转向系统设计计算匹配

合集下载

转向系统设计计算匹配

转向系统设计计算匹配

1 转向系统的功能1.1 驾驶者通过方向盘控制转向轮绕主销的转角而实现控制汽车运动方向。

对方向盘的输入有两种方式:对方向盘的角度输入和对方向盘的力输入。

装有动力转向系统的汽车低速行驶时,操作方向盘的力很轻,却要产生很大的方向盘转角输入,汽车的运动方向纯粹是由转向系统各杆件的几何关系所确定。

这时,基本上是角输入。

而在高速行驶时,可能出现方向盘转角很小,汽车上仍作用有一定的侧向惯性力,这时,主要是通过力输入来操纵汽车。

1.2 将整车及轮胎的运动、受力状况反馈给驾驶者。

这种反馈,通常称为路感。

驾驶者可以通过手—---感知方向盘的震动及运转情况、眼睛—---观察汽车运动、身体—---承受到的惯性、耳朵—---听到轮胎在地面滚动的声音来感觉、检测汽车的运动状态,但最重要的的信息来自方向盘反馈给驾驶者的路感,因此良好的路感是优良的操稳性中不可缺少的部分。

反馈分为力反馈和角反馈从转向系统的功能可以得知:人、车通过转向系统组成了人车闭环系统,是驾驶者对汽车操纵控制的一个关键系统。

2 转向系统设计的基本要求转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。

转向系的基本要求如下:2.1 汽车转弯时,全部车轮应绕瞬时回转中心(瞬心)旋转,任何车轮不应有侧滑。

不满足这项要求会加剧轮胎磨损,并降低汽车的操作稳定性。

实际上,没有哪一款汽车能完全满足这项要求,只能对转向梯形杆系进行优化,一般在常用转向角内(内轮15°~25°范围)使转向内外轮运动关系逼近上述要求。

2.2 良好的回正性能汽车转向动作完成后,在驾驶者松开方向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。

转向轮的回正力矩的大小主要由悬架系统所决定的前轮定位参数确定,一般来说,影响汽车回正的因素有:轮胎侧偏特性、主销内倾角、主销后倾角、前轮外倾、转向节上下球节的摩擦损失、转向节臂长、转向系统的逆效率等。

转向系统设计计算报告

转向系统设计计算报告

目录1.系统概述........................................... 错误!未定义书签。

系统设计说明.................................... 错误!未定义书签。

系统结构及组成.................................. 错误!未定义书签。

系统设计原理及规范.............................. 错误!未定义书签。

2.输入条件........................................... 错误!未定义书签。

标杆车基本参数.................................. 错误!未定义书签。

LF7133确定的整车参数........................... 错误!未定义书签。

3.系统计算及验证..................................... 错误!未定义书签。

方向盘转动圈数.................................. 错误!未定义书签。

齿轮齿条式转向系的角传动比...................... 错误!未定义书签。

车轮实际最大转角................................ 错误!未定义书签。

静态原地转向阻力矩.............................. 错误!未定义书签。

静态原地转向时作用于转向盘的力.................. 错误!未定义书签。

最小转弯半径的校核.............................. 错误!未定义书签。

4.总结............................................... 错误!未定义书签。

参考文献.............................................. 错误!未定义书签。

转向系统匹配

转向系统匹配

本人从事转向系统设计工作,今赋闲在家,偶然发现这个论坛,获益颇丰。

但见很多朋友所求助的问题得到的解答不是特别透彻,遂想从转向系统布置、匹配、零部件8D整改等方面分别做一个全面的总结。

希望对新手有所帮助,不对的地方也希望能得到各位前辈的指正。

言归正传,先介绍转向系统的匹配。

匹配篇:0 ? W6 I! m& P! \( A7 Q1、以循环球整体式转向器为例,首先要确定转向系统的载荷,根据转向系统的载荷确定出相应输出力矩的循环球转向器。

转向系的载荷计算方法多种多样,有公式计算法,也有图表法。

常用公式有原苏联半经验公式、雷雷索夫公式、塔布莱克公式等,各个公式的侧重点各有不同(不同的因素分别为有的考虑主销偏置距,轮胎静力半径,有的分别考虑计算左右轮的最大转向阻力矩然后叠加,有的考虑轮胎接地面积等)。

根据自己对各个方法的对比,载荷计算结果差别不是很大。

本人常用苏联半经验公式:Mr =[f×(G 13÷P)1/2]÷3: @# a# r" y. W; {0 N PMr-----在沥青或混凝土路面上的原地转向阻力矩,N.mm;+ ?/ e1 f7 a& P$ ]' Gf--------轮胎与地面间的滑动摩擦系数,取0.7;+ k3 M+ n' w. Z5 lG1-----转向轴负荷,N;P-------轮胎气压,MPa;9 h+ M9 }: J( Q该公式适用于中轻型汽车,其悬挂为钢板弹簧时,用于计算最大转向阻力矩(即汽车的原地转向阻力矩)。

该公式仅考虑了前桥负荷和轮胎气压的影响。

公式中,转向轴荷G一般按设计轴荷超载30%计算。

在计算载荷确定之后,可根据载荷选取适合的动力转向器。

这里顺便介绍下转向器的选型,现在的动力转向器配套供应商做了大量的研究和实验,提出了适应不同轴荷的其产品系列,你只要按照你计算出的前轴负荷提供给他,他即可推荐给你相匹配的型号的转向器。

转向系统设计计算书

转向系统设计计算书
3.5.2转向油泵压力的变化∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙6
4结论说明∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙∙7
3.4转向器的内外轮转角:
根据整车设计要求和阿克曼几何原理,可得出理想的阿克曼转角曲线,具体计算如下:
ctg -ctg = 其中K——主销距L——轴距
ctg -ctg =0.55
根据我们设计的转向系统从整车装配数模中可取转向系统需要的设计硬点并建立Adams仿真计算模型,在不考虑轮胎侧偏和所有组件都为刚性的情况下可仿真出实际的内外轮转角曲线。
代入公式Rmin=6549mm即最小转弯半径的理论为6.5m。
3.2转向系的角传动比计算
齿轮齿条式转向系的角传动比i0ω=L/rcosθ
其中L——梯形臂长度;
r——主动小齿轮的节圆半径;
θ——齿轮与齿条的轴交角;
其中L=146.8光洋:r =6.351恒隆:r =6.75θ=20°,θ=25°(优化后)
静态原地转向阻力矩是汽车使用中最大极限转向所需力矩,汽车在沥青或者混凝土路面上的原地转向阻力矩采用下面的经验公式计算:
=
式中 ——轮胎与地面间的滑动摩擦系数,一般取0.8左右。
——转向阻力矩,单位N·mm;
——前轴负荷,单位N;
——轮胎气压,单位MPa。
根据整车参数,CC6460K/KY车满载前轴荷为1070㎏,约为10486N,轮胎气压为230KPa,梯形臂L1=147㎜,转向器梯形底角α=76°,动力受压面积S=9.18㎝2。

