二次函数典型例题
二次函数知识点及典型例题
⼆次函数知识点及典型例题⼆次函数⼀、⼆次函数的⼏何变换⼆、⼆次函数的图象和性质(Ⅰ) y=a(x-h)2+k (a≠0)的图象和性质(Ⅱ) y=ax2+bx+c (a≠0)的图象和性质(Ⅲ) a 、b 、c 的符号对抛物线形状位置的影响三、待定系数法求⼆次函数的解析式1、⼀般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择⼀般式。
2、顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式。
3、交点式:已知图像与x 轴的交点横坐标1x 、2x ,通常选⽤交点式:()()21x x x x a y --=。
4、顶点在原点,可设解析式为y=ax 2。
5、对称轴是y 轴(或者顶点在y 轴上),可设解析式为y= ax 2+c 。
6、顶点在x 轴上,可设解析式为()2h x a y -=。
7、抛物线过原点,可设解析式为y=ax2+bx 。
四、抛物线的对称性1、抛物线与x 轴有两个交点(x 1,0)(x 2,0),则对称轴为x=2x x 21+。
2、抛物线上有不同的两个交点(m ,a )(n,a ),则对称轴为x=2nm +。
3、抛物线c bx ax y ++=2(a ≠0)与y 轴交点关于对称轴的对称点为(ab-, c)。
五、⼆次函数与⼀元⼆次⽅程的关系对于抛物线c bx ax y ++=2(a ≠0),令y=0,即为⼀元⼆次⽅程02=++c bx ax ,⼀元⼆次⽅程的解就是⼆次函数与x 轴交点的横坐标。
要分三种情况:1、判别式△=b 2-4ac >0?抛物线与x 轴有两个不同的交点(ab 24acb -2+,0)(a b 24ac b --2,0)。
有韦达定理可知x 1+x 2=a b - ,x 1·x 2=ac 。
2、判别式△=b 2-4ac=0?抛物线与x 轴有⼀个交点(ab 2-,0)。
3、判别式△=b 2-4ac=0?抛物线与x 轴⽆交点。
九年级数学上册第二十二章二次函数典型例题(带答案)
九年级数学上册第二十二章二次函数典型例题单选题1、若二次函数y=ax2+bx+c的图像如图所示,则下列说法不正确的是()A.当1<x<3时,y>0B.当x=2时,y有最大值C.图像经过点(4,−3)D.当y<−3时,x<0答案:D分析:观察图象可知抛物线开口方向,根据图象经过(1,0),(3,0)可得抛物线对称轴为直线x=2,进而求解.解:∵抛物线开口向下,经过点(1,0),(3,0),∴抛物线对称轴为直线x=2,∴当1<x<3时,y>0,A选项正确,不符合题意.当x=2时y有最大值,B选项正确,不符合题意.∵图象经过(0,−3),抛物线对称轴为直线x=2,∴抛物线经过点(4,−3),C选项正确,不符合题意.当x<0或x>4时,y<−3,选项D错误,符合题意.故选D.小提示:本题考查二次函数的图象及性质,能够根据函数图象找出对称轴、判断开口方向和增减性是解题的关键.2、已知二次函数y=ax2+2ax+a−1的图象只经过三个象限,下列说法正确的是()A.开口向下B.顶点在第一象限C.a≥1D.当x>1时,y的最小值为-1答案:C分析:二次函数y=ax2+2ax+a−1的图象只经过三个象限,要满足条件,常数项大于等于0,解不等式即得.∵二次函数y=ax2+2ax+a−1的图象只经过三个象限,∴a-1≥0,∴a≥1.故选C.小提示:本题考查了二次函数y=ax2+2ax+a−1的图象只经过三个象限,运用函数图象与x轴的两个交点横坐标的积大于等于0,即常数项大于等于0,是解决此类问题的关键.3、已知a<−1,点(a−1,y1),(a,y2),(a+1,y3)都在函数y=3x2−2的图象上,则()A.y1<y2<y3B.y1<y3<y2C.y2<y1<y3D.y3<y2<y1答案:D分析:先求出抛物线的对称轴,抛物线y=3x2-2的对称轴为y轴,即直线x=0,图象开口向上,当a<-1时,a-1<a<a+1<0,在对称轴左边,y随x的增大而减小,由此可判断y1,y2,y3的大小关系.解:∵当a<-1时,a-1<a<a+1<0,而抛物线y=3x2-2的对称轴为直线x=0,开口向上,∴三点都在对称轴的左边,y随x的增大而减小,∴y1>y2>y3.故选:D.小提示:本题考查的是二次函数图象上点的坐标特点,当二次项系数a>0时,在对称轴的左边,y随x的增大而减小,在对称轴的右边,y随x的增大而增大;a<0时,在对称轴的左边,y随x的增大而增大,在对称轴的右边,y随x的增大而减小.4、某超市销售一种商品,每件成本为50元,销售人员经调查发现,该商品每月的销售量y(件)与销售单价x (元)之间满足函数关系式y=−5x+550,若要求销售单价不得低于成本,为每月所获利润最大,该商品销售单价应定为多少元?每月最大利润是多少?()A.90元,4500元B.80元,4500元C.90元,4000元D.80元,4000元答案:B分析:设每月所获利润为w ,按照等量关系列出二次函数,并根据二次函数的性质求得最值即可. 解:设每月总利润为w ,依题意得:w =y(x −50)=(−5x +550)(x −50)=−5x 2+800x −27500=−5(x −80)2+4500∵−5<0,此图象开口向下,又x ≥50,∴当x =80时,w 有最大值,最大值为4500元.故选:B .小提示:本题考查了二次函数在实际生活中的应用,根据题意找到等量关系并掌握二次函数求最值的方法是解题的关键.5、下表中列出的是一个二次函数的自变量x 与函数y 的几组对应值:B .这个函数的图象与x 轴无交点C .这个函数的最小值小于-6D .当x >1时,y 的值随x 值的增大而增大答案:C分析:利用表中的数据,求得二次函数的解析式,再配成顶点式,根据二次函数的性质逐一分析即可判断. 解:设二次函数的解析式为y =ax 2+bx +c ,依题意得:{4a −2b +c =6c =−4a +b +c =−6 ,解得:{a =1b =−3c =−4, ∴二次函数的解析式为y =x 2−3x −4=(x −32)2−254,∵a =1>0,∴这个函数的图象开口向上,故A 选项不符合题意;∵△=b 2−4ac =(−3)2−4×1×(−4)=25>0,∴这个函数的图象与x 轴有两个不同的交点,故B 选项不符合题意;∵a =1>0,∴当x =32时,这个函数有最小值−254<−6,故C 选项符合题意;∵这个函数的图象的顶点坐标为(32,−254), ∴当x >32时,y 的值随x 值的增大而增大,故D 选项不符合题意; 故选:C .小提示:本题主要考查了待定系数法求二次函数的解析式以及二次函数的性质,利用二次函数的性质解答是解题关键.6、如图所示是二次函数y =ax 2+bx +c (a ≠0)的图象,以下结论:①abc <0;②3a +c =0;③ax 2+bx +c =0的两个根是x 1=−1,x 2=3;④4a +2b +c >0,其中正确的是( )A .③④B .①②C .②③D .②③④答案:C分析:根据二次函数的图象与性质即可求出答案.解:①由图象可知:a >0,c <0,由对称轴可知:−b 2a >0,∴b <0,∴abc >0,故①错误;②由对称轴可知:−b 2a =1,∴b =−2a ,∵抛物线过点(1,0),∴a −b +c =0,∴a+2a+c=0,∴3a+c=0,故②正确;③由对称轴为直线x=1,抛物线过点(−1,0),∴抛物线与x轴的另一个交点为(3,0),∴ax2+bx+c=0的两个根是x1=−1,x2=3,故③正确;④由图象可知,当x=2时,y<0,∴4a+2b+c<0,故④错误;故选:C.小提示:本题考查二次函数的图象与系数的关系,解题的关键是熟练运用二次函数的图象与性质,本题属于中等题型.7、对于抛物线y=−3(x+1)2−2,下列说法正确的是()A.抛物线开口向上B.当x>−1时,y随x增大而减小C.函数最小值为﹣2D.顶点坐标为(1,﹣2)答案:B分析:根据二次函数图象的性质对各项进行分析判断即可.解:抛物线解析式y=−3(x+1)2−2可知,A、由于a=−3<0,故抛物线开口方向向下,选项不符合题意;B、抛物线对称轴为x=−1,结合其开口方向向下,可知当x>−1时,y随x增大而减小,选项说法正确,符合题意;C、由于抛物线开口方向向下,故函数有最大值,且最大值为-2,选项不符合题意;D、抛物线顶点坐标为(-1,-2),选项不符合题意.故选:B.小提示:本题主要考查了二次函数的性质,解题关键是熟练运用抛物线的开口方向、对称轴、顶点坐标以及二次函数图象的增减性解题.8、已知实数a,b满足b−a=1,则代数式a2+2b−6a+7的最小值等于()A.5B.4C.3D.2答案:A分析:由已知得b=a+1,代入代数式即得a2-4a+9变形为(a-2)2+5,再根据二次函数性质求解.解:∵b-a=1,∴b=a+1,∴a2+2b-6a+7=a2+2(a+1)-6a+7=a2-4a+9=(a-2)2+5,∵(a-2)2≥0,∴当a=2时,代数式a2+2b-6a+7有最小值,最小值为5,故选:A.小提示:本题考查二次函数的最值,通过变形将代数式化成(a-2)2+5是解题的关键.9、如图所示,一座抛物线形的拱桥在正常水位时,水面AB宽为20米,拱桥的最高点O到水面AB的距离为4米.如果此时水位上升3米就达到警戒水位CD,那么CD宽为()A.4√5米B.10米C.4√6米D.12米答案:B分析:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax²,由此可得A(﹣10,﹣4),B(10,﹣4),即可求函数解析式为y=﹣1x²,再将y=﹣1代25入解析式,求出C、D点的横坐标即可求CD的长.解:以O点为坐标原点,AB的垂直平分线为y轴,过O点作y轴的垂线,建立直角坐标系,设抛物线的解析式为y=ax2,∵O 点到水面AB 的距离为4米,∴A 、B 点的纵坐标为﹣4,∵水面AB 宽为20米,∴A (﹣10,﹣4),B (10,﹣4),将A 代入y =ax 2,﹣4=100a ,∴a =﹣125, ∴y =﹣125x 2, ∵水位上升3米就达到警戒水位CD ,∴C 点的纵坐标为﹣1,∴﹣1=﹣125x 2, ∴x =±5,∴CD =10,故选:B .小提示:本题考查二次函数在实际问题中的应用,找对位置建立坐标系再求解二次函数是关键.10、已知抛物线y =ax 2 +bx +c 的对称轴为x =1,与x 轴正半轴的交点为A (3,0),其部分图象如图所示,有下列结论:①abc >0;②2c ﹣3b <0</span>;③5a +b +2c =0;④若B (43,y 1)、C (13,y 2)、D (−13,y 3)是抛物线上的三点,则y 1<y 2<y 3.其中正确结论的个数有( )A .1B .2C .3D .4答案:B分析:根据二次函数的图象与性质一一判断即可.解:由图象可知,开口向上,图象与y轴负半轴有交点,则a>0,c<0,对称轴为直线x=−b2a=1,则b=−2a<0,∴abc>0,故①正确;当x=3时,y=9a+3b+c=0,∵b=−2a,∴3a+c=0,即3a=−c∴2c−3b=2×(−3a)−3×(−2a)=0,故②错误;∵对称轴为直线x=−b2a=1,∴抛物线与x轴负半轴的交点为(−1,0),∴a−b+c=0,∵9a+3b+c=0,两式相加,则10a+2b+2c=0,∴5a+b+c=0,故③错误;∵|−13−1|=43,|13−1|=23,|43−1|=13,∴43>23>13,∴根据开口向上,离对称轴越近其对应的函数值越小,则有y3>y2>y1,故④正确;∴正确的结论有2个,故选:B小提示:本题考查了二次函数的图象及性质;熟练掌握二次函数图象及性质,能够通过函数图象提取信息是解题的关键.填空题11、已知函数y=mx2+2mx+1在−3⩽x⩽2上有最大值4,则常数m的值为 __.答案:38或−3分析:分两种情况:m>0和m<0分别求y的最大值即可.解:y=mx2+2mx+1=m(x+1)2+1−m.当m>0时,当x=2时,y有最大值,∴4m+4m+1=4,∴m=3;8当m<0时,当x=−1时,y有最大值,∴m−2m+1=4,∴m=−3,或−3.综上所述:m的值为38故答案是:3或−3.8小提示:本题考查了二次函数的最值,熟练掌握二次函数的图象及性质,解题时,注意要分类讨论,以防漏解.12、二次函数y=(x-1)2+2的最小值是__________.答案:2分析:根据二次函数y=(x-1)2+2的性质得抛物线的开口向上,即当横坐标等于在对称轴的值时函数取得最小值.解:二次函数y=(x-1)2+2的展开式为:y=x2−2x+3,∵a=1>0,∴抛物线的开口向上,∴当x=−−2=1时,有最小值y=2,2所以答案是:2.小提示:本题考查了二次函数的性质,解题的关键是掌握二次函数的性质.13、如图①,“东方之门”通过简单的几何曲线处理,将传统文化与现代建筑融为一体,最大程度地传承了苏州的历史文化.如图②,“门”的内侧曲线呈抛物线形,已知其底部宽度为80米,高度为200米.则离地面150米处的水平宽度(即CD的长)为______.答案:40米分析:以底部所在的直线为x轴,以线段CD的垂直平分线所在的直线为y轴建立平面直角坐标系,用待定系数法求得抛物线的解析式,则可知点C、D的横坐标,进而可得CD的长.解:如图,以底部所在的直线为x轴,以线段CD的垂直平分线所在的直线为y轴建立平面直角坐标系:∴A(−40,0),B(40,0),E(0,200)设抛物线的解析式为y=a(x+40)(x−40),将E(0,200)代入,得:200=a(0+40)(0−40),,解得:a=−18∴抛物线的解析式为y=−1x2+200,8x2+200=150,将y=150代入得:−18解得:x=±20,∴C(−20,150),D(20,150),∴CD=40,所以答案是:40米.小提示:本题考查了二次函数在实际问题中的应用.解题的关键在于建立二次函数模型.体现了数形结合的思想.14、抛物线y=ax2+bx+c(a≠0)的部分图象如图所示,其与x轴的一个交点坐标为(﹣3,0),对称轴为x =﹣1,则当y<0时,x的取值范围是_____.答案:﹣3<x<1分析:根据抛物线与x轴的一个交点坐标和对称轴,由抛物线的对称性可求抛物线与x轴的另一个交点,再根据抛物线的增减性可求当y<0时,x的取值范围.解:∵抛物线y=ax2+bx+c(a≠0)与x轴的一个交点为(﹣3,0),对称轴为x=﹣1,∴抛物线与x轴的另一个交点为(1,0),由图象可知,当y<0时,x的取值范围是﹣3<x<1.所以答案是:﹣3<x<1.小提示:本题考查了二次函数的性质和数形结合能力,熟练掌握并灵活运用是解题的关键.15、如图,在平面直角坐标系中,菱形ABCD的一边AB在x轴上,顶点B在x轴正半轴上.若抛物线y=x2﹣5x+4经过点C、D,则点B的坐标为______.答案:(2,0)分析:根据抛物线y=x2﹣5x+4经过点C、D和二次函数图象具有对称性,可以求得该抛物线的对称轴和CD 的长,然后根据菱形的性质和勾股定理可以求得AO的长,从而可以求得OB的长,进而写出点B的坐标.