率至少需到达x ,8月份产量去年同期水平为a ,则21(1)2a x a +=. 解得210.41442%x =≈≈.∴该工厂从6月开始月产量平均增长率至少需到达42个百分点.故选:C . 【点睛】本题考查百分点的求法,考查等比数列的性质等基础知识,考查运算求解能力,是基础题.9.C解析:C 【分析】由题意,设点(,)P x y ,则Q 的坐标为(,)x y --,结合22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,转化为此函数的“友好点对”的个数即方程222x x x --=-在0x >时的解的个数,从而作图解答 【详解】解:由题意,设点(,)P x y ,则Q 的坐标为(,)x y --,因为22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,所以此函数的“友好点对”的个数即方程222x x x --=-在0x >时的解的个数, 作2x y -=-与22y x x =-的图像如图所示,两函数图像有两个交点,所以此函数的“友好点对”有2对 故选:C 【点睛】此题考查学生对新定义的理解能力及作图能力,属于中档题10.A解析:A 【解析】令函数()210xf x x =++=,可得0x <,即0a <,令()2log 10g x x x =++=,则01x <<,即01b <<,令()2log 10h x x =-=,可知2x =,即2c =,显然a b c <<,故选A.11.D解析:D 【分析】由题意转化条件为函数y =1xa -(a >0,a ≠1)的图象与直线y =2a 有两个不同的交点,按照a >1、0<a <1分类,数形结合即可得解. 【详解】根据题意,函数y =1xa -(a >0,a ≠1)的图象与直线y =2a 有两个不同的交点,a>1时,如图(1)所示;0<a<1时,如图(2)所示.由图象知,0<2a<1,所以1 0,2a⎛⎫∈ ⎪⎝⎭.故选:D.【点睛】本题考查了指数函数图象及函数图象变换的应用,考查了函数与方程的综合应用及数形结合思想、分类讨论思想,属于中档题.12.C解析:C【分析】把函数交点有两个零点转化为函数图象与直线有两个交点,作出对应函数图象和直线,利用导数求出相应切线的斜率,由图象观察出a的范围.【详解】()0f x ax-=()f x ax⇒=,所以函数()y f x=的图象与直线y ax=有两个交点,作出函数()2ln,1,1x xf xx x x>⎧⎪=⎨-≤⎪⎩的图象,如下图,由()lnf x x=得1()f xx'=,设直线y ax=与()lnf x x=图象切点为00(,)P x y,则00000ln1y xax x x===,x e=,所以11ax e==.由2()f x x x=-得()12f x x'=-,(0)1f'=,y ax=与2y x x在原点相切时,1a=,由2()f x x x=-得()21f x x'=-,(0)1f'=-,y ax=与2y x x在原点相切时,1a=-,所以直线y x =,y x =-,1ey x =与曲线()f x 相切, 由直线y ax =与曲线()y f x =的位置关系可得:当(){}1,1,10e a ⎛⎫∈-∞- ⎪⎝⎭时有两个交点,即函数()y k x =恰有两个零点.故选:C . 【点睛】本题考查函数零点个数问题,解题方法是把函数零点转化为方程的解的个数,再转化为函数图象与直线交点个数,作出函数图象与直线通过数形结合思想求解.二、填空题13.【分析】先由可求得的值再由和两种情况结合的值可求得的值即可得解【详解】下面先解方程得出的值(1)当时可得可得;(2)当时可得可得或下面解方程和①当时由可得由可得(舍去)由可得;②当时由可得由可得或由 解析:7【分析】先由()10f f x ⎡⎤-=⎣⎦可求得()f x 的值,再由0x ≤和0x >两种情况结合()f x 的值,可求得x 的值,即可得解. 【详解】下面先解方程()10f f x ⎡⎤-=⎣⎦得出()f x 的值.(1)当()0f x ≤时,可得()()1110f f x f x -=+-=⎡⎤⎣⎦,可得()0f x =; (2)当()0f x >时,可得()()1ln 10f f x f x -=-=⎡⎤⎣⎦,可得()f x e =或()1f x e=. 下面解方程()0f x =、()f x e =和()1f x e=. ①当0x ≤时,由()10f x x =+=可得1x =-,由()1f x x e =+=可得1x e =-(舍去),由()11f x x e =+=可得11x e=-; ②当0x >时,由()ln 0f x x ==可得1x =,由()1ln f x x e==可得1e x e =或1e x e-=,由()ln f x x e ==可得e x e =或e x e -=.综上所述,函数()1y f f x =-⎡⎤⎣⎦的零点个数为7. 故答案为:7. 【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.14.2【分析】令可得可将函数的零点可以转化为:函数和的图象的交点问题进而画出函数的图象可得出答案【详解】令可得所以函数的零点可以转化为:函数和的图象的交点问题函数和的图象如下图所示:根据图象可得有两个交解析:2 【分析】令()e |ln |20xf x x =-=,可得2ln ex x =,可将函数()f x 的零点可以转化为:函数ln y x =和2ex y =的图象的交点问题,进而画出函数的图象,可得出答案. 【详解】令()e |ln |20xf x x =-=,可得2ln ex x =, 所以函数()f x 的零点可以转化为:函数ln y x =和2ex y =的图象的交点问题. 函数ln y x =和2e xy =的图象,如下图所示:根据图象可得有两个交点,故原函数有两个零点. 故答案为:2. 【点睛】方法点睛:本题考查求函数零点的个数(方程解的个数)问题.常用的方法:(1)直接解方程()0f x =,求出方程的解的个数,也就是函数()y f x =的零点个数; (2)作出函数()y f x =的图象,其图象与x 轴交点的个数就是函数()y f x =的零点的个数;(3)化函数零点个数问题为方程()()=g x h x 的解的个数问题,在同一平面直角坐标系中画出两个函数的图象,两函数图象的交点个数就是函数()y f x =的零点的个数.15.【分析】把问题转化为函数与两个函数的交点问题画出图像观察即可得出结果【详解】由方程的两实根为则转化为两个函数的交点问题由方程的两实根为转化为两个函数的交点问题画出函数的图像如图所示:又观察图像可得: 解析:412a <<【分析】把问题转化为函数y a =与()642f x x x=-+,()222g x x x =-两个函数的交点问题,画出图像,观察即可得出结果. 【详解】由方程24(2)60x a x +--=的两实根为1 x ,2x ,1232x x ⋅=-,则120,0 x x ≠≠, 转化为()6,42y a f x x x==-+两个函数的交点问题, 由方程2220x x a --=的两实根为3x ,4x , 转化为()2,22y a g x x x ==-两个函数的交点问题,画出函数()(),,f x g x y a =的图像,如图所示:又3124x x x x <<<,观察图像可得:412a <<. 则实数a 的取值范围为412a <<. 故答案为:412a <<. 【点睛】方法点睛:已知函数有零点(方程有实根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.16.【分析】令求出函数的导数判断函数的单调性结合函数的图象推出结果即可【详解】解:令则令得或(舍去)当时;当时所以在上是减函数在上是增函数又(1)而在上是增函数且作出函数的图象如图由得所以当即时函数与的解析:[2-,12]4ln -. 【分析】令2()g x x x lnx =--,12x >,求出函数的导数,判断函数的单调性,结合函数的图象,推出结果即可. 【详解】解:令2()g x x x lnx =--,12x >, 则2121(21)(1)()21x x x x g x x x x x--+-'=--==, 令()0g x '=,得1x =或12x =-(舍去)当112x <<时,()0g x '<;当1x >时,()0g x '>, 所以()g x 在1(,1)2上是减函数,在(1,)+∞上是增函数,又11()224g ln =-+,g (1)0=,而2xy =在1(,)2-∞上是增函数,且022x<,作出函数()f x 的图象如图,由()0F x =得()f x a =-,所以当1224ln a-+-即1224aln --时,函数()y f x =与y a =-的图象有两个交点.故答案为:1[2,2]4ln --.【点睛】本题考查函数的零点与方程的根的关系,函数的导数的应用,考查转化思想以及计算能力,是中档题.17.或【分析】设原方程等价转化为由此能求出原方程的解【详解】设则原方程转化为解得当即解得当即解得所以原方程的解为或故答案为:或【点睛】本题考查方程的解的求法解题时要认真审题注意换元法的合理运用属于基础题解析:9或3 【分析】设3log x t =,原方程等价转化为2230t t +-=,由此能求出原方程的解. 【详解】设3log x t =,则原方程转化为2230t t +-=,解得132t =-,21t =, 当132t =-,即33log 2x =-,解得x = 当21t =,即3log 1x =,解得3x =,所以,原方程的解为9或3.3. 【点睛】本题考查方程的解的求法,解题时要认真审题,注意换元法的合理运用,属于基础题.18.②③【分析】由题意结合函数单调性的概念举出反例可判断①;画出函数的图象数形结合即可判断②;由题意结合函数图象不妨设进而可得令验证后即可判断③;即可得解【详解】对于①当时由所以函数在区间不单调递减故①解析:②③ 【分析】由题意结合函数单调性的概念举出反例可判断①;画出函数的图象数形结合即可判断②;由题意结合函数图象不妨设12301x x x <<<<,进而可得11b x a-=,2bx e -=,3b x e =,令111b x a-==-验证后即可判断③;即可得解. 【详解】对于①,当2a =-时,由201e -<<,22(0)1()ln 2f f e e --=<==,所以函数()f x 在区间(,1)-∞不单调递减,故①错误;对于②,函数1,0()ln ,0ax x f x x x +≤⎧=⎨>⎩可转化为1,0()ln ,01ln ,1ax x f x x x x x +≤⎧⎪=-<≤⎨⎪>⎩,画出函数的图象,如图:由题意可得若函数()f x 无最小值,则a 的取值范围为(0,)+∞,故②正确;对于③,令()0y f x b =-=即()f x b =,结合函数图象不妨设12301x x x <<<<, 则1231ln ln ax x x b +=-==, 所以11b x a-=,2b x e -=,3bx e =,所以231b b x x e e -⋅=⋅=, 令111b x a-==-即1b a =-+, 当0a <时,11b a =-+>,()0y f x b =-=存在三个零点,且1231x x x =-,符合题意; 当01a <<时,011b a <=-+<,()0y f x b =-=存在三个零点,且1231x x x =-,符合题意; 故③正确. 故答案为:②③. 【点睛】本题考查了分段函数单调性、最值及函数零点的问题,考查了运算求解能力与数形结合思想,合理使用函数的图象是解题的关键,属于中档题.19.【分析】由题意可知得;令可知单调递增区间为单调递减为作出的草图由图可知所以而所以即可得由此即可求出结果【详解】因为所以①或②由①得由②得令则所以当时单调递增时单调递减事实上当时当时由图显然所以而所以解析:2ln 2,ln 69⎡⎫--⎪⎢⎣⎭【分析】由题意可知()()()21ln 22ln 20f x x ax x =-+=,得22ln 2x a x -=;令()22ln 2xg x x =,可知()g x 单调递增区间为e ⎛ ⎝⎭,()g x 单调递减为e ⎛⎫+∞ ⎪ ⎪⎝⎭,作出()g x 的草图,由图可知()10,1x ∈,()21,22ex =∈,所以[]10x =,[]21x =,而[][][]1233x x x ++=,所以[]32x =,即[)32,3x ∈,可得()()23a g a g ⎧-≤⎪⎨->⎪⎩,由此即可求出结果. 【详解】因为()()()2222ln 22ln 22ln 21ln 22ln 21ln 2f x ax ax x x x ax x x x =-+-=-+-()()21ln 22ln 20x ax x =-+=,0x >,所以1ln 20x -=①或22ln 20ax x +=②. 由①得2e x =,由②得22ln 2x a x -=. 令()22ln 2x g x x =,则()()3212ln 20x g x x -'==,所以ex =. 当0,2e x ⎛⎫∈ ⎪ ⎪⎝⎭时,()0g x '>,()g x 单调递增,,2e x ⎛⎫∈+∞ ⎪ ⎪⎝⎭时,()0g x '<,()g x 单调递减.事实上,当102x <<时,()0g x <,当1x >时,()0g x >. 由图显然()10,1x ∈,()21,22ex =∈,所以[]10x =,[]21x =, 而[][][]1233x x x ++=,所以[]32x =,即[)32,3x ∈.所以()()23a g a g ⎧-≤⎪⎨->⎪⎩,即2ln 4,42ln 6,9a a ⎧-≤⎪⎪⎨⎪->⎪⎩解得2ln 6ln 29a -≤<-. 故答案为:2ln 2,ln 69⎡⎫--⎪⎢⎣⎭. 【点睛】本题主要考查了导函数在函数零点中的应用,属于难题.20.【分析】由可得出设函数将问题转化为函数与函数的图象有交点利用数形结合思想可求出实数的取值范围【详解】由可得出设函数则直线与函数的图象有交点作出函数与函数的图象如下图所示由图象可知则解得因此实数的取值 解析:[)1,0-【分析】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,将问题转化为函数y m =-与函数()y g x =的图象有交点,利用数形结合思想可求出实数m 的取值范围.【详解】由|1|102x y m -⎛⎫=+= ⎪⎝⎭可得出112xm -⎛⎫-= ⎪⎝⎭,设函数()112xg x -⎛⎫= ⎪⎝⎭,则直线y m =-与函数()y g x =的图象有交点,作出函数()111,122,1x x x g x x --⎧⎛⎫≥⎪ ⎪=⎨⎝⎭⎪<⎩与函数y m =-的图象如下图所示,由图象可知()01g x <≤,则01m <-≤,解得10m -≤<. 因此,实数m 的取值范围是[)1,0-. 故答案为:[)1,0-. 【点睛】本题考查利用函数有零点求参数的取值范围,在含单参数的函数零点问题的求解中,一般转化为参数直线与函数图象有交点来处理,考查数形结合思想的应用,属于中等题.三、解答题21.(1)12,020518,203010t t P t t ⎧+<<⎪⎪=⎨⎪-+≤≤⎪⎩;(2)()()1230,02051830,203010t t t y t t t ⎧⎛⎫+-+<< ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-+-+≤≤ ⎪⎪⎝⎭⎩,这30天中第10天的日交易额最大,最大值为80万元.【分析】(1)设出分段函数,利用图象,建立方程组求解.(2)先确定y 关于t 的函数解析式,再利用二次函数的性质求解. 【详解】(1)当020t <<时,设P kt b =+, 将()()0,2,20,6带入上式, ,得2620bk b =⎧⎨=+⎩,解得215b k =⎧⎪⎨=⎪⎩,所以()120205P t t =+<<, 当2030t ≤≤时,同理可求1810P t =-+, 所以12,020518,203010t t P t t ⎧+<<⎪⎪=⎨⎪-+≤≤⎪⎩;(2)由30Q at =+,当10t =时,20Q =,故得1a =-, 所以30Q t =-+,因为()()1230,02051830,203010t t t y PQ t t t ⎧⎛⎫+-+<< ⎪⎪⎪⎝⎭==⎨⎛⎫⎪-+-+≤≤ ⎪⎪⎝⎭⎩当020t <<时,当10t =时,y 取得最大值80;当2030t ≤≤时,当20t =时,y 取得最大值60; 所以,这30天中第10天的日交易额最大,最大值为80万元. 【点睛】方法点睛:(1)很多实际问题中,变量间的关系不能用一个关系式给出,这时就需要构建分段函数模型,如出租车的票价与路程的函数就是分段函数.(2)求函数最值常利用基本不等式法、导数法、函数的单调性等方法.在求分段函数的最值时,应先求每一段上的最值,然后比较得最大值、最小值.22.(1)y 6750158xx =+,[]60,120x ∈;(2)当x 为60时,这次行车的总费用最低,最低费用是225元. 【分析】(1)总费用由油耗、司机工资费用组成,分别用x 表示两部分费用加总即可;(2)由(1)所得函数表达式,利用基本不等式求最小值即可. 【详解】解:(1)货车行驶的时间为150x小时,由题意得: 21501505520400x y x x ⎛⎫=⨯+⨯+⨯ ⎪⎝⎭6750158x x =+,[]60,120x ∈; (2)6750152258x y x =+≥=当且仅当6750158x x =,即60x =时取等号 所以当x 为60时,这次行车的总费用最低,最低费用是225元. 【点睛】易错点睛:利用基本不等式求最值时,必须满足的三个条件--“一正二定三相等”: (1)“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件.23.(1)分别为25件,42件;(2)s (t )=()()2241715,01052165,1055t t t t t t ⎧++⎪⎨---<⎪⎩;26件. 【分析】(1)先求出预计订单函数()()f t t N ∈为45,010,()55,1055.t t f t t t +⎧=⎨-+<⎩再求解;(2)先求出利润函数为2(1.55 3.5)(45),010,3()2(1.55 3.5)(55),1055.3t t t S t t t t ⎧+-+⎪⎪=⎨⎪+--+<⎪⎩再分段求函数的最大值即得解. 【详解】解:(1)预计订单函数()()f t t N ∈为45,010()55,1055t t f t t t +≤≤⎧=⎨-+<≤⎩;f (5)=20+5=25; f (13)=-13+55=42;∴每件珠宝加工天数分别为5,13,预计订单数分别为25件,42件. (2)售价函数为() 1.55g t t =+;∴利润函数为2(1.550.5)(45),0103()2(1.550.5)(55),10553t t t s t t t t ⎧+-+⎪⎪=⎨⎪+--+<⎪⎩,。

北师大版高中数学必修一第四单元《函数应用》测试卷(有答案解析)(2)

北师大版高中数学必修一第四单元《函数应用》测试卷(有答案解析)(2)