转向系统设计计算书

转向系统设计计算书

密级:编号: “中国高水平汽车自主创新能力建设”项目名称:“中气”底盘研究与开发转向系统设计计算书编制: 张 璐、田 野 日期: 校对: 日期: 审核: 日期: 批准: 日期:上海同济同捷科技股份有限公司长春孔辉汽车科技有限公司2008年12月目 录1 概述.........................................................................................................................- 1 -2 主要设计参数.........................................................................................................- 1 -3 转向梯形机构校核.................................................................................................- 2 -3.1 阿克曼理论..........................................................................................................- 2 -3.2 实际转角关系......................................................................................................- 3 -3.3 实际转角差与理想转角差的比率关系..............................................................-4 -3.4 模拟分析校核转向梯形机构..............................................................................- 4 -3.5 转向梯形参数......................................................................................................- 6 -4 转向传动轴等速性校核.........................................................................................- 6 -4.1 转向传动轴的夹角..............................................................................................- 7 -4.2 转向传动轴的仿真运动......................................................................................- 8 -5 转向系统匹配计算.................................................................................................- 8 -5.1 静态原地转向阻力矩..........................................................................................- 8 -5.2 转向系传动比......................................................................................................- 9 -5.3 静态原地转向无助力时方向盘手力.................................................................- 11 -5.4 最小转弯直径.....................................................................................................- 11 -6 转向系统的选型计算............................................................................................- 11 -6.1 动力转向器的选型计算.....................................................................................- 11 -6.2 动力转向泵的选型计算....................................................................................- 13 -6.3 动力转向油罐的选型计算................................................................................- 15 -6.4 动力转向管路的选型计算................................................................................- 16 -参考文献...................................................................................................................- 17 -1 概述本车型为液压助力转向系统;采用齿轮齿条式转向器,转向器形式为侧面输入、两端输出,转向器位于前轴后方,为后置梯形结构;转向操纵机构采用四辐条式转向盘和双万向节式传动轴。

客车转向系统的设计

客车转向系统的设计

大客车转向系统设计方法摘要:简要介绍大客车转向系统零件选型及匹配设计方法关键词:大客车;转向系统;设计方法;前言转向系统作为汽车的重要系统之一,直接决定着车辆的操纵稳定性,安全性。

而大客车作为大型生命载体,对转向系统可靠性要求更高,设计时来不得半点马虎,下面就以WG6120CHAE 型车辆转向系统设计为例从客车装配厂家的角度简要介绍一下大型客车转向系统的设计方法。

1、转向器的选型1.1根据前轴的轴荷选定方向机类型一般转向轴轴荷超过3.5吨,推荐使用动力转向器,动力转向器液压缸的缸径要求大于m 5.42(m 为前轴轴荷),对比厂家转向器的参数选择即可。

转向轴轴荷小于3.5吨的车辆,原则上可以不使用动力转向器,但应特别注意转向垂臂长度,车桥转向节上臂的回转半径,注意力矩计算,使转向盘不至沉重。

1.2国内转向器厂家一般根据转向轴轴来对应相关转向器产品,例如东风转向器厂IPS45的转向器对应的前轴是4.5吨,IPS55的转向器对应的前轴是5.5吨,IPS65的转向器对应的前轴是6.5吨,所以选型时可以直接对应选择就是了。

对于我司生产的WG6120CHAE 型车,因前轴载荷为6.5吨,所以选用了东风的IPS65型转向器,并根据布置形式选定了左旋左输出旋向,传动比为21.48:1,摇臂轴转角为±47.5°,方向盘总圏数为5.67圏。

IPS65型转向器2、转向系统匹配设计2.1确定内外轮转角,转向梯形及最大转弯直径选定转向器之后,我们首先要根据车辆的转弯直径的要求计算实际所需转向轮转角。

老标准以外轮中心画出来的轨迹为车辆的最大转弯直径,不太准确,新标准以通道圆直径不大于25m ,通道宽度不大于6.7米来定义转弯直径则更合理。

WG6120CHAE 型车相关参数首先找出车轮的旋转中心,转向轮的旋转中心是主销延长线与地面的交点。

现求出左右转向轮旋转中心联线的距离:中L =销B +2×r ×tg ɑ=1974.4 ①式考虑了主销后倾角的轴距:轴L =L+ r ×sin β=6312.9 ②式计算车辆的外轮转角外β=ctg 内β+B/L ③式车辆最内点的最小转弯半径 内r =轴L / tg 外β-[B-( B-中L )/2] ④式车辆最外点的最小转弯半径 外r =22)()B r L L +++内前( ⑤式计算出车辆最外点的最小转弯半径后直接乘以2倍,便计算出了车辆的最大转弯直径,而通道宽度见下式:通道B =外r -[B L L r r -+-⨯2)(前外外] ⑥式对于WG6120CHAE 型车,我们设定前内轮转角为47°,那么依据①式和③式,我们可以算出前外轮转角为38.8° ,这可做为给车桥厂签订协议时转向梯形的依据。

转向系统校核计算与设计指南

转向系统校核计算与设计指南

怠速(r/min)
600 ~
7.转向拉杆规格
φ42X8钢拔管
球头一总成型号 33R13-01066
球头一球销直径(mm)
球销沿其中心摆角(°)
球头二总成型号 3303E-059/060
球头二球销直径(mm)
球销沿其中心摆角(°)
8.方向盘半径(mm)
9.悬架型式
纽威ASB-140气簧
300
21 14 16 3600 500 1
转向系统校核计算与设计指南
注:不同颜色背景说明
计算数据,需输入 标题,不建议修改 常用经验值,可以修改
计算结果,不能修改
整车型号
XXXXXXX系列旅游车
车型说明
在XXXXXXXXXXX系列旅游车基础上,进行底盘转向系统的优化设计
设计原则
产品零部件标准化和互换性
1.前桥型号
方盛JY30N
附表一、前悬架系统与转向拉杆系统的运动协调的校核:这
268
3.动力转向器型号
ZF8095 955 227
附表三、转向拉杆系统和方向盘圈数的校核:以转向拉杆的
角传动比 15.7 ~
18.5
三维空间尺寸不变原理,按照轮胎的内、外转向角算出转向
总圈数
4.4
垂臂的摆角参数
输出轴摆角(°)
94
1.转向拉杆位于中间位置状态
机械效率(%)
90
XZ二维坐标系长度(mm) 903.9
转向节臂计算力臂(mm) 259.6
转向垂臂计算力臂(mm)
211
原地阻力矩换算到当量杆上的阻力(N) 12990.07
动力转向器输出到当量杆的拉力(N) 21233.17 符合
转向助力泵作用,方向盘的转动力(N) 31.09952