解:∵抛物线y=x2﹣5x+4,∴该抛物线的对称轴是直线x=5,点D的坐标为(0,4),2∴OD=4,∵抛物线y=x2﹣5x+4经过点C、D,∵四边形ABCD为菱形,AB在x轴上,∴CD∥AB,即CD∥x轴,∴CD=5×2=5,2∴AD=5,∵∠AOD=90°,OD=4,AD=5,∴AO=√AD2−OD2=√52−42=3,∵AB=5,∴OB=5﹣3=2,∴点B的坐标为(2,0),所以答案是:(2,0).小提示:本题考查二次函数的性质、二次函数图象上点的坐标特征、菱形的性质,解答本题的关键是明确题意,利用二次函数的性质和数形结合的思想解答.解答题16、如图,点P(a,3)在抛物线C:y=4−(6−x)2上,且在C的对称轴右侧.(1)写出C的对称轴和y的最大值,并求a的值;(2)坐标平面上放置一透明胶片,并在胶片上描画出点P及C的一段,分别记为P′,C′.平移该胶片,使C′所在抛物线对应的函数恰为y=−x2+6x−9.求点P′移动的最短路程.答案:(1)对称轴为直线x=6,y的最大值为4,a=7(2)5分析:(1)由y=a(x−ℎ)2+k的性质得开口方向,对称轴和最值,把P(a,3)代入y=4−(6−x)2中即可得出a的值;(2)由y=−x2+6x−9=−(x−3)2,得出抛物线y=−x2+6x−9是由抛物线C:y=−(x−6)2+4向左平移3个单位,再向下平移4个单位得到,即可求出点P′移动的最短路程.(1)y=4−(6−x)2=−(x−6)2+4,∴对称轴为直线x=6,∵−1<0,∴抛物线开口向下,有最大值,即y的最大值为4,把P(a,3)代入y=4−(6−x)2中得:4−(6−a)2=3,解得:a=5或a=7,∵点P(a,3)在C的对称轴右侧,∴a=7;(2)∵y=−x2+6x−9=−(x−3)2,∴y=−(x−3)2是由y=−(x−6)2+4向左平移3个单位,再向下平移4个单位得到,平移距离为√32+42=5,∴P′移动的最短路程为5.小提示:本题考查二次函数y=a(x−ℎ)2+k的图像与性质,掌握二次函数y=a(x−ℎ)2+k的性质以及平移的方法是解题的关键.17、今年以来,我市接待的游客人数逐月增加,据统计,游玩某景区的游客人数三月份为4万人,五月份为5.76万人.(1)求四月和五月这两个月中,该景区游客人数平均每月增长百分之几;(2)若该景区仅有A,B两个景点,售票处出示的三种购票方式如表所示:2万、3万和2万.并且当甲、乙两种门票价格不变时,丙种门票价格每下降1元,将有600人原计划购买甲种门票的游客和400人原计划购买乙种门票的游客改为购买丙种门票.①若丙种门票价格下降10元,求景区六月份的门票总收入;②问:将丙种门票价格下降多少元时,景区六月份的门票总收入有最大值?最大值是多少万元?答案:(1)20%;(2)①798万元,②当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元分析:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x,则四月份的游客为4(1+x)人,五月份的游客为4(1+x)2人,再列方程,解方程可得答案;(2)①分别计算购买甲,乙,丙种门票的人数,再计算门票收入即可得到答案;②设丙种门票价格降低m 元,景区六月份的门票总收入为W万元,再列出W与m的二次函数关系式,利用二次函数的性质求解最大利润即可得到答案.解:(1)设四月和五月这两个月中,该景区游客人数的月平均增长率为x,由题意,得4(1+x)2=5.76∴(1+x)2=1.44,解这个方程,得x1=0.2,x2=−2.2(舍去)答:四月和五月这两个月中,该景区游客人数平均每月增长20%.(2)①由题意,丙种门票价格下降10元,得:购买丙种门票的人数增加:0.6+0.4=1(万人),购买甲种门票的人数为:2−0.6=1.4(万人),购买乙种门票的人数为:3−0.4=2.6(万人),所以:门票收入问;100×1.4+80×2.6+(160−10)×(2+1)=798(万元)答:景区六月份的门票总收入为798万元.②设丙种门票价格降低m元,景区六月份的门票总收入为W万元,由题意,得W=100(2−0.06m)+80(3−0.04m)+(160−m)(2+0.06m+0.04m)化简,得W=−0.1(m−24)2+817.6,∵−0.1<0,∴当m=24时,W取最大值,为817.6万元.答:当丙种门票价格降低24元时,景区六月份的门票总收入有最大值,为817.6万元.小提示:本题考查的是一元二次方程的应用,二次函数的实际应用,掌握利用二次函数的性质求解利润的最大值是解题的关键.18、已知,如图,二次函数y=−x2+bx+c的图像与x轴交于A,B两点,与y轴交于点C(0, 6),且经过点(1, 10)(1)求该抛物线的解析式;(2)求该抛物线的顶点坐标和对称轴.(3)求△ABC的面积,写出y>0时x的取值范围.答案:(1)y=−x2+5x+6;(2)顶点坐标是(52, 494),对称轴是x=52;(3)ΔABC的面积为21,y>0时,x的取值范围是-1<x<6.分析:(1)直接利用待定系数法将已知点代入得出方程组求出答案;(2)直接利用配方法求出抛物线顶点坐标和对称轴即可;(3)首先求出抛物线与x轴的交点坐标,然后利用三角形面积公式和图像得出答案.(1)∵二次函数y=−x2+bx+c的图像经过点C(0, 6)、(1, 10),∴{c =6−1+b +c =10, 解这个方程组,得{b =5c =6, ∴该二次函数的解析式是y =−x 2+5x +6;(2)y =−x 2+5x +6=−(x −52)2+494,∴顶点坐标是(52, 494); 对称轴是x =52; (3)∵二次函数y =−x 2+5x +6的图像与x 轴交于A ,B 两点,∴−x 2+5x +6=0,解这个方程得:x 1=−1,x 2=6,即二次函数y =−x 2+5x +6与x 轴的两个交点的坐标为A (−1, 0),B (6, 0).∴ΔABC 的面积S △ABC =12AB ×OC =12×|6−(−1)|×6=21. 由图像可得,当-1<x <6时,y >0,故y >0时,x 的取值范围是-1<x <6.小提示:本题主要考查了待定系数法求函数表达式,求三角形面积,图像法求自变量求职范围,用配方法求抛物线顶点坐标和对称轴,求出函数表达式是解决问题的关键.。
二次函数典型例题——相似 全等
二次函数典型例题——相似、全等1、如图,已知点A (4,0),O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P 、O 两点的二次函数y 1和过P 、A 两点的二次函数y 2的图象开口均向下,它们的顶点分别为B 、C ,射线OB 与AC 相交于点D .当OD =AD =3时,这两个二次函数的最大值之和等于( A )A B C .3 D .42、定义:对于抛物线2y ax bx c =++(a 、b 、c 是常数,0a ≠),若2b ac =,则称该抛物线为黄金抛物线.例如:2222y x x =-+是黄金抛物线. ⑴请再写出一个与上例不同的黄金抛物线的解析式;⑵若抛物线2y ax bx c =++(a 、b 、c 是常数,0a ≠)是黄金抛物线,请探究该黄金抛物线与x 轴的公共点个数的情况(说明理由);⑶将黄金抛物线2222y x x =-+沿对称轴向下平移3个单位.①直接写出平移后的新抛物线的解析式;②设①中的新抛物线与y 轴交于点A ,对称轴与x 轴交于点B ,动点Q 在对称轴上,问新抛物线上是否存在点P ,使以点P 、Q 、B 为顶点的三角形与△AOB 全等?若存在,直接写出所有符合条件的点P 的坐标;若不存在,请说明理由.3、在平面直角坐标系xOy 中,抛物线235y mx x m =+++与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C (0 , 4),D 为OC 的中点. (1)求m 的值;(2)抛物线的对称轴与 x 轴交于点E ,在直线AD 上是否存在点F ,使得以点A 、B 、F 为顶点的三角形与ADE ∆相似?若存在,请求出点F 的坐标,若不存在,请说明理由; (3)在抛物线的对称轴上是否存在点G ,使△GBC 中BC 出点G 的坐标;若不存在,请说明理由.解:(1)抛物线m m mx y +++=532与y 轴交于点C (0 , 4),∴ 5 4.m +=∴ 1.m =-(2)抛物线的解析式为 234y x x =-++.可求抛物线与x 轴的交点A (-1,0),B (4,0). 可求点E 的坐标3(,0)2.由图知,点F 在x 轴下方的直线AD 上时,ABF ∆是钝角三角形,不可能与ADE ∆相似,所以点F 一定在x 轴上方.此时ABF ∆与ADE ∆有一个公共角,两个三角形相似存在两种情况: ①当AB AEAF AD=时,由于E 为AB 的中点,此时D 为AF 的中点, 可求 F 点坐标为(1,4). ② 当AB AD AF AE =时,55AF AF =解得过F 点作FH ⊥x 轴,垂足为H .可求F 的坐标为352(,).(3) 在抛物线的对称轴上存在符合题意的点G .由题意,可知△OBC 为等腰直角三角形,直线BC 为 4.y x =-+ 可求与直线BCy =-x +9或y =-x -1. ∴ 点G 在直线y =-x +9或y =-x -1上. ∵ 抛物线的对称轴是直线23=x , ∴ ⎪⎩⎪⎨⎧+-==.9,23x y x 解得..215,23⎪⎪⎩⎪⎪⎨⎧==y x 或⎪⎩⎪⎨⎧--==.1,23x y x 解得⎪⎪⎩⎪⎪⎨⎧-==.25,23y x ∴ 点G 的坐标为31535(,)-2222或(,).4、如图,在平面直角坐标系xOy 中,二次函数图象的顶点坐标为C (- 4,且在x 轴上截得的线段AB 的长为6. (1)求二次函数的解析式;(2)在y 轴上确定一点M ,使MA +MC 的值最小,求出点M 的坐标; (3)在x 轴下方的抛物线上,是否存在点N ,使得以N 、A 、B 三点为顶点的三角形与△ABC相似?如果存在,求出点N 的坐标;如果不存在,请说明理由.备用图5、在平面直角坐标系xOy 中,已知抛物线32++=bx ax y 经过(-2,-5)和(5,-12)两点.(1)求此抛物线的解析式;(2)设此抛物线与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于C 点,D 是线段BC 上一点(不与点B 、C 重合),若以B 、O 、D 为顶点的三角形与△BAC 相似,求点D 的坐标;(3)点P 在y 轴上,点M 在此抛物线上,若要使以点P 、M 、A 、B 为顶点的四边形是平行四边形,请你直接写出点M 的坐标.6、已知直线y=kx-3与x 轴交于点A (4,0),与y 轴交于点C ,抛物线234y x mx n =-++经过点A 和点C,动点P 在x 轴上以每秒1个长度单位的速度由抛物线与x 轴的另一个交点B 向点A 运动,点Q 由点C 沿线段CA 向点A 运动且速度是点P 运动速度的2倍.(1)求此抛物线的解析式和直线的解析式; (2)如果点P 和点Q 同时出发,运动时间为t (秒),试问当t 为何值时,以A 、P 、Q为顶点的三角形与△AOC 相似;(3)在直线CA 上方的抛物线上是否存在一点D ,使得△ACD 的面积最大.若存在,求 出点D 的坐标;若不存在,请说明理由.解:(1)∵ 直线y=kx-3过点A (4,0),∴ 0 = 4k -3,解得k=34. ∴ 直线的解析式为 y=34x-3.……………………………………1分 由直线y=34x-3与y 轴交于点C ,可知C(0,-3) . ∴ 2344304m -⨯+-=,解得 m=154. ∴ 抛物线解析式为23153.44y x x =-+- ………………………2分(2)对于抛物线3x 415x 43y 2-+-=, 令y=0,则03x 415x 432=-+-,解得x 1=1,x 2=4.∴ B(1,0). ………………………………………………3分∴ AB=3,AO=4,OC=3,AC=5,AP=3-t ,AQ=5-2t . ① 若∠Q 1P 1A=90°,则P 1Q 1∥OC (如图1), ∴ △AP 1Q 1∽△AOC . ∴11AP AQ AO AC =, ∴3t 52t45--=.解得t= 53; ………4分 ② 若∠P 2Q 2A=90°, ∵∠P 2AQ 2 =∠OAC ,∴ △AP 2Q 2∽△AOC. ∴22AP AQ AC AO =, ∴ 3t 52t54--=.解得t=136; ………………5分 备用图综上所述,当t 的值为53或136时,以P 、Q 、A 为顶点的三角形与△AOC 相似. (3)答:存在.过点D 作DF ⊥x 轴,垂足为E ,交AC 于点F (如图2).∴ S △ADF =12DF ·AE ,S △CDF =12DF ·OE . ∴ S △ACD = S △ADF + S △CDF =12DF×(AE+OE) =12×4 (DE+EF)=2×(23153x x 3x 3444-+--+)=23x 6x 2-+.…………6分∴ S △ACD =23(x 2)62--+(0<x<4).又0<2<4且二次项系数023<-,∴ 当x=2时,S △ACD 的面积最大.而当x=2时,y=32.∴ 满足条件的D 点坐标为D (2, 32). …………………7分7.如图1,已知二次函数232y x bx b =++的图象与x 轴交于A 、B 两点(B 在A 的左侧),顶点为C , 点D (1,m )在此二次函数图象的对称轴上,过点D 作y 轴的垂线,交对称轴右侧的抛物线于E 点.(1)求此二次函数的解析式和点C 的坐标;(2)当点D 的坐标为(1,1)时,连接BD 、BE .求证:BE 平分ABD ∠;(3)点G 在抛物线的对称轴上且位于第一象限,若以A 、C 、G 为顶点的三角形与以G 、D 、E 为顶点的三角形相似,求点E 的横坐标.解:(1)∵点D (1,m )在232y x bx b =++图象的对称轴上,∴112b -=. ∴2b =-.∴二次函数的解析式为223y x x =--.………………………………………1分图1 备用图1 备用图2∴C (1,-4). …………………………………………………………………2分(2)∵D (1,1),且DE 垂直于y 轴, ∴点E 的纵坐标为1,DE 平行于x 轴. ∴DEB EBO ∠=∠.令1y =,则2231x x --=,解得121xx ==∵点E 位于对称轴右侧,∴E (1. ∴D E令0y =,则223=0x x --,求得点A 的坐标为(3,0),点B 的坐标为(-1,0). ∴BD =∴BD = D E .……………………………………………………………………3分∴ DEB DBE ∠=∠. ∴ DBE EBO ∠=∠.∴BE 平分ABD ∠.……………………………………………………………4分 (3)∵以A 、C 、G 为顶点的三角形与以G 、D 、E 为顶点的三角形相似,且△GDE 为直角三角形, ∴△ACG 为直角三角形.