一、选择题1.已知函数()102xx f x =+-的零点为a ,()()lg 13g x x x =-+-的零点为b ,则a b +=( )A .1B .2C .3D .42.已知函数()24xf x =-,()()()1g x a x a x a =-++同时满足:①x ∀∈R ,都有()0f x <或()0g x <,②(],1x ∃∈-∞-,()()0f x g x <,则实数a 的取值范围为( ) A .(-3,0) B .13,2⎛⎫--⎪⎝⎭C .(-3,-1)D .(-3,-1]3.已知函数()f x 满足(2)()f x f x +=,且其图像关于直线1x =对称,若()0f x =在[0,1] 内有且只有一个根12x =,则()0f x =在区间[0,2017] 内根的个数为( ) A .1006B .1007C .2016D .20174.设,m n R ∈,定义在区间[],m n 上的函数()()2log 4f x x =-的值域是[]0,2,若关于t 的方程||1102t m ⎛⎫++= ⎪⎝⎭()t R ∈有实数解,则m n +的取值范围是( )A .[]0,3B .(]3,2--C .[]3,1--D .[)1,25.已知函数24,?0()7,?0x f x xx x x ⎧<⎪=⎨⎪-≥⎩,()()g x f x x a =+-,若()g x 存在两个零点,则a 的取值范围是( ) A .(﹣4,0] B .(-∞,﹣9) C .(-∞,﹣9)(﹣4,0]D .(﹣9,0]6.已知函数21,1()1,1x x x f x x x⎧-+<⎪=⎨⎪⎩,若函数()y f x a =-有三个零点,则实数a 的取值范围为( )A .3[4,1]B .3(4,1)C .(0,1)D .3(4,)+∞7.已知函数1,0(),0x x m f x e x -⎧=⎪=⎨⎪≠⎩,关于x 的方程23()(23)()20mf x m f x -++=有以下结论:①存在实数m ,使方程有2个解;②当方程有3个解时,这3个解的和为0;③不存在实数m ,使方程有4个解;④当方程有5个解时,实数m 的取值范围是331,,22⎛⎫⎛⎫+∞ ⎪ ⎪⎝⎭⎝⎭.其中正确结论的个数为( ) A .1B .2C .3D .48.具有性质:1()()f f x x=-的函数,我们称为满足“倒负”变换的函数.给出下列函数:①1ln 1x y x -=+;②2211x y x -=+;③,01,{0,1,1, 1.x x y x x x<<==->其中满足“倒负”变换的函数是( )A .①②B .①③C .②③D .①9.若函数()af x x x=+(a ∈R)在区间(1,2)上有零点,则a 的值可能是( ) A .-2 B .0 C .1 D .310.若直角坐标平面内的两点P 、Q 满足条件:①P 、Q 都在函数()y f x =的图象上;②P 、Q 关于原点对称,则称点对[]P Q 、是函数()y f x =的一对“友好点对”(点对[]P Q 、与[]Q P 、看作同一对“友好点对”).已知函数22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,则此函数的“友好点对”有( ) A .4对 B .3对 C .2对 D .1对11.函数121()()2x f x x =-的零点个数为 ( ) A .0B .1C .2D .312.已知函数3,0,(),0.x x f x x x ⎧=⎨-<⎩若函数2()()2()g x f x kx xk =--∈R 恰有4个零点,则k 的取值范围是( ) A .1,(22,)2⎛⎫-∞-+∞ ⎪⎝⎭ B .1,(0,22)2⎛⎫-∞-⎪⎝⎭C .(,0)(0,22)-∞D .(,0)(22,)-∞+∞二、填空题13.函数()e |ln |2x f x x =-的零点个数为______________.14.已知函数()2log ,02 sin ,2104x x f x x x π⎧<<⎪=⎨⎛⎫≤≤ ⎪⎪⎝⎭⎩,若1234x x x x <<<且()()()()1234f x f x f x f x ===,则()()341222x x x x --的取值范围为____________.15.已知f (x )=23,123,1x x x x x +≤⎧⎨-++>⎩,则函数g (x )=f (x )-e x 的零点个数为________.16.若方程22(1)10kx k x k +-+-=(0)k >的两根为12,x x ,且110x -<<,201x <<,则实数k 的取值范围是__________.17.已知函数211x y x -=+的图像与函数2y kx =+的图像恰有两个交点,则实数k 的取值范围是______.18.已知函数()2f x x ax b =++的两个零点为1x ,2x ,且满足1202x x <<<,记()()f x x R ∈的最小值为m ,则m 的取值范围是______.19.对于实数a b ,,定义运算“*”:22*a ab a ba b b ab a b ⎧-≤=⎨->⎩,,,设()()2*1f x x x =+,且关于x 的方程()()f x m m R =∈恰有三个互不相等的实数根,则m 的取值范围是________. 20.函数13()3log 1xf x x =-的零点个数为______三、解答题21.2020年初,新冠肺炎疫情袭击全国,对人民生命安全和生产生产生活造成严重影响.为降低疫情影响,某厂家拟尽快加大力度促进生产.已知该厂家生产某种产品的年固定成本为200万元,每生产x 千件,需另投入成本为()C x ,当年产量不足80千件时,21()202C x x x =+万元).当年产量不小于80千件时,10000()51600C x x x=+-(万元).每千件商品售价为50万元.通过市场分析,该厂生产的产品能全部售完. (1)写出年利率()L x (万元)关于年产量x (千件)的函数解析式; (2)当年产量为多少千件时,该厂在这一商品的生产中所获利润最大?最大利润是多少? 22.有A 、B 两城相距120km ,某天然气公司计划修建一条管道为两城供气,并在两城之间设立供气站点D (如图),为保证城市安全,规定站点D 距两城市的距离均不得少于15km .又已知A 城一边有段10km 长的旧管道AC ,准备改造利用,改造费用为5万元//km ,其余地段都要新建,新建的费用(含站点D )与站点D 到A 、B 两城方向上新修建的长度的平方和成正比.........,并且当站点D 距A 城距离为40km 时,新建的费用为1825万元.设站点D 距A 城的距离为km x ,A ,B 两城之间天然气管道的建设总费用为y 万元.(1)求y 与x 之间的函数关系式,并写出其定义域;(2)天然气站点D 距A 城多远时,建设总费用最小?最小总费用多少?23.某公司为了变废为宝,节约资源,新上了一个从生活垃圾中提炼生物柴油的项目,经测算该项目月处理成本y (元)与月处理量x (吨)之间的函数关系可以近似地表示为:[)[)3221805040,120,1443120080000,144,5002x x x x y x x x ⎧-+∈⎪⎪=⎨⎪-+∈⎪⎩,且每处理一吨生活垃圾,可得到能利用的生物柴油价值为200元.(1)当[]200,300x ∈时,判断该项目能否获利?如果获利,求出最大利润:如果不获利,则月处理量x 为多少吨时可使亏损量最小?(2)该项目每月处理量为多少吨时,才能使每吨的平均处理成本最低?24.某蔬菜基地种植西红柿,由历年市场行情知,从二月一日起的300天内,西红柿市场销售价与上市时间的关系用图①的一条折线表示;西红柿的种植成本与上市时间的关系用图②的抛物线段表示.(Ⅰ)写出图①表示的市场售价与时间的函数关系式()f t ;写出图②表示的种植成本与时间的函数关系式()g t ;(Ⅱ)若记市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/100kg ,时间单位:天).25.科学家发现一种可与污染液体发生化学反应的药剂,实验表明每投a (14a ≤≤且a R ∈)个单位的药剂,它在水中释放的浓度y (克/升)随着时间x (小时)化的函数关系式近似为()y a f x =⋅,其中()161,04815,4102x xf x x x ⎧-≤≤⎪⎪-=⎨⎪-<≤⎪⎩,若多次投放,则某一时刻水中的药剂浓度为每次投放的药剂在相应时刻所释放的浓度之和.根据经验,当水中药剂的浓度不低于4(克/升)时,它才能起到有效治污的作用.(1)若一次投放4个单位的药剂,则有效治污时间能持续多久?(2)若第一次投放2个单位的药剂,6小时后再投放1个单位的药剂,则在接下来的4小时内,什么时刻,水中药剂的浓度达到最小值?最小值为多少?26.已知定义在R 上的奇函数()f x 满足,当(,0)x ∈-∞时,1()1f x x x=++. (1)求函数()f x 的解析式;(2)若函数()()224g x f x x x =+-,证明:函数()g x 的图像在区间1,内与x 轴恰有一个交点.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】设()()1lg 2h x g x x x =+=+-,可知函数()h x 的零点为1b -,令()0f x =,可得出102x x =-,令()0h x =可得出lg 2x x =-,在同一平面直角坐标系中作出函数10x y =、lg y x =、y x =、2y x =-的图象,利用函数10x y =、lg y x =的图象关于直线y x =的对称,并求出直线y x =、2y x =-的交点坐标,进而可求得+a b 的值. 【详解】设()()1lg 2h x g x x x =+=+-,由于函数()()lg 13g x x x =-+-的零点为b ,则函数()h x 的零点为1b -.令()0f x =,可得102x x =-,令()0h x =,可得出lg 2x x =-,在同一平面直角坐标系中作出函数10xy =、lg y x =、y x =、2y x =-的图象,如下图所示:由于函数10xy =、lg y x =的图象关于直线y x =的对称,直线2y x =-与直线y x =垂直,设直线2y x =-与函数10xy =的交点为点A ,直线2y x =-与函数lg y x =的图象的交点为点B ,易知点A 、B 关于直线y x =对称,直线2y x =-与直线y x =的交点为点()1,1C ,且C 为线段AB 的中点,所以12a b +-=,因此,3a b +=. 故选:C. 【点睛】易错点点睛:本题考查函数零点之和,解题的关键在于利用函数10x y =、lg y x =互为反函数,这两个函数的图象关于直线y x =对称,结合对称性来求解.2.C解析:C 【分析】先判断当2x <时()0f x <,当2x ≥时()0f x ≥,问题转化为当2x ≥时,()0g x <恒成立且当1x ≤-时,()0g x >有解,分类讨论列出不等式可解出a 的范围. 【详解】∵()24xf x =-,∴当2x <时()0f x <,当2x ≥时()0f x ≥.因为x ∀∈R ,都有()0f x <或()0g x <且 (],1x ∃∈-∞-,()()0f x g x < 所以函数()g x 需满足:①当2x ≥时,()0g x <恒成立; ②当1x ≤-时,()0g x >有解.(1)当0a ≥时,显然()g x 不满足条件①;(2)当0a <时,方程()0g x =的两根为1x a =,21x a =--, ∵0a <,∴11a -->-,∴112a a <-⎧⎨--<⎩,解得31a -<<-. 故选:C . 【点睛】转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将问题转化为当2x ≥时,()0g x <恒成立且当1x ≤-时,()0g x >有解是解题的关键.3.D解析:D 【分析】由(2)()f x f x +=,以及()(2)f x f x -=+,进而推出()f x 为偶函数,且()f x 是周期等于2的周期函数,根据1()02f =,求出3()02f =,从而得到函数()f x 在一个周期的零点个数,且函数()f x 在每两个整数之间都有一个零点,从而得到()0f x =在区间[0,2017]内根的个数.【详解】解:函数()f x 满足(2)()f x f x +=, 故函数()f x 是周期等于2的周期函数,其图象关于直线1x =对称,可得()(2)f x f x -=+, 即有()()f x f x -=,1()02f =, 1()02f ∴-=,再由周期性得13(2)()022f f -+==, 故函数()f x 在一个周期[0,2]上有2个零点, 即函数()f x 在每两个整数之间都有一个零点, ()0f x ∴=在区间[0,2017]内根的个数为2017.故选:D . 【点睛】利用函数的奇偶性与周期性相结合,求出函数在指定区间的零点个数,求解的关键在于周期性的应用.4.D解析:D 【分析】首先利用函数值域确定自变量范围,再初步确定m ,n 的关系,然后结合指数函数的性质整理计算即可求得最终结果. 【详解】函数2()log (4||)f x x =-的值域是[0,2],14||4x ∴-, 0||3x ∴,3m ∴=-,03n ,或30m -,3n =;又关于t 的方程||1()10()2t m t R ++=∈ 有实数解,∴||1()12t m =--有解,||11()122t <+,21m ∴-<-,则3n =, 则12m n +<, 故选:D 【点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解5.C解析:C 【分析】令()()0g x f x x a =+-=,将()g x 存在两个零点,转化为两函数24,?0,6,?0x x y a y x x x x ⎧+<⎪==⎨⎪-≥⎩有两个交点,在同一坐标系中,作出两个函数的图象,利用数形结合法求解. 【详解】令()()0g x f x x a =+-=,得24,?06,?0x x a x x x x ⎧+<⎪=⎨⎪-≥⎩,令24,?0,6,?0x x y a y x x x x ⎧+<⎪==⎨⎪-≥⎩,在同一坐标系中,作出两个函数的图象,如图所示:因为()g x存在两个零点,由图象可得:a<﹣9或﹣4<a≤0,故选:C【点睛】方法点睛:函数零点问题:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.6.B解析:B【分析】画出函数21,1 ()1,1x x xf xxx⎧-+<⎪=⎨⎪⎩的图象,函数()y f x a=-有三个零点等价于()y f x=与y a=的图象有3个不同交点,数形结合得答案.【详解】作出函数21,1()1,1x x xf xxx⎧-+<⎪=⎨⎪⎩的图象如图,函数()y f x a=-有三个零点,即()y f x=与y a=的图象有3个不同交点,由图可知,实数a的取值范围为3(4,1).故选:B. 【点睛】方法点睛:由零点求参数范围:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.7.C解析:C 【分析】将方程的解的个数转化为函数()y f x =的图象与直线23y =和1y m=的交点总数,数形结合即可得解. 【详解】由题意,23()(23)()20[3()2][()1]0mf x m f x f x mf x -++=⇒--=, 解得2()3f x =或1()f x m=, 则方程解的个数即为函数()y f x =的图象与直线23y =和1y m=的交点总数, 作出函数()f x 的图象,如图,由()f x 的图象可知,2()3f x =有两个非零解, 由1(0)f m =得1()f x m=至少有一个解0,故①错; 当方程有3个解时,10m <或11m ≥或123m =,由函数的对称性可得这3个解的和为0, 故②对;不存在实数m ,使方程有4个解,故③对; 当方程有5个解时,则函数()y f x =的图象与直线23y =和1y m=共有五个交点,所以直线1y m=与函数()y f x =的图象有三个交点, 数形结合可得101123mm ⎧<<⎪⎪⎨⎪≠⎪⎩,解得331,,22m ⎛⎫⎛⎫∈+∞ ⎪ ⎪⎝⎭⎝⎭,故④对.故正确结论有3个. 故选:C . 【点睛】方法点睛:解决函数零点(方程的根)的问题常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.8.C解析:C 【解析】①1ln 1x y x -=+;1111()ln ln ()111x x f f x x x x--==≠-++所以不符合题意;②2211x y x -=+;22221111()()111x x f f x x x x --===-++所以符合题意;③,01,{0,1,1, 1.x x y x x x<<==->当01x <<时11x >,故1()()f x f x x =-=-,当1,x =时11x =显然满足题意,当1x >时,101x <<,故11()()f f x x x==-符合题意,综合得选C 点睛:新定义倒负函数,根据题意逐一验证()1f f x x ⎛⎫=-⎪⎝⎭是否成立,在计算中要注意对数的公式得灵活变幻,对于分段函数要注意逐段去讨论9.A解析:A 【分析】利用零点存在性定理逐个选项代入验证,即可得到答案. 【详解】 函数()af x x x=+()a R ∈的图象在()12,上是连续不断的,逐个选项代入验证,当2a =-时,()()112022110f f =-<,=-=>,.故()f x 在区间()12,上有零点,同理,其他选项不符合, 故选A. 【点睛】本题考查了函数的零点与方程的根的应用,属于基础题.10.C解析:C 【分析】由题意,设点(,)P x y ,则Q 的坐标为(,)x y --,结合22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,转化为此函数的“友好点对”的个数即方程222x x x --=-在0x >时的解的个数,从而作图解答 【详解】解:由题意,设点(,)P x y ,则Q 的坐标为(,)x y --,因为22(0)()2(0)x x f x x x x ⎧≤=⎨->⎩,所以此函数的“友好点对”的个数即方程222x x x --=-在0x >时的解的个数, 作2x y -=-与22y x x =-的图像如图所示,两函数图像有两个交点,所以此函数的“友好点对”有2对 故选:C 【点睛】此题考查学生对新定义的理解能力及作图能力,属于中档题11.B解析:B 【解析】 函数()12(12)f x xx =-的零点,即令()0f x =,根据此题可得12(12)xx=,在平面直角坐标系中分别画出幂函数12y x=和指数函数(12)y x=的图像,可得交点只有一个,所以零点只有一个,故选B【考点定位】本小题表面上考查的是零点问题,实质上考查的是函数图象问题,该题涉及到的图像为幂函数和指数函数12.D解析:D 【分析】由(0)0g =,结合已知,将问题转化为|2|y kx =-与()()||f x h x x =有3个不同交点,分0,0,0k k k =<>三种情况,数形结合讨论即可得到答案.【详解】注意到(0)0g =,所以要使()g x 恰有4个零点,只需方程()|2|||f x kx x -=恰有3个实根 即可, 令()h x =()||f x x ,即|2|y kx =-与()()||f x h x x =的图象有3个不同交点. 因为2,0()()1,0x x f x h x x x ⎧>==⎨<⎩, 当0k =时,此时2y =,如图1,2y =与()()||f x h x x =有1个不同交点,不满足题意; 当0k <时,如图2,此时|2|y kx =-与()()||f x h x x =恒有3个不同交点,满足题意; 当0k >时,如图3,当2y kx =-与2yx 相切时,联立方程得220x kx -+=,令0∆=得280k -=,解得22k =(负值舍去),所以22k >. 综上,k 的取值范围为(,0)(22,)-∞+∞.故选:D.【点晴】本题主要考查函数与方程的应用,考查数形结合思想,转化与化归思想,是一道中档题.二、填空题13.2【分析】令可得可将函数的零点可以转化为:函数和的图象的交点问题进而画出函数的图象可得出答案【详解】令可得所以函数的零点可以转化为:函数和的图象的交点问题函数和的图象如下图所示:根据图象可得有两个交解析:2 【分析】令()e |ln |20xf x x =-=,可得2ln ex x =,可将函数()f x 的零点可以转化为:函数ln y x =和2ex y =的图象的交点问题,进而画出函数的图象,可得出答案. 【详解】令()e |ln |20xf x x =-=,可得2ln ex x =, 所以函数()f x 的零点可以转化为:函数ln y x =和2ex y =的图象的交点问题. 函数ln y x =和2e xy =的图象,如下图所示:根据图象可得有两个交点,故原函数有两个零点. 故答案为:2. 【点睛】方法点睛:本题考查求函数零点的个数(方程解的个数)问题.常用的方法:(1)直接解方程()0f x =,求出方程的解的个数,也就是函数()y f x =的零点个数; (2)作出函数()y f x =的图象,其图象与x 轴交点的个数就是函数()y f x =的零点的个数;(3)化函数零点个数问题为方程()()=g x h x 的解的个数问题,在同一平面直角坐标系中画出两个函数的图象,两函数图象的交点个数就是函数()y f x =的零点的个数.14.【分析】根据解析式画出函数图象去绝对值并结合对数的运算性质求得根据正弦函数的对称性求得将化为结合二次函数的性质即可得出结果【详解】函数画出函数图象如下图所示:由函数图象可知若则因为与关于对称则且去绝 解析:()0,12【分析】根据解析式,画出函数图象.去绝对值并结合对数的运算性质求得12x x ⋅,根据正弦函数的对称性求得34x x +,将()()341222x x x x --化为2441220x x -+-,结合二次函数的性质,即可得出结果. 【详解】函数()2log ,02sin ,2104x x f x x x π⎧<<⎪=⎨⎛⎫≤≤ ⎪⎪⎝⎭⎩,画出函数图象如下图所示:由函数图象可知,若()()()()1234f x f x f x f x k ====,则()0,1k ∈, 因为1234x x x x <<<,3x 与4x 关于6x =对称, 则2122log log x x =,3412x x +=,且4810x <<, 去绝对值化简可得2122log log x x -=,即2122log log 0x x +=,由对数运算可得()212log 0x x ⋅= 所以121x x ⋅=,则()()()3434343412222420x x x xx x x x x x --=-=++-()23444442012201220x x x x x x =-=--=-+-,令21220y x x =-+-,()8,10x ∈,因为21220y x x =-+-是开口向下,对称轴为6x =的二次函数, 所以21220y x x =-+-在()8,10x ∈上单调递减,所以10012020649620y -+-<<-+-, 即012y <<; 即()()()34244122212200,12x x x xx x --=-+-∈故答案为: ()0,12.【点睛】本题考查了分段函数的性质及应用,涉及求二次函数的最值,根据数形结合的方法求解即可,属于中档题.15.2【详解】把函数的零点个数转化为方程解的个数转化为两个函数图象与象交点的个数在同一坐标系中画出这两个函数的图象由图象可知函数g(x)=f(x)-ex 的零点个数为2解析:2 【详解】 把函数的零点个数转化为方程解的个数转化为两个函数图象与象交点的个数,在同一坐标系中画出这两个函数的图象,由图象可知,函数g (x )=f (x )-e x 的零点个数为2.16.【分析】将方程的根转化为函数零点问题再利用零点存在性定理求解【详解】由题知方程的两根为且故设则有故答案为:【点睛】本题考查二次函数根的分布问题需要学生熟悉二次函数的图像性质解决此类问题时常结合零点存解析:3(,1)4【分析】将方程的根转化为函数零点问题,再利用零点存在性定理求解. 【详解】由题知方程22(1)10kx k x k +-+-=(0)k >的两根为12,x x ,且110x -<<,201x <<,故设()f x =22(1)1kx k x k +-+-,(0)k >则有(1)2210103(0)10114(1)221034f k k k f k k k f k k k k ⎧⎪-=-++->>⎧⎪⎪=-<⇒<⇒<<⎨⎨⎪⎪=+-+->⎩⎪>⎩, 故答案为:3(,1)4. 【点睛】本题考查二次函数根的分布问题,需要学生熟悉二次函数的图像性质,解决此类问题时常结合零点存在性定理解决.17.且【分析】先化简函数再由过定点(02)在同一坐标系中作出两个函数的图象利用数形结合法求解【详解】在同一坐标系中作出两个函数的图象如图所示:因为函数的图像与函数的图像恰有两个交点所以且故答案为:且【点解析:04k <≤ 且1k ≠【分析】 先化简函数()211,1111,11x x x x f x x x x --≥<-⎧==⎨+--<<⎩或,再由()2g x kx =+过定点(0,2),在同一坐标系中作出两个函数的图象,利用数形结合法求解. 【详解】()211,1111,11x x x x f x x x x --≥<-⎧==⎨+--<<⎩或,()2g x kx =+, 在同一坐标系中作出两个函数的图象,如图所示:因为函数211x y x -=+的图像与函数2y kx =+的图像恰有两个交点,所以04k <≤ 且1k ≠,故答案为:04k <≤ 且1k ≠,【点睛】本题主要考查函数的零点与方程的根,还考查了数形结合的思想方法,属于中档题.18.【分析】根据二次方程根的分布得出满足的关系在坐标系中作出这个关系式表示的平面区域求出的最小值平移根据这个目标函数对应的曲线可得其取值范围【详解】由题意即在直角坐标系中作出此不等式组表示的平面区域如图 解析:()1,0-【分析】根据二次方程根的分布得出,a b 满足的关系,在坐标系O ab -中作出这个关系式表示的平面区域,求出()f x 的最小值,平移根据这个目标函数对应的曲线可得其取值范围. 【详解】由题意240(0)0(2)420 022a bfbf a ba⎧->⎪=>⎪⎪⎨=++>⎪⎪<-<⎪⎩,即24040420a bbaa b⎧->⎪>⎪⎨-<<⎪⎪++>⎩,在直角坐标系O ab-中作出此不等式组表示的平面区域,如图阴影部分(不含边界),()f x的最小值为24az b=-,作出曲线24ab-=,它正好是图象阴影部分的一个曲边边界,把这个曲线向下平移,24az b=-在减小,当它在阴影部分边界时,0z=,当它过点(2,0)-时,1z=-,所以(1,0)z∈-.故答案为:(1,0)-.【点睛】本题考查二次方程根的分布,考查非线性平面区域的非线性规划问题(仿照简单的线性规划处理方法),解题时根据二次方程根的分布求出条件,再求出最小值的表达式,然后仿照简单的线性规划问题求解,考查了学生的创新意识.19.【分析】根据对运算的定义将写成分段函数画出该函数的图像将问题转化为直线与函数的图像有3个交点求参数的范围问题【详解】根据题意在直角坐标系中画出该函数的图像如下所示:由图可知当时由最小值故数形结合可知解析:1,02⎛⎫- ⎪⎝⎭【分析】根据对运算的定义,将()f x写成分段函数,画出该函数的图像,将问题转化为直线y m =与函数()f x 的图像有3个交点求参数的范围问题.【详解】根据题意()()221,11,1x x x f x x x ⎧-≤=⎨-+>⎩在直角坐标系中画出该函数的图像如下所示:由图可知,当()0,1x ∈时,由最小值1122f ⎛⎫=-⎪⎝⎭, 故数形结合可知,当1,02m ⎛⎫∈- ⎪⎝⎭时,直线y m =与函数()f x 的图像有3个交点,即()()f x m m R =∈恰有三个互不相等的实数根. 故答案为:1,02⎛⎫- ⎪⎝⎭【点睛】本题考查由函数的零点个数求参数的取值范围,本题中采用数形结合的方法,将问题转化为函数图像交点的问题进行处理.20.2【分析】化简得到画出函数图像根据图像得到答案【详解】取则即画出函数图像如图所示:根据图像知有两个交点故函数有两个零点故答案为:【点睛】本题考查了函数零点问题画出函数图像是解题的关键解析:2 【分析】化简得到131log =3xx ⎛⎫⎪⎝⎭,画出函数图像,根据图像得到答案.【详解】取13()3log 1=0x f x x =-,则133log =1xx ,即131log =3xx ⎛⎫ ⎪⎝⎭,画出函数图像,如图所示:根据图像知有两个交点,故函数有两个零点. 故答案为:2.【点睛】本题考查了函数零点问题,画出函数图像是解题的关键.三、解答题21.(1)2130200,0802()10000400,80x x x L x x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+ ⎪⎪⎝⎭⎩;(2)30千件;250万元.【分析】(1)可得销售额为0.051000x ⨯万元,分080x <<和80x ≥即可求出;(2)当080x <<时,利用二次函数性质求出最大值,当80x ≥,利用基本不等式求出最值,再比较即可得出. 【详解】(1)∵每千件商品售价为50万元.则x 千件商品销售额50x 万元 当080x <<时,2211()50202003020022L x x x x x x ⎛⎫=-+-=-+-⎪⎝⎭当80x 时,1000010000()5051600200400L x x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭2130200,0802()10000400,80x x x L x x x x ⎧-+-<<⎪⎪∴=⎨⎛⎫⎪-+ ⎪⎪⎝⎭⎩(2)当080x <<时,21()(30)2502L x x =--+ 此时,当30x =时,即()(30)250L x L =万元当80x 时,1000010000()4004002L x x x x x⎛⎫=-+≤-⋅ ⎪⎝⎭400200200=-=此时10000x x=,即100x =,则()(100)200L x L =万元 由于250200>所以当年产量为30千件时,该厂在这一商品生产中所获利润最大,最大利润为250万元. 【点睛】关键点睛:本题考查函数模型的应用,解题的关键是理解清楚题意,正确的建立函数关系,再求最值时,需要利用函数性质分段讨论比较得出.22.(1)y 21(1307350)2x x =-+,定义域为[15,105](2)天然气站点D 距A 城65km 时,建设总费用最小,最小总费用为1562.5万元. 【分析】(1)根据站点D 距两城市的距离均不得少于15km .可求得15105x ≤≤,设22[(10)(120)]510y k x x =-+-+⨯,根据当40x =时,1825501875y =+=,求出k ,从而可得y 与x 之间的函数关系式; (2)根据二次函数知识可求得最值. 【详解】(1)因为站点D 距两城市的距离均不得少于15km .所以1512015x x ≥⎧⎨-≥⎩,解得15105x ≤≤,设22[(10)(120)]510y k x x =-+-+⨯,15105x ≤≤,当40x =时,1825501875y =+=,所以22(3080)501875k ++=,解得14k =, 所以221[(10)(120)]5104y x x =-+-+⨯21(1307350)2x x =-+,15105x ≤≤. (2)y 21(1307350)2x x =-+21(65)1562.52x =-+, 所以当65x =时,min 1562.5y =万元.所以当天然气站点D 距A 城65km 时,建设总费用最小,最小总费用为1562.5万元. 【点睛】关键点点睛:理解题意,建立正确的数学模型是解决函数应用题的关键.23.(1)不能获利,当月处理量为300吨时可使亏损最小;(2)每月处理量为400吨时,才能使每吨的平均处理成本最低. 【分析】(1)设项目获利为S ,根据二次函数知识可知,当[]200,300x ∈时,0S <,因此,该项目不会获利:当300x =时,S 取得最大值-5000;(2)根据题意可知,[)[)21805040,120,1443180000200,144,5002x x x y x x x x ⎧-+∈⎪⎪=⎨⎪+-∈⎪⎩,分段求出最小值,比较可得答案. 【详解】(1)当[]200,300x ∈时,该项目获利为S ,则()2221112002008000040080000400222S x x x x x x ⎛⎫=--+=-+-=-- ⎪⎝⎭,当[]200,300x ∈时,0S <,因此,该项目不会获利:当300x =时,S 取得最大值-5000,故当月处理量为300吨时可使亏损最小,为5000元;(2)由题意知,生活垃圾每吨的平均处理成本为:[)[)21805040,120,1443180000200,144,5002x x x y x x x x ⎧-+∈⎪⎪=⎨⎪+-∈⎪⎩当[)120,144x ∈时,()211202403y x x =-+,所以当120x =时,y x 取得最小值240,当[)144,500x ∈时,1800002002002002y x x x =+-≥=, 当且仅当1800002x x =时等号成立,即400x =时,yx取得最小值200, ∵200240∴每月处理量为400吨时,才能使每吨的平均处理成本最低. 【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 24.(Ⅰ)300,0200()2300,200300t t f t t t -≤≤⎧=⎨-<≤⎩,()21()150100,0300200g t t t =-+≤≤;(Ⅱ)从二月一日开始的第50天上市的西红柿收益最大. 【分析】(Ⅰ)根据图①的图象可知:是由一次函数构成的分段函数由点()()()0,300,200,100,300,300写出函数解析式;根据图②的图象是二次函数;由顶点()150,100和过点()250,150,写出函数解析式;(Ⅱ)设纯收益为h ,市场售价减去种植成本为纯收益,得到()()2211175+,020020022171025+,20030020022t t t h f t g t t t t ⎧-+≤≤⎪⎪=-=⎨⎪--<≤⎪⎩求解.【详解】(Ⅰ)当0200t ≤≤时,设()111()0f t k t b k =+≠,则111300200100b k b =⎧⎨+=⎩,解得113001b k =⎧⎨=-⎩,所以()300f t t =-.当200300t <≤时,设()222()0f t k t b k =+≠,则2222300300200100k b k b +=⎧⎨+=⎩,解得223002b k =-⎧⎨=⎩,所以()2300f t t =-.综上市场售价与时间的函数关系式300,0200()2300,200300t t f t t t -≤≤⎧=⎨-<≤⎩;设()2()150100g t a t =-+,则()2150250150100a =-+,解得1200a =, 所以种植成本与时间的函数关系式()21()150100,0300200g t t t =-+≤≤; (Ⅱ)设纯收益为h ,因为 若记市场售价减去种植成本为纯收益,所以()()2211175+,020020022171025+,20030020022t t t h f t g t t t t ⎧-+≤≤⎪⎪=-=⎨⎪--<≤⎪⎩,当0200t ≤≤时,()22111751+50+10020022200h t t t =-+=--, 所以当50t =时,纯收益h 取得最大值100; 当200300t <≤时,()221710251+350+10020022200h t t t =-+=-- 当300t =时,纯收益h 取得最大值87.5, 因为10087.5>,所以当50t =即从二月一日开始的第50天上市的西红柿收益最大. 【点睛】结论点睛:函数模型的应用一般分为三类:(1)已知函数的图象,可根据图象得到函数类型利用待定系数法建立模型; (2)已知函数有关数表,可根据数据分析函数类型利用待定系数法建立模型; (3)已知函数模型的定义,可根据其定义建立模型. 25.(1)8小时;(2)10小时时浓度达到最小值3 【分析】(1)根据题意列出不等式()44f x ≥,求解出不等式解集,即可得到有效治污的持续时间;(2)根据条件求解出药剂在水中释放的浓度y 的解析式,然后利用基本不等式求解出对应的最小值,并计算出取最小值时对应的时间. 【详解】(1)因为()644,0448202,410x y f x x x x ⎧-≤≤⎪==-⎨⎪-<≤⎩,当04x ≤≤时,令64448x-≥-,解得04x ≤≤, 当410x <≤时,令2024x -≥,解得48x <≤, 所以有效治污时间能持续8小时;(2)设在第x 个小时达到最小值,则610x ≤≤,所以()116162511928614y x x x x ⎡⎤⎛⎫=-+⋅-=-+⎢⎥ ⎪---⎝⎭⎣⎦, 所以()161455314y x x =-+-≥=-, 取等号时161414x x-=-,即10x =, 所以10小时的时候浓度达到最小值,最小值为3. 【点睛】易错点睛:实际问题中求解函数解析式以及采用基本不等式求最值需要注意的事项: (1)函数应用类型的问题,写函数解析式时一定要注意函数的定义域不能丢; (2)利用基本不等式求解最值的时候,注意“一正、二定、三相等”,缺一不可.26.(1)()11,00,011,0x x x f x x x x x ⎧++<⎪⎪==⎨⎪⎪+->⎩;(2)证明见解析.【分析】(1)当(0,)x ∈+∞时,(,0)x -∈-∞,利用()()f x f x =-- 求当(0,)x ∈+∞时的解析式,结合(0)(0)f f =-即可得答案;。

