初一数学有理数思维导图
(完整版)初一有理数混合运算思维导图
|a|>|b|, a+b=+ (|a|-|b|)> 0
|a|<|b|, a+b= - (|b|- |a|)< 0
|a|=|b|, a+b=0
同号
异号
加法法则 加减混合运算
a+b=b+a (a+b)+c=a+(b+c)
三、乘除混合运算
除
方法二
积
2×( -3)÷ 1/3÷ 1/2 =2×( -3)× 3× 2 乘
乘积为 1 的两个数互为倒数。
0 0 与任何数相乘都为
积的符号:异号为- 同号为+
12 、《子张》 博学而笃志
10、 11、《子罕》珍 惜时间,坚定信念
9 、《述而》虚 心学习,取长 补短
8、《述而》不义之 财不能取,安贫乐 道
7、《雍也》 求学态 度,以学为乐
6、《雍也》颜 渊贫贱不移, 坚持学习
1、《学而》,学习方法, 交友乐趣,为人态度
论语
5、《为政》 学和思结 合的过程
2、《学而》反 省自己,复习 知识
3 、《为政》不 同年龄学习和 提高修养的过
4、《为政》 复习旧知 识掌握新
加法 运算律
(ab)c=a(bc) ab=ba
乘法
a(b+c)=ab+ac ab+ac=a(b+c)
减法
加法
减法法则
0- a=-a
a- b= a+( -b)
1、先算括号
运算顺序
2、先算乘除,后算加减
七年级数学思维导图A4
1有理数航识导知1.正数与负数2.有理数3.数轴4.相反数5.绝对值6.倒数,负倒数思维脑图预习笔记正数与负数。
1.0。
、3、1、+0.3327%等数叫做正数。
正数都大于正数:像。
负数:正数前面加上“-”(读做负)的数,叫负数。
负数都小于0 即不是正数也不是负数。
0:如果正数表示某种意义,那么负数表示它相反意义,反用正负数表示相反意义的量之亦然。
相反意义的量包括两个方面的含义,一是相反意义;一是相反意义基础上要有量。
2. 有理数。
有理数:整数和分数统称有理数。
注:(1)正数和零统称非负数(2)负数和零统称非正数(3)正整数和零统称非负数(4)负整数和零统称非正整数3. 数轴。
数轴:规定原点正方向和单位长度的直线。
有理数与数轴上点的关系:一切有理数都可以用数轴上的点表示出来,在数轴上,右边的点所对应的数总比在左边的点对应的数大。
正数都大于0,负数都小于0,正数大于一切负数。
注意数轴上的点不都代表有理数,如:相反数。
4.的相反数为0。
相反数:只有符号不同的两个数互称相反数。
特别的,0 5. 绝对值。
,记作数轴上表示与原点的距离叫数的绝对值 6. 倒数,负倒数。
的两个数互为倒数。
,互为倒数,则,反之则亦然。
:乘积为倒数1没0,倒数是成对出现的,单独一个数不能称为倒数,互为倒数的两个数乘积一定是1 有倒数。
,互为倒数,则,,反之则亦然。
的两个数互为负倒数,:乘积为-负倒数11让学习更有效思维脑图2思维脑图2 有理数的运算航识知导1. 有理数的加法。
2. 有理数乘法。
有理数除法。
3.有理数的乘方。
4.5. 有理数混合运算。
3让学习更有效预习笔记有理数的加法。
1.有理数的加法法则。
、求和的绝对值、确定符号 2有理数的加法运算步骤:1 :运算技巧、分数与小数均有时,应化为统一形式;1 、带分数可分为整数与分数两部分参与运算;2 3、多个数相加时,若有互为相反数的两个数,可先结合相加得零; 4、若有可以凑整的数,即相加得整数,可先结合相合相加; 5、若有同分母的分数或易通分的分数,应先结合在一起;6、符号相同的数可以结合在一起。
初一上册数学思维导图第一单元图片
