一元二次方程说课稿

合集下载

一元二次方程(说课稿)

一元二次方程(说课稿)

一元二次方程的定义中有哪些特点?
①方程两边都是整式 一元二次方程 ②只含有一个未知数 ③未知数的最高次数是2次
2、自主探究,学习新知


得出一般形式后,再引导学生从类比中大胆猜想一 元二次方程一般形式中a≠0这一结论, b、c能否为 2 0?让学生充分交流后归纳小结:在 ax bx c 0 中,当a≠0时是一元二次方程,当a=o,b≠0时就 是一元一次方程。这样以疑激思,以教师的“不作 为”促使学生的“有所为”,培养了学生的直觉思 维和逻辑思维能力,同时也让学生体会了一元二次 方程和一元一次方程之间的转化。 最后引导学生由一元一次方程的项与系数的概念类 比得出一元二次方程的项与系数的概念。强调项与 系数都必须包括符号。
(1)5 x 10; (3) x 160;
2
(2)9 x 4 x 6 1 2 (4) y 0 y
2
(5)3 x y 6; (7)ax 4 x 0
2
(6)4 x 6 x 3x 4 x
2
2
一元二次方程的三个特点: 是整式方程;只含一个未 知数;未知数的最高次数 是2!
教学过程设计

4、 独立思考,巩固新知 为了使学生进一步明确一元二次方程的概念, 我设计了3道练习题,第一题是判别一元二次方程, 以抢答的形式完成,在巩固知识的同时,培养学生 的反应能力;第二道题是例题的延伸,以小组竞赛 活动的方式对本课知识进行巩固。第三题是由学生 自己写出几个一元二次方程和其他方程,由同桌找 出其中的一元二次方程,并指出一元二次方程中的 各项系数和常数项。这样不仅调动了学生学习的积 极性、主动性,增强了学生积极参与数学活动的意 识和集体荣誉感,而且还能培养学生的观察能力和 判断能力。同时也提供了生生互动的平台,形成民 主和谐、平等合作、积极向上的课堂氛围。

一元二次方程说课稿

一元二次方程说课稿

一元二次方程说课稿今天我说课的内容是华东师大版九年级上册第二十三章第二节《一元二次方程的解法---公式法》,我主要从教材分析、教学法分析、过程分析、板书设计、教学评价五个方面对本节课作如下说明。

一、教材分析(一)教材的地位和作用方程是初中数学的一项重要内容,贯穿数学教学的始终,可谓是数学领域里的一项重要交通工具,一元二次方程就相当于这个交通工具的一个零部件,在运行过程中起着重要的作用。

本节课的“公式法”又是一元二次方程的一个重要课时,是学生在学习了“配方法”解方程之后,必须掌握的另一种解一元二次方程的方法。

它为学生以后学习二次函数以及解决生活中的一些实际问题起了铺路石的作用。

(二)教学目标根据本节课的地位、作用及其内容,结合学生实际和学生认知发展水平,确定如下教学目标:知识目标:理解求根公式的推导过程和判别公式,使学生能熟练地运用公式法求解一元二次方程.能力目标:通过由配方法推导求根公式,培养学生推理能力和由特殊到一般的数学思想。

结合用公式法解一元二次方程的练习,培养学生快速准确的运算能力和运用公式解决实际问题的能力。

情感目标:让学生敢于面对数学活动中的困难,并有独立克服困难和运用知识解决问题的成功体验,有学好数学的自信心。

培养学生寻求简便方法的探索精神和创新意识。

(三)教学重、难点重点:掌握用公式法解一元二次方程的一般步骤,会熟练用公式法解一元二次方程。

难点:理解求根公式的推导过程和判别式公式。

二、教学法分析学情:在此之前,学生已经了解和学习过一元一次方程的概念及一般形式,掌握了一些根据实际问题列方程的能力,再者,九年级学生的数学思维已有一定程度的发展,具有一定分析推理能力,同时,在讨论、探索、交流学习等方面有较为丰富的知识和经验,因此,除利用与生活实际有关的问题导出新知识外,应更多地应用探讨、合作交流等方法让学生去求得新知识,加深和扩展学生对数学的理解。

根据教材的特点和学情分析,为了突出重点、突破难点的目的,我采用以下教法与学法:教法:本节课采用引导发现与合作探究的方法;在教学中由旧知识引导探究一般化问题的形式展开,利用学生已有的知识、激励其探索新知的兴趣、使其主动参与到教学活动中来。

一元二次方程说课稿

一元二次方程说课稿

《一元二次方程》说课稿各位老师大家好!我是本次说课人,今天我说课的题目是人教版八年级上册第五章第二节第一课时《》。

下面,我将从教材分析、学情分析、教学目标分析、教学重难点分析、教学方法分析、教学过程设计、板书设计、教学评价等方面进行说明。

一、教材分析《一元二次方程》是人教版九年级上册第二章第一节的内容,主要使学生了解一元二次方程的概念,掌握一般式20(0)++=≠及相关的概念,并会应用ax bx c a一元二次方程概念解决一些简单题目,本节内容也是学生学习一元二次方程解法的基础,是中学数学概念教学的主要内容,在初中代数中占有重要的地位,实数与代数式的运算、一元一次方程是学习一元二次方程的基础,通过一元二次方程的学习,可以对上述内容加以巩固。

