2015上海三校生数学真题(含详解)
2015年普通高等学校招生全国统一考试理科数学答案(上海卷)
2015年普通高等学校招生全国统一考试(上海卷)数学(理科)一、填空题:本大题共5小题,每小题5分,共25分.1、设全集U R =.若集合{}1,2,3,4A =,{}23x x B =≤≤,则U A B =ð . 【答案】{}1,4【解析】因为{|32}U C B x x x =><或,所以{4,1}U A C B =【考点定位】集合运算2、若复数z 满足31z z i +=+,其中i 为虚数单位,则z = . 【答案】1142i +【解析】设(,)z a bi a b R =+∈,则113()1412142a bi a bi i ab z i ++-=+⇒==⇒=+且【考点定位】复数相等,共轭复数 3、若线性方程组的增广矩阵为122301c c ⎛⎫ ⎪⎝⎭、解为35x y =⎧⎨=⎩,则12c c -= . 【答案】16【解析】由题意得:121223233521,05,21516.c x y c x y c c =+=⨯+⨯==⋅+=-=-= 【考点定位】线性方程组的增广矩阵4、若正三棱柱的所有棱长均为a ,且其体积为163,则a = . 【答案】4 【解析】2331636444a a a a ⋅=⇒=⇒= 【考点定位】正三棱柱的体积5、抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p = . 【答案】2【考点定位】抛物线定义6、若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 .【答案】3π【解析】由题意得:1:(2)222rl h r l h ππ⋅=⇒=⇒母线与轴的夹角为3π 【考点定位】圆锥轴截面7、方程()()1122log 95log 322x x ---=-+的解为 . 【答案】2【考点定位】解指对数不等式8、在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示). 【答案】120【解析】由题意得,去掉选5名女教师情况即可:55961266120.C C -=-= 【考点定位】排列组合9、已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C 的渐近线方程为3y x =±,则2C 的渐近线方程为 .【答案】32y x =±【考点定位】双曲线渐近线10、设()1f x -为()222x x f x -=+,[]0,2x ∈的反函数,则()()1y f x f x -=+的最大值为 . 【答案】4【解析】由题意得:2()22x xf x -=+在[0,2]上单调递增,值域为1[,2]4,所以()1f x -在1[,2]4上单调递增,因此()()1y f x f x -=+在1[,2]4上单调递增,其最大值为1(2)(2)22 4.f f -+=+=【考点定位】反函数性质11、在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示). 【答案】45【考点定位】二项展开式12、赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量1ξ和2ξ分别表示赌客在一局赌博中的赌金和奖金,则12ξξE -E =(元). 【答案】0.213、已知函数()sin f x x =.若存在1x ,2x ,⋅⋅⋅,m x 满足1206m x x x π≤<<⋅⋅⋅<≤,且 ()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=(2m ≥,m *∈N ),则m 的最小值 为 . 【答案】8【考点定位】三角函数性质14、在锐角三角形C AB 中,1tan 2A =,D 为边CB 上的点,D ∆AB 与CD ∆A 的面积分别为2和4.过D 作D E ⊥AB 于E ,DFC ⊥A 于F ,则D DF E⋅= . 【答案】1615-【考点定位】向量数量积,解三角形二、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.15、设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 【答案】B【考点定位】复数概念,充要关系16、已知点A 的坐标为()43,1,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ) A .332 B .532 C .112D .132【答案】D 【解析】133313(cossin )(43)()332222OB OA i i i i ππ=⋅+=+⋅+=+,即点B 的纵坐标为132【考点定位】复数几何意义17、记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,下列选项中,能推出方程③无实根的是( )A .方程①有实根,且②有实根B .方程①有实根,且②无实根C .方程①无实根,且②有实根D .方程①无实根,且②无实根 【答案】B【解析】当方程①有实根,且②无实根时,22124,8a a ≥<,从而4222321816,4a a a =<=即方程③:2340x a x ++=无实根,选B.而A,D 由于不等式方向不一致,不可推;C 推出③有实根【考点定位】不等式性质 18、设(),n n n x y P 是直线21nx y n -=+(n *∈N )与圆222x y +=在第一象限的交点,则极限1lim1n n n y x →∞-=-( ) A .1- B .12- C .1 D .2 【答案】A【考点定位】极限三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。
2015年3月三校生高考真题上海市部分普通高校专科层次依法自主招生考试
2015年上海市部分普通高校专科层次依法自主招生考试第一部分(每题只有一个正确答案,每题1分,共102分)一、选择题(每题1分,共80分)1.下列姓氏的读音,不正确的一项是()A.查,zhāB. 仇,qiúC. 区,qū(ōu)D.单,shàn([ chán ]1.〔~于〕中国古代匈奴君主的称号。
)2.中新网报道:“希腊总理齐普拉斯于当地时间11日凌晨轻松赢得国会的信任投票,此前,齐普拉斯他承诺绝不让以往‘减少开支'和‘纾困计划'的政策重新回到希腊。
”对新闻中“纾”字注音与解释都正确的一项是()A.yú(缓和)B.yū(舒缓)C.shù(宽缓)D.shū(缓解)3.“因为相聚,让我们分享了这快乐的时光;因为浪漫,让我们承载无尽的祝福。
亲爱的朋友,让我们……”根据下列场景判断,这样的语句更适合()A. 商务会谈主持人的开场白B.婚礼司仪的结束语C.节庆大会上主持引入正题D.娱乐节目采访嘉宾4.看见有顾客边挑选白菜边将外层还不算老的菜叶剥去,菜场售货员就上前劝阻。
下列用语得体、委婉的一句是()A. 您要哪棵?我来帮您清理吧!B.喂喂,请不要摘菜叶!C.您这样摘菜叶可就太浪费啦!D.哎哟,请别这样好吧?5.下列语境中依次使用敬辞恰当的一项是()①别人正安静阅读,麻烦别人递支笔②文章写好了,请老师批阅修改③一时疏忽迟到,求人原谅宽恕④初次见面,握手寒暄A. 劳驾斧正借光光临B.打扰赐教原谅恭候C.打扰指教包涵久仰D.借光劳驾恭候久违借光:请人让路或问事时的客气话。
6.下列诗句中没有直接写出月亮的一项是()A. 著意登楼瞻玉兔(辛弃疾)B.玉轮轧露湿团光(李贺)C.千里共婵娟(苏轼)D.清夜坠玄天(韦应物)7.一方水土养一方人,一方风情孕育一方的乐器。
下列依次与①②③对应的传统民族乐器是()①蒙古包、轱辘车,风吹草低见牛羊的大草原②红高粱、信天游,大风起兮云飞扬的黄土高坡③杨柳岸、乌篷船,小桥流水人家的江南水乡A. 冬不拉笛子丝竹B.马头琴唢呐二胡C. 笙箫马头琴琵琶D.管风琴腰鼓扬琴马头琴是一种两弦的弦乐器,有梯形的琴身和雕刻成马头形状的琴柄,为蒙古族人民喜爱的乐器。
上海市十三校2015届高三数学第二次联考试题 理(含解析)
2015年上海市十三校联考高考数学二模试卷(理科)一、填空题(本大题满分56分)本大题共有14题,每个空格填对4分,否则一律得零分.1.(4分)(2015•上海模拟)幂函数y=x(m∈N)在区间(0,+∞)上是减函数,则m=0.【考点】:幂函数的单调性、奇偶性及其应用;幂函数的概念、解析式、定义域、值域.【专题】:计算题;函数的性质及应用;不等式的解法及应用.【分析】:根据幂函数的性质,可得m2+2m﹣3<0,解不等式求得自然数解,即可得到m=0.【解析】:解:由幂函数y=xm2+2m﹣3在(0,+∞)为减函数,则m2+2m﹣3<0,解得﹣3<m<1.由于m∈N,则m=0.故答案为:0.【点评】:本题考查幂函数的性质,主要考查二次不等式的解法,属于基础题.2.(4分)(2015•上海模拟)函数的定义域是(0,1].【考点】:函数的定义域及其求法;对数函数的定义域.【专题】:计算题.【分析】:令被开方数大于等于0,然后利用对数函数的单调性及真数大于0求出x的范围,写出集合区间形式即为函数的定义域.【解析】:解:∴0<x≤1∴函数的定义域为(0,1]故答案为:(0,1]【点评】:求解析式已知的函数的定义域应该考虑:开偶次方根的被开方数大于等于0;对数函数的真数大于0底数大于0小于1;分母非0.3.(4分)(2006•上海)在△ABC中,已知BC=8,AC=5,三角形面积为12,则cos2C=.【考点】:余弦定理的应用.【专题】:计算题.【分析】:先通过BC=8,AC=5,三角形面积为12求出sinC的值,再通过余弦函数的二倍角公式求出答案.【解析】:解:∵已知BC=8,AC=5,三角形面积为12,∴•BC•ACsinC=12∴sinC=∴cos2C=1﹣2sin2C=1﹣2×=故答案为:【点评】:本题主要考查通过正弦求三角形面积及倍角公式的应用.属基础题.4.(4分)(2015•上海模拟)设i为虚数单位,若关于x的方程x2﹣(2+i)x+1+mi=0(m∈R)有一实根为n,则m=1.【考点】:复数相等的充要条件.【专题】:数系的扩充和复数.【分析】:把n代入方程,利用复数相等的条件,求出m,n,即可.【解析】:解:关于x的方程x2﹣(2+i)x+1+mi=0(m∈R)有一实根为n,可得n2﹣(2+i)n+1+mi=0所以,所以m=n=1,故答案为:1.【点评】:本题考查复数相等的条件,考查计算能力,是基础题.5.(4分)(2015•上海模拟)若椭圆的方程为+=1,且此椭圆的焦距为4,则实数a=4或8.【考点】:椭圆的简单性质.【专题】:圆锥曲线的定义、性质与方程.【分析】:首先分两种情况:①焦点在x轴上.②焦点在y轴上,分别求出a的值即可.【解析】:解:①焦点在x轴上时:10﹣a﹣(a﹣2)=4解得:a=4.②焦点在y轴上时a﹣2﹣(10﹣a)=4解得:a=8故答案为:4或8.【点评】:本题考查的知识要点:椭圆方程的两种情况:焦点在x轴或y轴上,考察a、b、c 的关系式,及相关的运算问题.6.(4分)(2015•上海模拟)若一个圆锥的侧面展开如圆心角为120°、半径为3 的扇形,则这个圆锥的表面积是4π.【考点】:棱柱、棱锥、棱台的侧面积和表面积.【专题】:空间位置关系与距离.【分析】:易得圆锥侧面展开图的弧长,除以2π即为圆锥的底面半径,圆锥表面积=底面积+侧面积=π×底面半径2+π×底面半径×母线长,把相关数值代入即可求解.【解析】:解:圆锥的侧面展开图的弧长为:=2π,∴圆锥的底面半径为2π÷2π=1,∴此圆锥的表面积=π×(1)2+π×1×3=4π.故答案为:4π.【点评】:本题考查扇形的弧长公式为;圆锥的侧面展开图的弧长等于圆锥的底面周长,圆锥的表面积的求法.7.(4分)(2015•上海模拟)若关于x的方程lg(x2+ax)=1在x∈[1,5]上有解,则实数a的取值范围为﹣3≤a≤9.【考点】:函数的零点.【专题】:计算题;函数的性质及应用.【分析】:由题意,x2+ax﹣10=0在x∈[1,5]上有解,可得a=﹣x在x∈[1,5]上有解,利用a=﹣x在x∈[1,5]上单调递减,即可求出实数a的取值范围.【解析】:解:由题意,x2+ax﹣10=0在x∈[1,5]上有解,所以a=﹣x在x∈[1,5]上有解,因为a=﹣x在x∈[1,5]上单调递减,所以﹣3≤a≤9,故答案为:﹣3≤a≤9.【点评】:本题主要考查方程的根与函数之间的关系,考查由单调性求函数的值域,比较基础.8.(4分)(2015•上海模拟)《孙子算经》卷下第二十六题:今有物,不知其数,三三数之剩二,五五数之剩三,七七数之剩二,问物几何?23,或105k+23(k为正整数)..(只需写出一个答案即可)【考点】:进行简单的合情推理.【专题】:推理和证明.【分析】:根据“三三数之剩二,五五数之剩三,七七数之剩二”找到三个数:第一个数能同时被3和5整除;第二个数能同时被3和7整除;第三个数能同时被5和7整除,将这三个数分别乘以被7、5、3除的余数再相加即可求出答案.【解析】:解:我们首先需要先求出三个数:第一个数能同时被3和5整除,但除以7余1,即15;第二个数能同时被3和7整除,但除以5余1,即21;第三个数能同时被5和7整除,但除以3余1,即70;然后将这三个数分别乘以被7、5、3除的余数再相加,即:15×2+21×3+70×2=233.最后,再减去3、5、7最小公倍数的整数倍,可得:233﹣105×2=23.或105k+23(k为正整数).故答案为:23,或105k+23(k为正整数).【点评】:本题考查的是带余数的除法,简单的合情推理的应用,根据题意下求出15、21、70这三个数是解答此题的关键.[可以原文理解为:三个三个的数余二,七个七个的数也余二,那么,总数可能是三乘七加二,等于二十三.二十三用五去除余数又恰好是三]9.(4分)(2015•上海二模)在极坐标系中,某直线的极坐标方程为ρsin(θ+)=,则极点O 到这条直线的距离为.【考点】:简单曲线的极坐标方程.【专题】:坐标系和参数方程.【分析】:由直线的极坐标方程为ρsin(θ+)=,展开并利用即可得出直角坐标方程,再利用点到直线的距离公式即可得出.【解析】:解:由直线的极坐标方程为ρsin(θ+)=,展开为,化为x+y﹣1=0,∴极点O到这条直线的距离d==.故答案为:.【点评】:本题考查了直线的极坐标方程化为直角坐标方程、点到直线的距离公式、两角和差的正弦公式,考查了推理能力与计算能力,属于基础题.10.(4分)(2015•上海二模)设口袋中有黑球、白球共7 个,从中任取两个球,令取到白球的个数为ξ,且ξ的数学期望Eξ=,则口袋中白球的个数为3.【考点】:离散型随机变量的期望与方差.【专题】:概率与统计.【分析】:设口袋中有白球x个,由已知得ξ的可能取值为0,1,2,由Eξ=,得×,由此能求出口袋中白球的个数.【解析】:解:设口袋中有白球x个,由已知得ξ的可能取值为0,1,2,P(ξ=0)=,P(ξ=1)=,P(ξ=2)=,∵Eξ=,∴×,解得x=3.∴口袋中白球的个数为3.故答案为:3.【点评】:本题考查离散型随机变量的分布列和数学期望的求法,是中档题,解题时要注意排列组合知识的合理运用.11.(4分)(2015•上海模拟)如图所示,一个确定的凸五边形ABCDE,令x=•,y=•,z=•,则x、y、z 的大小顺序为x>y>z.【考点】:平面向量数量积的运算;向量在几何中的应用.【专题】:平面向量及应用.【分析】:根据向量的数量积公式分别判断x,y,z的符号,得到大小关系.【解析】:解:由题意,x=•=AB×ACcos∠BAC>0,y=•=AB×ADcos∠BAD≈AB×ACcos∠BAD,又∠BAD>∠BAC所以cos∠BAD<cos∠BAC,所以x>y>0z=•=AB×AEcos∠BAE<0,所以x>y>z.故答案为:x>y>z.【点评】:本题考查了向量的数量积的公式;属于基础题.12.(4分)(2015•上海模拟)设函数f(x)的定义域为D,D⊆[0,4π],它的对应法则为f:x→sin x,现已知f(x)的值域为{0,﹣,1},则这样的函数共有1395个.【考点】:映射.【专题】:函数的性质及应用;集合.【分析】:分别求出sinx=0,x=0,π,2π,3π,4π,sinx=,x=,x=,x=,x=,sinx=1,x=,x=利用排列组合知识求解得出这样的函数共有:(C+C)()()即可.【解析】:解:∵函数f(x)的定义域为D,D⊆[0,4π],∴它的对应法则为f:x→sin x,f(x)的值域为{0,﹣,1},sinx=0,x=0,π,2π,3π,4π,sinx=,x=,x=,x=,x=,sinx=1,x=,x=这样的函数共有:(C+C)()()=31×15×3=1395故答案为:1395【点评】:本题考查了映射,函数的概念,排列组合的知识,难度不大,但是综合性较强.13.(4分)(2015•上海二模)若多项式(1﹣2x+3x2﹣4x3+…﹣2000x1999+2001x2000)(1+2x+3x2+4x3+…+2000x1999+2001x2000)=a0x4000+a1x3999+a2x3998+…+a3999x+a4000,则a1+a3+…+a2015=0.【考点】:二项式定理的应用.【专题】:二项式定理.【分析】:根据等式,确定a1=﹣2000×2001+2001×2000=0,a3=0,a5=0,…,即可得出结论.【解析】:解:根据(1﹣2x+3x2﹣4x3+…﹣2000x1999+2001x2000)(1+2x+3x2+4x3+…+2000x1999+2001x2000)=a0x4000+a1x3999+a2x3998+…+a3999x+a4000,可得a1=﹣2000×2001+2001×2000=0,a3=0,a5=0,…,所以a1+a3+a5+…+a2011+a2013+a2015=0,故答案为:0.