管壳式换热器各部件名称

合集下载

换热设备第2讲-管板计算

换热设备第2讲-管板计算

管壳式换热器简图1-管子;2-封头;3-壳体;4-接管;5-管板;6-折流板管板的设计管板基本情况•••管板基本情况管板基本情况管板强度分析的三种基本假设•••管板结构简化模型1管板结构简化模型2管板结构简化模型3荷、放置在弹性基础上的受管孔均匀削弱的当量圆平板GB151《管壳式换热器》中管板设计的基本考虑••••黄克智院士和管板设计规范黄克智院士和管板设计规范••••黄克智院士和管板设计规范•••黄克智院士和管板设计规范•“全国科学大会奖”••黄克智院士和管板设计规范黄克智院士和管板设计规范••••••管板的设计思路-1• 1 管板的弹性分析变形协调条件管板内力与变形分析管板的设计思路-2• 2 危险工况的确定由于换热器运行时,不能保证管程与壳程压力同时作用,在计算管板应力或厚度时,要考虑以下四种危险工况:a) 只有壳程压力Pt,管程压力Pt=0,不考虑温差b) 只有壳程压力Ps,管程压力Pt=0,考虑温差,正温差比负温差危险,分别为管子与壳体的线膨胀系数分别为管子与壳体的平均壁温为换热器装配时的温度()()00θθαθθα−>−s s t t t αs αt θs θ0θ管板的设计思路-2• 2 危险工况的确定c) 只有管程压力Pt,壳程压力Ps=0,不考虑温差d) 只有管程压力Pt,壳程压力Ps=0,考虑温差,负温差比正温差危险,()()00θθαθθα−<−s s t t管板的设计思路-3 3 管板应力的校核径向应力随半径变化曲线管板的设计思路-4 3 管板应力的调整工程中实际做法-1借助压力容器设计软件管板设计的辅助软件管板的计算十分繁杂,尽管GB151提供了便于工程应用的计算式和图表,但手算工作量很大,为此,我国已开发了包括管壳式换热器在内的化工设备强度计算软件,SW6,包括了管板的设计与校核。

SW6-1998 V2.0 《过程设备强度计算软件包》及PVCAD《计算机辅助设计软件包》压力容器设计计算软件包•SW6《过程设备强度计算软件包》,以下简称SW6-98。

热交换器原理与设计第2章 管壳式热交换器

热交换器原理与设计第2章 管壳式热交换器
浮头式热交换器中,由于安装浮头法兰需要,圆筒内有一 圈较大没有排列管子的间隙,使部分流体由此间隙短路,使 主流速度及换热系数下降。而旁路流体未经换热就达出口, 与主流混合必使流体出口温度达不到预期数值。挡管和旁路 挡板就是为了防止流体短路而设立的构件。
☆挡管是两端堵死的管子,安置在相应于分程隔板槽后面的 位置上,每根挡管占据一根换热管的位置,但不穿过管板, 用点焊的方法固定于折流板上。通常每隔3~4排管子安排一 根挡管,但不应设置在折流板缺口处,也可用带定距管的拉 杆来代替挡管。
优点:结构简单,制造成本低,规格范围广,工程中应用广泛。 缺点:壳侧不便清洗,只能采用化学方法清洗,检修困难,对较脏
或有腐蚀性介质不能走壳程。当壳体与换热管温差很大时, 可设置单波或多波膨胀节减小温差应力。
管壳式换热器结构名称
单程管壳式换热器
1 —外壳,2—管束,3、4—接管,5—封头 6—管板,7—折流板
图2.25 折流板的几何关系
2.2.4 进出口连接管直径的计算
进出口连接管直径的计算仍用连续性方程, 经简化后计算公式为:
D 4M1.13M
πρw
ρw
2.3 管壳式热交换器的传热计算
1) 选用经验数据:根据经验或参考资料选用工艺条 件相仿、设备类型类似的传热系数作为设计依据。 如附录 A。 2) 实验测定:实验测定传热系数比较可靠,不但可 为设计提供依据,而且可以了解设备的性能。但实 验数值一般只能在与使用条件相同的情况下应用。
焊在换热管上)。
图2.23 防冲板的形式
a) 内导流筒 图2.24 导流筒的结构
b) 外导流筒
★导流筒
❖ 在立式换热器壳程中,为使气、液介质更均匀地流入管间, 防止流体对进口处管束段的冲刷,而采用导流筒结构。

