数字图像处理期末考试

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

课程考查答题册

得分:

学号

班级

姓名

考查课目数字图像处理

铜陵学院电气工程学院

彩色图像灰度化

目录

摘要 (3)

第一章引言 (4)

第二章理论及方案 (5)

2.1加权平均法 (5)

2.2平均值法 (5)

2.3最大值法 (5)

第三章具体过程 (6)

第四章结果与分析 (7)

第五章结论 (11)

参考文献 (12)

摘要

图像灰度化是指只含亮度信息, 不含色彩信息的图像,广泛应用于图像模式识别、图像分割、图像增强等数字图像处理的各个领域。本次设计通过加权平均法、平均值法和最大值法这三种方法(方法),实现了彩色图像的灰度化处理(目的、结果),并对它们进行了对比分析,在加深对数字图像处理课本知识理解的基础上,学会运用已学的知识设计彩色图像灰度化的处理方法并对结果进行分析(意义)。

关键词:加权平均法;平均值法;最大值法;彩色图像;灰度化

第一章引言

数字图像处理就是采用一定的算法对数字图像进行处理,以获得人眼视觉或者某种接受系统所需要的图像处理过程。图像处理的基础是数字,主要任务是进行各种算法设计和算法实现。

目前,图像处理技术已经在许多不同的应用领域中得到重视,并取得了巨大成就。根据应用领域要求的不同,数字图像处理技术可以分为许多分支技术。重要的分支技术有:

(1)图像变换。图像阵列很大时,若直接在空域中处理,计算量将很大。为此,通常采用各种图像变换方法,如傅立叶变换、沃尔什变换、离散余弦变换、小波变换等间接处理技术,将空域处理转换到变换域处理,这样可以有效地减少计算量,提高处理性能。

(2)图像增强与复原。主要目的是增强图像中的有用信心,削弱干扰和噪声,使图像更加清晰,或者将其转换为更适合人或机器分析的形式。图像增强并不是要求真实地反映原始图像,而图像复原则要求尽量消除或减少获取图像过程中所产生的某些退化,使图像能够反映原始图像的真实面貌。

(3)图像压缩编码。在满足一定保真度条件下,对图像信息进行编码,可以压缩图像信息量,简化图像的边式,从而大大压缩图像描述的数据量,以便存储和传输;图像压缩在不同应用背景下可以采用不失真压缩和失真压缩。

(4)图像分割。图像分割是数字图像处理中的关键技术之一,是为了将图像中有意义的特征提取出来。它是进一步进行图像识别、分析和理解的基础。图像的有意义特征包括图像的边缘、区域等。

(5)图像分析。对图像中的不同对象进行分割、分类、识别、描述和解释。

(6)图像识别。图像识别属于模式识别的范畴,起主要内容是在图像经过某些预处理(增强、复原、压缩)后,进行图像分割和提取,从而进行判别分类。图像分类常用的经典识别方法有统计模式分类和句法模式分类。近年来,新发展起来的模糊模式识别和人工神经网络模式分类在图像识别中越来越受到重视。

(7)图像隐藏。是指媒体信息的相互隐藏,常见的有数字水印和图像的信息伪装等。

第二章理论及方案

将彩色图像转化成为灰度图像的过程称为图像的灰度化处理。彩色图像中的每个像素的颜色有R、G、B三个分量决定,而每个分量有255个中值可取,这样一个像素点可以有1600多万(255×255×255)的颜色的变化范围。而灰度图像是R、G、B三个分量相同的一种特殊的彩色图像,其中一个像素点的变化范围为255种,所以在数字图像处理中一般先将各种格式的图像转变成灰度图像以使后续的图像的计算量变得少一些。灰度图像的描述与彩色图像一样仍然反映了整幅图像的整体和局部的色度和亮度等级的分布和特征。

在RGB模型中,如果R=G=B时,则彩色表示一种灰度颜色,其中R=G=B 的值叫做灰度值。因此,灰度图像每个像素只需一个字节存放灰度值(又称强度值、亮度值),灰度范围为0-255。图像的灰度化处理,一般有以下三种设计方案:2.1加权平均法

根据重要性及其它指标,将三个分量以不同的权值进行加权平均。由于人眼对绿色的敏感最高,对蓝色敏感最低,因此,对RGB三分量进行加权平均能得到较合理的灰度图像。

2.2平均值法

求出每个像素点的R、G、B三个分量的平均值,然后将彩色图像中的这个平均值赋予给这个像素的三个分量。

2.3最大值法

将彩色图像中的三分量亮度的最大值作为灰度图的灰度值。

分别采用了以上三种设计方案,即加权平均法、平均值法和最大值法,实现了彩色图像的灰度化处理。

第三章具体过程

采用三种方法,实现对彩色图像的灰度化处理。下面分别对其作具体分析如下:

方法一:加权平均法

根据重要性及其它指标,将R、G、B三个分量以不同的权值进行加权平均。由于人眼对绿色的敏感度最高,对蓝色敏感度最低。因此,我们可以按下式(1-1),对RGB三分量进行加权平均能得到较合理的灰度图像。

f(i,j)=0.30R(i,j)+0.59G(i,j)+0.11B(i,j)) (1-1)方法二:平均值法

将彩色图像中的R、G、B三个分量的亮度求简单的平均值,将得到均值作为灰度值输出而得到灰度图。其表达式见下式(1-2):

f(i,j)=(R(i,j)+G(i,j)+B(i,j)) /3 (1-2)方法三:最大值法

将彩色图像中的R、G、B三个分量中亮度的最大值作为灰度图的灰度值。其表达式见下式(1-3):

f(i,j)=max(R(i,j),G(i,j),B(i,j)) (1-3)

第四章结果与分析

对应如上三种方法,对此图灰度化可分别得到如图1, 2和3。

图1 采用加权平均法的灰度图

图2 简单平均法之灰度图像

图3 最大值法之灰度图像

通过上面4副图片可发现,以三种方法得到的处理结果并不完全相同,这是由于不同的处理方法对于灰度值的选取不同,其转化是依据亮度方程f(i,j)=0.30R(i,j)+0.59G(i,j)+0.11B(i,j))来实现的,即依据人眼对不同颜色的敏感度不同,对RGB分量以不同系数的加权平均,得到较为合理的灰度化结果。而采

相关文档
最新文档