【点评】:本题考查二项式定理的运用,考查学生分析解决问题的能力,属于中档题.14.(4分)(2015•上海模拟)在平面直角坐标系中有两点A(﹣1,3)、B(1,),以原点为圆心,r>0为半径作一个圆,与射线y=﹣x(x<0)交于点M,与x轴正半轴交于N,则当r变化时,|AM|+|BN|的最小值为2.【考点】:两点间距离公式的应用.【专题】:计算题;转化思想;推理和证明.【分析】:由题意,设M(a,﹣a)(a<0),则r=﹣2a,N(﹣2a,0).可得|AM|+|BN|=+,设2a=x,进而可以理解为(x,0)与(﹣,)和(﹣1,)的距离和,即可得出结论.【解析】:解:由题意,设M(a,﹣a)(a<0),则r=﹣2a,N(﹣2a,0).∴|AM|+|BN|=+设2a=x,则|AM|+|BN|=+,可以理解为(x,0)与(﹣5,)和(﹣1,)的距离和,∴|AM|+|BN|的最小值为(﹣5,)和(﹣1,﹣)的距离,即2.故答案为:2.【点评】:本题考查两点间距离公式的应用,考查学生分析解决问题的能力,有难度.二、选择题(本大题满分20分)本大题共有4题,每题有且仅有一个正确答案,选对得5分,否则一律得零分.15.(5分)(2015•上海模拟)若非空集合A中的元素具有命题α的性质,集合B中的元素具有命题β的性质,若A⊊B,则命题α是命题β的()条件.A.充分非必要B.必要非充分C.充分必要D.既非充分又非必要【考点】:必要条件、充分条件与充要条件的判断.【专题】:集合;简易逻辑.【分析】:可举个例子来判断:比如A={1},B={1,2},α:x>0,β:x<3,容易说明此时命题α是命题β的既非充分又非必要条件.【解析】:解:命题α是命题β的既非充分又非必要条件;比如A={1},α:x>0;B={1,2},β:x<3;显然α成立得不到β成立,β成立得不到α成立;∴此时,α是β的既非充分又非必要条件.故选:D.【点评】:考查真子集的概念,以及充分条件、必要条件、既不充分又不必要条件的概念,以及找一个例子来说明问题的方法.16.(5分)(2015•上海二模)用反证法证明命题:“已知a、b∈N+,如果ab可被5 整除,那么a、b 中至少有一个能被5 整除”时,假设的内容应为()A.a、b 都能被5 整除B.a、b 都不能被5 整除C.a、b 不都能被5 整除D. a 不能被5 整除【考点】:反证法.【专题】:推理和证明.【分析】:反设是一种对立性假设,即想证明一个命题成立时,可以证明其否定不成立,由此得出此命题是成立的.【解析】:解:由于反证法是命题的否定的一个运用,故用反证法证明命题时,可以设其否定成立进行推证.命题“a,b∈N,如果ab可被5整除,那么a,b至少有1个能被5整除.”的否定是“a,b都不能被5整除”.故选:B.【点评】:反证法是命题的否定的一个重要运用,用反证法证明问题大大拓展了解决证明问题的技巧.17.(5分)(2015•上海二模)实数x、y满足x2+2xy+y2+4x2y2=4,则x﹣y的最大值为()A.B.C.D.2【考点】:基本不等式.【专题】:三角函数的求值.【分析】:x2+2xy+y2+4x2y2=4,变形为(x+y)2+(2xy)2=4,设x+y=2cosθ,2xy=2sinθ,θ∈[0,2π).化简利用三角函数的单调性即可得出.【解析】:解:x2+2xy+y2+4x2y2=4,变形为(x+y)2+(2xy)2=4,设x+y=2cosθ,2xy=2sinθ,θ∈[0,2π).则(x﹣y)2=(x+y)2﹣4xy=4cos2θ﹣4sinθ=5﹣4(sinθ+)2≤5,∴x﹣y.故选:C.【点评】:本题考查了平方法、三角函数代换方法、三角函数的单调性,考查了推理能力与计算能力,属于中档题.18.(5分)(2015•上海模拟)直线m⊥平面α,垂足是O,正四面体ABCD的棱长为4,点C在平面α上运动,点B在直线m上运动,则点O到直线AD的距离的取值范围是()A.[,] B.[2﹣2,2+2] C.[,] D.[3﹣2,3+2]【考点】:点、线、面间的距离计算.【专题】:空间位置关系与距离.【分析】:确定直线BC与动点O的空间关系,得到最大距离为AD到球心的距离+半径,最小距离为AD到球心的距离﹣半径.【解析】:解:由题意,直线BC与动点O的空间关系:点O是以BC为直径的球面上的点,所以O到AD的距离为四面体上以BC为直径的球面上的点到AD的距离,最大距离为AD到球心的距离(即BC与AD的公垂线)+半径=2+2.最小距离为AD到球心的距离(即BC与AD的公垂线)﹣半径=2+2.∴点O到直线AD的距离的取值范围是:[2﹣2,2+2].故选:B.【点评】:本题考查点、线、面间的距离计算,考查学生分析解决问题的能力,属于中档题,解题时要注意空间思维能力的培养.三、解答题(本大题满分74分)本大题共5题,解答下列各题须写出必要的步骤. 19.(12分)(2015•上海模拟)已知正四棱柱ABCD﹣A1B1C1D1,底面边长为,点P、Q、R分别在棱AA1、BB1、BC上,Q是BB1中点,且PQ∥AB,C1Q⊥QR(1)求证:C1Q⊥平面PQR;(2)若C1Q=,求四面体C1PQR的体积.【考点】:棱柱、棱锥、棱台的体积;直线与平面垂直的判定.【专题】:空间位置关系与距离;空间角.【分析】:(1)由已知得AB⊥平面B1BCC1,从而PQ⊥平面B1BCC1,进而C1Q⊥PQ,又C1Q ⊥QR,由此能证明C1Q⊥平面PQR.(2)由已知得B1Q=1,BQ=1,△B1C1Q∽△BQR,从而BR=,QR=,由C1Q、QR、QP 两两垂直,能求出四面体C1PQR 的体积.【解析】:(1)证明:∵四棱柱ABCD﹣A1B1C1D1是正四棱柱,∴AB⊥平面B1BCC1,又PQ∥AB,∴PQ⊥平面B1BCC1,∴C1Q⊥PQ,又已知C1Q⊥QR,且QR∩QP=Q,∴C1Q⊥平面PQR.(2)解:∵B1C1=,,∴B1Q=1,∴BQ=1,∵Q是BB1中点,C1Q⊥QR,∴∠B1C1Q=∠BQR,∠C1B1Q=∠QBR,∴△B1C1Q∽△BQR,∴BR=,∴QR=,∵C1Q、QR、QP两两垂直,∴四面体C1PQR 的体积V=.【点评】:本小题主要考查空间线面关系、线面垂直的证明、几何体的体积等知识,考查数形结合、化归与转化的数学思想方法,以及空间想象能力、推理论证能力和运算求解能力.20.(14分)(2015•上海模拟)已知数列{bn}满足b1=1,且bn+1=16bn(n∈N),设数列{}的前n项和是Tn.(1)比较Tn+12与Tn•Tn+2的大小;(2)若数列{an} 的前n项和Sn=2n2+2n,数列{cn}=an﹣logdbn(d>0,d≠1),求d的取值范围使得{cn}是递增数列.【考点】:数列递推式;数列的函数特性.【专题】:计算题;等差数列与等比数列.【分析】:(1)由数列递推式可得数列{bn}为公比是16的等比数列,求出其通项公式后可得,然后由等比数列的前n项和求得Tn,再由作差法证明Tn+12>Tn•Tn+2;(2)由Sn=2n2+2n求出首项,进一步得到n≥2时的通项公式,再把数列{an},{bn}的通项公式代入cn=an﹣logdbn=4n+(4﹣4n)logd2=(4﹣4logd2)n+4logd2,然后由一次项系数大于0求得d的取值范围.【解析】:解:(1)由bn+1=16bn,得数列{bn}为公比是16的等比数列,又b1=1,∴,因此,则=,∵Tn+12﹣Tn•Tn+2 =.于是Tn+12>Tn•Tn+2;(2)由Sn=2n2+2n,当n=1时求得a1=S1=4;当n≥2时,=4n.a1=4满足上式,∴an=4n.可得cn=an﹣logdbn=4n+(4﹣4n)logd2=(4﹣4logd2)n+4logd2,要使数列{cn}是递增数列,则4﹣4logd2>0,即logd2<1.当0<d<1时,有logd2<0恒成立,当d>1时,有d>2.综上,d∈(0,1)∪(2,+∞).【点评】:本题考查了等比关系的确定,考查了数列的函数特性,考查了对数不等式的解法,是中档题.21.(14分)(2015•上海二模)某种波的传播是由曲线f(x)=Asin(ωx+φ)(A>0)来实现的,我们把函数解析式f(x)=Asin(ωx+φ)称为“波”,把振幅都是A 的波称为“A 类波”,把两个解析式相加称为波的叠加.(1)已知“1 类波”中的两个波f1(x)=sin(x+φ1)与f2(x)=sin(x+φ2)叠加后仍是“1类波”,求φ2﹣φ1的值;(2)在“A 类波“中有一个是f1(x)=Asinx,从A类波中再找出两个不同的波f2(x),f3(x),使得这三个不同的波叠加之后是平波,即叠加后f1(x)+f2(x)+f3(x),并说明理由.(3)在n(n∈N,n≥2)个“A类波”的情况下对(2)进行推广,使得(2)是推广后命题的一个特例.只需写出推广的结论,而不需证明.【考点】:两角和与差的正弦函数;归纳推理.【专题】:综合题;三角函数的图像与性质;推理和证明.【分析】:(1)根据定义可求得f1(x)+f2(x)=(cosφ1+cosφ2)sinx+(sinφ1+sinφ2)cosx,则振幅是=,由=1,即可求得φ1﹣φ1的值.(2)设f2(x)=Asin(x+φ1),f3(x)=Asin(x+φ2),则f1(x)+f2(x)+f3(x)=0恒成立,可解得cosφ1=﹣,可取φ2=(或φ2=﹣等),证明f1(x)+f2(x)+f3(x)=0.(3)由题意可得f1(x)=Asinx,f2(x)=Asin(x+),f3(x)=Asin(x+),…,从而可求fn(x)=Asin(x+),这n个波叠加后是平波.【解析】:解:(1)f1(x)+f2(x)=sin(x+φ1)+sin(x+φ2)=(cosφ1+cosφ2)sinx+(sinφ1+sinφ2)cosx,振幅是=则=1,即cos(φ1﹣φ2)=﹣,所以φ1﹣φ2=2kπ±,k∈Z.(2)设f2(x)=Asin(x+φ1),f3(x)=Asin(x+φ2),则f1(x)+f2(x)+f3(x)=Asinx+Asin(x+φ1)+Asin(x+φ2)=Asinx(1+cosφ1+cosφ2)+Acosx(sinφ1+sinφ2)=0恒成立,则1+cosφ1+cosφ2=0且sinφ1+sinφ2=0,即有:cosφ2=﹣cosφ1﹣1且sinφ2=﹣sinφ1,消去φ2可解得cosφ1=﹣,若取φ1=,可取φ2=(或φ2=﹣等),此时,f2(x)=Asin(x+),f3(x)=Asin(x+)(或f3(x)=Asin(x﹣)等),则:f1(x)+f2(x)+f3(x)=A[sinx+(sinx+cosx)+(﹣sinx﹣cosx)]=0,所以是平波.(3)f1(x)=Asinx,f2(x)=Asin(x+),f3(x)=Asin(x+),…,fn(x)=Asin(x+),这n个波叠加后是平波.【点评】:本题主要考查了两角和与差的正弦函数公式的应用,考查了归纳推理的常用方法,综合性较强,考查了转化思想,属于中档题.22.(16分)(2015•上海二模)设函数f(x)=ax2+(2b+1)x﹣a﹣2(a,b∈R).(1)若a=0,当x∈[,1]时恒有f(x)≥0,求b 的取值范围;(2)若a≠0且b=﹣1,试在直角坐标平面内找出横坐标不同的两个点,使得函数y=f(x)的图象永远不经过这两点;(3)若a≠0,函数y=f(x)在区间[3,4]上至少有一个零点,求a2+b2的最小值.【考点】:函数的最值及其几何意义;函数的零点与方程根的关系.【专题】:综合题;函数的性质及应用.【分析】:(1)求出a=0的解析式,再由一次函数的单调性,得到不等式,即可得到范围;(2)b=﹣1时,y=a(x2﹣1)﹣x﹣2,当x2=1时,无论a取任何值,y=﹣x﹣2为定值,y=f (x)图象一定过点(1,﹣3)和(﹣1,﹣1),运用函数的定义即可得到结论;(3)由题意,存在t∈[3,4],使得at2+(2b+1)t﹣a﹣2=0,即(t2﹣1)a+(2t)b+t﹣2=0,由点到直线的距离意义可知≥=,由此只要求,t∈[3,4]的最小值.【解析】:解:(1)当a=0时,f(x)=(2b+1)x﹣2,当x∈[,1]时恒有f(x)≥0,则f()≥0且f(1)≥0,即b﹣≥0且2b﹣1≥0,解得b≥;(2)b=﹣1时,y=a(x2﹣1)﹣x﹣2,当x2=1时,无论a取任何值,y=﹣x﹣2为定值,y=f(x)图象一定过点(1,﹣3)和(﹣1,﹣1)由函数定义可知函数图象一定不过A(1,y1)(y1≠﹣3)和B(﹣1,y2)(y2≠﹣1);(3)由题意,存在t∈[3,4],使得at2+(2b+1)t﹣a﹣2=0即(t2﹣1)a+(2t)b+t﹣2=0,由点到直线的距离意义可知≥=,由此只要求,t∈[3,4]的最小值.令g(t)=,t∈[3,4]设u=t﹣2,u∈[1,2],则g(t)=f(u)==∴u=1,即t=3时,g(t)取最小值,∴t=3时,a2+b2的最小值为.【点评】:本题考查不等式的恒成立问题转化为求函数的值域问题,主要考查一次函数的单调性,运用主元法和直线和圆有交点的条件是解题的关键.23.(18分)(2015•上海二模)设有二元关系f(x,y)=(x﹣y)2+a(x﹣y)﹣1,已知曲线г:f(x,y)=0(1)若a=2时,正方形ABCD的四个顶点均在曲线上г,求正方形ABCD的面积;(2)设曲线г与x轴的交点是M、N,抛物线г′:y=x2+1与y 轴的交点是G,直线MG与曲线г′交于点P,直线NG 与曲线г′交于Q,求证:直线PQ过定点,并求出该定点的坐标.(3)设曲线г与x轴的交点是M(u,0),N(v,0),可知动点R(u,v)在某确定的曲线∧上运动,曲线∧与上述曲线г在a≠0时共有四个交点:A(x1,x2),B(x3,x4),C(x5,x6),D(x7,x8),集合X={x1,x2,…,x8}的所有非空子集设为Yi(i=1,2,…,255),将Yi中的所有元素相加(若i Y 中只有一个元素,则其是其自身)得到255 个数y1,y2,…,y255求所有的正整数n 的值,使得y1n+y2n+…+y255n 是与变数a及变数xi(i=1,2,…8)均无关的常数.【考点】:直线与圆锥曲线的综合问题.【专题】:圆锥曲线中的最值与范围问题.【分析】:(1)令f(x,y)=(x﹣y)2+2(x﹣y)﹣1=0,解得x﹣y=﹣1±,由于f(x,y)表示两条平行线,之间的距离是2,为一个正方形,即可得出面积S.(2):在曲线C中,令y=0,则x2+ax﹣1=0,设M(m,0),N(n,0),则mn=﹣1,G(0,1),则直线MG:y=﹣x+1,NG:y=﹣x+1.分别与抛物线方程联立可得P,Q.直线PQ的方程为:,令x=0,可得y=3,因此直线PQ过定点(0,3).(3)令y=0,则x2+ax﹣1=0,则mn=﹣1,即点R(u,v)在曲线xy=﹣1上,又曲线C:f(x,y)=0.恒表示平行线x﹣y=,A(x1,x2),B(x3,x4)关于直线y=﹣x对称,即x1+x2+x3+x4=0,同理可得x5+x6+x7+x8=0,则x1+x2+…+x8=0,集合X={x1,x2,…,x8}的所有非空子集设为Yi=1,2,…,255),取Y1={x1,x2,…,x8},则y1=x1+x2+…+x8=0,即n∈N*,=0,对X的其它子集,把它们配成集合“对”(Yp,Yq),Yp∪Yq=X,Yp∩Yq=∅,这样的集合“对”共有127对,且对每一个集合“对”都满足yp+yq=0.可以利用扇形归纳法证明:对于Yp的元素和yp与Yq的元素和yq,当n为奇数时,=0.即可得出.【解析】:解:(1)令f(x,y)=(x﹣y)2+2(x﹣y)﹣1=0,解得x﹣y=﹣1±,∴f(x,y)=0表示两条平行线,之间的距离是2,此为一个正方形的一个边长,其面积S=4.(2)证明:在曲线C中,令y=0,则x2+ax﹣1=0,设M(m,0),N(n,0),则mn=﹣1,G(0,1),则直线MG:y=﹣x+1,NG:y=﹣x+1.联立,解得P,同理可得Q.∴直线PQ的方程为:令x=0,则y===3,因此直线PQ过定点(0,3).(3)令y=0,则x2+ax﹣1=0,则mn=﹣1,即点R(u,v)在曲线xy=﹣1上,又曲线C:f(x,y)=(x﹣y)2+a(x﹣y)﹣1=0.恒表示平行线x﹣y=,如图所示,A(x1,x2),B(x3,x4)关于直线y=﹣x对称,则=,即x1+x2+x3+x4=0,同理可得x5+x6+x7+x8=0,则x1+x2+…+x8=0,集合X={x1,x2,…,x8}的所有非空子集设为Yi,取Y1={x1,x2,…,x8},则y1=x1+x2+…+x8=0,即n∈N*,=0,对X的其它子集,把它们配成集合“对”(Yp,Yq),Yp∪Yq=X,Yp∩Yq=∅,这样的集合“对”共有127对,且对每一个集合“对”都满足yp+yq=0.以下证明:对于Yp的元素和yp与Yq的元素和yq,当n为奇数时,=0.先证明:n为奇数时,x+y能够整除xn+yn,用数学归纳法证明.1°当n=1时,成立;2°假设当n=k(奇数)时,x+y能够整除xk+yk,则当n=k+2时,xk+2+yk+2=xk+2﹣xky2+xky2+yk+2=xk(x2﹣y2)+y2(xk+yk),因此上式可被x+y整除.由1°,2°可知:n为奇数时,x+y能够整除xn+yn.又∵当n为奇数时,=(yp+yq)M,其中M是关于yp,yq的整式,∵Yp∪Yq=X,Yp∩Yq=∅,∴每一个集合“对”(Yp,Yq)都满足yp+yq=0.则一定有=(x+y)M=0,M∈N*,于是可得y1n+y2n+…+y255n=0是常数.【点评】:本题考查了平行直线系、直线的交点、一元二次方程的根与系数的关系、集合的性质、中点坐标公式、对称性、扇形归纳法,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题.。
2015年普通高等学校招生统一考试上海市理数卷(含答案)
