第四章—频率域图像增强

合集下载

第4讲频率域图像增强

第4讲频率域图像增强

F(u)e j2ux/ M
aue j 2ux/ M
u
u
(3)离散形式
F(u)
1
M 1
f (x)e j2ux/ M
M x0
M 1
f (x) F(u)e j2ux/ M
u0
系数1/M也可以放在反变换前, 有时也可在傅立叶正变 换和逆变换前分别乘以(1/M )1/2。
• 对高频成分的通过使图像锐化——高通滤波 • 高通和低通的关系
– Hhp(u,v) = 1 - Hlp(u,v) – 即低通阻塞的频率是能够通过高通的
• 理想高通滤波器的定义
– 一个二维的理想高通滤波器(ILPF)的转换函数满足 (是一个分段函数)
其中:D0 为截止频率
D(u,v)为距离函数 D(u,v)=(u2+v2)1/2
– 低通滤波器 – 高通滤波器 – 同态滤波器
低通滤波器的基本思想

G(u,v)=F(u,v)H(u,v)
– F(u,v)是需要钝化图像的傅立叶变换形式
– H(u,v)是选取的一个滤波器变换函数
– G(u,v)是通过H(u,v)减少F(u,v)的高频部分来 得到的结果
– 运用傅立叶逆变换得到钝化后的图像。
二阶GLPF 无振铃
• 高斯LPF r=30
ILPF r=30
第4讲 频率域图像增强
• 4.1 卷积 • 4.2 傅立叶变换 • 4.3 平滑频率域滤波器——低通滤波器 • 4.4 频率域锐化滤波器——高通滤波器 • 4.5 同态滤波器
2
频率域锐化滤波器
• 对F(u,v)的高频成分的衰减使图像模糊——低 通滤波
• 一个截止频率在与原点距离为D0的n阶Butterworth 低通滤波器(BLPF)的变换函数:

第四章频率域图像增强

第四章频率域图像增强

图像傅立叶变换的物理意义
傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空 间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示 空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图 像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表 示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。 为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱 图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并 不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶 频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域 点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么 理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来 讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立 叶变换后的频谱图,也叫功率图
域表述困难的增强任务,在频率域中变得非常普通
✓ 滤波在频率域更为直观,它可以解释空间域滤波的某些性质 ✓ 给出一个问题,寻找某个滤波器解决该问题,频率域处理对 于试验、迅速而全面地控制滤波器参数是一个理想工具
✓ 一旦找到一个特殊应用的滤波器,通常在空间域用硬件实现
➢图像的频率指什么?
✓ 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面
Mx0
u=0,1,2,…,M-1
✓ 给定F(u),通过傅里叶反变换可以得到f(x)
f(x)
1
M1
j2ux
F(u)e M
Mu0
x=0,1,2,…,M-1
傅里叶变换
一维离散傅里叶变换及反变换
✓ 从欧拉公式 e j cos j sin
F (u)
1
M 1

频率域图像增强

频率域图像增强

理想低通滤波器
第一幅图为理想低通滤波器变换函数的透视图 第二幅图为图像形式显示的滤波器 第三幅图为滤波器径向横截面
振铃
附录
产生的原因图像在处理过程中的信息量的丢失,尤其是高频 信息的丢失
由卷积定理可知,频率域下的理想低通滤波器H(u, v)必定存在 一个空间域下与之对应的滤波函数h(x, y),且可以通过对H(u,v)作傅 里叶逆变换求得。产生振铃效应的原因就在于,理想低通滤波器在 频率域下的分布十分线性(在D0处呈现出一条垂直的线,在其他频 率处呈现出一条水平的线),那么不难想象出对应的h(x,y)将会有类 似于sinc函数那样周期震荡的空间分布特性。正是由于理想低通滤 波器的空间域表示有类似于sinc函数的形状,位于正中央的突起使 得理想低通滤波器有模糊图像的功能,而外层的其他突起则导致理 想低通滤波器会产生振铃效应。
理想低通滤波器
截止频率 为分别设 置为
10,30,60,1 60和460
由于高频成分包含有大量的边缘信息,因此采用该滤波器在去 噪声的同时将会导致边缘信息损失而使图像边模糊。
布特沃斯低通滤波器
n阶布特沃斯滤波器的传递函数为:
D0是截止频率。对于这个点的定义,我们可以这样理解,使 H(u,v)下降为最大值的某个百分比的点。
我们可以从两者之间的剖面图进行比较,GLPF没有 BLPF那样紧凑。 但是重要的是,GLPF中没有振铃。
截止 频率 分别 为
10,30 ,60,1 60和 460
比较
2阶布特沃斯低通滤波
高斯低通滤波
梯形低通滤波器
梯形低通滤波器是理想低通滤波器和完全平滑滤波器的折 中。它的传递函数为:
低通滤波器
应用: 字符识别的应用 印刷和出版业 卫星图像和航空图像的处理