管壳式换热器结构介绍

管壳式换热器结构介绍

后封头
L型后封头:和A型前封头相同 M型后封头:和B型前封头相同 N型后封头:和N型前封头相同 U型:U型管束,管束可移动,壳侧容易清洗;热膨胀处理优秀,经济无法兰; 缺点是管侧无法清洗,更换管束困难,弯头部位容易冲刷损伤, P型封头和W型封头已经被淘汰,不在使用, S型封头:其尺寸特点是其后封头要比壳体的直径大,优点是可以解决换热 器设计过程中的两个问题,一是可以消除换热器的热应力,二是换热器的管
造遵循标准:国外TEMAASME国内GB151、GB150
换热器封头选取原则
1、管壳侧是否需要清洗; 2、是否需要移动管束; 3、是否需要考虑热膨胀; 前封头类型:A、B、C、D、N 后封头类型:L、M、N、P、S、T、W 后封头又分为固定式、浮头式以及U型管,相对于固定式,浮头式造价更高、 需要更大的壳径、低的换热效果由于泄漏流C的存在,优点则是一端具有自 由度可以处理好热膨胀问题,
温度,
5、设备结构的选择
对于一定的工艺条件,首先应确定设备的形式, 例如选择固定管板形式还是浮头形式等,参
螺纹管性能特点
在管子类型中,螺纹管属于管外扩展表面的类型,在普通换热管外壁轧制成 螺纹状的低翅片,用以增加外侧的传热面积,螺纹管表面积比光管可扩展 1.6-2.7倍,与光管相比,当管外流速一样时,壳程传热热阻可以缩小相应的倍 数,而管内流体因管径的减小,则压力降会略有增大,螺纹管比较适宜于壳
K型壳体:主要用于管程热介质,壳侧蒸发的工况,在废热回收条件下使用,
X型壳体:冷热流体属于错流流动,其优点是压降非常小,当采用其他壳体 发生振动,且通过调整换热器参数无法消除该振动时可以使用此壳体形式,
其不足之处是流体分布不均匀,X型壳体并不经常使用,
在化工工艺手册中,I型壳体类型可EDR软件中的不是同一种壳体,其形式见 I1,它的使用方式仅有一种搭配,就是BIU,U型管换热器,

管壳式换热器

管壳式换热器

第十七章管壳式换热器(shellandtubeheatexchange)本章重点讲解内容:(1)熟悉管壳式换热器的整体结构及其类型;(2)熟悉主要零部件的作用及适用场合;(3)熟悉膨胀节的功能及其设置条件。

