等腰三角形精选有难度证明题
【强烈推荐、吐血推荐】全等三角形、等腰三角形典型证明题62道(含答案),超级经典
C
F
D
证明:连接 BF 和 EF ∵ BC=ED,CF=DF, ∠ BCF= ∠ EDF ∴ 三角形 BCF 全等于三角形 ∴ BF=EF, ∠ CBF= ∠ DEF 连接 BE 在三角形 BEF 中 ,BF=EF ∴ ∠ EBF= ∠ BEF 。 ∵ ∠ ABC= ∠ AED 。 ∴ ∠ ABE= ∠ AEB 。 ∴ AB=AE 。 在三角形 ABF 和三角形 AEF 中 AB=AE,BF=EF, ∠ ABF= ∠ ABE+ ∠ EBF= ∠ AEB+ ∠ BEF= ∠ AEF ∴ 三角形 ABF 和三角形 AEF 全等。 ∴ ∠ BAF= ∠ EAF ( ∠ 1= ∠ 2) 。 EDF( 边角边 )
10. 已知:∠ 1=∠ 2 , CD=DE , EF//AB ,求证: EF=AC A 12 F C D E B 过 C 作 CG∥ EF 交 AD 的延长线于点 CG∥ EF,可得,∠ EFD= CGD DE= DC ∠ FDE=∠ GDC(对顶角) ∴△ EFD≌△ CGD EF= CG G
B
D
C
解:延长 AD 到 E, 使 AD=DE ∵ D 是 BC 中点 ∴ BD=DC 在△ ACD 和 △ BDE 中 AD=DE ∠ BDE= ∠ ADC BD=DC ∴△ ACD ≌△ BDE ∴ AC=BE=2
∵在 △ ABE 中 AB-BE < AE < AB+BE ∵ AB=4 即 4-2 < 2AD < 4+2 1 < AD < 3 ∴ AD=2 8. 已知: D 是 AB 中点,∠ ACB=90 °,求证: CD
6.
已知: AC 平分∠ BAD , CE⊥ AB ,∠ B+ ∠ D=180 °,求证: AE=AD+BE
等腰三角形证明题精选(初中数学)
等腰三角形证明题精选(初中数学)等腰三角形证明题精选1. 等腰三角形内角求和为180°对于任意一个等腰三角形,我们可以通过以下步骤来证明其内角之和为180°:步骤一:作等腰三角形的高在等腰三角形ABC中,连接点A和底边BC的垂线AD,AD 即为三角形ABC的高。
步骤二:利用平行线性质由于三角形ABC是等腰三角形,所以AD垂直于BC,并且AD与BC平行。
步骤三:利用三角形内角和定理根据三角形内角和定理,三角形ABC的内角之和等于180°。
又因为∠BAD和∠DAC都是直角,所以∠BAC + ∠BAD + ∠DAC = 180°。
综上所述,等腰三角形的内角之和为180°。
2. 等腰三角形的底角相等对于任意一个等腰三角形,我们可以通过以下步骤来证明其底角相等:步骤一:作等腰三角形的高在等腰三角形ABC中,连接点A和底边BC的垂线AD,AD 即为三角形ABC的高。
步骤二:利用平行线性质由于三角形ABC是等腰三角形,所以AD垂直于BC,并且AD与BC平行。
步骤三:利用三角形内角和定理根据三角形内角和定理,三角形ABC的内角之和等于180°。
又因为∠BAD和∠DAC都是直角,所以∠BAD + ∠DAC = 180° - ∠BAC。
步骤四:证明∠BAD = ∠DAC由于AD与BC平行,且∠BAD是直角,所以∠BAD +∠BDA = 180°。
根据角对应定理,∠DAC = ∠BDA。
又因为∠BAD + ∠BDA = 180°,所以∠DAC = ∠BAD。
综上所述,等腰三角形的底角相等。
3. 等腰三角形的腰长相等对于任意一个等腰三角形,我们可以通过以下步骤来证明其腰长相等:步骤一:作等腰三角形的高在等腰三角形ABC中,连接点A和底边BC的垂线AD,AD 即为三角形ABC的高。
步骤二:利用平行线性质由于三角形ABC是等腰三角形,所以AD垂直于BC,并且AD与BC平行。
等腰三角形经典练习题(有难度)
等腰三角形练习题一、计算题: 1.如图,△ABC中,AB=AC,BC=BD,AD=DE=EB 求∠A 的度数设∠ABD 为x,则∠A 为2x 由8x=180° 得∠A=2x=45°2.如图,求∠A 的度数 设∠A 为x, 由5x=180°得∠A=36°3. 如图,△ABC 中,AB=AC ,D 在BC 上,DE ⊥AB 于E ,DF ⊥BC 交AC 于点F FDABEDF=70°, 求∠AFD 的度数 ∠AFD=160°4. 如图,△ABC 中, AB=AC,BC=BD=ED=EA 求∠A 的度数 设∠A 为x ∠A=71805. 如图,△ABC 中,AB=AC ,D 在BC 上, ∠BAD=30°,在AC 上取点E ,使AE=AD, 求∠EDC 的度数 设∠ADE 为x∠EDC=∠AED -∠BB2xx -15°6. 如图,△ABC中,∠C=90°,D为AB上一点,作DE⊥BC于E,若BE=AC,BD=21,DE+BC=1, 求∠ABC的度数延长DE到点F,使EF=BC 可证得:△ABC≌△BFE所以∠1=∠F由∠2+∠F=90°,得∠1+∠F=90°在Rt△DBF中, BD=21,DF=1 所以∠F =∠1=30°F7. 如图,△ABC 中,AD 平分∠BAC ,若AC=AB+BD 求∠B :∠C 的值在AC 上取一点E,使AE=AB 可证△ABD ≌△ADE 所以∠B=∠AED由AC=AB+BD,得DE=EC, 所以∠AED=2∠C 故∠B :∠C=2:1二、证明题:8. 如图,△ABC 中,∠ABC,∠CAB 的平分线交于点P ,过点P 作DE ∥AB ,分别交BC 、AC 于点D 、E求证:DE=BD+AE 证明△PBD 和△PEAC BADEPABCDE是等腰三角形9. 如图,△DEF 中,∠EDF=2∠E ,FA ⊥DE 于点A ,问:DF 、AD 、AE 间有什么样的大小关系 DF+AD=AE在AE 上取点B,使AB=AD10. 如图,△ABC 中,∠B=60°,角平分线AD 、CE 交于点O 求证:AE+CD=AC 在AC 上取点F,使AF=AE 易证明△AOE ≌△AOF, 得∠AOE=∠AOF由∠B=60°,角平分线AD 、CE,ADFEBOA BC DEF得∠AOC=120°所以∠AOE=∠AOF=∠COF=∠COD=60° 故△COD ≌△COF,得CF=CD 所以AE+CD=AC11. 如图,△ABC 中,AB=AC, ∠A=100°,BD 平分∠ABC,求证:BC=BD+AD 延长BD 到点E,使BE=BC,在BC 上取点F,使BF=BA 易证△ABD≌△FBD,得AD=DF 再证△CDE ≌△CDF,得DE=DF 故BE=BC=BD+AD也可:在BC 上取点E,使BF=BD,连结DF 在BF 上取点E,使BF=BA,连结DE 先证DE=DC,再由△ABD ≌△EBD,得AD=DE,最后证明DE=DF 即可ACF ACEF12. 如图,△ABC 中,AB=AC,D 为△ABC 外一点,且∠ABD=∠ACD =60° 求证:CD=AB-BD在AB 上取点E ,使BE=BD ,在AC 上取点F ,使CF=CD 得△BDE 与△CDF 均为等边三角形, 只需证△ADF ≌△AED13.已知:如图,AB=AC=BE ,CD 为△ABC 中AB 边上的中线 求证:CD=21CE 延长CD 到点E,使DE=CD.连结 证明△ACE ≌△BCEEABCDEF14. 如图,△ABC 中,∠1=∠2,∠EDC=∠BAC 求证:BD=ED在CE 上取点F,使AB=AF 易证△ABD ≌△ADF, 得BD=DF,∠B=∠AFD由∠B+∠BAC+∠C=∠DEC+∠EDC+∠C=180° 所以∠B=∠DEC 所以∠DEC=∠AFD 所以DE=DF,故BD=ED15. 如图,△ABC 中,交BC 于点G 求证:EG=FG16. 如图,△ABC 中,∠ABC=2∠C ,AD 是BC边上的高,B 到点E ,使BE=BDA FCA BDE 1 2FF求证:AF=FC17. 如图,△ABC 中,AB=AC,AD 和BE 两条高,交于点H ,且求证:AH=2BD由△AHE ≌△BCE,得18. 如图,△ABC中,AB=AC, ∠BAC=90°,BD=AB, ∠ABD=30° 求证:AD=DC作AF ⊥BD 于F,DE ⊥AC 于可证得∠DAF=DAE=15°,ADFBD得AF=AE,由AB=2AF=2AE=AC,所以AE=EC, 因此DE 是AC 的中垂线,所以AD=DC19. 如图,等边△ABC 中,分别延长BA 至点E ,延长BC 至点D ,使求证:EC=ED延长BD 到点F,使DF=BC, 可得等边△BEF,只需证明△BCE ≌△FDE 即可20. 如图,四边形ABCD 中,∠BAD+∠BCD=180°,AD 、BC 的延长线交于点F ,DC 、AB 的延长线交于点E ,∠E 、∠F 的平分线交于点H 求证:EH ⊥FHBCDFABDCEFHG 12 M延长EH交AF于点G 由∠BAD+∠BCD=180°, ∠DCF+∠BCD=180°得∠BAD=∠DCF,由外角定理,得∠1=∠2, 故△FGM是等腰三角形由三线合一,得EH⊥FH。
专题 等腰三角形的证明及计算大题
专题2.9等腰三角形的证明及计算大题一.解答题(共50小题)1.(2022秋•开福区校级期末)如图,在四边形ABCD中,BD所在的直线垂直平分线段AC,过点A作AF∥BC交CD于F,延长AB、DC交于点E.(1)求证:AC平分∠EAF;(2)求证:∠FAD=∠E;(3)若∠EAD=90°,AE=5,AF=3,求CF的长.2.(2022秋•铁西区期末)如图1,点A、B分别在射线OM、ON上运动(不与点O重合),AC、BC分别是∠BAO和∠ABO的角平分线,延长线交OM于点G.(1)若∠MON=60°,则∠ACG=度;(2)若∠MON=n°,则∠ACG=度;(用含n的代数式表示)(3)如图2,若∠MON=72°,过点C作CF∥OA交AB于点F,求∠BGO与∠ACF的数量关系.3.(2022秋•单县期末)如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE 的平分线与AD交于点D,连接CD.求证:①AB=AD;②CD平分∠ACE.4.(2022秋•巴彦县期末)如图,在△ABC中,点D是边BC上一点,点E在边AC上,且BD=CE,∠BAD =∠CDE,∠ADE=∠C.(1)如图1,求证:△ADE是等腰三角形;(2)如图2,若DE平分∠ADC,在不添加辅助线的情况下,请直接写出图中所有与∠CDE相等的角(∠CDE 除外).5.(2022秋•石家庄期末)如图,在△ABC中,AB=AC,点D为AC上一点,且满足AD=BD=BC.点E是AB的中点,连接ED并延长,交BC的延长线于点F,连接AF.(1)求∠BAC和∠ACB的度数;(2)求证:△ACF是等腰三角形.6.(2022秋•思明区校级期末)如图,在△ABC中,∠ABC=3∠C,AD平分∠BAC,BE⊥AD于E,求证:BE=12(AC﹣AB).(提示:延长BE交AC于点F).7.(2022秋•赛罕区校级期中)如图,在△ABC中,BO平分∠ABC,CO平分∠ACB,过点O作BC的平行线分别交AB、AC于点M、N.(1)求证:MO=MB;(2)若AB=7,AC=6,求△AMN的周长.8.(2022秋•建阳区期中)如图所示,已知点A,C分别在∠GBE的边BG,BE上,且AB=AC,AD∥BE,∠GBE的平分线BD与AD交于点D,连接CD.(1)求证:AC=AD;(2)猜想:∠BAC与∠BDC之间有何数量关系,并对你的猜想加以证明.9.(2022秋•微山县期中)已知:如图,在四边形ABCD中,AB∥DC,AC平分∠BAD,AC⊥BC于点C.(1)若∠B=75°,求∠D的度数;(2)求证:AB=2CD.10.(2022秋•高港区期中)如图,△ABC中,AD是高,CE是中线,点G是CE的中点,DG⊥CE,点G为垂足.(1)求证:DC=BE;(2)若∠AEC=75°,求∠BCE的度数.11.(2022秋•播州区期末)已知△ABC中,∠ACB的平分线CD交AB于点D,DE∥BC.(1)如图1,如果点E是边AC的中点,AC=8,求DE的长;(2)如图2,若DE平分∠ADC,∠ABC=30°,在BC边上取点F使BF=DF,若BC=9,求DF的长.12.(2022春•汉阳区校级期中)如图,已知在△ABC中,CF平分∠ACB,且AF⊥CF于点F,BE平分△ABC 的一个外角,且AE⊥BE于点E.(1)求证:EF∥BC.(2)若BC=5,AC=4,EF=4,求AB的长.13.(2022春•桓台县期末)如图,在△ABC中,AB=AC,∠ABC的平分线BE交AC于点D,AF⊥AB交BE于点F.(1)如图1,若∠BAC=40AFE的度数.(2)如图2,若BD⊥AC,垂足为D,BF=8,求DF的长.14.(2022秋•新兴县期中)在△ABC中,BD是∠ABC的平分线,AD⊥BD,垂足是D.(1)求证:∠2=∠1+∠C;(2)若ED∥BC,∠ABD=28°,求∠ADE的度数.15.(2022秋•浦城县期中)在Rt△ABC中,∠ACB=90°,CD⊥AB于D,∠BAC的平分线AF交CD于点E,交BC于F,CM⊥AF于M,CM的延长线交AB于点N.(1)求证:EM=FM;(2)求证:AC=AN.16.