第四章频率域图像增强

第四章频率域图像增强

一、频率域介绍
低通滤波器
低通滤波函数
原图
低通滤波结果:模糊
一、频率域介绍
高通滤波器
高通滤波器:使高频通过而使低频衰减的滤波器
被高通滤波的图像比原始图像少灰度级的平滑 过渡而突出边缘等细节部分
对比空间域的梯度算子、拉普拉斯算子
一、频率域介绍
高通滤波器
高通滤波函数
原图
高通滤波结果:锐化
G(u,v)=F(u,v)H(u,v)
最后将G(u,v)进行IDFT变换即可得到频域滤波后 的图像
频域滤波的步骤
具体实施步骤如下: (1)用(-1)x+y乘以输入图像f(x,y)来进行中心变换;
f ( x, y)(1)x y F (u M / 2, v N / 2)
(2)由(1)计算图像的DFT,得到F(u,v); (3)用频域滤波器H(u,v)乘以F(u,v); (4)将(3)中得到的结果进行IDFT; (5)取(4)中结果的实部; (6)用(-1)x+y乘以(5)中的结果,即可得滤波图像。
uv
理想低通滤波器举例
500×500像素的原图 图像的傅里叶频谱
圆环具有半径5,15,30,80和230个像素 图像功率为92.0%,94.6%,96.4%,98.0%和99.5%
理想低通滤波器举例——具有振铃现象
结论:半径越小,模糊越大;半径越大,模糊越小
原图
半径是5的理想低通 滤波,滤除8%的总功 率,模糊说明多数尖 锐细节在这8%的功率 之内
二、频率域平滑滤波器
理想低通滤波器
总图像功率值PT
M 1 N 1
PT P(u, v)
u0 v0
P(u, v) | F (u, v) |2 R(u, v)2 I (u, v)2

图像增强 第四讲-频域增强

图像增强 第四讲-频域增强
j=-1
=
1 9
F(Zm
,
Zn
)
1 i = -1
Zmi
1
Znj
j=-1
H(Zm , Zn
)
=
G(Zm , Zn ) F(Zm , Zn )
=
1 9
(1 +
Zm
+
Zm-1
)(1 +
Zn
+
Zn-1 )
以 Zm = e 和 jωm Zn = ejωn 代入上式,
图4.4.2 加权平均模板的频率响应
f(x,y)和h(x,y)卷积定义为:
f (x, y) * h(x, y)
1
M 1 N 1
f (m, n)h(x n, y n)
MN m0 n0
有: f (x, y)*h(x, y) F(u, v)H(u, v) f (x, y)h(x, y) F(u,v)* H(u,v)
15
设 g(x, y) f (x, y) * h(x, y)
得到傅立叶变换式:
1 H(ωm ,ωn ) = 9 (1 + 2cosωm )(1 + 2cosωn )
”分量当即ω图m 像= ω的n 灰= 0度平时均,|值H |处具理有前最后大不值变1;,当这ωm说明或“ωn直= 23流π 时,具有最小值0,即高频得到最大程度的抑制。
低通滤波法举例
(a) 原图像; (b) 频谱(r=5,11,45,68); (c)(f) 低通滤波(r=5,11,45,68)
4.4 频域图像增强
图像增强的目的主要包括:①消除噪声, 改善图像的视觉效果;②突出边缘,有利于 识别和处理。前面是关于图像空间域增强的 知识,下面介绍频率域增强的方法。