初一上册数学思维导图第一单元图片_初一数学思维导图第一章有理数1 正数和负数(1)正数大于0 的数;负数小于0 的数;(2)0 既不是正数,也不是负数;(3)在同一个问题中,分别用正数和负数表示的量具有相反的意义;(4)-a 不一定是负数,+a 也不一定是正数;(5)自然数0 和正整数统称为自然数;(6)a>0 ? a 是正数;a<0 ? a 是负数;a ≥0 ? a 是正数或0 ? a 是非负数;a≤0 ? a 是负数或0 ? a 是非正数.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类? ?正整数?正有理数?正分数? ? 有理数?零? ?负整数?负有理数? ?负分数?正整数?整数?零? ? ? 有理数? ?负整数? ?正分数?分数? ?负分数?(4)数轴规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)(5)一般地,当a 是正数时,则数轴上表示数a 的点在原点的右边,距离原点a 个单位长度;表示数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称一般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表示-a 和a,我们称这两个点关于原点对称;(7)相反数只有符号不同的两个数称为互为相反数;(8)一般地,a 的相反数是-a;特别地,0 的相反数是0;(9)相反数的几何意义数轴上表示相反数的两个点关于原点对称;(10)a、b 互为相反数?a+b=0 ;(即相反数之和为0)(11)a、b 互为相反数?a ? ?1 b或b ? ?1 ;(即相反数之商为-1)a(12)a、b 互为相反数?|a|=|b|;(即相反数的绝对值相等)(13)绝对值一般地,在数轴上表示数a 的点到原点的距离叫做a 的绝对值;(|a|≥0)(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0 的绝对值是0;(a ? 0) ?a (15)绝对值可表示为a ? ? 0 (a ? 0) ? ? ? a (a ? 0) ?a aa a(16)?1? a ? 0 ;? ?1 ? a ?0 ;(17)有理数的比较在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。
初一上册数学思维导图
初一人教版数学知识导图上册
第一章:有理数
第二章:整式的加减
有理数
数轴
比较大小
有理数的运算
加法
交换律 结合律
乘法
乘方
减法
分配律
除法
用字母表示数
列式表示数量
单项式
多项式
整式
整式加减运算
第三章:一元一次方程
第四章:图形认识初步
实际问题
一元一次方程
实际问题的解答
一元一次方程的解(x=a )
几何图形
立体图形
平面图形
从不同方向看立体图形
展开立体图形
直线、射线、线段
角
角的度量
平面图形
角的比较与运算
余角和补角
角的平分线。
七年级数学第一章有理数思维导图
1.1正数和负数概念正数:比0大的数,如3,4,5.......负数:比0小的数,如-3,-4,-5.......0:既不是正数也不是负数用字母表示数若a为正数,-a为负数若a为负数,-a为正数;如-2为负数,-(-2)=2为正数若a为0,-a也为0具有相反意义的量,如零上8℃:+8℃零下8℃:-8℃往东走20米:+20米往西走80米:-80米0表示的意义表示没有。