转向系统设计规范

转向系统设计规范

转向系统设计规范1规范本规范介绍了转向系统的设计计算、匹配、以及动力转向管路的布置。

本规范适用于天龙系列车型转向系统的设计2.引用标准:本规范主要是在满足下列标准的规定(或强制)范围之内对转向系统设计和整车布置GB17675-1999 汽车转向系基本要求GB11557-1998防止汽车转向机构对驾驶员伤害的规定GB7258-1997 机动车运行安全技术条件GB9744-1997 载重汽车轮胎GB/T 6327-1996 载重汽车轮胎强度试验方法《汽车标准汇编》第五卷转向车轮3.概述:在设计转向系统时,应首先考虑满足零部件的系列化、通用化和零件设计的标准化。

先从《产品开发项目设计定义书》上猎取新车型在设计转向系统所必须的信息。

然后布置转向传动装置,动力转向器、垂臂、拉杆系统。

再进行拉杆系统的上/下跳动校核、与轮胎的位置干涉校核,以及与悬架系统的位置干涉、运动干涉校核。

最小转弯半径的估算,方向盘圈数的计算。

最后进行动力转向器、动力转向泵,动力转向油罐的计算与匹配,以满足整车与法规的要求;确定了动力转向器、动力转向泵,动力转向油罐匹配之后,再完成转向管路的连接走向。

4车辆类型:以EQ33868X4为例,6X4或4X2类似5杆系的布置:根据《产品开发项目设计定义书》上所要求的、车辆类型、车驾宽、高、轴距、空/满载整车重心高坐标、轮距、前/后桥满载轴荷、最小转弯直径、最高车速、发动机怠速、最高转速,空压机接口尺寸,轮胎规格等,确定前桥的吨位级别、轮胎气压、花纹等。

考虑梯形机构与第一轴、第二轴、第三轴、第四轴之间的轴距匹配及各轴轮胎磨损必需均匀的原则,确定第一前桥、第二前桥内外轮转角、第一垂臂初始角、摆角与长度、中间垂臂的长度、初始角、摆角,确定上节臂的坐标、长度等确定的参数如下第一、二轴选择7吨级规格轮胎型号:12.00-20、轮胎气压0.74Mpa花纹第一轴外轮转角35°;内轮转角44°第二轴外轮转角29°;内轮转角34°第一轴上节臂参数上节臂球销坐标上节臂有效长度垂臂参数垂臂长度315mm中间球销长度187m(接中间拉杆),初台角向后2°第二轴上节臂参数上节臂球销坐标上节臂有效长度中间垂臂参数中间垂臂长度330 mm(接第二直拉杆),中间球销长度230m(接中间拉杆),中间球销长度269.5mm (接助力油缸活塞),初台角向后6°上述主要参数确定后,便可布置转向机支架、第一直拉杆、第二直拉杆、中间拉杆。

重型卡车双前桥转向系统开发计算说明书

重型卡车双前桥转向系统开发计算说明书

编号北奔威驰8×4宽体矿用车1950轴距转向系统开发计算说明书编制审查审定标准化审查批准包头北奔重型汽车有限公司研发中心2010年7月22日1 计算目的双前桥四轴车在转向过程中,理论上要求所有车轮都处于纯滚动,或只有极小滑动,为达到这一目的,要求所有车轮绕一瞬时转动中心作圆周运动。

每个转向桥的梯形角匹配设计,是为满足车轮的理论内外转角特性曲线与实际内外转角特性曲线尽可能的接近;第一、二转向前桥转向摇臂机构设计是为了让第一、二转向前桥最大内转角与轴距之间的理论关系与实际关系尽可能的相匹配。

本次计算是为新开发的8×4宽体车XC3700KZ 匹配北奔高位宽体前桥的转向系统中转向传动机构和转向动力机构中各元件的选型及尺寸提供理论依据。

2 采用的计算方法、公式来源和公式符号说明符号定义及赋值如下:1α为第一转向前桥外转角,1β为第一转向前桥内转角 2α为第二转向前桥外转角,2β为第二转向前桥内转角1L 为第一转向前桥主销中心线与地面的交点到第三桥轴线的距离 2L 为第二转向前桥主销中心线与地面的交点到第三桥轴线的距离3 计算过程及结果 3.1 转向动力系统参数计算3.1.1 原地转向阻力矩计算① 状态一:第一、二转向桥载荷按标准载荷13T 计算 已知参数如下:第一转向桥、第二转向桥的轴荷为1G =2G =13000×9.8=127400 N 轮胎气压1P =0.77Mpa滑动摩擦系数μ=0.6(干燥土路)滚动摩擦系数f =0.035(干燥压紧土路推荐0.025-0.035) 轮胎自由半径0r =685mm 轮胎静力半径1r =670mm 侧偏距a =204mm内轮最大转角max α=35.74°[借用现有一桥拉杆及垂臂W3400112AE 极限内转角](新设计垂臂936 463 00 01使转角能达到车轮极限转角38度)轮胎宽度1B =375mm轮胎接地面积8212BK ==175782mm ,K=132.6mm主销内倾角Φ=6°对于单桥的原地转向阻力矩,有如下计算方式: A.按半经验公式计算131P G 3μ=半M =77.012740036.03 =10364271 N.mm =10364 N.mB.按采用雷索夫公式()2s 201r r 0.5a f G -+⋅⨯μ=雷M=127400×(0.035×204+0.5 ×0.6×22670685-)=6358499 N.mm =6358 N.mC.采用经验公式max11sin sin a G a G αφμ=经⋅⋅⋅+⋅⋅M=127400×204×0.6+127400×204×sin6°×sin35.74° =17181 N.mD.算术平均求阻力矩为了使计算更趋合理,避免上述四种公式单独使用时与实际工造成的误差,故用以上三种方式求得的阻力矩的算术平均值作为静态原地转向阻力矩0s M 。

8-4双转向系统设计计算书0206

8-4双转向系统设计计算书0206

8*4双前轴转向系统设计校核第一部分8*4自卸汽车的双转向系统校核根据《4048D/QX3340自卸汽车底盘(欧四)设计任务书》及客户的要求,伊朗4048D欧四自卸汽车底盘为双转向前桥,转向系统采用循环球液压助力转向系统,第二转向前桥采用液压缸助力,一、二桥轴距为1950mm。