第四章图像增强

第四章图像增强
空间域增强:直接对图像各像素进行处理; 空间域增强:直接对图像各像素进行处理; 频率域增强: 频率域增强 : 将图像经傅立叶变换后的频谱成分 进行处理, 然后逆傅立叶变换获得所需的图像。 进行处理 , 然后逆傅立叶变换获得所需的图像 。
2
图像增强所包含的主要内容: 图像增强所包含的主要内容:
灰度变换 点运算 均衡化 直方图修正法 空间域 规定化 局部运算 图像平滑 图像锐化 高通滤波 图像增强 频率域 低通滤波 同态滤波增强 假彩色增强 彩色增强 伪彩色增强 彩色变换及应用 几何畸变的消除
8
原图
变换函数曲线
9
灰度反转后
10
original image
Brightness(明暗变化)
(addition/subtraction)
contrast
= histogram stretching
其它线性变换例
11
2.分段线性变换
线性拉伸是将原始输入图像中的灰度值不加区别地 扩展。 而在实际应用中,为了突出图像中感兴趣的研究对象, 常常要求局部扩展拉伸某一范围的灰度值,或对不同 范围的灰度值进行不同的拉伸处理,即分段线性拉伸。 分段线性拉伸是仅将某一范围的灰度值进行拉伸,而 其余范围的灰度值实际上被压缩了。
k k
变换函数T(r)可改写为 : sk = T (rk ) = ∑ Pr (rj ) = ∑
j =0 j =0
nj n
0 ≤ rk ≤ 1, k = 0,1,..., l − 1
均衡化后各像素的灰度值可直接由原图像的直 30 方图算出。
例 假定有一幅总像素为n=64×64的图像,灰度级数为8,各灰度级 分布列于表中。对其均衡化处理。

第四章频率域图像增强

第四章频率域图像增强
频率域图像增强
频率域滤波 频率域平滑(低通)滤波器 频率域锐化(高通)滤波器
4.1 背景知识
• 图像变换的目的
✓ 使图像处理问题简化; ✓ 有利于图像特征提取; ✓ 有助于从概念上增强对图像信息的理解;
• 图像变换的定义
✓ 将空域中的信号变换到另外一个域,即使用该域中的一组基 函数的线性组合来合成任意函数
空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的 区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在 图像中是一片灰度变化剧烈的区域,对应的频率值较高。
傅里叶变换及其反变换 傅里叶变换的性质
快速傅里叶变换(FFT)
傅里叶变换
一维连续傅里叶变换及反变换
✓ 单变量连续函数f(x)的傅里叶变换F(u)定义 为
M x 0
1 M
M 1 x 0
f
x cos(2ux)
/
M
j
sin(2ux) /
M
1 M
M 1 x 0
f
x
cos
2ux
/
M
j
sin
2ux
/
M
傅里叶变换
傅里叶变换的极坐标表示 F u F u e j u
✓ 幅度或频率谱为 F(u) R2(u)I2(u) R(u)和I(u)分别是F(u)的实部和虚部
✓ 相角或相位谱为 (u)arctaIn(u)
R(u)
✓ 功率谱为 P (u )F (u )2R 2(u )I2(u )
傅里叶变换
二维离散傅里叶变换及反变换
✓ 图像尺寸为M×N的函数f(x,y)的DFT为
F ( u , v ) 1 MN
M1N1
f x , y e j 2 ux / M vy / N