(2022春•凤翔县期末)如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD ∥AB,PE∥AC.(1)求△PDE的周长;(2)若∠A=50°,求∠BPC的度数.17.(2022春•宣汉县期末)如图,在等腰△ABC中,AB=AC,AD是BC边上的高,点E、F分别是边AB、AC上的点,且EF∥BC.(1)试说明△AEF是等腰三角形;(2)试比较DE与DF的大小关系,并说明理由.18.(2022春•未央区校级期末)如图,在△ABC中,AB=AC=2,∠B=∠C=40°,点D在线段BC上运动(D不与B、C重合),连接AD,作∠ADE=40°,DE交线段AC于E.(1)当∠BDA=115°时,∠EDC=°,∠DEC=°;点D从B向C运动时,∠BDA逐渐变(填“大”或“小”);(2)当DC等于多少时,△ABD≌△DCE,请说明理由;(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数.若不可以,请说明理由.19.(2022秋•雨花区校级月考)已知△ABC中,∠ACB的平分线CD交AB于点D,DE平分∠ADC,DE∥BC.(1)如图1,如果点E是边AC的中点,AC=10,求DE的长;(2)在(1)的条件下,求证:△ADC是等腰三角形.(3)如图2,若∠ABC=30°,在BC边上取点F使BF=DF,若BC=18,求DF的长.20.(2022秋•庄浪县期中)如图,在Rt△ABC中,∠C=90°,∠A=60°,AB=10cm,若点M从点B出发以2cm/s的速度向点A运动,点N从点A出发以1cm/s的速度向点C运动,设M、N分别从点B、A同时出发,运动的时间为ts.(1)用含t的式子表示线段AM、AN的长;(2)当t为何值时,△AMN是以MN为底边的等腰三角形?(3)当t为何值时,MN∥BC?并求出此时CN的长.21.(2022秋•兰陵县期中)如图,在△ABC中,AD为∠BAC的平分线,BP⊥AD,垂足为P.已知AB=5,BP=2,AC=9.试说明∠ABC=3∠ACB.22.(2022春•浦东新区期末)已知△ABC中,∠A=70°,BP是∠ABC的平分线,CP是∠ACD的平分线.(1)如图1,求∠P的度数;(2)过点P作EF∥BC与边AB、AC分别交于点E、点F(如图2),判断线段BE、EF、CF之间的数量关系,并说明理由.23.(2022秋•天心区校级期中)如图,△ABC中,AC=BC,∠ACB=120°,点D在AB边上运动(D不与A、B重合),连接CD.作∠CDE=30°,DE交AC于点E.(1)当DE∥BC时,△ACD的形状按角分类是;(2)在点D的运动过程中,△ECD的形状可以是等腰三角形吗?若可以,请求出∠AED的度数;若不可以,请说明理由.24.(2022秋•香坊区校级月考)已知BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)如图1,求证:BE=DE.(2)如图2,在过点D作DF∥AB,连接EF,过点E作EG⊥BC,若EG=3,BF=5,在不添加任何辅助线的情况下,请直接写出面积等于152的所有三角形.25.(2022春•莱州市期末)已知,如图,在△ABC中,过点A作AD平分∠BAC,交BC于点F,过点C作CD⊥AD,垂足为D,在AC上取一点E,使DE=CE,求证:DE∥AB.26.(2022春•莲池区期中)如图①,△ABC中,∠ABC、∠ACB的平分线交于O点,过O点作BC平行线交AB、AC于E、F.试说明:EO=BE探究一:请写出图①中线段EF与BE、CF间的关系,并说明理由.探究二:如图②,△ABC若∠ABC的平分线与△ABC的外角平分线交于O,过点O作BC的平行线交AB于E,交AC于F.这时EF与BE、CF的关系又如何?请直接写出关系式,不需要说明理由.27.(2022ABC中,∠C=90°,AB=5cm,BC=3cm,若动点P从点C开始,按C→A→B→C的路径运动,且速度为每秒1cm,设出发的时间为t秒.(1)出发2秒后,求△ABP的周长.(2)问t为何值时,△BCP为等腰三角形?(3)另有一点Q,从点C开始,按C→B→A→C的路径运动,且速度为每秒2cm,若P、Q两点同时出发,当P、Q中有一点到达终点时,另一点也停止运动.当t为何值时,直线PQ把△ABC的周长分成相等的两部分?28.(2022秋•莆田期末)如图1,在△ABC中,∠BAC=75°,∠ACB=35°,∠ABC的平分线BD交边AC 于点D.(1)求证:△BCD为等腰三角形;(2)若∠BAC的平分线AE交边BC于点E,如图2,求证:BD+AD=AB+BE;(3)若∠BAC外角的平分线AE交CB延长线于点E,请你探究(2)中的结论是否仍然成立?直接写出正确的结论.29.(2022秋•黄埔区期末)如图,在△ABC中,AD平分∠BAC交BC于D,DE∥AC交AB于E,过E作EF ⊥AD,垂足为H,并交BC延长线于F.(1)求证:AE=ED;(2)请猜想∠B与∠CAF的大小关系,并证明你的结论.30.(2022秋•涞水县期末)如图,在△ABC中,AB=AC,∠BAC=100°,点D在BC边上,△ABD、△AFD 关于AD所在的直线对称,∠FAC的角平分线交BC边于点G,连接FG.(1)求∠DFG的度数.(2)设∠BAD=θ,当θ为何值时,△DFG为等腰三角形?31.(2022秋•富源县校级期中)如图所示,在△ABC中,D、E分别是AB,AC上的一点,BE与CD交于点O,给出下列四个条件:①∠DBO=∠ECO;②∠BDO=∠CEO;③BD=CE;④OB=OC.(1)上述四个条件中,哪两个可以判定△ABC是等腰三角形.(2)选择第(1)题中的一种情形为条件,试说明△ABC是等腰三角形;(3)在上述条件中,若∠A=60°,BE平分∠B,CD平分∠C,则∠BOC的度数?32.如图1,DB为△ABC的角平分线,CE为∠ACB的外角平分线,过点A作AF⊥BD,交射线BD于点F,作AG⊥CE于G,连接EG.(1)求证:FG∥BC;(2)如图2,射线BD与CE相交于点M,若∠M=45°,AB=FG=6,求AD的长.33.(2022秋•平定县期中)如图,已知△ABC和△CDE均为等边三角形,且点B、C、D在同一条直线上,连接AD、BE,交CE和AC分别于G、H点,连接GH.(1)请说出AD=BE的理由;(2)试说出△BCH≌△ACG的理由;(3)试猜想:△CGH是什么特殊的三角形,并加以说明.34.(2022秋•海淀区校级期中)已知点C为线段AB上一点,分别以AC、BC为边在线段AB同侧作△ACD 和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直线AE与BD交于点F,(1)如图①,若∠ACD=60°,则∠AFB=;如图②,若∠ACD=90°,则∠AFB=;如图③,若∠ACD=120°,则∠AFB=;(2)如图④,若∠ACD=α,则∠AFB=(用含α的式子表示);(3)将图④中的△ACD绕点C顺时针旋转任意角度(交点F至少在BD、AE中的一条线段上),变成如图⑤所示的情形,若∠ACD=α,则∠AFB与α的有何数量关系?并给予证明.35.(2022•承德县模拟)已知:在等边△ABC中,点D、E、F分别为边AB、BC、AC的中点,点G为直线BC上一动点,当点G在CB延长线上时,有结论“在直线EF上存在一点H,使得△DGH是等边三角形”成立(如图①),且当点G与点B、E、C重合时,该结论也一定成立.问题:当点G在直线BC的其它位置时,该结论是否仍然成立?请你在下面的备用图②③④中,画出相应图形并证明相关结论.36.(2022•徐州)如图1,△ABC为等边三角形,面积为S.D1、E1、F1分别是△ABC三边上的点,且AD1=BE1=CF1=12AB,连接D1E1、E1F1、F1D1,可得△D1E1F1是等边三角形,此时△AD1F1的面积S1=14S,△D1E1F1的面积S1=14S.(1)当D2、E2、F2分别是等边△ABC三边上的点,且AD2=BE2=CF2=13AB时如图2,①求证:△D2E2F2是等边三角形;②若用S表示△AD2F2的面积S2,则S2=;若用S表示△D2E2F2的面积S2′,则S2′=.(2)按照上述思路探索下去,并填空:当D n、E n、F n分别是等边△ABC三边上的点,AD n=BE n=CF n=1n+1AB时,(n为正整数)△D n E n F n是三角形;若用S表示△AD n F n的面积S n,则S n=;若用S表示△D n E n F n的面积S n′,则S′n=.37.(2022春•和平县期末)如图,在等边△ABC中,点D,E分别在边BC、AC上,若CD=3,过点D作DE ∥AB,过点E作EF⊥DE,交BC的延长线于点F.(1)求证:△CDE为等边三角形;(2)求EF的长.38.(2022秋•韶关期末)已知:如图,△ABC、△CDE都是等边三角形,AD、BE相交于点O,点M、N分别是线段AD、BE的中点.(1)求证:AD=BE;(2)求∠DOE的度数;(3)求证:△MNC是等边三角形.39.(2022秋•莱芜区期末)如图:在△ABC中,AB=BC=AC,AE=CD,AD与BE相交于点P,BQ⊥AD 于Q.求证:①△ADC≌△BEA;②BP=2PQ.40.(2022秋•乌海期末)如图.在等边△ABC中,∠ABC与∠ACB的平分线相交于点O,且OD∥AB,OE ∥AC.(1)试判定△ODE的形状,并说明你的理由;(2)线段BD、DE、EC三者有什么关系?写出你的判断过程.41.(2022秋•桐城市期末)如图,已知D是△ABC的边BC上的一点,CD=AB,∠BDA=∠BAD,AE是△ABD的中线.(1)若∠B=60°,求∠C的值;(2)求证:AD是∠EAC的平分线.42.(2022•阳城县模拟)数学课上,李老师出示了如下的题目:“在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC,如图,试确定线段AE与DB 的大小关系,并说明理由”.小敏与同桌小聪讨论后,进行了如下解答:(1)特殊情况,探索结论当点E为AB的中点时,如图1,确定线段AE与DB的大小关系,请你直接写出结论:AE DB(填“>”,“<”或“=”).(2)特例启发,解答题目解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程)(3)拓展结论,设计新题在等边三角形ABC中,点E在直线AB上,点D在直线BC上,且ED=EC.若△ABC的边长为1,AE=2,求CD的长(请你直接写出结果).43.(2022秋•松山区校级月考)如图,点P在等边△ABC内,点D在△ABC外,且∠ABP=∠ACD,BP=CD,问:△APD是什么形状三角形,试说明理由.44.(2022春•江岸区校级期中)(1)如图1,△ADE为等边三角形,AD∥EB,且EB=DC,求证:△ABC 为等边三角形.(2)相信你一定能从(1)中得到启示并在图2中作一个等边△ABC,使三角形的三个定点A、B、C分别在直线l1、l2、l3上,(l1∥l2∥l3且这三条平行线两两之间的距离不相等).请你画出图形,并写出简要作法.(3)①如图3,当所作△ABC的三个定点A、B、C分别在直线l2、l3、l1上时,如图所示,请结合图形填空:a:先作等边△ADE,延长DE交l3于B点,在l1上截取EC=,连AC、BC,则△ABC即为所求.b:证明△ABC为等边三角形时,可先证明≌从而为证明等边三角形创造条件.②若使等边△ABC的三个定点A、B、C分别在直线l3、l1、l2上时,请在图4中用类似的方法作出图形,并将构造的全等三角形用阴影标出.(只需画出图形,不要求写作法及证明过程)45.(2022秋•盘龙区校级月考)如图,在△ABC中,AB=AC,D是三角形外一点,且∠ABD=60°,BD+DC =AB.求证:∠ACD=60°.46.(2022秋•雨城区校级期中)如图,点O是等边△ABC内一点,∠AOB=110°,∠BOC=α,将△BOC绕点C按顺时针方向旋转60°得△ADC,连接OD.(1)△COD是什么三角形?说明理由;(2)若AO=n2+1,AD=n2﹣1,OD=2n(n为大于1的整数),求α的度数;(3)当α为多少度时,△AOD是等腰三角形?47.(2022•饶平县校级模拟)已知:在△AOB和△COD中,OA=OB,OC=OD.(1)如图①,若∠AOB=∠COD=60°,求证:①AC=BD②∠APB=60°.(2)如图②,若∠AOB=∠COD=α,则AC与BD间的等量关系式为,∠APB的大小为(直接写出结果,不证明)48.(2022秋•濠江区校级期中)如图△ABC为等边三角形,直线a∥AB,D为直线BC上任一动点,将一60°角的顶点置于点D处,它的一边始终经过点A,另一边与直线a交于点E.(1)若D恰好在BC的中点上(如图1)求证:△ADE是等边三角形;(2)若D为直线BC上任一点(如图2),其他条件不变,上述(1)的结论是否成立?若成立,请给予证明;若不成立,请说明理由.49.(2022•浙江模拟)如图,等边△ABC的边长为10,点P是边AB的中点,Q为BC延长线上一点,CQ:BC=1:2,过P作PE⊥AC于E,连PQ交AC边于D,求DE的长?50.(2022秋•东海县校级期中)为了使同学们更好地解答本题,我们提供了思路点拨,你可以依照这个思路填空,并完成本题解答的全过程,当然你也可以不填空,只需按照解答的一般要求,进行解答即可.如图,已知AB=AD,∠BAD=60°,∠BCD=120°,延长BC,使CE=CD,连接DE,求证:BC+DC=AC.思路点拨:(1)由已知条件AB=AD,∠BAD=60°,可知:△ABD是三角形;(2)同理由已知条件∠BCD=120°得到∠DCE=,且CE=CD,可知;(3)要证BC+DC=AC,可将问题转化为两条线段相等,即=;(4)要证(3)中所填写的两条线段相等,可以先证明….请你完成证明过程:。