2015年普通高等学校招生全国统一考试 上海 数学试卷(理工农医类)一、填空题(本大题共有14题,满分56分.)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对4分,否则一律得零分.1.设全集U R =.若集合{}1,2,3,4A =,{}23x x B =≤≤,则U AB =ð .2.若复数z 满足31z z i +=+,其中i 为虚数单位,则z = .3.若线性方程组的增广矩阵为122301c c ⎛⎫ ⎪⎝⎭、解为35x y =⎧⎨=⎩,则12c c -= . 4.若正三棱柱的所有棱长均为a ,且其体积为163,则a = .5.抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p = . 6.若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 .7.方程()()1122log 95log 322x x ---=-+的解为 .8.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示).9.已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C 的渐近线方程为3y x =±,则2C 的渐近线方程为 .10.设()1fx -为()222x xf x -=+,[]0,2x ∈的反函数,则()()1y f x f x -=+的最大值为 .11.在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示).12.赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量1ξ和2ξ分别表示赌客在一局赌博中的赌金和奖金,则12ξξE -E = (元).13.已知函数()sin f x x =.若存在1x ,2x ,⋅⋅⋅,m x 满足1206m x x x π≤<<⋅⋅⋅<≤,且()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=(2m ≥,m *∈N ),则m 的最小值为 .14.在锐角三角形C AB 中,1tan 2A =,D 为边C B 上的点,D ∆AB 与CD ∆A 的面积分别为2和4.过D 作D E ⊥AB 于E ,DF C ⊥A 于F ,则D DF E⋅= .二、选择题(本大题共有4题,满分20分.)每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律得零分.15.设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 16.已知点A 的坐标为()43,1,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ) A .332 B .532C .112D .13217.记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,下列选项中,能推出方程③无实根的是( ) A .方程①有实根,且②有实根 B .方程①有实根,且②无实根 C .方程①无实根,且②有实根 D .方程①无实根,且②无实根 18.设(),n n n x y P 是直线21n x y n -=+(n *∈N )与圆222x y +=在第一象限的交点,则极限1lim 1n n n y x →∞-=-( )A .1-B .12-C .1D .2 三、解答题(本大题共有5题,满分74分.)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)如图,在长方体1111CD C D AB -A B 中,11AA =,D 2AB =A=,E 、F 分别是AB 、C B 的中点.证明1A 、1C 、F 、E 四点共面,并求直线1CD 与平面11C F A E 所成的角的大小.20.(本题满分14分)本题共有2小题,第小题满分6分,第小题满分8分如图,A ,B ,C 三地有直道相通,5AB =千米,C 3A =千米,C 4B =千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为()f t (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是C A B ,速度为8千米/小时.乙到达B 地后原地等待.设1t t =时乙到达C 地. (1)求1t 与()1f t 的值;(2)已知警员的对讲机的有效通话距离是3千米.当11t t ≤≤时,求()f t 的表达式,并判断()f t 在[]1,1t 上得最大值是否超过3?说明理由.21.(本题满分14分)本题共有2个小题,第1小题6分,第2小题8分.已知椭圆2221x y +=,过原点的两条直线1l 和2l 分别于椭圆交于A 、B 和C 、D ,记得到的平行四边形CD AB 的面积为S .(1)设()11,x y A ,()22C ,x y ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明11212S x y x y =-; (2)设1l 与2l 的斜率之积为12-,求面积S 的值. 22.(本题满分16分)本题共有3个小题.第1小题满分4分,第2小题满分6分,第3小题满分6分. 已知数列{}n a 与{}n b 满足()112n n n n a a b b ++-=-,n *∈N .(1)若35n b n =+,且11a =,求数列{}n a 的通项公式;(2)设{}n a 的第0n 项是最大项,即0n n a a >(n *∈N ),求证:数列{}n b 的第0n 项是最大项;(3)设10a λ=<,n n b λ=(n *∈N ),求λ的取值范围,使得{}n a 有最大值M 与最小值m ,且()2,2mM∈-. 23.(本题满分18分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分8分. 对于定义域为R 的函数()g x ,若存在正常数T ,使得()cos g x 是以T 为周期的函数,则称()g x 为余弦周期函数,且称T 为其余弦周期.已知()f x 是以T 为余弦周期的余弦周期函数,其值域为R .设()f x 单调递增,()00f =,()4f πT =. (1)验证()sin 3xh x x =+是以π6为周期的余弦周期函数;(2)设b a <.证明对任意()(),c f a f b ∈⎡⎤⎣⎦,存在[]0,x a b ∈,使得()0f x c =;(3)证明:“0u 为方程()cos 1f x =在[]0,T 上得解”的充要条件是“0u +T 为方程()cos 1f x =在[],2T T 上有解”,并证明对任意[]0,x ∈T 都有()()()f x f x f +T =+T .上海数学(理工农医类)参考答案一、(第1题至第14题) 1.}{1,4 2.1142i + 3.16 4.4 5.2 6.3π7.2 8.120 9.32yy x =± 10.4 11.45 12.0.2 13.8 14. 1615-二、(第15至18题) 题号 15 16 17 18 代号BDBA三、(第19至23题)19. 解:如图,以D 为原点建立空间直角坐标系,可得有关点的坐标为A 1(2,0,1)、C 1(0,2,1)、E(2,1,0)、F (1,2,0)、C (0、2、0)、D (0,0,1).因为)0,2,2(11-=C A,(1,1,0)EF =-, 所以11//EF AC , 因此直线1AC与EF 共面, 即,1A 、1C 、F 、E 四点共面.设平面EF C A 11的法向量为(,,)n u v w =, 则n ⊥EF ,n ⊥1FC ,又(1,1,0)EF =-,1FC =(1,0,1)-,故0,u .0,u v v w u w -+=⎧==⎨-+=⎩解得取u=1,则平面EF C A 11 的一个法向量n =(1,1,1).又1(0,2,1)CD =-, 故111515||CD n CD n ⋅=-⋅因此直线1CD 与平面FE C A 11所成的角的大小1515arcsin . 20. 解:(1)138t =, 设乙到C 时甲所在地为D ,则AD=158千米。
2015上海三校生数学真题(含详解)
2015年上海市普通高等学校面向应届中等职业学校毕业生招生统一文化考试数学试卷考生注意:1.本试卷满分100分,考试时间100分钟.2.本考试设试卷和答题纸两部分,试卷包括试题与答题要求;所有答题必须涂(选择题)或写(非选择题)在答题纸上,作图可以使用铅笔,在草稿纸和试卷上答题一律无效.3.答题前,考试务必用签字笔、钢笔或圆珠笔在答题纸上清楚地填写姓名、准考证号,并将核对后的条形码贴在指定位置上.4.答题纸与试卷在试题编号上是一一对应的,答题时应特别注意,不能错位.一、选择题(本大题共6题,每题2分,满分12分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】1.已知指数函数()10x f x =,若()(4)f a f >,则()A.4a < B.4a > C.4a D.4a 【考查内容】指数函数的单调性【答案】B【解析】()10x f x =在定义域内单调递增,()(4)f a f >,则4a >.2.图①、②、③是图1所示几何体的三个视图,则与主视图、俯视图、左视图对应的序号依次为()①②③图115SH115SH215SH315SH4A.①③②B.①②③C.③①②D.③②①【考查内容】简单几何体的三视图【答案】D【解析】该几何体的主视图为③,俯视图为②,左视图为①.3.不等式213x + 的解集为()A.(,2][1,)--+ ∞∞ B.(,1][2,)--+ ∞∞ C.(,2)--∞ D.(2,1)-【考查内容】绝对值不等式【答案】A【解析】213213213x x x +⇒++-或 12x x ⇒-或 .4.某中职校在职业体验开放日活动中,要从4名男生和5名女生中任选两名担任讲解员,假设每名学生被选中的可能性相同,则正好选出一名男生和一名女生的概率为()A.29B.518C.59D.14【考查内容】等可能事件的概率【答案】C【解析】所求概率114529C C 59C P ==.5.“1,1a b ==-”是“方程221ax by +=表示的曲线为双曲线”的()A.充分非必要条件B.必要非充分条件C.充要条件D.既非充分又非必要条件【考查内容】双曲线的标准方程,充分、必要条件【答案】A【解析】1,1a b ==-⇒方程221ax by +=表示的曲线是双曲线;方程221ax by +=表示的曲线是双曲线⇒0ab </⇒1,1a b ==-.是充分非必要条件.6.如图2所示,在三角形空地中欲建一个内接矩形花园(阴影部分),则矩形的面积y (平方米)与其一条边长x (米)之间的函数关系是()图215SH5A.240(040)y x x x =-<<B.220(040)y x x x =-<<C.240(040)y x x x =-<< D.220(040)y x x x =-<<【考查内容】二次函数的实际应用【答案】C【解析】如图,∵BC DE ,∴ABC △∽ADE △,∴BC AFDE AG=,∴BC AF x ==,∴40FG x =-,2(40)40(040)y x x x x x =-=-<<.15SH6二、填空题(本大题共12题,每题3分,满分36分)【请将结果直接填入答题纸的相应位置上.】7.已知全集为{}1,2,3,4,5,则集合{}2,4在全集中的补集为.【考查内容】集合的补集【答案】{}1,3,58.函数12()f x x=的定义域为.【考查内容】函数的定义域【答案】[0,)+∞【解析】12()f x x x==,其中0x .9.下表为甲、乙两个家庭两个月的消费情况,则甲、乙两个家庭这两个月各自消费金额的月平均值用列矩阵表示为.三月消费金额(元)四月消费金额(元)甲30882940乙42104300【考查内容】矩阵【答案】3014 4255⎛⎫ ⎪⎝⎭【解析】甲家庭这两个月的消费金额的月平均值是3088294030142+=,乙家庭这两个月的消费金额的月平均值是4210430042552+=,用列矩阵表示为30144255⎛⎫⎪⎝⎭.10.某市出租车运价y(元)与行驶里程x(千米)的关系如图3所示,若输入的x为8,则输出的y为.图315SH7【考查内容】程序框图【答案】26【解析】该程序框图表示的函数为14,032.4 6.8,3<103.6 5.2,10x y x x x x <<⎧⎪=+⎨⎪-⎩,8x =时, 2.48 6.826y =⨯+=.11.在平面直角坐标系xOy 中,角θ的顶点在坐标原点,始边与x 轴的正半轴重合,终边经过点(1,2)P -,则sin θ=.【考查内容】任意角的三角函数【答案】255【解析】由任意角的三角函数的定义得22225sin 5(1)2θ==-+.12.若函数()f x 为定义在R 上的偶函数,且(2015)(2015)4f f +-=,则(2015)f =.【考查内容】偶函数的性质【答案】2【解析】由偶函数的性质得(2015)(2015)f f -=,∴(2015)(2015)2(2015)4f f f +-==,得(2015)2f =.13.若复数2(2)(2)i z a a =-++(i 是虚数单位)是纯虚数,则实数a =.【考查内容】纯虚数的概念【答案】2【解析】由纯虚数的概念可得22020a a ⎧-=⎪⎨+≠⎪⎩,解得2a =.14.已知抛物线C :24y x =,若C 上的点M 到y 轴的距离为3,则点M 到C 的焦点F 的距离为.【考查内容】抛物线的定义【答案】4【解析】抛物线的准线方程是12px =-=-,∴点M 到准线的距离为4,由抛物线的定义可知点M 到C 的焦点F 的距离为4.15.如图4所示,以沪D ·Z 打头后面加四个阿拉伯数字是上海新能源车牌专段号码之一,车牌号码中的阿拉伯数字是0到9这十个自然数中的任意一个,则以沪D ·Z 打头的新能源车牌号码最多可有个.(结果用数值表示)图415SH8【考查内容】分步计数原理【答案】10000【解析】由分步计数原理可知号码最多有10101010⨯⨯⨯=10000个.16.已知3cos 5α=-,(0,)α∈π,则sin()3απ+=.【考查内容】同角三角比的关系,加法定理【答案】43310-【解析】∵(0,)α∈π,∴24sin 1cos 5αα=-=,4133433sin()sin cos cos sin ()333525210αααπππ-+=+=⨯+-⨯=.17.已知实数x 、y 满足约束条件1,1,2 2.x y x y x y +⎧⎪--⎨⎪-⎩若目标函数z ax y =+仅在点(1,0)处取得最小值,则实数a 的取值范围是.【考查内容】线性规划【答案】(2,1)-【解析】如图所示:(1)当0a =时,显然成立;(2)当0a >时,需满足1a ->-,此时01a <<;(3)当0a <时,需满足2a -<,此时20a -<<.综上所述,实数a 的取值范围是(2,1)-.15SH918.设数列{}(*)n a n ∈N 是等比数列,公比q 为整数,若数列{}n a 的连续四项是集合{24,6,3,6,12}--中的四个元素,则q =.【考查内容】等比数列【答案】2-【解析】观察该集合中的五个元素,有两个负数三个正数,等比数列的连续四项中第1项和第3项、第2项和第4项符号相同,∴24-和6-是该等比数列连续四项中的两项,由等比中项的性质可知12为24-和6-的等比中项,另一项为3.由于公比q 为整数,故为2-.三、解答题(本大题共6题,满分52分)【解答下列各题必须在答题纸的相应位置上写出必要的步骤.】19.(本题满分7分)第(1)小题满分为3分,第(2)小题满分为4分.图5的正四棱柱1111ABCD A B C D -的底面边长为3,高为1,O 为下底面的中心.求:(1)异面直线AB 与1CD 所成角的大小;(2)正四棱锥O ABCD -的体积.图515SH10【考查内容】异面直线所成的角,棱锥的体积【解】(1)∵AB CD ,∴1DCD ∠为异面直线AB 和1CD 所成的角,在△1DCD 中,1113tan 33DD DCD DC ∠===,130DCD ∠= ,即异面直线AB 和1CD 所成的角为30 .(2)111331133ABCD V S AA =⋅=⨯⨯⨯=.20.(本题满分7分)第(1)小题满分为2分,第(2)小题满分为5分.如图6,在直角坐标平面内,等腰梯形ABCD 的下底BC 在x 轴上,BC 的中点是坐标原点O ,已知1,2AD AB DC BC ====.(1)写出与向量OD相等的一个向量,其起点与终点是A 、B 、C 、D 、O 五个点中的两个点;(2)设向量a OC OD =+ ,求出向量a 的坐标,并在答题纸上的图6中画出向量a的负向量,要求所画向量的起点与终点是A 、B 、C 、D 、O 五个点中的两个点.图615SH11【考查内容】平面向量的线性运算【解】(1)易知AB BO 且AB BO =,∴四边形ABOD 为平行四边形.∴AB OD 且AB OD =.∴OD BA = .(2)如图所示,作平行四边形OCED ,则OD CE ,∴a OC OD OC CE OE =+=+=,易知OE BD 且OE BD =,∴a DB -=.15SH1221.(本题满分8分)每小题满分各为4分.已知函数()2sin()()4f x x x π=+∈R .(1)写出函数()f x 的最小正周期T 和最大值M ,并求出当函数()f x 取最大值时与之对应的x的一个值;(2)△ABC 的三个内角分别为A 、B 、C ,已知()34f A π-=,7BC =,21sin 7B =,求AC 的长.