如教室里有0人,即教室里没有人是正数和负数的分界线1.2有理数1.2.1有理数按意义分整数正整数负整数分数正分数负分数按性质符号分正有理数正整数正分数负有理数负整数负分数1.2.2数轴有原点、正方向、单位长度的一条直线任何有理数都能找到一个点与之对应,右边的数大于左边的数两点间距离:右边点对应的数减左边点对应的数1.2.3相反数只有符号不相同的两个数字互为相反数,a的相反数记为-a0的相反数是0,正数的相反数为负,负数的相反数为正一个数和它的相反数关于原点对称互为相反数的两个数相加等于01.2.4绝对值数轴上表示数a的点与原点的距离叫做数a 的绝对值,写为|a|互为相反数的两个数:绝对值相等两个负数,绝对值大的反而小,绝对值小的反而大若a>0,则|a|=a;若a<0,则|a|=-a;|0|=01.3有理数的加减法1.3.1加法同号两数相加:取相同的符号,绝对值相加;如-3+(-4)=-7异号两数相加:谁绝对值大,就取谁的符号;再用大绝对值减小绝对值;如-5+3=-2互为相反数的两数相加得0,任何数加0等于它本身1.3.2减法减去一个数,等于加上这个数的相反数;即a-b=a+(-b)如:5-(-3)=5+3=8加减混合相反数结合法:互为相反数的两个数相加等于0同分母结合法:把含相同分母的数或可通分的数结合在一起有带分数时先拆分为整数和分数,再结合分数和小数混合时统一为分数或统一为小数同号结合法:把符号相同的加数相结合(-23)-(-18)+(-15)-(+1)+(+23)原式=-23+(+18)+(-15)+(-1)+(+23)=(-23-25-1)+(18+23)=-7凑整法:把和为整数的加数相结合(+6.6)+(-5.2)-(-3.8)+(-2.6)-(+4.8)原式=(+6.6)+(-5.2)+(+3.8)+(-2.6)+(-4.8)=(6.6-2.6)+(-5.2-4.8)+3.8=-2.2分组结合法2-3-4+5+6-7-8+9…+66-67-68+69原式=(2-3-4+5)+(6-7-8+9)+…+(66-67-68+69)=0先拆项后结合(-2-4-6-8...-100)+(1+3+5+7 (99)原式=(-2+1)+(-4+3)+......+(-100+99)=-501.4有理数的乘除法1.4.1乘法两数相乘,同号得正,异号得负,并把绝对值相乘任何数乘0得0多个有理数相乘1.4.2除法除以一个数等于乘以这个数的倒数两数相除,同号得正,异号得负,并把绝对值相除0除以任何一个非0数,等于0;0不能作除数只要一个因数为0则积为0如果因数都不是0,则结果符号根据负数的个数来定:奇负偶正1.5.1有理数的乘方求n个相同因数的积的运算,叫做乘方在aⁿ中,a 叫做底数,n 叫做指数。
初一数学章节思维导图(全)
沪科版初中数学-全章思维导图
5
沪科版初中数学-全章思维导图
• 第 7 章 一元一次不等式与不等式组 • 第 8 章 整式乘法与因式分解
6
• 第 9 章 分式
沪科版初中数学-全章思维导图
• 第 10 章 相交线、平行线和平移
7
初一上·第一学期 • 第 1 章 有理数
沪科版初中数学-全章思维导图
1
沪科版初中数学-全章思维导图
• 第 2 章 整式加减
沪科版初中数学-全章思维导图
• 第 3 章 一次方程与方程组
3
沪科版初中数学-全章思维导图
• 第 4 章 直线与角
• 第 5 章 数据的收集与整理
4
七年级下-第二学期 • 第 6 章 实数
七年级数学思维导图PPT课件
七年级上册全书思维导图
正数和负数 有理数的分类 按定义分
按性质分 有理数的有关概念 数轴
相反数 绝对值 比较大小
加减 有理数的运算 乘除
乘方
混合运算
科学记数法、近似数和有效数字
精选ppt课件最新
1
第二章 整式的加减
用字母表示数 整式 单项式
多项式
同类项 整式的加减 合并同类项
去括号规律 整式加减的运算法则
平面图形
两点之间线段最短
角的度量
角 角的比较与运算、角的平分线
余角和补角
精选ppt课件最新
4
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
此课件下载可自行编辑修改,供参考! 感谢您的支持,我们努力做得更好!