同时,一元二次方程也是以后学习函数、高次方程、二次曲线等内容的基础。

本节课是一元二次方程的概念,是通过丰富的实例,让学生建立一元二次方程,并通过观察归纳出一元二次方程的概念。

二、学情分析本阶段的学生在七年级和八年级已经学习了整式、分式、二次根式、一元一次方程、二元一次方程、分式方程,在此基础上本节课将从实际问题入手,抽象出一元二次方程的概念及一元二次方程的一般形式。

三、教学目标分析通过对教材的分析,并且结合学生的年龄和已有的知识经验,以及新课标的教学要求,本节课我确立了以下教学目标:1.通过类比一元一次方程,了解一元二次方程的概念及一般式,分清二次项及其系数,一次项及其系数与常数项等概念。

2.通过设置问题,建立数学模型,模仿一元一次方程概念给一元二次方程下定义。

3.通过数学模型的分析、思考过程,激发学生学数学的兴趣,体会做数学的快乐,培养用数学的意识解决问题,发展实践能力与创新意识。

四、教学重难点分析基于以上对教材的分析,学情的分析,以及我对数学课程标准的把握,本节课我确立了以下教学重点与难点:重点:一元二次方程的概念及其一般形式和一元二次方程的有关概念并运用这些概念解决问题。

一元二次方程说课稿

一元二次方程说课稿

一元二次方程说课稿(一)我说课的题目北师版九年级(上)第二章《一元二次方程》. 下面我就从以下几个方面对一元二次方程进行说课⑴说教材⑵说目标⑶说教学方法、学法⑷说教学程序⑸说评价一、说教材教材分析本节课介绍了一元二次方程的概念及一般形式.一元二次方程的学习是一次方程、方程组及不等式知识的延续和深化,也是函数等重要数学思想方法的基础。

本节课是研究一元二次方程的导入课,它为进一步学习一元二次方程的解法及简单应用起到铺垫作用。

二、说目标⑴教学目标1.知识目标:使学生充分了解一元二次方程的概念;正确掌握一元二次方程的一般形式.2.能力目标:经历抽象一元二次方程的过程, 使学生体会出方程是刻画现实世界中数量关系的一个有效数学模型; 经历探索满足方程解的过程,发展估算的意识和能力.3.情感目标:培养学生主动探索、敢于实践、勇于发现、合作交流的精神.⑵教学重点建立一元二次方程的概念,认识一元二次方程的一般形式。

⑶教学难点由实际问题抽象出方程模型的能力三、说教学方法和学生的学法⑴教法分析本节课主要采用以类比发现法为主,以讨论法、练习法为辅的教学方法.⑵学法指导本节课的教学中,教会学生善于观察、分析讨论、类比归纳,最后抽象出有价值。

让时学生在现实的生活情景中,经历数学建模,经过自主探索和合作交流的学习过程,产生积极的情感体验,进而创造性地解决问题,有效发挥学生的思维能力。

⑶教学手段采用电脑多媒体辅助教学,利用实物投影进行集体交流,及时反馈相关信息四、说教学程序⑴知识回顾导入新课⑵自主探索归纳新知⑶巩固练习深化知识⑷归纳小结反思提高⑸布置作业分层落实⑴知识回顾导入新课什么是一元一次方程?(请学生举例)请同学们阅读教材的“问题1”和"问题2",进一步明确列方程解实际问题的思路和方法. (培养学生的自学能力)设计意图:方程模型的建立为下一环节的教学做好铺垫。

⑵自主探索归纳新知比较一:与一元一次方程作纵向比较得一元二次方程的概念:只含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。

《一元二次方程》(复习课)说课稿

《一元二次方程》(复习课)说课稿

《一元二次方程》(复习课)说课稿枣阳市吴店一中田海俊《一元二次方程》(复习课)说课稿枣阳市吴店一中田海俊一、教材分析1.教材的地位和作用一元二次方程是中学数学的重要内容之一。

一方面,可以对以前学过的一元一次方程、因式分解等知识加以巩固,另一方面,又为以后学习二次函数等知识打下基础。

此外,一元二次方程对其它学科的学习也有重要意义。

因此,其地位可谓是“承上启下”,不可或缺。

2.教学目标分析知识与技能目标:1.理解一元二次方程的概念2.能灵活熟练的解一元二次方程3.会运用一元二次方程解决实际问题。

过程与方法目标:经历一元二次方程求解过程,提高观察分析能力,加深对转化等数学思想的认识。

情感态度与价值观目标:通过自主合作探究学习,养成独立思考的好习惯,培养团队合作意识。

3.教学重难点重点:构建一元二次方程知识体系,全面复习一元二次方程的解法及应用。

难点:利用根的判别式确定字母取值范围和运用一元二次方程解决实际问题。

二、教法与学法分析教法分析:叶圣陶先生主张:“教师务必启发学生的能动性,引导他们尽可能自己去探索。

”结合本节课的内容特点,我将采用启发式、讨论式以及探索式教学方法。

给学生留出足够的思考时间和空间,让学生自己去探索,归纳。

从真正意义上完成对知识的自我构建。

并用多媒体直观演示,最大限度地调动学生学习的积极性。

学法分析:人们常说:“现代文盲不是不识字的人,而是没有掌握学习方法的人”,因此教师要特别注重对学生学习方法的指导。

我贯彻的指导思想是把“学习的主动权还给学生”,倡导“合作交流、自主探究”的学习方式,具体的学法是利用学案导学,小组合作交流法,让学生养成自主学习的习惯,真正实现课堂的高效。