【考查内容】正弦型函数的图像和性质【解】(1)221T π==π,max ()2f x =,取最大值时242x k ππ+=+π,k ∈Z .即24x k π=+π,k ∈Z .(符合24x k π=+π,k ∈Z 的任意的一个x 的值均得分)(2)()2sin 34f A A π-==,∴3sin 2A =,在△ABC 中,由正弦定理可得sin sin AC BCB A=,得2AC =.22.(本题满分10分)每小题满分各为5分.某地政府支持当地老公房加装电梯,补贴其建设总费用的50%,另外50%由住户分摊.住户按如下步骤分摊费用:(一)先按楼层分摊,底层住户不出钱,从第二层起,每层都比下面一层增加费用k ;(二)每层分摊到的费用再按户平均分摊.现计划为某小区1号六层老公房加装电梯,建设总费用为48万元.(本题涉及的费用均以万元为单位)(1)设第n 层住户分摊到的费用为(*,6)n a n n ∈N ,10a =,求k ;(2)该号每层有8户,设第n 层的每一户分摊到的费用为(*,6)n b n n ∈N ,求4b 以及数列{}n b 的通项公式.【考查内容】等差数列的实际应用【解】(1)由题意可得每一层建设费用成等差数列,第一层费用为0,···,第六层费用为5k ,则056482k +⨯=,165k =.(2)由题意可得第n 层住户分摊的的费用n a 是以首项10a =,公差为825k =的等差数列.则188(1)(1)55n a a n n =+-⨯=-.则1(1)85n n a b n ==-,435b =.23.(本题满分10分)每小题满分各为5分.已知函数2()log f x x =.(1)在答题纸相应位置的坐标系中画出函数()y f x =的大致图像,并写出实数m 的取值范围,使得[,3]x m ∈时,()0f x ;(2)设0a b <<,如果()()f a f b =,问a 与b 的乘积是否为定值?若是,请求出该定值;若不是,请说明理由.【考查内容】对数函数的图像和性质【解】(1)()y f x =的大致图像如图所示:15SH13由图可知,m 的取值范围是[1,3).(2)由函数2()log f x x =在定义域内单调递增,可知01a b <<<.由()()f a f b =可得22log log a b -=,222log log log 0a b ab +==,得1ab =.∴a 与b 的乘积为定值1.24.(本题满分10分)第(1)小题满分为3分,第(2)小题满分为7分.圆锥曲线C 的方程为2221x y a+=(0a >).(1)若曲线C 是圆,且直线2(0)y kx k =->与该圆相切,求实数k ;(2)设1a >,曲线C 的一个焦点为(,0)(0)F c c >,它与y 轴正半轴的交点为B ,过点B 且垂直于BF 的直线l 与x 轴相交于点3(,0)3D -,与曲线C 的另一个交点为E ,求a 以及线段BE 的长.【考查内容】直线与圆的位置关系,直线与椭圆相交的综合问题【解】(1)曲线C 是圆时,1a =.圆C 的方程为221x y +=.由直线与圆相切可得圆心(0,0)到该直线的距离为半径的长1.即2221(1)k -=+-,又∵0k >,∴3k =.(2)当1a >时,曲线C 为焦点在x 轴上的椭圆.∴21c a =-.即23(1,0),(0,1),(,0)3F a B D --.2(1,1)BF a =-- ,3(,1)3DB = .由BF ED ⊥可得0BF DB ⋅= ,即231103a ⋅--=(1a >),可得2a =.椭圆方程为2214x y +=,易知BE 所在直线的斜率为3,方程为31y x =+,方法一:联立直线与椭圆方程可得1101x y =⎧⎨=⎩,2283131113x y ⎧=-⎪⎪⎨⎪=-⎪⎩,可得221212163()()13BE x x y y =-+-=.方法二:联立直线与椭圆方程,消去y 得213830x x +=,128313x x +=-,120x x =.∴2212121()4BE k x x x x =+⋅+-=16313.。
2015年普通高等学校招生全国统一考试数学理试题精品解析(上海卷)
2015年高考上海卷理数试题解析(精编版)(解析版)一、填空题:本大题共5小题,每小题5分,共25分.1、设全集U R =.若集合{}1,2,3,4A =,{}23x x B =≤≤,则U A B =ð .【答案】{}1,4【解析】因为{|32}U C B x x x =><或,所以{4,1}U A C B = 【考点定位】集合运算2、若复数z 满足31z z i +=+,其中i 为虚数单位,则z = . 【答案】1142i +3、若线性方程组的增广矩阵为122301c c ⎛⎫ ⎪⎝⎭、解为35x y =⎧⎨=⎩,则12c c -= . 【答案】16【解析】由题意得:121223233521,05,21516.c x y c x y c c =+=⨯+⨯==⋅+=-=-= 【考点定位】线性方程组的增广矩阵4、若正三棱柱的所有棱长均为a ,且其体积为a = . 【答案】45、抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p = . 【答案】26、若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 . 【答案】3π 【解析】由题意得:1:(2)222rl h r l h ππ⋅=⇒=⇒母线与轴的夹角为3π【考点定位】圆锥轴截面7、方程()()1122log 95log 322x x ---=-+的解为 .【答案】2【解析】设13,(0)x t t -=>,则2222log (5)log (2)254(2)0t t t t -=-+⇒-=->21430,333112x t t t t x x -⇒-+==⇒=⇒-=⇒=【考点定位】解指对数不等式8、在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示). 【答案】1209、已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C 的渐近线方程为y =,则2C 的渐近线方程为 .【答案】y = 【解析】由题意得:1C :223,(0)x y λλ-=≠,设(,)Q x y ,则(,2)P x y ,所以2234x y λ-=,即2C 的渐近线方程为2y x =±【考点定位】双曲线渐近线10、设()1f x -为()222x xf x -=+,[]0,2x ∈的反函数,则()()1y f x f x -=+的最大值为 . 【答案】411、在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示).【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++⎪ ⎪⎝⎭⎝⎭,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C = 【考点定位】二项展开式12、赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量1ξ和2ξ分别表示赌客在一局赌博中的赌金和奖金,则12ξξE -E = (元).【答案】0.2【解析】赌金的分布列为所以11(12345)35E ξ=++++=奖金的分布列为所以223111.4(1234)2.8510510E ξ=⨯⨯+⨯+⨯+⨯=12ξξE -E =0.2【考点定位】数学期望13、已知函数()sin f x x =.若存在1x ,2x ,⋅⋅⋅,m x 满足1206m x x x π≤<<⋅⋅⋅<≤,且()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=(2m ≥,m *∈N ),则m 的最小值 为 . 【答案】8 【解析】因为()sin fx x =,所以()()max min ()()2m n f x f x f x f x -≤-=,因此要使得满足条件()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=的m 最小,须取123456783579110,,,,,,,6,222222x x x x x x x x πππππππ========即8.m = 【考点定位】三角函数性质14、在锐角三角形C AB 中,1tan 2A =,D 为边C B 上的点,D ∆AB 与CD ∆A 的面积分别为2和4.过D 作D E ⊥AB 于E ,DF C ⊥A 于F ,则D DF E⋅= . 【答案】1615-【解析】由题意得:1sin sin 242A A AB AC A AB AC =⋅⋅=+⇒⋅=,又1122,43222AB DE AC DF AB DE AC DF DE DF ⋅=⋅=⇒⋅⨯⋅=⇒⋅=,因为DEAF 四点共圆,因此D DF E⋅=16cos()(15DE DF A π⋅⋅-==-【考点定位】向量数量积,解三角形二、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.15、设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 【答案】B16、已知点A 的坐标为(),将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( )A .2 B .2 C .112 D .132【答案】D【解析】113(cossin ))()3322OB OA i i i ππ=⋅+=⋅=+,即点B 的纵坐标为132【考点定位】复数几何意义17、记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,下列选项中,能推出方程③无实根的是( ) A .方程①有实根,且②有实根 B .方程①有实根,且②无实根 C .方程①无实根,且②有实根 D .方程①无实根,且②无实根 【答案】B【解析】当方程①有实根,且②无实根时,22124,8a a ≥<,从而4222321816,4a a a =<=即方程③:2340x a x ++=无实根,选B.而A,D 由于不等式方向不一致,不可推;C 推出③有实根 【考点定位】不等式性质18、设(),n n n x y P 是直线21n x y n -=+(n *∈N )与圆222x y +=在第一象限的交点,则极限1lim 1nn ny x →∞-=-( )A .1-B .12- C .1 D .2 【答案】A三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。
2015年普通高等学校招生全国统一考试数学理试题精品解析(上海卷)
高考提醒一轮看功夫,二轮看水平,三轮看士气梳理考纲,进一步明确高考考什么!梳理高考题,进一步明确怎么考!梳理教材和笔记,进一步明确重难点!梳理错题本,进一步明确薄弱点!抓住中低档试题。
既可以突出重点又可以提高复习信心,效率和效益也会双丰收。
少做、不做难题,努力避免“心理饱和”现象的加剧。
保持平常心,顺其自然2015年高考上海卷理数试题解析(精编版)(解析版)一、填空题:本大题共5小题,每小题5分,共25分.1、设全集U R =.若集合{}1,2,3,4A =,{}23x x B =≤≤,则U A B =I ð . 【答案】{}1,4【解析】因为{|32}U C B x x x =><或,所以{4,1}U A C B =I 【考点定位】集合运算2、若复数z 满足31z z i +=+,其中i 为虚数单位,则z = . 【答案】1142i +3、若线性方程组的增广矩阵为122301c c ⎛⎫ ⎪⎝⎭、解为35x y =⎧⎨=⎩,则12c c -= . 【答案】16【解析】由题意得:121223233521,05,21516.c x y c x y c c =+=⨯+⨯==⋅+=-=-= 【考点定位】线性方程组的增广矩阵4、若正三棱柱的所有棱长均为a ,且其体积为163,则a = . 【答案】45、抛物线22y px =(0p >)上的动点Q 到焦点的距离的最小值为1,则p = . 【答案】26、若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 . 【答案】3π 【解析】由题意得:1:(2)222rl h r l h ππ⋅=⇒=⇒母线与轴的夹角为3π【考点定位】圆锥轴截面7、方程()()1122log 95log 322x x ---=-+的解为 .【答案】2【解析】设13,(0)x t t -=>,则2222log (5)log (2)254(2)0t t t t -=-+⇒-=->21430,5333112x t t t t x x -⇒-+=>⇒=⇒=⇒-=⇒=【考点定位】解指对数不等式8、在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示). 【答案】1209、已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C .若1C 的渐近线方程为3y x =±,则2C 的渐近线方程为 .【答案】3y x =±【解析】由题意得:1C :223,(0)x y λλ-=≠,设(,)Q x y ,则(,2)P x y ,所以2234x y λ-=,即2C 的渐近线方程为32y x =±【考点定位】双曲线渐近线10、设()1f x -为()222x xf x -=+,[]0,2x ∈的反函数,则()()1y f x f x -=+的最大值为 . 【答案】411、在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 (结果用数值表示).【答案】45【解析】因为10101019102015201520151111(1)(1)(1)x x x C x x x x ⎛⎫⎛⎫++=++=++++ ⎪ ⎪⎝⎭⎝⎭L ,所以2x 项只能在10(1)x +展开式中,即为8210C x ,系数为81045.C = 【考点定位】二项展开式12、赌博有陷阱.某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量1ξ和2ξ分别表示赌客在一局赌博中的赌金和奖金,则12ξξE -E = (元).【答案】0.2【解析】赌金的分布列为1ξ1 2 3 4 5P15 15 15 15 15所以11(12345)35E ξ=++++=奖金的分布列为2ξ1.42.8 4.25.6 P25425C = 253310C = 25215C = 251110C = 所以223111.4(1234)2.8510510E ξ=⨯⨯+⨯+⨯+⨯=12ξξE -E =0.2【考点定位】数学期望13、已知函数()sin f x x =.若存在1x ,2x ,⋅⋅⋅,m x 满足1206m x x x π≤<<⋅⋅⋅<≤,且()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=(2m ≥,m *∈N ),则m 的最小值 为 . 【答案】8【解析】因为()sin f x x =,所以()()max min ()()2m n f x f x f x f x -≤-=,因此要使得满足条件()()()()()()1223112n n f x f x f x f x f x f x --+-+⋅⋅⋅+-=的m 最小,须取123456783579110,,,,,,,6,222222x x x x x x x x πππππππ========即8.m = 【考点定位】三角函数性质14、在锐角三角形C AB 中,1tan 2A =,D 为边CB 上的点,D ∆AB 与CD ∆A 的面积分别为2和4.过D 作D E ⊥AB 于E ,DFC ⊥A 于F ,则D DF E⋅=u u u r u u u r.【答案】1615-【解析】由题意得:1sin ,cos ,sin 24125255A A AB AC A AB AC ==⋅⋅=+⇒⋅=,又112,43222125AB DE AC DF AB DE AC DF DE DF ⋅=⋅=⇒⋅⨯⋅=⇒⋅=,因为DEAF 四点共圆,因此D DF E⋅=u u u r u u u r 16cos()()151255DE DF A π⋅⋅-=⨯-=- 【考点定位】向量数量积,解三角形二、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的.15、设1z ,2C z ∈,则“1z 、2z 中至少有一个数是虚数”是“12z z -是虚数”的( ) A .充分非必要条件 B .必要非充分条件 C .充要条件 D .既非充分又非必要条件 【答案】B16、已知点A 的坐标为()43,1,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ) A .332 B .532 C .112 D .132【答案】D【解析】133313(cos sin )(43)()3322OB OA i i i ππ=⋅+=⋅=+u u u r u u u r ,即点B 的纵坐标为132【考点定位】复数几何意义17、记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中1a ,2a ,3a 是正实数.当1a ,2a ,3a 成等比数列时,下列选项中,能推出方程③无实根的是( ) A .方程①有实根,且②有实根 B .方程①有实根,且②无实根 C .方程①无实根,且②有实根 D .方程①无实根,且②无实根 【答案】B【解析】当方程①有实根,且②无实根时,22124,8a a ≥<,从而4222321816,4a a a =<=即方程③:2340x a x ++=无实根,选B.而A,D 由于不等式方向不一致,不可推;C 推出③有实根 【考点定位】不等式性质18、设(),n n n x y P 是直线21n x y n -=+(n *∈N )与圆222x y +=在第一象限的交点,则极限1lim 1nn ny x →∞-=-( )A .1-B .12- C .1 D .2 【答案】A三、解答题:本大题共6小题,共75分,解答应写出文字说明,证明过程或演算步骤。