精选ppt课件最新
2
第三章 一元一次方程
方程 概念 一元一次方程
等式的性质 去分号 去括号
解一元一次方程的步骤 移项 合并同类项 系数化为1
列Байду номын сангаас元一次方程解应用题
精选ppt课件最新
3
点、线、面、体
立体图形 从不同方向看立体图形
第四章
展开立体图形
几何图形
线段的大小比较
直线、射线、线段 两点确定一条直线
人教版七年级数学上册思维导图
第一章有理数思维导图分配律乘法结合律加法结合律结合律乘法交换律加法交换律交换律运算律乘方的运算符号法则有理数的除法法则有理数的乘法法则有理数的减法法则有理数的加法法则法则运算方法叫做科学记数法是正整数),这种记数,的形式(其中把一个数表示乘——科学记数法数相同因数的个数叫做指相同的因数叫做底数,叫做幂叫做乘方,乘方的结果个相同因数的积的运算求——乘方的两个数互为倒数—乘积是—倒数的绝对值叫做数的点与原点的距离,一般地,数轴上表示数——绝对值数,叫做互为相反数—只有符号不同的两个—相反数相关概念负有理数正有理数按性质符号分分数整数按定义分分类有理数n 10a 110a n 1a a 0n第二章整式的加减思维导图合并同类项去括号步骤反的符号与原来的符号相去括号后原括号内各项——括号外因数为负同的符号与原来的符号相去括号后原括号内各项——括号外因数为正去括号作为合并后项的系数所得的结果把同类项的系数相加,——合并同类项同字母的指数也相同—所含字母相同并且相—同类项整式的加减的次数—多项式中次数最高项—次数—不含字母的项—常数项项式—组成多项式的每个单—项—几个单项式的和—定义多项式指数的和—单项式中所有字母的—次数—单项式中的数字因数—系数的式子—由数或字母的积组成—定义单项式用字母表示数减加的式整第三章一元一次方程思维导图际意义符合题意,是否符合实验:检验所求的解是否值中所要求的相关数量的出未知数的值以及题目解:解所列的方程,求一个数字列方程关系以及若干倍多或少关系、相等关系、倍数列:根据题目中的数量与所列方程有关的数量含未知数的代数式表示设:设未知数,并且用数量间的关系知量和未知量,明确各审:弄清题意,分清已解应用题一次方程列一元系数化为合并同类项移项去括号去分母解一元一次方程的步骤的数,结果仍相等,或除以同一个不为:等式两边乘同一个数性质,结果仍相等或式子同一个数或减:等式两边加性质等式的性质过程解方程:求方程的解的数的值号左右两边相等的未知方程的解:使方程中等等号两边都是整式,,未知数的次数都是元一个未知数一元一次方程:只含有式方程:含有未知数的等一元一次方程程方次一元一102)()(11)(第四章几何图形初步思维导图角的度量互补互余两角的特殊关系比较大小的方法表示方法定义角线段的和、差与画法线段的中点两点之间的距离段最短基本事实:两点之间线比较方法特点表示方法线段特点表示方法射线条直线基本事实:两点确定一特点表示方法直线线平面图形立体图形的平面展示图从上面看从左面看从正面看形从不同的方向看立体图常见的立体图形立体图形几何图形初步。
初一数学思维导图