图像处理课件04频率域图像增强

图像处理课件04频率域图像增强

u 0,1,, M 1 v 0,1,, N 1
反变换: f ( x, y ) F (u , v) e j 2 ( ux / M vy / N )
u 0 v 0 M 1 N 1
x 0,1, , M 1 y 0,1, , N 1
一般F(u,v)是复函数,即:
1
2
5
20
3、高斯低通滤波器(GLPF)
H (u, v) e
D 2 u ,v / 2 2
令 D0
H (u, v) e
2 D 2 u ,v / 2 D0
当D(u, v) D0
H (u, v) 0.607
有更加平滑的过渡带,平滑后的图象没有振铃现象 与BLPF相比,衰减更快,经过GLPF滤波的图象比 BLPF处理的图象更模糊一些
高通滤波与低通滤波的作用相反,它使高频分量顺 利通过,而使低频分量受到削弱。
H hp (u, v) 1 H lp (u, v)
与低通滤波器相对应,频率域内常用的高通滤波器 有3种: 1. 理想高通滤波器 2. 巴特沃斯高通滤波器 3. 高斯高通滤波器
空间域滤波和频率域滤波之间的对应 关系
卷积定理:
f ( x, y) h( x, y) F (u, v) H (u, v)
f ( x, y)h( x, y) F (u, v) H (u, v)
冲激函数
M 1 N 1 x 0 y 0
s( x, y) A ( x x , y y ) As( x , y )
频率域的基本性质:
低频对应着图像的慢变化分量。
较高的频率对应着图像中变化较快的灰度级。
变化最慢的频率成分(原点)对应图像的平均灰度级。

数字图像处理之频率域图像增强

数字图像处理之频率域图像增强
易于分析和处理。
图像增强技术广泛应用于医学影 像、遥感、安全监控、机器视觉
等领域。
频率域图像增强的概念
01
频率域图像增强是指在频率域 对图像进行操作,通过改变图 像的频率成分来改善图像的质 量。
02
频率域增强方法通常涉及将图 像从空间域转换到频率域,对 频率域中的成分进行操作,然 后再将结果转换回空间域。
直方图规定化
直方图规定化是另一种频率域图像增强 方法,其基本思想是根据特定的需求或 目标,重新定义图像的灰度级分布,以
达到增强图像的目的。
与直方图均衡化不同,直方图规定化可 以根据具体的应用场景和需求,定制不 同的灰度级分布,从而更好地满足特定
的增强需求。
直方图规定化的实现通常需要先对原始 图像进行直方图统计,然后根据规定的 灰度级分布进行像素灰度值的映射和调
灵活性
频率域增强允许用户针对特定频率成 分进行调整,从而实现对图像的精细 控制。例如,可以增强高频细节或降 低噪声。
总结与展望 数字图像处理之频率域图像增强的优缺点
频谱混叠
在频率域增强过程中,如果不采取适 当的措施,可能会导致频谱混叠现象, 影响图像质量。
计算复杂度
虽然频率域增强可以利用FFT加速, 但对于某些复杂的图像处理任务,其 计算复杂度仍然较高。
傅立叶变换具有线性、平移不变性和周期性等性质,这些性质在图像增强中具有重 要应用。
傅立叶变换的性质
线性性质
傅立叶变换具有线性性质,即两 个函数的和或差经过傅立叶变换 后,等于它们各自经过傅立叶变
换后的结果的和或差。
平移不变性
傅立叶变换具有平移不变性,即 一个函数沿x轴平移a个单位后, 其傅立叶变换的结果也相应地沿
THANKS