2015年普通高等学校招生全国统一考试(上海卷)数学(理工农医类)
2015年普通高等学校招生全国统一考试(上海卷)数学(理工农医类)一㊁填空题:本大题共有14小题,满分56分,每个空格答对得4分,否则一律零分.1.设全集U =R ,若集合A ={1,2,3,4},B ={x 2ɤx ɤ3},则A ɘ∁U B = .2.若复数z 满足3z +z =1+i,其中i 为虚数单位,则z = .3.若线性方程组的增广矩阵为2 3 C 10 1 C 2[],解为x =3,y =5,{则C 1-C 2=.4.若正三棱柱的所有棱长均为a ,且其体积为163,则a = .5.抛物线y 2=2p x (p >0)上的动点Q 到焦点的距离的最小值为1,则p = .6.若圆锥的侧面积与过轴的截面面积之比为2π,则其母线与轴的夹角的大小为 .7.方程l o g 2(9x -1-5)=l o g 2(3x -1-2)+2的解为 .8.在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男㊁女教师都有,则不同的选取方式的种数为 (结果用数值表示).9.已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线C 1和C 2,若C 1的渐近线方程为y =ʃ3x ,则C 2的渐近线方程为.10.设f -1(x )为f (x )=2x -2+x 2,x ɪ[0,2]的反函数,则y =f (x )+f -1(x )的最大值为.11.在1+x +1x2015()10的展开式中,x 2项的系数为 (结果用数值表示).12.赌博有陷阱,某种赌博每局的规则是:赌客先在标记有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将这两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量ξ1和ξ2分别表示赌客在一局赌博中的赌金和奖金,则E ξ1-E ξ2= (元).13.已知函数f (x )=s i n x .若存在x 1,x 2, ,x m 满足0ɤx 1ɤx 2< <x m ɤ6π,且|f (x 1)-f (x 2)|+|f (x 2)-f (x 3)|+ +|f (x m -1)-f (x m )|=12(m ȡ2,m ɪN *),则m 的最小值为 .14.在锐角三角形A B C 中,t a n A =12,D 为边B C 上的点,әA B D 与әA C D 的面积分别为2和4,过D 作D E ʅA B 于E ,D F ʅA C 于F ,则D E ң㊃D F ң=.二㊁选择题:本大题共有4题,满分20分,每题有且只有一个正确答案,选对得5分,否则一律得零分.15.设z 1,z 2ɪC ,则 z 1㊁z 2中至少有一个数是虚数 是 z 1-z 2是虚数的( )A.充分非必要条件B .必要非充分条件C .充要条件 D.既非充分又非必要条件16.已知点A 的坐标为(43,1),将O A 绕坐标原点O 逆时针旋转π3至O B ,则点B 的纵坐标为( )A.332B .532C .112 D.13217.记方程①:x 2+a 1x +1=0,方程②:x 2+a 2x +2=0,方程③:x 2+a 3x +4=0,其中a 1,a 2,a 3是正实数,当a 1,a 2,a 3成等比数列时,下列选项中,能推出方程③无实根的是( )A.方程①有实根,且②有实根B .方程①有实根,且②无实根C .方程①无实根,且②有实根 D.方程①无实根,且②无实根18.设P n (x n ,y n )是直线2x -y =n n +1(n ɪN *)与圆x 2+y 2=2在第一象限的交点,则极限l i m n ңɕy n -1x n -1=( )A.-1B .-12C .1 D.2三㊁解答题:本大题共有5题,满分74分.解答下列各题必须在规定区域写出必要的步骤. 19.(本题满分12分)如图,在长方体A B C D-A1B1C1D1中,A A1=1,A B=A D=2,E,F分别是棱A B,B C的中点,证明A1,C1,F,E四点共面,并求直线C D1与平面A1C1F E所成的角的大小.(第19题)20.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.如图,A,B,C三地有直道相通,A B=5千米,A C=3千米,B C=4千米.现甲㊁乙警员同时从A地出发匀速前往B地,经过t小时,他们之间的距离为f(t)(单位:千米).甲的路线是A B,速度为5千米/小时,乙的路线是A C B,速度为8千米/小时.乙到达B地后在原地等待.设t=t1时,乙地达C地.(1)求t1现f(t1)的值;(2)已知警员的对讲机的有效通话距离是3千米.当t1ɤtɤ1时,求f(t)的表达式,并判断f(t)在[t1,1]上的最大值是否超过3?并说明理由.(第20题)21.(本题满分14分)本题共有2个小题,第1小题满分6分,第2小题满分8分.已知椭圆x2+2y2=1,过原点的两条直线l1和l2分别与椭圆交于点A,B和C,D.记得到的平行四边形A C B D的面积为S.(1)设A(x1,y1),C(x2,y2).用A,C的坐标表示点C到直线l1的距离,并证明S=2[x1y2-x2y1];(2)设l1与l2的斜率之积为-12,求面积S的值.22.(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知数列{a n}与{b n}满足a n+1-a n=2(b n+1-b n),nɪN*.(1)若b n=3n+5,且a1=1,求{a n}的通项公式;(2)设{a n}的第n0项是最大项,即a n0>a n(nɪN*).求证:{b n}的第n0项是最大项;(3)设a1=λ<0,b n=λn(nɪN*),求λ的取值范围,使得{a n}有最大值M与最小值m,且ɪ(-2,2).23.(本题满分18分)本题共有3个小题,第1小题满分4分.第2小题满分6分.第3小题满分8分.对于定义域R的函数g(x),若存在正常数T,使得c o s g(x)是以T为周期的函数,则称g(x)为余弦周期函数,且称T为其余弦周期,已知f(x)是以T为余弦周期的余弦周期函数,其值域为R,设f(x)单调递增,f(0)=0,f(T)=4π.(1)验证h(x)=x+s i n3是以6π为余弦周期的余弦周期函数;(2)设a<b,证明对任意cɪ[f(a),f(b)],存在x0ɪ[a,b],使得f(x0)=c;(3)证明 u0为方程c o s f(x) =1在[0,T]上的解 的充要条件是 U0+T为方程c o s f(x)=1在[T,2T]上的解 ,并证明对任意xɪ[0,T]都有f(x+T)=f(x)+f(T).。
2015年上海春季高考数学试卷
2015年上海市普通高等学校春季招生统一考试(暨上海市普通高中学业水平考试)数学试卷考生注意:1.本试卷两考合一,春季高考=学业水平考+附加题;春季高考,共36道试题,满分150分.考试时间130分钟(学业水平考,共29题,满分120分.考试时间90分钟;附加题共7题,满分30分.考试时间40分钟).2.本试卷分设试卷和答题纸.试卷包括试题与答题要求.作答必须涂(选择题)或写(非选择题)在答题纸上,在试卷上作答一律不得分.3.答卷前,务必用钢笔或圆珠笔在答题纸正面清楚的填写姓名、准考证号,并将核对后的条形码贴在指定位置上,在答题纸反面清楚地填写姓名.第I 卷一、填空题(本大题共有12题,满分36分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得零分.1.设全集{1,2,3}U =.若{1,2}A =,则U A =ð . 2.计算:1i i += (i 为虚数单位).3.函数sin(2)4y x π=+的最小正周期为 .4.计算:223lim 2n n n n→∞-=+ .5.以点(2,6)为圆心、1为半径的圆的标准方程为 .6.已知向量(1,3)a =r ,(,1)b m =-r.若a b ⊥r r ,则m = . 7.函数[]224,0,2y x x x =-+∈的值域是 .8.若线性方程组的增广矩阵为0201a b ⎛⎫ ⎪⎝⎭、解为21x y =⎧⎨=⎩,则a b += . 9.方程lg(21)lg 1x x ++=的解为 .10.在921x x ⎛⎫+ ⎪⎝⎭的二项展开式中,常数项的值为 . 11.用数字1、2、3、4、5组成无重复数字的三位数,其中奇数的个数为 (结果用数值表示).12.已知点(1,0)A ,直线:1l x =-,两个动圆均过A 且与l 相切,其圆心分别为1C 、2C .若动点M满足22122C M C C C A =+uuuu r uuuu r uuu r,则M 的轨迹方程为 .二、选择题(本大题共有12题,满分36分)每题有且只有一个正确答案,考生应在答题纸相应编号上,将代表答案的小方格涂黑,选对得3分,否则一律得零分. 13.若0a b <<,则下列不等式恒成立的是( ) (A )11a b>(B )a b ->(C )22a b > (D )33a b <14.函数()21y x x =≥的反函数为( )(A ))1y x =≥ (B ))1y x =≤- (C ))0y x =≥ (D ))0y x =≤ 15.不等式2301x x ->-的解集为( )(A )3,4⎛⎫-∞ ⎪⎝⎭(B )2,3⎛⎫-∞ ⎪⎝⎭ (C )()2,1,3⎛⎫-∞⋃+∞ ⎪⎝⎭ (D )2,13⎛⎫ ⎪⎝⎭16.下列函数中,是奇函数且在()0,+∞单调递增的为 ( ) (A )2y x =(B )13y x =(C )1y x -= (D )12y x-=17.直线3450x y --=的倾斜角为 ( )(A )3arctan 4 (B )3arctan 4π- (C )4arctan 3 (D )4arctan 3π-18.底面半径为1、母线长为2的圆锥的体积是 ( )(A )2π(B (C )23π (D )319.以点()3,0-和()3,0为焦点、长轴长为8的椭圆方程为( )(A )2211625x y += (B )221167x y += (C )2212516x y += (D )221716x y +=20.在复平面上,满足1z z i -=+(i 为虚数单位)的复数z 所对应的点的轨迹为( ) (A )椭圆 (B )圆 (C )线段 (D )直线 21.若无穷等差数列{}n a 的首项10a >,公差0d <,{}n a 的前n 项和为n S ,则( ) (A )n S 单调递减 (B )n S 单调递增 (C )n S 有最大值 (D )n S 有最小值22.已知0a >,0b >.若4a b +=,则( ) (A )22a b +有最小值 (B(C )11a b+有最大值(D23.组合数()12**22,,m m m n n n C C C n m m N n N --++≥≥∈∈恒等于( )(A )2m n C + (B )12m n C ++ (C )1m n C + (D )11m n C ++ 24.设集合{}21|10P x x ax =++>,{}22|20P x x ax =++>,{}21|0Q x x x b =++>,{}22|20Q x x x b =++>,其中,a b R ∈.下列说法正确的是( )(A )对任意a ,1P 是2P 的子集;对任意b ,1Q 不是2Q 的子集 (B )对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集 (C )存在a ,使得1P 不是2P 的子集;对任意b ,1Q 不是2Q 的子集 (D )存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集三、解答题(本大题共有8题,满分78分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. 25.(本题满分8分)如图,在正四棱柱1111ABCD A B C D -中,1AB =,1D B 和平面ABCD所成角的大小为1A26.(本题满分8分)已知a是实数,函数24()x axf xx++=是奇函数,求()f x在()0,+∞上的最小值及取到最小是时x的值.27.(本题满分8分)某船在海平面A处测得灯塔B在北偏东30︒方向,与A相距6.0海里.船由A向正北方向航行8.1海里达到C处,这时灯塔B与船相距多少海里(精确到0.1海里)?B在船的什么方向(精确到1︒)?28.(本题满分12分)本题共有2个小题,第1小题满分6分,第2小题满分6分.已知点1F 、2F 依次为双曲线()2222:10,0x y C a b a b-=>>的左、右焦点,126F F =,()10,B b -, ()20,B b .(1)若a =(3,4)d =-u r为方向向量的直线l 经过1B ,求2F 到l 的距离; (2)若在双曲线C 上存在点P ,使得122PB PB ⋅=-uuu r uuu r,求b 的取值范围.第II 卷一、选择题(本大题满分9分)本大题共有4题,每题有且只有一个正确答案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得3分,否则一律得0分. 1.对于集合A B 、,“A B ≠”是“A B A B ⊂≠I U ”的( )(A)充分非必要条件 (B )必要非充分条件 (C)充要条件 (D )既非充分又非必要条件2.对于任意实数a 、b ,2()a b kab -≥均成立,则实数k 的取值范围是( ) (A) {}4,0- (B )[]4,0- (C) ](0-∞, (D )][(40-∞-∞U ,,+)3.已知数列{}n a 满足413n n n n a a a a ++++=+(n N *∈),那么( )(A) {}n a 是等差数列 (B ){}21n a -是等差数列 (C) {}2n a 是等差数列 (D ){}3n a 是等差数列二、填空题(本大题满分9分)本大题共有3小题,考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得3分,否则一律得0分.4.关于x 的实系数一元二次方程220x px ++=的两个虚数根为1z 、2z ,若1z 、2z 在复平面上对应的点是经过原点的椭圆的两个焦点,则该椭圆的长轴长为 .5.已知圆心为O ,半径为1的圆上有三点A 、B 、C ,若7580OA OB OC ++=u u u r u u u r u u u r r,则BC =u u u r.6.函数()f x 与()g x 的图像拼成如图所示的“Z ”字形折线段ABOCD ,不含(0,1)A ,(1,1)B ,(0,0)O ,(1,1)C --,(0,1)D -五个点,若()f x 的图像关于原点对称的图形即为()g x 的图像,则其中一个函数的解析式可以为 .三、解答题(本大题满分12分)解答本题必须在答题纸相应编号的规定区域内写出必要的步骤. 7. 对于函数()f x 、()g x ,若存在函数()h x ,使得()()()f x g x h x =⋅,则称()f x 是()g x 的 “()h x 关联函数”。
2015上海理科数学试题及标准答案解析