∵G 在抛物线对称轴上且位于第一象限, ∴90CAG ∠= .∵A (3,0)C (1,-4),A F C G ⊥,∴求得G 点坐标为(1,1). ∴AG AC = ∴AC =2 AG .∴GD =2 DE 或 DE =2 GD .设()2, 23E t t t --(t >1) ,1︒.当点D 在点G 的上方时,则DE=t -1,GD = (223t t --)1-=224t t --. i. 如图2,当 GD =2 DE 时, 则有, 224t t --= 2(t -1).图1图3图2解得,=2t 舍负)………………………5分 ii. 如图3,当DE =2GD 时, 则有,t -1=2(224t t --). 解得,127=1=2t t -,.(舍负)…………………6分 2︒. 当点D 在点G 的下方时,则DE=t -1,GD =1- (223t t --)= -2+2+4t t . i. 如图4,当 GD =2 DE 时, 则有, 2+2+4t t -=2(t -1).解得,=t 舍负) ………………………7分 ii. 如图5,当DE =2 GD 时, 则有,t -1=2(2+2+4t t -). 解得,123=3=2t t -,.(舍负) …………………8分 综上,E点的横坐标为或72或3.8.在平面直角坐标系中,抛物线32++=bx ax y 与x 轴的两个交点分别为A (-3,0),B (1,0),顶点为C .(1) 求抛物线的表达式和顶点坐标;(2) 过点C 作CH ⊥x 轴于点H ,若点P 为x 轴上方的抛物线上一动点(点P 与顶点C 不重合),PQ ⊥AC 于点Q ,当△PCQ 与△ACH 相似时,求点P 的坐标. (1)由题意,得9-33030a b a b +=⎧⎨++=⎩解得,⎩⎨⎧-=-=21b a抛物线的解析式为y=-x 2-2x+3 ………………………2分顶点C 的坐标为(-1,4) ………………………3分 (2)①若点P 在对称轴右侧(如图①),只能是△PCQ ∽△CAH ,得∠QCP =∠CAH . 延长CP 交x 轴于M ,∴AM =CM ,∴AM 2=CM 2. 设M (m ,0),则( m +3)2=42+(m +1)2,∴m =2,即M (2,0). 设直线CM 的解析式为y=k 1x+b 1,图4图5则⎩⎨⎧=+=+-0241111b k b k , 解之得341-=k ,381=b . ∴直线CM 的解析式3834+-=x y .…………………………………4分 3238342+--=+-x x x , 解得311=x ,12-=x (舍去). 9201=y . ∴)92031(,P . ………………………………………………5分 ②若点P 在对称轴左侧(如图②),只能是△PCQ ∽△ACH ,得∠PCQ =∠ACH . 过A 作CA 的垂线交PC 于点F ,作FN ⊥x 轴于点N .由△CF A ∽△CAH 得2==AHCH AF CA , 由△FNA ∽△AHC 得21===CA AF HC NA AH FN . ∴12==FN AN ,, 点F 坐标为(-5,1).设直线CF 的解析式为y=k 2x+b 2,则⎩⎨⎧=+-=+-1542222b k b k ,解之得419,4322==b k . ∴直线CF 的解析式41943+=x y .……………………………………6分 32419432+--=+x x x , 解得471-=x ,12-=x (舍去). ∴)165547(,-P . …………………………………7分 ∴满足条件的点P 坐标为)201(,或)557(,-(图①) (图②)。
浙教版 九年级上册 第一章 二次函数考点分类(有答案)
二次函数考点分类一、典型例题类型一、二次函数的定义1.一个二次函数y=(k-1)x k2−3k+4+2x-1.(1)求k值.(2)求当x=0.5时y的值?2.已知函数y=(m2-m)x2+(m-1)x+2-2m.(1)若这个函数是二次函数,求m的取值范围.(2)若这个函数是一次函数,求m的值.(3)这个函数可能是正比例函数吗?为什么?类型二、二次函数图像的位置关系3.在同一坐标系中,二次函数y=ax2+bx与一次函数y=bx-a的图象可能是()A. B. C. D.4.已知a,b是非零实数,|a|>|b|,在同一平面直角坐标系中,二次函数y1=ax2+bx与一次函数y2=ax+b的大致图象不可能是()A. B. C. D.5. 已知函数y=ax 2+bx+c ,当y >0时,−21<x <31.则函数y=cx 2-bx+a 的图象可能是下图中的( ) A. B. C. D.类型三、二次函数图像与系数的关系6. 二次函数y=ax 2+bx+c (a ≠0)的图象如图所示,下列结论:①abc >0;②b 2-4ac <0;③4a+c >2b ;④(a+c )2>b 2;⑤x (ax+b )≤a-b ,其中正确结论的是( )A .①③④B .②③④C .①③⑤D .③④⑤(6) (7) 7. 如图,已知二次函数y=ax 2+bx+c (a ≠0)的图象与x 轴交于点A (-1,0),与y 轴的交点B 在(0,-2)和(0,-1)之间(不包括这两点),对称轴为直线x=1.下列结论:①abc >0;②4a+2b+c >0;③4ac-b 2<-4a ;④31<a <32;⑤b >c .其中正确结论有 (填写所有正确结论的序号). 8. 设二次函数y=ax 2+bx+c (a >0,c >1),当x=c 时,y=0;当0<x <c 时,y >0.请比较ac 和1的大小,并说明理由.类型四、二次函数点的坐标9. 点A (m ,y 1),B (m+4,y 2),C (1,y 3)在二次函数y=ax 2-2ax+4的图象上,且y 1≤y 2≤y 3,则m 的取值范围是 .10. 设实数a 、b 、c 满足222111c b a ++=|a 1+b 1+c1|,则函数y=ax 2+bx+c 的图象一定经过一个定点,那么这 个定点的坐标是 .11. 如图,二次函数y=ax 2+bx 的图象经过点A (2,4)与B (6,0).点C 是该二次函数图象上A ,B 两点之间的一动点,横坐标为x (2<x <6),写出四边形OACB 的面积S 关于点C 的横坐标x 的函数表达式,并求S 的最大值及C 的坐标.类型五、二次函数平移、折叠12. 将抛物线y=x 2-2x+1向下平移2个单位,再向左平移1个单位,所得抛物线的解析式是( )A .y=x 2-2B .y=x 2+2x-1C .y=x 2-2x-1D .y=x 2+213. 在平面直角坐标系中,点P 的坐标为(1,2),将抛物线y=21x 2-3x+2沿坐标轴平移一次,使其经过点P ,则平移的最短距离为( ) A.21 B .1 C .5 D.25 14. 直线y=m 是平行于x 轴的直线,将抛物线y=-21x 2-4x 在直线y=m 上侧的部分沿直线y=m 翻折,翻折后的部分与没有翻折的部分组成新的函数图象,若新的函数图象刚好与直线y=-x 有3个交点,则满足条件的m 的值为 .二、课堂小测1. 若y=(a 2+a )x 2a −2a −1是二次函数,那么( )A .a=-1或a=3B .a ≠-1且a ≠0C .a=-1D .a=32. 二次函数y=x 2的图象平移后经过点(2,0),则下列平移方法正确的是( )A .向左平移2个单位,向下平移2个单位B .向左平移1个单位,向上平移2个单位C .向右平移1个单位,向下平移1个单位D .向右平移2个单位,向上平移1个单位3. 函数y=ax 2与y=ax+a (a <0)在同一平面直角坐标系内图象大致是( )A .B .C .D .4. 函数y=-(x-m )(x-n )(其中m <n )的图象与一次函数y=mx+n 的图象可能是( )A .B .C .D .5. 如图,抛物线y=ax 2+bx+c 的对称轴为x=-1,且过点(21,0),有下列结论: ①abc >0; ②a-2b+4c >0;③25a-10b+4c=0;④3b+2c >0;其中所有正确的结论是( )A .①③B .①③④C .①②③D .①②③④(5) (6)6. 已知二次函数y=ax 2+bx+c 图象的对称轴为x=1,其图象如图所示,现有下列结论:①abc >0,②b-2a <0,③a-b+c >0,④a+b >n (an+b ),(n ≠1),⑤2c <3b .正确的是( )A .①③B .②⑤C .③④D .④⑤7. 已知点A (a-m ,y 1),B (a-n ,y 2),C (a+b ,y 3)都在二次函数y=x 2-2ax+1的图象上,若0<m <b <n ,则y 1、y 2,y 3的大小关系是( )A .y 1<y 2<y 3B .y 1<y 3<y 2C .y 3<y 1<y 2D .y 2<y 3<y 18. 如图在平面直角坐标系中,一次函数y=mx+n 与x 轴交于点A ,与二次函数交于点B 、点C ,点A 、B 、C 三点的横坐标分别是a 、b 、c ,则下面四个等式中不一定成立的是( )A .a 2+bc=c 2-abB .a b b c b b c --=-222C .b 2(c-a )=c 2(b-a )D .cb a 111+= (8) (9)(10)9. 已知四个二次函数的图象如图所示,那么a 1,a 2,a 3,a 4的大小关系是 .10. 如图,正方形的边长为4,以正方形中心为原点建立平面直角坐标系,作出函数y=31x 2与y=-31x 2的图象,则阴影部分的面积是 .11. 抛物线y=x 2+x+2的图象上有三个点(-3,a )、(-2,b )、(3,c ),则a 、b 、c 的大小关系是(用“<”连接).12. 已知二次函数y=x 2-4x+m (m 为常数)的图象上的两点A (x 1,y 1)、B (x 2,y 2),若x 1<2<x 2,且x 1+x 2>4,则y 1与y 2的大小关系为y 1 y 2.(填“>”或“<”或“=”)13. 若二次函数y=-(x+1)2+h 的图象与线段y=x+2(-3≤x ≤1)没有交点,则h 的取值范围是 .14. 在平面直角坐标系xOy 中,抛物线y=ax 2-2ax-3(a ≠0)与y 轴交于点A .(1)直接写出点A 的坐标;(2)点A 、B 关于对称轴对称,求点B 的坐标;(3)已知点P (4,0),Q(−a 1,0).若抛物线与线段PQ 恰有两个公共点,结合函数图象,求a 的取值范围.15. 已知抛物线y=(m+1)x 2+(21m-2)x-3. (1)当m=0时,不与坐标轴平行的直线l 1与抛物线有且只有一个交点P (2,a ),求直线l 1的解析式;(2)在(1)的条件下,将直线l 1向上平移,与抛物线交于M ,N 两点(M 在N 的右侧),过P 作PQ ∥y 轴交MN 于点Q .求证:S △PQM =S △PQN .。
二次函数-定值问题典型例题
二次函数-定值问题【例1】如图,直线y=kx+b(b>0)与抛物线相交于点A(x1,y1),B(x2,y2)两点,与x轴正半轴相交于点D,与y轴相交于点C,设△OCD的面积为S,且kS+32=0.(1)求b的值;(2)求证:点(y1,y2)在反比例函数的图象上;(3)求证:x1•OB+y2•OA=0.,再根据x=代入y=与抛物线的图象上;++,根据两角对应相等的两三角=,即可证明﹣(﹣)﹣(﹣,x=y=x y=)与抛物线)在反比例函数++y=kx+8=x+++++,++,OFB=90 =,=【例2】如图①,在平面直角坐标系中,点P(0,m2)(m>0)在y轴正半轴上,过点P作平行于x轴的直线,分别交抛物线C1:y=x2于点A、B,交抛物线C2:y=x2于点C、D.原点O关于直线AB的对称点为点Q,分别连接OA,OB,QC和QD.【猜想与证明】填表:由上表猜想:对任意m(m>0)均有= .请证明你的猜想.【探究与应用】(1)利用上面的结论,可得△AOB与△CQD面积比为;(2)当△AOB和△CQD中有一个是等腰直角三角形时,求△CQD与△AOB面积之差;【联想与拓展】如图②过点A作y轴的平行线交抛物线C2于点E,过点D作y轴的平行线交抛物线C1于点F.在y轴上任取一点M,连接MA、ME、MD和MF,则△MAE与△MDF面积的比值为.出均有=x1=x4=x9==.xx,)均有==,AB==CD=,m==m==(﹣(m y=m m﹣m2=m m m =m2m==m=.故答案为:;;.【例3】已知抛物线C1的顶点为P(1,0),且过点(0,).将抛物线C1向下平移h个单位(h>0)得到抛物线C2.一条平行于x轴的直线与两条抛物线交于A、B、C、D四点(如图),且点A、C关于y轴对称,直线AB与x轴的距离是m2(m>0).[来(1)求抛物线C1的解析式的一般形式;(2)当m=2时,求h的值;(3)若抛物线C1的对称轴与直线AB交于点E,与抛物线C2交于点F.求证:tan∠EDF﹣tan∠ECP=.)代入求出),a=y=y=x+;(y=(﹣(y=(﹣ECP=﹣﹣=﹣,ECP=【例4】如图,抛物线y=ax2+c(a≠0)经过C(2,0),D(0,﹣1)两点,并与直线y=kx交于A、B两点,直线l过点E(0,﹣2)且平行于x轴,过A、B两点分别作直线l的垂线,垂足分别为点M、N.(1)求此抛物线的解析式;(2)求证:AO=AM;(3)探究:①当k=0时,直线y=kx与x轴重合,求出此时的值;②试说明无论k取何值,的值都等于同一个常数.的长,然后代入+x x,然后表示出+,,x,AO=mAM=+=+x x +==,+=取何值,++是解题的关键,也是本题的难点,计算量较大,要认真仔细.【例5】. 如图,在平面直角坐标系xOy 中,△OAB 的顶点A的坐标为(10,0),顶点B 在第一象限内,且ABsin ∠(1)若点C 是点B 关于x 轴的对称点,求经过O 、C 、A 三点的抛物线的函数表达式;(2)在(1)中,抛物线上是否存在一点P ,使以P 、O 、C 、A 为顶点的四边形为梯形?若存在,求出点P 的坐标;若不存在,请说明理由;(3)若将点O 、点A 分别变换为点Q ( -2k ,0)、点R (5k ,0)(k>1的常数),设过Q 、R 两点,且以QR 的垂直平分线为对称轴的抛物线与y 轴的交点为N ,其顶点为M ,记△QNM 的面积为QMN S ∆,△QNR 的面积QNR S ∆,求QMN S ∆∶QNR S ∆的值.解:(1)如图,过点B 作BD OA ⊥于点D . 在Rt ABD △中,AB =sin OAB ∠=sin 3BD AB OAB ∴=∠==. 又由勾股定理,得6AD ===.1064OD OA AD ∴=-=-=.点B 在第一象限内,∴点B 的坐标为(43),.∴点B 关于x 轴对称的点C 的坐标为(43)-,. ················ 2分设经过(00)(43)(100)O C A -,,,,,三点的抛物线的函数表达式为2(0)y ax bx a =+≠.由11643810010054a ab a b b ⎧=⎪+=-⎧⎪⇒⎨⎨+=⎩⎪=-⎪⎩,.∴经过O C A ,,三点的抛物线的函数表达式为21584y x x =-. ········· 2分 (2)假设在(1)中的抛物线上存在点P ,使以P O C A ,,,为顶点的四边形为梯形. ①点(43)C -,不是抛物线21584y x =-的顶点, ∴过点C 作直线OA 的平行线与抛物线交于点1P .