初⼀数学思维导图初⼀数学思维导图第⼀章有理数1.1 正数和负数(1)正数:⼤于0的数;负数:⼩于0的数;(2)0既不是正数,也不是负数;(3)在同⼀个问题中,分别⽤正数和负数表⽰的量具有相反的意义;(4)-a 不⼀定是负数,+a 也不⼀定是正数;(5)⾃然数:0和正整数统称为⾃然数;(6)a>0 ? a 是正数; a ≥0 ? a 是正数或0 ? a 是⾮负数;a <0 ? a 是负数; a ≤ 0 ? a 是负数或0 ? a 是⾮正数.1.2 有理数(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;(2)正整数、0、负整数统称为整数;(3)有理数的分类:负分数负整数负有理数零正分数正整数正有理数有理数负分数正分数分数负整数零正整数整数有理数(4)数轴:规定了原点、正⽅向、单位长度的⼀条直线;(即数轴的三要素)(5)⼀般地,当a 是正数时,则数轴上表⽰数a 的点在原点的右边,距离原点a 个单位长度;表⽰数-a 的点在原点的左边,距离原点a 个单位长度;(6)两点关于原点对称:⼀般地,设a 是正数,则在数轴上与原点的距离为a 的点有两个,它们分别在原点的左右,表⽰-a 和a ,我们称这两个点关于原点对称;(7)相反数:只有符号不同的两个数称为互为相反数;(1)(2)有理数的乘法运算律:①乘法交换律:ab=ba; ②乘法结合律:(ab)c=a(bc);③乘法分配律: a(b+c)=ab+ac;(5)有理数的除法法则:除以⼀个不为0的数,等于乘以其倒数;即:)0(1≠?=÷b ba b a (6)两数相除,同号得正,异号得负,并把绝对值相除;0除以任⼀不为0的数,都得0;(7)在有理数的加减乘除混合运算中,若⽆括号,则按照先“先乘除后加减”的顺序进⾏运算;1.5 有理数的乘⽅(1)乘⽅:相同因数的积的运算叫做乘⽅,乘⽅的结果叫做幂;(在na 中,a 是底数,n 是指数)(2)有理数的乘⽅运算法则:①负数的奇次幂是负数,负数的偶次幂是正数;②正数的任何次幂是正数;③0的任何正次幂是0;(3)有理数的混合运算顺序:①先乘⽅,再乘除,最后加减;②同级运算,从左到右;③如有括号,先做括号内的运算,按⼩括号,中括号,⼤括号的顺序进⾏;(4)科学记数法:把⼀个⼤于10的数记成a ×10n 的形式,其中a 是整数数位只有⼀位的数,这种记数法叫科学记数法;(5)近似数的精确位:⼀个近似数,四舍五⼊到那⼀位,就说这个近似数的精确到那⼀位.(6)有效数字:从左边第⼀个不为零的数字起,到精确的位数⽌,所有数字,都叫这个近似数的有效数字. 第⼆章整式的加减2.1 整式(1)单项式:表⽰数或字母的积的式⼦;(单独⼀个数或⼀个字母也是单项式)(2)单项式的系数:单项式中的数字因数;单项式的次数:⼀个单项式中,所有字母的指数和;(3)多项式:⼏个单项式的和;(4)多项式的项:每个单项式叫做多项式的项;多项式的次数:多项式⾥次数最⾼项的次数;(5)常数项:不含字母的项;(6)整式:单项式与多项式统称为整式;2.2整式的加减(1)同类项:所含字母相同,并且相同的字母的指数也相同的项;(⼏个常数项也是同类项)(2)合并同类项法则:把多项式中的同类项合并成⼀项;(3)合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;(4)去(添)括号:①若括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;②若括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反;(5)⼀般地,⼏个整式相加减,如果有括号就先去括号,然后再合并同类项;第三章⼀元⼀次⽅程3.1 从算式到⽅程(1)⽅程:含未知数的等式;(2)⼀元⼀次⽅程:只含⼀个未知数(元)且未知数的次数都是1的⽅程;标准式:ax+b=0(x 是未知数,a 、b 是已知数,且a ≠0);(3)⽅程的解:使⽅程等号左右两边相等的未知数的值;(4)等式的性质1:等式两边加(或减)同⼀个数(或式⼦),结果仍相等;如果a=b ,那么a ±c=b ±c;等式的性质2:等式两边乘同⼀个数,或除以同⼀个不为0的数,结果仍相等;如果a=b ,那么ac=bc;如果a=b ,c ≠0,那么cb c a =; 3.2、3.3解⼀元⼀次⽅程——合并同类项与移项、去括号与去分母(1)合并同类项:把含x 的项合并在⼀起;(2)移项:把等式⼀边的某项变号反移到另⼀边;(3)⼀元⼀次⽅程解法的⼀般步骤:去分母----------两边同乘最简公分母去括号----------注意符号变化移项----------注意要变号合并同类项--------合并后注意符号系数化为1---------等式右边除以x 的系数3.4实际问题与⼀元⼀次⽅程(1)“表⽰同⼀个量的两个不同的式⼦相等”是⼀个基本的相等关系;“⼯作量=⼈均效率×⼈数×时间”是计算⼯作量的常⽤数量关系式;(2)列⼀元⼀次⽅程解应⽤题:①读题分析法: 多⽤于“和,差,倍,分问题”仔细读题,找出表⽰相等关系的关键字,例如:“⼤,⼩,多,少,是,共,合,为,完成,增加,减少,配套……”,利⽤这些关键字列出⽂字等式,并且据题意设出未知数,最后利⽤题⽬中的量与量的关系填⼊代数式,得到⽅程.②画图分析法: 多⽤于“⾏程问题”仔细读题,依照题意画出有关图形,使图形各部分具有特定的含义,通过图形找相等关系是解决问题的关键,从⽽取得列⽅程的依据,最后利⽤量与量之间的关系(可把未知数看做已知量),填⼊有关的代数式是获得⽅程的基础.(3)列⽅程常⽤公式1)⾏程问题:距离=速度·时间;(2)⼯程问题:⼯作量=⼯效×⼯时;⼯程问题常⽤等量关系:先做的+后做的=完成量(3)顺⽔逆⽔问题:顺流速度=静⽔速度+⽔流速度,逆流速度=静⽔速度-⽔流速度;顺⽔逆⽔问题常⽤等量关系:顺⽔路程=逆⽔路程(4)商品利润问题:售价=定价, %100?-=成本成本售价利润率;利润问题常⽤等量关系:售价-进价=利润(5)配套问题:(6)分配问题:第四章图形认识初步4.1多姿多彩的图形(1)⼏何图形:把从实物中抽象出的各种图形称为⼏何图形;(2)⽴体图形:各部分不都在同⼀平⾯内的⼏何图形;(如长⽅体、正⽅体、圆柱、圆锥、球等)(3)平⾯图形:各部分都在同⼀平⾯的⼏何图形;(如线段、三⾓形、长⽅形、圆等)(4)⽴体图形与平⾯图形互相联系,⽴体图形中某些部分是平⾯图形;(如长⽅体的侧⾯是长⽅形)(5)⽴体图形的三视图:主视图(从正⾯看)、左视图(从左⾯看)、俯视图(从上⾯看)(6)展开图:有些⽴体图形是由⼀些平⾯图形围成的,将它们的表⾯适当剪开,可以展开成平⾯图形,这样的平⾯图形称为相应⽴体图形的展开图;(7)⼏何体简称为体;(8)包围着体的是⾯;(⾯有平的⾯和曲的⾯两种)(9)⾯和⾯相交的地⽅形成线;线和线相交的地⽅形成点;(10)点动成线、线动成⾯、⾯动成体;(11)⼏何图形都是由点、线、⾯、体组成的,点是构成图形的基本元素;4.2 直线、射线、线段(1)⼀个关于直线的基本事实:经过两点有⼀条直线,并且只有⼀条直线;简述为:两点确定⼀条直线;(2)直线的表⽰⽅法:①⽤⼀个⼩写字母表⽰直线(如直线l)②⽤⼀条直线上的两点来表⽰这条直线(如直线AB)射线和线段的表⽰⽅法类似;(3)两条直线相交:当两条不同的直线有⼀个公共点,我们就称这两条直线相交,这个公共点叫做它们的交点。
人教版 七年级数学上册章节思维导图集图片版
你现在的努力要对得起别人对你的好!