第一节总体结构管壳式换热器又称列管式换热器,是一种通用的标准换热设备。

它具有结构简单、坚固耐用、造价低廉、用材广泛、清洗方便、适应性强等优点,应用最为广泛,在换热设备中占据主导地位。

管壳式换热器是把换热管束与管板连接后,再用筒体与管箱包起来,形成两个独立的空间。

管内的通道及与其相贯通的管箱称为管程(tube-side);管外的通道及与其相贯通的部分称为壳程(shell-side)。

一种流体在管内流动,而另一种流体在壳与管束之间从管外表面流过,为了保证壳程流体能够横向流过管束,以形成较高的传热速率,在外壳上装有许多挡板。

以下结合不同类型的管壳式换热器介绍其相应的总体结构。

1、固定管板换热器其由壳体、管束、封头、管板、折流挡板、接管等部件组成。

结构特点为:两块管板分别焊于壳体的两端,管束两端固定在管板上。

换热管束可做成单程、双程或多程。

它适用于壳体与管子温差小的场合。

图1固定管板换热器结构示意图优点:结构简单、紧凑。

在相同的壳体直径内,排管数最多,旁路最少;每根换热管都可以进行更换,且管内清洗方便。

缺点:壳程不能进行机械清洗;当换热管与壳体的温差较大(大于50°C)时产生温差应力,需在壳体上设置膨胀节,因而壳程压力受膨胀节强度的限制不能太高。

固定管板式换热器适用于壳方流体清洁且不易结垢,两流体温差不大或温差较大但壳程压力不高的场合。

2、浮头式换热器浮头式换热器适用于壳体和管束壁温差较大或壳程介质易结垢的场合。

结构特点是两端管板之一不与壳体固定连接,可在壳体内沿轴向自由伸缩,称为浮头。

图2浮头式换热器结构示意图优点:当换热管与壳体有温差存在,壳体或换热管膨胀时,互不约束,不会产生温差应力;管束可从壳体内抽出,便于管内和管间的清洗。

管式换热器组成

管式换热器组成

管式换热器组成管式换热器是一种常见的换热设备,通常用于工业生产过程中的热能转移。

管式换热器由多个组件和部件组成,每个组件和部件都有各自的功能和作用。

下面将详细介绍管式换热器的组成。

1. 管束管束是管式换热器的核心部件,由许多平行的管组成。

在管束内,热媒流体通过内径小、长度相等的管,被散热或吸热,在管壳外的冷、热介质再将热量传出或吸入。

管束的材质通常是金属,如铜、钢、不锈钢等,以保证其能承受高温和高压的环境。

2. 管板管板是管束的支撑部件,起到支撑、固定管束的作用。

管束的两端分别设有进出口管,通过管板与外部的热媒相连接。

常见的管板类型包括固定式和泛定式两种,分别适用于不同的流体压力和温度。

3. 壳体壳体是管束的外壳,用于隔离管束与环境。

壳体的材质通常为铁制或不锈钢制,以确保其具有足够的耐用性和耐腐蚀性。

壳体的结构也有多种形式,如衬板分隔壳体、单壳体、双壳体等。

4. 密封管式换热器的设计中通常有两种密封:管束与管板之间的密封和管束与壳体之间的密封。

为保证管式换热器长期稳定运行,密封件材质应该具有优异的耐温、耐腐蚀和耐压能力。

5. 内部配件在管束内部,还需要安装一些辅助配件,如内弯管、外弯管、管子和隔板等。

这些配件的作用是增加流体的流动阻力,强制热媒在管束内部多次穿行,以增强换热效果。

此外,这些配件还可以增加管束的强度和稳定性。

在管式换热器的运行中,还需要一些外部配件来保证其正常运行。

常见的外部配件包括水面控制器、流量计、压力表等。

这些设备可以检测、调节和控制流体的流量、压力和温度,进一步保证管式换热器的高效运行。

总之,管式换热器的组成由多个部分组成,每个部分都有各自的作用。

采用优质的材料和配件,设计合理的结构,可以保证管式换热器具有高效、稳定、安全的性能表现。

管壳式热交换器(PPT课件)

管壳式热交换器(PPT课件)

管外纵流条件下,管外传热系数为光管的1.6倍.
传递热量相同,泵功率相同,取代光管,节约材 料30%-50%
螺旋槽

主要用于强化管内气体或液体的传热,强化管内液
体的沸腾或管内外蒸气的冷凝,管内传热系数为光管 传热系数的1.5-2.0倍;管外传热系数为光管传热系数 的1.5倍.
缩放管
波纹管


波纹管优点
(4)填料函式换热器
填料函式换热器 1.纵向隔板;2.浮动管板;3.活套法兰;4.部分剪切环;5.填 料压盖;6.填料;7.填料函
填料函式密封
缺点:填料处易泄漏。 优点:结构简单,加工制造方便,造价低,管内和管
间清洗方便 适用场合:4MPa 以下,且不适用于易挥发、易燃、易 爆、有毒及贵重介质,使用温度受填料的物性限制。

带膨胀节的固定管板式换热器 图7-3 带补偿器的固定管板式换热器
(2) U形管式换热器
U形管式换热器 1.中间挡板;2.U形换热管;3.排气口;4.防冲板;5.分程隔板
U形管式换热器
U型管式换热器 图7-6 U形管式换热器 优点:结构简单,价格便宜,承受能力强,不会产生热应力。 缺点:布板少,管板利用率低,管子坏时不易更换。 适用场合:特别适用于管内走清洁而不易结垢的高温、高压、 腐蚀性大的物料。
第二章 管壳式热交换器
间壁式热交换器

