重点高中数学--空间向量之法向量求法及应用办法

合集下载

法向量求法及应用方法

法向量求法及应用方法

法向量求法及应用方法法向量是指与一些曲面上的每一点的切平面垂直的向量。

在三维空间中,法向量可以方便地描述曲面的几何特征和方向。

一、法向量的求法:1.平面的法向量:平面的法向量可以通过两个不平行的向量叉积得到。

设平面上两个向量为a和b,法向量n=a×b。

2.曲面的法向量:曲面的法向量可以通过曲面的方程求得。

常见的曲面方程包括参数方程、隐函数方程和显函数方程。

对于参数方程和隐函数方程,可以通过求偏导数来得到曲面的切向量,然后再将切向量进行标准化得到法向量。

例如,对于参数方程x=x(u,v),y=y(u,v),z=z(u,v),法向量可以通过求∂(x,y,z)/∂(u,v)的叉积来得到。

而对于隐函数方程F(x,y,z)=0,可以通过对F(x,y,z)进行偏导数得到一个方程组,然后解这个方程组来得到法向量。

二、法向量的应用方法:1.曲面法向量的判定:通过计算曲面的法向量可以判断曲面的朝向和几何特征。

例如,在渲染图形时,可以通过曲面的法向量来决定光线对曲面的照射效果,以实现更真实的光影效果。

2.曲面法向量的插值和平滑:在计算机图形学中,通常需要对曲面进行插值和平滑处理。

曲面的法向量可以帮助我们在曲面上进行平滑采样。

例如,在曲面细分中,通过计算曲面的法向量来过滤掉尖锐的细分结果,使得细分结果更加平滑自然。

3.曲面的切平面和法向量的切线:对于空间曲线上的点,可以通过曲线的参数方程求得曲线的切线向量。

而对于空间曲面上的点,可以通过曲面的法向量和曲面上其中一点的切平面求得曲线的切向量。

切平面上的切向量和曲面的法向量垂直,并且与曲线相切。

4.计算曲面的面积和体积:曲面的法向量可以用来计算曲面的面积和体积。

对于平面,面积等于法向量的模长;对于曲面,可以通过对曲面分割成小区域然后计算每个小区域的法向量,并对法向量进行积分得到曲面的面积或体积。

5.平面和曲面的方程:法向量可以帮助我们确定平面和曲面的方程。

对于平面,通过平面上一点和法向量,可以得到平面的方程;对于曲面,通过曲面上一点和法向量,可以得到曲面的方程。

法向量的求法及其空间几何题的解答

法向量的求法及其空间几何题的解答

状元堂一对一个性化辅导教案教师张敏科目数学时间2013 年6 月4日学生董洲年级高二学校德阳西校区授课内容空间法向量求法及其应用立体几何知识点与例题讲解难度星级★★★★教学内容上堂课知识回顾(教师安排):1.平面向量的基本性质及计算方法2.空间向量的基本性质及计算方法本堂课教学重点:1.掌握空间法向量的求法及其应用2.掌握用空间向量求线线角,线面角,面面角及点面距3.熟练灵活运用空间向量解决问题得分:平面法向量的求法及其应用一、 平面的法向量1、定义:如果α⊥→a ,那么向量→a 叫做平面α的法向量。

平面α的法向量共有两大类(从方向上分),无数条。

2、平面法向量的求法方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或(1,,)n y z =],在平面α内任找两个不共线的向量,a b 。

由n α⊥,得0n a ⋅=且0n b ⋅=,由此得到关于,x y 的方程组,解此方程组即可得到n 。

二、 平面法向量的应用1、 求空间角(1)、求线面角:如图2-1,设→n 是平面α的法向量,AB 是平面α的一条斜线,α∈A ,则AB 与平面α所成的角为: 图2-1-1:.||||arccos 2,2→→→→→→⋅⋅->=<-=AB n ABn AB n ππθ 图2-1-2:2||||arccos 2,ππθ-⋅⋅=->=<→→→→→→AB n AB n AB n(2)、求面面角:设向量→m ,→n 分别是平面α、β的法向量,则二面角βα--l 的平面角为:θβα→m图2-2→nθ→mα图2-3→nβ|,cos |sin ><=→→AB n θABα图2-1-2θC→n 图2-1-1αθB→nA C||||arccos,→→→→→→⋅⋅>==<n m nm n m θ(图2-2);||||arccos,→→→→→→⋅⋅->==<n m nm n m πθ(图2-3)两个平面的法向量方向选取合适,可使法向量夹角就等于二面角的平面角。