则直线1CP 的函数表达式为3y =-. 对于21584y x x =-,令34y x =-⇒=或6x =. 1143x y =⎧∴⎨=-⎩,;2263x y =⎧⎨=-⎩,. 而点(43)C -,,1(63)P ∴-,. 在四边形1P AOC 中,1CP OA ∥,显然1CP OA ≠.∴点1(63)P -,是符合要求的点. ······················· 1分 ②若2AP CO ∥.设直线CO 的函数表达式为1y k x =.将点(43)C -,代入,得143k =-.134k ∴=-. ∴直线CO 的函数表达式为34y x =-.于是可设直线2AP 的函数表达式为134y x b =-+. 将点(100)A ,代入,得131004b -⨯+=.1152b ∴=. ∴直线2AP 的函数表达式为31542y x =-+.由223154246001584y x x x y x x ⎧=-+⎪⎪⇒--=⎨⎪=-⎪⎩,即(10)(6)0x x -+=. 11100x y =⎧∴⎨=⎩,;22612x y =-⎧⎨=⎩,; 而点(100)A ,,2(612)P ∴-,. 过点2P 作2P E x ⊥轴于点E ,则212P E =. 在2Rt AP E △中,由勾股定理,得220AP ===.而5CO OB ==.∴在四边形2P OCA 中,2AP CO ∥,但2AP CO ≠.∴点2(612)P -,是符合要求的点.······················· 1分 ③若3OP CA ∥.设直线CA 的函数表达式为22y k x b =+.将点(100)(43)A C -,,,代入,得22222211002435k b k k b b ⎧+==⎧⎪⇒⎨⎨+=-⎩⎪=-⎩,.∴直线CA 的函数表达式为152y x =-. ∴直线3OP 的函数表达式为12y x =.由22121401584y x x x y x x ⎧=⎪⎪⇒-=⎨⎪=-⎪⎩,即(14)0x x -=. 1100x y =⎧∴⎨=⎩,;22147x y =⎧⎨=⎩,.而点(00)O ,,3(147)P ∴,. 过点3P 作3P F x ⊥轴于点F ,则37P F =. 在3Rt OP F △中,由勾股定理,得3OP ===而CA AB ==∴在四边形3P OCA 中,3OP CA ∥,但3OP CA ≠.∴点3(147)P ,是符合要求的点. ······················· 1分 综上可知,在(1)中的抛物线上存在点123(63)(612)(147)P P P --,,,,,, 使以P O C A ,,,为顶点的四边形为梯形. ·················· 1分 (3)由题知,抛物线的开口可能向上,也可能向下.①当抛物线开口向上时,则此抛物线与y 轴的负半轴交于点N . 可设抛物线的函数表达式为(2)(5)(0)y a x k x k a =+->.即22310y ax akx ak =--2234924a x k ak ⎛⎫=-- ⎪⎝⎭.如图,过点M 作MG x ⊥轴于点G .3(20)(50)02Q k R k G k ⎛⎫- ⎪⎝⎭,,,,,,22349(010)24N ak M k ak ⎛⎫-- ⎪⎝⎭,,,,3||2||7||2QO k QR k OG k ∴===,,,22749||||10||24QG k ON ak MG ak ===,,.23117103522QNR S QR ON k ak ak ∴==⨯⨯=△.QNM QNO QMG ONMG S S S S =+-△△△梯形111()222QO ON ON GM OG QG GM =++- 2222114931749210102242224k ak ak ak k k ak ⎛⎫=⨯⨯+⨯+⨯-⨯⨯ ⎪⎝⎭ 3314949212015372884ak ak ⎛⎫=++⨯-⨯= ⎪⎝⎭.3321::(35)3:204QNM QNR S S ak ak ⎛⎫∴== ⎪⎝⎭△△. ················ 2分②当抛物线开口向下时,则此抛物线与y 轴的正半轴交于点N .同理,可得:3:20QNM QNR S S =△△. ····················· 1分 综上可知,:QNM QNR S S △△的值为3:20.【例6】、 如图,在平面直角坐标系xOy 中,一次函数54y x m =+ (m 为常数)的图象与x 轴交于点A(3-,0),与y 轴交于点C .以直线x=1为对称轴的抛物线2y ax bx c =++ (a b c ,, 为常数,且a ≠0)经过A ,C 两点,并与x 轴的正半轴交于点B . (1)求m 的值及抛物线的函数表达式;(2)设E 是y 轴右侧抛物线上一点,过点E 作直线AC 的平行线交x 轴于点F .是否存在这样的点E ,使得以A ,C ,E ,F 为顶点的四边形是平行四边形?若存在,求出点E 的坐标及相应的平行四边形的面积;若不存在,请说明理由;(3)若P 是抛物线对称轴上使△ACP 的周长取得最小值的点,过点P 任意作一条与y 轴不平行的直线交抛物线于111M ()x y , ,222M ()x y ,两点,试探究2112P PM M M M ⋅ 是否为定值,并写出探究过程.考点:二次函数综合题。
二次函数典型例题——最短路径
二次函数典型例题——最短路径1、已知抛物线2:(1)1C y x m x =-++的顶点在坐标轴...上. (1)求m 的值;(2)0>m 时,抛物线C 向下平移n (n > 0)个单位后与抛物线C 1:c bx ax y ++=2关于y 轴对称,且1C 过点(n ,3),求C 1的函数关系式; (3)03<<-m 时,抛物线C 的顶点为M ,且过点P (1,y 0)问在直线1-=x 上是否存在一点Q 使得△QPM 的周长最小,如果存在,求出点Q 的坐标, 如果不存在,请说明理由.(1)m 的值=1,-1,-3;(2)C 1的函数关系式:22y x x =+;(3)Q 的坐标4(1,)3-.2、在平面直角坐标系xOy 中,抛物线21124y x =+的顶点为M ,直线2y x =,点()0P n ,为x 轴上的一个动点,过点P 作x 轴的垂线分别交抛物线21124y x =+和直线2y x =于点A ,点B .⑴直接写出A ,B 两点的坐标(用含n 的代数式表示);⑵设线段AB 的长为d ,求d 关于n 的函数关系式及d 的最小值,并直接写出此时线段OB 与线段PM 的位置关系和数量关系;(3)已知二次函数2y ax bx c =++(a ,b ,c 为整数且0a ≠),对一切实数x 恒有x ≤y ≤2124x +,求a ,b ,c 的值. 解:(1)21(2)4A n n +,,()B n n ,. (2) d =AB =A B y y -=2124n n -+.∴ d =2112()48n -+=2112()48n -+∴ 当14n =时,d 取得最小值18.当d 取最小值时,线段OB 与线段PM 的位置 关系和数量关系是OB ⊥PM 且OB =PM . (如图10)(3) ∵ 对一切实数x 恒有 x ≤y ≤2124x +, ∴ 对一切实数x ,x ≤2ax bx c ++≤2124x +都成立. (0a ≠) ① 图10xy111APBMO3、已知关于x 的一元二次方程()0312=-+--m x m x .(1)求证:不论m 取何值时,方程总有两个不相等的实数根.(2)若直线()31+-=x m y 与函数m x y +=2的图象1C 的一个交点的横坐标为2,求关于x 的一元二次方程()0312=-+--m x m x 的解.(3)在(2)的条件下,将抛物线()312-+--=m x m x y 绕原点旋转︒180,得到图象2C ,点P 为x 轴上的一个动点,过点P 作x 轴的垂线,分别与图象1C 、2C 交于N M 、两点,当线段MN 的长度最小时,求点P 的坐标.解:(1)证明:()[]()3412----=∆m m124122+-+-=m m m 1362+-=m m()432+-=m∵不论m 取何值时,()032≥-m ∴()0432>+-m ,即0>∆∴不论m 取何值时,方程总有两个不相等的实数根. (2)将2=x 代入方程()0312=-+--m x m x ,得3=m再将3=m 代入,原方程化为022=-x x , 解得2,021==x x . (3)将3=m 代入得抛物线:x x y 22-=,将抛物线x x y 22-=绕原点旋转︒180得到的图象2C 的解析式为:x x y 22--=.设()0,x P则()3,2+x x M ,()x x x N 2,2--()()25212322232222+⎪⎭⎫ ⎝⎛+=++=---+=x x x x x x MN∴当21-=x 时,MN 的长度最小,此时点P 的坐标为⎪⎭⎫⎝⎛-0,21(昌平)27.已知抛物线2y ax bx c =++经过原点O 及点A (-4,0)和点B (-6,3). (1)求抛物线的解析式以及顶点坐标;(2)如图1,将直线2y x =沿y 轴向下平移后与(1)中所求抛物线只有一个交点C ,平移后的直线与y 轴交于点D ,求直线CD 的解析式;(3)如图2,将(1)中所求抛物线向上平移4个单位得到新抛物线,请直接写出新抛物线上到直线CD 距离最短的点的坐标及该最短距离.yx图1BACD O yx图2CD O解:(1)∵ 抛物线经过()0,0,()4,0- ,()6,3-三点,∴ 01640,366 3.c a b a b =⎧⎪-=⎨⎪-=⎩ ………………………………………… 1分解得 1410a b c ⎧=⎪⎪=⎨⎪=⎪⎩,,. …………………………… 2分∴ 抛物线的解析式为214y x x =+.∵()()22211144421444y x x x x x =+=++-=+-∴抛物线的顶点坐标为()2,1-- ……………3分 (2)设直线CD 的解析式为2y x m =+,根据题意,得2124x x x m +=+, …………… 4分 化简整理,得2440x x m --=,由16160m ∆=+=,解得1m =-, ……………… 5分∴直线CD 的解析式为21y x =- .(3)点的坐标为()2,7, …………………………… 6分. ……………………… 7分。
高中数学第二章一元二次函数方程和不等式典型例题(带答案)
高中数学第二章一元二次函数方程和不等式典型例题单选题1、已知a,b为正实数,且a+b=6+1a +9b,则a+b的最小值为()A.6B.8C.9D.12答案:B分析:根据题意,化简得到(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab,结合基本不等式,即可求解.由题意,可得(a+b)2=(6+1a +9b)(a+b)=6(a+b)+10+ba+9ab≥6(a+b)+16,则有(a+b)2−6(a+b)−16≥0,解得a+b≥8,当且仅当a=2,b=6取到最小值8.故选:B.2、某工厂近期要生产一批化工试剂,经市场调查得知,生产这批试剂的成本分为以下三个部分:①生产1单位试剂需要原料费50元;②支付所有职工的工资总额由7500元的基本工资和每生产1单位试剂补贴20元组成;③后续保养的费用是每单位(x+600x−30)元(试剂的总产量为x单位,50≤x≤200),则要使生产每单位试剂的成本最低,试剂总产量应为()A.60单位B.70单位C.80单位D.90单位答案:D分析:设生产每单位试剂的成本为y,求出原料总费用,职工的工资总额,后续保养总费用,从而表示出y,然后利用基本不等式求解最值即可.解:设每生产单位试剂的成本为y,因为试剂总产量为x单位,则由题意可知,原料总费用为50x元,职工的工资总额为7500+20x元,后续保养总费用为x(x+600x−30)元,则y=50x+7500+20x+x2−30x+600x =x+8100x+40≥2√x⋅8100x+40=220,当且仅当x=8100x,即x=90时取等号,满足50≤x≤200,所以要使生产每单位试剂的成本最低,试剂总产量应为90单位.故选:D.3、不等式−x2+3x+18<0的解集为()A.{x|x>6或x<−3}B.{x|−3<x<6}C.{x|x>3或x<−6}D.{x|−6<x<3}答案:A分析:根据二次不等式的解法求解即可.−x2+3x+18<0可化为x2−3x−18>0,即(x−6)(x+3)>0,即x>6或x<−3.所以不等式的解集为{x|x>6或x<−3}.故选:A4、已知正实数a、b满足1a +1b=m,若(a+1b)(b+1a)的最小值为4,则实数m的取值范围是()A.{2}B.[2,+∞)C.(0,2]D.(0,+∞)答案:B分析:由题意可得(a+1b )(b+1a)=ab+1ab+2≥2√ab1ab+2=4,当ab=1ab,即ab=1时等号成立,所以有b=1a ,将1a+1b=m化为a+1a=m,再利用基本不等式可求得m的范围.解:因为a,b为正实数,(a+1b )(b+1a)=ab+1ab+2≥2√ab1ab+2=4,当ab=1ab,即ab=1时等号成立,此时有b=1a,又因为1a +1b=m,所以a+1a=m,由基本不等式可知a+1a≥2(a=1时等号成立),所以m ≥2. 故选:B.5、已知a,b ∈R 且满足{1≤a +b ≤3−1≤a −b ≤1,则4a +2b 的取值范围是( )A .[0,12]B .[4,10]C .[2,10]D .[2,8] 答案:C分析:设4a +2b =A (a +b )+B (a −b ),求出A ,B 结合条件可得结果. 设4a +2b =A (a +b )+B (a −b ),可得{A +B =4A −B =2,解得{A =3B =1,4a +2b =3(a +b )+a −b ,因为{1≤a +b ≤3−1≤a −b ≤1可得{3≤3(a +b )≤9−1≤a −b ≤1,所以2≤4a +2b ≤10. 故选:C.6、关于x 的不等式(x −a )(x −3)>0成立的一个充分不必要条件是−1<x <1,则a 的取值范围是( ) A .a ≤−1B .a <0C .a ≥2D .a ≥1 答案:D分析:由题意可知,(−1,1)是不等式(x −a )(x −3)>0解集的一个真子集,然后对a 与3的大小关系进行分类讨论,求得不等式的解集,利用集合的包含关系可求得实数a 的取值范围. 由题可知(−1,1)是不等式(x −a )(x −3)>0的解集的一个真子集.当a =3时,不等式(x −a )(x −3)>0的解集为{x |x ≠3},此时(−1,1){x |x ≠3}; 当时,不等式(x −a )(x −3)>0的解集为(−∞,3)∪(a,+∞), ∵(−1,1)(−∞,3),合乎题意;当a <3时,不等式(x −a )(x −3)>0的解集为(−∞,a )∪(3,+∞), 由题意可得(−1,1)(−∞,a ),此时1≤a <3. 综上所述,a ≥1. 