2015年普通高等学校招生全国统一考试(上海卷)数学(理科)第Ⅰ卷(选择题 共50分)一、填空题(本大题共14小题,共56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分. (1)【2015年上海,理1】设全集U R =,若集合{}{}1,2,3,4,|23A B x x ==≤≤,则U A B =ð . 【答案】{}1,4【解析】根据题意,可得{}|32U B x x x =><或ð,故{}1,4U A B =ð.【点评】本题考查集合的交、并、补的混合运算,熟练掌握集合的交并补的运算规则是解本题的关键.本题考查了推理判断的能力.(2)【2015年上海,理2】若复数z 满足31i z z +=+,其中i 为虚数单位,则z = .【答案】11i 42+【解析】设()i ,z x y x y R =+∈,根据题意,有i z x y =-,可把31i z z +=+化简成33i i 1i x y x y ++-=+,对于系数相等可得出11,42x y ==,11i 42z ∴=+.【点评】本题考查了复数的运算法则、复数相等,属于基础题.(3)【2015年上海,理3】若线性方程组的增广矩阵为122301c c ⎛⎫ ⎪⎝⎭、解为35x y =⎧⎨=⎩,则12c c -= . 【答案】16【解析】根据增广矩阵的定义可以还原成方程组12230x y c y c +=⎧⎨+=⎩把35x y =⎧⎨=⎩代入,可得1221,5c c ==,1216c c ∴-=.【点评】本题主要考查增广矩阵的求解,根据条件建立方程组关系是解决本题的关键. (4)【2015年上海,理4】若正三棱柱的所有棱长均为a,且其体积为,则a = . 【答案】4【解析】根据正三棱柱的体积计算公式31=42V h S a a a =⋅⨯⨯===底.【点评】本题主要考查正棱柱的定义以及体积公式,属于基础题. (5)【2015年上海,理5】抛物线()220y px p =>上的动点Q 到焦点的距离的最小值为1,则p = .【答案】2【解析】根据抛物线的性质,我们知道当且仅当动点Q 运动到原点的时候,才与抛物线焦点的距离的最小,所以有min 1,22pQP p ==⇒=.【点评】本题考查抛物线的方程与性质,考查学生的计算能力,比较基础. (6)【2015年上海,理6】若圆锥的侧面积与过轴的截面积面积之比为2π,则其母线与轴的夹角的大小为 . 【答案】3π【解析】设这个圆锥的母线长为'h ,底面半径为r ,母线与轴的夹角为θ,所以'1=2S l h ⋅⋅侧,而过轴的截面是一个三角形,故122S r h =⋅⋅轴,有h ='122122l h S S r h π⋅⋅==⋅⋅侧轴,''2,h h h h r ⇒=,'sin 3r h πθθ=∴=. 【点评】本题考查的知识点是旋转体,其中根据已知求出圆锥的母线与轴的夹角的余弦值,是解答的关键.(7)【2015年上海,理7】方程()()1122log 95log 322x x ---=-+的解为 . 【答案】2【解析】由条件可得()111195032095432x x x x ----⎧->⎪⎪->⎨⎪-=-⎪⎩()()()2111134330,33310x x x x ----⇒-⋅+=--=,1133,2,31,1x x x x --=⇒==⇒=,所以1x =或2x =,检验后只有2x =符合.【点评】本题考查了对数的运算性质及指数运算性质及其方程的解法,考查了计算能力,属于基础题. (8)【2015年上海,理8】在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方法的种数为 .(结果用数值表示) 【答案】120【解析】解法一:这里男女老师都要有的话,可以分男1、女4,男2、女3和男3、女4,所以有142332363636456015120C C C C C C ++=++=. 解法二:根据题意,报名的有3名男老师和6名女教师,在9名老师中选取5人,参加义务献血,有C 95=126种;其中只有女教师的有C 65=6种情况;则男、女教师都有的选取方式的种数为126﹣6=120种.【点评】本题考查排列、组合的运用,本题适宜用排除法(间接法),可以避免分类讨论,简化计算. (9)【2015年上海,理9】已知点P 和Q 的横坐标相同,P 的纵坐标是Q 的纵坐标的2倍,P 和Q 的轨迹分别为双曲线1C 和2C ,若1C 的渐近线方程为y =,则2C 的渐近线方程为 .【答案】y = 【解析】设点P 和Q 的坐标为(),x y 、()00,x y ,则有002x x y y =⎧⎨=⎩,又因为1C 的渐近线方程为y =,故设1C 的方程为223x y λ-=,把P 点坐标代入,可得22034x y λ-=,令0λ=,20y ⇒±=即为曲线2C 的渐近线方程,即y x =. 【点评】本题考查双曲线的方程与性质,考查学生的计算能力,比较基础.(10)【2015年上海,理10】设()1f x -为()[]22,0,22x xf x x -=+∈的反函数,则()()1y f x f x -=+的最大值为 . 【答案】4【解析】通过分析,我们可得函数()222x x f x -=+在定义域[]0,2上是单调递增的,且值域为124⎡⎤⎢⎥⎣⎦,,由反函数的定义域是原函数的值域,反函数的值域是原函数的定义域以及反函数与原函数的单调性相同,可得()1f x -的定义域为124⎡⎤⎢⎥⎣⎦,,值域为[]0,2,又原函数与反函数的公共定义域为124⎡⎤⎢⎥⎣⎦,,故()()1m a x m a x m a x 224y f f -=+=. 【点评】本题考查了互为反函数的两个函数图象间的关系,考查了函数的单调性,属中档题.(11)【2015年上海,理11】在10201511x x ⎛⎫++ ⎪⎝⎭的展开式中,2x 项的系数为 .(结果用数值表示)【答案】45【解析】在10201511x x ⎛⎫++ ⎪⎝⎭中要得到2x 项的系数,肯定不能含有20151x 项,故只有()()010100102015111C x x x ⎛⎫+=+ ⎪⎝⎭,而对于()101x +,2x 项的系数为28210145C x =. 【点评】本题考本题考查了二项式系数的性质,关键是对二项展开式通项的记忆与运用,是基础题.(12)【2015年上海,理12】赌博有陷阱.某种赌博每局的规则是:赌客现在标有1,2,3,4,5的卡片中随机摸取一张,将卡片上的数字作为其赌金(单位:元);随后放回该卡片,再随机摸取两张,将两张卡片上数字之差的绝对值的1.4倍作为其奖金(单位:元).若随机变量1ξ和2ξ分别表示赌客在每一局赌博中的赌金与奖金,则12E E ξξ-= .(元) 【答案】0.2【解析】由题可知,()()()()222222255544332211.4,2.8, 4.2, 5.610101010P P P P C C C ξξξξ===========,所以,ξ和的分布列分别为:()121123453, 1.40.4 2.80.3 4.20.2 5.60.1 2.85E E ξξ=++++==⨯+⨯+⨯+⨯=,即有120.2E E ξξ-=.【点评】本题主要考查离散型随机变量的分布列和期望的计算,根据概率的公式分别进行计算是解决本题的关键. (13)【2015年上海,理13】已知函数()sin f x x =,若12,,,m x x x 存在满足1206m x x x π≤<<<≤,且()()()()()()()*12231122,m m f x f x f x f x f x f x m m N --+-++-=≥∈,则m 的最小值为 .【答案】8【解析】对任意的,i j x x ,()()()()max min 2i j f x f x f x f x -≤-=,欲使m 取最小值,尽可能多的让()1,2,,i x i m =取最值点,考虑到1206m x x x π≤<<<≤,()()()()()()()*12231122,m m f x f x f x f x f x f x m m N --+-++-=≥∈,按照右图所示取值可以满足条件,所以m 的最小值为8. 【点评】本题主要考察正弦函数的图像,数形结合是本题关键.(14)【2015年上海,理14】在锐角ABC ∆中,1tan 2A =,D 为BC 边上的一点,ABD ∆与ACD ∆面积分别为2和4,过D 作DE AB ⊥于E ,DF AC ⊥于F ,则DE DF ⋅= .【答案】1615-【解析】由题可知,cos cos EDF A ∠=-,122ABD S AB DE ∆==,142ACD S AC DF ∆==,1sin 62ABC S AB AC A ==,所以4DE AB =,8DF AC =,12sin AB AC A = 4832cos cos cos DE DF DE DF EDF A A AB AC AB AC⋅=⋅∠=-=-,化简可得28442tan 16sin cos sin 23331tan 15A DE DF A A A A ⋅=-=-=-=-+. 【点评】本题考查平面向量的数量积运算,考查了数形结合的解题思想方法,考查了三角函数的化简与求值,是中档题. 二、选择题(本大题共有4题,满分20分)考生应在答题纸相应编号位置填涂,每题只有一个正确选项,选对得5分,否则一律得零分. (15)【2015年上海,理15】设12,z z C ∈,则“12,z z 中至少有一个数是虚数”是“12z z -是虚数”的( )(A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 【答案】B【解析】充分性不成立,如11i z =+,22i z =+,121z z -=-不是虚数;必要性成立,采用反证法,若12,z z 全不是虚数,即12,z z 均为实数,则12z z -比为实数,所以12z z -是虚数,则12,z z 中至少有一个数是虚数,故选B .【点评】本题主要考查充分条件和必要条件的判断,根据复数的有关概念进行判断是解决本题的关键. (16)【2015年上海,理16】已知点A的坐标为(),将OA 绕坐标原点O 逆时针转3π至OB ,则B 的纵坐 标为( )(A(B(C )112 (D )132【答案】D【解析】以O 为极点,x 轴正半轴为极轴建立极坐标系,设(),A ρθ,则,3B πρθ⎛⎫+ ⎪⎝⎭,且s i n 1ρθ=,cos ρθ=,B的纵坐标为:1113sin sin cos 3222πρθρθθ⎛⎫+=+=+ ⎪⎝⎭,故选D . 【点评】本题主要考查三角函数值的计算,根据三角函数的定义以及两角和差的正弦公式是解决本题的关键. (17)【2015年上海,理17】记方程①:2110x a x ++=,方程②:2220x a x ++=,方程③:2340x a x ++=,其中123,,a a a 是正实数.当123,,a a a 成等比数列时,下列选项中,能推出方程③无实根的是( ) (A )方程①有实根,且②有实根 (B )方程①有实根,且②无实根(C )方程①无实根,且②有实根 (D )方程①无实根,且②无实根 【答案】B【解析】方程③无实根,则233160a ∆=-<,又2114a ∆=-,2228a ∆=-,当123,,a a a 成等比数列时,2213a a a =,即有2231a a a =,由30∆<得22223116160a a a ⎛⎫-=-< ⎪⎝⎭,即422116a a <,当方程①有实根,且②无实根时,214a >,228a <,可以推出42216416416a a <<⨯<,故选B .【点评】本题主要考查方程根存在性与判别式△之间的关系,结合等比数列的定义和性质判断判别式△的取值关系是解决本题的关键.(18)【2015年上海,理18】设(),n n n P x y 是直线()*21nx y n N n -=∈+与圆222x y +=在第一象限的交点,则极 限1lim 1n n n y x →∞-=-( ) (A )1- (B )12- (C )1 (D )2【答案】A【解析】采用极限思想求解当n →∞时,直线()*21nx y n N n -=∈+趋向于21x y -=,直线与圆的交点趋向于()1,1P ,1lim 1n n n y x →∞--可以理解为过点()1,1P 所作的圆的切线的斜率k ,设切线方程为()11y k x -=-,结合d r ==1k =-,即1lim11n n ny x →∞-=--,故选A .【点评】本题考查了极限思想、圆的切线的斜率、斜率计算公式,考查了推理能力与计算能力,属于中档题. 三、解答题(本题共5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤. (19)【2015年上海,理19】(本小题满分12分)如图,在长方体中1111ABCD A B C D -,11AA =,2AB AD ==,E 、F 分别是棱AB 、BC 的中点,证明1A 、1C 、F 、E 四点 共面,并求直线1CD 与平面11A C FE 所成角的大小.解:由于E 、F 分别是棱AB 、BC 的中点,所以//EF AC ,又11//AC AC ,所以11//EF AC ,由公理三的推论,可知1A 、1C 、F 、E 四点共面.连接1A F 、1A B 由于11//CD A B ,所 以直线1CD 与平面11A C FE 所成角的大小与1A B 与平面11A C FE 所成角的大小相等.设1A B与平面11A C FE 所成角为θ,点B 到平面1A EF 的距离为d ,则1sin dA Bθ=,在三棱锥1A EFB -中,体积1A EFB B A EF V V --=,所以111133EFB A EF S AA S d ∆∆⋅=⋅,即11EFB A EF S AA d S ∆∆⋅=,结合题中的数据,可以计算出12EFB S ∆=,1AF A B ==1A F EF ==1A F =1A EF S ∆=,所以d =,所以1sin d A B θ==,即θ=,所以直线1CD 与平面11A C FE所成角的大小为. 【点评】本题主要考查利用空间直角坐标系求出二面角的方法,属高考常考题型;本题也可采用空间向量解决.(20)【2015年上海,理20】(本小题满分14分)如图,A 、B 、C 三地有直道相通,5AB =千米,3AC =千米,4BC =千米,现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为()f t (单位:千米).甲的路线是AB ,速度是5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后原地等待,设1t t =时,乙到达C 地. (Ⅰ)求1t 与()1f t 的值;(Ⅱ)已知警员的对讲机的有效通话距离为3千米.当11t t ≤≤时,求()f t 的表达式,并判断()f t 在[]1,1t 上的最大值是否超过3?说明理由.解:(Ⅰ)由题中条件可知138t =小时,此时甲与A 点距离为158千米,由余弦定理可知()2211515336992388564f t ⎛⎫=+-⨯⨯⨯=⎡⎤ ⎪⎣⎦⎝⎭,所以()18f t =. ……6分 (Ⅱ)易知,当78t =时乙到达B 位置,所以①当3788t ≤≤时,()()()()()2222147855278552542185f t t t t t t t =-+--⋅-⋅-⋅=-+⎡⎤⎣⎦; ②当718t ≤≤时,()55f t t =-;综合①②,()13788755,18t f t t t ≤≤=⎨⎪-<≤⎪⎩当321825t ≤≤时,()f t单调递减,此时函数的值域为3,58⎡⎢⎣⎦;当217258t ≤≤时,()f t 单调递增,此时函数的值域为35,58⎡⎤⎢⎥⎣⎦; 当718t ≤≤时,()f t 单调递减,此时函数的值域为50,8⎡⎤⎢⎥⎣⎦; 由此,函数()f t 在[]1,1t上的值域为⎡⎢⎣⎦,而29<⎝⎭3<, 所以()f t 在[]1,1t 上的最大值没有超过3. ……14分【点评】本题考查解三角形的实际应用,涉及余弦定理和分段函数,属中档题. (21)【2015年上海,理21】(本小题满分14分)已知椭圆2221x y +=,过原点的两条直线1l 和2l 分别与椭圆交于点A B 、和C D 、,记得到的平行四边形ACBD 的面积为S .(Ⅰ)设()11,A x y ,()22,C x y .用A C 、坐标表示点C 到直线1l 的距离,并证明12212S x y x y =-; (Ⅱ)设1l 与2l 的斜率之积为12-,求面积S 的值.解:(Ⅰ)由题易知A C 、两点的横坐标不能同时为零,下面分两种情况:①当A C 、两点的横坐标有一个为零时,不妨设10x =,20x ≠不失一般性,此时1l 与y 轴重合,C 到直线1l 的距离为2x ,平行四边形ACBD 的面积为212S x y =;②当A C 、两点的横坐标均不为0时,即1l 和2l 的斜率均存在时,设1l 的方程为y kx =,其中11y k x =2221y kxx y =⎧⎨+=⎩可得()222110k x +-=,所以弦长AB ===点C 到直线1l的距离d =所以四边形ACBD 的面积为12212S AB d x y x y =⋅=-综合①②点C 到直线1l,平行四边形ACBD 的面积为12212x y x y -. ……6分(Ⅱ)解法一:易知两直线的斜率分别为:111l y k x =,222l y k x =,由1l 与2l 的斜率之积为12-可得:12122x x y y =-, 又221112x y =-,222212x y =-,所以()()2222222121212122124x x y y y y y y =-=-++,即221212y y +=,()()()()222222222222122112211221211212242412124S x y x y x y x y x y x y y y y y y y ⎡⎤=-=+-=-+-+⎣⎦化简得()2221242S y y =+=. ……14分 解法二:设直线1l 的斜率为k ,则直线2l 的斜率为12k -,设直线1l 的方程为y kx =,联立方程组2221y kx x y =⎧⎨+=⎩,消去y 解得x =1x =1y =,同理可得2x=,2y =,所以12212S x y x y =-=. ……14分 【点评】本题考查直线与圆锥曲线的综合应用,考查方程思想、等价转化思想与综合运算能力,属于难题. (22)【2015年上海,理22】(本小题满分16分)已知数列与满足.(Ⅰ)若,且,求的通项公式;(Ⅱ)设的第项是最大项,即,求证:的第项是最大项;(Ⅲ)设,求的取值范围,使得有最大值与最小值,且. 