高中数学--空间向量之法向量求法及应用方法

高中数学--空间向量之法向量求法及应用方法

高中数学空间向量之--平面法向量的求法及其应用一、 平面的法向量1、定义:如果α⊥→a ,那么向量→a 叫做平面α的法向量。

平面α的法向量共有两大类(从方向上分),无数条。

2、平面法向量的求法方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或(1,,)n y z =],在平面α内任找两个不共线的向量,a b 。

由n α⊥,得0n a ⋅=且0n b ⋅=,由此得到关于,x y 的方程组,解此方程组即可得到n 。

方法二:任何一个z y x ,,的一次次方程的图形是平面;反之,任何一个平面的方程是z y x ,,的一次方程。

0=+++D Cz By Ax )0,,(不同时为C B A ,称为平面的一般方程。

其法向量),,(C B A n =→;若平面与3个坐标轴的交点为),0,0(),0,,0(),0,0,(321c P b P a P ,如图所示,则平面方程为:1=++czb y a x ,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。

方法三(外积法): 设 , 为空间中两个不平行的非零向量,其外积→→⨯b a 为一长度等于θsin ||||→→b a ,(θ为,两者交角,且πθ<<0),而与 , 皆垂直的向量。

通常我们采取「右手定则」,也就是右手四指由 的方向转为的方向时,大拇指所指的方向规定为→→⨯b a 的方向,→→→→⨯-=⨯a b b a 。

:),,,(),,,(222111则设z y x b z y x a ==→→⎝⎛=⨯→→21y y b a ,21z z 21x x - ,21z z 21x x⎪⎪⎭⎫21y y (注:1、二阶行列式:c a M =cb ad db-=;2、适合右手定则。

) 例1、 已知,)1,2,1(),0,1,2(-==→→b a , 试求(1):;→→⨯b a (2):.→→⨯a bKey: (1) )5,2,1(-=⨯→→b a ;)5,2,1()2(-=⨯→→a b例2、如图1-1,在棱长为2的正方体1111ABCD A BC D -中,求平面AEF 的一个法向量n 。

高中数学理科基础知识讲解《87空间几何中的向量方法》教学课件

高中数学理科基础知识讲解《87空间几何中的向量方法》教学课件
×
×


×
×
×
--
考点自诊
2.如图所示,在正方体ABCD-A1B1C1D1中,棱长为a,M,N分别为A1B和AC上的点,A1M=AN= ,则MN与平面BB1C1C的位置关系是( )A.斜交 B.平行C.垂直 D.MN在平面BB1C1C内
B
--
考点自诊
3.在正三棱柱ABC-A1B1C1中,AB=AA1,则AC1与平面BB1C1C所成角的正弦值为( )
[0,π]
--
知识梳理
4.利用空间向量求距离(1)点到平面的距离 如图所示,已知AB为平面α的一条斜线段,n为平面α的法向量,则B到平面α的距离为(2)线面距、面面距均可转化为点面距进行求解.
--
知识梳理
--
知识梳理
1.判断下列结论是否正确,正确的画“√”,错误的画“×”.(1)直线的方向向量是唯一确定的. ( )(2)平面的单位法向量是唯一确定的. ( )(3)若两条直线的方向向量不平行,则这两条直线不平行. ( )(4)若空间向量a垂直于平面α,则a所在直线与平面α垂直. ( )(5)两条直线的方向向量的夹角就是这两条直线所成的角. ( )(6)已知向量m,n分别是直线l的方向向量和平面α的法向量,若cos <m,n>= ,则直线l与平面α所成的角为120°. ( )(7)已知两平面的法向量分别为m=(0,1,0),n=(0,1,1),则两平面所成的二面角的大小为45°. ( )
|cos φ|
|cos φ|
--
知识梳理
(3)二面角①范围:二面角的取值范围是 . ②向量求法:若AB,CD分别是二面角α-l-β的两个面内与棱l垂直的异面直线,则二面角的大小就是向量 的夹角(如图①).设n1,n2分别是二面角α-l-β的两个半平面α,β的法向量,则图②中向量n1与n2的夹角的补角的大小就是二面角的平面角的大小;而图③中向量n1与n2的夹角的大小就是二面角的平面角的大小.