管式热交换器
管壳式、套管式、螺旋管式等

板式热交换器


延伸表面热交换器
蓄热式热交换器
管壳式换热器
2.1 管壳式换热器的分类
基本类型 固定管板式换热器
U形管式换热器 浮头式换热器 填料函式换热器
(1)固定管板式换热器

管壳式换热器

管壳式换热器
卧式换热器、冷凝器和再沸器,当壳程是气、液相共存或液体中 带有固体的物料时,宜用垂直切口。
弓形折流板的排列
弓形折流板尺寸:缺口大小(高度h)和板间距B
管壳式换热器的类型、标准与结构
缺口大小:按切去弓形弦高占壳体内径百分比(h/Di)来确定
单相换热:h/Di=(20-25)% 壳程蒸发:h/Di=45% 壳程冷凝:h/Di=(25-45)%。
等边三角形法
同心圆法
正方形法
管壳式换热器的类型、标准与结构
等边三角形排列:传热性能好,但流动阻力大; 同心圆排列:紧凑,布管均匀,但制造和装配比较困难;
正方形排列:清洗方便,流动阻力小,但传热性能差。
组合排列:用于多管程换热器中,每一程都采用等边三角形排列,而 在各程相邻管排间,为便于安装隔板,则采用正方形排列。 转角排列:(1)流体流动方向与三角形一边平行的转角等边三角形排 列;(2)流体的流动方向与正方形一条对角线垂直的转角正方形排列
管壳式换热器
管壳式换热器的类型、标准与结构
1) 固定管板式换热器
结构:将管子两端固定在位于壳体两端的固定管板上,管板与 壳体固定在一起。
特点:
(1)结构比较简单、重量轻,成本低,在壳程程数相同的条件 下可排的管数多; (2)壳程不能检修和清洗,因此,宜于不易结垢和清洁的流体 换热; (3)当管束与壳体的温差太大而产生不同的热膨胀时,常会使 管子与管板的接口脱开,从而发生流体的泄漏。
安装:焊接在管箱上,在管板上设分程隔板槽,槽的宽度、深度
及拐角处的倒角等均有具体规定。
管壳式换热器的类型、标准与结构
常见管板分程布置
管壳式换热器的类型、标准与结构
折流板和支持板
作用:(1)使流体横掠管束,增大传热系数;(2)支撑管束;

管壳式换热器设计参数的选择

管壳式换热器设计参数的选择

管壳式换热器设计参数的选择摘要:文章探讨了管壳式换热器设计过程中管箱、壳体、管束、折流板和防冲板等参数的选择,提出了对设计过程中常见问题的解决方案,可以为此类换热器的设计提供参考。

关键词:管壳式换热器,管箱,壳体,管束,折流板,防冲板,设计Parameters Determine in Shell-Tube Heat Exchanger DesigningZhou Hai-ge*, SUN Ai-jun(China Textile Industry Engineering Institute, Beijing 100037)Abstract: Parameters determine of tube box, shell, bundle, baffle and impingement in shell-tube heat exchanger designing is discussed in this article. Propose the solution to ordinary question in designing. It is can be the reference for this type exchanger designing.Keywords: shell-tube heat exchanger, tube box, shell, bundle, baffle, impingement, design引言管壳式换热器是石化行业中应用最广泛的间壁式传热型换热器,适用范围从真空到超高压(超过100MPa),从低温到高温(超过1100℃),约占市场多于65%的份额[1],因此对于工程设计人员来说,管壳式换热器的设计十分重要。