转向桥初步采用陕西汉德车桥生产的曼系列7.5吨盘式制动前轴,具体参数见表1;转向垂臂初步选用中国重汽豪沃A7双转向系统,具体尺寸见图1;转向器采用ZF公司生产的图号为8098.957.111的转向器,转向油泵采用ZF公司生产的图号为7077.955.636的叶片泵;转向油罐采用株洲湘火炬生产的产品。

表1 曼系列7.5吨盘式制动前桥图1重汽豪沃A7双转向系统布置图一、对一、二桥转向运动干涉进行校核根据转向系统的布置,用作图法分别作出转向节臂球销中心A点绕摆动中心O’和转向垂臂下端球销中心的运动轨迹圆弧JJ’、KK’,测量在板簧动、静挠度范围内的最大误差值,从以上结果可以看出一、二桥的转向节臂轨迹误差都在10mm以内,符合要求。

二、分别计算出一、二桥的内外转角关系1、根据作图可得出两主销中心线延长线到地面交点之间的距离K=1879.52、校核梯形臂的长度根据经验,梯形臂长度m一般取(0.11~0.15)K故m=(0.11~0.15)*K=(0.11~0.15)*1879.5=206.75~281.93m=255.7是符合要求的3、初步选择梯形底角θ0根据式tgθ0=(4*L)/(3*K),可以得出一桥梯形底角θ0为77.5°,二桥梯形底角为72.3°根据计算出的梯形底角与实际车桥的梯形底角有较大的差异,建议采用作图法或计算的方法进行校核。

4、校核梯形底角a、用作图法作出第一桥梯形底角为77°时,内外转角关系图2b、用作图法作出第二桥梯形底角为72°时,内外转角关系图3c、根据第一、二桥内外转角的关系分别作出一、二桥转向梯形的实际特性曲线图4由以上曲线可以看出:转向梯形的实际特性曲线在0~30°范围内比较接近理论转向梯形特性曲线。

25t汽车起重机转向系统的匹配计算及验证

25t汽车起重机转向系统的匹配计算及验证
参考文献
1 ] 张 宗 辉 同 步 碎 石 封 层 技 术 在 中 国的 快 速 发 展 及 应 用 [ J 】 . 5 . 9 3 万元 ,新方 案的成本为 4 . 2 7 万元 ,比旧方 案减少了 [
筑路机械与施 工机械化 , 2 0 0 4 , 2 1 ( 1 1 ) : 5 — 8 .
… … … … … … … … …
前桥轴 荷G,
/ kg
轴距 E I + E
/ mm
主销内 主销 中心线与 车轮滚动 主销偏 倾角度 地面交点的距离K 半径 R 移距a
/ m m 5。 1 8 6 7 /m m 5 07 /mm 1 1 1 . 5
4 实践检验
案 的设 计 降低 了采购成 本 ,整 体效率 得 以提 高 ,又使
在 此方 案中,我们将新方 案的采购成本 与旧方 案做 整 体布 置 看 起来 美 观 。经实 际使 用证 明 了优化 系统 的 了对 比,将 液压 泵、 液压 阀组油 路块、 过滤 器 、液 压 可行、稳定性 。 胶 管及马 达 等液 压 系 统成 本 加起 来 , 旧方 案 的成本 为 1 . 6 6万元 ,降低了 2 8 %,使整 车成本得 以下 降。
际使用过程 中,沥青 泵马达 、导 热油马达、皮带机 马达 收稿 日期 : 2 0 1 3 - 0 7 . 0 3 及辊子马达转 速都能得 到适 当的调 控 ,使得 沥青洒 布量 通讯地址 : 陕西省西安市新城区金花北路4 1 8 号( 7 1 0 O 3 2 ) l 一 0
2 0 1 3 . 1 0建设机械技术与管理 1 1 9
豳安徽 柳工起 重机有 限公 司 莫 思剑/ MO S i j i a n
鲍 时超 / B A O S h i c h a o 汪

转向系统设计规范

转向系统设计规范

转向系统设计规范目录:一、概述二、设计输入1.市场分析报告2.产品概念报告3.技术方案分析报告4.产品信函5.项目描述书三、转向系统设计目标1.承载性目标2.操纵稳定性目标3.安全性目标4.成本目标5.总成重量目标四、转向系统结构参数的确定1、转向系统结构形式(主要部件构成明细)2、安装尺寸的确定3、车架结构与转向元件的物理接口4、前桥总成与转向元件的物理接口5、车身元件与转向元件的物理接口6、其他五、转向系统匹配1、转向轻便性2、助力转向系统流量等匹配六、机械转向设计1.转向器设计2.转向传动轴设计七、动力转向设计1、转向器设计2、转向油泵设计3、转向油罐设计4、其他部件设计八、转向系统验证与试验项目1、动力学模型分析与验证2、整车性能试验项目与可靠性试验项目3、转向器台架试验项目4、转向油泵台架试验项目5、转向油罐台架试验项目7、转向油管台架试验项目8、转向盘台架试验项目9、转向传动轴台架试验项目10、其他附件:转向系统相关标准与设计参考书1、操纵稳定性2、转向器3、转向油罐4、转向油泵5、转向油管6、转向传动轴7、转向盘一、概述本文适用于传统结构的转向系统,主要针对转向器、转向油泵等主要部件设计参数的选取、计算、验证等作出较详细的工作模板。

1、转向系统设计对整车性能的影响转向系统的功能是保证汽车能按驾驶员的意志进行转向行驶。

同时对操纵稳定性有一定的影响。

转向系统按能源的不同分为机械转向系和动力转向系两大类。

机械转向系以驾驶员的体力作为转向能源,其中所有传力件为机械的。

机械转向器由转向操纵机构、转向器和转向传动机构组成。

动力转向系是在机械转向系的基础上加设一套转向加力装置而行成的。

2、转向设计流程概述设计输入→整车设计目标→物理边界确定→主要部件性能指标确定→结构设计→3、转向系统的评价指标3.1汽车操纵稳定性:3.2人机工程学3.3.1 GB7258-2004《机动车运行安全技术条件》:3.3.1.1机动车方向盘的最大自由转动量不允许大于:1)最高设计车速不小于100km/h的机动车:20°2)其他机动车:30°(三轮车除外)3.3.1.2机动车在平坦、硬实、干燥和清洁的水泥或沥青路面上行驶,以10km/h的速度在5S内沿螺旋线从直线行驶过渡到直径24m的圆周行驶,施加于方向盘外缘的最大切向力不应大于245N。