解:(Ⅰ)由可得:,又,所以数列为以1为首项,6为公差的等差数列,即有. ……4分 (Ⅱ)由可得:将上述式子累加可得,当时,也成立,所以,由此可得,由于为常数,所以当的第项是最大项时,最大,即的第项是最大项. ……10分(Ⅲ)由(Ⅱ)可知,即,结合可得,分三种情况进行讨论:①当时,则为偶数时,为奇数时,即有,,此时,由此,此情况不符合条件;{}n a {}n b ()*112,N n n n n a a b b n ++-=-∈35n b n =+11a ={}n a {}n a 0n ()0*N n n a a n ≥∈{}n b 0n ()*10,N n n a b n λλ=<=∈λ{}n a M m ()2,2Mm∈-35n b n =+()()*1126N n n n n a a b b n ++-=-=∈11a ={}n a ()*65N n a n n =-∈()*112,N n n n n a a b b n ++-=-∈()21212a a b b -=-()32322a a b b -=-()()1122n n n n a a b b n ---=-≥()()1122n n a a b b n -=-≥1n =()()*112N n n a a b b n -=-∈111122n n b a b a =+-1112b a -{}n a 0n 111122n a b a +-{}n b 0n ()()*112N n n a a b b n -=-∈1122n n a b a b =+-1,n n a b λλ==2n n a λλ=⋅-1λ=-n 3n a =n 1n a =-3M =1m =-()32,2Mm=-∉-②当时,则为偶数时,,由于,所以,从而随着增 大值减小,此时,,无最小值(无限靠近0);为奇数时,,此时,由于,所以,从而随着增大值减小,结合,可知随着增大值增大,此时()minn λλ=,无最大值(无限靠近0);由此可知数列{}n a 的最大值22M λλ=-,最小值2m λλλ=-=,2221M m λλλλ-==-,又()2,2M m ∈-,所以21221210λλλ-<⎧⎪->-⎨⎪-<<⎩,解之102λ-<<;③当1λ<-时,则n 为偶数时,()nn λλ=-,由于1λ<-,所以()1,λ-∈+∞,从而n λ随着n 增大值增大,此时0n λ>,()2minn λλ=,无最大值(无限靠近+∞);n 为奇数时,0n λ<,此时()nn λλ=--,由于1λ<-,所以1λ->,从而()nλ-随着n 增大值增大,结合()nn λλ=--,可知随着n 增大n λ值减小,此时()maxn λλ=,无最小值(无限靠近-∞);由此可知,在1λ<-条件下,数列{}n a 无最值,显然不符合条件;综上,符合条件的实数λ的取值范围为1,02⎛⎫- ⎪⎝⎭. ……16分【点评】本题考查了数列递推式,考查了等差关系的确定,考查了数列的函数特性,训练了累加法求数列的通项公式,对(Ⅲ)的求解运用了极限思想方法,是中档题.(23)【2015年上海,理23】(本小题满分18分)对于定义域为的函数,若存在正常数,使得是以为周期的函数,则称为余弦周期函数,且称为其余弦周期.已知是以为余弦周期的余弦周期函数,其值域为,设单调递增,()00f =,()4f T π=.(Ⅰ)验证是以为余弦周期的余弦周期函数; (Ⅱ)设,证明对任意,存在,使得;(Ⅲ)证明:“为方程在上的解”的充要条件是“为方程在上的解”,并证明对任意都有.解:(Ⅰ)()cosh cos sin 3x x x ⎛⎫=+ ⎪⎝⎭,()()6cosh 6cos 6sin cos 6sin cos sin cosh 333x x x x x x x x ππππ+⎛⎫⎛⎫⎛⎫+=++=++=+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以()sin 3xh x x =+是以6π为余弦周期的余弦周期函数. ……4分(Ⅱ)当()c f a =或者()c f b =时,由于()f x 单调递增,所以存在0x a =或0x b =使得()0f x c =成立;当()()(),c f a f b ∈,构造函数()()p x f x c =-,则()0p a <,()0p b >,从而()()0p a p b ⋅<,所以存在()0,x a b ∈,使得()00p x =,即存在[]0,x a b ∈,使得()0f x c =成立,证毕. ……10分(Ⅲ)先证必要性:0u 为方程cos ()1f x =在[]0,T 上的解,即0cos ()1f u =,由[]00,u T ∈可得[]0,2u T T T +∈,由于函数()f x是以T 为余弦周期的余弦周期函数,所以00()cos cos ()1f u T f u +==,即0u T +为方程cos ()1f x =在[],2T T 上的解;再证充分性:0u T +为方程cos ()1f x =在[],2T T 上的解,即0c 1s ()o f u T +=,由[]0,2u T T T +∈可得[]00,u T ∈,由于函数()f x 是以T 为余弦周期的余弦周期函数,所以00cos cos ()()1f u f u T =+=,即0u 为方程cos ()1f x =在[]0,T 上的解;下证:对任意[]0,x T ∈都有()()()f x T f x f T +=+.()1,0λ∈-n ()nn λλ=-()1,0λ∈-()0,1λ-∈n λn 0n λ>()2maxn λλ=n 0n λ<()nn λλ=--()1,0λ∈-()0,1λ-∈()nλ-n ()nn λλ=--n n λR ()g x T ()cos g x T ()g x T ()f x T R ()f x ()sin3xh x x =+6πa b <()(),c f a f b ∈⎡⎤⎣⎦[]0,x a b ∈()0f x c =0u cos ()1f x =[]0,T 0u T +cos ()1f x =[],2T T []0,x T ∈()()()f x T f x f T +=+由于函数()f x 是以T 为余弦周期的余弦周期函数,所以cos ()cos ()f x f x T =+,即有cos ()cos ()0f x f x T -+=, 所以()()()()2sin sin022f x f x T f x f x T ++-+-=,即()()2f x f x T k π++=或()()()Z 2f x f x T k k π-+=∈,所以()()2f x T f x k π++=或()()()2Z f x T k f x k π+=+∈.①若()()2f x T f x k π++=,由()00f =,()4f T π=,可得2k =. 所以()()4f x T f x π++=,这与函数()f x 为增函数矛盾,舍去; ②若()()()2Z f x T k f x k π+=+∈,由()00f =,()4f T π=,可得2k =, 所以()()4f x T f x π+=+,即()()()f x T f x f T +=+.由此,对任意[]0,x T ∈都有()()()f x T f x f T +=+. ……18分【点评】考查对余弦周期函数定义的理解,充分条件的概念,方程的解的概念,知道由()cos 1f x =能得出()2,f x kx k Z =∈,以及构造方程解题的方法,在证明最后一问时能运用第二问的结论.。
新课标2015年三校联考数学试题(文科)试卷及答案
2015年校联考数学试题(文科)第I 卷(选择题 60分)一、选择题 (本大题共12小题, 每小题5分, 共60分. 在每小题给出的四个选项中, 有且只有一项是符合题目要求的)1.已知集合{11}A x x =-≤≤,{02}B x x =≤≤,则A B =A. [1,0]-B. [1,2]-C. [0,1]D. (,1][2,)-∞+∞2.已知向量a=(1,-2),b=(x ,4),且a ∥b ,,则a ⋅b= A .5 B . -5 C .10 D .-103.若复数z 满足(1)1i z i -=+,则z i += A .0 B .1 C .2 D .34.已知△ABC 中,内角A ,B ,C 的对边分别为,,a b c ,222a b c bc =+-,4bc =,则△ABC 的 面积为12D. 25.执行如图所示的程序框图,若输入n 的值为8,则输出S 的值为A.4B.8C.10D.126.设a ,b 是两条不同的直线,α,β是两个不同的平面,则下列命题中不正确的一个是A .若a ⊥α,b ∥α,则a ⊥bB .若a⊥α,a ∥b ,β⊂b 则αβ⊥C .若a ⊥α,b ⊥β,α∥β,则a ∥bD .若a ∥α,a ∥β则α∥β7. 已知,x y 满足约束条件1323x x y x y ≥⎧⎪+≤⎨⎪-≤⎩,若2z x y =+的最大值和最小值分别为,a b ,则a b += A.7B.6C.5D.48.正项等比数列{}n a 满足:3212a a a =+,若存在,m n a a ,使得2116m n a a a ⋅=,则19m n+的最小值为A.2B.16C.83 D.329.已知函数()x x f x +=2,()x x x g +=3log ,()xx x h 1-=的零点依次为a ,b ,c ,则A .a <b <c B.c <b <a C.c <a <b D.b <a <c10.一个几何体的三视图如图所示,它的一条体对角线的两个端点为 A 、B ,则经过这个几何体的面,A 、B 间的最短路程是A .B..74 D .11.已知点P 在双曲线()222210,0x y a b a b-=>>上,12,F F 是这条双曲线的两个焦点,∠F 1PF 2=90°,且12F PF ∆的三条边长成等差数列,则此双曲线的离心率是D.512.对定义在[0,1]上,并且同时满足以下两个条件的函数()f x 称为M 函数: (i) 对任意的[0,1]x ∈,恒有()0f x ≥;(ii) 当12120,0,1x x x x +≥≥≤时,总有1212()()()f x f x f x x ++≥成立. 则下列三个函数中不是..M 函数的个数有① 2()f x x =② 2()1f x x =+ ③ ()21xf x =- A. 0 B. 1C. 2D. 3第II 卷(非选择题 90分)本卷包括必考题和选考题两部分。
2015三校生数学模拟试卷2
数学试卷2一、单项选择题(本大题共12个小题,每小题2分,共24分。
) 1. 已知集合A={}12≤-x x ,B={}2>x x ,则A ∩B=( )A. {}32≤<x xB. {}21<≤x xC. {}2>x xD. {}3≥x x 2、一元二次不等式x 2-3x+2<0的解集为( )。
A .}0{≠x x B.}21{<<x x C. }21{-<<-x x D.}0{>x x 3、下列函数既是奇函数又是增函数 ( ) A .y=5x B.y=x 3 C.y=-x 2D. y=-x 21 4、已知在等差数列中,a 1=20,a n =54,s n =999,则n 等于( ) A .27 B.26 C.25 D. 24 5、已知3a=2,3b=5,则3a+b等于( )。
A .7 B.10 C.25 D.32 6、设(1,),(1,1),ax b →→==若 b a ⊥ ,则x 为( )。
A .1 B. -1 C. -1或1 D. 无法确定 7、一箱子内有形状大小完全相同的红色球4个,白色球3个,现任取一个小球,则取到红色小球的概率为( ) A 、41 B 、31 C 、127 D 、748、如图所示1,在平行四边形ABCD 中,向量,,b AD a AB ==则向量b a +等于( )A 、B 、C 、CAD 、AC 9、下列命题不正确的是( )A 、如果一条直线垂直于一个平面内的任何一条直线,则这条直线和这个平面垂直B 、如果一条直线和一个平面垂直,则这条直线垂直于这个平面内所有直线C 、如果一条直线和平面内的两条平行直线都垂直,则这条直线和这个平面垂直D 、如果一条直线和平面内的两条相交直线都垂直,则这条直线和这个平面垂直 10、过点(2,1)且与直线y=x+1垂直的直线方程是( )。
A .x+y-1=0 B. x-y+1=0 C. x-y-1=0 D. x-y+2=0 11、已知圆x 2+y 2-4x+2y+F=0半径为2,则F 等于( )A 、F=9B 、F=1C 、F=7D 、F=3 12、已知,0tan ,0sin ><θθ 则θ2sin 1-不等于( )。
2015年普通高等学校招生全国统一考试数学文试题精品解析(上海卷)
更多优质资料请关注公众号:诗酒叙华年2015年高考上海卷文数试题解析(精编版)(解析版)一.填空题(本大题共14小题,满分56分)考生应在答题纸相应编号的空格内直接填写结果,每个空格填对得4分,否则一律零分)1.函数x x f 2sin 31)(-=的最小正周期为. 【答案】π2.设全集R =U .若集合}4,3,2,1{=A ,}32|{<≤=x x B ,则=)(B C A U I . 【答案】}4,1{【解析】因为}32|{<≤=x x B ,所以2|{<=x x B C U 或}3≥x ,又因为}4,3,2,1{=A , 所以}4,1{)(=B C A U I . 【考点定位】集合的运算.3.若复数z 满足i z z +=+13,其中i 是虚数单位,则=z . 【答案】i 2141+ 【解析】设),(R ∈+=b a bi a z ,则bi a -=,因为i z z +=+13,所以i bi a bi a +=-++1)(3,即i bi a +=+124,所以⎩⎨⎧==1214b a ,即⎪⎪⎩⎪⎪⎨⎧==2141b a ,所以i z2141+=.【考点定位】复数的概念,复数的运算.4.设)(1xf-为12)(+=xxxf的反函数,则=-)2(1f .【答案】32-5.若线性方程组的增广矩阵为⎝⎛213⎪⎪⎭⎫21cc解为⎩⎨⎧==53yx,则=-21cc . 【答案】166.若正三棱柱的所有棱长均为a,且其体积为316,则=a .【答案】4【解析】依题意,3162321=⨯⨯⨯⨯aaa,解得4=a.【考点定位】等边三角形的性质,正三棱柱的性质.更多优质资料请关注公众号:诗酒叙华年更多优质资料请关注公众号:诗酒叙华年7.抛物线)0(22>=p px y 上的动点Q 到焦点的距离的最小值为1,则=p. 【答案】2【解析】依题意,点Q 为坐标原点,所以12=p,即2=p . 【考点定位】抛物线的性质,最值.8. 方程2)23(log )59(log 1212+-=---x x 的解为 .【答案】2【考点定位】对数方程.【名师点睛】利用24log 2=,)0,0(log log log >>=+n m mn n m a a a 将已知方程变形同底数2的两个对数式相等,再根据真数相等得到关于x 的指数方程,再利用换元法求解.与对数有关的问题,应注意对数的真数大于零.9.若y x ,满足⎪⎩⎪⎨⎧≥≤+≥-020y y x y x ,则目标函数y x z 2+=的最大值为 .【答案】3更多优质资料请关注公众号:诗酒叙华年【考点定位】不等式组表示的平面区域,简单的线性规划.10. 在报名的3名男教师和6名女教师中,选取5人参加义务献血,要求男、女教师都有,则不同的选取方式的种数为 (结果用数值表示). 【答案】120【考点定位】组合,分类计数原理.11.在62)12(xx的二项式中,常数项等于 (结果用数值表示).更多优质资料请关注公众号:诗酒叙华年【答案】240【解析】由r r r r rrrx C xxC T 366626612)1()2(---+⋅⋅=⋅⋅=,令036=-r ,所以2=r ,所以常数项为2402426=⋅C .【考点定位】二项式定理.【名师点睛】求二项展开式中的指定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等).12.已知双曲线1C 、2C 的顶点重合,1C 的方程为1422=-y x ,若2C 的一条渐近线的斜率是1C 的一条渐近线的斜率的2倍,则2C 的方程为 .【答案】14422=-y x【考点定位】双曲线的性质,直线的斜率.13.已知平面向量、、满足⊥,且}3,2,1{|}||,||,{|=,则||++的最大值是 . 【答案】53+更多优质资料请关注公众号:诗酒叙华年【考点定位】平向量的模,向量垂直.【名师点睛】本题考查分析转化能力.设向量a 、b 、c的坐标,用坐标表示c b a ++,利用辅助角公式求三角函数的最值.即可求得||c b a ++的最大值.14.已知函数x x f sin )(=.若存在1x ,2x ,⋅⋅⋅,m x 满足π6021≤<⋅⋅⋅<<≤m x x x ,且12|)()(||)()(||)()(|13221=-+⋅⋅⋅+-+--m m x f x f x f x f x f x f ),2(*∈≥N m m ,则m 的最小值为. 【答案】8更多优质资料请关注公众号:诗酒叙华年二.选择题(本大题共4小题,满分20分)每题有且只有一个正确答案案,考生应在答题纸的相应编号上,将代表答案的小方格涂黑,选对得5分,否则一律零分.15. 设1z 、C ∈2z ,则“1z 、2z 均为实数”是“21z z -是实数”的( ). A. 充分非必要条件 B.必要非充分条件 C.充要条件 D.既非充分又非必要条件 【答案】A【解析】设),(11111R ∈+=b a i b a z ,),(22222R ∈+=b a i b a z ,若1z 、2z 均为实数,则021==b b ,所以21212121)(a a i b b a a z z -=-+-=-是实数;【考点定位】复数的概念,充分条件、必要条件的判定.16. 下列不等式中,与不等式23282<+++x x x 解集相同的是( ).A. 2)32)(8(2<+++x x x B. )32(282++<+x x xC. 823212+<++x x x D.218322>+++x x x 【答案】B更多优质资料请关注公众号:诗酒叙华年17. 已知点 A 的坐标为)1,34(,将OA 绕坐标原点O 逆时针旋转3π至OB ,则点B 的纵坐标为( ). A.233 B. 235 C.211 D. 213 【答案】D因为491)34(2222=+=+n m ,所以491692722=+n n ,所以213=n 或213-=n (舍去),所以点B 的纵坐标为213. 【考点定位】三角函数的定义,和角的正切公式,两点间距离公式.18. 设),(n n n y x P 是直线)(12*∈+=-N n n ny x 与圆222=+y x 在第一象限的交点,则极限=--∞→11limn n n x y ( ).A. 1-B. 21-C. 1D. 2 【答案】A更多优质资料请关注公众号:诗酒叙华年三.解答题(本大题共5题,满分74分)解答下列各题必须在答题纸相应编号的规定区域内写出必要的步骤.19.(本题满分12分)如图,圆锥的顶点为P ,底面的一条直径为AB ,C 为半圆弧AB 的中点,E 为劣弧CB 的中点.