三、教学过程分析教学流程图:1.呈现诊断问题构建知识体系问题1:观察下列方程:⑴(x+3)²=2 ; ⑵x ²-8x+1=0 ; ⑶3x(x-1)=2(x-1);⑷x ²-4x-7=0 ; ⑸x ²+17=8x (无实数根)①这几个都是什么方程?诊断一: ②解这样的方程你有哪些方法? ③它们都有实数根吗?为什么?【教后反思】问题1出示了五个方程,目的是为了引出一元二次方程的概念、解法,以及根的判别式等知识点。

《一元二次方程》说课稿

《一元二次方程》说课稿

《一元二次方程》说课稿一.教材分析1.教材内容:本节课主要介绍了一元二次方程的概念及一元二次方程的一般式。

2.地位和作用:一元二次方程的学习是一元一次部分知识点的回顾,同时又是方程组和不等式知识的延续和深化,也是函数等重要思想方法的基础。

本节课是研究一元二次方程的导入课,通过引入实际的生活问题,使同学对学习一元二次方程的兴趣增大,对比已经学习的一元一次方程,使学生正确抓住其本质特点,形成概念。

为进一步学习方程的解法和简单应用起铺垫作用。

本节课的教学不但能使同学在原有的知识和经验的基础上进一步体会数学思想,而且可以提高观察、分析、比较、抽象概括的能力以及发展简单的逻辑思维的能力。

3.教学重点与难点教学重点:一元二次方程的概念及一般形式是今后继续学习一元二次方程的重要基础,因此是本节课的重点。

教学难点:对一元二次方程的一般形式的正确理解。

二.教学目标根据学生已有的认知基础,结合素质教育的要求。

根据新课程标准纲要,我从以下方面确定了本节课的教学目标:(1)知识目标使学生充分了解一元二次方程的概念,正确掌握一元二次方程的一般形式。

(2)能力目标通过教学培养学生观察、分析、归纳等思维能力。

(3)情感目标培养学生积极参与、合作交流的主体意识和主动探索,勇于发现的科学精神。

在知识的探索和发现的过程中,使同学感受到数学学习的意义,从而产生良好的数学学习态度。

三.教学过程的设计1.复习巩固,引入新知因为数学来源于生活,因而以学生的实际生活背景为素材,引入问题,易于被同学接受和感知,所以我列举了生活中长方形草坪的面积问题,从情境分析中,更结合以前学过的一元一次方程解决实际生活问题的方法,得出了一个新的方程。

而通过与已知的一元一次方程的定义和一般形式的对比和比较,分析归纳出一元二次方程的定义及一般形式。

从生活情境和从学生身边的生活问题入手,更能激发学生的求知欲,顺利的进行新课。

2.启发探究、获取新知通过上述情境,让同学们合作交流,列出新的方程式。

一元二次方程》说课稿

一元二次方程》说课稿

一元二次方程》说课稿一)、教法分析本节课采用启发式教学法,即通过问题情境的引入,让学生自主思考,发现问题,探索解决方案。

同时,采用情境教学法,将一元二次方程的概念融入实际生活中,让学生更加深刻地理解和掌握相关知识。

在教学过程中,还要注重引导学生归纳总结,形成知识体系。

二)、学法分析学生在课前应该预相关知识,掌握一元二次方程的基本概念和公式。

在课堂上,要积极参与讨论,与同学合作解决问题,积极思考,提出自己的见解。

同时,还要注重归纳总结,巩固所学知识。

四、教学过程设计一)、导入环节通过实际问题引入一元二次方程的概念,让学生感受到数学知识的实用性和生活中的应用。

二)、知识讲解环节通过讲解一元二次方程的概念、一般形式及其系数的含义,让学生掌握相关知识,为后续的问题解决打下基础。

三)、问题解决环节通过设计问题情境,引导学生列出一元二次方程,分析解决问题的方法和步骤,培养学生的逻辑思维和解决问题的能力。

四)、归纳总结环节通过课堂讨论和归纳总结,让学生深刻理解一元二次方程的概念和应用,巩固所学知识。

五)、课堂作业环节布置相关作业,巩固学生所学知识,并提高学生的自主研究能力。

以上是我对《一元二次方程》的教学设计和分析,希望能够对大家有所帮助。

本节课采用“以学生为主体,教师为主导”的原则,旨在提高学生的知识水平和能力。

为此,我选用了探究式教学法和合作交流法。

探究式教学法是根据学生的认知规律,创设合适的研究情景,引导学生自主探索、积极参与课堂活动,培养学生探索精神和研究探究方法。

合作交流法则是让学生共同讨论,从浅入深、从特殊到一般地提出问题,引导学生自主探索、合作交流,激发学生研究的积极性。

在教师的组织引导下,采用自主探索和合作交流研讨式研究方法,让学生思考问题、获取知识、掌握方法,培养学生的动手、动脑、动口能力,使学生成为研究的主体。

本节课按照循序渐进、讲练结合的特点,设计了情景引入、新课研究、归纳小结、巩固练、课堂小结、课后作业六个环节。

一元二次方程说课稿

一元二次方程说课稿

一元二次方程说课稿一元二次方程是数学中的重要概念,它是形如ax^2+bx+c=0的方程,其中a、b、c是已知实数且a≠0。

该方程的解是指能够满足这个方程的x值。

在这篇文章中,我将从几个方面来介绍一元二次方程的相关概念和解法。

我们来了解一元二次方程的一些基本特征。

一元二次方程的最高次项是x的二次项,也就是x^2。

而且,方程中的系数a不能为0,否则该方程就不再是一元二次方程。

在解一元二次方程时,我们通常会使用求根公式或配方法。

接下来,我将介绍一元二次方程的求根公式。

对于一元二次方程ax^2+bx+c=0,它的两个解可以通过以下公式来求得:x = (-b ± √(b^2-4ac))/(2a)在这个公式中,±表示两个解,√表示平方根。