转向系统设计计算报告 20210124

转向系统设计计算报告 20210124

转向系统设计计算报告 20210124转向系统设计计算报告-2021012420ga 644小巴转向系统设计计算报告qy-ga6420se4-ss2022-004编制校对审核批准广汽新闻局汽车研究所2021年02月6420型转向系统匹配计算书6420转向系统由方向盘、转向上轴、转向下轴、转向护套、齿轮齿条式转向器、转向横拉杆及其紧固件组成,为了防止汽车正面与其他物体冲撞时转向系部件伤害驾驶员,在转向传动轴上设置有溃缩吸能机构。

转向器也是采用广泛使用的齿轮齿条式转向器。

与转向系统相关的车辆参数相关项目轴距l(mm)轮距k(mm)最大前轴荷(kg)方向盘外径(mm)内轮最大转角(deg)外轮最大转角(deg)主销距k偏置距c(mm)转向机传动比i最小转弯半径(m)参数值27001385688(半负载下)378.838.26731.2331355.5-18.3534.45.2m数据源ga6420配置表ga6420配置表ga6420轴重分布测量表ga6420总布置参数悬架提供悬架提供数模测量数模测量供应商提供ga6420配置表I)最小值计算转弯半径1.1.1按外轮最大转角一分钟?l/罪恶?最大?c=2700/sin31。

233=5188.69毫米1.1.2按内轮最大转角r2分钟??l/sin??k38。

267°22? 2kl/tg38。

267°? c=5495.76毫米取rmin??r1min?r2min?/2=(5188.69+5495.76)/2=5342.27mm最小转弯半径5.342m.。

以上计算基于龙创提供的最大车轮角度计算结果。

转向机行程是否改变以得到更合理的最小转弯半径,需要进一步做计算和动态分析;1.2根据dmu分析内外轮最大转角为:内轮最大转角37.519deg外轮最大转角33.552deg根据上述计算公式:一分钟?l/罪恶?最大?c=2700/sin33。

552=4866.816mmr2min??l/sin??k37.519°22?2kl/tg37.519°?c=5577.423mm以瑞敏为例??一分钟?r2分钟?/2=4866.816+5577.423)/2=5222.12mm1.3根据整车转角实测结果内轮最大转角34.5deg外轮最大转角38deg根据上述计算公式:一分钟?l/罪恶?最大?c=2700/sin34。

汽车转向设计与计算

汽车转向设计与计算

转向系统的计算设计:这次设计的电动车用的是麦弗逊式独立悬架,采用分段式转向梯形机构。

对于采用独立悬架的汽车转向车轮,转向梯形中的横拉杆应是分段式的,以避免运动干涉,防止一个车轮的上下跳动影响另一个车轮的跳动。

(图一)这种转向系统的结构大多如图1所示。

转向轴1的末端与转向器的齿轮轴2直接相连或通过万向节轴相连;齿轮图2与同装于一壳体内的齿条3啮合。

外壳则固定于车身或车架上。

齿条通过两端的球铰接头与两根分开的横拉杆4相连,两横拉杆又通过球头销与左右车轮上的梯形臂5、6相连。

这里齿条3既是转向器的传动件又是转向梯形机构中三段式横拉杆的一部分。

齿轮—齿条式转向器具有结构简单紧凑,制造工艺简便等优点,不仅适用于整体式前轴也适用于前轮采用独立悬架的断开式前轴,目前广泛地被采用于轿车、轻型客货车、微型汽车等车辆上。

但与之相配的转向梯形机构与传统的整体式转向梯形机构相比有其特殊之处。

故有必要加以研究和探讨。

绝大多数齿轮一齿条式转向器都布置在前轴后方,这样既可避让发动机的下部,又便于与转向轴下端连接。

安装时齿条中心线应与汽车纵向对称轴垂直;并且当转向器处于中立位置时,齿条两端球铰中心应对称地处于汽车纵向对称轴的两侧。

对于给定的汽车,其轴距L、主销后倾角口以及左右两主销轴线延长线与地面交点间距离K均为已知定值。

对于选定的转向器,其齿条两端中心距M也为已知定值.故在设计中需确定的参数为梯形底角、梯形臂长l以及齿条中心线到梯形底边的安装距1离,而横拉杆长度l可由上述参数确定其表达式为。

2转动转向盘时,齿条便向左或向右移动,使左右两边的杆系产生不同的运动,从而使左右车轮分别获得一个转角。

以汽车左转弯为例,此时右轮为外轮,外轮一侧的杆系运动如图2所示。

设齿条向右移过某一行程S,通过右横拉杆推动右梯形臂,使之转过。

(图二)取梯形右底角顶点O为坐标原点,X、Y轴方向如图2所示,则可导出齿条行程S与外轮转角的关系:另外,有图像可知:而+arctan-(图三)为坐标原点,X、Y轴方向如图3所示,则同样可导出齿条行程取梯形左底角顶点O1S与内轮转角的关系,即:众所周知,在不计轮胎侧偏时,实现转向轮纯滚动、无侧滑转向的条件是内、外轮转角具有如图4所示的理想的关系,即(图四)(6)式中T—计及主销后倾角夕时的计算轴距主销后倾角3°计算得T=2800+693/2tan3=2818L—汽车轴距2800mmr—车轮滚动半径346.5mm由(6)式可将理想的内轮转角民,表示为设计变量:、底角y和安装距对于给定的汽车和选定的转向器,转向梯形机构尚有梯形臂长11离h三个设计变量。

某8米商用车转向系统设计计算书

某8米商用车转向系统设计计算书

转向系统设计计算书1、前言在转向系的设计中,为保证整车具有较高的机动性,降低地板高度,转向器采用左立右输出的布置方式,转向梯形为整体式梯形结构设计,转向系由方向盘、转向管柱、整体式动力转向器、转向垂臂、转向前直拉杆、转向中间摇臂总成和转向后直拉杆组成,转向后直拉杆带动前桥的转向节臂使前轮左右转动实现车辆的转向。

该车的转向系统设计与传统商用车转向系设计方法基本一致,主要考虑的是商用车低速行驶时,发动机不直接驱动车辆,发动机的转速较低,所以要求转向助力泵在低速时能提供较大的压力及流量。