数字图像处理-频率域中的图像增强

数字图像处理-频率域中的图像增强

Chapter 4 Image Enhancement in the Frequency Domain
Chapter 4 Image Enhancement in the Frequency Domain
内容
• 引言 • 傅立叶变换 • 频域增强原理 • 低通滤波(理想、巴特沃斯、高斯)、高
通滤波、带通/带阻滤波
傅立叶变换的提出
• 让我们先看看为什么会有傅立叶变换?
– 傅立叶是一位法国数学家和物理学家的名字, 英语原名是Jean Baptiste Joseph Fourier(17681830)
– Fourier对热传递很感兴趣,于1807年在法国科 学学会上发表了一篇论文,运用正弦曲线来描 述温度分布。
– 论文里有个在当时具有争议性的决断: 任何连 续周期信号可以由一组适当的正弦曲线组合而 成。
Chapter 4 Image Enhancement in the Frequency Domain
傅立叶变换的提出
• 为什么我们要用正弦曲线来代替原来的曲线呢 ?
– 例如:我们也还可以用方波或三角波来代替呀,分解信号的方法是无 穷的,但分解信号的目的是为了 更加简单地处理原来的信号。
– 用正余弦来表示原信号会更加简单,因为正余弦拥有原信号所不具有 的性质:正弦曲线保真度。一个正弦曲线信号 输入后,输出的仍是正 弦曲线,只有幅度和相位可能发生变化,但是频率和波的形状仍是一 样的。且只有正弦曲线才拥有这样的性质,正因如此 我们才不用方波 或三角波来表示。
Chapter 4 Image Enhancement in the Frequency Domain
傅立叶变换的提出
• 让我们先看看为什么会有傅立叶变换?

频率域图像增强处理PPT

频率域图像增强处理PPT

∑ ∑ f (m, n)h( x m, y n)
1. 取函数h(m,n)关于原点的镜像,得到h(-m,-n) 2. 对某个(x,y),使h(-m,-n)移动相应的距离,得到h(x-m,y-n) 3. 对积函数f(m,n)h(x-m,y-n)在(m,n)的取值范围内求和 4. 位移是整数增量,对所有的(x,y)重复上面的过程,直到两个函数:f(m,n)和 h(x-m,y-n)不再有重叠的部分。 傅立叶变换是空域和频域的桥梁,关于两个域滤波的傅立叶变换对:
冲激(脉冲)函数及筛选属性:
冲激函数的傅立叶变换:
1 F (u , v) = MN
筛选属性:
∑∑ δ ( x, y)e j 2π (ux / M +vy / N ) =
x =0 y =0
M
N
1 MN
∑∑ f ( x, y) Aδ ( x x , y y ) = Af ( x , y )
x=0 y =0 M N 0 0 0 0
信息与物理工程学院 中南大学
2. Butterworth低通滤波器(BLPF)
通常在H(u, v)=0.5时的D(u, v)=D0规定为截止频率(见第一个公式)。当阶数为1 时没有“振铃”现象,为2时较轻微,大于2时较严重。
变化着的频率是最基本的感觉之一,我们四周无时不被变化着 色彩的光、变化着音调的声音等在周期变化的现象包围着。
f ( x, y ) h( x, y ) F (u , v) H (u , v); f ( x, y )h( x, y ) F (u , v) H (u , v)
变化着的频率是最基本的感觉之一,我们四周无时不被变化着 色彩的光、变化着音调的声音等在周期变化的现象包围着。
信息与物理工程学院 中南大学

数字图像处理 第四章图像增强

数字图像处理 第四章图像增强

Pr(rk) 0.19 0.25 0.21 0.16 0.08 0.06
0.03
0.02
计算每个sk对应的像素数目 计算均衡化后的直方图
Tr
Sk并
sk
nsk Ps(sk)
0.19
1/7
0.44
3/7
S0=1/7 S1=3/7 S2=5/7
790 0.19 1023 0.25 850 0.21
0.65
✓ 校正后的原始图像 f (i, j) C g(i, j) gc(i, j)
9
灰度级校正注意问题:
对降质图像进行逐点灰度级校正所获得的图像, 其中某些像素的灰度级值有可能要超出记录器 件或显示器输入灰度级的动态范围,在输出时 还要采用其他方法来修正才能保证不失真地输 出。
降质图像在数字化时,各像素灰度级都被量化 在离散集合中的离散值上,但经校正后的图像 各像素灰度极值并不一定都在这些离散值上, 因此必须对校正后的图像进行量化。
),使得结果图像s的直方图Ps(s)为一个常数
Pr(r)
Ps(s)
直方图均衡化 T(r)
r
s
26
直方图均衡化理论基础
-1 由概率论可知,若Pr(r)和变换函数s=T(r)已知,r=T (s)是单 调增长函数,则变换后的概率密度函数Ps(s)可由Pr(r)得到:
分 布 函 数 Fs(s)sp( s s) ds=rp( r r) dr
✓ 计算均衡后的直方图
s k 计
T( rk)
k
=
i 0
P(r
r

i
k i 0
ni n
s k并
round( sk计 * (L L 1
1))
j

第4章-图像增强(频率域)