等腰三角形的性质精选试题
等腰三角形的性质精选试题一.选择题1.在等腰△ABC中,AB=AC,中线BD将这个三角形的周长分为15和12两个部分,则这个等腰三角形的底边长为()A.7 B 11 . 7或11 D 7或102.如图,在△ABC中,∠ACB=100°,AC=AE,BC=BD,则∠DCE的度数为()A20° B 25° C 30° D 40°3.若等腰三角形一腰上的高等于腰长的一半,则此三角形的底角等于()A75° B 15° C 75°或15° D 30°4.等腰三角形一腰上的高与底边所成的角等于()A.顶角的一半B.底角的一半C.90°减去顶角的一半D.90°减去底角的一半5.如图,AB=AC,∠C=70°,AB垂直平分线EF交AC于点D,则∠DBC的度数为()A10° B 15° C 20° D 30°6.如图,在△ABC中,∠B=∠C,点F为AC上一点,FD⊥BC于D,过D点作DE⊥AB于E.若A90° B 80° C 68° D 60°1223341=P1P2,则A 4B 5C 6D 7PABA50° B 60° C 70° D 65°9.如图,AD=BC=BA,那么∠1与∠2之间的关系是()A.∠1=2∠2 B. 2∠1+∠2=180°C.∠1+3∠2=180°D. 3∠1﹣∠2=180°角三角形;③等腰三角形有一个外角等于120°,这个三角形一定是等边三角形;④等腰三角形中有一个是40°,那么它的底角是70°;⑤一个三角形中至少有一个角不小于60度.其中正确的有()A2个 B 3个 C 4个 D 5个11.(2011•沈河区一模)如图,在△ABC中,∠B=∠C,点D、E分别在BC、AC边上,∠CDE=15°,且∠AED=∠ADE,则∠BAD的度数为 _________ .12.如图,已知:AB=AC=AD,∠BAC=50°,∠DAC=30°,则∠BDC= _________ .13.如图所示,AOB是一钢架,且∠AOB=10°,为了使钢架更加坚固,需在其内部添加一些钢管EF,FG,GH…,添加的钢管长度都与OE相等,则最多能添加这样的钢管 _________ 根.14.如图,在△ABC中,DE、FG分别是边AB、AC的垂直平分线,则∠B _________ ∠1,∠C _________ ∠2;若∠BAC=126°,则∠EAG= _________ 度.三.解答题(共4小题)15.已知:如图,AD平分∠BAC,AD=AB,CM⊥AD于M.请你通过观察和测量,猜想线段AB、AC之和与线段AM有怎样的数量关系,并证明你的结论.猜想: _________ .证明:16.如图,在等腰△ABC中,AB=AC,点D在BC上,且AD=AE.(1)若∠BAC=90°,∠BAD=30°,求∠EDC的度数?(2)若∠BAC=a(a>30°),∠BAD=30°,求∠EDC的度数?(3)猜想∠EDC与∠BAD的数量关系?(不必证明)17.已知等腰直角三角形ABC,BC是斜边.∠B的角平分线交AC于D,过C作CE与BD垂直且交BD延长线于E,求证:BD=2CE.18.已知:如图,AF平分∠BAC,BC⊥AF于点E,点D在AF上,ED=EA,点P在CF上,连接PB交AF于点M.若∠BAC=2∠MPC,请你判断∠F与∠MCD的数量关系,并说明理由.19.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.(1)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明;(2)若D在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.20:已知等边三角形△ABC,(1)动点P从点A出发,沿线段AB向点B运动,动点Q从点B 出发,沿线段BC向点C运动,连接CP、AQ交于M,如果动点P、Q都以相同的速度同时出发,则∠AMP=___度。
等腰三角形专项练习30题(有答案)OK
等腰三角形专项练习30题1.已知,如图,△ABC中,AB=AC,DE是AB的中垂线,点D在AB上,点E在AC上,若△ABC的周长为25cm,△EBC的周长为16cm,则AC的长度为()A.16cm B.9cm C.8cm D.7cm2.在△ABC中,∠ABC=120°,若DE、FG分别垂直平分AB、BC,那么∠EBF为()A.75°B.60°C.45°D.30°3.如图,AD=BC=BA,那么∠1与∠2之间的关系是()A.∠1=2∠2 B.2∠1+∠2=180°C.∠1+3∠2=180°D.3∠1﹣∠2=180°4.如图,已知∠AOB=40°,点P关于OA、OB的对称点分别为C、D,CD交OA、OB于M、N两点,则∠MPN的度数是()A.70°B.80°C.90°D.100°5.如图,在等腰△ABC中,AB=AC,∠BAC=50°.∠BAC的平分线与线段AB的中垂线交于点O,点C沿EF折叠后与点O重合,则∠CEF的度数是()A.45°B.50°C.55°D.60°6.如图所示,△ABC为正三角形,P是BC上的一点,PM⊥AB,PN⊥AC,设四边形AMPN,△ABC的周长分别为m、n,则有()A.B.C.D.7.如图所示,AB=AD,∠ABC=∠ADC=90°,则①AC平分∠BAD;②CA平分∠BCD;③AC垂直平分BD;④BD平分∠ABC,其中正确的结论有()A.①②B.①②③C.①②③④D.②③8.下列说法正确的是()A.两个能重合的图形一定关于某条直线对称B.若两个图形关于某直线对称,则它们的对应点一定位于对称轴的两侧C.到角两边距离相等的点在这个角的平分线上D.如果三角形一边的垂直平分线经过它的一个顶点,那么这个三角形一定是等腰三角形9.用一根长为a米的线围成一个等边三角形,测知这个等边三角形的面积为b平方米.现在这个等边三角形内任取一点P,则点P到等边三角形三边距离之和为()米.A.B.C.D.10.在等腰直角△ABC(AB=AC≠BC)所在的三角形边上有一点P,使得△PAB,△PAC都是等腰三角形,则满足此条件的点有()A.1个B.3个C.6个D.7个11.如图所示,在△ABC中,AB=AC,腰AB的垂直平分线交另一腰AC于点D,BD+CD=10cm,则AB的长为_________.12.如图,若等腰△ABC的腰长AB=10cm,AB的垂直平分线交另一腰AC于D,△BCD的周长为16cm,则底边BC是_________cm.13.已知实数x,y满足|x﹣4|+(y﹣8)2=0,则以x,y的值为两边长的等腰三角形的周长是_________.14.如图所示,将两个全等的有一个角为30°的直角三角形拼在一起,其中两条较长直角边在同一条直线上,则图中等腰三角形有_________个.15.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=8,BC=5,则BD的长为_________.16.等腰△ABC的底边上高AD与底角平分线CE交于点P,EF⊥AD,F为垂足,则线段EB与线段EF的数量关系为_________.17.如图,在等腰在△ABC中,AB=27,AB的垂直平分线交AB于点D,交AC于点E,若在△BCE的周长为50,则底边BC的长为_________.18.等腰△ABC中,AB=AC,一腰上的中线BD将这个等腰三角形的周长分成15和6两部分,则这个三角形的腰长为_________.19.如图,已知D为等边三角形纸片ABC的边AB上的点,过点D作DG∥BC交AC于点G,DE⊥BC于点E,过点G作GF⊥BC于点F.把三角形纸片ABC分别沿DG,DE,GF按图示方式折叠,则图中阴影部分是_________三角形.20.如图,△ABC中,D、E分别是AC、AB上的点,BD与CE交于点O.给出下列三个条件:①∠EBO=∠DCO;②∠BEO=∠CDO;③BE=CD.上述三个条件中,哪两个条件可判定△ABC是等腰三角形(用序号写出一种情形):_________.21.如图,已知等边△ABC边长为1,D是△ABC外一点且∠BDC=120°,BD=CD,∠MDN=60°.求证:△AMN的周长等于2.22.如图所示,在△ABC中,∠C=90°,BD平分∠ABC交AC于点D,过点D作DE∥BC交AB于点E,过点D作DF⊥AB于点F,说明:BC=DE+EF成立的理由.23.如图,在等腰Rt△ABC中,∠ACB=90°,D为BC的中点,DE⊥AB,垂足为E,过点B作BF∥AC交DE的延长线于点F,连接CF.(1)求证:AD⊥CF;(2)连接AF,试判断△ACF的形状,并说明理由.24.已知:如图,P、Q是△ABC边BC上两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.25.如图,∠1=∠2,AB=AD,∠B=∠D=90°,请判断△AEC的形状,并说明理由.26.如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是等边三角形.BE交AC于F,AD交CE于H,①求证:△BCE≌△ACD;②求证:CF=CH;③判断△CFH的形状并说明理由.27.如图:△ABC是等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1,求AD的长.28.如图,在等腰△ABC中,CH是底边上的高线,点P是线段CH上不与端点重合的任意一点,连接AP交BC于点E,连接BP交AC于点F.(1)证明:∠CAE=∠CBF;(2)证明:AE=BF.29.如图,在△ABC中,已知AB=BC=CA,AE=CD,AD与BE交于点P,BQ⊥AD于点Q,求证:BP=2PQ.30.如图,△ABE和△BCD都是等边三角形,且每个角是60°,那么线段AD与EC有何数量关系?请说明理由.参考答案:1.解:∵DE是AB的垂直平分线,∴AE=BE,∵△ABC的周长为25cm,△EBC的周长为16cm,AC=AB,∴2AC+BC=25cm,BE+CE+BC=AE+EC+BC=AC+BC=16cm,即,解得:AC=9cm,故选B2.解:∵DE、FG分别垂直平分AB、BC,∴AE=BE,BF=CF,∴∠A=∠ABE,∠C=∠CBF,∵∠A+∠C+∠ABC=180°,∠ABC=120°,∴∠A+∠C=60°,∴∠ABE+∠CBF=60°,∴∠EBF=120°﹣60°=60°,故选B3.解:∵AB=BC,∴∠1=∠BCA,∵AB=AD,∴∠B=∠2,∵∠1+∠B+∠ACB=180°,∴2∠1+∠2=180°.故选B4.解:∵P关于OA、OB的对称∴OA垂直平分PC,OB垂直平分PD∴CM=PM,PN=DN∴∠PMN=2∠C,∠PNM=2∠D,∵∠PRM=∠PTN=90°,∴在四边形OTPR中,∴∠CPD+∠O=180°,∴∠CPD=180°﹣40°=140°∴∠C+∠D=40°∴∠MPN=180°﹣40°×2=100°故选D.5.解:如图,延长AO交BC于点M,连接BO,∵等腰△ABC中,AB=AC,∠BAC=50°,∴∠ABC=∠ACB=(180°﹣50°)÷2=65°,∵AO是∠BAC的平分线,∴∠BAO=25°,又∵OD是AB的中垂线,∴∠OBA=∠OAB=25°,∴∠OBM=∠OCM=60°﹣25°=40°,∴∠BOM=∠COM=90°﹣40°=50°,由折叠性可知,∠OCM=∠COE,∴∠MOE=∠COM﹣∠COE=50°﹣40°=10°,∴∠OEM=90°﹣10°=80°,∵由折叠性可知,∠OEF=∠CEF,∴∠CEF=(180°﹣80°)÷2=50°.故选:B6.解:设BM=x,CN=y则BP=2x,PC=2y,PM=x,PN=yAM+AN=2BC﹣(BM+CN)=3(x+y),故==≈0.7887.故选D7.解:在Rt△ABC和Rt△ADC中,AB=AD,AC=AC,所以Rt△ABC≌Rt△ADC(HL).所以∠ACB=∠ACD,∠BAC=∠DAC,即AC平分∠BAD,CA平分∠BCD.故①②正确;在△ABD中,AB=AD,∠BAO=∠DAO,所以BO=DO,AO⊥BD,即AC垂直平分BD.故③正确;不能推出∠ABO=∠CBO,故④不正确.故选B8.解:A、两个能重合的图形不一定关于某条直线对称,故错误;B、两个图形关于某条直线对称,它们的对应点有可能位于对称轴上,故错误;C、同一平面内,到角的两边距离相等的点在角的平分线上,故错误;D,正确,故选D9.