初中数学二次函数的应用题型分类——商品销售利润问题( 附答案)

初中数学二次函数的应用题型分类——商品销售利润问题( 附答案)
初中数学二次函数的应用题型分类——商品销售利润问题( 附答案)
1.某网店经营一种品牌水果,其进价为 10 元/千克,保鲜期为 25 天,每天销售量 y (千 克)与销售单价 x (元/千克)之间的函数关系如图所示. (1)求 y 与 x 的函数关系式;
(2)当该品牌水果定价为多少元时,每天销售所获得的利润最大? (3)若该网店一次性购进该品牌水果 3000 千克,根据(2)中每天获得最大利润的方式进行 销售,发现在保鲜期内不能及时销售完毕,于是决定在保鲜期的最后 5 天一次性降价销 售,求最后 5 天每千克至少降价多少元才能全部售完?
A型
B型
合计
台灯数量(盏)
x
100
每盏台灯获利(元)
30
(2)当 A 型台灯所获得的利润比 B 型台灯所获得利润少 200 元时,求生产并销售 A, B 两种台灯各多少盏? (3)如何设计生产销售方案可以获得最大利润,最大的利润为多少元? 11.某商场销售一批名牌衬衫:平均每天可售出 20 件,每件盈利 40 元,为了扩大销售 量,增加盈利,尽快减少库存,商场决定采取适当的降价促销措施,经市场调查发现: 如果每件衬衫降价 1 元,那么平均每天就可多售出 2 件. (1)求出商场盈利与每件衬衫降价之间的函数关系式; (2)若每天盈利达 1200 元,那么每件衬衫应降价多少元? 12.某大学生利用暑假 40 天社会实践参与了一家网店经营,了解到一种新型商品成本
其中点 A 为抛物线的顶点.
1 结合图象,求出 y2 (万台)与外地广告费用 t (万元)之间的函数关系式; 2 求该产品的销售总量 y (万台)与本地广告费用 x (万元)之间的函数关系式;
3 如何安排广告费用才能使销售总量最大?
9.某电子厂生产一种新型电子产品,每件制造成本为 20 元,试销过程中发现,每月销 售量 y(万件)与销售单价 x(元)之间的关系可以近似地看作一次函数 y=﹣2x+100.(利 润=售价﹣制造成本) (1)写出每月的利润 z(万元)与销售单价 x(元)之间的函数关系式; (2)当销售单价为多少元时,厂商每月获得的利润为 400 万元? (3)根据相关部门规定,这种电子产品的销售单价不能高于 40 元,如果厂商每月的制 造成本不超过 520 万元,那么当销售单价为多少元时,厂商每月获得的利润最大?最大 利润为多少万元? 10.某灯具厂生产并销售 A,B 两种型号的智能台灯共 100 盏,生产并销售一盏 A 型智 能台灯可以获利 30 元;如果生产并销售不超过 20 盏 B 型台灯,则每盏 B 型台灯可以 获利 90 元,如果超出 20 盏 B 型台灯,则每超出 1 盏,每盏 B 型台灯获利将均减少 2 元.设生产并销售 B 型台灯 x 盏.(其中 x>20) (1)完成下列表格:

初中数学一次函数的应用题型分类汇编——分配方案决策问题3(附答案详解)

初中数学一次函数的应用题型分类汇编——分配方案决策问题3(附答案详解)

初中数学一次函数的应用题型分类汇编——分配方案决策问题3(附答案详解) 1.一家游泳馆的游泳收费标准为30元/次,若购买会员年卡,可享受如下优惠:例如,购买A 类会员年卡,一年内游泳20次,消费50+25×20=550元,若一年内在该游泳馆游泳的次数介于40~50次之间,则最省钱的方式为( )A .购买A 类会员卡B .购买B 类会员年卡C .购买C 类会员年卡D .不购买会员年卡2.超市有A ,B 两种型号的瓶子,其容量和价格如表,小张买瓶子用来分装15升油(瓶子都装满,且无剩油);当日促销活动:购买A 型瓶3个或以上,一次性返还现金5元,设购买A 型瓶x (个),所需总费用为y (元),则下列说法不一定成立的是( )A .购买B 型瓶的个数是253x ⎛⎫- ⎪⎝⎭为正整数时的值 B .购买A 型瓶最多为6个C .y 与x 之间的函数关系式为30y x =+D .小张买瓶子的最少费用是28元 3.学校准备租用甲乙两种大客车共8辆,送师生集体外出研学,每辆甲种客车的租金是400元,每辆乙种客车的租金是280元,设租用甲种客车x 辆,租车费用为y 元. (1)求出y 与x 的函数关系式;(2)若租用甲种客车不少于6辆,应如何租用租车费用最低,最低费用是多少? 4.某草莓采摘园元旦至春节期间推出了甲、乙两种优惠方案.甲种优惠方案:游客进园需要购买40元的门票(每个家庭购买一张门票),采摘的草莓均按定价的六折卖给采摘游客;乙种优惠方案:游客进园不需购买门票,采摘的草莓按定价出售,但超过一定重量后,超过的部分打折卖给采摘的游客.优惠期间,设某游客(或一个家庭)采摘草莓的重量为x (kg ),选用甲种优惠方案采摘所需的总费用为y1(元),选用乙种优惠方案采摘所需的总费用为y2(元).已知1,y2与采摘重量x(kg)之间的函数关系如图所示.(1)分别求y1,y2与x之间的函数关系式;(2)求点A的坐标,并解释坐标的实际意义;(3)采摘重量x为多少时,游客选用甲种优惠方案采摘更合算.(直接写出答案即可)5.某市为支援灾区建设,计划向A、B两受灾地运送急需物资分别为60吨和140吨,该市甲、乙两地有急需物资分别为120吨和80吨,已知甲、乙两地运到A、B两地的每吨物资的运费如表所示:甲乙A20元/吨15元/吨B25元/吨24元/吨(1)设甲地运到A地的急需物资为x吨,求总运费y(元)关于x(吨)的函数关系式,并写出x的取值范围;(2)求最低总运费,并说明总运费最低时的运送方案.6.为了提高服务质量,某宾馆决定对甲、乙两种套房进行星级提升,已知甲种套房提升费用比乙种套房提升费用少3万元,如果提升相同数量的套房,甲种套房费用为625万元,乙种套房费用为700万元.(1)甲、乙两种套房每套提升费用各多少万元?(2)如果需要甲、乙两种套房共80套,市政府筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于甲、乙种套房星级提升,市政府对两种套房的提升有几种方案?哪一种方案的提升费用最少?7.为了争创全国文明卫生城市,优化城市环境,节约能源,某市公交公司决定购买一批共10台全新的混合动力公交车,现有A、B两种型号,其中每台的价格,年省油量如下表:经调查,购买一台A型车比购买一台B型车多10万元,购买3台A型车比购买4台B型车少30万元.(1)请求出a和b的值;(2)若购买这批混合动力公交车(两种车型都要有)每年能节省的油量不低于21.6万升,请问有几种购车方案?请写出解答过程.(3)求(2)中最省钱的购车方案及所需的购车款.8.某电视机厂要印制产品宜传材料甲印刷厂提出:每份材料收1元印制费,另收1500元制版费;乙厂提出:每份材料收2.5元印制费,不收制版费.(1)分别写出两厂的收费y元与印制数量x(份)之间的关系式(2)在同一直角坐标系内画出它们的图象;(3)根据图像回答下列问题:①印制800份宣传材料时,选择哪家印刷厂比较合算?②电视机厂拟拿出3000元用于印制宣传材料,找哪家印刷厂印制宣传材料能多一些? 9.“垃圾分类”意识已经深入人心.我校王老师准备用2000元(全部用完)购买,A B两类垃圾桶,已知A类桶单价20元,B类桶单价40元,设购入A类桶x个,B类桶y个.(1)求y关于x的函数表达式.(2)若购进的A类桶不少于B类桶的2倍.①求至少购进A类桶多少个?②根据临场实际购买情况,王老师在总费用不变的情况下把一部分A类桶调换成另一种C类桶,且调换后C类桶的数量不少于B类桶的数量,已知C类桶单价30元,则按这样的购买方式,B类桶最多可买个.(直接写出答案)10.中国移动公司开设适合普通用户的两种通讯业务分别是:“全球通”用户先缴12元月租,然后每分钟通话费用0.2元;“神州行”用户不用缴纳月租费,每分钟通话0.3元.(通话均指拨打本地电话)()1设一个月内通话时间约为x分钟(3x≥且x为整数),求这两种用户每月需缴的费用分别是多少元?(用含x的式子表示)()2若张老师一个月通话约180分钟,请你给他提个建议,应选择哪种移动通讯方式合算一些?并说明理由.11.为庆祝中华人民共和国七十周年华诞,某校举行书画大赛,准备购买甲、乙两种文具,奖励在活动中表现优秀的师生.已知购买2个甲种文具、1个乙种文具共需花费35元;购买1个甲种文具、3个乙种文具共需花费30元.(1)求购买一个甲种文具、一个乙种文具各需多少元?(2)若学校计划购买这两种文具共120个,投入资金不少于955元又不多于1000元,设购买甲种文具x个,求有多少种购买方案?(3)设学校投入资金W元,在(2)的条件下,哪种购买方案需要的资金最少?最少资金是多少元?12.某大剧院举行专场音乐会,成人票每张20元,学生票每张5元,暑假期间,为了丰富广大师生的业余文化生活,影剧院制定了两种优惠方案,方案1:购买一张成人票赠送一张学生票;方案2:按总价的90%付款,某校有4名老师与若干名(不少于4人)学生听音乐会.(1)设学生人数为x(人),付款总金额为y(元),分别建立两种优惠方案中y与x的函数关系式;(2)请计算并确定出最节省费用的购票方案.13.某城市为了加强公民的节气和用气意识,按以下规定收取每月煤气费:所用煤气如果不超过50立方米,按每立方米0.8元收费;如果超过50立方米,超过部分按每立方米1.2元收费设小丽家每月所用煤气量为x立方米,应交煤气费为y元.(1)若小丽家某月所用煤气量为80立方米,则小丽家该月应交煤气费多少元?(2)试写出y与x之间的解析式.(3)若小丽家4月份的煤气费为88元,则她家4月份所用煤气量为多少立方米?(4)已知小丽家6月份所交的煤气费平均每立方米为0.95元,那么6月份小丽家用了多少立方米的煤气?14.光华农机租赁公司共有50台联合收割机,其中甲型20台,乙型30台,先将这50台联合收割机派往A、B两地区收割小麦,其中30台派往A地区,20台派往B地区.两地区与该农机租赁公司商定的每天的租赁价格见表:(1)设派往A地区x台乙型联合收割机,租赁公司这50台联合收割机一天获得的租金为y(元),求y与x间的函数关系式,并写出x的取值范围;(2)若使农机租赁公司这50台联合收割机一天获得的租金总额不低于79 600元,说明有多少种分配方案,并将各种方案设计出来;(3)如果要使这50台联合收割机每天获得的租金最高,请你为光华农机租赁公司提一条合理化建议.15.某社区活动中心为鼓励居民加强体育锻炼,准备购买10副某种品牌的羽毛球拍,每副球拍配x(x≥2)个羽毛球,供社区居民免费借用.该社区附近A、B两家超市都有这种品牌的羽毛球拍和羽毛球出售,且每副球拍的标价均为30元,每个羽毛球的标价为3元,目前两家超市同时在做促销活动:A超市:所有商品均打九折(按标价的90%)销售;B超市:买一副羽毛球拍送2个羽毛球.设在A超市购买羽毛球拍和羽毛球的费用为y A(元),在B超市购买羽毛球拍和羽毛球的费用为y B(元).请解答下列问题:(1)分别写出y A、y B与x之间的关系式;(2)若该活动中心只在一家超市购买,你认为在哪家超市购买更划算?(3)若每副球拍配15个羽毛球,请你帮助该活动中心设计出最省钱的购买方案.16.为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元。

C++程序设计实验报告-函数的应用

C++程序设计实验报告-函数的应用
} } 调试结果:
3 总结体会 编程需要细心与耐心,要勤于思考寻找最简单的算法;要充分利
用好 debug 观察程序;与同学讨论交流学习心得。
}
void Maxl(double a1,double a2){ if(a1>a2)cout<<"Maxl is "<<a1<<endl; else cout<<"Maxl "<<a2<<endl;
}
void Maxl(double a1,double a2,double a3){ if(a1>a2&&a1>a3)cout<<"Maxl is "<<a1<<endl; else if(a2>a3)cout<<"Maxl is "<<a2<<endl; else cout<<"Maxl is "<<a3<<endl;
《C++程序设计》实验报告
Exercise 3 函数的应用
1 实验目的
(1)掌握函数的定义和调用方法 (2)练习重载函数的使用。 (3)练习使用系统函数。 (4)学习使用 VC++的 debug 调试功能,使用 step into 追踪到函数内部。
2 实验要求
(1)编写一个函数把华氏温度转换为摄氏温度,转换公式如下
调试结果:
(2)编写重载函数 Max1 可分别求两个整数,三个整数,两个双精度数, 三个双精度数的最大值。 源程序代码: #include<iostream> using namespace std; void Maxl(int a1,int a2); void Maxl(int a1,int a2,int a3); void Maxl(double a1,double a2); void Maxl(double a1,double a2,double a3); void Maxl(int a1,int a2){