管壳式换热器的主要组合部件包括壳体、前端管箱和后端结构(含管束)三部分。

管箱、壳体、管束、折流板、防冲板等设计参数决定了换热器的类型、规格及性能特点。

1. 管箱1.1 前端管箱的选择原则GB151中分别列出了A、B、C、N、D五种前端管箱型式[2]。

换热器介绍

换热器介绍

3.3 填函式换热器 填函式换热器的浮头与壳体间采用填料函进行密封和热补偿。
填函式换热器 优点:结构简单,造价较浮头式低。检修、清洗容易,填函处的泄漏能及时发现。 缺点:壳程受到填料密封的限制,不能承受过高的压力和温度。且壳程内介质有外漏的可能,壳 程内不宜处理易挥发、易燃、易爆、有毒的介质。 为减少管束与壳体之间的环隙,可采用滑动式管板结构。
胀接长度取(1)两倍换热管外径;(2)50mm;(3)管板厚度减3mm三者中的最小值。
胀管前后的示意图
管板孔内开环形槽
2、焊接(Welding)
管子与管板间采用焊接连接
优点:连接结构简单、适用范围广;管板的加工 要求低、生产过程简单、生产效率高;管子与管 板选材要求简化、管端不须退火;在压力不高的 场合可使用较薄的管板。
3.1 固定管板式换热器
固定管板式换热器分为刚性结构的固定管板式和带膨胀节的固定管板式两种。换热器壳体和管束 通过两端的管板刚性地连在一起。
固定管板式换热器
带膨胀节的固定管板式换热器
优点:换热器结构简单、造价低,每根管子都能单独更换,管内便于清洗 缺点:管外清洗困难,管壳间有温差应力存在。当两种介质温差较大时,必须设置膨胀节。 固定管板式换热器适用于壳程介质清洁、不易结垢、温差不大和壳程压力不高的场合。
3.2 浮头式换热器 浮头式换热器中只有一块管板与壳体刚性固定在一起,另一端的管板可在壳体内自由移动。管束 和壳体在不同温度下膨胀自由,互不牵连。
浮头式换热器 优点:这种换热器消除了温差应力的影响,可用于温差较大的两种介质的换热。管程和壳程均能 承受较高的介质压力。管束可从壳程一端抽出,壳程与管程的清洗均很方便。 缺点:由于换热器管束与壳程之间存在较大的环隙,设备的紧凑性差,传热效率较低。结构复杂, 浮头部分由活动管板、浮头盖和勾圈组成,浮头处发生内漏不便检查。金属消耗量大,造价也较 高。