解:等边三角形周长为a,则边长为,设P到等边三角形的三边分别为x、y、z,则等边三角形的面积为b=××(x+y+z)解得x+y+z=,故选C10.解:∵△ABC是等腰直角三角形,(AB=AC≠BC)所在的三角形边上有一点P,使得△PAB,△PAC都是等腰三角形,∴有一个满足条件的点﹣斜边中点,∴符合条件的点有1个.故选A.11.解:∵ED是边AB边上的中垂线,∴AD=BD;又∵BD+CD=10cm,AB=AC,∴BD+CD=AD+DC=AC=AB=10cm,即AB=10cm.故答案是:10cm12.解:∵DE是线段AB的垂直平分线,∴AD=BD,∴BD+CD=AC,∵AB=AC=10cm,BD+CD+BC=AB+BC=16cm,∴BC=16﹣AB=16﹣10=6cm.故答案为:6cm13.解:根据题意得,x﹣4=0,y﹣8=0,解得x=4,y=8,①4是腰长时,三角形的三边分别为4、4、8,∵4+4=8,∴不能组成三角形,②4是底边时,三角形的三边分别为4、8、8,能组成三角形,周长=4+8+8=20,所以,三角形的周长为20.故答案为:2014.解:∵将两个全等的有一个角为30°的直角三角形拼在一起,其中两条较长直角边在同一条直线上.∴EF∥DG,∠E=∠D=60°,∴∠ENM=∠D=60°,∠MGD=∠E=60°,∴EM=NM=EN,DM=GM=DG,∴△MEN,△MDG是等边三角形.∵∠A=∠B=30°,∴MA=MB,∴△ABM是等腰三角形.∴图中等腰三角形有3个15.解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=8,BC=5,∴CE=5,∴AE=AC﹣EC=8﹣5=3,∴BE=3,∴BD=1.5.故选A.16.解:延长EF交AC于点Q,∵EF⊥AD,AD⊥BC∴EQ∥BC∴∠QEC=∠ECB∵CE平分∠ACB∴∠ECB=QCE∴∠QEC=∠QCE∴QE=QC∵QE∥BC,且△ABC为等腰三角形∴△AQE为等腰三角形∴AQ=AE,QE=2EF∴BE=CQ=2EF.故答案为:BE=2EF.17.解:∵DE垂直且平分AB,∴BE=AE.由BE+CE=AC=AB=27,∴BC=50﹣27=2318.解:设AB=AC=2X,BC=Y,则AD=CD=X,∵AC上的中线BD将这个三角形的周长分成15和6两部分,∴有两种情况:1、当3X=15,且X+Y=6,解得,X=5,Y=1,∴三边长分别为10,10,1;2、当X+Y=15且3X=6时,解得,X=2,Y=13,此时腰为4,根据三角形三边关系,任意两边之和大于第三边,而4+4=8<13,故这种情况不存在.∴腰长只能是10.故答案为1019.解:∵三角形ABC为等边三角形,∴∠A=∠B=∠C=60°,∵根据题意知道点B和点C经过折叠后分别落在了点I和点H处,∴∠DIH=∠B=60°,∠GHI=∠C=60°,∴∠HJI=60°,∴∠DIH=∠GHI=∠HJI=60°,∴阴影部分是等边三角形,故答案为:等边.20.答:由①③条件可判定△ABC是等腰三角形.证明:∵∠EBO=∠DCO,∠EOB=∠DOC,(对顶角相等)BE=CD,∴△EBO≌△DCO,∴OB=OC,∴∠OBC=∠OCB,∴∠ABC=∠ACB,∴△ABC是等腰三角形21.解:延长AC到E,使CE=BM,连接DE,(如图)∵BD=DC,∠BDC=120°,∴∠CBD=∠BCD=30°,∵∠ABC=∠ACB=60°,∴∠ABD=∠ACD=∠DCE=90°,∴△BMD≌△CDE,∴∠BDM=∠CDE,DM=DE,又∵∠MDN=60°,∴∠BDM+∠NDC=60°,∴∠EDC+∠NDC=∠NDE=60°=∠NDM,又∵DN=DN,∴△MDN≌△EDN(SAS),∴MN=NE=NC+CE=NC+BM,所以△AMN周长=AM+AN+MN=AM+AN+NC+BM=AB+AC=2.22.解:∵BD平分∠ABC,DF⊥AB,∠C是直角,∴CD=DF,∠DBC=∠DBE,∠DFB=∠C,∴△BCD≌△BFD,∴BC=BF,∵DE∥BC,∴∠DBC=∠EDB,即∠DBC=∠DBE,∴△BDE是等腰三角形,∴BE=DE,∴BF=BC=DE+EF23.(1)证明:在等腰直角三角形ABC中,∵∠ACB=90°,∴∠CBA=∠CAB=45°.又∵DE⊥AB,∴∠DEB=90°.∴∠BDE=45°.又∵BF∥AC,∴∠CBF=90°.∴∠BFD=45°=∠BDE.∴BF=DB.又∵D为BC的中点,∴CD=DB.即BF=CD.在△CBF和△ACD中,,∴△CBF≌△ACD(SAS).∴∠BCF=∠CAD.又∵∠BCF+∠GCA=90°,∴∠CAD+∠GCA=90°.即AD⊥CF.(2)△ACF是等腰三角形,理由为:连接AF,如图所示,由(1)知:CF=AD,△DBF是等腰直角三角形,且BE是∠DBF的平分线,∴BE垂直平分DF,∴AF=AD,∵CF=AD,∴CF=AF,∴△ACF是等腰三角形.24.解:∵BP=PQ=QC=AP=AQ,∴∠PAQ=∠APQ=∠AQP=60°,∠B=∠BAP,∠C=∠CAQ.又∵∠BAP+∠ABP=∠APQ,∠C+∠CAQ=∠AQP,∴∠BAP=∠CAQ=30°.∴∠BAC=120°.故∠BAC的度数是120°25.解:△AEC是等腰三角形.理由如下:∵∠1=∠2,∴∠1+∠3=∠2+∠3,即∠BAC=∠DAE,又∵AB=AD,∠B=∠D,∴△ABC≌△ADE(ASA),∴AC=AE.即△AEC是等腰三角形26.①证明:∵∠BCA=∠DCE=60°,∴∠BCE=∠ACD,在△BCE和△ACD中,,∴△BCE≌△ACD(SAS);②∵△BCE≌△ACD,∴∠CBF=∠CAH.∵∠ACB=∠DCE=60°,∴∠ACH=60°.∴∠BCF=∠ACH,在△BCF和△ACH中,,∴△BCF≌△ACH(ASA),∴CF=CH;③∵CF=CH,∠ACH=60°,∴△CFH是等边三角形27.解:∵△ABC为等边三角形,∴AB=CA,∠BAE=∠ACD=60°;又∵AE=CD,在△ABE和△CAD中,∴△ABE≌△CAD;∴BE=AD,∠CAD=∠ABE;∴∠BPQ=∠ABE+∠BAD=∠BAD+∠CAD=∠BAE=60°;∵BQ⊥AD,∴∠AQB=90°,则∠PBQ=90°﹣60°=30°;∵PQ=3,∴在Rt△BPQ中,BP=2PQ=6;又∵PE=1,∴AD=BE=BP+PE=728.(1)证明:在等腰△ABC中,∵CH是底边上的高线,∴∠ACH=∠BCH,在△ACP和△BCP中,,∴△ACP≌△BCP(SAS),∴∠CAE=∠CBF(全等三角形对应角相等);(2)在△AEC和△BFC中,∴△AEC≌△BFC(ASA),∴AE=BF(全等三角形对应边相等).29.证明:∵AB=BC=CA,∴△ABC为等边三角形,∴∠BAC=∠C=60°,在△ABE和△CAD中∴△ABE≌△CAD(SAS),∴∠ABE=∠CAD,∵∠BPQ=∠ABE+∠BAP,∴∠BPQ=∠CAD+∠BAP=∠CAB=60°,∵BQ⊥AD∴∠BQP=90°,∴∠PBQ=30°,∴BP=2PQ.30.解:AD=EC.证明如下:∵△ABC和△BCD都是等边三角形,每个角是60°∴AB=EB,DB=BC,∠ABE=∠DBC=60°,∴∠ABE+∠EBC=∠DBC+∠EBC即∠ABD=∠EBC在△ABD和△EBC中∴△ABD≌△EBC(SAS)∴AD=EC。
与等腰三角形有关的证明题
与等腰三角形有关的证明题例1.如图,等腰△ABC中,AB=AC,D是AB边上一点,E是AC延长线上一点,且BD=CE,DE交BC于F。
求证:DF=EF分析:要证DF=EF,只需设法证明DF与EF所在的三角形全等,但由于DF所在的△DFB 比EF所在的△EFC显然大,故应考虑添加辅助线。
作DG∥AC,交BC于G,则∠DGB=∠ACB 从而∠DGF=∠ECF(等角的补角相等)由AB=AC,得∠B=∠ACB从而∠DGB=∠B,DG=BD=CE在△DFG与△EFC中,∠DGF=∠ECF,∠DFG=∠EFC(对顶角相等)故∠GDF=∠FEC又DG=CE,所以△DFG≌△EFC所以DF=EF例2.如图,等腰△ABC中,AB=AC,D是BC上任一点,DE⊥AB于E,DF⊥AC于F。
求证:为定值。
分析:所谓定值是指不论点D在底边BC的何处,DE+DF的大小总是等于已知的或隐含的某条线段的长,也就是说定值是一个常量。
那么本题的定值究竟是多少呢?我们可以考虑点D所在的特殊位置,当点D与点B重合时,DE的长度为0,DF等于AC边上的高,可见,(DE+DF)的定值是腰上的高,因此,作△ABC的高BG,然后只需证明DE+DF=BG即可。
要证,可在BG上截取GH=DF,然后只需证BH=DE。
连接DH,则只需证明△BDE≌△DBH。
易知四边形DFGH是矩形,从而DH∥AC,∠BDH=∠C,∠BHD=∠DHG=90°=∠BED。
又AB=AC,∠EBD=∠ABC=∠C,所以∠BDH=∠EBD。
所以∠EDB=∠DBH。
又BD为公共边,所以△BDE≌△DBH。
如果注意到高,联想到三角形面积,则可采用如下简单的证法:连接AD则由,得:又AB=AC边上的高=定值例3.如图4,等腰△ABC中,AB=AC,D是AB边上一点,E是AC延长线上一点,且BD=CE。
求证:DE>BC图4分析:要证DE>BC,由于它们不是同一个三角形的两边,故应先考虑通过添加辅助线把它们迁移到同一个三角形中。
精品经典 轴对称与等腰三角形 重难点题型汇总140题
轴对称与等腰三角形重难点题型汇总最短路程问题在直线上找一点P,使PA+PB最小在直线上找一P,使PBPA-最小在直线上找一P,使PBPA-最大在OA、OB上分别找一点C、D,使△PCD周长最小并求出∠CPD的度数.在平面内找一点P,使P到OA、OB距离相等,同时到C、D两点距离相等。
分别在OA、OB上找出一点D、C,当PD+CD最小时,若∠AOB=480,∠PCD的度数为BD平分∠ABC,△ABC面积为12,AB=5,在BC、BD上分别找一点M、N,求CN+MN最小值.△ABC中AB=AC,D为BC中点,△ABC面积为24,BC=6,直线l垂直平分AC,P为l上动点,求△PCD周长最小值.正方形ABCD,面积为16,以AB为边在内部作等边三角形ABE,连接对角线AC.P为AC上一动点,求PD+PE最小值.等腰三角形等腰三角形性质与判定性质: 判定: 等边三角形300角问题:在坐标系中找等腰三角形问题1.已知点A坐标为(2a+3,3a+9)在第二象限,且a为整数.根据要求完成下列各题:(1)a= ;A点坐标为;(2)A点关于x轴对称的点坐标为;A点关于y轴对称的点坐标为; A点关于原点对称的点坐标为;(3)A点关于直线x=2对称的点坐标为;A点关于直线x=-2对称的点坐标为;A点关于直线y=-3对称的点坐标为;(4)连接OA,将OA绕点O旋转900,则旋转后A点对应坐标为;2.如图,∠ABC 内有一点P,(1)在BA、BC 边上各取一点P1、P2,使△PP1P2 的周长最小;(尺规作图)(2)若∠ABC=300,连接BP1,BP2,P1P2,判断△BP1P1形状并说明理由.3.如图所,MP和 NQ 分别垂直平分 AB和 AC.(1)若∠BAC=105°,求∠PAQ的度数;(2)若∠PAQ=250,求∠BAC的度数。
4.如图,已知Rt △ABC,∠ACB=900,AD 平分∠BAC 与BC 交于D 点,M 、N 分别在线段AD 、AC 上的动点,连接MN 、MC,当MN+MC 最小时,画出M 、N 的位置.5.如图,点P 在∠AOB 的内部,点M 、N 分别是点P 关于直线OA 、OB•的对称点,线段MN 交OA 、OB 于点E 、F ,若△PEF 的周长是20cm ,则线段MN 的长是________;若∠AOB=320,则∠EPF=6.如图,在△ABC 中,BD 是∠ABC 的平分线,DE ⊥AB 于点E ,DF ⊥BC 于点F ,S △ABC =48cm 2,AB=18cm ,BC=12cm ,求DE 的长。
等腰三角形经典练习题(5套)附带详细答案