山东淄博实验中学函数的概念与基本初等函数多选题试题含答案

山东淄博实验中学函数的概念与基本初等函数多选题试题含答案

山东淄博实验中学函数的概念与基本初等函数多选题试题含答案一、函数的概念与基本初等函数多选题1.已知函数22(2)log (1),1()2,1x x x f x x +⎧+>-⎪=⎨≤-⎪⎩,若关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<,则下列结论正确的是( )A .12m <≤B .11sin cos 0x x ->C .3441x x +>- D.2212log mx x ++10【答案】ACD 【分析】画出()f x 的图象,结合图象求得1234,,,,m x x x x 的取值范围,利用特殊值确定B 选项错误,利用基本不等式确定CD 选项正确. 【详解】画出()f x 的图象如下图所示,由于关于x 的方程()f x m =有四个不等实根1x ,2x ,3x ,()41234x x x x x <<<, 由图可知12m <≤,故A 选项正确. 由图可知12,x x 关于直线2x =-对称,故12122,42x x x x +=-+=-, 由()()22221x x +=≤-解得3x =-或1x =-,所以1232,21x x -≤<--<≤-,3324π-<-<-,当134x π=-时,1212sin cos ,sin cos 02x x x x ==--=,所以B 选项错误. 令()()2221x m x +=≤-,()22log 2log 1x m m m +==,()22log 21m x +=,()222log 1m x +=,12,x x 是此方程的解,所以()211log 22m x =+,或()221log 22m x =+,故()()22221211211log 422m x x x x x ++=+--++()()2121122881022x x =+++≥=+,当且仅当()()211211522,222x x x +==-+时等号成立,故D 选项正确.由图象可知()()2324log 1log 1x x +=-+,()()2324log 1log 10x x +++=,()()34111x x +⋅+=,4433111,111x x x x +==-++, 由()()2log 111x x +=>-,解得1x =或12x =-,由()()2log 121x x +=>-,解得3x =或34x =-, 所以3431,1342x x -≤<-<≤, ()3433331144145111x x x x x x +=+-+=-+++ ()332151141x x +≥+⋅-=-①. 令()()21134,1,1421x x x x +===-++或12x =-,所以①的等号不成立,即3441x x +>-,故C 选项正确. 故选:ACD【点睛】求解有关方程的根、函数的零点问题,可考虑结合图象来求解.求解不等式、最值有关的问题,可考虑利用基本不等式来求解.2.设函数ln(2),2()1,2x x f x x x ->⎧=⎨+≤⎩,g (x )=x 2-(m +1)x +m 2-2,下列选项正确的有( )A .当m >3时,f [f (x )]=m 有5个不相等的实根B .当m =0时,g [g (x )]=m 有4个不相等的实根C .当0<m <1时,f [g (x )]=m 有6个不相等的实根D .当m =2时,g [f (x )]=m 有5个不相等的实根 【答案】BCD 【分析】作出函数()f x 的图象,利用函数()f x 的图象和函数()g x 的图象分析可解得结果.【详解】作出函数()f x 的图象:令()f x t =,得[()]()f f x f t m ==;当3m >时,()f x m =有两个根:31242e t t <->+,,方程1()f x t =有1个根,方程2()f x t =有2个根,所以A 错误;②当0m =时,2 ()2g x x x =--,[()]0g g x =,令()g x t =,由()0g t =,得1221t t ==-,, 由2122t x x ==--12117117x x -+⇒=由2234151512t x x x x -+=-=--⇒==所以B 正确; ③令()g x t =,()f t m =∴,因为01m <<,所以()f t m =有3个实根根123,,t t t ,设123t t t <<,所以12311ln(2)t m t m t m --=+=-=,,, 22()(1)2g x x m x m =-++-221329()24m m m x +--=-+23294m m --≥, 221329329144m m m m t m -----=---23254m m --+=, 因为2325m m --+在(0,1)上递减,所以23253250m m --+>--+=, 所以2132504m m t --+->,所以213254m m t --+>,即方程()f t m =的最小根1t 大于()g x 的最小值,所以1()g x t =、2()g x t =、3()g x t =都有2个不等实根,且这6个实根互不相等, 所以当0<m <1时,f [g (x )]=m 有6个不相等的实根,所以C 正确; ④令()f x t =,则()g t m =,当2m =时,方程()2g t =化为230t t -=,得1230t t ==,;当20()t f x ==,得1213x x =-=,; 当13()t f x ==,得3442x x =-=,,352e x =+符合题意,所以D 正确. 故选:BCD. 【点睛】关键点点睛:作出函数的图象,利用数形结合法求解是解题关键.3.已知函数()()()22224x x f x x x m m ee --+=-+-+(e 为自然对数的底数)有唯一零点,则m 的值可以为( ) A .1 B .1-C .2D .2-【答案】BC 【分析】由已知,换元令2t x =-,可得()()f t f t -=,从而f t 为偶函数,()f x 图象关于2x =对称,结合函数图象的对称性分析可得结论.【详解】∵22222222()4()()(2)4()()x x x x f x x x m m e e x m m e e --+--+=-+-+=--+-+, 令2t x =-,则22()4()()ttf t t m m e e -=-+-+,定义域为R ,22()()4()()()t t f t t m m e e f t --=--+-+=,故函数()f t 为偶函数,所以函数()f x 的图象关于2x =对称, 要使得函数()f x 有唯一零点,则(2)0f =, 即2482()0m m -+-=,解得1m =-或2 ①当1m =-时,2()42()t t f t t e e -=-++ 由基本不等式有2t t e e -+≥,当且仅当0t =时取得2()4t t e e -∴+≥故2()42()0ttf t t e e -=-++≥,当且仅当0t =取等号 故此时()f x 有唯一零点2x =②当2m =时,2()42()t t f t t e e -=-++,同理满足题意. 故选:BC . 【点睛】方法点睛:①函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴.②()y f x =的图象关于直线x a =对称 ()()f a x f a x ⇔-=+()()2f x f a x ⇔-=+4.对于定义在R 上的函数()f x ,若存在正实数a ,b ,使得()()f x a f x b +≤+对一切x ∈R 均成立,则称()f x 是“控制增长函数”.在以下四个函数中是“控制增长函数”的有( )A .()xf x e =B .()f x =C .()()2sin f x x=D .()sin f x x x =⋅【答案】BCD 【分析】假设各函数是“控制增长函数”,根据定义推断()()f x a f x b +≤+对一切x ∈R 恒成立的条件,并判断,a b 的存在性,即可得出结论. 【详解】对于A. ()()f x a f x b +≤+可化为22()()11x a x a x x b ++++≤+++,22ax a a b ≤--+0a >,不等式在x ∈R 上不恒成立,所以2()1f x x x =++不是“控制增长函数”;对于B. ()()f x a f x b +≤+可化为,b ≤,即2||||2x a x b +≤++恒成立.又||||x a x a +≤+,故只需保证2||||2x a x b +≤++.20,2a b b b->≥ ,当220a b -≤时,b ≤恒成立,()f x ∴=“控制增长函数”;对于C.()21()sin 1,()()2f x x f x a f x -≤=≤∴+-≤,2b ∴≥时,a 为任意正数,()()f x a f x b +≤+恒成立, ()2()sin f x x ∴=是“控制增长函数”;对于D. ()()f x a f x b +≤+化为,()sin()sin x a x a x x b ++≤+,令2a π= ,则(2)sin sin ,2sin x x x x b x b ππ+≤+≤,当2b π≥时,不等式()sin()sin x a x a x x b ++≤+恒成立,()sin f x x x ∴=⋅是“控制增长函数”.故选:BCD 【点睛】本题考查了新定义的理解,函数存在成立和恒成立问题的研究.我们可先假设结论成立,再不断寻求结论成立的充分条件,找得到就是“控制增长函数”.如果找出了反例,就不是“控制增长函数”.5.设函数()f x 是定义在区间I 上的函数,若对区间I 中的任意两个实数12,x x ,都有1212()()(),22x x f x f x f ++≤则称()f x 为区间I 上的下凸函数.下列函数中是区间(1,3)上的下凸函数的是( ) A .()21f x x =-+ B .()2f x x =-- C .3()5f x x =+ D .21()1x f x x +=- 【答案】ACD 【分析】根据函数的解析式,求得1212()()()22x x f x f x f ++=,可判定A 正确;根据特殊值法,可判定B 不正确;根据函数的图象变换,结合函数的图象,可判定C 、D 正确. 【详解】对于A 中,任取12,(1,3)x x ∈且12x x ≠,则1212()()12x x f x x +=-++, 121212()()1(2121)()122f x f x x x x x +=-+-+=-++,可得1212()()()22x x f x f x f ++=,满足1212()()()22++≤x x f x f x f ,所以A 正确; 对于B 中,取1235,22x x ==,则1222x x +=, 可得351()()222f f ==-,所以12()()122f x f x +=-,12()(2)02x x f f +==, 此时1212()()()22x x f x f x f ++>,不符合题意,所以B 不正确; 对于C 中,函数3()5f x x =+,由幂函数3y x =的图象向上移动5个单位,得到函数3()5f x x =+的图象, 如图所示,取12,(1,3)x x ∈且12x x ≠,由图象可得12()2C x x f y +=,12()()2D f x f x y +=, 因为D C y y >,所以1212()()()22++≤x x f x f x f ,符合题意,所以是正确的;对于D 中,函数213()211x f x x x +==+-- 由函数3y x =的图象向右平移1个单位,再向上平移2个单位,得到21()1x f x x +=-的图象,如图所示,取12,(1,3)x x ∈且12x x ≠,由图象可得12()2C x x f y +=,12()()2D f x f x y +=,因为D C y y >,所以1212()()()22++≤x x f x f x f ,符合题意,所以是正确的;【点睛】本题主要考查了函数的新定义及其应用,其中解答中正确理解函数的新定义,以及结合函数的图象求解是解答的关键,着重考查了数形结合法,以及推理与运算能力,属于中档试题.6.下列说法中,正确的有( ) A .若0a b >>,则b a a b>B .若0a >,0b >,1a b +=,则11a b+的最小值为4 C .己知()11212xf x =-+,且()()2110f a f a -+-<,则实数a 的取值范围为()2,1- D .已知函数()()22log 38f x x ax =-+在[)1,-+∞上是增函数,则实数a 的取值范围是(]11,6--【答案】BCD 【分析】利用不等式的基本性质可判断A 选项的正误;将+a b 与11a b+相乘,展开后利用基本不等式可判断B 选项的正误;判断函数()f x 的单调性与奇偶性,解不等式()()2110f a f a -+-<可判断C 选项的正误;利用复合函数法可得出关于实数a 的不等式组,解出a 的取值范围,可判断D 选项的正误. 【详解】对于A 选项,0a b >>,则1a bb a>>,A 选项错误; 对于B 选项,0a >,0b >,1a b +=,()1111224b a a b a b a b a b ⎛⎫∴+=++=++≥+= ⎪⎝⎭, 当且仅当12a b ==时,等号成立,所以,11a b+的最小值为4,B 选项正确; 对于C 选项,函数()f x 的定义域为R , 任取1x 、2x R ∈且12x x <,则21220x x >>, 所以,()()()()211212121211111122021221221212121x x x x x x x x f x f x -⎛⎫⎛⎫-=---=-=> ⎪ ⎪++++++⎝⎭⎝⎭,即()()12f x f x >,所以,函数()f x 为R 上的减函数,()()()()2211112212221212xxx x x f x -+-=-==+++,则()()()()()()21212212122212221x x x x x x x xf x f x --------====-+⋅++, 所以,函数()f x 为R 上的奇函数,且为减函数, 由()()2110f a f a-+-<可得()()()22111f a f a f a-<--=-,所以,211a a -<-,即220a a +-<,解得21a -<<,C 选项正确; 对于D 选项,对于函数()()22log 38f x x ax =-+,令238u x ax =-+,由于外层函数2log y u =为增函数,则内层函数238u x ax =-+在[)1,-+∞上为增函数,所以min 16380au a ⎧≤-⎪⎨⎪=++>⎩,解得116a -<≤-,D 选项正确.故选:BCD. 【点睛】方法点睛:利用函数的奇偶性与单调性求解抽象函数不等式,要设法将隐性划归为显性的不等式来求解,方法是:(1)把不等式转化为()()f g x f h x >⎡⎤⎡⎤⎣⎦⎣⎦;(2)判断函数()f x 的单调性,再根据函数的单调性把不等式的函数符号“f ”脱掉,得到具体的不等式(组),但要注意函数奇偶性的区别.7.已知()x x f x e ke -=+(k 为常数),那么函数()f x 的图象不可能是( )A .B .C .D .【答案】AD 【分析】根据选项,四个图象可知备选函数都具有奇偶性.当1k =时,()xx f x e e -=+为偶函数,当1k =-时,()xx f x e e -=-为奇函数,再根据单调性进行分析得出答案.【详解】由选项的四个图象可知,备选函数都具有奇偶性. 当1k =时,()x x f x ee -=+为偶函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=+在1) [,t ∈+∞上单调递增, 故函数()xx f x ee -=+在0) [,x ∈+∞上单调递增,故选项C 正确,D 错误;当1k =-时,()x x f x e e -=-为奇函数,当0x ≥时,1x t e =≥且单调递增,而1y t t=-在1) [,t ∈+∞上单调递减, 故函数()xx f x e e -=-在0) [,x ∈+∞上单调递减,故选项B 正确,A 错误.故选:AD . 【点睛】关键点点睛:本题考查函数性质与图象,本题的关键是根据函数图象的对称性,可知1k =或1k =-,再判断函数的单调性.8.对于具有相同定义域D 的函数()f x 和()g x ,若存在函数()h x kx b =+(k ,b 为常数),对任给的正数m ,存在相应的0x D ∈,使得当x D ∈且0x x >时,总有()()()()00f x h x m h x g x m ⎧<-<⎪⎨<-<⎪⎩,则称直线:l y kx b =+为曲线()y f x =与()y g x =的“分渐近线”.给出定义域均为{}|1D x x =>的四组函数,其中曲线()y f x =与()y g x =存在“分渐近线”的是( )A .()2f x x =,()g x =B .()102xf x -=+,()23x g x x-=C .()21x f x x+=,()ln 1ln x x g x x +=D .()221x f x x =+,()()21xg x x e -=--【答案】BD 【分析】根据分渐近线的定义,对四组函数逐一分析,由此确定存在“分渐近线”的函数. 【详解】解:()f x 和()g x 存在分渐近线的充要条件是x →∞时,()()0,()()f x g x f x g x -→>.对于①,()2f x x =,()g x =当1x >时,令()()()2F x f x g x x =-=,由于()20F x x '=->,所以()h x 为增函数,不符合x →∞时,()()0f x g x -→,所以不存在分渐近线; 对于②,()1022xf x -=+>,()232,(1)x g x x x-=<>()()f x g x ∴>,2313()()10210xxx f x g x x x--⎛⎫-=+-=+ ⎪⎝⎭,因为当1x >且x →∞时,()()0f x g x -→,所以存在分渐近线;对于③,21()x f x x+=,ln 1()ln x x g x x +=,21111111()()ln ln ln x x nx f x g x x x x x x x x x++-=-=+--=-当1x >且x →∞时,1x 与1ln x 均单调递减,但1x的递减速度比1ln x 快,所以当x →∞时,()()f x g x -会越来越小,不会趋近于0,所以不存在分渐近线;对于④,22()1x f x x =+,()()21xg x x e -=--,当x →∞时,22()()220+1222+1x x x f x g x x e x x e--=-+++=→,且()()0f x g x ->,因此存在分渐近线.故存在分渐近线的是BD . 故选:BD . 【点睛】本小题主要考查新定义概念的理解和运用,考查函数的单调性,属于难题.二、导数及其应用多选题9.对于函数()2ln 1f x x ax x a =+--+,其中a R ∈,下列4个命题中正确命题有( )A .该函数定有2个极值B .该函数的极小值一定不大于2C .该函数一定存在零点D .存在实数a ,使得该函数有2个零点【答案】BD 【分析】求出导函数,利用导数确定极值,结合零点存在定理确定零点个数. 【详解】函数定义域是(0,)+∞,由已知2121()2x ax f x x a x x+-'=+-=,280a ∆=+>,2210x ax +-=有两个不等实根12,x x ,但12102x x =-<,12,x x 一正一负.由于定义域是(0,)+∞,因此()0f x '=只有一个实根,()f x 只有一个极值,A 错;不妨设120x x <<,则20x x <<时,()0f x '<,()f x 递减,2x x >时,()0f x '>,()f x 递增.所以2()f x 是函数的极小值.222210x ax +-=,22212x a x -=,22222()ln 1f x x ax x a =+--+=222222222222212112ln 12ln 2x x x x x x x x x -+---+=-+--+,设21()2ln 2g x x x x x =-+--+,则22111()22(1)(2)g x x x x x x'=-+-+=-+, 01x <<时,()0g x '>,()g x 递增,1x >时,()0g x '<,()g x 递减,所以()g x 极大值=(1)2g =,即()2g x ≤,所以2()2f x ≤,B 正确; 由上可知当()f x 的极小值为正时,()f x 无零点.C 错;()f x 的极小值也是最小值为2222221()2ln 2f x x x x x =-+--+, 例如当23x =时,173a =-,2()0f x <,0x →时,()f x →+∞,又2422217171714()21()03333f e e e e e =--++=-+>(217()3e >, 所以()f x 在(0,3)和(3,)+∞上各有一个零点,D 正确. 故选:BD . 【点睛】思路点睛:本题考查用导数研究函数的极值,零点,解题方法是利用导数确定函数的单调性,极值,但要注意在函数定义域内求解,对零点个数问题,注意结合零点存在定理,否则不能确定零点的存在性.10.若函数()f x 满足对于任意1x ,2(0,1)x ∈,()()121222f x f x x x f ++⎛⎫≤⎪⎝⎭,则称函数()f x 为“中点凸函数”.则下列函数中为“中点凸函数”的是( )A .2()2f x x x =-B .()tan f x x =C .()sin cos f x x x =-D .()e ln x f x x =-【答案】ABD 【分析】用计算()()121222f x f x x x f ++⎛⎫-⎪⎝⎭的正负值来解,运算量大,比较复杂.我们可分析“中点凸函数”的几何特征,结合图像作答.由已知“中点凸函数”的定义,可得“中点凸函数”的图象形状可能为:【详解】由“中点凸函数”定义知:定义域内12,x x 对应函数值的平均值大于或等于122x x +处的函数值,∴下凸函数:任意连接函数图象上不同的两点所得直线一定在图象上方或与图象重合. 设()()11,Ax f x ,()()22,B x f x 为曲线()f x 在(0,1)上任意两点A 、B 、C 、D 选项对应的函数图象分别如下图示: ①2()2f x x x =-符合题意 ②()tan f x x =符合题意③()sin cos 2sin 4f x x x x π⎛⎫=-=- ⎪⎝⎭放大局部图像可见,在,14段,并不满足12,x x 对应函数值的平均值大于或等于122x x +处的函数值.不合题意④()e ln x f x x =-'1()e x f x x =-,''21()e 0x f x x+=>根据导函数作出图像如下符合题意.故选:ABD【点睛】本题主要考查了函数的新定义及其应用,其中解答中正确理解函数的新定义,以及结合函数的图象求解是解答的关键,学生可利用数形结合求解,需要较强的推理与运算能力.。

《c语言程序设计》实验指导书答案

《c语言程序设计》实验指导书答案

《c语言程序设计》实验指导书答案《C语言程序设计》实验指导书答案实验一:C语言环境搭建与基本语法1. 问题:如何在计算机上搭建C语言开发环境?答案:搭建C语言开发环境通常需要安装编译器和集成开发环境(IDE)。

常见的编译器有GCC,而IDE如Visual Studio Code、Code::Blocks等。

安装完成后,配置好编译器路径,即可开始编写和编译C语言程序。

2. 问题:C语言的基本数据类型有哪些?答案:C语言的基本数据类型包括整型(int)、字符型(char)、浮点型(float和double)以及更复杂的结构体(struct)和联合体(union)等。

3. 问题:如何定义一个变量?答案:定义变量的基本语法是:`类型名变量名;`。

例如,定义一个整型变量a:`int a;`。

4. 问题:如何实现变量的输入和输出?答案:使用`scanf`函数进行输入,使用`printf`函数进行输出。

例如,输入一个整数并输出:`scanf("%d", &a); printf("%d", a);`。

实验二:控制结构1. 问题:C语言中的条件语句有哪些?答案:C语言中的条件语句主要有`if`语句和`switch`语句。

2. 问题:如何使用`if`语句?答案:`if`语句的基本语法是:`if (条件) { 语句 }`。

例如,判断一个数是否为正数:`if (a > 0) { printf("正数"); }`。

3. 问题:如何使用`switch`语句?答案:`switch`语句用于多条件分支选择。

基本语法是:`switch (表达式) { case 常量1: 语句1; break; case 常量2: 语句2; break; ... default: 默认语句; }`。

4. 问题:C语言中的循环语句有哪些?答案:C语言中的循环语句主要有`for`循环、`while`循环和`do-while`循环。

《程序设计基础(C++)》实验教程及完整答案

《程序设计基础(C++)》实验教程及完整答案

《程序设计基础》实验教程对于从事计算机行业的人员来说,设计能力是最主要的基本功之一。

入门课程《程序设计基础》的学习效果将直接关系到编程能力的掌握和提高以及后续课程的学习。

然而,实践证明,许多初学者在学习这门课程时的效果并不理想。

对初学者来说,如何学好本课程?首先,要理解教材中所给出的语法描述,并学会按语法规定去编写指定问题的求解程序。

经过这样的多次反复,初学者就可以找到编程的感觉。

除了要学好理论知识外,更重要的一点是要到计算机上去验证,因为只有实践才是检验真理的标准。

只有通过到计算机上去实践,才能发现学习中存在的问题,巩固所学知识,加强解决实际问题的能力,增强信心。

因此,《程序设计基础》课程的上机实验是本课程必不可少的实践环节,必须加以重视。

本课程上机实验的目的是使学生熟悉用高级语言解决实际问题的全过程,加深对语言的理解,得到程序设计基本方法和能力的训练。

在独立编写程序、独立上机调试程序的同时,真正能用高级语言这个工具去解决实际问题,对计算机学科的相关知识有所了解,从而为后续课程的学习奠定良好的基础。

本实验指导所用环境是Visual C++ 6.0及以上版本。

考虑到本课程的内容和特点,设置了十四个实验,每次实验需要两至三小时,分别侧重于教材中的一个方面,其中标有“*”号的习题的综合性较强,可供学有余力的学生选择。

实验时也可根据具体情况做适当调整。

虽然可能由于课时和机时限制等原因而不能在实验课时内全部得到安排,但还是建议学生能将其中的每个实验都能认真做一遍,因为这些实验都是学习本课程所必需的。

学生在做实验之前应仔细阅读本实验指导书,初步掌握实验的基本要求和实验方法。

在实验过程中,学生应该有意识的培养自己调试程序的能力,积累发现问题、解决问题的经验,灵活主动的学习。

对于分析运行结果的实验习题,上机前先进行用人工分析,写出运行结果,与上机调试得到的结果进行对照,如有差异,分析其原因。

对于程序编制的实验习题,上机前应考虑出较成熟的编程思路,有意识提供出多种方案,以灵活运用所学知识和技巧。

上海吴淞实验学校必修一第四单元《函数应用》检测卷(含答案解析)

上海吴淞实验学校必修一第四单元《函数应用》检测卷(含答案解析)