2、选型说明某8米商用车前轴最大载荷3000Kg, 按照GB7258-2017标准要求,前轴载荷超过4000Kg,应采用动力转向。

2.1 转向器的选型此车型选用BC8657整体式循环球动力转向器,此转向器具有结构紧凑、重量轻、输出扭矩大,回正性能良好等特点,转向器输出扭矩4043N.m,传动比18.85:1,满足某8米商用车的使用要求,因此我们选择了BC8657型号的转向器,主要性能参数见表1表1转向器主要性能指标2.2转向油泵的选型根据动力转向器的性能参数,选择合适流量和工作压力的转向油泵,确定参数如下:序号项目公路客车1 最大压力13.7MPa2 控制流量13L/min3 公称排量14ml/r3.转向梯形的计算分析为保证汽车转向行驶时,内外转向轮均能绕同一瞬时转向中心在不同半径的圆周上作无滑动的纯滚动,转向梯形的实际转角应尽量接近理轮上的内、外转向轮的理想转角关系为:cotθ0-cotθ1='ML式中:θ0——外转向轮转角;θ1——内转向轮转角;M’——两主销中心线与地面的交点间的距离;L ——轴距。

注:转向梯形设计中主销中心距的说明:是过与转向节臂相连的拉杆(横拉杆或双拉杆)球销中心点作与主销中心线垂直的平面,该平面与主销中心线的交点,两主销中心线上这样两个交点之间的距离。

3.1 已知参数主销中心点距离 M=1593 mm前轮距 B1=1893 mm滚动半径 r1=383.5mm 图1主销内倾角 8°前轮外倾角 1°3.2 计算参数3.2.1 两主销中心线的延长线与地面交点之间的距离M’M’=M+2tg8°(92·sin1°+rcos1°)=1593+2tg8°(92·sin1°+384·cos1°)=1701 mm3.2.2 梯形设计中主销中心距M ” 如图2M ”=M+2tg8°8cos8abtg ⎛⎫-⎪⎝⎭=1593+2 tg8°106.3588cos8tg ⎛⎫-⎪⎝⎭=1629mm 设转向梯形臂长为mm=22b c +=2258170+=179.6mm 设转向梯形底角为ee=arctg c b =arctg 17058=71°10′图23.3 最小转弯直径的计算如图3所示,已知参数:轴距L=4600mm , 整车宽度B=2280mm , 前悬h=950mm , 主销中心延长线与地面交点之间 距离 M ’=1793mm主销与前轮中心的距离f=150mm , 以外轮印记中心线的轨迹测量转弯直径时:2R min =maxsin Lb +f图3以汽车前端最外侧处测量转弯直径时:2R ’min ()22max '2L B M L h tgb ⎛⎫-+++ ⎪⎝⎭此时汽车的通道宽度: T=min max ''2L B M R tgb +⎛⎫-+ ⎪⎝⎭根据标准GB7258-2017的要求,2R ’min ≤24m ,T ≤7.2m 。

转向系统部分计算说明资料

转向系统部分计算说明资料

与转向系统相关的整车参数最小转弯半径1)按外轮最大转角R1=L/sinα+C=2550/sin32.26°-11.7=4.77m2)按内轮最大转角R2=[(L/tanβ+B) 2+L2]1/2+C=[(2550/tan38.63°+1540) 2+25502]1/2-11.7=5.4m取最小转弯半径Rmin=(R1+R2)/2=5.1m转向系统布置及传动比匹配按照总布置给定转向器位置,对转向杆系进行优化设计,得到:齿条行程:140mm转向器传动比:49.37mm/rev方向盘总圈数:140/49.37=2.84圈转向力计算转向时驾驶员作用到转向盘上的手力与转向轮在地面上回转时产生的转向阻力矩有关。

影响转向阻力矩的主要因素有转向轴的负荷、轮胎与地面之间的滑动摩擦系数和轮胎气压。

计算公式如下:转向机的计算XXX采用的是液压动力转向器,动力转向器应满足下述几个基本要求:运动学上应保持转向轮转角和驾驶员转动转向盘的转角之间保持一定的比例关系在减小转向时作用在方向盘上的手力的同时,还应当有合适的“路感”;工作要安全可靠,在动力部分失效后应不影响汽车的行驶安全性密封性能良好工作时没有噪声和振动工作灵敏,转动转向盘后,系统内的压力很快能增长到最高值首先我们来计算转向机最小应能满足的输出力,对转向机来说只要它输出的对主销的力矩必须能克服地面的最大阻力距,故:F = Mr/(L1 ×cos2θ*ηT)其中 Mr——原地转向最大阻力距L1——转向横拉杆到主销的力臂长度θ——主销内倾角ηT——梯形机构正效率,此效率一般在0.9左右在M12中L1=131mm因此换算到转向机出口点处的力为Fn = 403424/(131×cos2(12.9°)×0.9)=3602N,为原地转向时转向机应输出的力。

按照下式计算动力转向机理论输出力:Fs=P×S+2×HT×3.14/i其中:Fs―――转向机理论输出力(N)P―――油缸内工作压力(Pa)S―――油缸有效受压面积(m2)HT―――方向盘转矩(N.m)i―――转向机传动比(m/rev)在助力原地转向的情况下,原地阻力距主要靠液压油压力提供,同时方向盘输入力矩也起部分作用,考虑发动机怠速时动力泵的输出压力,按动力转向泵的最小压力计算,即:HT =3.6N.mP=4.6MPa(被选用油泵的最小压力)S=8.946cm2i=49.37mm/rev 时按照上述公式可得出Fs=4573N 大于 Fn,能克服原地转向阻力。

某车型转向系统匹配工作

某车型转向系统匹配工作
布 置 来 实 现 平 顺 性 的要 求 。 该 设 计 过 程 简述 如 下 : 步骤 1 :仅 向下 平 移 转 向 器5 mm。 0 算 出 新 的 下 万 向 节 中 心 点 ,利 用 计 算 机 仿 真 佳 点 应 在 P5 1 P52 间 。 t .和 t 之
从 以上 分 析 可 知 ,在 转 向 管 柱 和 转 向 器 输 入
+ 一.o ’ ・ _ -卜 + ・ 卜 .E}.‘ _ _ 一 ・-卜 _ + ・ 卜 .E 一一 ・ _ _) .. -卜 ‘
以上 结 果 是 与 实 际 相 符 的 。
三个车门锁处微动开关突然的切换 。使车门I
= 总成 为前 进 后排 式 发 动 机 。 按 原 动 力输 出 中心 装在 动 。 从 双 万 向联 轴 节 传 动 的 工 作 原 理 可 知 。等 角 速 I =
根 据 双 万 向 联 轴 节 的 传 动 原 理 。转 向 系 统 总 : 和相关的隔热罩布置都有一定困难。动力输出中心 . ‘ 虽 作一定变动 。驱动半轴常用角度便达不到 ≤ 。的 布 置 必 须 满 足 以下 空 间 几 何 关 系 。才 能 实现 从 转 向 6 年 要 求 。所 以 为 了满 足现 动 力 总 成 接 近 原 动 力 总 成 的 盘 到转 向 器 输 入 轴 的等 角 速 传 动 。 条 件 1 中 间轴 与 转 向 轴 之 间 的 空 间 夹 角 必 须 : 求 。满 足 排 气 系 统 的布 置 。故 提 出修 改 前 横 梁 。原 等 于 中 间轴 与 转 向 器 输 入 轴 之 间 的 空 间夹 角 。
所 在 的平面( 这样 。被 中 间轴连 接 的两个 万 向联 轴
节 之 间 有 一 个 相 位 角 的 要 求) 。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 转向系统的功能1.1 驾驶者通过方向盘控制转向轮绕主销的转角而实现控制汽车运动方向。