当b^2-4ac大于0时,方程有两个不相等的实数解;当b^2-4ac等于0时,方程有两个相等的实数解;当b^2-4ac小于0时,方程没有实数解,但可以有复数解。

除了求根公式,我们还可以使用配方法来解一元二次方程。

配方法的核心思想是通过将方程进行变形,使其可以被因式分解为两个一次因式的乘积。

具体步骤如下:1. 将方程的三项进行重新排列,使得二次项系数为1。

2. 将方程的常数项分解成两个数的乘积,这两个数的和等于一次项的系数。

3. 将方程进行因式分解。

4. 令两个一次因式分别等于0,解得方程的两个解。

需要注意的是,使用配方法解一元二次方程时,方程必须满足特定的条件,例如一次项系数为偶数,常数项为平方数等。

除了求解一元二次方程,我们还可以通过一些特殊情况来简化问题。

例如,当方程的二次项系数为1,一次项系数为0时,方程可以简化为x^2=c,其中c为常数。

这种情况下,方程的解可以通过对c 开方得到。

一元二次方程在实际问题中也有广泛的应用。

例如,在物理学中,一元二次方程可以用来描述抛体运动的轨迹;在经济学中,一元二次方程可以用来建立成本、收益等关系模型。

总结起来,一元二次方程是数学中的重要概念,它的解可以通过求根公式或配方法来求得。

2023一元二次方程根与系数的关系说课稿

2023一元二次方程根与系数的关系说课稿

2023一元二次方程根与系数的关系说课稿2023一元二次方程根与系数的关系说课稿1一、教材分析:1、地位和作用一元二次方程根与系数的关系是在学习了一元二次方程的解法和根的判别式之后引入的。

它深化了两根与系数之间的关系,是我们今后继续研究一元二次方程根的情况的主要工具,也是方程理论的重要组成部分。

2、教学重点难点重点:根与系数的关系及其推导。

难点:正确理解根与系数的关系,灵活运用根与系数的关系。

二、目标分析:1、知识目标:掌握一元二次方程的根与系数的关系,并会初步应用。

2、能力目标:通过学生探索一元二次方程的根与系数的关系,培养学生观察分析和综合、判断的能力,提高学生推理论证的能力。

3、情感目标:在探究中得出结论,获取成功的体验,激发学习热情,建立自信心。

激发学生发现规律的积极性,鼓励学生勇于探索的精神。

三、教法、学法分析:为了体现课改中“以学生为主体”的教育理念,在课程的`引入和新授中充分地考虑在学生已有知识与新知识间架起一座桥梁,通过创设一定的问题情境,注重由学生自己探索,让学生参与韦达定理的发现、不完全归纳验证以及演绎证明等整个数学思维过程。

采用“复习——探索发现——应用”的教学过程,鼓励学生动脑、动口、动手,参与教学活动,感悟知识的形成过程,充分调动学生学习的积极性、主动性。

学生通过对所提问题的求解,在观察、归纳中发现一元二次方程的根与系数间的关系。

从已知两根构造方程引入,积极配合使学生能观察出所给出的两根与所作方程系数的关系。

比原先求出两根,验证两根之和,之积的难度提高了,但数学思维品质也相对提高了。

实践证明,只要教学语言使用得当,问题情境设计得好,学生是能够从题目中去获得发现的。

四、过程分析:为遵循学生的认识规律,体现学生的主动性,我的设计意图是以创设“学习环境”为主要任务,以主动学习为核心的教学操作策略,教学过程设计体现以知识为载体,思维为主线,能力为目标的原则。

1、创设情景,导入新知首先让学生回忆一元二次方程的求解方法,写出它的一般形式和求根公式,然后解几个一元二次方程。

人教版数学九年级上册22.1《一元二次方程》说课稿

人教版数学九年级上册22.1《一元二次方程》说课稿

人教版数学九年级上册22.1《一元二次方程》说课稿一. 教材分析《一元二次方程》是人教版数学九年级上册第22.1节的内容,它是整个初中数学的重要部分,也是学生首次接触到的较为复杂的方程。

本节内容主要介绍一元二次方程的定义、解法及其应用。

通过学习一元二次方程,学生能够进一步理解和掌握方程的解法,提高解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的代数基础,能够理解和掌握一元一次方程的解法。