一、选择题1.已知函数,01()11,10(1)x x f x x f x ≤<⎧⎪=⎨--<<⎪+⎩,()()4g x f x mx m =--,其中m 是非零的实数,若函数()g x 在区间(1,1)-内有且仅有两个零点,则实数m 的取值范围是( ) A .1,(0,1)5⎛⎫-∞-⋃ ⎪⎝⎭B .1(,1),5⎛⎫-∞-⋃+∞ ⎪⎝⎭C .1(,1)0,5⎛⎫-∞-⋃ ⎪⎝⎭D .1,(1,)5⎛⎫-∞-⋃+∞ ⎪⎝⎭2.已知函数24,?0()7,?0x f x x x x x ⎧<⎪=⎨⎪-≥⎩,()()g x f x x a =+-,若()g x 存在两个零点,则a的取值范围是( ) A .(﹣4,0] B .(-∞,﹣9) C .(-∞,﹣9)(﹣4,0]D .(﹣9,0]3.已知函数22,()11,x x x a f x x a x⎧--≤⎪=⎨->⎪⎩,若函数图象与x 轴有且仅有一个交点,则实数a的取值范围是( )A .(),1-∞-B .()[),11,2-∞-⋃C .[)1,2D .(]()1,12,-+∞4.已知偶函数()f x 在[0,)+∞上为增函数,若关于x 的方程()()21xf b f =-有且只有一个实根,则实数b 的取值范围是( ) A .2b ≥B .0b ≥C .1b ≤-或0b =D .1b ≥或1b ≤-或0b =5.定义在R 上的奇函数f (x )满足条件(1)(1)f x f x +=-,当x ∈[0,1]时,f (x )=x ,若函数g (x )=()f x -a e -在区间2018,[]2018-上有4 032个零点,则实数a 的取值范围是A .(0,1)B .(e ,e 3)C .(e ,e 2)D .(1,e 3)6.已知函数321()232x f x ax bx c =+++的两个极值分别为1()f x 和2()f x ,若1x 和2x 分别在区间(0,1)与(1,2)内,则21b a --的取值范围是( )A .(1,14)B .1[,1]4C .1(,)(1,)4-∞+∞ D .1(,][1,)4-∞+∞7.对于函数()f x ,若在定义域内存在实数0x 满足()()00f x f x -=-,则称函数()f x 为“倒戈函数”.设()31xf x m =+-(m ∈R ,0m ≠)是定义在[]1,1-上的“倒戈函数”,则实数m 的取值范围是( ) A .2,03⎡⎫-⎪⎢⎣⎭B .21,33⎡⎤--⎢⎥⎣⎦ C .2,03⎡⎤-⎢⎥⎣⎦D .(),0-∞8.用二分法求方程x 2–2=0在(1,2)内近似解,设f (x )=x 2–2,得f (1)<0,f (1.5)>0, f (1.25)<0,则方程的根在区间( ) A .(1.25,1.5)B .(1,1.25)C .(1, 1.5)D .不能确定9.设一元二次方程22210mx x m -++=的两个实根为1x ,2x ,则2212x x +的最小值为( ) A .178-B .154C .1D .410.某高校为提升科研能力,计划逐年加大科研经费投人.若该高校2018年全年投入科研经费1300万元,在此基础上,每年投人的科研经费比上一年增长12%,则该高校全年投入的科研经费开始超过2000万元的年份是(参考数据:lg1.120.05≈,lg1.30.11≈,lg 20.30≈)( )A .2020年B .2021年C .2022年D .2023年11.函数()xf x 2sinx =-在区间[]10π,10π-上的零点的个数是( ) A .10B .20C .30D .4012.已知函数23()log f x x x=-,(0,)x ∈+∞,则()f x 的零点所在的区间是 A .(0,1) B .(1,2)C .(2,3)D .(3,4)二、填空题13.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元. 14.某公司租地建仓库,每月土地占用费1y 与仓库到车站的距离成反比,而每月库存货物的运费2y 与仓库到车站的距离成正比,如果在距离车站10千米处建仓库,这两项费用1y 和2y 分别为2万元和8万元.那么,要使这两项费用之和最小,仓库应建在距离车站__________千米处.15.已知函数()1,0ln ,0x x f x x x +≤⎧=⎨>⎩,则函数()1y f f x ⎡⎤=-⎣⎦的零点个数为______. 16.已知()()()23f x m x m x m =-++,()22xg x =-,若满足x R ∀∈,()0f x <和()0g x <至少有一个成立,则m 的取值范围是______.17.设函数212,2()1,2xx f x x x lnx x ⎧⎪⎪=⎨⎪-->⎪⎩,若函数()()F x f x a =+恰有2个零点,则实数a的取值范围是__. 18.已知函数211x y x -=+的图像与函数2y kx =+的图像恰有两个交点,则实数k 的取值范围是______.19.若函数2()2ln f x x a x =-++在21,e e ⎡⎤⎢⎥⎣⎦上有两个不同的零点,则实数a 的取值范围为_____.20.已知函数221,0()21,0xx f x x x x ⎧-<⎪=⎨-+⎪⎩,若函数()y f x k =-有3个零点,则实数k 的取值范围是________.三、解答题21.已知函数2()29f x x ax =-+.(I)当0a ≤时,设()(2)x g x f =,证明:函数()g x 在R 上单调递增; (II)若[1,2]x ∀∈,(2)0x f ≤成立,求实数a 的取值范围; (III)若函数()f x 在(3,9)-有两个零点,求实数a 的取值范围.22.已知函数()f x 为偶函数,当0x ≥时,()11x x e f x e -=+.(1)求当0x <时,函数()f x 的解析式; (2)判断函数()f x 在(),0-∞上的单调性并证明;(3)设函数()()()2g x f ax f x a =--+,使函数()g x 有唯一零点的所有a 构成的集合记为M ,求集合M .23.已知定义在R 上的偶函数()f x 和奇函数()g x 满足()()124x f x g x +-=.(Ⅰ)求函数()f x 和()g x 的表达式;(Ⅱ)若方程()4xf x m m =⋅-在10,2⎛⎫ ⎪⎝⎭上恰有一个实根,求实数m 的取值范围.24.新冠肺炎疫情发生以后,口罩供不应求,某口罩厂日夜加班生产,为抗击疫情做贡献.生产口罩的固定成本为400万元,每生产x 万箱,需另投入成本()p x 万元,当产量不足60万箱时,()21502p x x x =+;当产量不小于60万箱时,()64001011860p x x x=+-,若每箱口罩售价100元,通过市场分析,该口罩厂生产的口罩可以全部销售完.(1)求口罩销售利润y (万元)关于产量x (万箱)的函数关系式; (2)当产量为多少万箱时,该口罩生产厂在生产中所获得利润最大?25.设1a >,已知函数22242()log log ()x f x a x a=⋅,12f .(1)求a 的值;(2)求函数f (x )的最小值;(3)若方程f (x )-m =0在区间(1,4)上有两个不相等的实根,求实数m 的取值范围. 26.宜城市流水镇是全国闻名的西瓜基地,流水西瓜含糖量高,口感好,多次入选全国农博会并获金奖,畅销全国12省百余个大中城市.实践证明西瓜的产量和品质与施肥关系极大,现研究发现该镇礼品瓜“金皇后”的每亩产量L (单位:百斤)与施用肥料x (单位:百斤)满足如下关系:238(2),02()603,312x x L x x x x ⎧+<≤⎪⎪=⎨⎪<≤⎪+⎩,肥料成本投入为5x (单位:百元),其它成本投入为10x (单位:百元).已知“金皇后”的市场批发价为2元/斤,且销路畅通供不应求,记每亩“金皇后”的利润为()f x (单位:百元). (1)求()f x 的函数关系式;(2)当施用肥料为多少斤时,每亩“金皇后”的利润最大,最大利润是多少元?1.414≈).【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先求得分段函数的解析式,函数()g x 零点等价于函数()y f x =的图象与直线4y mx m =+公共点,做出图像,数形结合,即可求得答案.【详解】当10x -<<时,011x <+<,满足上支范围,所以()11f x x +=+,所以,01()11,101x x f x x x ≤<⎧⎪=⎨--<<⎪+⎩,作函数()y f x =的图象,如图所示.函数()g x 零点的个数等价于函数()y f x =的图象与直线4y mx m =+公共点的个数. 当直线4y mx m =+过点(1,1)时,15m =, 所以当105m <<时, 直线4y mx m =+与函数()y f x =图象有两个公共点.当直线4y mx m =+与曲线111y x =-+(10x -<<)相交时, 联立4111y mx m y x =+⎧⎪⎨=-⎪+⎩消去y 得,24(51)0mx m x m -++=, 因此22(51)160m m ∆=+->且510m +<时,解得1m <-.综上知,实数m 的取值范围是1(,1)0,5⎛⎫-∞-⋃ ⎪⎝⎭. 故选:C 【点睛】本题的关键是根据x 的范围,先求得函数解析式,做出图像,再将零点问题转化为图像交点问题,易错点为,4y mx m =+可以与函数两支都有交点,也可以与函数111y x =-+单支产生交点,需分别检验和计算,属中档题.2.C解析:C 【分析】令()()0g x f x x a =+-=,将()g x 存在两个零点,转化为两函数24,?0,6,?0x x y a y x x x x ⎧+<⎪==⎨⎪-≥⎩有两个交点,在同一坐标系中,作出两个函数的图象,利用数形结合法求解. 【详解】令()()0g x f x x a =+-=,得24,?06,?0x x a x x x x ⎧+<⎪=⎨⎪-≥⎩,令24,?0,6,?0x x y a y x x x x ⎧+<⎪==⎨⎪-≥⎩,在同一坐标系中,作出两个函数的图象,如图所示:因为()g x 存在两个零点, 由图象可得:a <﹣9或﹣4<a ≤0, 故选:C 【点睛】方法点睛:函数零点问题:若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用.3.B解析:B 【分析】讨论a 的范围,分别确定x a ≤、x a >上与x 轴的交点情况,即可确定实数a 的取值范围. 【详解】∵当x a ≤时,()(2)(1)f x x x =-+,∴当2a ≥时,()f x 在x a ≤与x 轴有2个交点; 当12a -≤<时,()f x 在x a ≤与x 轴有1个交点; 当1a <-时,()f x 在x a ≤与x 轴无交点;∵当x a >时,1(1)f x x=-,与x 轴有交点时交点为(1,0), ∴当1a ≥时,()f x 在x a >与x 轴无交点; 当1a <时,()f x 在x a >与x 轴有1个交点;综上要使()f x 在R 上与x 轴有且仅有一个交点,即12a ≤<或1a <-, 故选:B 【点睛】易错点睛:讨论不等式的参数时,要注意参数边界是否可以取等号.1x =时()f x 与x 轴有交点,要使()f x 在x a >与x 轴无交点则1a ≥. 1x =-时()f x 与x 轴有交点,要使()f x 在x a ≤与x 轴无交点则1a <-. 4.D解析:D 【分析】由题意有|21|xb =±-,令20x t =>,即可得22210t t b -+-=有且只有一个实根,22()21f t t t b =-+-问题转化为()f t 在(0,)t ∈+∞上有且仅有一个零点,结合二次函数零点分布即可求b 的取值范围. 【详解】由()f x 是偶函数且在[0,)+∞上为增函数知:|21|xb =±-,∴22(21)x b =-,令20x t =>,则22210t t b -+-=,令22()21f t t t b =-+-,即()f t 在(0,)t ∈+∞上有且仅有一个零点,而2244(1)4b b ∆=--=且对称轴为直线1t =,∴当0∆=,0b =时,在(0,)t ∈+∞上有且仅有一个零点;当0∆>时,22(0)10b f b ⎧>⎨=-≤⎩,解得1b ≤-或1b ≥,在(0,)t ∈+∞上有且仅有一个零点;∴综上,有1b ≤-或1b ≥或0b =, 故选:D. 【点睛】本题考查函数与方程,将方程的根的个数问题转化为对应函数零点个数问题,注意换元法的应用、定义域范围,属于中档题.5.B解析:B 【分析】根据满足条件(1)(1)f x f x +=-且为奇函数,可周期为4,当[0,1]x ∈时,()f x x =,根据()()m x f x =与()xnx ae -=图像,判断在一个周期内的焦点情况即可求解.【详解】因为()f x 满足条件(1)(1)f x f x +=-且为奇函数, 函数()(2)()f x f x f x =-=--,∴()f x 周期为4, ∵当[0,1]x ∈时,()f x x =,作()()m x f x =与()xn x ae -=图像,函数()()xg x f x ae-=-在区间2018,[]2018-上有4032个零点,即()()m x f x =与()xn x ae -=在[0,4]且仅有两个交点,∴(1)(1)(3)(3)m n m n <⎧⎨>⎩即3e a e <<.点睛:本题主要考查了函数的基本性质的应用及不等式的求解,周期的求解等知识点应用,其中正确合理运用函数的基本性质是解答关键,着重考查了分析问题和解答问题的能力.6.A解析:A 【分析】由极值点的所在区间即可知()f x 的导函数2()2f x x ax b '=++的零点区间,应用根的分布可得1310a b ->>-⎧⎨>>⎩,结合目标式的几何意义即可求其范围.【详解】由题意知:2()2f x x ax b '=++,而()f x 两个极值点1x 和2x 分别在区间(0,1)与(1,2)内,∴方程220x ax b ++=两个根在(0,1)与(1,2)内,()'f x 开口向上,∴012020b a b a b >⎧⎪++<⎨⎪++>⎩,可得1310a b ->>-⎧⎨>>⎩,即214122a b ->->-⎧⎨->->-⎩,∴令1,2x a y b =-=-,问题转化为在24,12x y ->>-->>-的可行域内的点与原点所成直线斜率yx的取值范围,如下图示:有1(,1)4y x ∈, 故选:A 【点睛】本题考查了根据函数极值点的所在区间求目标式的范围,应用了极值点与导数关系、根的分布、不等式的性质,结合线性规划及目标式的几何意义求范围,属于中档题.7.A解析:A 【分析】()31x f x m =+-是定义在[1,1]-上的“倒戈函数,即存在0[1,1]x ∈-,满足00()()f x f x -=-,即02332x x m -=--+有根,即可求出答案.【详解】()31x f x m =+-是定义在[1,1]-上的“倒戈函数,∴存在0[1,1]x ∈-满足00()()f x f x -=-,003131x x m m -∴+-=--+, 002332x x m -∴=--+,构造函数00332x x y -=--+,0[1,1]x ∈-,令03x t =,1[,3]3t ∈,1122()y t t t t=--+=-+在1[,1]3单调递增,在(1,3]单调递减,所以1t =取得最大值0,13t =或3t =取得最小值43-,4[,0]3y ∴∈-,4203m ∴-<,032m ∴-<, 故选:A . 【点睛】本题考查的知识点是指数函数的性质、函数的值域,新定义“倒戈函数”,正确理解新定义“倒戈函数”的含义,是解答的关键.8.A解析:A 【分析】根据零点存在定理,结合条件,即可得出结论. 【详解】已知(1)0,(1.5)0,(1.25)0f f f <><, 所以(1,25)(1.5)0f f ⋅<,可得方程的根落在区间(1.25,1.5)内, 故选A. 【点睛】该题考查的是有关判断函数零点所在区间的问题,涉及到的知识点有二分法,函数零点存在性定理,属于简单题目.9.C解析:C 【分析】由一元二次方程有两个实根,可知0m ≠且0∆≥,可求出m 的取值范围,然后结合韦达定理可得到2212x x +的表达式,结合m 的取值范围可求出答案.【详解】∵一元二次方程210mx m -++=有两个实根,∴(()20410m m m ≠⎧⎪⎨∆=--+≥⎪⎩,解得21m -≤≤且0m ≠.又12x x m+=,121m x x m +⋅=,则()2221212122x x x x x x +=+-⋅212m m m ⎛⎫+-⨯ ⎪⎪= ⎝⎭2822m m =-- 令1t m=,因为21m -≤≤且0m ≠,所以12t ≤-或1t ≥,则221222117822888t t t x x ⎛⎫=--=-- ⎪⎝⎭+,当12t =-时,2212x x +取得最小值2111781288⎛⎫---= ⎪⎝⎭. 故选:C. 【点睛】本题考查了一元二次方程根的判别式的应用,考查韦达定理的应用,考查学生的计算能力与推理能力,属于中档题.10.C解析:C 【分析】由题意知,2019年是第1年,则第n 年全年投入的科研经费为1300 1.12n ⨯万元,然后解不等式1300 1.122000n ⨯>,将指数式化为对数式,得出n 的取值范围,即可得出答案. 【详解】若2019年是第1年,则第n 年全年投入的科研经费为1300 1.12n ⨯万元, 由1300 1.122000n ⨯>可得1.3 1.122n ⨯>,lg1.3lg1.12lg 2n ∴+>, 所以0.050.19n ⨯>, 得 3.8n >,则正整数n 的最小值为4, 所以第4年,即2022年全年投入的科研经费开始超过2000万元, 故选:C. 【点睛】本题考查指数函数模型的应用,解题的关键就是列出指数不等式,考查函数思想的应用与计算能力,属于中等题.11.A解析:A 【分析】画出函数xy 2=和y sinx =的图象,通过图象即得结果. 【详解】画出图象函数xy 2=和y sinx =的图象,根据图象可得函数()xf x 2sinx =-在区间[]10π,10π-上的零点的个数是10,故选A .【点睛】本题考查了函数的零点问题,考查数形结合思想,转化思想,是一道中档题.12.C解析:C 【分析】由题意结合零点存在定理确定()f x 的零点所在的区间即可. 【详解】由题意可知函数()23f x log x x=-在()0,+∞上单调递减,且函数为连续函数, 注意到()130f =>,()1202f =>,()231log 30f =-<,()34204f =-<, 结合函数零点存在定理可得()f x 的零点所在的区间是()2,3. 本题选择C 选项. 【点睛】应用函数零点存在定理需要注意: 一是严格把握零点存在性定理的条件;二是连续函数在一个区间的端点处函数值异号是这个函数在这个区间上存在零点的充分条件,而不是必要条件;三是函数f (x )在(a ,b )上单调且f (a )f (b )<0,则f (x )在(a ,b )上只有一个零点.二、填空题13.1120【分析】明确折扣金额y 元与购物总金额x 元之间的解析式结合y =30>25代入可得某人在此商场购物总金额减去折扣可得答案【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式y ∵y =30>2解析:1120 【分析】明确折扣金额y 元与购物总金额x 元之间的解析式,结合y =30>25,代入可得某人在此商场购物总金额, 减去折扣可得答案. 【详解】由题可知:折扣金额y 元与购物总金额x 元之间的解析式,y ()()006000.0560060011000.11100251100x x x x x ⎧≤⎪=-≤⎨⎪-+⎩,<,<,> ∵y =30>25 ∴x >1100∴0.1(x ﹣1100)+25=30 解得,x =1150, 1150﹣30=1120,故此人购物实际所付金额为1120元.【点睛】本题考查的知识点是分段函数,正确理解题意,进而得到满足条件的分段函数解析式是解答的关键.14.5【解析】设仓库与车站的距离为由题意可设把与分别代入上式得故∴这两项费用之和当且仅当即时等号成立故要使这两项费用之和最小仓库应建在距离车站千米处故答案为5解析:5 【解析】设仓库与车站的距离为x , 由题意可设11k y x=,22y k x =, 把10x =,12y =与10x =,28y =分别代入上式得120k =,20.8k =, 故120y x=,20.8y x =,∴这两项费用之和12200.88y y y x x =+=+≥=, 当且仅当200.8x x=, 即5x =时等号成立,故要使这两项费用之和最小,仓库应建在距离车站5千米处. 故答案为5.15.【分析】先由可求得的值再由和两种情况结合的值可求得的值即可得解【详解】下面先解方程得出的值(1)当时可得可得;(2)当时可得可得或下面解方程和①当时由可得由可得(舍去)由可得;②当时由可得由可得或由 解析:7【分析】先由()10f f x ⎡⎤-=⎣⎦可求得()f x 的值,再由0x ≤和0x >两种情况结合()f x 的值,可求得x 的值,即可得解. 【详解】下面先解方程()10f f x ⎡⎤-=⎣⎦得出()f x 的值.(1)当()0f x ≤时,可得()()1110f f x f x -=+-=⎡⎤⎣⎦,可得()0f x =; (2)当()0f x >时,可得()()1ln 10f f x f x -=-=⎡⎤⎣⎦,可得()f x e =或()1f x e=. 下面解方程()0f x =、()f x e =和()1f x e=. ①当0x ≤时,由()10f x x =+=可得1x =-,由()1f x x e =+=可得1x e =-(舍去),由()11f x x e =+=可得11x e=-; ②当0x >时,由()ln 0f x x ==可得1x =,由()1ln f x x e==可得1e x e =或1ex e -=,由()ln f x x e ==可得e x e =或ex e -=.综上所述,函数()1y f f x =-⎡⎤⎣⎦的零点个数为7. 故答案为:7. 【点睛】方法点睛:判定函数()f x 的零点个数的常用方法:(1)直接法:直接求解函数对应方程的根,得到方程的根,即可得出结果;(2)数形结合法:先令()0f x =,将函数()f x 的零点个数,转化为对应方程的根,进而转化为两个函数图象的交点个数,结合图象,即可得出结果.16.【分析】先判断函数的取值范围然后根据和至少有一个成立则可求得的取值范围【详解】解:当时又或在时恒成立即在时恒成立则二次函数图象开口只能向下且与轴交点都在的左侧即解得实数的取值范围是:故答案为:【点睛 解析:()4,0-【分析】先判断函数()g x 的取值范围,然后根据()0f x <和()0<g x 至少有一个成立.则可求得m 的取值范围.【详解】 解:()22x g x =-,当1x 时,()0g x ,又x R ∀∈,()0f x <或()0<g x ,()(2)(3)0f x m x m x m ∴=-++<在1x 时恒成立,即(2)(3)0m x m x m -++<在1x 时恒成立,则二次函数(2)(3)y m x m x m =-++图象开口只能向下,且与x 轴交点都在(1,0)的左侧,∴03121m m m <⎧⎪--<⎨⎪<⎩,即0412m m m ⎧⎪<⎪>-⎨⎪⎪<⎩,解得40m -<<, ∴实数m 的取值范围是:(4,0)-.故答案为:(4,0)-. 【点睛】利用指数函数和二次函数的图象和性质,根据条件确定()(2)(3)0f x m x m x m =-++<在1x 时恒成立是解决本题的关键,综合性较强,难度较大.17.【分析】令求出函数的导数判断函数的单调性结合函数的图象推出结果即可【详解】解:令则令得或(舍去)当时;当时所以在上是减函数在上是增函数又(1)而在上是增函数且作出函数的图象如图由得所以当即时函数与的解析:[2-,12]4ln -. 【分析】令2()g x x x lnx =--,12x >,求出函数的导数,判断函数的单调性,结合函数的图象,推出结果即可. 【详解】解:令2()g x x x lnx =--,12x >, 则2121(21)(1)()21x x x x g x x x x x--+-'=--==, 令()0g x '=,得1x =或12x =-(舍去)当112x <<时,()0g x '<;当1x >时,()0g x '>, 所以()g x 在1(,1)2上是减函数,在(1,)+∞上是增函数,又11()224g ln =-+,g (1)0=,而2xy =在1(,)2-∞上是增函数,且022x<,作出函数()f x 的图象如图,由()0F x =得()f x a =-,所以当1224ln a-+-即1224aln --时,函数()y f x =与y a =-的图象有两个交点.故答案为:1[2,2]4ln --.【点睛】本题考查函数的零点与方程的根的关系,函数的导数的应用,考查转化思想以及计算能力,是中档题.18.且【分析】先化简函数再由过定点(02)在同一坐标系中作出两个函数的图象利用数形结合法求解【详解】在同一坐标系中作出两个函数的图象如图所示:因为函数的图像与函数的图像恰有两个交点所以且故答案为:且【点解析:04k <≤ 且1k ≠ 【分析】 先化简函数()211,1111,11x x x x f x x x x --≥<-⎧==⎨+--<<⎩或,再由()2g x kx =+过定点(0,2),在同一坐标系中作出两个函数的图象,利用数形结合法求解. 【详解】()211,1111,11x x x x f x x x x --≥<-⎧==⎨+--<<⎩或,()2g x kx =+, 在同一坐标系中作出两个函数的图象,如图所示:因为函数211x y x -=+的图像与函数2y kx =+的图像恰有两个交点,所以04k <≤ 且1k ≠,故答案为:04k <≤ 且1k ≠,【点睛】本题主要考查函数的零点与方程的根,还考查了数形结合的思想方法,属于中档题.19.【分析】将问题转化为在上有两个解令利用导数判断的单调性及最值数形结合即可求得a 的范围【详解】令可得令则因为当时当时所以在上单调递减在上单调递增所以当时取得最小值又所以因为在上有两个解所以故答案为:【 解析:441,1(]e+【分析】将问题转化为22ln a x x =-在21,e e ⎡⎤⎢⎥⎣⎦上有两个解,令2()2ln g x x x =-,利用导数判断()g x 的单调性及最值,数形结合即可求得a 的范围.【详解】令()0f x =可得22ln a x x =-,令2()2ln g x x x =-,则2222()2x g x x x x-'=-=,因为当211x e 时,()0g x ',当1x e <时,()0g x '>, 所以()g x 在21,1e ⎡⎤⎢⎥⎣⎦上单调递减,在(1,]e 上单调递增, 所以当1x =时()g x 取得最小值(1)1g =, 又224114,()2g g e e e e ⎛⎫=+=-⎪⎝⎭,所以21()g g e e ⎛⎫< ⎪⎝⎭, 因为()ag x 在21,e e ⎡⎤⎢⎥⎣⎦上有两个解,所以4114a e <+.故答案为:441,1(]e+ 【点睛】本题考查函数的零点、利用导数求函数的最值,考查等价转化思想和数形结合思想,属于中档题.20.【分析】画出的图像再分析有3个交点时实数的取值范围即可【详解】的图象如图∵有3个零点∴图象与图象有3个交点∴故答案为:【点睛】本题主要考查了根据函数零点的个数求解参数的取值范围问题需要数形结合分析属 解析:(0,1)【分析】画出221,0()21,0x x f x x x x ⎧-<⎪=⎨-+⎪⎩的图像,再分析()f x k =有3个交点时实数k 的取值范围即可. 【详解】()y f x =的图象如图.∵()y f x k =-有3个零点,∴()y f x =图象与y k =图象有3个交点. ∴1()0,k ∈. 故答案为:(0,1) 【点睛】本题主要考查了根据函数零点的个数求解参数的取值范围问题.需要数形结合分析,属于中档题.三、解答题21.(I)证明见解析 ;(II) 134a ≥;(III) 35a << . 【分析】(I)根据函数单调性定义法证明即可;(II) 设2(12)x t x =<<,则24t <<则 92t a t +≤,令9()h t t t=+,求()h t 最大值即可; (III)根据零点分布列出等价不等式求解即可. 【详解】(Ⅰ)()(2)4229x x xg x f a ==-⋅+,设21x x R >∈,221121()()4229(4229)x x x x g x g x a a -=-⋅+--⋅+2121442(22)x x x x a =---212121(22)(22)2(22)x x x x x x a =-+-- 2121(22)[(22)2]x x x x a =-+-因为函数2xy =在R 上单调递增, 所以2122x x >,所以21220x x ->,又21(22)0,0xxa +>≤,所以21(22)20xxa +->,2121(22)[(22)2]0x x x x a -+->,所以21()()g x g x >,所以函数()g x 在R 上单调递增.(Ⅱ)设2(12)xt x =<<,则24t <<,都有2290t at -+≤,92t a t +≤,令9()h t t t=+, 易证()h t 在(2,3)单调递减,在(3,4)单调递增,又1325(2)(4)24h h ==,,()h t 最大值为132, 13132,24a a ≥≥. (III)因为函数()f x 在(3,9)-有两个零点且对称轴为x a =,所以2394360(3)0(9)0a a f f -<<⎧⎪->⎪⎨->⎪⎪>⎩,解得35a <<. 【点睛】方法点睛:已知不等式恒成立求参数值(取值范围)问题常用的方法: (1)函数法:讨论参数范围,借助函数单调性求解;(2)分离参数法:先将参数分离,转化成求函数的值域或最值问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.22.(1)()11xxe f x e-=+;(2)函数()f x 在(),0-∞上单调递减,证明见详解;(3){}1,0,1,2M =-.【分析】(1)当0x <时,0x ->,()1111x xx xe ef x e e-----==++,利用函数的奇偶性求解即可;(2)函数()f x 在(),0-∞上单调递减,利用定义证明函数的单调性即可;(3)把函数()g x 有唯一零点的问题转化为方程()()20f ax f x a --+=有唯一的解的问题,利用函数的奇偶性和单调性得到2ax x a =-+,两边平方,利用方程有唯一的解即可得出结果. 【详解】(1)当0x <时,0x ->, 又函数()f x 为偶函数,则()()1111x xx xe ef x f x e e-----===++, 所以函数()f x 的解析式为()11xxe f x e -=+;(2)函数()f x 在(),0-∞上单调递减, 设任意120x x <<,则()()()()()12212112212111111x x x x x x x x e e e e f x f x e e e e ----=-=++++, 因为xy e =在R 上单调递增, 所以12x x e e <,即120x x e e -<, 所以()()21f x f x <,所以函数()f x 在(),0-∞上单调递减; (3)因为函数()f x 为偶函数, 所以函数()f x 在()0,∞+上单调递减,函数()()()2g x f ax f x a =--+的零点就是方程()()20f ax f x a --+=的解, 因为函数()g x 有唯一零点,所以方程()()20f ax f x a --+=有唯一的解, 因为函数()f x 为偶函数, 所以方程变形为:()()2fax f x a =-+,因为函数()f x 在()0,∞+上单调递减, 所以2ax x a =-+, 平方得:()()()22212220a xa x a -+-+-=,当210a -=时,即1a =±,经检验方程有唯一解; 当210a -≠时,()()()222424120a a a ∆=----=,得()22200a a a -=⇒=或2a =, 综上可得:集合{}1,0,1,2M =-. 【点睛】关键点睛:把函数()g x 有唯一零点的问题转化为方程()()20f ax f x a --+=有唯一的解的问题是解决本题的关键.23.(Ⅰ)()44xxf x -=+,()44xx g x -=-;(Ⅱ)5,2⎛⎫+∞ ⎪⎝⎭.【分析】(Ⅰ)由()()124x f x g x +-=,结合()f x 的偶函数,()g x 是奇函数,得到()()124x f x g x -+-=,两式联立求解.(Ⅱ)()4xf x m m =⋅-在10,2⎛⎫ ⎪⎝⎭恰有一个实根,即()214410x x m m --⋅-=在10,2⎛⎫ ⎪⎝⎭上恰有一个实根,令()4,1,2x z z =∈,转化为()2110m z mz ---=在()1,2上恰有一个实根,令()()211h z m z mz =---,用二次函数的性质求解. 【详解】(Ⅰ)由()()124x f x g x +-=. 得()()124x f x g x -+---=,.因为()f x 的偶函数,()g x 是奇函数,所以()()124x f x g x -+-=, 解得()44x x f x -=+,()44x x g x -=-. (Ⅱ)因为()4x f x m m =⋅-在10,2⎛⎫⎪⎝⎭恰有一个实根,即444x x xm m -+=⋅-,在10,2⎛⎫ ⎪⎝⎭恰有一个实根, 即()214410x x m m --⋅-=在10,2⎛⎫ ⎪⎝⎭上恰有一个实根, 令()4,1,2x z z =∈,则()2110m z mz ---=在()1,2上恰有一个实根, 令()()211h z m z mz =--- 又()12h =-,则有()2250h m =->或()()244012211020m m m m m h ⎧∆=+-=⎪⎪<<⎪-⎨⎪-<⎪<⎪⎩, 解得52m >, 综上m 的取值范围为5,2⎛⎫+∞⎪⎝⎭. 【点睛】方法点睛:在研究一元二次方程根的分布问题时,常借助于二次函数的图象数形结合来解,一般从:①开口方向;②对称轴位置;③判别式;④端点函数值符号四个方面分析.24.(1)2150400,060264001460,60x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩;(2)80万箱. 【分析】(1)分060x <<和60x ≥两种情况分析,利用利润等于销售收入减去成本可得出口罩销售利润y (万元)关于产量x (万箱)的函数关系式;(2)分060x <<和60x ≥两种情况分析,利用二次函数和基本不等式求出口罩销售利润y 的最大值及其对应的x 值,综合可得出结论.【详解】(1)当060x <<时,2211100504005040022y x x x x x ⎛⎫=-+-=-+-⎪⎝⎭; 当60x ≥时,6400640010010118604001460y x x x x x ⎛⎫⎛⎫=-+--=-+ ⎪ ⎪⎝⎭⎝⎭. 所以,2150400,060264001460,60x x x y x x x ⎧-+-<<⎪⎪=⎨⎛⎫⎪-+≥ ⎪⎪⎝⎭⎩; (2)当060x <<时,221150400(50)85022y x x x =-+-=--+, 当50x =时,y 取得最大值,最大值为850万元; 当60x ≥时,6400146014601300y x x ⎛⎫=-+≤-= ⎪⎝⎭, 当且仅当6400x x=时,即80x =时,y 取得最大值,最大值为1300万元. 综上,当产量为80万箱时,该口罩生产厂在生产中获得利润最大,最大利润为1300万元.【点睛】思路点睛:解函数应用题的一般程序:第一步:审题——弄清题意,分清条件和结论,理顺数量关系;第二步:建模——将文字语言转化成数学语言,用数学知识建立相应的数学模型; 第三步:求模——求解数学模型,得到数学结论;第四步:还原——将用数学方法得到的结论还原为实际问题的意义;第五步:反思回顾——对于数学模型得到的数学结果,必须验证这个数学解对实际问题的合理性.25.(1)2;(2)94-;(3)9,24⎛⎫-- ⎪⎝⎭.(1)12f ,∴2224221log log 2(log )2a a a ⋅=-=-,解得2a =; (2)整理2219()(log )24f x x =--,即可求解; (3)可得222()(log )log 2f x x x =--,设2log t x =,(0,2)t ∈,令2()2h t t t =--,(0,2)t ∈,利用()h t 的单调性,即可得()f x 单调性,即可求解.【详解】解:(1)函数22242()log log ()x f x a x a =⋅,12f .2224221log log 2(log )2a a a∴⋅=-=-,2a ∴=. (2)22224242199()log log (4)(log 2)(log 1)(log )4244x f x x x x x =⋅=-⋅+=--≥-. ∴当21log 2x =,即x ()f x 的最小值为94-; (3)可得222()(log )log 2f x x x =--, 设2log t x =,(1,4)x ∈,(0,2)t ∴∈, 令2()2h t t t =--,(0,2)t ∈,根据二次函数性质可得()h t 在1(0,)2单调递减,在1(2,2)单调递增. 所以()f x在单调递减,在4)单调递增.9(1)2,,(4)04f f f =-=-=, 所以,方程()0f x m -=在区间(1,4)上有两个不相等的实根,则实数m 的取值范围 为9(4-,2)-. 【点睛】 关键点睛:本题考查由方程解的个数求参数范围,常用方法是参数分离,利用函数图象交点个数数形结合求解.26.(1)()f x 23161532,02120315,312x x x x x x x ⎧-+<≤⎪⎪=⎨⎪-<≤⎪+⎩;(2)182.8斤,最大利润为5016元. 【分析】(1)由()()215f x L x x =-以及()L x 的解析式可得结果;(2)分段求出最大值,再取更大的函数值即可得解.(1)()()215f x L x x =-23161532,02120315,312x x x x x x x ⎧-+<≤⎪⎪=⎨⎪-<≤⎪+⎩, (2)①当302x <≤时,对称轴3015323224x +=<=, ∴当32x =时,()max 45.5f x =百元, ②当332x <≤时,()()12013515113513550.161f x x x ⎡⎤=-++≤-=-≈⎢⎥+⎣⎦百元, 当且仅当()1201511x x =++即1 1.828x =≈百斤, 由①②可知: 1.828x =时,()max 50.16f x ≈百元.∴当施用肥料为182.8斤时,每亩“金皇后”的利润最大,最大利润为5016元.【点睛】本题考查了分段函数的最值,考查了基本不等式求最值,考查了二次函数求最值,属于中档题.。