练习一一、选择题1.等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为()A.6㎝B.10㎝C.6㎝或10㎝D.14㎝2.已知△ABC,AB =AC,∠B=65°,∠C度数是( )A.50°B.65°C.70°D.75°3.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边的垂线C.顶角的平分线所在的直线D.腰上的高所在的直线二、填空题4.等腰三角形的两个_______相等(简写成“____________”).5.已知△ABC,AB =AC,∠A=80°,∠B度数是_________.6.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是_______________.7.等腰三角形的腰长是6,则底边长5,周长为__________.三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.(写出每步证明的重要依据)9.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数一、选择题1.B2.B3.C二、填空题4.底角,等边对等角5.50°6.36°或90°7.16或17三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.证明:∵AB=AD(已知)∴∠ABD=∠ADB(等边对等角)∵AD∥BC(已知)∴∠ADB=∠CBD(两直线平行,内错角相等)∴∠ABD=∠CBD(等量代换)∴BD平分∠ABC.(角平分线定义)9.45练习2一、选择题1.△ABC是等边三角形,D、E、F为各边中点,则图中共.有正三角形( )A.2个B.3个C.4个D.5个2.△ABC中,∠A:∠B:∠C=1:2:3,则BC:AB等于( )A.2:1 B.1:2 C.1:3 D.2 :3二、填空题3.等边三角形的周长为6㎝,则它的边长为________.4.等边三角形的两条高线相交所成钝角的度数是__________.5.在△ABC中,∠A=∠B=∠C,则△ABC是_____三角形.6.△ABC中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.三、解答题7.△ABC是等边三角形,点D在边BC上,DE∥AC,△BDE是等边三角形吗?试说明理由.8.已知:如图,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.9.已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求证:△BDC是等边三角形.一、选择题1.D2.B二、填空题3.2㎝4.120°5.等边6.6㎝三、解答题7.△ABC是等边三角形.理由是∵△ABC是等边三角形AQ CPB∴∠A =∠B =∠C=60° ∵DE ∥AC ,∴∠BED =∠A=60°,∠BDE =∠C =60° ∴∠B =∠BED =∠BDE ∴△ABC 是等边三角形 8.∠BAC=120°9.证明:∵△ABC 中,∠ACB=90°,∠A=30°(已知)∴∠A +∠B=90°(直角三角形两锐角互余) ∴∠B= 90°-∠A= 90°-30°=60° ∵△ABC 中,∠ACB=90°,∠A=30°(已知) ∴BC=(在直角三角形中,一个锐角等于30,那么它所对的直角边等于斜边的一半)∴△BDC 是等边三角形(有一个角是60°角的等腰三角形是等边三角形)。
解等腰三角形的性质的练习题
解等腰三角形的性质的练习题1. 设等腰三角形ABC中,AB=AC,以点D为底边BC的中点,连接AD。
证明:△ABD≌△ACD。
解析:首先,根据等腰三角形的定义,AB=AC。
其次,由于D为BC的中点,所以BD=DC。
再根据SSS(边边边)对应的性质,我们可以得出△ABD≌△ACD。
也就是说,两个三角形的三边分别对应相等,从而可以得出两个三角形全等。
2. 设等腰三角形ABC中,AB=AC,以AB为底边,且与AC相交于点D的高为AH。
证明:∠HAB=∠HAC。
解析:首先,我们知道等腰三角形ABC的两边AB和AC相等,所以可以得出∠A=∠B=∠C。
又因为AD为高,所以∠HAD=90°,而角HAB是等腰三角形ABC的顶角,所以角HAB也等于∠C。
综上所述,可以得出∠HAB=∠HAC。
3. 设等腰三角形ABC中,AB=AC,以AB为底边,且与AC相交于点D的中线DE。
证明:DE=BC/2。
解析:首先,我们知道等腰三角形ABC的两边AB和AC相等,所以可以得出DE=BC/2。
这是因为DE是底边BC的中线,所以根据中线分割定理,DE等于底边BC的一半,即DE=BC/2。
4. 设等腰三角形ABC中,AB=AC,以角A的平分线AM为旋转轴,将△ABC旋转180°得到△ADE。
证明:△ADE≌△ABC。
解析:首先,我们需要说明如何将△ABC旋转180°得到△ADE。
根据题意,我们以角A的平分线AM为旋转轴,将△ABC旋转180°。
旋转后,点A和点D重合,点B和点E重合,点C不动。
根据旋转的定义,可以得出△ADE≌△ABC。
5. 设等腰三角形ABC中,AB=AC,以角A的平分线AM为旋转轴,将△ABC旋转180°得到△ADE。
证明:BD=DC,BE=EC。
解析:如前一题所述,旋转后,点A和点D重合,点B和点E重合,点C不动。
由等腰三角形的定义可知,BD=DC,BE=EC。
《等腰三角形的判定》练习
《等腰三角形的判定》练习 篇一:等腰三角形经典练习题[1] 等腰三角形练习 知识梳理 说明: ①本定理的证明用的是作底边上的高, 还有其他证明方法 (如作顶角的平分线) 。
②证明一个三角形是等腰三角形的方法有两种:1、利用定义 2、利用定理。
知识点 4:等腰三角形的推论 1. 推论:推论 1:三个角都相等的三角形是等边三角形。
推论 2:有一个角等于 60°的等腰三角形是等边三角形。
推论 3: 在直角三角形中, 如果一个锐角等于 30°, 那么它所对的直角边等于斜边的一半。
知识点 5: 等腰三角形中常用的辅助线 等腰三角形顶角平分线、底边上的高、底边上的中线常常作为解决有关等腰三角形问题 的辅助线,由于这条线可以把顶角和底边折半,所以常通过它来证明线段或角的倍分问题,在 等腰三角形中,虽然顶角的平分线、底边上的高、底边上的中线互相重合,添加辅助线时,有 时作哪条线都可以, 有时需要作顶角的平分线, 有时则需要作高或中线, 这要视具体情况来定。
一、知识点回顾 等腰三角形的性质: △ ABC 中,AB=AC.点 D 在 BC 边上 (1)∵AB=AC, ∴∠_____=∠______;(即性质 1) (2)∵AB=AC,AD 平分∠BAC,∴_______=________;________⊥_________;(即性 质 2) (3)∵AB=AC,AD 是中线,∴∠______=∠______;________⊥________; (即性质 2) (4)∵AB=AC,AD⊥BC,∴∠________=∠_______;_______=_______. (即性质 2) 等 腰三角形的判定:△ ABC 中,∵∠B=∠C∴_____=_____. 二、基础题 第 1 题. 已知等腰三角形的一个内角为 80°,则它的另两角为________________. 第 2 题. 在△ ABC 中, ∠ABC=∠C=2∠A,BD 是∠ABC 的平分线,DE∥BC,则图中等腰 三角形的个数是() A.2 B.3 C.4 D.5 第 3 题. 如图 1,△ MNP 中, ∠P=60°,MN=NP,MQ⊥PN,垂足为 Q,延长 MN 至 G, 取 NG=NQ,若△ MNP 的周长为 12,MQ=a,则△ MGQ 周长是() B 知识点 1:等腰三角形的性质定理 1 (1)文字语言:等腰三角形的两个底角相等(简称“等边对等角”) (2)符号语言:如 图,在△ ABC 中,因为 AB=AC,所以∠B=∠C (3)证明:取 BC 的中点 D,连接 AD 在△ ABD 1 / 11和△ ACD 中 ∴△ABD≌△ACD(SSS) ∴∠B=∠C(全等三角形对应角相等) (4)定理的作用:证明同一个三角形中的两个角相等。
好题共享_等腰三角形(含答案)
等腰三角形【分类解析】例1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。
求证:M 是BE 的中点。
AD1 BM C E分析:欲证M 是BE 的中点,已知DM ⊥BC ,所以想到连结BD ,证BD =ED 。
因为△ABC 是等边三角形,∠DBE =21∠ABC ,而由CE =CD ,又可证∠E =21∠ACB ,所以∠1=∠E ,从而问题得证。
证明:因为三角形ABC 是等边三角形,D 是AC 的中点 所以∠1=21∠ABC 又因为CE =CD ,所以∠CDE =∠E 所以∠ACB =2∠E 即∠1=∠E所以BD =BE ,又DM ⊥BC ,垂足为M所以M 是BE 的中点 (等腰三角形三线合一定理)例2. 如图,已知:ABC ∆中,AC AB =,D 是BC 上一点,且CA DC DB AD ==,,求BAC ∠的度数。
ABCD分析:题中所要求的BAC ∠在ABC ∆中,但仅靠AC AB =是无法求出来的。
因此需要考虑DB AD =和CA DC =在题目中的作用。
此时图形中三个等腰三角形,构成了内外角的关系。
因此可利用等腰三角形的性质和三角形的内外角关系定理来求。
解:因为AC AB =,所以C B ∠=∠ 因为DB AD =,所以C DAB B ∠=∠=∠;因为CD CA =,所以CDA CAD ∠=∠(等边对等角) 而 DAB B ADC ∠+∠=∠ 所以B DAC B ADC ∠=∠∠=∠22, 所以B 3BAC ∠=∠又因为180=∠+∠+∠BAC C B即180B 3C B =∠+∠+∠ 所以36B =∠ 即求得108BAC =∠说明1. 等腰三角形的性质是沟通本题中角之间关系的重要桥梁。
把边的关系转化成角的关系是此等腰三角形性质的本质所在。
本条性质在解题中发挥着重要的作用,这一点在后边的解题中将进一步体现。
等腰三角形经典练习题(5套)附带详细答案
练习一一、选择题1.等腰三角形的周长为26㎝,一边长为6㎝,那么腰长为()A.6㎝B.10㎝C.6㎝或10㎝D.14㎝2.已知△ABC,AB =AC,∠B=65°,∠C度数是( )A.50° B.65° C.70° D. 75°3.等腰三角形是轴对称图形,它的对称轴是()A.过顶点的直线B.底边的垂线C.顶角的平分线所在的直线D.腰上的高所在的直线/二、填空题4.等腰三角形的两个_______相等(简写成“____________”).5.已知△ABC,AB =AC,∠A=80°,∠B度数是_________.6.等腰三角形的两个内角的比是1:2,则这个等腰三角形的顶角的度数是_______________.7.等腰三角形的腰长是6,则底边长5,周长为__________.三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.(写出每步证明的重要依据)[9.如图,在△ABC中,AB=AC,D、E分别在AC、AB边上,且BC=BD,AD=DE=EB,求∠A的度数.一、选择题1.B2.B3.C二、填空题4.底角,等边对等角~5.50°6.36°或90°7.16或17三、解答题8.如图AB=AD,AD∥BC,求证:BD平分∠ABC.证明:∵AB=AD(已知)∴∠ABD=∠ADB(等边对等角)∵AD∥BC(已知)∴∠ADB=∠CBD(两直线平行,内错角相等)∴∠ABD=∠CBD(等量代换)|∴BD平分∠ABC.(角平分线定义)9.45练习2一、选择题1.△ABC是等边三角形,D、E、F为各@边中点,则图中共.有正三角形( )A.2个 B.3个C.4个 D.5个2.△ABC中,∠A:∠B:∠C=1:2:3,则BC:AB等于 ( )A. 2:1 B.1:2 C.1:3 D.2 :3二、填空题3.等边三角形的周长为6㎝,则它的边长为 ________.4.等边三角形的两条高线相交所成钝角的度数是__________.5.在△ABC中,∠A=∠B=∠C,则△ABC是_____三角形.6.△ABC中,∠AC B=90°∠B=60°,BC=3㎝,则AB=_______.—三、解答题7.△ABC是等边三角形,点D在边BC上,DE∥AC,△BDE是等边三角形吗试说明理由.8.已知:如图,P,Q是△ABC边上BC上的两点,且BP=PQ=QC=AP=AQ,求∠BAC的度数.《9.已知:△ABC中,∠ACB=90°,AD=BD,∠A=30°,求证:△BDC是等边三角形.一、选择题[AQ CPB1.D 2.B二、填空题 3.2㎝ 4.120° 5.等边 6.6㎝ 三、解答题7.△ABC 是等边三角形.理由是 ∵△ABC 是等边三角形;∴∠A =∠B =∠C=60° ∵DE ∥AC ,∴∠BED =∠A=60°,∠BDE =∠C =60° ∴∠B =∠BED =∠BDE ∴△ABC 是等边三角形 8.∠BAC=120°9.证明:∵△ABC 中,∠ACB=90°,∠A=30°(已知)∴∠A +∠B=90°(直角三角形两锐角互余)》∴∠B= 90°-∠A= 90°-30°=60°∵△ABC 中,∠ACB=90°,∠A=30°(已知) ∴BC=(在直角三角形中,一个锐角等于30,那么它所对的直角边等于斜边的一半)∴△BDC 是等边三角形(有一个角是60°角的等腰三角形是等边三角形)。
等腰直角三角形难题