第4章-图像增强(频率域)
傅立叶反变换还原空间域函数的过程如下:
x
f ( x )曲线图
12.81
2.468
F (u)
u
频谱图
……
F(0)
F(0)+ F(1)
F(0)+ …+ F(14) F(0)+ …+ F(15)
结论:
① 空间域函数 f (x, y)可以通过傅立叶变换,转 换成频率域函数F(u)。
x
一般地,低频成分描述曲线的大致轮廓,高
例如: 一幅 512×512 的图像,不用 FFT 计算,需要计算: 2×(512×512)2 = 137438953472 复数乘法和加法, 按0.1微秒完成一次运算,耗时约3.82小时; 采用 FFT 计算,需要计算: (512×512) log2(237) = 9699328 次复数乘法和加法, 按0.1微秒完成一次运算,耗时约0.97秒;
在频域中,图像用如下二维函数描述:
F( u , v ) , 0≤u<M, 0≤v<N
其中,u , v 分别为水平变化频率和垂直变化频率;
F ( u , v )为图像中含有( u , v ) 频率的幅度;
M、 N 分别为最高水平变化频率和最高垂直变化频率,在数
量上等于图像的宽、高。
在频率域描述图像,从数量的角度揭示了图像内容沿空间位置的变化 情况,是分析和处理图像的有力工具。
4.1 图像变换概述 4.2 傅立叶变换 4.3 小波变换简介
4.1 图像变换概述
4.1.1 基本概念 一幅静止图像,可以在空间域描述,也可以在频率域描述。
空间域描述是指:像素的值是空间坐标的函数。 在直角坐标系中,一幅图像可表示为:
f ( x , y ) , 0≤x<M, 0≤y<N
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

0 A M/2 M C
N/2 B D
(M/2,N/2)
N
v
(M/2,N)
(M,N/2) (M,N)
由此可得: u 频谱图A区与D区和B区与C区关于坐标(M/2,N/2)对称。
图像的傅里叶频谱特性分析
1、图像傅里叶频谱关于(M/2,N/2)的对称性
原点坐标位于(0,0)的图像的傅里叶变换的频谱
(a) 图像 (b)图像的原频谱图
频率域锐化滤波器
高通滤波器是低通滤波器的精确反操作,它的传 递函数可以由下面的关系式得到:
频率域锐化滤波器
巴特沃思滤波器为理想滤波器的尖锐化和 高斯滤波器的完全光滑之间的一种过渡
频率域锐化滤波器
频率域图像增强
理想高通滤波器
截断傅里叶变换中的所有低频成分,这些低 频成分处于指定距离D0之内
二维高斯低通滤波器(GLPF)定义如下
D(u,v)是点(u,v)距原点的距离,使σ=D0
当D(u,v)=D0时,滤波器下降到它最大值的0.607处
高斯低通滤波器
高斯低通滤波器
原图
半径是5的GLPF滤波
半径是15的GLPF滤波
半径是30的GLPF滤波
半径是80的GLPF滤波
半径是230的GLPF滤波
高频提升过滤: f hb x, y Af x, y f lp x, y A 1 f x, y f x, y f lp x, y A 1 f x, y f hp x, y
u0 x v0 y M x N y exp[ j 2 ( )] exp[ j 2 ( )] M N 2 M 2 N
e
也即
j ( x y )
(e )
j ( x y )