故选:D.3a小提示:本题考查利用充分不必要条件求参数,同时也考查了一元二次不等式的解法,考查计算能力,属于中等题.7、已知函数y =ax 2+2bx −c(a >0)的图象与x 轴交于A (2,0)、B (6,0)两点,则不等式cx 2+2bx −a <0 的解集为( )A .(−6,−2)B .(−∞,16)∪(12,+∞) C .(−12,−16)D .(−∞,−12)∪(−16,+∞)答案:D解析:利用函数图象与x 的交点,可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6,再利用根与系数的关系,转化为b =−4a ,c =−12a ,最后代入不等式cx 2+2bx −a <0,求解集. 由条件可知ax 2+2bx −c =0(a >0)的两个根分别为x 1=2或x 2=6, 则2+6=−2b a,2×6=−ca,得b =−4a ,c =−12a ,∴cx 2+2bx −a <0⇔−12ax 2−8ax −a <0, 整理为:12x 2+8x +1>0⇔(2x +1)(6x +1)>0, 解得:x >−16或x <−12,所以不等式的解集是(−∞,−12)∪(−16,+∞).故选:D小提示:思路点睛:本题的关键是利用根与系数的关系表示b =−4a ,c =−12a ,再代入不等式cx 2+2bx −a <0化简后就容易求解. 8、a,b,c 是不同时为0的实数,则ab+bc a 2+2b 2+c 2的最大值为( )A .12B .14C .√22D .√32答案:A分析:对原式变形,两次利用基本不等式,求解即可. 若要使ab+bc a 2+2b 2+c 2最大,则ab,bc 均为正数,即a,b,c 符号相同,不妨设a,b,c 均为正实数,则ab+bc a 2+2b 2+c 2=a+c a 2+c 2b+2b≤2√a 2+c 2b×2b=(22)=12√a 2+2ac+c 22(a 2+c 2)=12√12+ac a 2+c 2≤12√12+2√a 2×c2=12, 当且仅当a 2+c 2b=2b ,且a =c 取等,即取等号,即则ab+bca 2+2b 2+c 2的最大值为12, 故选:A .小提示:易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方,注意多次运用不等式,等号成立条件是否一致. 多选题9、下列函数中最大值为12的是( ) A .y =x 2+116x 2B .y =x ⋅√1−x 2,x ∈[0,1]C .y =x 2x 4+1D .y =x +4x+2,x >−2 答案:BC解析:利用基本不等式逐项判断即可. 解:对A ,y =x 2+116x2≥2√x 2⋅116x 2=12,当且仅当x 2=116x2,即x =±12时取等号,故A 错误;对B ,y =x ⋅√1−x 2=√x 2⋅(1−x 2)≤x 2+1−x 22=12,当且仅当x 2=1−x 2,又∵x ∈[0,1],即x =√22时取等号,故B 正确;对C ,y =x 2x 4+1=1x 2+1x2≤12,a b c ==当且仅当x2=1x2,即x=±1时等号成立,故C正确;对D,y=x+4x+2=x+2+4x+2−2≥2√(x+2)⋅4x+2−2=2,当且仅当x+2=4x+2,又∵x>−2,∴x=0时取等号,故D错误.故选:BC.10、设正实数m、n满足m+n=2,则下列说法中正确的是()A.2m−n>14B.mn的最大值为1C.√m+√n的最小值为2D.m2+n2的最小值为2答案:ABD分析:利用不等式的性质以及指数函数的性质可判断A选项的正误,利用基本不等式可判断BCD选项的正误. 对于A选项,因为正实数m、n满足m+n=2,则0<m<2,m−n=m−(2−m)=2−2m∈(−2,2),故2m−n>2−2=14,A对;对于B选项,由基本不等式可得mn≤(m+n2)2=1,当且仅当m=n=1时,等号成立,B对;对于C选项,由基本不等式可得(√m+√n)2=m+n+2√mn≤2(m+n)=4,因为√m+√n>0,故√m+√n≤2,当且仅当m=n=1时,等号成立,C错;对于D选项,∵2(m2+n2)=(m2+n2)+(m2+n2)≥m2+n2+2mn=(m+n)2=4,可得m2+n2≥2,当且仅当m=n=1时,等号成立,D对.故选:ABD.11、已知a,b,c∈R+,则下列不等式正确的是()A.1a +1b≥4a+bB.a+b≤√a2+b2C.b2a +a2b≥a+b D.a2+b22≥a+b−1答案:ACD分析:对AC,利用基本不等式可求解;对B,根据(a+b)2=a2+b2+2ab>a2+b2可判断;对D,利用(a−1)2+(b−1)2≥0可判断.对A ,因为(1a +1b )(a +b )=b a +a b +2≥2√b a ⋅a b +2=4,当且仅当b a =a b 时等号成立,所以1a +1b ≥4a+b ,故A正确;对B ,(a +b )2=a 2+b 2+2ab >a 2+b 2,所以a +b >√a 2+b 2,故B 错误; 对C ,b 2a+a +a 2b+b ≥2√b 2a⋅a +2√a 2b⋅b =2a +2b ,当且仅当a =b 等号成立,所以b 2a+a 2b≥a +b ,故C正确;对D ,因为(a −1)2+(b −1)2≥0,所以a 2+b 2−2a −2b +2≥0,所以a 2+b 22≥a +b −1,当且仅当a =b =1等号成立,故D 正确. 故选:ACD.12、对任意两个实数a,b ,定义min{a ,b}={a,a ≤b,b,a >b,若f (x )=2−x 2,g (x )=x 2,下列关于函数F (x )=min {f (x ),g (x )}的说法正确的是( ) A .函数F (x )是偶函数 B .方程F (x )=0有三个解C .函数F (x )在区间[−1,1]上单调递增D .函数F (x )有4个单调区间 答案:ABD分析:结合题意作出函数F (x )=min {f (x ),g (x )}的图象,进而数形结合求解即可.解:根据函数f (x )=2−x 2与g (x )=x 2,,画出函数F (x )=min {f (x ),g (x )}的图象,如图. 由图象可知,函数F (x )=min {f (x ),g (x )}关于y 轴对称,所以A 项正确; 函数F (x )的图象与x 轴有三个交点,所以方程F (x )=0有三个解,所以B 项正确;函数F (x )在(−∞,−1]上单调递增,在[−1,0]上单调递减,在上单调递增,在[1,+∞)上单调递减,所以C 项错误,D 项正确. 故选:ABD[0,1]13、已知a >0,b >0,且a +2b =1,则( ) A .ab 的最大值为19B .1a +2b 的最小值为9C .a 2+b 2的最小值为15D .(a +1)(b +1)的最大值为2答案:BC分析:对A ,直接运用均值不等式2√2ab ≤a +2b 即可判断; 对B ,1a +2b =(1a +2b)⋅(a +2b )=5+2b a+2a b,运用均值不等式即可判断;对C ,a 2+b 2=(1−2b )2+b 2,讨论二次函数最值即可;对D ,(a +1)(b +1)=2(a +b )(a +3b )=2[(a +2b )2−b 2]=2(1−b 2),讨论最值即可. a >0,b >0,2√2ab ≤a +2b =1⇒ab ≤18,当a =2b 时,即a =12,b =14时,可取等号,A 错;1a+2b =(1a +2b )⋅(a +2b )=5+2b a+2a b≥5+2√2b a ⋅2a b=9,当2b a =2ab时,即a =b =13时,可取等号,B 对; a 2+b 2=(1−2b)2+b 2=5b 2−4b +1=5(b −25)2+15≥15,当a =15,b =25时,可取等号,C 对;(a +1)(b +1)=2(a +b )(a +3b )=2(a 2+4ab +3b 2)=2[(a +2b )2−b 2]=2(1−b 2)<2,D 错. 故选:BC 填空题14、若一个三角形的三边长分别为a ,b ,c ,设p =12(a +b +c ),则该三角形的面积S =√p (p −a )(p −b )(p −c ),这就是著名的“秦九韶-海伦公式”若△ABC 的周长为8,AB =2,则该三角形面积的最大值为___________. 答案:2√2分析:计算得到p =4,c =2,a +b =6,根据均值不等式得到ab ≤9,代入计算得到答案. p =12(a +b +c )=4,c =2,a +b =6,a +b =6≥2√ab ,ab ≤9,当a =b =3时等号成立.S =√p (p −a )(p −b )(p −c )=√8(4−a )(4−b )=√128−32(a +b )+8ab ≤2√2. 所以答案是:2√2.15、若关于x 的二次方程x 2+mx +4m 2−3=0的两个根分别为x 1,x 2,且满足x 1+x 2=x 1x 2,则m 的值为______ 答案:分析:先求出方程有两根时m 的范围,再由根与系数关系将x 1,x 2用m 表示,建立关于m 的方程,求解即可. 关于x 的二次方程x 2+mx +4m 2−3=0有两个根, 则Δ=m 2−4(4m 2−3)=−3(5m 2−4)≥0, ∴−2√55≤m ≤2√55,x 1+x 2=−m,x 1⋅x 2=4m 2−3,又∵x 1+x 2=x 1x 2,∴−m =4m 2−3,即4m 2+m −3=0, 解得m =34或m =−1(舍去),∴m 的值为.小提示:本题考查一元二次方程根与系数关系的应用,要注意两根存在的条件,属于基础题.16、若关于x 的不等式x 2−(m +2)x +2m <0的解集中恰有3个正整数,则实数m 的取值范围为___________. 答案:(5,6]分析:不等式化为(x −m)(x −2)<0,根据解集中恰好有3个正整数即可求得m 的范围. x 2−(m +2)x +2m <0可化为(x −m)(x −2)<0, 该不等式的解集中恰有3个正整数,∴不等式的解集为{x|2<x <m},且5<m ⩽6; 所以答案是:(5,6]. 解答题343417、求实数m 的范围,使关于x 的方程x 2+2(m −1) x +2m +6=0. (1)有两个实根,且一个比2大,一个比2小; (2)有两个实根α , β,且满足0<α<1<β<4; (3)至少有一个正根. 答案:(1)m <−1 (2)−75<m <−54(3)m ≤−1分析:设y =f (x )=x 2+2(m −1)x +2m +6,一元二次方程根的分布主要从对称轴、判别式、端点值、开口方向这几个方面来确定. (1)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有f (2)<0,即4+4(m −1)+2m +6<0,得m <−1. (2)设y =f (x )=x 2+2(m −1)x +2m +6.依题意有{f (0)=2m +6>0f (1)=4m +5<0f (4)=10m +14>0,解得−75<m <−54.(3)设y =f (x )=x 2+2(m −1)x +2m +6. 方程至少有一个正根,则有三种可能:①有两个正根,此时可得{Δ≥0f (0)>02(m−1)−2>0,即{m ≤−1或m ≥5m >−3m <1.∴−3<m ≤−1. ②有一个正根,一个负根,此时可得f (0)<0,得m <−3. ③有一个正根,另一根为0,此时可得{6+2m =02(m −1)<0,∴m =−3.综上所述,得m ≤−1.18、阅读材料:我们研究了函数的单调性、奇偶性和周期性,但是这些还不能够准确地描述出函数的图象,例如函数y=x2和y=√x,虽然它们都是增函数,图象在上都是上升的,但是却有着显著的不同.如图1所示,函数y=x2的图象是向下凸的,在上任意取两个点M1,M2,函数y=x2的图象总是在线段M1M2的下方,此时函数y=x2称为下凸函数;函数y=√x的图象是向上凸的,在上任意取两个点M1,M2,函数y=√x的图象总是在线段M1M2的上方,则函数y=√x称为上凸函数.具有这样特征的函数通常称做凸函数.定义1:设函数y=f(x)是定义在区间I上的连续函数,若∀x1,x2∈I,都有f(x1+x22)≤f(x1)+f(x2)2,则称y=f(x)为区间I上的下凸函数.如图2.下凸函数的形状特征:曲线上任意两点M1,M2之间的部分位于线段M1M2的下方.定义2:设函数y=f(x)是定义在区间I上的连续函数,若∀x1,x2∈I,都有f(x1+x22)≥f(x1)+f(x2)2,则称y=f(x)为区间I上的上凸函数.如图3.上凸函数的形状特征:曲线上任意两点M1,M2之间的部分位于线段M1M2的上方.上凸(下凸)函数与函数的定义域密切相关的.例如,函数y=x3在(−∞,0]为上凸函数,在[0,+∞)上为下凸函数.函数的奇偶性和周期性分别反映的是函数图象的对称性和循环往复,属于整体性质;而函数的单调性和凸性分别刻画的是函数图象的升降和弯曲方向,属于局部性质.关于函数性质的探索,对我们的启示是:在认识事物和研究问题时,只有从多角度、全方位加以考查,才能使认识和研究更加准确.结合阅读材料回答下面的问题:(1)请尝试列举一个下凸函数:___________;(2)求证:二次函数f(x)=−x2+bx+c是上凸函数;(3)已知函数f(x)=x|x−a|,若对任意x1,x2∈[2,3],恒有f(x1+x22)≥f(x1)+f(x2)2,尝试数形结合探究实数a的取值范围.答案:(1)y=1x,x∈(0,+∞);(2)证明见解析;(3)a≥3.[0,1][0,1][0,1]分析:(1)根据下凸函数的定义举例即可;(2)利用上凸函数定义证明即可;(3)根据(2)中结论,结合条件,函数满足上凸函数定义,根据数形结合求得参数取值范围.(1)y =1x ,x ∈(0,+∞); (2)对于二次函数f(x)=−x 2+bx +c ,∀x 1,x 2∈R ,满足f (x 1+x 22)−f (x 1)+f (x 2)2=−(x 1+x 22)2+b ⋅x 1+x 22+c −−x 12+bx 1+c −x 22+bx 2+c 2=−x 12+x 22+2x 1x 24+x 12+x 222=(x 1−x 2)24≥0, 即f (x 1+x 22)≥f (x 1)+f (x 2)2,满足上凸函数定义,二次函数f(x)=−x 2+bx +c 是上凸函数.(3)由(2)知二次函数f(x)=−x 2+bx +c 是上凸函数,同理易得二次函数f(x)=x 2+bx +c 为下凸函数,对于函数f(x)=x |x −a |={x 2−ax,x >a −x 2+ax,x ≤a,其图像可以由两个二次函数的部分图像组成,如图所示,若对任意x 1,x 2∈[2,3],恒有f (x 1+x 22)≥f (x 1)+f (x 2)2,则函数f(x)=x|x −a|满足上凸函数定义,即[2,3]⊆(−∞,a],即a ≥3.。
二次函数各知识点、考点、典型例题及练习