等腰直角三角形难题一、选择题(共8小题)1.如图,在等腰直角△ABC中AC=AB,BD⊥AH于D,CH⊥AH于H,HE、DF分别平分∠AHC和∠ADB,则下列结论中①△AHC≌△BDA;②DF⊥HE;③DF=HE;④AE=BF其中,正确的结论有()(只需填写序号)A.①③④B.①C.①②③D.①②③④2.(2012•黄埔区一模)将一个斜边长为的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到另一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到又一个等腰直角三角形(如图3),若连续将图1的等腰直角三角形折叠n次后所得到的等腰直角三角形(如图n+1)的斜边长为()A.B.C.D.3.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()A.①②③B.①②④C.①③④D.①②③④4.如图,在2×3矩形方格纸上,各个小正方形的顶点称为格点,则以格点为顶点的等腰直角三角形的个数为()A.24 B.38 C.46 D.505.如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC于M,连CD.下列结论:①AC+CE=AB;②;③∠CDA=45°;④=定值.其中正确的有()A.1个B.2个C.3个D.4个6.如图,在等腰Rt△ABC的斜边AB上取两点M,N,使∠MCN=45°,记AM=m,MN=n,BN=x,则以线段x、m、n为边长的三角形的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.随x、m、n的变化而改变7.(2006•防城港)如图,在五边形ABCDE中,∠A=∠B,∠C=∠D=∠E=90°,DE=DC=4,AB=,则五边形ABCDE的周长是()A.B.C.D.8.(2010•鼓楼区二模)小明将一张正方形包装纸,剪成图1所示形状,用它包在一个棱长为10的正方体的表面(不考虑接缝),如图2所示.小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+10二、填空题(共12小题)(除非特别说明,请填准确值)9.下列说法:①如图1,△ABC中,AB=AC,∠A=45°,则△ABC能被一条直线分成两个小等腰三角形.②如图2,△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,且相交于点F,则图中等腰三角形有6个.③如图3,△ABC是等边三角形,CD⊥AD,且AD∥BC,则AD=AB.④如图4,△ABC中,点E是AC上一点,且AE=AB,连接BE并延长至点D,使AD=AC,∠DAC=∠CAB,则∠DBC=∠DAB其中,正确的有_________(请写序号,错选少选均不得分)10.已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点F、F,若FC=3厘米,BE=4厘米,则△EFP的面积为_________平方厘米.11.一个三角形三个内角之比为1:1:2,则这个三角形的三边比为_________.12.一个三角形不同顶点的三个外角的度数比是3:3:2,则这个三角形是_________三角形.13.(2003•黄浦区一模)已知第一个等腰直角三角形的面积为1,以第一个等腰直角三角形的斜边为直角边画第二个等腰直角三角形,又以第二个等腰直角三角形的斜边为直角边画第三个等腰直角三角形,以此类推,第13个等腰直角三角形的面积是_________.14.(2007•天水)如图,AD是△ABC的一条中线,∠ADC=45度.沿AD所在直线把△ADC翻折,使点C落在点C´的位置.则=_________.15.如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化过程中,有下列五个结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确结论是_________.16.(2011•贵阳)如图,已知等腰Rt△ABC的直角边长为l,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为_________.17.已知△ABC的三边长a、b、c满足,则△ABC一定是_________三角形.18.(2010•厦门)如图,以第①个等腰直角三角形的斜边长作为第②个等腰直角三角形的腰,以第②个等腰直角三角形的斜边长做为第③个等腰直角三角形的腰,依此类推,若第⑨个等腰直角三角形的斜边长为厘米,则第①个等腰直角三角形的斜边长为_________厘米.19.(2010•丹东)已知△ABC是直角边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的斜边长是_________.20.已知△ABC是轴对称图形,且三条高的交点恰好是C点,则△ABC的形状是_________.三、解答题(共6小题)(选答题,不自动判卷)21.(2010•唐山一模)(1)如图1,以等腰直角△ABC的直角边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,则DE与AM之间的数量关系为_________;(2)如图2,以任意直角△ABC的直角边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,则DE与AM之间的数量关系为_________;(3)如图3,以任意非直角△ABC的边AB、AC为直角边向外作等腰直角△ABE和△ACD,M是BC的中点,试判断DE与AM之间的数量关系,并说明理由;(4)如图4,若以△ABC的边AB、AC为直角边,向内作等腰直角△ABE和△ACD,其它条件不变,请直接写出线段DE与AM之间的数量关系.22.(2010•平房区一模)如图1,在△ABC中,AC=BC,∠ACB=90°,点D为AB边中点,以点D为顶点作∠PDQ=90°,DP、DQ分别交直线AC、BC于E、F,分别过E、F作AB的垂线,垂足分别为M、N.(1)求证:EM+FN=AC;(2)把∠PDQ绕点D旋转,当点E在线段AC的延长线上时(如图2),则线段EM、FN、AC之间满足的关系式是_________;(3)在∠PDQ绕点D由图1到图2的旋转的过程中,设DP交直线BC于点G,连接BE,若FG=10,AE=3CE,求BE的长.23.(2009•莆田二模)已知在△ABC中,∠A=90°,AB=AC,D为BC的中点.(1)如图,E、F分别是AB,AC上的动点,且BE=AF,求证:△DEF为等腰直角三角形;(2)在(1)的条件下,四边形AEDF的面积是否变化,证明你的结论;(3)若E、F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么△DEF是否仍为等腰直角三角形?证明你的结论.24.(2007•大连)两个全等的Rt△ABC和Rt△EDA如图放置,点B、A、D在同一条直线上.操作:在图中,作∠ABC的平分线BF,过点D作DF⊥BF,垂足为F,连接CE.证明BF⊥CE.探究:线段BF、CE的关系,并证明你的结论.说明:如果你无法证明探究所得的结论,可以将“两个全等的Rt△ABC和Rt△EDA”改为“两个全等的等腰直角△ABC 和等腰直角△EDA(点C、A、E在同一条直线上)”,其他条件不变,完成你的证明,此证明过程最多得2分.25.(2009•德城区)一位同学拿了两块45°的三角尺△MNK、△ACB做了一个探究活动:将△MNK的直角顶点M 放在△ABC的斜边AB的中点处,设AC=BC=a.(1)如图1,两个三角尺的重叠部分为△ACM,则重叠部分的面积为_________,周长为_________;(2)将图1中的△MNK绕顶点M逆时针旋转45°,得到图2,此时重叠部分的面积为_________,周长为_________;(3)如果将△MNK绕M旋转到不同于图1,图2的位置,如图3所示,猜想此时重叠部分的面积为多少?并试着加以验证.26.(2007•自贡)已知:三角形ABC中,∠A=90°,AB=AC,D为BC的中点,(1)如图,E,F分别是AB,AC上的点,且BE=AF,求证:△DEF为等腰直角三角形;(2)若E,F分别为AB,CA延长线上的点,仍有BE=AF,其他条件不变,那么,△DEF是否仍为等腰直角三角形?证明你的结论.等腰直角三角形难题参考答案与试题解析一、选择题(共8小题)1.如图,在等腰直角△ABC中AC=AB,BD⊥AH于D,CH⊥AH于H,HE、DF分别平分∠AHC和∠ADB,则下列结论中①△AHC≌△BDA;②DF⊥HE;③DF=HE;④AE=BF其中,正确的结论有()(只需填写序号)A.①③④B.①C.①②③D.①②③④考点:等腰直角三角形;全等三角形的判定与性质;角平分线的性质.分析:①利用同角的余角相等,得∠CAH=∠ABD,再利用AAS判定△AHC≌△BDA;②如图,延长BD与AC相交于点M,延长FD、HE,两延长线交于点G,证明CH∥BM,同旁内角∠CHD与∠MDH互补,两角的平分线互相垂直;③利用角平分线的定义,得∠EHA=∠FDB,又∵∠EAH=∠FBD,AH=BD,得出△EHA≌△FDB,进而得出结论;④根据△EHA≌△FDB,得AE=BF.解答:解:①∵∠CAH+∠BAD=90°,∠ABD+∠BAD=90°∴∠CAH=∠ABD又∵∠CHA=∠ADB=90°,AC=AB∴△AHC≌△BDA(AAS);②如图,延长BD与AC相交于点M,延长FD、HE,两延长线交于点G∵∠CHD+∠HDM=90°+90°=180°∴CH∥BM∵DF平分∠ADB∴DG平分∠HDM又∵HE平分∠AHC∴∠HGD=90°∴DF⊥HE;③∠EHA=∠CHA∠FDB=∠ADB又∵∠CHA=∠ADB∴∠EHA=∠FDB又∵∠EAH=∠FBD,AH=BD∴△EHA≌△FDB∴DF=HE;④∵△EHA≌△FDB∴AE=BF;故选D.点评:本题考查了全等三角形的判定及其性质,平行线的性质,同角的余角相等等知识.2.(2012•黄埔区一模)将一个斜边长为的一个等腰直角三角形纸片(如图1),沿它的对称轴折叠1次后得到另一个等腰直角三角形(如图2),再将图2的等腰直角三角形沿它的对称轴折叠后得到又一个等腰直角三角形(如图3),若连续将图1的等腰直角三角形折叠n次后所得到的等腰直角三角形(如图n+1)的斜边长为()A.B.C.D.考点:等腰直角三角形.专题:压轴题;规律型.分析:通过分别计算折叠两次后的等腰三角形的腰长,归纳总结得到折叠n次的等腰三角形的腰长等于的n次方,然后根据等腰直角三角形的斜边为腰长的倍,即可表示出图1的等腰直角三角形折叠n次后所得到的等腰直角三角形的斜边长.解答:解:根据题意得出:第一次折叠后,如图2,腰长为,第二次折叠后,如图3,腰长为=()2,…依此类推,将图1的等腰直角三角形折叠n次后新等腰三角形的腰长为()n,则将图1的等腰直角三角形折叠n次后所得到的等腰直角三角形的斜边长为()n•=()n﹣1.故选C点评:此题考查了等腰直角三角形的性质,以及勾股定理的运用,解题的关键是利用勾股定理分别计算出折叠两次后的等腰三角形的腰长,从中发现规律,此类题目难度较大,属于难题.3.如图:△ABC中,∠ACB=90°,∠CAD=30°,AC=BC=AD,CE⊥CD,且CE=CD,连接BD,DE,BE,则下列结论:①∠ECA=165°,②BE=BC;③AD⊥BE;④=1.其中正确的是()A.①②③B.①②④C.①③④D.①②③④考点:等腰直角三角形;全等三角形的判定与性质;等腰三角形的判定与性质;含30度角的直角三角形.分析:①根据:∠CAD=30°,AC=BC=AD,利用等腰三角形的性质和三角形内角和定理即可求出∠ECA=165°,从而得证结论正确;②根据CE⊥CD,∠ECA=165°,利用SAS求证△ACD≌△BCE即可得出结论;③根据∠ACB=90°,∠CAD=30°,AC=BC,利用等腰三角形的性质和△ACD≌△BCE,求出∠CBE=30°,然后即可得出结论;④过D作DM⊥AC于M,过D作DN⊥BC于N.由∠CAD=30°,可得CM=AC,求证△CMD≌△CND,可得CN=DM=AC=BC,从而得出CN=BN.然后即可得出结论.解答:解:①∵∠CAD=30°,AC=BC=AD,∴∠ACD=∠ADC=(180°﹣30°)=75°,∵CE⊥CD,∴∠DCE=90°,∴∠ECA=165°∴①正确;②∵CE⊥CD,∠ECA=165°(已证),∴∠BCE=∠ECA﹣∠ACB=165﹣90=75°,∴△ACD≌△BCE(SAS),∴BE=BC,∴②正确;③∵∠ACB=90°,∠CAD=30°,AC=BC,∴∠CAB=∠ABC=45°∴∠BAD=∠BAC﹣∠CAD=45﹣30=15°,∵△ACD≌△BCE,∴∠CBE=30°,∴∠ABF=45+30=75°,∴∠AFB=180﹣15﹣75=90°,∴AD⊥BE.④证明:如图,过D作DM⊥AC于M,过D作DN⊥BC于N.∵∠CAD=30°,且DM=AC,∵AC=AD,∠CAD=30°,∴∠ACD=75°,∴∠NCD=90°﹣∠ACD=15°,∠MDC=∠DMC﹣∠ACD=15°,在△CMD和△CND中,,∴△CMD≌△CND,∴CN=DM=AC=BC,∴CN=BN.∵DN⊥BC,∴BD=CD.∴④正确.所以4个结论都正确.故选D.点评:此题主要考查等腰直角三角形,全等三角形的判定与性质,等腰三角形的判定与性质,含30度角的直角三角形等知识点的理解和掌握,此题有一定的拔高难度,属于难题.4.