(cos j sin )( x y ) (1)( x y )
f ( x, y) (1)
低通滤波器和高通滤波器举例
频率域图像增强 频率域平滑(低通)滤波器
理想低通滤波器 巴特沃思低通滤波器 高斯低通滤波器 应用实例
边缘和噪声等尖锐变化处于傅里叶变换的高频部分, 平滑可以通过衰减高频成分的范围来实现
频率域图像增强 理想低通滤波器
截断傅里叶变换中的所有高频成分,这些高 频成分处于指定距离D0之外
GLPF不能达到有相同截止频率的二阶BLPF的平滑效果
频率域图像增强 结论
GLPF不能达到有相同截止频率的二阶BLPF的 平滑效果 GLPF没有振铃 如果需产生振铃
频率域图像增强 低通滤波器的应用实例:模糊,平滑等
字符识别:通过模糊图像,桥接断裂字符 的裂缝 印刷和出版业:从一幅尖锐的原始图像产 生平滑、柔和的外观,如人脸,减少皮肤细纹 的 锐化程度和小斑点 处理卫星和航空图像:尽可能模糊细节, 而保留大的可识别特征。低通滤波通过消除不 重 要的特征来简化感兴趣特征的分析
F (u, v) F (u mM , v nN)
有:
| F (u, v) | F (u M , v N )
再根据离散傅立叶变换的共轭对称性:
| F (u, v) || F (u,v) |
就可得:
| F (u, v) | F ( M u, N v)
图像的傅里叶频谱特性分析
(a) 图像
(b)图像的原频谱图
关于(0,0)对称示例
图像的傅里叶频谱特性分析
2、图像傅里叶频谱特性及其频谱图
0
N
y
0
N
v
M (M,N)
M (M,N )
x
(0,0)
(M/2,N/2 )
u v v u
u
图像的傅里叶频谱特性分析
原图
原点在(0,0) 时的频谱图
原点平移到(M/2, N/2)后的频谱图
图像的傅里叶频谱特性分析
2、图像傅里叶频谱特性及其频谱图
(a)原图像
(b)移动前的幅度谱
(c)移动后幅度谱
图像的傅里叶频谱特性分析
2、图像傅里叶频谱特性及其频谱图
对于式(3.43): f ( x, y) exp[ j 2 ( u0 x v0 y )] F (u u , v v ) 0 0 M N 当u0=M/2,v0=N/2时,有
字符识别举例
用于机器识别系统识别断裂字符的预处理
人脸图像处理
卫星图像处理
目的:尽可能模糊细节,而保留大的可识别特征。 低通滤波通过消除不重要的特征来简化感兴趣特征的分析
频率域图像增强
频率域锐化(高通)滤波器
理想高通滤波器 巴特沃思高通滤波器 高斯高通滤波器 频率域的拉普拉斯算子 钝化模板、高频提升滤波和高频加强滤波
频率域滤波 频率域的滤波步骤
1. 用(-1)x+y乘以输入图像进行中心变换 2. 计算1中的DFT得 F(u,v) 3. 用滤波器函数H(u,v)乘以F(u,v) 4. 计算3中结果的反DFT 5. 得到4中结果的实部 6. 用(-1)x+y乘以5中的结果,取消输入图像的乘数
频率域滤波 频率域滤波的基本步骤
BHPF
结论:BHPF的结果比IHPF的结果平滑得多
频率域图像增强
高斯高通滤波器
截频距原点为D0的高斯高通滤波器(GHPF) 定义为
高斯高通滤波器
结论:GHPF的结果比BHBF和IHPF的结果更平滑
频率域图像增强
频率域锐化滤波器
理想高通滤波器 巴特沃思高通滤波器 高斯高通滤波器 频率域的拉普拉斯算子 钝化模板、高频提升过滤和高频加强滤波
( x y )
F (u M / 2, v N / 2)
也就是说,前面的频谱图实质上是函数 的傅里叶频谱图。
(1)
( x y )
f ( x, y)
图像的傅里叶频谱特性分析
f ( x, y )
(1)
( x y )
f ( x, y)