二次函数各知识点、考点、典型例题及对应练习(超全)【典型例题】题型 1 二次函数的概念例1(基础).二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 点拨:本题主要考察二次函数的顶点坐标公式 例2.(拓展,2008年武汉市中考题,12) 下列命题中正确的是○1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。
○3当c=-5时,不论b 为何值,抛物线y=ax 2+bx+c 一定过y 轴上一定点。
○4若抛物线y=ax 2+bx+c 与x 轴有唯一公共点,则方程ax 2+bx+c=0有两个相等的实数根。
○5若抛物线y=ax 2+bx+c 与x 轴有两个交点A 、B ,与y 轴交于c 点,c=4,S △ABC=6,则抛物线解析式为y=x 2-5x+4。
○6若抛物线y=ax 2+bx+c (a ≠0)的顶点在x 轴下方,则一元二次方程ax 2+bx+c=0有两个不相等的实数根。
○7若抛物线y=ax 2+bx+c (a ≠0)经过原点,则一元二次方程ax 2+bx+c=0必有一根为0。
○8若a -b+c=2,则抛物线y=ax 2+bx+c (a ≠0)必过一定点。
○9若b 2<3ac ,则抛物线y=ax 2+bx+c 与x 轴一定没有交点。
○10若一元二次方程ax 2+bx+c=0有两个不相等的实数根,则函数y=cx 2+bx+a 的图象与x 轴必有两个交点。
○11若b=0,则抛物线y=ax 2+bx+c 与x 轴的两个交点一个在原点左边,一个在原点右边。
点拨:本题主要考查二次函数图象及其性质,一元二次方程根与系数的关系,及二次函数和一元二次方程二者之间的联系。
二次函数的实际应用(典型例题分类)
二次函数与实际问题1、理论应用(基本性质的考查:解析式、图象、性质等)2、实际应用(求最值、最大利润、最大面积等)解决此类问题的基本思路是:(1)理解问题;(2)分析问题中的变量和常量以及它们之间的关系;(3)用数学的方式表示它们之间的关系;(4)做函数求解;(5)检验结果的合理性,拓展等.例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系并求出绿地面积的最大值@变式练习1:如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(㎡)与它与墙平行的边的长x(m)之间的函数关系式当x为多长时,花园面积最大·例二:某商店经营T恤衫,已知成批购进时单价是元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多设销售单价为x元,(0<x≤元,那么(1)销售量可以表示为____________________;(2)销售额可以表示为____________________;(3)@(4)所获利润可以表示为__________________;(5)当销售单价是________元时,可以获得最大利润,最大利润是__________。
~变式练习2:某果园有100棵橙子树,每一棵树平均结600个橙子.现准备多种一些橙子树以提高产量,但是如果多种树,那么树之间的距离和每一棵树所接受的阳光就会减少.根据经验估计,每多种一棵树,平均每棵树就会少结5个橙子.(1)问题中有哪些变量其中自变量是_______,因变量是___________.(2)假设增种棵橙子树,那么果园里共有_________棵橙子树,这时平均每棵树结_________个橙子.(3)如果橙子的总产量为y个,请你写出x与y之间的关系式_______________.(4)果园里种_____棵橙子树橙子的总产量最多,最多是________________。
二次函数典型例题及练习题
二次函数专题一:二次函数的图象与性质考点1.二次函数图象的对称轴和顶点坐标例 1 已知,在同一直角坐标系中,反比例函数5y x=与二次函数22y x x c =-++的图像交于点(1)A m -,.(1)求m 、c 的值;(2)求二次函数图像的对称轴和顶点坐标.考点2.抛物线与a 、b 、c 的关系例2 已知2y ax bx =+的图象如图1所示,则y ax b =-的图象一定过( ) A .第一、二、三象限 B .第一、二、四象限 C .第二、三、四象限 D .第一、三、四象限考点3.二次函数的平移例3 把抛物线y=3x 2向上平移2个单位,得到的抛物线是( ) A.y=3(x+2)2 B.y=3(x-2)2 C.y=3x 2+2 D.y=3x 2-2 专题练习一1.对于抛物线y=13-x 2+103x 163-,下列说法正确的是( ) A.开口向下,顶点坐标为(5,3) B.开口向上,顶点坐标为(5,3) C.开口向下,顶点坐标为(-5,3) D.开口向上,顶点坐标为(-5,3) 2.若抛物线y=x 2-2x+c 与y 轴的交点为(0,-3),则下列说法不正确的是( ) A.抛物线开口向上 B.抛物线的对称轴是x=1 C.当x=1时,y 的最大值为-4D.抛物线与x 轴交点为(-1,0),(3,0)3.将二次函数y=x 2的图象向左平移1个单位长度,再向下平移 2个单位长度后,所得图象的函数表达式是________.4.小明从图2所示的二次函数2y ax bx c =++的图象中,观察得出了 下面五条信息:①0c <;②0abc >;③0a b c -+>;④230a b -=;⑤40c b ->,你认为其中正确信息的个数有_______.(填序号) 5.函数Y=X 2+2X-3(-2≦X ≦2)的最大值和最小值分别是_______. 6.已知二次函数y=-x 2+bx-8的最大值为8,则b 的值为_______. 7、已知函数y=21x 2-x-12,当函数y 随x 的增大而减小时,x 的取值范围是_______ 专题二:二次函数表达式的确定考点1.根据实际问题模型确定二次函数表达式例1 如图1,用一段长为30米的篱笆围成一个一边靠墙(墙的长度不限)的矩形菜园ABCD ,设AB 边长为x 米,则菜园的面积y (单位:米2)与x (单位:米)的函数关系式为 (不要求写出自变量x 的取值范围).考点2.根据抛物线上点的坐标确定二次函数表达式1.若已知抛物线上三点的坐标,则可用一般式:y=ax 2+bx+c (a ≠0);2.若已知抛物线的顶点坐标或最大(小)值及抛物线上另一个点的坐标,则可用顶点式:y=a (x-h )2+k (a ≠0);3.若已知抛物线与x 轴的两个交点坐标及另一个点,则可用交点式:y=a (x-x 1)(x-x 2)(a ≠0). 例2 已知抛物线的图象以A (-1,4)为顶点,且过点B (2,-5),求该抛物线的表达式.例3 已知一抛物线与x 轴的交点是A (-2,0)、B (1,0),且经过点C (2,8). (1)求该抛物线的解析式; (2)求该抛物线的顶点坐标. 专项练习二1.由于世界金融危机的不断蔓延,世界经济受到严重冲击.为了盘活资金,减少损失,某电器商场决定对某种电视机连续进行两次降价.若设平均每次降价的百分率是x ,降价后的价格为y 元,原价为a 元,则y 与x 之间的函数表达式为( )图22- 1- 012 yx13x =ABC D图1菜园墙A.y=2a (x-1)B.y=2a (1-x )C.y=a (1-x 2)D.y=a (1-x )2 专题三:二次函数与一元二次方程的关系考点1.根据二次函数的自变量与函数值的对应值,确定方程根的范围一元二次方程ax 2+bx+c=0就是二次函数y=ax 2+bx+c 当函数y 的值为0时的情况.例1 根据下列表格中二次函数y=ax 2+bx+c 的自变量x 与函数值y 的对应值,判断方程ax 2+bx+c=0(a ≠0,a,b,c,为常数)的一个解x 的范围是( )A.6 6.17x <<B.6.17 6.18x << C.6.18 6.19x <<D.6.19 6.20x <<考点2.根据二次函数的图象确定所对应的一元二次方程的根.二次函数y=ax 2+bx+c 的图象与x 轴的交点有三种情况:有两个交点、一个交点、没有交点;当二次函数y=ax 2+bx+c 的图象与x 轴有交点时,交点的横坐标就是当y=0时自变量x 的值,即一元二次方程ax 2+bx+c=0的根.例2 已知二次函数y=-x 2+3x+m 的部分图象如图1所示,则关于x 的一元二次方程-x 2+3x+m=0的解为________.练习:已知抛物线y=12x 2+x-52. (1)用配方法求它的顶点坐标和对称轴.(2)若该抛物线与x 轴的两个交点为A 、B ,求线段AB 的长.考点3.抛物线的交点个数与一元二次方程的根的情况例3 在平面直角坐标系中,抛物线21y x =-与x 轴的交点的个数是( ) A.3B.2C.1D.0专项练习三1.抛物线y=kx 2-7x-7的图象和x 轴有交点,则k的取值范围是________. 2.已知二次函数22y x x m =-++的部分图象如图2所示,则关于x 的一元二次方程220x x m -++=的解为 .图2图13.已知函数2y ax bx c =++的图象如图3所示,那么关于x 的方程220ax bx c +++= 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4.不论x 为何值,函数y=ax 2+bx+c(a ≠0)的值恒大于0的条件是( ) A.a>0,△>0; B.a>0, △<0; C.a<0, △<0; D.a<0, △<05. 二次函数2(0)y ax bx c a =++≠的图象如图4所示,根据图象解答下列问题: (1)写出方程20ax bx c ++=的两个根. (2)写出不等式20ax bx c ++>的解集.(3)写出y 随x 的增大而减小的自变量x 的取值范围.(4)若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围. 专题四 二次函数的应用例4 某产品每件成本10元,试销阶段每件产品的销售价x (元)•与产品的日销售量y (件)之间的关系如下表:x (元) 15 20 30…y (件) 25 20 10…若日销售量y 是销售价x 的一次函数.(1)求出日销售量y (件)与销售价x (元)的函数关系式;(2)要使每日的销售利润最大,每件产品的销售价应定为多少元?•此时每日销售利润是多少元?练习:1、如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是【 】A .1<x<5-B .x>5C .x<1-且x>5D .1<x -或x>5x y33 2 2 1 14 1- 1- 2-O 图3x y3-2、教练对小明推铅球的录像进行技术分析,发现铅球行进高度y (m )与水平距离x (m )之间的关系为21(4)312y x =--+,由此可知铅球推出的距离是 m 。
二次函数典型例题
1 二次函数典型例题例1.二次函数c bx ax y ++=2,其中0≠a ,以)4,1(-M 为顶点,图象经过点)5,4(与x 轴的交点为A 、B (点A 在点B 的左边),与y 轴的交点为C ,(1)求函数c bx ax y ++=2的表达式;(2)求A 、B 、C 点的坐标;(3)求ABM S ∆、ABC S ∆的值;(4)当0>y 时,写出x 的取值范围; 当0<y 时,写出x 的取值范围;(5)点P 是二次函数c bx ax y ++=2在x 轴下方,且在BC 之间的图象上点,求BCP S ∆的最大值,并求此时点P 的坐标;(6)点P 是二次函数c bx ax y ++=2图象上的点,过点PQ 作PQ ∥x 轴交二次函数c bx ax y ++=2图象于点Q ,若以PQ 为直径的圆,恰好与x 轴相切,求点P 的坐标;(7)若点Q 是二次函数c bx ax y ++=2图象上的点,且∠AQB =90°,求点Q 的坐标;2(8)若点),(00y x P 是二次函数c bx ax y ++=2图象上的点,判断△APB 的形状,并写出相应地0x 、0y 的范围;(9)判断直线m y =与函数c bx ax y ++=2的图象交点的个数?(10)若点),(y x P 是二次函数c bx ax y ++=2图象上的点,且⊙P 的半径为1,若⊙P 与坐标轴相切,求点P 的坐标;(11)作直线BC ,设BC 的解析式为n mx y +=1;求直线BC 的解析式n mx y +=;观察图象直接写出1y y >时自变量x 的取值范围;直接写出1y y <时自变量x 的取值范围;(12)①对于△ABC 来说,求出各角的三角函数值;②对于△ABM 来说,求出各角的三角函数值;(13)对于△ABC 来说,外接圆为⊙P ,判断直线m x =,n y =与⊙P 的位置关系?(14)对于△ABM 来说,求出△ABM 的外心点Q 的坐标;判断直线b x =,c y =与⊙Q 的位置关系?(15)判断△BCM 的形状,并求△BCM 的外心E 坐标;(16)设△ABC 的外接圆为⊙P ,求劣弧AC 的长度以及劣弧AC 与AC 所组成的弓形的面积;3 (17)设△ABC 的外接圆为⊙P ,⊙P 与y 轴的另一个交于点为D ,求点D 的坐标,并求∠ABM —∠ABD 的度数;(18)点C 关于函数c bx a y ++=2图象的对称点为C ',求点C '的坐标,并判断△C CM '的形状,并设其外心为N ,分别判断⊙N 与直线e x =,f y =的位置关系?(19)点P 在二次函数c bx ax y ++=2的对称轴上,求PC PA +的最小值,且求此时点P 的坐标;(20)点P 在二次函数c bx ax y ++=2的对称轴上,求PC PA -的最大值,且求此时点P 的坐标;例2.二次函数c bx ax y ++=2,其中0≠a ,以)4,1(--M 为顶点,图象与x 轴的交点为A 、B (点A 在点B 的左边),与y 轴的交点为C ,4=AB ,(1)求函数c bx ax y ++=2的表达式;(2)求A 、B 、C 点的坐标;4 (3)求ABM S ∆、ABC S ∆的值;(4)当0>y 时,写出x 的取值范围; 当0<y 时,写出x 的取值范围;(5)点P 是二次函数c bx ax y ++=2在x 轴下方,且在BC 之间的图象上点,求BCP S ∆的最大值,并求此时点P 的坐标;(6)点P 是二次函数c bx ax y ++=2图象上的点,过点PQ 作PQ ∥x 轴交二次函数c bx ax y ++=2图象于点Q ,若以PQ 为直径的圆,恰好与x 轴相切,求点P 的坐标;(7)若点Q 是二次函数c bx ax y ++=2图象上的点,且∠AQB =90°,求点Q 的坐标;(8)若点),(00y x P 是二次函数c bx ax y ++=2图象上的点,判断△APB 的形状,并写出相应地0x 、0y 的范围;(9)判断直线m y =与函数c bx ax y ++=2的图象交点的个数?