3.2立体几何中的向量方法——法向量

3.2立体几何中的向量方法——法向量
(3)根据法向量的定义建立 关于x, y, z的 n a 0 方程组 n b 0
(4)解方程组,取其中的一 个解,即得法向量。
例1: 已 知 A(0,2,3), B( 2,0, - 1), C ( 3, - 4,0) 求平面 ABC的 法 向 量 。
问题:如何运用向量法求法向量呢?
2014年11月7日星期五
法向量在立体几何中的妙用
1
前面,我们把
平面向量
推广到
空间向量
立体几何问题 研究的基本对象是点、直线、平面以及由它们组成 的空间图形 从今天开始,我们将进一步来体会向量这一工 具在立体几何中的应用.
如何确定一个点、一条直线、一个平面 思考:
在空间的位置?
一、点的确定:
在空间中,我们取一定点O作为基点,那么空间中 任意一点P的位置就可以用向量OP来表示。我们把 向量OP称为点P的位置向量。
对于平面 上的任一点 P , 存在有序实数对 ( x, y) ,使得
OP xa yb
除此之外, 还可以用垂直于平面的直线的 方向向量(这个平面的法向量)表示空间中平面 的位置.
平面的法向量:如果表示向量 n 的有向线段所在
直线垂直于平面 ,则称这个向量垂直于平面 ⊥ n,如果 么 向 量 叫做 ,记作 ⊥ n ,那 n 平面 的法向量 .
解:设平面 ABC 的一个法向量为 n ( x, y, z )
则 n ^ AB, n ^ AC .
祆 ( x , y , z )(2, - 2, - 4) = 0 镲 镲 \ 眄 镲 ( x , y , z )(3, - 6, - 3) = 0 镲 铑
AB = (2,- 2,- 4), AC = (3,- 6,- 3)