实验十 S函数的编写及应用

实验十 S函数的编写及应用

实验十 S 函数的编写及应用一、实验目的1、学习S 函数的编写方法。

2、利用S 函数在Simulink 环境中实现复杂模块。

二、实验内容1.编写S 函数,实现下图死区非线性模块功能编写S 函数如下:function [sys,x0,str,ts] = sqnl(t,x,u,flag,s1) %死区非线性 % s1为死区环值 switch flag, case 0,[sys,x0,str,ts]=mdlInitializeSizes; case 1 sys=x; case 3,sys=mdlOutputs(t,x,u,s1); case {1,2,4,9} sys=[]; otherwiseerror(['Unhandled flag = ',num2str(flag)]); endfunction [sys,x0,str,ts]=mdlInitializeSizessizes = simsizes;sizes.NumContStates= 0;xsizes.NumDiscStates = 0;sizes.NumOutputs = 1;sizes.NumInputs = 1;sizes.DirFeedthrough = 1;sizes.NumSampleTimes = 1; % at least one sample time is neededsys = simsizes(sizes);x0=[];str=[];ts=[-1 0];function sys=mdlOutputs(t,x,u,s1)if abs(u)>=s1,if u>0,sys=u-s1;else sys=u+s1;endelse sys=0;end按上面介绍的方法,建立Simulink模块,运行验证。

2.编写S函数,实现积分分离PID控制功能系统框图如下图所示编写S函数如下:function [sys,x0,str,ts]=jfflpid(t,x,u,flag,Kp,Ti,Td,T,E)% 积分分离PID S-函数% T为采样周期,E为积分分离阈值global umax Ki Kd uk_1 ek_1 ek_2 B %umax为最大控制量,B为积分分离算子switch flag,case 0, %Initialization 初始化部分sizes=simsizes;sizes.NumContStates=0; sizes.NumDiscStates=0;sizes.NumOutputs=1; sizes.NumInputs=1;sizes.DirFeedthrough=1; sizes.NumSampleTimes=1;sys=simsizes(sizes); x0=[]; str=[]; ts=[T 0];umax=50; uk_1=0; ek_1=0; ek_2=0;Ki=Kp*T/Ti; Kd=Kp*Td/T; % 控制器参数初始化case 3, % Outputs 控制器输出计算ek=u; % 获取误差if abs(ek)<=E, B=1; else B=0; enduk=uk_1+Kp*(ek-ek_1)+B*Ki*ek+Kd*(ek-2*ek_1+ek_2);if uk>umax, uk=umax; endif uk<-umax, uk=-umax; enduk_1=uk; ek_2=ek_1; ek_1=ek;sys=[uk];case {1,2,4,9}sys=[];otherwiseerror(['无效的标志flag=',num2str(flag)]);end建立Simulink模块,在MATLAB命令窗口给变量赋值(注意大小写):Kp=2.9;Ti=0.65;Td=1.65;T=0.03;E=100(E为积分分离阈值,取一个很大值相当于没有积分分离作用),运行模块,注意响应曲线。