的傅里叶频谱图。 的傅里叶频谱图。
原图
原点在(0,0) 时的频谱图
频率矩形的中心在(u,v)=(M/2,N/2),从点 (u,v)到中心(原点)的距离如下
理想高通滤波器
结论:图a和图b的振铃问题十分明显
频率域图像增强
巴特沃思高通滤波器
n阶且截止频率距原点的距离为D0的巴特沃 思高通滤波器(BHPF)定义为
推导
二阶巴特沃思高通滤波器
二阶巴特沃思高通滤波器
IHPF
频率域图像增强
在空间域,从原始图像中减去拉普拉斯算子部分, 形成g(x,y)的增强图像
在频率域,用 进行滤波,再反变换得到g(x,y)的增强图像
拉普拉斯举例说明
增强的图像 原图-拉普拉斯图像
频率域图像增强
频率域锐化滤波器
理想高通滤波器 巴特沃思高通滤波器 高斯高通滤波器 频率域的拉普拉斯算子 钝化模板、高频提升过滤和高频加强滤波
频率域图像增强 傅里叶变换的频率分量和图像空间特征之间 的联系
低频对应着图像的慢变化分量,如图像的平滑
部分
高频对应图像中变化越来越快的灰度级,如边 缘或噪声等尖锐部分
傅里叶变换举例
傅里叶变换举例
图像的傅里叶频谱特性分析
1、图像傅里叶频谱关于(M/2,N/2)的对称性
设f(x,y)是一幅大小为M×N的图像,根据离散傅立 叶变换的周期性:
M/2
M
C
当v=2时: F (0,2) | F ( M , N 2) | ┆ ┆ 当v=N/2时:F (0, N / 2) F ( M , N / 2)
(M,N/2) (M,N)
u
图像的傅里叶频谱特性分析
1、图像傅里叶频谱关于(M/2,N/2)的对称性
| F (u, v) | F ( M u, N v)
频率矩形的中心在(u,v)=(M/2,N/2),从点 (u,v)到中心(原点)的距离如下
频率域图像增强
理想低通滤波器
说明:在半径为D0的圆内,所有频率没有衰减地 通过滤波器,而在此半径的圆之外的所有频率完全被 衰减掉
理想低通滤波器举例
理想低通滤波器举例
频率域图像增强 巴特沃思低通滤波器
n阶巴特沃思低通滤波器(BLPF)定义如下
巴特沃思低通滤波器 n=2
原图
半径是5
的BLPF滤波
半径是15的BLPF滤波
半径是30的BLPF滤波
半径是80的BLPF滤波
半径是230的BLPF滤波
巴特沃思低通滤波器 n=2
BLPF ILPF 结论:BLPF的平滑效果好于ILPF (振铃现象)
巴特沃思低通滤波器
ILPF
频率域图像增强
高斯低通滤波器
频率域滤波 一些基本的滤波器
低通(平滑)滤波器 高通(锐化)滤波器
频率域滤波
低通滤波器:使低频通过而使高频衰减的滤波器
被低通滤波的图像比原始图像少尖锐的细节部分而 突出平滑过渡部分 对比空间域滤波的平滑处理,如均值滤波器
高通滤波器:使高频通过而使低频衰减的滤波器
被高通滤波的图像比原始图像少灰度级的平滑过渡 而突出边缘等细节部分 对比空间域的梯度算子、拉普拉斯算子
频率域的拉普拉斯算子
频率域的拉普拉斯算子定义
可以得到

所以
频率域的拉普拉斯算子
原点从(0,0)移到(M/2,N/2),所以,滤波函数平移为
空间域拉普拉斯算子过滤后的图像可由计算 H(u,v)F(u,v)的反傅里叶变换得到
傅里叶变换对表示空间域拉普拉斯算子和频 率域的双向关系
频率域的拉普拉斯算子
思想:滤波过程通过滤波器函数以某种方式来修改图像,然 后通过取结果的反变换来获得处理后的输出图像
频率域滤波
频率域滤波G(u,v)=H(u,v)F(u,v)
H和F的相乘在逐元素的基础上定义,即H的第一 个元素乘以F的第一个元素,H的第二个元素乘以F的 第二个元素,依次类推 一般,F的元素为复数,H的元素为实数
相关文档
最新文档