管壳式换热器的工作原理及结构

管壳式换热器的工作原理及结构

管壳式换热器的工作原理及结构
管壳式换热器是一种常见的换热设备,广泛应用于化工、石油、制药、食品等行业中。

它的工作原理是利用管内流体与管外流体之间的热量传递,将热量从一个介质传递到另一个介质中,以达到加热、冷却或蒸发等目的。

管壳式换热器的结构主要由管束、壳体、管板、支撑件、密封件、进出口管道等组成。

其中,管束是由许多平行排列的管子组成的,管子的材质可以是不锈钢、铜、钛等,根据不同的介质选择不同的材质。

壳体是管束的外壳,通常采用碳钢、不锈钢等材质制成,具有良好的耐腐蚀性能。

管板是将管束固定在壳体内的关键部件,它可以分为固定管板和浮动管板两种类型。

支撑件是用于支撑管束的部件,通常采用钢制材料制成。

密封件则是用于保证管束与壳体之间的密封性能,通常采用橡胶、聚四氟乙烯等材料制成。

进出口管道则是用于将介质引入或排出换热器的管道。

管壳式换热器的工作原理是将需要加热或冷却的介质通过管道引入管束内,然后通过管子的壁面与管外流体进行热量传递,最后将加热或冷却后的介质从管束中排出。

管外流体则通过壳体内的流道流动,将管内流体传递过来的热量带走,以达到加热或冷却的目的。

在换热过程中,管束和壳体之间的热量传递效率取决于管束的布置方式、管子的材质、流体的流速等因素。

管壳式换热器是一种高效、可靠的换热设备,具有结构简单、维护
方便、适用范围广等优点。

在工业生产中,它被广泛应用于加热、冷却、蒸发等工艺过程中,为生产提供了重要的支持。

管壳式换热器原理与设计

管壳式换热器原理与设计

管壳式换热器原理与设计管壳式换热器是一种常见的换热设备,广泛应用于化工、炼油、石油化工、动力、核能等多个工业领域。

其工作原理和设计要点如下:工作原理:基本构造:管壳式换热器主要由壳体、管束、管板、折流板、管箱等部件组成。

壳体通常为圆筒形,内部装有平行排列的管束,管束两端固定在管板上。

流体通过管内(管程)和管外(壳程)进行热交换。

热量传递:冷热两种流体分别在管程和壳程中流动,热量通过管壁从高温流体传递给低温流体。

一种流体在管内流动(管程流体),另一种流体在管外,即壳体内流动(壳程流体)。

热量传递遵循热力学第二定律,从高温区自发流向低温区。

强化传热:为了提高传热效率,壳程内常设置折流板,迫使壳程流体多次改变方向,增加流体湍流程度,从而提高传热系数。

管束的排列(如等边三角形或正方形)也会影响传热效率和清洁维护的便利性。

设计要点:流体选择:根据工艺要求决定哪种流体走管程,哪种走壳程。

一般而言,易结垢或腐蚀性的流体走管程便于清洗和更换管束。

材料选择:根据流体的性质(如温度、压力、腐蚀性)选择合适的材料,如不锈钢、碳钢、铜合金等,以确保换热器的耐用性和安全性。

热负荷计算:根据工艺条件计算所需的热负荷,确定换热面积,进而决定管束的数量、长度和直径。

压降考虑:设计时需考虑流体在管程和壳程中的压降,确保泵送能耗合理,避免因压降过大导致系统运行不稳定。

结构设计:包括管板的设计(固定管束的方式)、壳体厚度设计、支撑和悬挂结构设计等,以保证换热器的机械强度和稳定性。

清洗与维护:设计时应考虑换热器的可维护性,如管束的可拆卸性,以及便于清洗壳程内部的结构设计。

综上所述,管壳式换热器的设计是一个综合考虑热工性能、机械强度、材料选择、经济性和可维护性的复杂过程,需要精确的计算和细致的工程设计。

管壳式换热器维护检修规程

管壳式换热器维护检修规程

管壳式换热器维护检修规程1 总则1.1适用范围本规程适用于山西建滔万鑫达管壳式、平板式和螺旋板式换热器的维护和检修。

1.2 结构简述1.2.1管壳式换热器(包括固定管板式、浮头式、U形管式和填料函式)主要由外壳、管板、管束、顶盖(封头)等部件构成。

固定管板式换热器的两端管板,与壳体焊接相连,为减小温差引起的热应力,有时在壳体上设有膨胀节。

浮头式换热器的一端管板固定在壳体与管箱之间,另一端管板可以在壳体内自由移动。

U形管式换热器的换热管弯成U形,两端固定在同一管板上,管束可以自由伸缩。

填函式换热器的一端管板固定,另一端填函密封可以自由伸缩。

1.2.2平板式换热器主要由换热板片、密封垫片、固定封头,活动封头(头盖)、夹紧螺栓、挂架等组成,换热板片上有不同形状的波纹;密封材料大多采用天然橡胶和合成橡胶。

1.2.3螺旋板式换热器主要由外壳螺旋体、密封件及进出口等四部分组成。

螺旋体是用两片平行的钢板卷制而成,它具有两个介质通过的矩形通道。

根据通道布置的不同,螺旋板换热器又分三种形式:I型,主要特点是螺旋通道的两端全部垫入密封条后焊接密封;Ⅱ型,特点是螺旋通道两端面交锗焊死;Ⅲ型,特点是一个通道的两端全焊死,另一个通道的两端全敞开。

2 完好标准2.1 零、部件2.1.1换热器的零、部件及附件完整齐全,壳体、管程、板片、封头的冲蚀、腐蚀在允许范围内,管束的堵管数不超过管束总数的10%,隔板、板片、折流扳、防冲板等无严重的扭曲变形。