人教版 八年级数学下册 第19章 一次函数 实际应用易错题专练(三)(2022年最新)

人教版 八年级数学下册 第19章 一次函数 实际应用易错题专练(三)(2022年最新)
(1)这次龙舟赛的全程是米,队先到达终点;
(2)求乙与甲相遇时乙的速度;
(3)求出在乙队与甲相遇之前,他们何时相距100米?
15.“珍重生命,注意安全!”同学们在上下学途中一定要注意骑车安全.小明骑单车上学,当他骑了一段时,想起要买某本书,于是又折回到刚经过的新华书店,买到书后继续去学校,以下是他本次所用的时间与路程的关系示意图.根据图中提供的信息回答下列问题:
(1)小明家到学校的路程是多少米?
(2)小明在书店停留了多少分钟?
(3)本次上学途中,小明一共行驶了多少米?一共用了多少分钟?
(4)我们认为骑单车的速度超过300米/分钟就超越了安全限度.问:在整个上学的途中哪个时间段小明骑车速度最快,速度在安全限度内吗?
参考答案
1.解:(1)由图可得,
小帅的骑车速度是:(24﹣8)÷(2﹣1)=16千米/小时,
∴此时小泽距离乙地的距离为:24﹣20=4(千米),
答:当小帅到达乙地时,小泽距乙地还有4千米.
2.解:(1)门票定价为80元/人,那么10人应花费800元,而从图可知实际只花费480元,是打6折得到的价格,
所以a=6;
从图可知10人之外的另10人花费640元,而原价是800元,可以知道是打8折得到的价格,
(2)求线段AB对应的函数表达式;
(3)当小帅到达乙地时,小泽距乙地还有多远?
2.某景区售票处规定:非节假日的票价打a折售票;节假日根据团队人数x(人)实行分段售票:若x≤10,则按原展价购买;若x>10,则其中10人按原票价购买,超过部分的按原那价打b折购买.某旅行社带团到该景区游览,设在非节假日的购票款为y1元,在节假日的购票款为y2元,y1、y2与x之间的函数图象如图所示.
把(2,0)和(10,480)代入,得 ,

一次函数的应用含答案

一次函数的应用含答案

一次函数的应用1.如图,是某工程队修路的长度y(单位:m)与修路时间t(单位:天)之间的函数关系.该工程队承担了一项修路任务,任务进行一段时间后,工程队提高了工作效率,则该工程队提高效率前每天修路的长度是()米.A.150B.110C.75D.702.早上9点,甲车从A地出发去B地,20分钟后,乙车从B地出发去A地.两车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图,下列描述不正确的是()A.AB两地相距240千米B.乙车平均速度是90千米/小时C.乙车在12:00到达A地D.甲车与乙车在早上10点相遇3.甲、乙两个草莓采摘园为吸引顾客,在草莓售价相同的条件下,分别推出下列优惠方案:进入甲园,顾客需购买门票,采摘的草莓按六折优惠;进入乙园,顾客免门票,采摘草莓超过一定数量后,超过的部分打折销售,活动期间,某顾客的草莓采摘量为x千克,若在甲园采摘需总费用y1元,在乙园采摘需总费用y2元.y1、y2与x之间的函数图象如图所示,则下列说法中错误的是()A.乙园草莓优惠前的销售价格是30元/千克B.甲园的门票费用是60元C.乙园超过5千克后,超过部分的价格按五折优惠D.顾客用280元在甲园采摘草莓比到乙园采摘更多4.学过一次函数的知识后,某数学兴趣小组通过实验估计某液体的沸点,经过几次测量,得到如下数据当加热80s时,该液体沸腾,则其沸点温度是()时间t(单位:S)0102030液体温度y(单位:°C)15253545A.100°C B.90°C C.85°C D.95°C5.某市乘出租车需付车费y(元)与行车里程x(千米)之间函数关系的图象如图所示,那么该市乘出租车超过2千米但不超过5千米时,每千米的费用是()A.1元B.1.1元C.1.2元D.2.5元6.某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)由如图所示的一次函数图象确定,那么旅客可携带的免费行李的最大质量为()A.20kg B.25kg C.28kg D.30kg7.王老师一家自驾游去了离家170千米的黄山,下面是他们离家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,他们出发2小时时,离目的地还有()千米.A.40B.60C.110D.1308.一个有进水管与出水管的容器,从某时刻开始的4min 内只进水不出水,在随后的8min 内既进水又出水,之后只出水不进水,每分的进水量和出水量是两个常数,容器内的水量y (单位:L )与时间x (单位:min )之间的关系如图.则下列说法正确的是( )A .进水管每分钟的进水量为4LB .当4<x ≤12时,y =54x +12 C .出水管每分钟的出水量为54LD .水量为15L 的时间为3min 或16min9.小明从家出发到商场购物后返回,如图表示的是小明离家的路程s (m )与时间t (min )之间的函数关系,已知小明购物用时30min ,返回速度是去商场的速度的1.2倍,则a 的值为( )A .46B .48C .50D .5210.声音在空气中传播的速度(简称声速)v (m /s )与空气温度t (℃)满足一次函数的关系(如表格所示),则下列说法错误的是( )温度t /℃ … ﹣20 ﹣10 0 10 20 30 … 声速v /(m /s )…318324330336342348……A .温度越高,声速越快B .当空气温度为20℃时,声速为342m /sC .声速v (m /s )与温度t (℃)之间的函数关系式为v =35t +330 D .当空气温度为40℃时,声速为350m /s11.物理实验证实:在弹性限度内,某弹簧长度y(cm)与所挂物体质量x(kg)间有下表的关系.下列说法不正确的是()x/kg01234y/cm1517192123A.因变量y是自变量x的一次函数B.当弹簧长度为18cm时,所挂物体的质量为0.5kgC.随着所挂物体重量的增加,弹簧长度逐渐变长D.所挂物体的重量每增加1kg,弹簧长度增加2cm12.如图,落落同学从家沿着笔直的公路去跑步锻炼,她离开家的距离y(米)与时间t(分钟)的函数关系式的图象如图所示,下列结论中不正确的是()A.整个进行过程花了40分钟B.整个进行过程共跑了2700米C.在途中停下来休息了5分钟D.返回时休息后的速度比去的时候小60米/分13.某校增设了多种体育选修课来锻炼学生的体能,小颖从教学楼以1米/秒的速度步行去操场上乒乓球课,她从教学楼出发的同时小华从操场以5米/秒的速度跑步回教学楼拿球拍,再立刻以原速度返回操场上乒乓球课.已知小颖、小华之间的距离y(米)与出发时间x (秒)的部分函数图象,则下列说法错误的是()A.点C对应的横坐标表示小华从操场到教学楼所用的时间B.x=30时两人相距120米C.小颖、小华在75秒时第二次相遇D.CD段的函数解析式为y=﹣4x+40014.如图1是某湖最深处的一个截面图,湖水面下任意一点A的压强P(单位:cmHg)与其离水面的深度h(单位:m)的函数解析式为P=ah+P0,其图象如图2所示,其中P0为湖水面大气压强,a为常数且a>0,点M的坐标为(34.5,342),根据图中信息分析,下列结论正确的是()A.湖水面大气压强为76.0cmHgB.函数解析式P=ah+P0中P的取值范围是P<342C.湖水深20m处的压强为256cmHgD.P与h的函数解析式为P=8h+66(0≤h≤34.5)15.声音在空气中传播的速度v(简称声速)与空气温度t的关系(如下表所示),则下列说法错误的是()温度t/℃﹣20﹣100102030声速v/(m/s)318324330336342348 A.温度越高,声速越快B.在这个变化过程中,自变量是温度t,t是v的函数C.当空气温度为20℃,声速为342m/sD.声速v与温度t之间的关系式为v=35t+33016.小明同学在一次学科综合实践活动中发现,某品牌鞋子的长度ycm与鞋子的码数x之间满足一次函数关系,下表给出y与x的一些对应值:码数x26303442长度ycm18202226根据小明的数据,可以得出该品牌38码鞋子的长度为()A.24cm B.25cm C.26cm D.38cm17.美美在研究物体吸热与放热知识时,用相同的电加热器分别对质量为0.2kg的水和0.3kg的另一种液体进行加热,得到实验数据如图所示.下列说法错误的是()18的关系,并画出图象(AC是线段,射线CD平行于x轴),下列说法错误的是()19.李强一家自驾车到离家500km的九寨沟旅游,出发前将油箱加满油.如表记录了轿车行驶的路程x(km)与油箱剩余油量y(L)之间的部分数据:下列说法不正确的是()轿车行驶的路程x/km0100200300400…油箱剩余油量y/L5042342618…A.该车的油箱容量为50L B.该车每行驶100km耗油8LC.油箱剩余油量y(L)与行驶的路程x(km)之间的关系式为y=50﹣8xD.当李强一家到达九寨沟时,油箱中剩余10L油20.弹簧挂物体会伸长,测得弹簧长度y(cm)(最长为20cm)与所挂物体质量x(kg)之间有下面的关系,下列说法不正确的是()x/kg01234…y/cm88.599.510…A.y与x的函数表达式为y=8+0.5xB.所挂物体质量为6kg时,弹簧长度为11cmC.y与x的函数表达式中一次项系数表示“所挂物体质量每增加1kg弹簧伸长的长度”D.挂30kg物体时,弹簧长度为23cm一次函数的应用参考答案一.选择题(共20小题)1.C; 2.D; 3.D; 4.D; 5.A; 6.A; 7.A; 8.D; 9.D; 10.D;11.B;12.B;13.D;14.D;15.B;16.A;17.C;18.B;19.C;20.D;。

[练习]C语言实验七、函数程序设计答案

[练习]C语言实验七、函数程序设计答案

实验七 函数及程序结构(二)一、实验目的1.掌握函数的嵌套调用和递归调用2.掌握数组做函数参数的用法3.掌握全局变量和局部变量的用法。

?4.掌握变量的存储类别。

?二、实验内容1.[目的]掌握函数的嵌套调用方法。

[题目内容] 编写程序计算cb a 。

要求设计主函数main()读取a 、b 、c 的值,并调用ratio 函数计算a/(b-c)的值。

如果(b-c)=0那么ratio 就不能计算,因此,ratio 函数调用另一个函数dif ,以测试(b-c)的差是否为零,如果b 不等于c ,dif 返回1,否则返回0。

[输入] a 、b 、c 的值[输出] 计算结果[提示] main 函数调用ratio 函数,ratio 函数调用dif 函数。

三个函数平行定义,嵌套调用。

#include <stdio.h>void main(){float ratio(int x,int y ,int z);int dif(int x,int y);int a,b,c;float d;printf("请输入a,b,c:");scanf("%d%d%d",&a,&b,&c);d=ratio(a,b,c);if(d==0.0) printf("b-c 为零。

");else printf("%d/(%d-%d)=%f\n",a,b,c,d);}float ratio(int x,int y ,int z){if(dif(y ,z)==1) return (float)x/(float)(y-z);else return 0.0;}int dif(int x,int y){if(x==y) return 0;else return 1;}2.[目的]利用标准库提供的随机数功能。

[题目内容]编写程序,帮助小学生练习乘法计算。

MATLAB全部实验及答案

MATLAB全部实验及答案
2)A*B和A.*B
3)A^3和A.^3
4)[A,B]和[A([1,3],:);B^2]
2、设有矩阵A和B,A=[1 2 3 4 5;6 7 8 9 10;11 12 13 14 15;16 17 18 19 20;21 22 23 24 25],B=[3 0 16;17 -6 9;0 23 -4;9 7 0;4 13 11]
使用Windows的“开始”菜单。
运行MATLAB系统的启动程序matlab.exe。
利用桌面上的快捷方式。
MATLAB主窗口
命令窗口(Command Window)
当前目录窗口(Current Directory)
工作空间窗口(Workspace)
命令历史窗口(Command History)
2、下列符号中哪些是MATLAB的合法变量名?用给变量赋值的方法在机器上验证你的答案(3vars、global、help、My_exp、sin、X+Y、_input、E-4、AbCd、AB_C_。)
6、利用MATLAB提供的rand函数和圆整函数随机生成4X3整数矩阵A,进行如下操作
1)A各列元素的平均值和中值
平均值
>> A_mean=mean(A)
A_mean =
0.5000 0.7500 0.7500
中值
>> A_median=median(A)
A_median =
0.5000 1.0000 1.0000
整数类型的运算函数
创建逻辑类型数据的函数
MATLAB的逻辑运算
MATLAB的关系运算
格式化字符
三、主要仪器及耗材
计算机
四、实验内容和步骤
1、已知A=[12 34 -4;34 7 87;3 65 7],B=[1 3 -1;2 0 3;3 -2 7],求下列表达式的值:
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验十函数应用一、实验目的1.掌握函数的定义和调用;2.理解形参和实参的使用和传值调用;3.理解函数声明的使用;4.掌握函数的嵌套调用;5.了解函数的嵌套与递归调用,掌握递归函数的编写规律;6.了解数组元素、数组名作函数参数。

二、实验学时数2学时三、实验步骤(一)阅读程序1.#include <stdio.h>int fun (int x, int y, int z){ z=x * x + y * y;}main(){ int a=38;fun(7,3,a);printf("%d",a);2.#include <stdio.h>void fun (int x,int y );main(){int x=5,y=3;fun(x,y);printf("%d,%d\n",x,y);}void fun (int x,int y ){ x=x+y;y=x-y;x=x-y;printf("%d,%d\n",x,y);3.#include <stdio.h>int f (int a);main(){ int s[ 8 ] = {1,2,3,4,5,6} ,i, d=0;for (i=0; f( s[i] ) ; i++)d+=s[i];printf("%d\n",d);}int f(int a){ return a%2;}4.#include<stdio.h>long f( int g){ switch(g){ case 0:return 0;case 1:case 2: return 1;}return ( f(g-1)+ f(g-2));}main ( ){ long int k;k = f(7);printf("\nk= %d\n",k);}5. #include<stdio.h>int f(int b[ ][4]){ int i,j,s=0;for(j=0;j<4;j++){ i=j;if(i>2) i=3-j;s+=b[i][j];}return s;}main( ){int a[4][4]={{1,2,3,4},{5,6,7,8},{9,10,11,12},{13,14,15,16}};printf("%d\n",f(a) );}(二)要求:依据题目要求,分析已给出的语句,填写空白。但是不要增行或删行,改动程序的结构。1. 请在以下程序第一行的下划线处填写适当内容,使程序能正确运行。#include <stdio.h>double max(double a,double b);//或者double max(double,double);main(){double x,y;scanf("%lf%lf",&x,&y);printf("%.8lf\n",max(x,y));}double max(double a,double b){return (a>b ? a:b) ;}2.以下函数的功能是:求x的y次方,请填空,并配写出主调函数。

double fun( double x, int y){int i;double z;for(i=1, z=x; i<y;i++) z=z* x;return z;}main( ){ double a;int b;scanf("%lf%d",&a,&b);printf("%lf的%d次方为%lf",a,b,fun(a,b));}3.mystrlen函数的功能是计算字符串的长度,并作为函数值返回。

请填空,并配写主调函数。

int mystrlen(char str[ ]){int i;for(i=0; str[i]!=‘\0';i++);return(i);}main ( ){ char a[81];scanf("%s",a);printf("所输入字符串的长度为%d\n",mystrlen(a));}(三)调试程序要求:调试运行下列程序是否正确,若有错,写出错在何处?填写正确的运行结果。1.行号1 void func ( float a , float b ) //void----float2 main()3 { float x , y ;4 float z ;5 scanf(“%f , % f”,&x ,&y);6 z = func ( x , y ) ;7 printf ( “ z = % f \n” , z ) ;8 }9 float func ( float a , float b )10 { float c ;11 c = a * a + b * b ;12 return c ;13 }2.函数sstrcmp()的功能是对两个字符串进行比较。

当s数组中字符串和t数组中字符串相等时,返回值为0;当s数组中字符串大于t数组中字符串时,返回值大于0;当s数组中字符串小于t数组中字符串时,返回值小于0(功能等同于库函数strcmp())。

行号1 int sstrcmp(char s[ ],char t[])2 { int i=0 , j=0 ;3 while(s[i]&&t[j]&& s[i]== t[j] ) ;4 return s[i]-t[j];5 }6 main()7 { int x;8 char s1[50],s2[50];9 scanf("%s%s",s1,s2);10 x= sstrcmp(s1,s2);11 printf("\n%d\n",x);}int sstrcmp(char s[ ],char t[]){ int i=0 , j=0 ;while(s[i]&&t[j]&& s[i]== t[j] )i++,j++;return s[i]-t[j];}main(){ int x;char s1[50],s2[50];scanf("%s%s",s1,s2);x= sstrcmp(s1,s2);printf("\n%d\n",x);}3.以下程序的功能是用递归方法计算学生的年龄,已知第一位学生年龄最小,为10岁,其余学生一个比一个大2岁,求第12位学生的年龄。

行号main()1 { int age( int n) ;2 int n =12;3 printf (“ Age is %d\n” , age (n));4 }5 int age(int n);6 { int c;7 c = age (n-1)+2 ;8 return ( c ) ;9 }main(){ int age( int n);int n=12;printf("Age is %d\n",age (n));}int age(int n){ int c;if(n==1) return 10;c=age(n-1)+2;return ( c ) ;}(四)编写程序1.编写一个函数,选出能被3整除且至少一位是5的两位数,用主函数调用这个函数,并输出所有这样的两位数。

2.编写函数判断某数是否为素数,如果是素数,则返回1,否则返回0,在main函数中调用该函数,根据返回值判断是否为素数。

1#include<stdio.h>int f(int x){ int a,b;a=x/10;b=x%10;if((a==5||b==5)&&x%3==0)return 1;else return 0;}main( ){int i;for(i=15;i<=95;i++)if(f(i)) printf("%4d",i);}2#include<stdio.h>int f(int x){ int i,t=1;for(i=2;i<=x-1;i++)if(x%i==0){t=0;break;}return t;}main( ){int n,t;scanf("%d",&n);t=f(n);if(t==1) printf("%4d是素数",n); else printf("%4d不是素数",n); }。

相关文档
最新文档