但是,一元二次方程的解法较为复杂,需要学生能够理解和运用新的解法。

因此,在教学过程中,我将会关注学生对一元二次方程的理解和掌握程度,以及他们在解题过程中遇到的困难。

三. 说教学目标1.知识与技能:学生能够理解一元二次方程的定义,掌握一元二次方程的解法,并能够运用一元二次方程解决实际问题。

2.过程与方法:通过自主学习、合作交流和探究实践,学生能够培养自己的问题解决能力和创新能力。

3.情感态度与价值观:学生能够体验数学的乐趣,增强对数学学科的兴趣,培养自己的逻辑思维能力。

四. 说教学重难点1.重点:一元二次方程的定义和解法。

2.难点:一元二次方程的解法以及如何在实际问题中应用一元二次方程。

五. 说教学方法与手段在教学过程中,我将采用自主学习、合作交流和探究实践的教学方法。

同时,我还会利用多媒体教学手段,如PPT、视频等,来帮助学生更好地理解和掌握一元二次方程。

六. 说教学过程1.引入新课:通过一个实际问题,引导学生思考并引入一元二次方程的概念。

2.讲解与演示:讲解一元二次方程的定义和解法,并进行演示,让学生理解和掌握一元二次方程的解法。

3.练习与讨论:让学生进行练习,并在合作交流中讨论解题思路和解法。

4.应用与拓展:让学生运用一元二次方程解决实际问题,并进行拓展训练。

5.总结与反思:让学生总结一元二次方程的解法,并反思自己在学习过程中的收获和不足。

七. 说板书设计板书设计主要包括一元二次方程的定义、解法和应用。

一元二次方程说课稿(通用10篇)

一元二次方程说课稿(通用10篇)

一元二次方程说课稿(通用10篇)一元二次方程说课稿篇1一、教材分析(一)、教材的地位和作用《一元二次方程》是人教版九年制义务教育课程标准实验教科书九年级上册第二十二章第(1)节内容。

一元二次方程是中学数学的主要内容之一,在初中数学中占有重要地位。

在此之前,学生已学习了一元一次方程,因式分解等知识,这为过渡到本节的学习起着铺垫作用。

同时为今后学习一元二次不等式及二次函数打下基础。

(二)、根据上述教材分析,考虑到学生已有的认知结构心理特征,特制定如下教学目标:①知识与技能目标:理解一元二次方程的概念;知道一元二次方程的一般形式;会把一个一元二次方程化为一般形式;会判断一元二次方程的二次项系数、一次项系数和常数项。

②过程与方法目标:引导学生分析实际问题中的数量关系,回顾一元一次方程的概念,组织学生讨论,让学生自己抽象出一元二次方程的概念。

③情感态度与价值观目标:通过对《一元二次方程》的教学,激发学生学习数学的兴趣,体会数学的快乐,形成主动学习的态度。

(三)、教学重难点及关键介于学生对知识理解和掌握程度的差异与不同,立足渗透类比这一重要思想方法,又根据大纲的要求,所以我确定教学重点为:由实际问题列出一元二次方程和一元二次方程的概念。

教学难点为:由实际问题列出一元二次方程及准确认识一元二次方程的二次项和系数以及一次项和系数还有常数项。

因此这节课的关键则为通过问题情景的设计,课堂实验的研讨,引导学生发现,分析和解决问题。

二、学生分析任何一个教学过程都是以传授知识、培养能力和激发兴趣为目的的。

这就要求我们教师必须从学生的认知结构和心理特征出发。

九年级的学生较为活泼开朗,对新鲜事物的好奇心也较强。

使得他们很快就能融入课堂,接受知识也事半功倍。

当他们在解决实际问题时,发现列出的方程不再是以前所学过的一元一次方程或是可化为一元一次方程的其他方程时,他们自然会想需要进一步研究和探索有关方程的问题。

从而激发学生学习的兴趣,促进学生个性的形成和发展。

数学人教版九年级上册《一元二次方程》说课稿

数学人教版九年级上册《一元二次方程》说课稿

(三观察迁移、采用发现法、探究法、 练习法为辅的教学方法.
2、学法分析 :在教学活动中,指导学生自主探究
为出发点养,让学生合作探究。建立数学模型.通 过观察类比得出一元二次方程的相关概念及根的意 义
三、说教学程序(五个环节)
(一)情境激趣与引入。
(以上问题引导学生讨论,检查学生对基础知识的掌握情况.对 一元二次方程的根有更深刻的理解。)
(四)课堂总结
本节课你学到了什么知识?从中得到了什么启发? (1)一元二次方程的概念; (2)一元二次方程的一般形式ax2+bx+c=0(a≠0)•和二次项、 二次项系数,一次项、一次项系数,常数项的概念及其它们的运 用; (3)一元二次方程根的概念以及作用 教师引导学生归纳小结,学生反思学习和解决问题的过程. 学生独立完成作业,教师批改、总结.
六、 板书设计
谢谢观赏!
(三) 应用拓展
1.下面哪些数是方程2x2+10x+12=0的根? -4,-3,-2,-1,0,1,2,3,4. 2.你能用以前所学的知识求出下列方程的根吗? (1)x2-64=0 (2)3x2-6=0 (3) 3.要剪一块面积为150cm2的长方形铁片,使它的长比宽多5cm,这块铁 片应该怎样剪? 设长为xcm,则宽为(x-5)cm,列方程x(x-5)=150,即x2-5x-150=0 请根据列方程回答以下问题: (1)x可能小于5吗?可能等于10吗?说说你的理由. x1011121314151617…x2-5x-150
由实际问题入手,设置情境问题, 激发学生的兴趣,体会数学来源于生活, 又应用于生活,让学生初步感受一元二 次方程,同时让学生体会方程这一刻画 现实世界的数学模型.
(二)探索新知
通过活动一的情景分析,让学生小组合作,列出方程.在学生 列出方程后,对所列方程进行整理,并引导学生分析所列方程的特 征得出一元二次方程的概念.由于一元二次方程的概念是本节的重 点,所以在形成概念的过程中主要引导学生积极主动进行自我尝试、 自我分析、自我修正、自我反思,让学生真正理解一元二次方程概 念的内涵:(1)是整式方程(2)只含有一个未知数(3)未知数 的最高次数是2. 创设学生熟悉的生活情境,由学生自主探索一元二次方程的定 义及其相关概念.同时体现出一种“问题情景---数学模型-----概 念归纳”的模式,有计划的逐步展示知识的产生过程,渗透方程思 想.通过例1.例2进一步巩固一元二次方程的基本概念. 通过活动二 探究一元二次方程根的概念以及作用。