对方向盘的输入有两种方式:对方向盘的角度输入和对方向盘的力输入。

装有动力转向系统的汽车低速行驶时,操作方向盘的力很轻,却要产生很大的方向盘转角输入,汽车的运动方向纯粹是由转向系统各杆件的几何关系所确定。

这时,基本上是角输入。

而在高速行驶时,可能出现方向盘转角很小,汽车上仍作用有一定的侧向惯性力,这时,主要是通过力输入来操纵汽车。

1.2 将整车及轮胎的运动、受力状况反馈给驾驶者。

这种反馈,通常称为路感。

驾驶者可以通过手—---感知方向盘的震动及运转情况、眼睛—---观察汽车运动、身体—---承受到的惯性、耳朵—---听到轮胎在地面滚动的声音来感觉、检测汽车的运动状态,但最重要的的信息来自方向盘反馈给驾驶者的路感,因此良好的路感是优良的操稳性中不可缺少的部分。

反馈分为力反馈和角反馈从转向系统的功能可以得知:人、车通过转向系统组成了人车闭环系统,是驾驶者对汽车操纵控制的一个关键系统。

2 转向系统设计的基本要求转向系是用来保持或者改变汽车行驶方向的机构,在汽车转向行驶时,保证各转向轮之间有协调的转角关系。

转向系的基本要求如下:2.1 汽车转弯时,全部车轮应绕瞬时回转中心(瞬心)旋转,任何车轮不应有侧滑。

不满足这项要求会加剧轮胎磨损,并降低汽车的操作稳定性。

实际上,没有哪一款汽车能完全满足这项要求,只能对转向梯形杆系进行优化,一般在常用转向角内(内轮15°~25°范围)使转向内外轮运动关系逼近上述要求。

2.2 良好的回正性能汽车转向动作完成后,在驾驶者松开方向盘的条件下,转向轮能自动返回到直线行驶位置,并稳定行驶。

转向轮的回正力矩的大小主要由悬架系统所决定的前轮定位参数确定,一般来说,影响汽车回正的因素有:轮胎侧偏特性、主销内倾角、主销后倾角、前轮外倾、转向节上下球节的摩擦损失、转向节臂长、转向系统的逆效率等。

2.3汽车在任何行驶状态下,转向轮不得产生自振,方向盘没有摆动。

2.4 转向机构与悬架机构的运动不协调所造成的运动干涉应尽可能小,由于运动干涉使转向轮产生的摆动应最小。

汽车转弯行驶时,作用在汽车质心处的离心力的作用,内轮载荷减小,外轮载荷增加,使悬架上的载荷发生相应变化。

若转向桥采用非独立悬架、钢板弹簧机构时,则内侧板簧因载荷减小而长度缩短,外侧板簧因载荷增加而长度增加,导致车轴在水平面内相对车身转过一个角度,产生轴转向效应。

转向直拉杆和纵拉杆的运动关系必须与之适应,使轴转向效应趋于不足转向。

当转向桥为独立悬架、螺旋弹簧机构时,内侧弹簧因载荷减小而长度增加,车轮相对车身下跳,外侧弹簧因载荷增加而长度减小,车轮相对车身上跳,因转向横拉杆外球头从运动学上来说,是转向轮的一部分,内球头属于车身的一部分,外球头随车轮上下跳动所形成的轨迹必须与内球头所在中心点相适应。

这就是传统转向理论中所说的断开点校核。

实际上,现代汽车设计中,合理利用这个运动轨迹的干涉,使得运动干涉造成的车轮偏转方向(侧倾转向)与转向方向相反,有助于实现不足转向。

2.5 良好的机动性为了使汽车具有良好的机动性能,必须使转向轮有尽可能大的转角,并要达到按前外轮轨迹计算,使其最小转弯半径能达到汽车轴距的2~2.5倍。

最小转弯直径是汽车机动性的评价指标。

影响最小转弯直径的因素有:汽车轮距、轴距、轮胎侧偏刚度、有效转向节臂长,转向器行程(齿轮齿条式转向器)、转向摇臂摆角(循环球式转向器)、转向摇臂长(循环球式转向器)、转向梯形的布置形式等。