已知2=PO ,1=OA ,求三棱锥AOC P -的体积,并求异面直线PA 与OE 所成角的大小.【答案】1010arccos更多优质资料请关注公众号:诗酒叙华年【考点定位】圆锥的性质,异面直线的夹角.20.(本题满分14分)本题共2小题,第1小题6分,第2小题8分. 已知函数xax x f 1)(2+=,其中a 为实数. (1)根据a 的不同取值,判断函数)(x f 的奇偶性,并说明理由; (2)若)3,1(∈a ,判断函数)(x f 在]2,1[上的单调性,并说明理由. 【答案】(1))(x f 是非奇非偶函数;(2)函数)(x f 在]2,1[上单调递增. 【解析】(1)当0=a 时,xx f 1)(=,显然是奇函数; 当0≠a 时,1)1(+=a f ,1)1(-=-a f ,)1()1(-≠f f 且0)1()1(≠-+f f , 所以此时)(x f 是非奇非偶函数.更多优质资料请关注公众号:诗酒叙华年【考点定位】函数的奇偶性、单调性. 21.(本小题14分)本题共2小题,第1小题6分,第2小题8分.如图,C B A ,,三地有直道相通,5=AB 千米,3=AC 千米,4=BC 千米.现甲、乙两警员同时从A 地出发匀速前往B 地,经过t 小时,他们之间的距离为)(t f (单位:千米).甲的路线是AB ,速度为5千米/小时,乙的路线是ACB ,速度为8千米/小时.乙到达B 地后原地等待.设1t t =时乙到达C 地.(1)求1t 与)(1t f 的值;(2)已知警员的对讲机的有效通话距离是3千米.当11≤≤t t 时,求)(t f 的表达式,并判断)(t f 在]1,[1t 上得最大值是否超过3?说明理由.更多优质资料请关注公众号:诗酒叙华年【答案】(1)h 83,8413千米;(2)超过了3千米. 【解析】(1)h v AC t 831==乙,设此时甲运动到点P ,则8151==t v AP 甲千米, 所以=⋅⋅-+==A AP AC AP AC PC t f cos 2)(22184135381532)815(322=⨯⨯⨯-+=千米.【考点定位】余弦定理的实际运用,函数的值域.【名师点睛】分段函数是一类重要的函数模型.解决分段函数问题,关键抓住在不同的段内研究问题, 分段函数的值域,先求各段函数的值域,再求并集.22.(本题满分14分)本题共3个小题,第1小题4分,第2小题6分,第3小题6分.更多优质资料请关注公众号:诗酒叙华年已知椭圆1222=+yx ,过原点的两条直线1l 和2l 分别于椭圆交于A 、B 和C 、D ,设AOC ∆的面积为S .(1)设),(11y x A ,),(22y x C ,用A 、C 的坐标表示点C 到直线1l 的距离,并证明||21221y x y x S -=;(2)设kx y l =:1,)33,33(C ,31=S ,求k 的值; (3)设1l 与2l 的斜率之积为m ,求m 的值,使得无论1l 与2l 如何变动,面积S 保持不变.【答案】(1)详见解析;(2)1-=k 或51-=k ;(3)21-=m .由(1)得2111221216|1|3|3333|21||21kk kx x y x y x S +-=-=-= 由题意知31216|1|32=+-k k , 解得1-=k 或51-=k . (3)设kx y l =:1,则x k m y l =:2,设),(11y x A ,),(22y x C , 由⎩⎨⎧=+=1222y x kxy ,的221211kx +=, 同理2222222)(211m k k k m x +=+=,更多优质资料请关注公众号:诗酒叙华年由(1)知,||||||21||21||2121212111221x x k m k kx x k mx x y x y x S ⋅-⋅=⋅-⋅=-= 22222212||mk k m k +⋅+-=, 整理得0)18()2164()18(22222242=-++++-m S k m m S S k S ,由题意知S 与k 无关, 则⎪⎩⎪⎨⎧=++=-021*********m m S S S ,解得⎪⎪⎩⎪⎪⎨⎧-==21812m S . 所以21-=m . 【考点定位】椭圆的性质,直线与椭圆的位置关系.23.(本题满分16分)本题共3小题.第1小题4分,第2小题6分,第3小题6分.已知数列}{n a 与}{n b 满足)(211n n n n b b a a -=-++,*∈N n .(1)若53+=n b n ,且11=a ,求数列}{n a 的通项公式;(2)设}{n a 的第0n 项是最大项,即)N (0*∈≥n a a n n ,求证:数列}{n b 的第0n 项是最大项;(3)设130aλ=<,nnbλ=)N(*∈n,求λ的取值范围,使得对任意m,*∈Nn,0na≠,且1(,6)6mnaa∈.【答案】(1)56-=nan;(2)详见解析;(3))0,4(-.(3)因为nnbλ=,所以)(211nnnnaaλλ-=-++,当2≥n时,112211)()()(aaaaaaaannnnn+-+⋅⋅⋅+-+-=---λλλλλλλ3)(2(2)(22211+-+⋅⋅⋅+-+-=---nnnnλλ+=n2,更多优质资料请关注公众号:诗酒叙华年更多优质资料请关注公众号:诗酒叙华年由指数函数的单调性知,}{n a 的最大值为0222<+=λλa ,最小值为λ31=a , 由题意,n m a a 的最大值及最小值分别是12321+=λa a 及31212+=λa a , 由61312>+λ及6123<+λ,解得041<<-λ, 综上所述,λ的取值范围是)0,41(-. 【考点定位】数列的递推公式,等差数列的性质,常数列,数列的最大项,指数函数的单调性.。
上海市十三校2015届高三第一次联考数学(理)试题word版含答案
高三学科测试 数学试题(理科)考斯时间 120分钟 满分150分一、填空题:(本大题56分)本大题共有14题,考生应在答题纸上相应编号的空格内直接填写结果,每个空格填对得4分,否则一律得零分。
1、已知集合1{|0},{|12}1x A x B x x x -=<=-<+,则B C A = 2、椅子tan 2α=-,则sin 3cos sin cos αααα-=+ 3、在复平面中,复数2(1)(3i i i++是虚数单位)对应的点在第 象限 4、函数()2sin 3f x x =+的最小正周期是5、已知函数()22(2)2x x f x f x x ⎧≥=⎨+<⎩,则2(log 3)f =6、已知()351log log 2014f x a a b x =++,若12015()20142014f =,则(2014)f =7、满足2arccos()arccos(2)x x >的实数x 的取值范围是 8、设n a是(1(2,3,4,)n n = 的展开式中x 的一次项的系数,若11(1)n n n n a b a +++=,则nb 的最小值是 9、若存在整数x 使221x x mx<成立,则实数m 的取值范围是10、某班班会准备从甲、乙等7名学生中选4名学生发言,要求甲、乙至少有一人参加,那么不同的发言顺序的种数为 (用数字作答)11、已知函数()2(0)f x x k x k k =-+->,若当34x ≤≤时,()f x 能取到最小值,则实数k 的取值范围是 12、已知数列{}n a 中,1112,1n n a a a +==-+,若k 是5的倍数,且2k a =,则k = 13、如果一个正整数能表示为连个连续偶数的平方差,那么称这个正整数为“神秘数”,则区间[]1,200内的所有“神秘数”之和为14、已知0m >,12m ≠,直线1:l y m =与函数2log y x =的图象从左至右相交于点,A B ,直线24:1l y m =+与函数2log y x =的图象从左至右相交于点,C D ,记线段AC 和BD 在x 轴上的投影程长度分别为,a b ,当m 变化时,ba的最小值是二、填空题(本大题满分20分)本大题共有4题,每题只有一个正确答案,考生应在答题纸的相应编号上,Ian 高代表答案的小方格涂黑,选对得5分,否则一律得零分。
2015考研数学三真题及解析
1
n
1 e
1,所以根据正项
n
n!
级数的比值判别法
收敛,所以选 C.
nn
n1
1 1 1 1
(5) 设矩阵 A 1 2
a
,
b
d
,若集合
{1, 2},则线性方程组 Ax
b 有无穷多
1 4 a2 d 2
解的充分必要条件为
(A) a , d
(B) a , d
(C) a , d
n1 ln n
n1 ln n n1 ln n
(1)n
1
(1)n 1
收敛,
发散,所以根据级数收敛定义知,
发散;D 项为正项
n1 ln n
n1 ln n
n1 ln n
(n 1)!
n 1
(n 1) 级数,因为 lim
n n!
(n 1)! nn lim n n! (n 1)n1
lim
n
n
n
a ,所以选项(A)和选项(C)中的叙述都是正确的.
另外,若
lim
n
x2n
lim
n
x2n1
a
,由上述充分必要条件知
x2n a n
,
lnimn 0
,
x2n a n
,
lim
n
ቤተ መጻሕፍቲ ባይዱ
n
0
,设
n
kk
, ,
n n
2k 2k
1
从而有
xn a n
,
lim
n
n
0
,再由上述的充要条件得
lim
n
xn
a .所以选项(B)中的叙述也是正确的.下面举反倒来说明(D)中的叙述是不正确的.
2015年普通高等学校招生全国统一考试数学(文)上海卷
2015年普通⾼等学校招⽣全国统⼀考试数学(⽂)上海卷2015年普通⾼等学校招⽣全国统⼀考试数学(⽂)上海卷⼀、填空题(共14⼩题;共70分)1. 函数f x=1?3sin2x的最⼩正周期为.2. 设全集U=R.若集合A=1,2,3,4,B=x2≤x≤3,则A∩?U B=.3. 若复数z满⾜3z+z=1+i,其中i为虚数单位,则z=.4. 设f?1x为f x=x2x+1的反函数,则f?12=.5. 若线性⽅程组的增⼴矩阵为23c101c2解为x=3,y=5,则c1?c2=.6. 若正三棱柱的所有棱长均为a,且其体积为163,则a=.7. 抛物线y2=2px p>0上的动点Q到焦点的距离的最⼩值为1,则p=.8. ⽅程log29x?1?5=log23x?1?2+2的解为.9. 若x,y满⾜x?y≥0,x+y≤2,y≥0,则⽬标函数f=x+2y的最⼤值为.10. 在报名的3名男教师和6名⼥教师中,选取5⼈参加义务献⾎,要求男、⼥教师都有,则不同的选取⽅式的种数为(结果⽤数值表⽰).11. 在2x+1x 6的⼆项展开式中,常数项等于(结果⽤数值表⽰).12. 已知双曲线C1,C2的顶点重合,C1的⽅程为x24y2=1.若C2的⼀条渐近线的斜率是C1的⼀条渐近线的斜率的2倍,则C2的⽅程为.13. 已知平⾯向量a,b,c满⾜a⊥b,且a,b,c=1,2,3,则a+b+c的最⼤值是.14. 已知函数f x=sin x.若存在x1,x2,?,x m满⾜0≤x1f x2+f x2?f x3+?+f x m?1?f x m=12(m≥2,m∈N?),则m的最⼩值为.⼆、选择题(共4⼩题;共20分)15. 设z1,z2∈C,则“ z1,z2均为实数”是“ z1?z2是实数”的A. 充分⾮必要条件B. 必要⾮充分条件C. 充要条件D. 既⾮充分⼜⾮必要条件16. 下列不等式中,与不等式x+8x2+2x+3<2解集相同的是A. x+8x2+2x+3<2B. x+8<2x2+2x+3C. 1x+2x+3<2x+8D. x2+2x+3x+8>1217. 已知点A的坐标为43,1,将OA绕坐标原点O逆时针旋转π3⾄OB,则点B的纵坐标为 .A. 332B. 532C. 112D. 13218. 设P n x n,y n是直线2x?y=nn+1n∈N?与圆x2+y2=2在第⼀象限的交点,则极限lim n→∞y n?1x n?1=A. ?1B. ?12C. 1D. 2三、解答题(共5⼩题;共65分)19. 如图,圆锥的顶点为P,底⾯圆⼼为O,底⾯的⼀条直径为AB,C为半圆弧AB的中点,E为劣弧CB的中点,已知PO=2,OA=1,求三棱锥P?AOC的体积,并求异⾯直线PA与OE 所成⾓的余弦值.20. 已知函数f x=ax2+1x,其中a为常数.(1)根据a的不同取值,判断函数f x的奇偶性,并说明理由;(2)若a∈1,3,判断函数f x在1,2上的单调性,并说明理由.21. 如图,O,P,Q三地有直道相通,OP=3千⽶,PQ=4千⽶,OQ=5千⽶.现甲、⼄两警员同时从O地出发匀速前往Q地,经过t⼩时,他们之间的距离为f t(单位:千⽶).甲的路线是OQ,速度为5千⽶/⼩时,⼄的路线是OPQ,速度为8千⽶/⼩时.⼄到达Q地后在原地等待.设t=t1时,⼄到达P地;t=t2时,⼄到达Q地.(1)求t1与f t1的值;(2)已知警员的对讲机的有效通话距离是3千⽶.当t1≤t≤t2时,求f t的表达式,并判断f t在t1,t2上的最⼤值是否超过3 ?说明理由.22. ⼰知椭圆x2+2y2=1,过原点的两条直线l1和l2分别与椭圆交于点A,B和C,D.记△AOC的⾯积为S.(1)设A x1,y1,C x2,y2.⽤A,C的坐标表⽰点C到直线l1的距离,并证明S= 12x1y2?x2y1;(2)设l1:y=kx,C33,33,S=13,求k的值.(3)设l1与l2的斜率之积为m,求m的值,使得⽆论l1与l2如何变动,⾯积S保持不变.23. 已知数列a n与b n满⾜a n+1?a n=2bn+1?b n,n∈N?.(1)若b n=3n+5,且a1=1,求a n的通项公式;(2)设a n的第n0项是最⼤项,即a n≥a n(n∈N?),求证:b n的第n0项是最⼤项;(3)设a1=3λ<0,b n=λn(n∈N?),求λ的取值范围,使得对任意m,n∈N?,a n≠0,且a ma n ∈16,6.答案第⼀部分1. π2. 1,43. 14+12i4. ?235. 166. 47. 28. 29. 310. 12011. 24012. x24?y24=113. 3+【解析】当c与向量a+b⽅向相同时,a+b+c有最⼤值.当c=1时,a+b+c的最⼤值为1+22+32=1+13.当c=2时,a+b+c的最⼤值为2+2+32=2+10.当c=3时,a+b+c的最⼤值为3+2+22=3+5.平⽅后⽐较它们的⼤⼩知,a+b+c的最⼤值为3+5.14. 8【解析】⾸先由正弦函数的性质知f x i?f x i+1≤2,i=1,2,?,m?1,所以12≤2m?1,得到m≥7.若m=7,意味着等号同时取到,故x i+1?x i≥π,i=1,2,?,6,从⽽有x7?x1≥6π,⽽此时只能有x1=0,故f x2?f x1≤1<2,⽭盾,所以m>7.当x1=0,x8=π,x2=π2,x3=3π2,x4=5π2,?,x7=11π2时,满⾜要求,故m的最⼩值为8,第⼆部分15. A16. B 17. D 【解析】设B x,y,OA的倾斜⾓为α,且OA=7,所以sinα=1 7,cosα=437,所以OB的倾斜⾓为α+π3,所以sin α+π3=y7,解得y=132.18. A 【解析】当n→+∞时,直线2x?y=nn+1→2x?y=1与圆x2+y2=2在第⼀象限的交点⽆限靠近点1,1,⽽y n?1x n?1是P n x n,y n与点1,1之间的斜率,其值⽆限接近于圆x2+y2=2在点1,1处切线的斜率,可求斜率为?1,所以limn→∞y n?1x n?1=?1.第三部分19. V P?AOC=13×12×2=13.因为AC∥OE,所以∠PAC为异⾯直线PA与OE所成的⾓或其补⾓.由PO=2,OA=OC=1,得PA=PC=5,AC=2.在△PAC中,由余弦定理得cos∠PAC=1010,故异⾯直线PA与OE所成⾓的余弦值为1010.20. (1)f x的定义域为x x≠0,x∈R,关于原点对称.f?x=a?x2+1x =ax21x,当a=0时,f?x=?f x,故f x为奇函数,当a≠0时,由f1=a+1,f?1=a?1,知f?1≠f1,且f?1≠?f1,f x既不是奇函数也不是偶函数.(2)设1≤x1x2?ax12?1x1=x2?x1 a x1+x2?1x1x2,由1≤x10,2x1x24,⼜1x1x2>0,从⽽f x2?f x1>0,即f x2>f x1,故当a∈1,3时,f x在1,2上单调递增.21. (1)t1=38.记⼄到P时甲所在地为R,则OR=158千⽶.在△OPR中,PR2=OP2+OR2?2OP?OR cos∠O,所以f t1=PR=341(千⽶).(2)t2=78.如图建⽴平⾯直⾓坐标系,设经过t⼩时,甲,⼄所在位置分别为M,N.当t∈38,78时,M3t,4t,N3,8t?3,f t=3t?32+?4t+32=25t2?42t+18,f t在38,78上的最⼤值是f38=3418,不超过3.22. (1)直线l1:y1x?x1y=0,点C到l1的距离d=1212 x1+y1因为OA= x1212,所以S=12 OA ?d=12x1y2?x2y1.(2)由y=kx,x2+2y2=1.得x12=11+2k2.由(1)得2x1y2?x2y1=13x1?3kx1=3 k?1 61+2k2由题意,得3 k?61+2k2=13,解得k=?15或?1.(3)设l1:y=kx,则l2:y=m kx,设A x1,y1,C x2,y2.由y=kx,x2+2y2=1,得x12=11+2k2,同理x22=11+2mk 2=k2k2+2m2.由(1),得S=1x1y2?x2y1=1x1?mx2x2kx1=12k2?mkx1x2=k2?m21+2k2? k2+2m2整理得8S2?1k4+4S2+16S2m2+2m k2+8S2?1m2=0.由题意知,S与k⽆关,则8S2?1=0,4S2+16S2m2+2m=0,得S2=1 ,m=?1 .所以m=?12.23. (1)由b n+1?b n=3,得a n+1?a n=6,所以a n是⾸项为1,公差为6的等差数列,故a n的通项公式为a n=6n?5,n∈N?.。