公式法解一元二次方程说课稿

公式法解一元二次方程说课稿
公式法解一元二次方 程说课稿
汇报人:XX
目录
• 引言 • 一元二次方程的概念及性质 • 公式法解一元二次方程的原理 • 公式法解一元二次方程的具体步骤
目录
• 公式法解一元二次方程的实例分析 • 公式法解一元二次方程的优缺点及
注意事项 • 总结与回顾
01
引言
说课内容
一元二次方程的概念及标
01 准形式
05
2. 判断 $Delta$ 的值,若 $Delta geq 0$,则方程有实 数解。
03
解题步骤
06
3. 将 $a$、$b$、$c$ 的值代入求根公式进行计算,得到 方程的解。
实例三:含参数的一元二次方程
方程形式:形如 $ax^2 + bx + c = 0$ (其中 $a$、$b$、$c$ 中含有参
公式法的适用条件
判别式大于等于0
公式法适用于判别式大于等于0的一元二次方程。
特殊情况处理
当判别式小于0时,一元二次方程无实数根,此时公式法不适Hale Waihona Puke 。公式法解一元二次方程的具
04
体步骤
将一元二次方程化为一般形式
一元二次方程的一般形式为 $ax^2 + bx + c = 0$,其中 $a neq 0$。
根据Δ的值选择求解方法
01 当 $Delta > 0$ 时,方程有两个不相等的实数根 ,可以使用求根公式 $x = frac{-b pm sqrt{Delta}}{2a}$ 进行求解。
02 当 $Delta = 0$ 时,方程有两个相等的实数根( 即一个重根),可以使用求根公式 $x = frac{b}{2a}$ 进行求解。
公式法解一元二次方程的优

苏科版数学九年级上册第1章《一元二次方程的解法公式法》说课稿

苏科版数学九年级上册第1章《一元二次方程的解法公式法》说课稿

苏科版数学九年级上册第1章《一元二次方程的解法公式法》说课稿一. 教材分析《一元二次方程的解法公式法》是苏科版数学九年级上册第1章的内容。

本节内容是在学生已经掌握了方程的解法、一元二次方程的定义等知识的基础上进行讲解的。

本节主要让学生了解一元二次方程的解法公式法,并通过实际例子让学生掌握其应用。

教材通过简单的引导,让学生自主探究,发现公式法的解题规律,培养学生的逻辑思维能力和解决问题的能力。

二. 学情分析九年级的学生已经具备了一定的数学基础,对于方程的解法、一元二次方程的定义等知识有了一定的了解。

但是,对于一元二次方程的解法公式法,他们可能还比较陌生。

因此,在教学过程中,我需要从学生的实际出发,通过引导、探究、讲解等方式,让学生理解和掌握公式法的解题规律。

三. 说教学目标1.知识与技能目标:让学生掌握一元二次方程的解法公式法,并能够灵活运用。

2.过程与方法目标:通过自主探究、小组合作等方式,培养学生的逻辑思维能力和解决问题的能力。

3.情感态度与价值观目标:激发学生对数学的兴趣,培养学生的团队合作精神。

四. 说教学重难点1.教学重点:一元二次方程的解法公式法。

2.教学难点:理解并掌握公式法的解题规律,能够灵活运用。

五. 说教学方法与手段1.教学方法:引导法、探究法、讲解法。

2.教学手段:多媒体课件、黑板、粉笔。

六. 说教学过程1.导入:通过一个实际例子,引导学生思考如何解一元二次方程,激发学生的学习兴趣。

2.探究:让学生自主探究一元二次方程的解法公式法,引导学生发现解题规律。

3.讲解:讲解公式法的解题步骤和注意事项,让学生理解并掌握。

4.练习:让学生进行一些相关的练习题,巩固所学知识。

5.总结:对本节课的内容进行总结,让学生明确学习的重点。

6.作业布置:布置一些相关的家庭作业,让学生进一步巩固所学知识。

七. 说板书设计板书设计要清晰、简洁,能够突出本节课的重点。

主要包括一元二次方程的解法公式法的步骤和注意事项。

《实际问题与一元二次方程》的说课稿(通用15篇)

《实际问题与一元二次方程》的说课稿(通用15篇)

《实际问题与一元二次方程》的说课稿〔通用15篇〕篇1:《实际问题与一元二次方程》说课稿今天我说课的内容是人教版初中数学九年级上册第二十二章、第22.3节《实际问题与一元二次方程》的第四课时实验与探究。

它是继传播问题、百分率问题、长宽比例问题这几个根本问题的学习后的探究活动课,对于本节课我将从教材分析^p 与学生现实分析^p 、教学目的分析^p ,教法确实定与学法指导,教学过程这四个方面加以阐述。

(一)教材分析^p 与学生现实分析^p一元二次方程是中学数学的主要内容,在初中数学中占有重要地位,其中一元二次方程的实际应用在初中数学应用问题中极具代表性,它是一元一次方程应用的继续,又是二次函数学习的根底,它是研究现实世界数量关系和变化规律的重要模型。