2.6 转向操纵轻便性转向操纵轻便性的评价指标通常有两项:驾驶者作用在方向盘上的切向力大小和方向盘总圈数。

机械转向系统的轿车,在行驶中转向时的切向力应为50~100N.有助力转向系统的轿车,此力为20~50N。

K1哈弗为27N±3N。

轿车方向盘总圈数不得大于4圈,货车不得大于6圈。

M11机械转向系统方向盘总圈数3.825,液压助力转向系统方向盘总圈数3.083。

对于无助力系统,方向盘上的切向力大小由转向系力传动比决定,方向盘总圈数等于转向器总圈数。

方向盘总圈数多和切向力越大都容易使驾驶者疲劳。

根据机械原理,方向盘总圈数越多,切向力就越小,两者成反比。

只有合理对方向盘总圈数和切向力取值,才能有一个好的转向操纵轻便性。

对于有助力转向系统,可以实现少的方向盘总圈数和小的方向盘切向力。

但需要注意助力特性,虽然实现了好的转向操纵轻便性,却容易出现转向高速发飘、转向发贼现象,破坏操纵稳定性。

2.7直线行驶稳定性转向系统和悬架系统密切相关,必须使转向系统与悬架系统合理匹配,使汽车具有良好的直线行驶稳定性,良好路面不得出现的行驶跑偏。

行驶跑偏与车辆的制造装配有很大关系。

当转向轮遇到一个小的障碍物时,车轮发生偏转,这时汽车应具有快速回到直线行驶位置的能力。

循环球式转向器设计成变传动比,摇臂轴扇齿的中间齿(转向器的中位)齿厚比两边的大,与螺母齿条啮合时,转向器中间位置有相当于锁紧的功能。

以达到维持直线行驶稳定的目的。

齿轮齿条式转向器将齿条中间常用几齿的齿间设计得比较小,与小齿轮啮合时,转向器中间位置有相当于锁紧的功能。

以达到维持直线行驶稳定的目的,同时也达到间隙补偿的目的。

2.8 转向轮碰到障碍物后,传递给方向盘的反冲力要尽可能小。

转向轮碰到障碍物后,传递给方向盘的反冲力要尽可能小,否则会出现“打手”现象。

避免“打手”现象的有效措施有:在转向操纵机构中增加挠性万向节,加装转向阻尼器(减振器),提高转向系统逆效率等手段。

2.9 应当有汽车碰撞时对驾驶者的防伤机构当发生车祸时,一方面,车辆前端被压溃,使得转向管柱和转向轴向上向后移动(也就是向窜向驾驶者头胸部)。

另一方面,驾驶者紧急制动或则被撞时汽车骤然停止,驾驶者在强大惯性力作用下,上半身冲向方向盘,伤害驾驶者。

为避免这种危害,就要求转向管柱在轴向不能是刚性的,在转向管柱两个方向应具有溃缩和吸能功能,缓冲车身前部的冲击和驾驶者的冲击。

顺便提一下,系安全带是非常有效的一个措施。

2.10 转向轮与方向盘偏转方向一致转向系统必须做运动分析,最起码要保证的是:汽车在前进时,往左转动方向盘时,汽车应向左转,右打右转。

2.11适宜的不足转向度(了解)汽车等速行驶时,迅速给方向盘一个角度输入,使转向轮迅速发生偏转,汽车进入一个稳态响应---等速圆周行驶。

这时,汽车产生一个绕Z轴线的横摆角速度,横摆角速度与转向轮转角的(或者方向盘的转角)的比值称为转向灵敏度。

横摆角速度增益---横摆加速度与车速成线性关系时,即它们函数关系为一直线,斜率为定值,称汽车具有中性转向特性。

表现为:保持相同的方向盘转角,提高车速,汽车的转弯半径维持在一个恒定值。

横摆加速度与车速成非线性关系,其斜率呈减小趋势,称汽车具有不足转向特性。

表现为:保持相同的方向盘转角,提高车速,汽车的转弯半径越来越大。

横摆加速度与车速成非线性关系,其斜率呈增加趋势,当车速度超过临界车速时,横摆角速度趋于无穷大,称汽车具有过多转向特性。

表现为:保持相同的方向盘转角,提高车速,汽车的转弯半径越来越小。

中性转向很容易转化为过多转向,过多转向汽车达到临界车速时将失去稳定性,由于其转弯半径越来越小,横摆加速度越来越大,汽车将发生激转而侧滑摔尾或者翻车,因此汽车都应具有适宜的不足转向特性。

转向灵敏度和转向特性主要影响因素:悬挂系统、转向系统以及整车的质心位置、轴距、轮距等参数。

3 转向轮定位参数主销的概念:转向节绕车身(或车架)转动的轴线。

对于大多数货车客车的非独立悬挂,其主销是转向节与转向桥拳部连接的实实在在的主销。

对于独立悬挂的轿车,双摆臂结构的主销是下摆臂外球心与上摆臂球心的连线。

麦弗逊悬挂的主销是下摆臂外球心与前滑柱与车身铰接点的连线。

3.1 主销后倾角当汽车水平停放时,在汽车的纵向垂面内,主销上部向后倾斜一个角度r,称为主销后倾角。

当主销具有后倾角时,主销轴线与路面交点A 将位于车轮与路面接触点的前面。

当汽车直线行驶时,若转向轮偶然受到外力作用而稍有偏转(例如向右偏转,如图中箭头所示),能产生回正作用。

也就是说,因为主销后倾角,汽车具有了维持直线行驶的能力。

轮胎接地点B向主销作垂线,B点与垂足点的距离L是车轮产生回正力矩的力臂,因主销后倾角一般不大,如K1为3°±30’,M11为2.5°±30’,在三维模拟技术尚不成熟的传统设计理论中,便于计算,一般以主销穿地点A与B点距离作为评价回正力矩的主参数。

这个距离叫做后倾拖距ξ。

回正力矩M=ξ* Fy 附加转角δ= Fy/CsFy----汽车受到的侧向力,与汽车质量、侧向加速度成正比。

Cs----转向系统刚度,包括转向节、转向器、转向管柱的刚度。

回正力矩M,附加转角δ就是转向系统的力反馈和角反馈。

ξ越大回正力矩越大,同时,车辆转向时,这个力矩就成了转向需要克服的阻力矩,转向也变得困难。

回正力矩与后倾拖距ξ和车速v的平方都成正比例关系。

汽车中高速的回正力矩主要来自于后倾拖距ξ。

3.2 主销内倾角当汽车水平停放时,在汽车的横向垂面内,主销轴线与地面垂线的夹角为主销内倾角。

主销内倾角的作用是使车轮自动回正。

通常车轮轴线不在水平面,为了方便说明,这里假设直线行驶时车轮轴线在水平面上。

对于车轮轴线不在水平面的情况,只要把下图的水平面改为锥面。

如下图所示,考虑该水平面上和主销有交点的直线,主销与这些直线的夹角有一个最大值。

而汽车直线行驶时,车轮轴线与主销的交角恰为这个最大值。

车轮轴线与主销夹角在转向过程中是不变的,当车轮转过一个角度,车轮轴线就离开水平面往下倾斜,致使车身上抬,势能增加。

这样汽车本身的重力就有使转向轮回复到原来中间位置的效果。

由于主销内倾,前轮转向时将使车身有抬高的倾向,这种系统位能的提高产生回正力矩M'。

假设Q为轮荷,δ为前轮转角,有如下关系:M'=(Q*C*sin(2β)*sinδ)/2无关,有:M比M'在高速时大得多,低速时,M'可以看出,M'与侧向力Fy比M大得多。

所以说:汽车低速时回正主要由主销内倾角决定。

同样主销内倾角β越大,转向越困难。

3.3 车轮外倾角当汽车水平停放时,在汽车的横向垂面内,车轮平面与地面垂线的夹角为前轮外倾角。

如果空车时车轮的安装正好垂直于路面,则满载时车桥因承载变形而可能出现车轮内倾,这样将加速车轮胎的磨损。

另外,路面对车轮的垂直反力沿轮毂的轴向分力将使轮毂压向外端的小轴承,加重了外端小轴承及轮毂紧固螺母的负荷,降低它们的寿命。

因此,为了前轮有一个外倾角。

但是外倾角也不宜过大,否则也会使轮胎产生偏磨损。

现代汽车设计中也有将车轮外倾角α取为负值,比如M11的车轮外倾角α为-1°±30’,其目的是使转向轮在转向时,车轮上下跳动引起的车轮偏转方向与车身在离心力作用下的偏转方向一致,提高操作稳定性。

相关文档
最新文档