八年级数学上册分式解答题(篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、八年级数学分式解答题压轴题(难)
1.已知分式 A =2344(1)11
a a a a a -++-÷-- (1)化简这个分式;
(2)当 a >2 时,把分式 A 化简结果的分子与分母同时加上 4 后得到分式 B ,问:分式 B 的值较原来分式 A 的值是变大了还是变小了?试说明理由;
(3)若 A 的值是整数,且 a 也为整数,求出符合条件的所有 a 值的和.
【答案】(1)
22a a +-;(2)原分式值变小了,见解析;(3)11 【解析】
【分析】
(1)根据分式混合运算顺序和运算法则化简即可得;
(2)根据题意列出算式2622
a a A B a a ++-=--+,化简可得16(2)(2)A B a a -=-+,结合a 的范围判断结果与0的大小即可得;
(3)由24122
a A a a +=
=+--可知,2a -=±1、±2、±4,结合a 的取值范围可得. 【详解】 解:(1)A=2344(1)11
a a a a a -++-÷-- =22
1311(2)a a a a ---⨯-- =2
(2)(2)11(2)a a a a a +--⨯-- =22
a a +-; (2)变小了,理由如下: ∵22
a A a +=
-, ∴62
a B a +=+, ∴261622(2)(2)a a A B a a a a ++-=-=-+-+; ∵2a >,
∴20a ->,24a +>,
∴0A B ->,
∴分式的值变小了;
(3)∵A 是整数,a 是整数, 则24122
a A a a +=
=+--, ∴21a -=±、2±、4±, ∵1a ≠,
∴a 的值可能为:3、0、4、6、-2;
∴3046(2)11++++-=;
∴符合条件的所有a 值的和为11.
【点睛】
本题主要考查分式的混合运算,解题的关键是熟练掌握分式的混合运算顺序和运算法则.
2.阅读下面内容:我们已经学习了《二次根式》和《乘法公式》,聪明的你可以发现:当0a >,0b >时,∵2()20a b a ab b -=-+≥,∴2a b ab +≥,当且仅当a b =时取等号.请利用上述结论解决以下问题:
(1)当0x >时,1x x +的最小值为_______;当0x <时,1x x
+的最大值为__________. (2)当0x >时,求2316x x y x
++=的最小值. (3)如图,四边形ABCD 的对角线AC ,BD 相交于点O ,△AOB 、△COD 的面积分别为4和9,求四边形ABCD 面积的最小值.
【答案】(1)2,-2;(2)11;(3)25
【解析】
【分析】
(1)当x >0时,按照公式ab a=b 时取等号)来计算即可;x <0时,由于-x >0,-1x
>0,则也可以按照公式ab a=b 时取等号)来计算; (2)将2316x x y x
++=的分子分别除以分母,展开,将含x 的项用题中所给公式求得最小值,再加上常数即可;
(3)设S △BOC =x ,已知S △AOB =4,S △COD =9,则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD ,用含x 的式子表示出S △AOD ,四边形ABCD 的面积用含x 的代数式表示出来,再按照题中所给公式求得最小值,加上常数即可.
【详解】
解:(1)当x >0时,12x x +
≥= 当x <0时,11x x x x ⎛⎫+=--- ⎪⎝
⎭
∵12x x --≥= ∴12x x ⎛
⎫---≤- ⎪⎝⎭
∴当0x >时,1x x +的最小值为2;当0x <时,1x x
+的最大值为-2; (2)由2316163x x y x x x
++==++ ∵x >0,
∴163311y x x =+
+≥= 当16x x
= 时,最小值为11; (3)设S △BOC =x ,已知S △AOB =4,S △COD =9
则由等高三角形可知:S △BOC :S △COD =S △AOB :S △AOD
∴x :9=4:S △AOD
∴:S △AOD =36x
∴四边形ABCD 面积=4+9+x+361325x ≥+= 当且仅当x=6时取等号,即四边形ABCD 面积的最小值为25.
【点睛】
本题考查了配方法在最值问题中的应用,同时本题还考查了分式化简和等高三角形的性质,本题难度中等略大.
3.阅读下面材料并解答问题
材料:将分式322231
x x x x --++-+拆分成一个整式与一个分式(分子为整数)的和的形式. 解:由分母为21x -+,可设()
322231()x x x x x a b --++=-+++,
则323223x x x x ax x a b --++=--+++
∵对任意x 上述等式均成立,
∴2a =且3a b +=,∴2a =,1b =
∴()
2322221(2)12312111x x x x x x x x x -+++--++==++-+-+-+ 这样,分式322231
x x x x --++-+被拆分成了一个整式2x +与一个分式211x -+的和 解答:(1)将分式371
x x +-拆分成一个整式与一个分式(分子为整数)的和的形式 (2)求出422681
x x x --+-+的最小值. 【答案】(1)3+
101
x -;(2)8 【解析】
【分析】
(1)直接把分子变形为3(x-1)+10解答即可;
(2)由分母为-x 2+1,可设-x 4-6x 2+8=(-x 2+1)(x 2+a)+b ,按照题意,求出a 和b 的值,即可把分式422681
x x x --+-+拆分成一个整式与一个分式(分子为整数)的和的形式. 【详解】
解:(1)
371x x +-=33101x x -+- =()31101
x x -+- =3+
101x -; (2)由分母为21x -+,
可设4268x x --+()()
221x x a b =-+++,
则4268x x --+ ()()
221x x a b =-+++
422x ax x a b =--+++ 42(1)()x a x a b =---++.
∵对于任意的x ,上述等式均成立,
∴168a a b -=⎧⎨+=⎩
解得71a b =⎧⎨=⎩
∴422681
x x x --+-+