Math 实验室-1-人教版七年级数学上册章节思维导图
共4章
人教版七年级数学上册教材目录
第1章有理数的思维导图
1.1正数和负数
1.2有理数
1.3有理数的加减法
1.4有理数的乘除法
1.5有理数的乘方
第2章整式的加减的思维导图
2.1整式
2.2整式的加减
第3章一元一次方程的思维导图
3.1从算式到方程
3.2解一元一次方程(一)——合并同类项与移项
3.3解一元一次方程(二)——去括号与去分母
3.4实际问题与一元一次方程
第4章几何图形初步的思维导图
4.1几何图形
4.2直线、射线、线段
4.3角
4.4课题学习
设计制作长方体形状的包装纸盒。
(完整版)七年级数学上册思维导图
第一章 有理数思维导图 ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧⎩⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧<≤⨯⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧分配律乘法结合律加法结合律结合律乘法交换律加法交换律交换律运算律乘方的运算符号法则有理数的除法法则有理数的乘法法则有理数的减法法则有理数的加法法则法则运算方法叫做科学记数法是正整数),这种记数,的形式(其中把一个数表示乘——科学记数法数相同因数的个数叫做指相同的因数叫做底数,叫做幂叫做乘方,乘方的结果个相同因数的积的运算求——乘方的两个数互为倒数—乘积是—倒数的绝对值叫做数的点与原点的距离,一般地,数轴上表示数——绝对值数,叫做互为相反数—只有符号不同的两个—相反数相关概念负有理数正有理数按性质符号分分数整数按定义分分类有理数n 10a 110a n 1a a 0n第二章 整式的加减思维导图⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧合并同类项去括号步骤反的符号与原来的符号相去括号后原括号内各项——括号外因数为负同的符号与原来的符号相去括号后原括号内各项——括号外因数为正去括号作为合并后项的系数所得的结果把同类项的系数相加,——合并同类项同字母的指数也相同—所含字母相同并且相—同类项整式的加减的次数—多项式中次数最高项—次数—不含字母的项—常数项项式—组成多项式的每个单—项—几个单项式的和—定义多项式指数的和—单项式中所有字母的—次数—单项式中的数字因数—系数的式子—由数或字母的积组成—定义单项式用字母表示数减加的式整第三章 一元一次方程思维导图⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧际意义符合题意,是否符合实验:检验所求的解是否值中所要求的相关数量的出未知数的值以及题目解:解所列的方程,求一个数字列方程关系以及若干倍多或少关系、相等关系、倍数列:根据题目中的数量与所列方程有关的数量含未知数的代数式表示设:设未知数,并且用数量间的关系知量和未知量,明确各审:弄清题意,分清已解应用题一次方程列一元系数化为合并同类项移项去括号去分母解一元一次方程的步骤的数,结果仍相等,或除以同一个不为:等式两边乘同一个数性质,结果仍相等或式子同一个数或减:等式两边加性质等式的性质过程解方程:求方程的解的数的值号左右两边相等的未知方程的解:使方程中等等号两边都是整式,,未知数的次数都是元一个未知数一元一次方程:只含有式方程:含有未知数的等一元一次方程程方次一元一102)()(11)(第四章 几何图形初步思维导图⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧角的度量互补互余两角的特殊关系比较大小的方法表示方法定义角线段的和、差与画法线段的中点两点之间的距离段最短基本事实:两点之间线比较方法特点表示方法线段特点表示方法射线条直线基本事实:两点确定一特点表示方法直线线平面图形立体图形的平面展示图从上面看从左面看从正面看形从不同的方向看立体图常见的立体图形立体图形几何图形初步。
人教版初中数学七年级上册1-4单元知识点思维导图