本节课以一元二次方程解决的实际问题为载体,通过对它的进一步学习和研究表达数学建模的过程帮助学生增强应用认识。

一元二次方程解实际问题的应用相当广泛,在几何、物理及其它学科中都有应用,因此它成为了初中数学学习的重点。

这种应用的广泛性能激发学生学习数学的兴趣和热情,能让学生体会到学数学、做数学、用数学的快乐,本节课主要侧重于一元二次方程在几何方面的应用大量事实说明,学生解应用题最大的难点是不会将实际问题提炼为数学问题,而列一元二次方程解决实际问题的数量关系比可以用一元一次方程解实际问题的数量关系要复杂一些。

对于初中学生来说他们比拟缺乏社会生活经历,搜集信息处理信息的才能较弱,这就构成了本节课的难点。

〔二〕数学新课程标准要求:人人学有价值的数学,人人都获得必需的数学,不同的人在数学上得到不同的开展。

我根据新课标对方程的详细要求和初三学生的认知的特点,确定了如下教学目的的:1、知识与技能:能根据问题中的数量关系,列出一元二次方程,体会方程是刻画现实世界某些问题的一个有效的数学模型。

以一元二次方程解决实际问题为载体,加强学生对数学建模的根本方法的掌握。

2、过程与方法:经历将实际问题抽象为数学问题的过程,探究问题中的数量关系,并能运用一元二次方程对之进展描绘。

《一元二次方程》说课稿(最新)

《一元二次方程》说课稿(最新)