高中数学-空间向量的应用

高中数学-空间向量的应用

第4讲空间向量的应用知识梳理1.空间中任意一条直线l的位置可以由l上一个定点以及一个向量确定,这个向量叫做直线的方向向量.2.若直线l垂直于平面α,取直线l的方向向量a,则a⊥α,则a叫做平面α的法向量.3.(1)线线垂直:设直线l,m的方向向量分别为a,b,则l⊥m⇔a⊥b⇔a·b=0.(2)线面垂直:设直线l的方向向量为a,平面α的法向量为u,则l⊥α⇔a∥u⇔a=k u,k∈R.(3)面面垂直:若平面α的法向量为u,平面β的法向量为ν,则α⊥β⇔u⊥ν⇔u·ν=0.4.设两异面直线所成的角为θ,它们的方向向量分别为a,b,则cos θ=|a·b||a||b|.5.设直线l与平面α所成的角为θ,直线l的方向向量为a,平面α的法向量为n,则sin θ=|cos〈a,n〉|=|a·n||a||n|.6.设二面角α-l-β的平面角为θ,平面α,β的法向量分别为n1,n2,则|cos θ|=|n1·n2| |n1||n2|.考点题型知识点1 直线的方向向量与平面的法向量【例1-1】(焦作期末)若点,在直线l上,则直线l的一个方向向量为A. B. C. D.【例1-2】(广州期末)设是直线l的方向向量,是平面的法向量,则A. B. C. 或 D. 或【变式训练1-1】(沙坪坝区校级模拟)若直线l的方向向量为,平面的法向量为,则能使的是A. B.C. D.【变式训练1-2】(东阳市模拟)已知,,分别是平面,,的法向量,则,,三个平面中互相垂直的有A. 3对B. 2对C. 1对D. 0对知识点2 用空间向量研究直线、平面的平行关系【例2-1】(浙江模拟)已知在正四棱柱中,,,点E为的中点,点F为的中点.求证:.【例2-2】(柯城区校级模拟)如图,在底面为平行四边形的四棱锥中,,平面ABCD,且,点E是PD的中点.求证:平面AEC.【例2-3】(金华期末)如图,已知棱长为4的正方体中,M,N,E,F分别是棱,,,的中点,求证:平面平面EFBD.【变式训练2-1】(宿迁期末)如图,在长方体中,,,,点P在棱上,且,点S在棱上,且,点Q、R分别是棱、AE的中点.求证:.【变式训练2-2】(朝阳区期末)已知正方体的棱长为2,E,F分别是,的中点,求证:平面ADE;平面平面F.知识点3 用空间向量研究直线、平面的垂直关系【例3-1】(扬州期末)如图,在四棱锥中,底面ABCD为直角梯形,,,底面ABCD,且,M为PC的中点.求证:【例3-2】(上城区校级模拟)如图所示,在正方体中,E,F分别是,DC的中点,求证:平面F.【例3-3】(点军区校级月考)如图,在五面体ABCDEF中,平面ABCD,,,M为EC的中点,求证:平面平面CDE.【变式训练3-1】(三明模拟)已知空间四边形ABCD中,,,求证:.【变式训练3-2】(镇海区校级模拟)如图,在四棱锥中,底面ABCD是矩形且,,底面ABCD,E是AD的中点,F在PC上.F在何处时,平面PBC?【变式训练3-3】(未央区校级月考)在四面体ABCD中,平面BCD,,,,E,F分别是AC,AD的中点,求证:平面平面ABC.知识点4 用空间向量研究空间中的距离问题【例4-1】(海淀区校级期末)如图,已知正方形ABCD的边长为1,平面ABCD,且,E,F分别为AB,BC的中点.求点D到平面PEF的距离;求直线AC到平面PEF的距离.(房山区期末)如图,在四棱锥中,平面ABCD,,【变式训练4-1】,,.求点D到平面PBC的距离;求点A到平面PBC的距离.知识点5 用空间向量研究空间中的夹角问题【例5-1】(宝山区校级期末)如图,ABCD为矩形,AB=2,AD=4,P A⊥面ABCD,P A=3,求异面直线PB与AC所成角的余弦值.【例5-2】(常州期末)已知在正三棱柱ABC-A1B1C1中,侧棱长与底面边长相等,求AB1与侧面ACC1A1所成角的正弦值.【例5-3】(漳州三模)已知,P A⊥平面ABC,AC⊥BC,P A=AC=1,BC= 2.求二面角A-PB-C的余弦值.【变式训练5-1】(沭阳县期中)如图,在正四棱柱中,,,点M是BC 的中点.求异面直线与DM所成角的余弦值求直线与平面所成角的正弦值求平面与平面ABCD所成角的正弦值.A组-[应知应会]1.(杨浦区校级期中)若直线l的方向向量为0,,平面的法向量为0,,则A. B. C. D. l与斜交2. (安徽模拟)已知,,,则向量与向量的夹角为A. B. C. D.3. (闵行区校级模拟)已知四边形ABCD是直角梯形,,平面ABCD,,则SC与平面ABCD所成的角的余弦值为A. B. C. D.4. (贵阳模拟)在正方体中,棱长为a,M,N分别为和AC上的点,,则MN与平面的位置关系是A. 垂直B. 相交C. 平行D. 不能确定5.(温州期末)如图,在长方体中,,E为CD的中点,点P在棱上,且平面,则AP的长为A.B.C. 1D. 与AB的长有关6.(鼓楼区校级模拟)二面角的棱上有A,B两点,直线AC,BD分别在这个二面角的两个半平面内,且都垂直于AB,已知,,,,则该二面角的大小为A. B. C. D.7.(和平区校级二模)如图所示,在正方体中,点P是棱AB上的动点点可以运动到端点A和B,设在运动过程中,平面与平面所成的最小角为,则A.B.C.D.8. (多选)(东阳市模拟)已知点P是平行四边形ABCD所在的平面外一点,如果,2,,2,,下列结论正确的有A. B.C. 是平面ABCD的一个法向量D.9.(江苏模拟)已知,,若,,且平面ABC,则y,等于________.10.(南通模拟)已知正三棱柱的各条棱长都相等,M是侧棱的中点,则向量与所成角的大小是.11.(清江浦区校级模拟)在四棱锥中,底面ABCD,底面ABCD是正方形,且,G为的重心,则PG与底面ABCD所成角的正弦值为.12.(沭阳县期中)在四棱锥中,底面ABCD为矩形,侧棱底面ABCD,,E为PD的中点,点N在面PAC内,且平面PAC,则点N到AB的距离为__________13.(滨海新区模拟)如图,在四棱锥中,底面ABCD为平行四边形,,,底面ABCD,,则二面角的余弦值为________.14.(浦东新区校级月考)如图,在正方体中,E为的中点,求异面直线CE 与BD所成的角.15.(江宁区校级月考)如图,四边形ABCD是正方形,平面ABCD,,,,F为PD的中点.求证:;求证:平面PEC.16.(临泉县校级月考)正方体中,E,F分别是,CD的中点.求证:平面平面;在AE上求一点M,使得平面DAE.17. (兴宁区校级期末)如图,在四棱锥中,底面ABCD为直角梯形,,且,平面ABCD.求直线PB与平面PCD所成角的正弦值;在棱PD上是否存在一点E使得?若存在,求AE的长;若不存在,请说明理由.18. (沙坪坝区校级期末)如图,正三棱柱的底面边长是2,侧棱长是,D是AC的中点.求二面角的大小.在线段上是否存在一点E,使得平面平面若存在,求出AE的长若不存在,说明理由.1.(齐齐哈尔期末)如图,在圆锥SO中,A,B是上的动点,是的直径,M,N是SB的两个三等分点,,记二面角,的平面角分别为,,若,则的最大值是A. B. C. D.2.(如皋市期末)如图,在长方体中,E是的中点,点F是AD上一点,,,,动点P在上底面上,且满足三棱锥的体积等于1,则直线CP与所成角的正切值的最小值为________.。