如图,在2×3矩形方格纸上,各个小正方形的顶点称为格点,则以格点为顶点的等腰直角三角形的个数为()A.24 B.38 C.46 D.50考点:等腰直角三角形.专题:网格型;规律型.分析:以格点为端点的线段长度可取8个数值:1,2,2,3.以这些线段组成的等腰直角三角形的斜边有以下四种情况,2,2,;然后按斜边长分四类来进行计数即可.解答:解:(1)当斜边长为时,斜边一定是小正方形的对角线,这样的线段有12条,每条这样的线段对应着两个等腰直角三角形,共有2×12=24(个).同理(2)当斜边长为2时,共有6+2×4=14(个).(3)当斜边长为2时,共有2×4=8(个).(4)当斜边长为时,共有4(个).综上所述,满足要求的等腰直角三角形共有24+14+8+4=50(个).故选D.点评:(1)利用分类讨论的数学思想求解时,一定要做到分类既不重复,又不遗漏;(2)请读者尝试以下两种思路解答本题:①以等腰直角三角形的直角边的不同情况来分类讨论求解;②利用轴对称图形的对称性求解.5.如图,△ABC中,AC=BC,∠ACB=90°,AE平分∠BAC交BC于E,BD⊥AE于D,DM⊥AC于M,连CD.下列结论:①AC+CE=AB;②;③∠CDA=45°;④=定值.其中正确的有()A.1个B.2个C.3个D.4个考点:等腰直角三角形;三角形内角和定理;三角形的外角性质;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质;直角三角形斜边上的中线.专题:证明题.分析:过E作EQ⊥AB于Q,作∠ACN=∠BCD,交AD于N,过D作DH⊥AB于H,根据角平分线性质求出CE=EQ,DM=DH,根据勾股定理求出AC=AQ,AM=AH,根据等腰三角形的性质和判定求出BQ=QE,即可求出①;根据三角形外角性质求出∠CND=45°,证△ACN≌△BCD,推出CD=CN,即可求出②③;证△DCM≌△DBH,得到CM=BH,AM=AH,即可求出④.解答:解:过E作EQ⊥AB于Q,∵∠ACB=90°,AE平分∠CAB,∴CE=EQ,∵∠ACB=90°,AC=BC,∴∠CBA=∠CAB=45°,∵EQ⊥AB,∴∠EQA=∠EQB=90°,由勾股定理得:AC=AQ,∴∠QEB=45°=∠CBA,∴EQ=BQ,∴AB=AQ+BQ=AC+CE,∴①正确;作∠ACN=∠BCD,交AD于N,∵∠CAD=∠CAB=22.5°=∠BAD,∴∠DBA=90°﹣22.5°=67.5°,∴∠DBC=67.5°﹣45°=22.5°=∠CAD,∴∠DBC=∠CAD,∵AC=BC,∠ACN=∠DCB,∴△ACN≌△BCD,∴CN=CD,∵∠ACN+∠NCE=90°,∴∠NCB+∠BCD=90°,∴∠CND=∠CDN=45°,∴∠ACN=45°﹣22.5°=22.5°=∠CAN,∴AN=CN,∴∠NCE=∠AEC=67.5°,∴CN=NE,∴CD=AN=EN=AE,∴②正确,③正确;过D作DH⊥AB于H,∵∠MCD=∠CAD+∠CDA=67.5°,∠DBA=90°﹣∠DAB=67.5°,∴∠MCD=∠DBA,∵AE平分∠CAB,DM⊥AC,DH⊥AB,∴DM=DH,在△DCM和△DBH中∠M=∠DHB=90°,∠MCD=∠DBA,DM=DH,∴△DCM≌△DBH,∴BH=CM,由勾股定理得:AM=AH,∴====2,∴④正确;故选D.点评:本题主要考查对三角形的外角性质,三角形的内角和定理,等腰三角形的性质和判定,直角三角形斜边上中线性质,全等三角形的性质和判定,等腰直角三角形性质等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.6.如图,在等腰Rt△ABC的斜边AB上取两点M,N,使∠MCN=45°,记AM=m,MN=n,BN=x,则以线段x、m、n为边长的三角形的形状是()A.锐角三角形B.直角三角形C.钝角三角形D.随x、m、n的变化而改变考点:等腰直角三角形;全等三角形的判定与性质.专题:几何综合题.分析:把△ACN绕C点逆时针旋转45°,得△CBD,这样∠ACM+∠BCN=45°就集中成一个与∠MCN相等的角,在一条直线上的m、x、n集中为△DNB,只需判定△DNB的形状即可.解答:解:如图:作△ACM≌△BCD,∴∠ACM=∠BCD,CM=CD,∠MCN=∠NCD=45°,又∵CN=CN,∴△MNC≌△DNC,MN=ND,AM=BD=m,又∠DBN=45°+45°=90°,∴n2=m2+x2.故选B.点评:本题考查等腰直角三角形的性质,难度较大,注意掌握旋下列情形常实施旋转变换:(1)图形中出现等边三角形或正方形,把旋转角分别定为60°、90°;(2)图形中有线段的中点,将图形绕中点旋转180°,构造中心对称全等三角形;(3)图形中出现有公共端点的线段,将含有相等线段的图形绕公共端点,旋转两相等线段的夹角后与另一相等线段重合.7.(2006•防城港)如图,在五边形ABCDE中,∠A=∠B,∠C=∠D=∠E=90°,DE=DC=4,AB=,则五边形ABCDE的周长是()A.B.C.D.考点:等腰直角三角形;多边形内角与外角.专题:压轴题.分析:可连接CE,作AF⊥CE,BG⊥CE于F、G,根据多边形的内角和定理和等腰直角三角形的性质即可求出AB、AE+BC,进而求出答案.解答:解:连接CE,作AF⊥CE,BG⊥CE于F、G,根据五边形的内角和定理和已知条件,可得△CDE,△AEF,△BCG都是等腰直角三角形,则CE=4,∴FG=AB=,∴AE+BC=3×=6,所以五边形的周长是4+4+6+=14+.故选B.点评:此题主要是作辅助线,发现等腰直角三角形.注意:等腰直角三角形的斜边是直角边的倍.8.(2010•鼓楼区二模)小明将一张正方形包装纸,剪成图1所示形状,用它包在一个棱长为10的正方体的表面(不考虑接缝),如图2所示.小明所用正方形包装纸的边长至少为()A.40 B.30+2C.20D.10+10考点:等腰直角三角形.分析:所求正方形的边长即为AB的长,在等腰Rt△ACF、△CDE中,已知了CE、DE、CF的长均为10,根据等腰直角三角形的性质,即可求得AC、CD的长,由AB=AC+CD+BD即可得解.解答:解:如图;连接AB,则AB必过C、D;Rt△ACF中,AC=AF,CF=10;则AC=AF=5;同理可得BD=5;Rt△CDE中,DE=CE=10,则CD=10;所以AB=AC+CD+BD=20;故选C.点评:理清题意,熟练掌握直角三角形的性质是解答此题的关键.二、填空题(共12小题)(除非特别说明,请填准确值)9.下列说法:①如图1,△ABC中,AB=AC,∠A=45°,则△ABC能被一条直线分成两个小等腰三角形.②如图2,△ABC中,AB=AC,∠A=36°,BD,CE分别为∠ABC,∠ACB的角平分线,且相交于点F,则图中等腰三角形有6个.③如图3,△ABC是等边三角形,CD⊥AD,且AD∥BC,则AD=AB.④如图4,△ABC中,点E是AC上一点,且AE=AB,连接BE并延长至点D,使AD=AC,∠DAC=∠CAB,则∠DBC=∠DAB其中,正确的有③④(请写序号,错选少选均不得分)考点:等腰直角三角形;角平分线的定义;三角形内角和定理;全等三角形的判定与性质;等腰三角形的判定;等腰三角形的判定与性质;等边三角形的性质;含30度角的直角三角形.专题:证明题.分析:不管过A(或过B或过C)作直线,都不能把三角形ABC分成两个等腰三角形,即可判断①;求出∠A=∠ABD=∠DBC=∠ACE=∠BCE=36°,根据三角形的内角和定理求出三角形其余角的度数,根据等腰三角形的判定定理推出边相等,即可判断②;求出∠ACD=30°,根据含30度角的直角三角形性质求出AD=AC,即可判断③;过C作CF∥BD交AB的延长线于F,连接DC,EF,求出EF=BC,证三角形全等推出DE=EF,DC=CF,推出CD=BC,推出∠CDB=∠CBD,根据三角形的内角和定理求出∠CDB=∠CAB 即可.解答:解:若△ABC中,AB=AC,∠A=45°,不论过A作直线(或过B作直线或过C作直线)都不能把三角形ABC化成两个等腰三角形,∴①错误;图②中,有等腰三角形7个:△ABD,△CBD,△ACE,△CDE,△BEF,△CDF,△FBC,∴②错误;∵等边△ABC,∴AB=AC,∠ACB=60°,∵AD∥BC,CD⊥AD,∴∠DCB=∠D=90°,∴∠ACD=30°,∴AD=AC=AB,∴③正确;过C作CF∥BD交AB的延长线于F,连接DC,EF,∴=,∵AE=AB,AD=AC,∴AF=AC=AD,∴CE=BF,即BE∥CF,CE=BF,∴四边形BECF是等腰梯形,∴EF=BC,在△DAC和△FAC中,∴△DAC≌△FAC,∴CD=CF,同理DE=EF,∵AD=AC,AE=AB,∴∠ADC=∠ACD,∠AEB=∠ABE,∵∠DAC=∠BAC,∠DAC+∠ACD+∠ADC=180°,∠CAB+∠AEB+∠ABE=180°,∴∠ACD=∠AEB,∵∠AEB=∠DEC,∴∠ACD=∠DEC,∴DE=CD,∴DC=CF=EF=ED,∵EF=CB,∴DC=BC,∴∠CBD=∠CDE,∵∠DCA=∠DEC=∠AEB=∠ABE,由三角形的内角和定理得:∠CDE=∠CAB=∠DAB,∴∠DBC=∠DAB,∴④正确.故答案为:③④.点评:本题考查了等边三角形性质,含30度角的直角三角形性质,等腰三角形的性质和判断,角平分线定义,全等三角形的性质和判定,三角形的内角和定理等知识点的综合运用,第④小题证明过程偏难,对学生提出较高的要求,熟练地运用性质进行推理是解此题的关键.10.已知△ABC中,AB=AC,∠BAC=90°,直角∠EPF的顶点P是BC中点,两边PE、PF分别交AB、AC于点F、F,若FC=3厘米,BE=4厘米,则△EFP的面积为平方厘米.考点:等腰直角三角形;三角形的面积.专题:几何综合题.分析:根据题意△PCF可看作△PAE顺时针旋转90°得到,然后利用等腰三角形的性质及勾股定理可求出EF的长,进而可得出面积.解答:解:A、连接AP,∵在△ABC中,AB=AC,∠BAC=90°,CP=BP,∴∠APC=∠EPF=90°,∠APF=90°﹣∠APE=∠BPE,又AP=BP,∠FAP=∠EBP=45°,∴△FAP≌△EBP,∴PE=PF,∴可知AF=BE,又AC=AB,∴AE=CF,∴EF2=AC2+AF2=25,∴PE=PF==厘米.∴面积=平方厘米.故答案为:.点评:本题结合等腰直角三角形考查了旋转的基本性质,难度较大,要学会运用旋转的知识解答几何问题.11.一个三角形三个内角之比为1:1:2,则这个三角形的三边比为1:1:.考点:等腰直角三角形.分析:根据角度的关系可以求出三角形的角的度数,进而就可以求出边的比.解答:解:∵一个三角形三个内角之比为1:1:2.∴三角分别为180°×=45°,180°×=45°,180°×=90°.故三角形为等腰直角三角形,这个三角形的三边比为1:1:.点评:本题考查了等腰直角三角形三边及三角的关系,需同学们熟练掌握.12.一个三角形不同顶点的三个外角的度数比是3:3:2,则这个三角形是等腰直角三角形.考点:等腰直角三角形.分析:根据邻补角互补的性质,三角形内角和定理可知这个三角形的形状.解答:解:由题意,设这三个外角的度数分别为:3X,3X,2X,则对应的相邻的内角分别为:180°﹣3X,180°﹣3X,180°﹣2X,则180°﹣3X+180°﹣3X+180°﹣2X=180°,解得X=45°,则三角形的三个内角分别为:45°,45°,90°,∴这个三角形是等腰直角三角形.点评:本题通过设适当的参数,根据邻补角互补和三角形内角和定理建立方程,求得三角形的各角的度数后判定三角形的形状.13.(2003•黄浦区一模)已知第一个等腰直角三角形的面积为1,以第一个等腰直角三角形的斜边为直角边画第二个等腰直角三角形,又以第二个等腰直角三角形的斜边为直角边画第三个等腰直角三角形,以此类推,第13个等腰直角三角形的面积是4096.考点:等腰直角三角形.专题:规律型.分析:由已知条件得出规律:每作一次图,三角形面积变为原来的2倍.利用规律推理即可求解.解答:解:根据题意:每作一次图,三角形面积变为原来的2倍;且第一个等腰直角三角形的面积为1,故第13个等腰直角三角形的面积是1×212=4096.点评:本题是一道找规律的题目,要求学生通过观察,分析、归纳发现其中的规律,并应用发现的规律解决问题.14.(2007•天水)如图,AD是△ABC的一条中线,∠ADC=45度.沿AD所在直线把△ADC翻折,使点C落在点C´的位置.则=.考点:等腰直角三角形.分析:根据折叠的性质可知CD=C′D,∠CDA=∠ADC′=45°,易证明△C′DB是等腰直角三角形,所以可求得BC′=BD=×BC,整理即可求得比值.解答:解:∵CD=C′D,∠CDA=∠ADC′=45°.∴∠CDC′=∠BDC′=90°∵BD=CD∴BD=C′D;即△C′DB是等腰直角三角形,∴BC′=BD=×BC∴=.点评:本题利用了:①折叠的性质:折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等;②等腰直角三角形的性质求解.15.