(10)若点),(y x P 是二次函数c bx ax y ++=2图象上的点,且⊙P 的半径为1,若⊙P 与坐标轴相切,求点P 的坐标;5 (11)作直线BC ,设BC 的解析式为n mx y +=1;求直线BC 的解析式n mx y +=;观察图象直接写出1y y >时自变量x 的取值范围;直接写出1y y <时自变量x 的取值范围;(12)①对于△ABC 来说,求出各角的三角函数值;②对于△ABM 来说,求出各角的三角函数值;(13)对于△ABC 来说,外接圆为⊙P ,判断直线m x =,n y =与⊙P 的位置关系?(14)对于△ABM 来说,求出△ABM 的外心点Q 的坐标;判断直线b x =,c y =与⊙Q 的位置关系?(15)判断△BCM 的形状,并求△BCM 的外心E 坐标;(16)设△ABC 的外接圆为⊙P ,求劣弧AC 的长度以及劣弧AC 与AC 所组成的弓形的面积;(17)设△ABC 的外接圆为⊙P ,⊙P 与y 轴的另一个交于点为D ,求点D 的坐标,并求∠BAM —∠BAD 的度数;(18)点C 关于函数c bx a y ++=2图象的对称点为C ',求点C '的坐标,并判断△C CM '的形状,并设其外心为N ,分别判断⊙N 与直线e x =,f y =的位置关系?(19)点P 在二次函数c bx ax y ++=2的对称轴上,求PC PA +的最小值,且求此时点P 的坐标;6 (20)点P 在二次函数c bx ax y ++=2的对称轴上,求PC PA -的最大值,且求此时点P 的坐标;例3.二次函数c bx ax y ++=2,其中0≠a ,以)4,1(M 为顶点,图象经过点)5,4(-与x 轴的交点为A 、B (点A 在点B 的左边),与y 轴的交点为C ,(1)求函数c bx ax y ++=2的表达式;(2)求A 、B 、C 点的坐标;(3)求ABM S ∆、ABC S ∆的值;(4)当0>y 时,写出x 的取值范围; 当0<y 时,写出x 的取值范围;(5)点P 是二次函数c bx ax y ++=2在x 轴上方,且在BC 之间的图象上点,求BCP S ∆的最大值,并求此时点P 的坐标;(6)点P 是二次函数c bx ax y ++=2图象上的点,过点PQ 作PQ ∥x 轴交二次函数c bx ax y ++=2图象于点Q ,若以PQ 为直径的圆,恰好与x 轴相切,求点P 的坐标;7(7)若点Q 是二次函数c bx ax y ++=2图象上的点,且∠AQB =90°,求点Q 的坐标;(8)若点),(00y x P 是二次函数c bx ax y ++=2图象上的点,判断△APB 的形状,并写出相应地0x 、0y 的范围;(9)判断直线m y =与函数c bx ax y ++=2的图象交点的个数?(10)若点),(y x P 是二次函数c bx ax y ++=2图象上的点,且⊙P 的半径为1,若⊙P 与坐标轴相切,求点P 的坐标;(11)作直线BC ,设BC 的解析式为n mx y +=1;求直线BC 的解析式n mx y +=;观察图象直接写出1y y >时自变量x 的取值范围;直接写出1y y <时自变量x 的取值范围;(12)①对于△ABC 来说,求出各角的三角函数值;②对于△ABM 来说,求出各角的三角函数值;(13)对于△ABC 来说,外接圆为⊙P ,判断直线m x =,n y =与⊙P 的位置关系?(14)对于△ABM 来说,求出△ABM 的外心点Q 的坐标;判断直线b x =,c y =与⊙Q 的位置关系?8(15)判断△BCM 的形状,并求△BCM 的外心E 坐标;(16)设△ABC 的外接圆为⊙P ,求劣弧AC 的长度以及劣弧AC 与AC 所组成的弓形的面积;(17)设△ABC 的外接圆为⊙P ,⊙P 与y 轴的另一个交于点为D ,求点D 的坐标,并求∠ABM —∠ABD 的度数;(18)点C 关于函数c bx a y ++=2图象的对称点为C ',求点C '的坐标,并判断△C CM '的形状,并设其外心为N ,分别判断⊙N 与直线e x =,f y =的位置关系?(19)点P 在二次函数c bx ax y ++=2的对称轴上,求PC PA +的最小值,且求此时点P 的坐标;(20)点P 在二次函数c bx ax y ++=2的对称轴上,求PC PA -的最大值,且求此时点P 的坐标;例4.二次函数c bx ax y ++=2,其中0≠a ,以)4,1(M 为顶点,图象与x 轴的交点为A 、B (点A 在点9 B 的左边),与y 轴的交点为C ,4=AB ,(1)求函数c bx ax y ++=2的表达式;(2)求A 、B 、C 点的坐标;(3)求ABM S ∆、ABC S ∆的值;(4)当0>y 时,写出x 的取值范围; 当0<y 时,写出x 的取值范围;(5)点P 是二次函数c bx ax y ++=2在x 轴上方,且在BC 之间的图象上点,求BCP S ∆的最大值,并求此时点P 的坐标;(6)点P 是二次函数c bx ax y ++=2图象上的点,过点PQ 作PQ ∥x 轴交二次函数c bx ax y ++=2图象于点Q ,若以PQ 为直径的圆,恰好与x 轴相切,求点P 的坐标;(7)若点Q 是二次函数c bx ax y ++=2图象上的点,且∠AQB =90°,求点Q 的坐标;(8)若点),(00y x P 是二次函数c bx ax y ++=2图象上的点,判断△APB 的形状,并写出相应地0x 、0y 的范围;10 (9)判断直线m y =与函数c bx ax y ++=2的图象交点的个数?(10)若点),(y x P 是二次函数c bx ax y ++=2图象上的点,且⊙P 的半径为1,若⊙P 与坐标轴相切,求点P 的坐标;(11)作直线BC ,设BC 的解析式为n mx y +=1;求直线BC 的解析式n mx y +=;观察图象直接写出1y y >时自变量x 的取值范围;直接写出1y y <时自变量x 的取值范围;(12)①对于△ABC 来说,求出各角的三角函数值;②对于△ABM 来说,求出各角的三角函数值;(13)对于△ABC 来说,外接圆为⊙P ,判断直线m x =,n y =与⊙P 的位置关系?(14)对于△ABM 来说,求出△ABM 的外心点Q 的坐标;判断直线b x =,c y =与⊙Q 的位置关系?(15)判断△BCM 的形状,并求△BCM 的外心E 坐标;(16)设△ABC 的外接圆为⊙P ,求劣弧AC 的长度以及劣弧AC 与AC 所组成的弓形的面积;(17)设△ABC 的外接圆为⊙P ,⊙P 与y 轴的另一个交于点为D ,求点D 的坐标,并求∠ABM —∠ABD 的度数;11 (18)点C 关于函数c bx a y ++=2图象的对称点为C ',求点C '的坐标,并判断△C CM '的形状,并设其外心为N ,分别判断⊙N 与直线e x =,f y =的位置关系?(19)点P 在二次函数c bx ax y ++=2的对称轴上,求PC PA +的最小值,且求此时点P 的坐标;(20)点P 在二次函数c bx ax y ++=2的对称轴上,求PC PA -的最大值,且求此时点P 的坐标;。
二次函数的实际应用(典型例题分类)
二次函数与实际问题1、理论应用(基本性质的考查:解析式、图象、性质等)2、实际应用(拱桥问题,求最值、最大利润、最大面积等)类型一:最大面积问题例一:如图在长200米,宽80米的矩形广场内修建等宽的十字形道路,绿地面积y(㎡)与路宽x(m)之间的关系?并求出绿地面积的最大值?变式练习1:如图,用50m长的护栏全部用于建造一块靠墙的长方形花园,写出长方形花园的面积y(㎡)与它与墙平行的边的长x(m)之间的函数关系式?当x为多长时,花园面积最大?类型二:利润问题例二:某商店经营T恤衫,已知成批购进时单价是2.5元.根据市场调查,销售量与销售单价满足如下关系:在某一时间内,单价是13.5元时,销售量是500件,而单价每降低1元,就可以多售出200件. 请你帮助分析:销售单价是多少时,可以获利最多?设销售单价为x元,(0<x≤13.5)元,那么(1)销售量可以表示为____________________;(2)销售额可以表示为____________________;(3)所获利润可以表示为__________________;(4)当销售单价是________元时,可以获得最大利润,最大利润是__________变式训练2.某商品现在的售价为每件60元,每星期可卖出300件,市场调查反映:每涨价1元,每星期少卖出10件;每降价1元,每星期可多卖出20件,已知商品的进价为每件40元,如何定价才能使利润最大?变式训练3:某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历从亏损到盈利的过程,如下图的二次函数图象(部分)刻画了该公司年初以来累积利润y(万元)与销售时间x(月)之间的关系(即前x个月的利润之和y与x之间的关系).(1)根据图上信息,求累积利润y(万元)与销售时间x(月)的函数关系式;(2)求截止到几月末公司累积利润可达到30万元?(3)求第8个月公司所获利润是多少万元?40030060 70 Oy (件) )变式训练4.某服装公司试销一种成本为每件50元的T 恤衫,规定试销时的销售单价不低于成本价,又不高于每件70元,试销中销售量y (件)与销售单价x (元)的关系可以近似的看作一次函数(如图).(1)求y 与x 之间的函数关系式;(2)设公司获得的总利润(总利润=总销售额 总成本)为P 元,求P 与x 之间的函数关系式,并写出自变量x 的取值范围;根据题意判断:当x 取何值时,P 的值最大?最大值是多少?类型三:实际抛物线问题例三:某隧道横断面由抛物线与矩形的三边组成,尺寸如图10所示。
二次函数与实际问题典型例题
二次函数与实际问题典型例题二次函数是一种常见的数学函数形式,其一般形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,且a不等于0。
它在实际问题中有许多应用,下面我将从多个角度给出一些典型例题,以展示二次函数与实际问题的关系。
1. 抛物线的高度问题,假设一个物体从地面上抛,忽略空气阻力,其高度与时间的关系可以用二次函数表示。
例如,一个抛物线的方程可以是h(t) = -5t^2 + 10t + 2,其中h表示高度,t表示时间。
通过解方程可以求得物体的最高点、飞行时间等信息。
2. 弹性问题,当一个弹簧的伸长或压缩距离与施加的力之间存在线性关系时,其运动可以由二次函数描述。
例如,弹簧的伸长或压缩距离与施加的力的关系可以表示为d(f) = af^2 + bf + c,其中d表示伸长或压缩距离,f表示施加的力。
3. 成本与产量问题,在某些生产过程中,成本与产量之间可能存在二次函数关系。
例如,一个公司的成本可以表示为C(x) =ax^2 + bx + c,其中C表示成本,x表示产量。
通过分析二次函数的图像,可以找到最小成本对应的产量。
4. 面积最大化问题,在某些几何问题中,要求找到一个形状的最大面积。
例如,给定一定长度的围墙,如何构造一个矩形花园使得其面积最大?通过建立二次函数模型,可以解决这类问题。
5. 轨迹问题,在物理学或工程学中,研究物体在一定条件下的轨迹是常见的问题。
例如,一个抛物线的轨迹可以由二次函数表示。
通过分析二次函数的性质,可以求解物体的轨迹方程。
总之,二次函数在实际问题中有广泛的应用,涉及到物理学、经济学、几何学等多个领域。
通过建立二次函数模型,可以解决许多实际问题,并对问题进行分析和预测。
二次函数各知识点、考点、典型例题及练习
二次函数各知识点、考点、典型例题及对应练习(超全)【典型例题】题型 1 二次函数的概念例1(基础).二次函数2365y x x =--+的图像的顶点坐标是( ) A .(-1,8) B.(1,8) C (-1,2) D (1,-4) 点拨:本题主要考察二次函数的顶点坐标公式 例2.(拓展,2008年武汉市中考题,12) 下列命题中正确的是○1若b 2-4ac >0,则二次函数y=ax 2+bx+c 的图象与坐标轴的公共点的个数是2或3 ○2若b 2-4ac=0,则二次函数y=ax 2+bx+c 的图象与x 轴只有一个交点,且这个交点就是抛物线顶点。
○3当c=-5时,不论b 为何值,抛物线y=ax 2+bx+c 一定过y 轴上一定点。
○4若抛物线y=ax 2+bx+c 与x 轴有唯一公共点,则方程ax 2+bx+c=0有两个相等的实数根。
○5若抛物线y=ax 2+bx+c 与x 轴有两个交点A 、B ,与y 轴交于c 点,c=4,S △ABC=6,则抛物线解析式为y=x 2-5x+4。
○6若抛物线y=ax 2+bx+c (a ≠0)的顶点在x 轴下方,则一元二次方程ax 2+bx+c=0有两个不相等的实数根。
○7若抛物线y=ax 2+bx+c (a ≠0)经过原点,则一元二次方程ax 2+bx+c=0必有一根为0。
○8若a -b+c=2,则抛物线y=ax 2+bx+c (a ≠0)必过一定点。
○9若b 2<3ac ,则抛物线y=ax 2+bx+c 与x 轴一定没有交点。
○10若一元二次方程ax 2+bx+c=0有两个不相等的实数根,则函数y=cx 2+bx+a 的图象与x 轴必有两个交点。
○11若b=0,则抛物线y=ax 2+bx+c 与x 轴的两个交点一个在原点左边,一个在原点右边。
点拨:本题主要考查二次函数图象及其性质,一元二次方程根与系数的关系,及二次函数和一元二次方程二者之间的联系。
二次函数典型例题50题