《一元二次方程》说课稿对于本节课,我将从教什么、怎么教、为什么这么教来阐述本次说课。

新课标指出:数学课程要面向全体学生,适应学生个性发展的需要,使得人人都能获得良好的数学教育,不同的人在数学上都能得到不同的发展。

今天我将贯彻这一理念从教材分析、学情分析、教学过程等几个方面展开我的说课。

一、说教材教材是连接教师和学生的纽带,在整个教学过程中起着至关重要的作用,所以,先谈谈我对教材的理解。

本节课主要讲述的是一元二次方程的概念及其一般式。

在本节课之前学生已经掌握了一元一次方程的概念以及解法,所以,为本节课一元二次方程概念的学习打下基础。

另外,本节课是后续学习解一元二次方程的基础,它的学习起到了很好的铺垫作用。

故而,既锻炼了学生的类比推理能力,还能够完善学生在方程这一部分的知识,让学生在方程这一部分形成比较完善的体系。

二、说学情合理把握学情是上好一堂课的基础,本次课所面对的学生群体具有以下特点。

本阶段的学生类比推理能力都有了一定的发展,并且在生活中已经遇到过很多关于一元二次方程的具体的事例,所以在生活上面有了很多的经验基础。

为本节课的顺利开展做好了充分准备。

三、说教学目标根据以上对教材的分析以及对学情的把握,我制定了如下三维目标:(一)知识与技能理解一元二次方程的概念及其一般式,了解一元二次方程根的概念。

(二)过程与方法通过解决问题的过程,逐渐形成数学建模的数学思想以及提高类比迁移的能力。

(三)情感态度价值观通过数学建模,提高对数学的学习兴趣。

四、说教学重难点本着新课程标准,吃透教材,了解学生特点的基础上我确定了以下重难点:(一)教学重点理解一元二次方程的概念及其一般式。

(二)教学难点建立数学模型列方程。

五、说教法和学法古人云:教学有法,教无定法,贵在得法。

这句话说明教学是有一定的方法,但是却没有固定的方法,难能可贵的是选择适合自己以及自己学科的方法。

所以,我针对数学学科以及学生等特点,制定了如下的教学方法:讲授法、练习法、小组讨论法。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一元二次方程的一般形式 2 ax bx c 0(a、b、c是常数,且a 0)
二次项系数
一次项系数
想一想: (1) 关于x的方程ax2 +bx+c=0一定是一元二次方 程吗? (2) 关于x的方程3x2+6=mx2是一元二次方程的条 件是什么?
( 三 练 习 反 馈 应 用 拓 展
发现 应用
突破重难点 交往互动 共同发展
教材分析
教法分析
学法指导
• 本节课的教学中,教会学生善于思考, 分析讨论、类比归纳、最后抽象一元二次 方程的概念及一般形式。让学生在现实的 生活情景中经历数学建模 ,经过自主探索 合作交流的学习过程,产生积极的情感体 验,进而创造性的解决问题,有效的发挥 学生的思维能力。
一般形式:ax2+bx+c=0 (a≠0)
谢谢指导!
2013年11月
( 二 ) 启 发 探 究 , 获 取 新 知
观察、思考
(1) X2-10x-900=0 (2) (x-3)2+(x-6)2=x2即x2-18x+45=0 (3) 2x2-15=0 即 2x2-0x-15=0 (4)X2+3x=0 即 x2+3x+0=0 (1) 它们是一元一次方程吗? (2) 与一元一次方程相比有什么相同点和 不同点? (3) 你能给它们命名吗?
一元二次方程的概念
• 只含有一个未知数,并且未知数的最高 次数是2的整式方程叫一元二次方程。
(1)是整式方程 一元二次方 程的特征 (2)只有一个未知数 (3)未知数的最高次数是2
( 观察、思考 二 ) 启 (1) X2-10x-900=0 发 (2) (x-3)2+(x-6)2=x2即x2-18x+45=0 探 (3) 2x2-15=0 即 2x2-0x-15=0 究 (4)X2+3x=0 即 x2+3x+0=0 , 获 1.这些一元二次方程,有什么共同点呢? 取 2.能不能用一个通式表达一下呢? 新 知
设计意图
培 养 学 生 的 归 纳 、 概 括 能 力
教材分析
目标分析
过程分析
当堂测试
• A、将下列方程化为一般形式,并分别指出 它们的二次项系数、一次项系数和常数项 (1)2x(x-1)=3(x-5)-4 2 2 2 y 1 y 1 y 3 y 2 (2) • B、关于x的方程(m-3)x2+nx+m=0,在 什么条件下是一元二次方程?在什么条件 下是一元一次方程?
1.判断下列方程是否为一元二次方程:
) ,
(1)1-x2=0
(2)2(x2-1)=3y (3)2x2-3x-1=0 (4)(x+3) 2=(x-3) 2 (5)9x2=5x-4 (7)mx2-3x+2=0 (m是系数)
1 -2 =0 (6) 2 X X
( 三 )
2.说出一元二次方程的二次项系数、一次项 系数和常数项.
(六)作业布置,巩固加深
设计意图
不 同 的 学 生 得 到 不 同 的 发 展
基础题:P79 习题3.1 A组 第1. 2题。 提高题:P80 习题3.1 B组 第 1.2.3 题。 教材分析 目标分析 过程分析
板书设计: §23.1一元二次方程 具体特征 抽象 归纳
设长方形草地宽为x. x2+10x-900=0 1.是整式方程 设竹竿长为x x2-18x+45=0 设正方形的边长为x 2x2-15=0 2.只含有一个未知数 设这个数为x x2+3x=0 3.未知数的最高次数为2
教材分析
目标分析
过程分析
问题2 “从前有个鲁国人,他拿了根长竹竿想进 城去,可是城门比竹竿矮,他竖着竹竿进 不去(课件出示:竖比城门高3尺),而城门 没有竹竿宽,他横着竹子也进不去(课件出 示:横比城门宽6尺),横也不是,竖也不 行,鲁国人急得直抓头皮,这时来了位好 心的老人,替他想了个办法:沿着门的两 个对角斜着拿试试!鲁人一试,不多不少刚 好进去。聪明的同学们,你们知道竹竿有 多长吗”?
4、已知关于x的方程
(k2-1)X2+(k+1)x-2=0
(1) 当k取何值时此方程为一元一次方程? (2)当k取何值时此方程为一元二次方程?并写 出该一元二次方程的二次项系数,一次项系数, 常数项。
,
(四)小结归纳,上升理论
(1)本节课我们学习了哪些知识? (2)学习过程中用了哪些数学方法? (3)确定一元二次方程的项及系数 时要注意什么?
学生
实际问题
观察分析 归纳总结
教材分析
目标分析
(一)知识与能力目标
(二)过程与方法目标
经历抽象一元二次方程概念的过程,让学生进一 步体会方程是刻画现实世界中数量关系的一个有效 数学模型;
教材分析
目标分析
(一)知识与能力目标
(二)过程与方法目标
(三)情感、态度与价值观
1.通过数学建模的分析、思考过程,激发学生学数
学的兴趣,体会学数学的快乐,培养用数学的意识.
2.感受合作交流带来的成功感,树立自信心.
教材分析
(三)教学的重点和难点
重点: 由实际问题列出一元二次方程 和一元二次方程的概念及一般形式 难点:由实际问题转化成数学方程
教材分析

师 情境 活动 类比
教法分析
激发兴趣

探索 模型 概念

交流 启发引导
(1) (2) (3) (4)
X2-10x-900=0 5x2-10x-2.2=0 2x2-15=0 X2-3x=0
练 习 反 馈 应 用 拓 展
,
(
3、把下面的方程化为一般形式,并写出它的 二次项系数、一次项系数和常数项.
三 ) 练 习 反 馈 应 用 拓 展
4x(x+3)=5(x-1) 2+8
教材分析 目标分析 过程分析




(3)一个正方形的面积的2 倍等于15,这个正方形的边 长是多少? (4)一个数比另一个数大3, 且两个数之积为0,求这两个 数。
从例题中抽象的结果
(1)
x(x+10)=900 (2) (x-3)2+(x-6)2=x2 (3) (4) 2x2=15 x(x+3)=0
教材分析
教法、学法
教学手段
多媒体辅助教学,利用实物投影进 行集体交流。
教学过程
(一)创设情景,引入新课 (二)启发探究,获取新知 (三)练习反馈,应用拓展 (四)小结归纳,上升理论 (五)作业布置,巩固加深
教材分析
目标分析
过程分析
(一)创设情景,引入新课 问题1
半岛小区规划建设时,准备在每两栋楼房 之间,安排面积为900平方米的一块长方形 的草地,并且长比宽多10米,那么草地的 长和宽各多少米?
安丘市兴安街道育英中学 王庆梅
教材分析 教法、学法 教学过程 教学设计 板书设计
教材分析
(一)教材的地位和作用 一 一元二次 实数 元 不等式 一元一次方程 延伸 二 因式分解 次 高次方程 一元一次不等 应用 方 式 程 二次函数
二次根式
承上启下
教材分析
目标分析
(一)知识与能力目标
列 出 一 元 二 次 方 程 一 元 二 次 方 程 的 概 念
相关文档
最新文档