人教版初中数学七年级上册第一章 有理数第二章 整式的加减第三章 一元一次方程第四章 几何图形初步1.正数和负数2.有理数3.有理数的加减法4.有理数的乘除法5.有理数的乘方1.整式2.整式的加减1.从算式到方程2.解一元一次方程(一)3.解一元一次方程(二)4.实际问题与一元一次方程1.几何图形2.直线、射线、线段3.角4.课题学习人教版初中数学七年级上册1-4单元知识点导图正数和负数有理数有理数的加减法有理数的乘除法有理数的乘方0既不是正数也不是负数可以用来表示在一个问题中相反意义的量例如:一个物体向左移动记为+1m,向右移动记为-1m温度、海拔、收入增长...增长量是正数,表示真正的增长增长量是负数,表示负增长B.注意A.整数和分数统称为有理数整数分数正整数负整数正分数负分数能约分成整数的数不能算作分数两个整数的比、有限小数、无限循环小数都是分数无限不循环小数不是有理数(1)概念(2)三要素(3)画法画一条水平线,在直线上取一点表示0(这个点叫原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,这样的直线角数轴原点+正方向+单位长度A.画直线,定原点B.规定从原点向右为正方向,并用箭头表示C.根据需要选取适当长度D.标数(1)概念(2)注意像2和-2这样,只有符号不同的两个数叫做互为相反数A.“只有”就是说仅仅只有符号不同B.相反数是成对出现的C.一个数的相反数只有一个D.0的相反数是0(1)概念(2)注意数轴上表示a的点与原点的距离叫做数a的绝对值A.一个正数的绝对值是它本身B.一个负数的绝对值是它的相反数C.零的绝对值是零D.互为相反数的两个数的绝对值相等E.任何一个有理数的绝对值是非负数1.有理数加法法则2.有理数减法法则(1)同号两数相加,取相同的符号,并把绝对值相加(2)绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大绝对值减去较小绝对值(3)一个数同0相加,仍得这个数(4)互为相反数的两个数相加得0加法交换律加法结合律减去一个数等于加上这个数的相反数a-b=a+(-b)1.有理数乘法法则2.有理数除法法则(1)两数相乘,同号得正,异号得负,并把绝对值相乘(2)任何数与0相乘都得0(1)两数相除,同号得正,异号得负,并把绝对值相除(2)0除以任何一个不等于0的数,都得0(3)除以一个不等于0的数等于乘以这个数的倒数注意:A.乘积是1的两个数互为倒数B.几个不等于0的数相乘,积的符号由负因数的个数决定C.几个数相乘,有一个因数为0,积就为0奇数个--积为负偶数个--积为正1.乘方2.科学计数法3.近似数(1)概念(2)性质(3)运算求n个相同因数的积的运算,叫做乘方。
七年级数学思维导图A4
的过程。
20 思维脑图
思维脑图
易错点 2:任何一元一次方程都可以转化为最简形式和标准形式,,所以判断一个方程时不
时一元一次方程,可以通过变形为最简形式或标准形式来验证,如方程
是一
元一次方程。 5. 解一元一次方程。 解一元一次方程的一般步骤:(1)去分母;(2)去括号;(3)移项;(4)合并同类项;(5)
练习 2 〉>〉
----—-——-—-—-—--—--———--——-—-—--——————------—----—-————
———--—-———-—---—————----—-
(1) (2) (3)
的值-121.
的值是-243。 的值 2。
让学习更有效17
5
一元一次方程
知识导航 一元一次方程
18 思维脑图
一般地,如果一个正数 的平方为 ,即 的算术平方根为 0
3。 立方根
,那么这个正数 叫做 的算术平方根,规定 0
如果一个数的立方等于 ,那么这个数叫做 的立方根,也就是说,若
,则 就叫做 的
立方根。 总结:任何一个数都有一个算术平方根,正数的立方根都为正数,负数的立方根为负数,0 的
立方根为 0。
10 思维脑图
,,反之则亦
2 思维脑图
思维脑图
2
有理数的运算
知识导航 有理数的运算
1. 有理数的加法。 2. 有理数乘法。 3. 有理数除法。 4. 有理数的乘方。 5. 有理数混合运算。
让学习更有效3
预习笔记
1. 有理数的加法。 有理数的加法法则. 有理数的加法运算步骤:1、确定符号 2、求和的绝对值 运算技巧: 1、分数与小数均有时,应化为统一形式; 2、带分数可分为整数与分数两部分参与运算; 3、多个数相加时,若有互为相反数的两个数,可先结合相加得零; 4、若有可以凑整的数,即相加得整数,可先结合相合相加; 5、若有同分母的分数或易通分的分数,应先结合在一起; 6、符号相同的数可以结合在一起。 2。 有理数乘法。 有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘. 3. 有理数除法. 有理数除法法则:除以一个不为 0 的数,等于乘上它的倒数。 4. 有理数的乘方。 概念:求 n 个相同因数的积的运算,叫做乘方。乘方的结果叫做幂,在 an 中,a 叫底数,n 叫做指数. “奇负偶正”的口决的应用。 5. 有理数混合运算。 (1)先乘方,再乘除,最后加减 (2)同级运算,从左到右 (3)如果括号,先做括号内的运算。安小,中,大括号依次进行 以上运算顺序可记为“从左到右,从高(级)到低(级)”,从小(括号)到大(括号)。