2.1.2仪表、计器和各种安全装置齐全,完整,灵敏,准确。

2.1.3基础、机座完好,无倾斜、下沉、裂纹等现象。

2.1.4各部连接螺栓、地脚螺栓紧固整齐、无锈蚀,符合技术要求。

2.1.5管道、管件、阀门、管架等安装合理、牢固完整、标志分明、符合要求。

2.1.6换热器壳程、管程及外管焊接质量均符合技术要求。

2.1.7防腐、保温设施完整有效,符合技术要求。

2.2 远行性能2.2.1换热器各部温度、压力、流量等参数符合技术要求.2.2.2设备各部阀门开关正常。

管壳式换热器

管壳式换热器
管子长度主要根据工艺计算和整个换热器的几何尺寸的布局来确定,管子越长,换热器单位材料 消耗越低。但管子不能太长,否则对流体产生较大阻力,维修、清洗、运输、安装都不方便,管 子本身受力也不好。常用管长规格为1.5、2、2.5、3、4.5、5、6、7.5、9、12m等。
4、管子型式的选择(Choose the type of pipe)
管壳式换热器又称列管式换热器。管壳式换热器具有处理能力大适应性强,可靠性高, 设计和制造工艺成熟,生产成本低,清洗较为方便等优点,是目前生产中最为广泛使 用的一种换热设备。
管壳式换热器的设计和选用除了满足规定的化工工艺条件外,还需满足下列各项基本 要求:
(1)换热效率高; (2)流体流动阻力小,即压力降小; (3)结构可靠,制造成本低; (4)便于安装、检修。
管子一般都用光管,因为其结构简单、制造方便,但它强化传热的性能不足。为了强化传热,可 选用特殊型式的管子:
几种异形管
a)扁平管 b)椭圆管 c)凹槽扁平管 d)波纹管
纵向翅片管
a)焊接外翅片管 b)整体式外翅片管 c)镶嵌式外翅片管 d)整体式内外翅片管
径向翅片管
螺纹管
6.2.2 管子与管板的连接(Connection of Tube and Tube Plate)
胀接长度取(1)两倍换热管外径;(2)50mm;(3)管板厚度减3mm三者中的最小值。
胀管前后的示意图
管板孔内开环形槽
2、焊接(Welding)
管子与管板间采用焊接连接
缺点:胀接结构随温度的升高,管子或管板材料会产生高温蠕变,使接头处应力松弛或逐渐消失, 使连接处发生泄漏,造成连接失效。因此胀接结构只适用于温度不超过300℃、压力不超过4MPa 的场合。

管壳式换热器ppt课件

管壳式换热器ppt课件

类型与结构
类型
根据结构特点和使用要求,管壳式换热器可分为固定管板式 、浮头式、U形管式、填料函式等类型。
结构
主要由壳体、管束、管板、封头等组成,其中管束是换热器 的核心部件,通过两端固定在管板上,与壳体形成封闭空间 。
02
管壳式换热器的工作原理
传热原理
热传导
管壳式换热器中的传热过程主要 以热传导为主,热量从高温介质 传递到低温介质,通过管壁和壳
适用范围与限制
适用范围
管壳式换热器适用于高温高压的工况, 以及需要承受较大压力和温度变化的场 合。此外,由于其结构简单、可靠性强 ,管壳式换热器也常用于工业生产中的 加热、冷却和冷凝等操作。
VS
限制
管壳式换热器的传热效率较低,因此不适 用于需要高效传热的场合。此外,由于其 体积较大,管壳式换热器也不适用于空间 受限的场合。
在石油化工领域,管壳式换热器的优点包括高可靠性、耐高温高压、良好的热效 率以及适应性强等,使其成为该领域不可或缺的设备之一。
能源工业领域
能源工业是另一个管壳式换热器得到广泛应用的重要领域。在火力发电、核能发电、水力发电等过程中,管壳式换热器都扮 演着重要的角色。
在能源工业中,管壳式换热器被用于加热和冷却各种流体,如水、蒸汽、油等,以实现能量的转换和回收。其高效可靠的运 行对于提高能源利用效率和降低能源成本具有重要的作用。
维护方便
管壳式换热器的结构简单,拆装方便,便于进行维修和清 洗。
缺点
01
02
03
传热效率较低
相比于其他类型的换热器 ,管壳式换热器的传热效 率相对较低。这是由于其 结构特点所决定的。
体积较大
管壳式换热器的体积较大 ,需要占用较多的空间。