选择1.二次函数y=(x-3)(x+2)的图象的对称轴是的图象的对称轴是 ( ) A.x=3 B.x=-2 C.x=-12D.x=122. 抛物线y=2x 2-5x+3与坐标轴的交点共有与坐标轴的交点共有 ( ) A . 1个 B. 2个 C. 3个 D. 4个3.二次函数y= a (x+m)2-m (a ≠0)0) 无论m 为什么实数,图象的顶点必在为什么实数,图象的顶点必在 ( ) A.直线y=-x 上 B. 直线y=x 上 C.y 轴上轴上 D.x 轴上轴上4. 如图2,抛物线,OA=OC ,下列关系中正确的是,下列关系中正确的是 ( ) A .ac+1=b B .ab+1=c C .bc+1=a D .b a+1=c 5.如图6,是二次函数的图象在x 轴上方的一部分,若这段图象与x 轴所围成的阴影部分面积为S ,则S 取值最接近(取值最接近( ). A.4 B.163 C.2π D.86.如图7,记抛物线21y x =-+的图象与x 正半轴的交点为A ,将线段OA 分成n 等份,设分点分别为1P ,2P ,…1n P -,过每个分点作x 轴的垂线,分别与抛物线交于点2y ax bx c =++2122y x =-+1Q ,2Q ,…1n Q -,再记直角三角形11OPQ ,122P P Q 的面积分别为1S ,2S ,这样就有21312n S n -=,22342n S n -=,…;记121n W S S S -=+++…,当n 越来越大时,你猜想W 最接近的常数是(接近的常数是( )A. 23B. 12C. 13D.147.定义[]为函数的特征数, 下面给出特征数为下面给出特征数为 [2m ,1 – m , –1– m] 的函数的一些结论:的函数的一些结论:① 当m = – 3时,函数图象的顶点坐标是(,); ② 当m > 0时,函数图象截x 轴所得的线段长度大于;③ 当m < 0时,函数在x >时,y 随x 的增大而减小;的增大而减小; ④ 当m ¹ 0时,函数图象经过同一个点. 其中正确的结论有(其中正确的结论有( ) A. ①②③④①②③④ B. ①②④①②④ C. ①③④①③④ D. ②④②④8. (2010宿迁改编)如图11,在矩形ABCD 中,中, AB=4,BC=6,当直角三角板MPN 的直角顶点P 在BC 边上移动时,直角边线段MP=25且始终经过点A ,设直角三角板的另一直角边PN 与CD 相交于点Q .BP=x ,CQ=y ,那么y 与x 之间的函数图象大致是(的函数图象大致是( ),,a b c 2y ax bx c =++31382341xyO2.25 6 3 C xyO3 6 4 B 2.25 x yO6 3 A D 2 xyO2 9. 已知点11()x y ,,均在抛物线上,下列说法中正确的是(上,下列说法中正确的是( ))A .若,则B .若,则C .若,则D .若,则10. 不论x 为何值为何值,,函数y=ax 2+bx+c(a +bx+c(a≠≠0)0)的值恒大于的值恒大于0的条件是的条件是( ) ( ) A.a>0,A.a>0,△△>0 B.a>0, B.a>0, △△<0 C.a<0, C.a<0, △△<0 D.a<0, D.a<0, △△<0 11. 若抛物线22y x x a=++的顶点在x 轴的下方,则a 的取值范围是(的取值范围是() A.1a > B.1a < C.1a ≥ D.1a ≤12.12.若一次函数若一次函数的图像过第一、三、四象限的图像过第一、三、四象限,,则函数( ))A.A.有最大值有最大值B.. B..有最大值有最大值C.C.有最小值有最小值D. D.有最小值有最小值有最小值1313.二次函数.二次函数2y ax bx c =-+的图象过点(的图象过点(-1-1-1,,0).则a b c b c c a a b+++++的值是(是( ))A A、、-3B 、3C 、12D 、12- 14.14.已知二次函数已知二次函数()2211y kx k x =+--与x 轴交点横坐标为()1212,,x x x x <.给出下列结论:下列结论:①当2x =-时,1y =;②当2x x >时,0y >;③方程()22110kx k x +--=有两不相等的实数根12,x x .④121,1x x <->-.⑤22114k x x k +-=.其中正确的结论是(论是( ))22()x y ,21y x =-12y y =12x x =12x x =-12y y =-120x x <<12y y >120x x <<12y y >A A、①③、①③、①③B 、①②③、①②③C 、①③⑤、①③⑤D 、①②③④、①②③④1515.已知二次函数.已知二次函数2y ax bx c =++,且0,0a a b c <-+>,则一定有(,则一定有( )) A A、、240b ac -> B 、240b ac -= C 、240b ac -< D 、240b ac -£16. 16. 已知已知1a <-,点()()1231,,,,(1,)a y ay a y -+都在函数2y x =的图象上,则( )) A A、、123y y y << B B、、132y y y <<C 、321y y y <<D 、213y y y <<17. 17. 二次函数二次函数2y ax b =+与一次函数y ax b =+在同一坐标系中的图象,可能是( ))18.18.如图所示,抛物线如图所示,抛物线2y x bx c =++与x 轴交于A 、B 两点与y 轴交于点C ,45OBC Ð=°.则下列各式成立的是(.则下列各式成立的是()) A A、、10b c --=B 、10b c +-=C C、、10b c -+=D 、10b c ++= 19.抛物线抛物线图像向右平移图像向右平移22个单位再向下平移个单位再向下平移33个单位,个单位,所得图像的解析式所得图像的解析式为,则b 、c 的值为的值为A . b=2 A . b=2,, c=2 B. b=2 c=2 B. b=2,,c=0C . b= -2 C . b= -2,,c=-1 D. b= -3c=-1 D. b= -3,, c=220若抛物线22y x x a =++图像于x 轴的交点位于Y 轴两侧,则a 的取值范围为的取值范围为填空21. 21. 如图,二次函数如图,二次函数c bx ax y ++=2的图象开口向上,图象经过点(的图象开口向上,图象经过点(-1-1-1,,2)和()和(11,0),且与y 轴交于负半轴.给出四个结论:①轴交于负半轴.给出四个结论:①abc abc abc<<0;②2a+b >0;③a+c=1;;③a+c=1; ④a>④a>11.其中正确结论的序号是确结论的序号是 ( ( (将你认为正确结论的序号都填上将你认为正确结论的序号都填上将你认为正确结论的序号都填上) ) ) ..c bx x y ++=2322--=x x y 0 xy A 0 xyB 0 xyC 0 xyD A B C O xy22. 已知函数y=(m-1)x 2+2x+m,当m= 时,图象是一条直线;当m 时,图象是抛物线;当m 时,抛物线过坐标原点.时,抛物线过坐标原点.23. 把二次函数的图象向左平移2个单位,再向上平移1个单位,所得到的图象对应的二次函数关系式是2)1(2-+=x y 则原二次函数的解析式为则原二次函数的解析式为24. .24. .二次函数的图象顶点坐标为(二次函数的图象顶点坐标为(二次函数的图象顶点坐标为(22,1),形状开口与抛物线y= - 2x 2相同,这个函数解析式为析式为________________________。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
追问2a+2b+2c>0和 c=2b-4a怎么得出? 回答由f(1)=a+b+c>0 不等式两边同乘以2 得 2a+2b+2c>0 由f(-2)=4a-2b+c=0 得 c=2b-4a 2a+2b+2c>0和4a-2b+c=0 两式相加即可得出 2a+c>0
何计算题(面积计算、边长计算和角度计算)比较困难,最后压轴题更是 学生难啃的骨头。
对于中考数学想获得115分以上的学生,必须攻下填空题的最后 一道,同时要保证做过的题目绝对不能出错。这样才有时间和精力,全 力攻自己卡壳的部分。
◎及时分析出错的原因 在做题中,一旦发现错误,首先做的第一步就是分析出错的原 因。要尽量减少因为马虎而造成的错误,马虎是一种很有杀伤力的不良 学习习惯,大家必须克服。一般的错题都是有一定原因的,比如说由于 某个知识点没有掌握牢,或者说某个方法还不会灵活地运用。根据出错 的原因,第二步要做的就是找出一些配套的练习题,进行滚动式的反复 练习,把所有和它相关的题型多做几道。直到完全掌握了这种习题,包 括它一般的出题方式和答题方法,这个错题就被攻破了。 可见,做错题并不可怕,重要的是你要从错误中找到原因,总 结规律。 ◎善用难题笔记和错题笔记 学生最害怕的事就是考试时不会做题和做错题。不会做题可能 是因为觉得试题陌生或太难而无从下手;做错题是因为本该做对但因种 种原因而做错了。我认为,要避免这两种情况,除了巩固书本基础知识 外,平时要坚持做难题笔记和错题笔记。如果能养成坚持做难题笔记和 错题笔记的习惯,并在做笔记时加以分析,使难题不难,错误不再重 犯,这会明显提高考试时答题的正确率。 下面,我们就来看看如何做难题笔记和错题笔记。 难题笔记 准备一本专用记录本记下平时练习和各次考试时碰到的难题, 并在难题旁注上关键难点、解题思路与方法,并列出该题若干种变化形 式,举一反三。这是根据碰到难题的先后顺序从纵向做难题笔记。此 外,还可以根据难题的性质从横向分别加以归类。学生审题后不能把当 前习题归入知识系统中相同或相似类型之中,是造成无法解题的关键。 同类型难题归在一起,见多识广,不致在考试解题时对不上号而无所适 从,平时从纵向、横向两方面对碰到的所有难题进行分析归类并贮存在 脑子里,下次碰到相同或相似的题目就不觉得难了,考试时碰到新难题 的可能性也就不大。 错题笔记 避免重复出错的最好办法莫过于把错题记下来并进行适当的分 析、总结,从中吸取教训。下面,我将结合适当的例子,给出一个我在 教学中教给学生们的改错笔记规范。 一、改错用具 1.改错笔记本,最好是活页型的,方便以后随时往里面添加东
解2 1. 函数y=f(x)通过 (-2,0), f(-2)=4a-2b+c=0 2. 函数与x轴交于-2, x1 两点,与y正半轴相交,且交点x=0在-2,1之 间,所以开口向下,a<0
又对称轴x=-b/2a 在(-2+1)/2和(-2+2)/2之间 所以 -1/2<-b/2a<0 即 a<b<0 3. f(-2)=4a-2b+c=0
推演过程,对于有多种解法的题目,建议将所知的正确解法都写上,以 便进行对比、灵活运用。
3.用红笔写下对每道题的难,“记”是关键 中考数学并不难,主要是学生不愿意记。大脑是空的,做了无 数的题目,可以说都没有起到作用。要求学生,对于自己不熟悉的知 识,或者比较惧怕的题目,一定要下工夫强记。等学生记了10道题目, 就会有这种题目不过如此的感觉。每个学生,脑中一定要有至少十份完 整的数学测试卷子,也就是要强记。然后对这十份试卷结合自己的情 况,进行对比分析,找出自己不熟练的部分。针对这些不熟练的部分, 结合过去在学校做的专题,进行强化。 考试总是不对,经常“返回” 很多学生考试经常把自己会的题目做错,学生考试犯错类型很 多,题读错、数看错、算错、抄错、表述错等。一定要让学生明白,只 要“做”就会犯错。因此做任何动作,都要提醒自己我有犯错的可能。同 时也要注意,每当自己做完一个动作,就要检查一下,也就是要经 常“返回”,并在大脑中进行确认。 几何函数题目,不断“重复” 中考数学,学生经常“卡壳”的题目,按照题目类型分:选择题 ——函数题、几何计算题;填空题——函数题、图形题、几何计算题、 找规律题;解答题——几何题、函数题、应用题、几何函数结合题,以 及与这些知识有关的创新题。 通过上面的分析,大家就会发现,中考数学卡壳的知识集中在 函数和几何。其实单就函数题,学生困难的也是函数图形中的几何信 息。还有就是学生不会把几何图形信息转换成代数信息。这也是学生几
3.当绘画出函数图象后,一定要分析图像的性质及基本图形的特 征,例如出现等腰直角三角形,平行四边形等等。
数学改错笔记及试卷分析规范
很多同学不善于总结经验和教训,经常是同样或同类型的题目, 这次做错了,下次还错。那么,如何吸取教训、避免一错再错呢?其 实,最有效的解决办法就是要学会从错题中总结规律。
已知:二次函数y=x2+2x+a(a为大于0的常数),当x=m时的函数值y1 <0;则当x=m+2时的函数值y2与0的大小关系为( ) A 、y2>0 B 、y2<0 C 、y2=O D 、不能确定
解 析解:∵抛物线与x轴有两个交点 ∴△=22-4a>0,即a<1 又a>0,对称轴为x=-1 据题意画草图 可知当-2<x<0时,y<0 而当x=m时的函数值y1<0 故-2<m<0
已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列5个结论: ①abc>0;②b<a+c;③4a+2b+c>0;④2c<3b;⑤a+b> m(am+b),(m≠1的实数). 其中正确的结论有______(填序号). . . . . .
由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0 的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所 得结论进行判断. ①图象开口向下,与y轴交于正半轴,对称轴为x=1,能得到:a<0,c >0,-b2a=1, ∴b=-2a>0, ∴abc<0,
则当x=m+2时,函数值y2与0的大小关系为y2>0.故选A.
根据抛物线与x轴的交点情况,判断a的取值范围,即0<a<1,已知对 称轴是x=-1,则-2<m<0,0<m+2<2,可判断当x=m+2时,函数值y2 与0的大小关系为y2>0.
中考数学辅导:二次函数复习重在把握 二次函数与其图像是初中代数的重要内容之一,是学过一次函数概念及 性质,含确定一次函数的解析式运用数形结合思想解决实际问题的基础 上进入二次函数的学习,它把代数和几何揉合在一起,因此成为了中考 中的重点内容,也是高中数学知识的基石。 一、把握要点(也是中考的考点及要求) 1.理解二次函数概念、性质、含画二次函数的图像。 2.能确定抛物线的开口方向,顶点坐标,对称轴方程,以及抛物线 与坐标轴的交点坐标。 3.含根据不同条件确定二次函数的解析式。 4.灵活运用函数思想,数形结合思想解决问题。 二、要掌握二次函数解析式的三种形式,根据条件灵活运用,确定 二次函数的解析式,适当做一些二次函数的实际应用问题,来提高分析 和解决问题的能力。 三、二次函数是体现综合性的重点内容 从容易题到较难题中都会出现,也就是说每年中考试卷中即有相对 稳定的基础题,也有新颖的试题来考查学生的分析,解决问题能力,实 践和创新能力,因此经常与一次函数,三角形,四边形知识结合在一 起,成为试卷的压轴题。 四、学习二次函数注意如下几点 1.函数图像中点的横纵坐标与二条线段之间的转化。 2.函数题目中有关”函数语言“的理解及表达,例如二次函数图象过 原点,将二次函数以轴翻折,系数即改变符号等等。
二次函数典型例题
一、已知二次函数y=ax2+bx+c的图象与x轴交于点(-2,0)、(x1, 0),且1<x1<2,与y轴的正半轴的交点在点(0,2)的下方。下列结 论:① a<b<0;② 2a+c>0;③ 4a+c<0; 正确的有几个?
解1: 两根之积为负,c/a<0,C>0,a<0 对对称轴为负,-b/2a<0,a,b同号都为负 两根之和为负,-b/a>-1,a<b<0 把(-2,0)代入 0=4a-2b+c,2b=4a+c<0 x=1时,a+b+c>0,6a+3c>0,即2a+c>0,都正确
二、二次函数y=ax2+bx+c的图象与x轴交于点(1,0)且a<b<c.那么 ①abc>0;②b2-4ac<0;③a+b+c=0;④2a-b<0;⑤2a+c<0.这五个 式子中,一定正确的是③④⑤(填序号). 解 析 根据图象与x轴交于点(1,0)且a<b<c,首先确定a<0,c>
0,进而利用图象与x轴的交点个数得出b2-4ac的符号,再利用图象上点 的性质得出a+b+c=0,以及利用对称轴求出2a-b<0;进而求出2a+c< 0,得出答案即可. ∵二次函数y=ax2+bx+c的图象与x轴交于点(1,0)且a<b<c. ∴a<0,c>0,b无法确定, ∴①abc>0不一定正确; ∴图象与x轴有两个交点,b2-4ac>0,故②选项错误, 将(1,0)代入y=ax2+bx+c, ∴③a+b+c=0;故此选项正确; ∵a<0,c>0,-b2a<1, ∴-b>2a, ∴2a+b<0, ∴④2a-b<0,故此选项正确; ∵a<b,a+b+c=0, 又∵a<0,c>0, ∴⑤2a+c<0,故此选项正确. 故正确的有:③④⑤. 故答案为:③④⑤.