如图,在等腰Rt△ABC中,∠C=90°,AC=8,F是AB边上的中点,点D、E分别在AC、BC边上运动,且保持AD=CE.连接DE、DF、EF.在此运动变化过程中,有下列五个结论:①△DFE是等腰直角三角形;②四边形CDFE不可能为正方形;③DE长度的最小值为4;④四边形CDFE的面积保持不变;⑤△CDE面积的最大值为8.其中正确结论是①④⑤.考点:等腰直角三角形;二次函数的最值;全等三角形的判定与性质.专题:计算题;压轴题.分析:解答此题的关键是在于判断△DFE是否等腰直角三角形;做常规辅助线,连接CF,由SAS定理可得△CFE≌△ADF,从而可证∠DFE=90°可得DF=EF,可得①△DFE是等腰直角三角形正确;②,再由补割法可证④是正确的.判断③与⑤,①△DFE是等腰直角三角形;可得DE=DF,当DF⊥BC时,DF 最小,DE取最小值4,故③错误,△CDE最大的面积等于四边形CDEF的面积减去△DEF的最小面积,由③可知⑤是正确的,个,故①④⑤正确.解答:解;连接CF.∵△ABC为等腰直角三角形,∴∠FCB=∠A=45°,CF=AF=FB,∵AD=CE,∴△ADF≌△CEF,∴EF=DF,∠CFE=∠AFD,∵∠AFD+∠CFD=90°∴∠CFE+∠CFD=∠EFD=90°,∴△EDF是等腰直角三角形,∴①正确;当D、E分别为AC,BC的中点时,四边形CDEF是正方形,因此②错误;∵△ADF≌△CEF,∴S△CEF=S△ADF,∴④是正确的;∵△DEF是等腰直角三角形,∴当DE最小时,DF也最小,即当DF⊥AC时,DE最小,此时DF=BC=4,∴DE=DF=4,∴③错误;当△CDE面积最大时,由④知,此时△DEF的面积最小,此时,S△CDE=S四边形CEFD﹣S△DEF=S△AFC﹣S△DEF=16﹣8=8,∴⑤正确.综上所述正确的有①④⑤.故答案为:①④⑤.点评:此题考查的知识点有等腰直角三角形,全等三角形的判定与性质等知识点,综合性强,难度较大,是一道难题.16.(2011•贵阳)如图,已知等腰Rt△ABC的直角边长为l,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推到第五个等腰Rt△AFG,则由这五个等腰直角三角形所构成的图形的面积为15.5.考点:等腰直角三角形;三角形的面积;勾股定理.专题:计算题;压轴题;规律型.分析:根据△ABC是边长为L的等腰直角三角形,利用勾股定理分别求出Rt△ABC、Rt△ACD、Rt△ADE的斜边长,然后利用三角形面积公式分别求出其面积,找出规律,再按照这个规律得出第四个、第五个等腰直角三角形的面积,相加即可.解答:解:∵△ABC是边长为1的等腰直角三角形,∴S△ABC=×1×1==21﹣2;AC==,AD==2…,∴S△ACD=××=1=22﹣2;S△ADE=×2×2=2=23﹣2…∴第n个等腰直角三角形的面积是2n﹣2.∴S△AEF=24﹣2=4,S△AFG=25﹣2=8,由这五个等腰直角三角形所构成的图形的面积为+1+2+4+8=15.5.故答案为:15.5.点评:此题主要考查学生对等腰直角三角形、三角形面积公式和勾股定理的理解和掌握,解答此题的关键是根据△ABC是边长为1的等腰直角三角形分别求出Rt△ABC、Rt△ACD、Rt△ADE的面积,找出规律.17.已知△ABC的三边长a、b、c满足,则△ABC一定是等腰直角三角形.考点:等腰直角三角形;非负数的性质:绝对值;非负数的性质:偶次方;非负数的性质:算术平方根;勾股定理的逆定理.分析:先根据非负数的性质求出a、b、c的值,再根据三角形的三边关系进行判断即可.解答:解:∵△ABC的三边长a、b、c满足,∴a﹣1=0,b﹣1=0,c﹣=0,∴a=1,b=1,c=.∵a2+b2=c2,∴△ABC一定是等腰直角三角形.点评:本题考查的知识点是:一个数的算术平方根与某个数的绝对值以及另一数的平方的和等于0,那么算术平方根的被开方数为0,绝对值里面的代数式的值为0,平方数的底数为0及勾股定理的逆定理.18.(2010•厦门)如图,以第①个等腰直角三角形的斜边长作为第②个等腰直角三角形的腰,以第②个等腰直角三角形的斜边长做为第③个等腰直角三角形的腰,依此类推,若第⑨个等腰直角三角形的斜边长为厘米,则第①个等腰直角三角形的斜边长为厘米.考点:等腰直角三角形;勾股定理.专题:压轴题;规律型.分析:先设第①个等腰直角三角形的斜边是x,第②个的等腰直角三角形的斜边是x,那么第③个等腰直角三角形的斜边是2x,从而有第n个等腰直角三角形的斜边是()n﹣1x,根据题意可得()9﹣1x=16,解即可.解答:解:设第①个等腰直角三角形斜边长是x,根据题意得:()9﹣1x=16,∴16x=16,∴x=.点评:此题关键是找出规律,然后才可以得出关于x的方程,解出x.19.(2010•丹东)已知△ABC是直角边长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的斜边长是.考点:等腰直角三角形.专题:压轴题;规律型.分析:依次、反复运用勾股定理计算,根据计算结果即可得到结论.解答:解:根据勾股定理,第1个等腰直角三角形的斜边长是,第2个等腰直角三角形的斜边长是2=()2,第3个等腰直角三角形的斜边长是2=()3,第n个等腰直角三角形的斜边长是()n.点评:根据勾股定理一步一步计算,找出规律,解答.20.已知△ABC是轴对称图形,且三条高的交点恰好是C点,则△ABC的形状是等腰直角三角形.考点:等腰直角三角形.分析:已知△ABC是轴对称图形,则△ABC是等腰三角形,且三条高的交点恰好是C点,故△ABC是直角三角形;故△ABC的形状是等腰直角三角形.解答:解:△ABC是轴对称图形,且三条高的交点恰好是C点,则△ABC的形状是等腰直角三角形.点评:本题考查轴对称的性质.对应点的连线与对称轴的位置关系是互相垂直,对应点所连的线段被对称轴垂直。
全等三角形等腰三角形证明题专训20题
全等三角形、等腰三角形专项训练(每周末三题)要求:必须画图,抄上条件,能在在图上标记条件的一定要标上,真正学会几何证明题!1、已知:如图,AD=AE,AB=AC,∠DAE=∠BAC.求证:BD=CE.2、已知:如图,△ABC中,AD⊥BC于D,E是AD上一点,BE的延长线交AC于F,若BD=AD,DE=DC。
求证:BF⊥AC。
3、如图,等腰直角三角形ABC中,∠ACB=90°,AD为腰CB上的中线,CE⊥AD交AB于E.求证∠CDA=∠EDB.4、如图:AE=BD,AB=DE,求证:∠A=∠D5、在△ABC中,∠ACB=90°,AC=BC,直线MN经过点C,且AD⊥MN于D,BE⊥MN于E.试问DE,AD,BE具有怎样的等量关系?并加以证明.AB CDE F12A BCDE6、已知:如图,点C 在线段AB 上,以AC 和BC 为边在AB 的同侧作等边三角形△ACM 和△BCN ,连结AN 、BM ,分别交CM 、CN 于点P 、Q .求证:CP=CQ .7、已知:如图,AB9、如图,△ABC 中,AB=AC,BC=BD,AD=DE=EB ,求∠A 的度数。
10、如图,在Rt △ABC 中,在斜边AB 上截取AE=AC ,BD=BC ,求∠DCE 的度数。
11、在△ABC 中,∠A =90°,AB=AC ,D 为BC 的中点. AB C D E F B A O D C E 图2 F C B O D 图1 A EF AB E DA C E DB 1 2 3(1)如图1,E ,F 分别是AB ,AC 上的点,且BE=AF ,求证:△DEF 为等腰直角三角形;(2)如图2,若E ,F 分别是AB ,CA 延长线上的点,仍有BE=AF ,其他条件不变,•那么△DEF 是否仍为等腰直角三角形?证明你的结论.12、如图,△ABC 中,D 是BC 的中点,过D 点的直线GF 交AC 于F ,交AC 的平行线BG 于G 点,DE⊥DF,交AB 于点E ,连结EG 、EF.(1)求证:BG =CF.(2)请你判断BE+CF 与EF 的大小关系,并说明理由.13、如图,已知∠BAC=90º,AD ⊥BC, ∠1=∠2,EF ⊥BC, FM ⊥AC,求证:FM=FD 。
等腰三角形证明题
1. 如图,已知在等边三角形ABC 中,D 是AC 的中点,E 为BC 延长线上一点,且CE =CD ,DM ⊥BC ,垂足为M 。
求证:M 是BE 的中点。
AD1BM C E2. 如图,已知:ABC ∆中,AC AB =,D 是BC 上一点,且CA DC DB AD ==,,求BAC ∠的度数。
ABCD3. 已知:如图,ABC ∆中,AB CD AC AB ⊥=,于D 。
求证:DCB 2BAC ∠=∠。
A 1 2D BC34.已知:如图,在△ABC 中,AB =AC ,D 是BC 的中点,DE ⊥AB ,DF ⊥AC ,E 、F 分别是垂足。
求证:AE =AF 。
AE FBDC5. 如图,ABC ∆是等边三角形,BC BD 90CBD ==∠,,求1∠的度数CA 1DB2 36.已知:如图, △ABC 中, ∠ABC=2∠ACB, AD ⊥BC 于D . 求证:DC=AB+BD .7. 已知:如图,AD 平分∠BAC ,EF 垂直平分AD 交BC 延长线于F ,连结AF . 求证:∠B=∠CAF.已知:如图, △ABC 是等边三角形, D 是BC 的中点, DF⊥AC 于F, 延长DF 到E, 使EF=DF, 连结AE,求:∠E 的度数.一、选择题:1.如图1,在△ABC 中,AD 平分∠CAE ,∠B=30︒,∠CAD=65︒,则∠ACD 等于( )A .50︒B .65︒C .80︒D .95︒2.如图2,在△ABD 中,AD=4,AB=3,AC 平分∠BAD ,则:ABC ACD S S ∆∆=( ) A .3:4 B .4:3 C .16:19 D .不能确定 3.如图3,在△ABC 中,∠C=90︒,AD 平分∠BAC ,DE ⊥AB 于E ,则下列结论:①AD 平分∠CDE ;②∠BAC=∠BDE ;③DE 平分∠ADB ;④BE+AC=AB 。
其中正确的有( )A .2个B .3个C .4个D .1个4.如图4,AD ∥BC ,∠D=90︒,AP 平分∠DAB ,PB 平分∠ABC ,点P 恰好在CD上,则PD 与PC 的大小关系是 ( )A .PD>PCB .PD<PC C .PD=PCD .无法判断5、在三角形内部,有一点P 到三角形三个顶点的距离相等,则点P 一定是( ) A 、三角形三条角平分线的交点;B 、三角形三条垂直平分线的交点; C 、三角形三条中线的交点;D 、三角形三条高的交点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
等腰三角形练习题
一、计算题
1、如图,ABC 中,AB=AC ,BC=BD ,AD=DE=EB ,求∠A 的度数。
2、如图,CA=CB ,DF=DB ,AE=AD ,求∠A
的度数。
3、如图,ABC 中,AB=AC ,D 在BC 上,D E ⊥AB 于E ,DF ⊥BC 交AC 于点F ,若∠EDF=070,求∠AFD 的度数。
4、如图,
ABC 中,AB=AC ,BC=BD=DE=EA ,求∠A 的度数。
5、如图,ABC 中,AB=AC ,D 在BC 上,∠BAD=030,在AC 上取点E ,使AE=AD ,求∠EDC 的度数。
6、如图,ABC 中,∠C=090,D 为AB 上一点,作DE ⊥BC 于E ,若BE=AC ,BD=1
2
,DE+BC=1,求∠ABC 的度数。
7、如图,
ABC 中,AD 平分∠BAC ,若AC=AB+BD ,求∠B :∠C 的值。
二、证明题
8、如图,ABC中,∠ABC、∠CAB的平分线交于点P,过点P作D E∥AB,分别交BC、AC于点D、E。
求证:DE=BD+AE。
9、如图,DEF中,∠EDF=2∠E,FA⊥DE于点A,问:DF、AD、AE之间有什么样的大小关系。
60,角平分线AD、CE交于点O。
求证:AE+CD=AC
10、如图,ABC中,∠B=0
100,BD平分∠ABC,求证:BC=BD+AD。
11、如图,ABC中,AB=AC,∠A=0
13、如图,ABC中,∠1=∠2,∠EDF=∠BAC,求证:BD=ED。
15、如图,ABC中,AB=AC,BE=CF,EF交BC于点G。
求证:EG=FG。
16、如图,ABC中,∠ABC=2∠C,AD是BC边上的高,B到点E,使BE=BD,求证:AF=FC。
17、如图,ABC中,AB=AC,AD和BE两条高,交于点H,且AE=BE,求证:AH=2BD。
18、如图,ABC 中,AB=AC ,∠BAC=090,BD=AB ,∠ABD=030,
求证:AD=DC 。
19、如图,等边ABC 中,分别延长BA 至点E ,延长BC 至点D ,使AE=BD ,求证:EC=ED 。
20、如图,四边形ABCD 中,∠BAD+∠BCD=0180,AD 、BC 的延长线交于点F ,DC 、AB 的延
长线交于点E ,∠E 、∠F 的平分线交于点H ,求证:EH ⊥FH。