aem换热器形式

aem换热器形式

aem换热器形式
AEM换热器是一种常见的管壳式换热器,主要由前端管箱、壳体、后端管箱、管束等部件组成。

在AEM换热器中,前端管箱通常为A型平盖管箱,而后端管箱则为带标准椭圆封头的M型管箱。

此外,管板延长部分兼作法兰,用于固定管板,而换热器的支座则可以是鞍式或耳式。

AEM换热器的特点在于其结构紧凑、换热效率高,且适用于多种不同的工艺流程。

同时,由于其部件的标准化和模块化设计,使得AEM换热器的制造、安装和维护都相对简便。

在实际应用中,AEM换热器可用于各种需要加热、冷却或热回收的场合,如化工、石油、制药、食品等行业。

根据不同的工艺需求和介质特性,可以选择合适的材质、管束排列方式以及换热面积等参数,以实现最佳的换热效果和经济效益。

此外,与AEM换热器类似的其他换热器类型还有很多,如浮头式换热器、U型管换热器、螺旋板式换热器等。

这些不同类型的换热器各有其特点和适用场合,可以根据具体需求进行选择。

管壳式换热器结构基础知识

管壳式换热器结构基础知识
2020/7/14
2 管子的选用及其与管板的连接
2020/7/14
2 管子的选用及其与管板的连接
3)要求管板硬度 大于管子硬度, 否则将管端退火 后再胀接。
胀接时管板上 的孔可以是光孔, 也可开槽。
2020/7/14
2 管子的选用及其与管板的连接
2、焊接 优点:在高温高压条件下,焊接连接能保持连
常采用无缝钢管规格(外径×壁厚),长度按规定选用(1500mm、2000mm、 2500mm、3000mm、4500mm、5000mm、6000mm、7500mm、9000mm、 12000mm)。其长度与公称直径之比,一般为4~25,常用的为6~10,立式换热器 多为4~6。
2020/7/14
2 管子的选用及其与管板的连接
2020/7/14
4 折流板、支撑板、旁路挡板及拦液板的作用于结构
2020/7/14
4 折流板、支撑板、旁路挡板及拦液板的作用于结构
2020/7/14
4 折流板、支撑板、旁路挡板及拦液板的作用于结构
2020/7/14
4 折流板、支撑板、旁路挡板及拦液板的作用于结构
4、折流板的固定 1)拉杆-定距管结构(适用于换热管外径≥19mm的管束)折流板和支承板的固定 是通过拉杆和定距管来实现的,如图7-27。
管壳式换热器结构基础知识
管壳式换热器结构基础知识
质管部
2020/7/14
管壳式换热器结构基础知识
1 概述 2 管子的选用及其与管板的联接 3 管板结构 4 折流板、支撑板、旁路挡板及拦
液板的作用与结构
5 温差应力 6 管箱与壳程接管 7 管壳式换热器的机械设计举例
2020/7/14
管壳式换热器结构基础知识

管壳式换热器(列管式换热器)

管壳式换热器(列管式换热器)
2)、工程标准
《建筑给水排水及采暖工程施工质量验收规范》GB50242-2002
3)、相关标准图
05R103 热交换站工程设计施工图集
01S122-1~10水加热器选用及安装
③ U型管换热器 每根换热管皆弯成U形,两端分别固定在同一管板上下两区,借助于管箱内的隔板分成进出口两室。此种换热器完全消除了热应力,结构比浮头式简单,但管程不易清洗。
非金属材料换热器 化工生产中强腐蚀性流体的换热,需采用陶瓷、玻璃、聚四氟乙烯、石墨等非金属材料制作管壳式换热器。这类换热器的换热性能较差,只用于压力低、振动小、温度较低的场合。
[编辑本段]
管壳式换热器类型
由于管内外流体的温度不同,因之换热器的壳体与管束的温度也不同。如果两温度相差很大,换热器内将产生很大热应力,导致管子弯曲、断裂,或从管板上拉脱。因此,当管束与壳体温度差超过50℃时,需采取适当补偿措施,以消除或减少热应力。根据所采用的补偿措施,管壳式换热器可分为以下几种主要类型:
3)、各类阀门和仪表的安装高度应便于操作和观察。
4)、加热器上部附件(一般指安全阀)的最高点至建筑结构最低点的垂直净距应满足安装检测的要求,并不得小于0.2m。
[编辑本段]
4、执行标准
1)、产品标准
《管壳式换热器》GB151-1999
《导流型容积式水加热器和半容积式水加热器(U型管束)》CJ/T 163-2002
流道的选择 进行换热的冷热两流体,按以下原则选择流道:①不洁净和易结垢流体宜走管程,因管内清洗较方便;②腐蚀性流体宜走管程,以免管束与壳体同时受腐蚀;③压力高的流体宜走管程,以免壳体承受压力;④饱和蒸汽宜走壳程,因蒸汽冷凝传热分系数与流速无关,且冷凝液容易排出;⑤若两流体温度差较大,选用固定管板式换热器时,宜使传热分系数大的流体走壳程,以减小热应力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档