2023年新高考数学一轮复习8-6 空间向量及其运算和空间位置关系(知识点讲解)含详解

2023年新高考数学一轮复习8-6 空间向量及其运算和空间位置关系(知识点讲解)含详解

专题8.6 空间向量及其运算和空间位置关系(知识点讲解)【知识框架】【核心素养】1.考查空间向量的概念及运算,凸显数学抽象、逻辑推理、数学运算、直观想象的核心素养.2.考查空间向量的应用,凸显逻辑推理、数学运算、直观想象的核心素养.【知识点展示】1.平行(共线)向量与共面向量2①a∥b时,θ=__0或π__,θ=__0__时,a与b同向;θ=__π__时,a与b反向.②a ⊥b ⇔θ=__π2__⇔a ·b =0.③θ为锐角时,a ·b __>__0,但a ·b >0时,θ可能为__0__;θ为钝角时,a ·b __<__0,但a ·b <0时,θ可能为__π__.④|a ·b |≤|a |·|b |,特别地,当θ=__0__时,a ·b =|a |·|b |,当θ=__π__时,a ·b =-|a |·|b |.⑤对于实数a 、b 、c ,若ab =ac ,a ≠0,则b =c ;对于向量a 、b 、c ,若a ·b =a ·c ,a ≠0,却推不出b =c ,只能得出__a ⊥(b -c )__.⑥a ·b =0⇒/ a =0或b =0,a =0时,一定有a ·b =__0__.⑦不为零的三个实数a 、b 、c ,有(ab )c =a (bc )成立,但对于三个向量a 、b 、c ,(a ·b )c __≠__a (b ·c ),因为a ·b 是一个实数,(a ·b )c 是与c 共线的向量,而a (b ·c )是与a 共线的向量,a 与c 却不一定共线. 3.空间向量基本定理(1)如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =__x a +y b +z c __.(2)如果三个向量a 、b 、c 不共面,那么所有空间向量组成的集合就是{p|p =x a +y b +z c ,x ,y ,z ∈R },这个集合可看作是由向量a 、b 、c 生成的,我们把{__a ,b ,c __}叫做空间的一个基底,a 、b 、c 都叫做__基向量__,空间任何三个__不共面__的向量都可构成空间的一个基底,同一(相等)向量在不同基底下的坐标__不同__,在同一基底下的坐标__相同__. 4.空间向量的正交分解及其坐标表示设e 1、e 2、e 3为有公共起点O 的三个两两垂直的单位向量(我们称它们为单位正交基底).以e 1、e 2、e 3的公共起点O 为原点,分别以__e 1,e 2,e 3__的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz .对于空间任意一个向量p 一定可以把它平移,使它的__起点__与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.我们把x 、y 、z 称作向量p 在单位正交基底e 1、e 2、e 3下的坐标,记作p = (x ,y ,z ). 5.用向量描述空间平行关系设空间两条直线l 、m 的方向向量分别为a =(a 1,a 2,a 3)、b =(b 1,b 2,b 3),两个平面α,β的法向量分别为u =(u 1,u 2,u 3),v =(v 1,v 2,v 3),则有如下结论:6. 用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 7.共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量).【常考题型剖析】题型一:空间向量的运算例1.(2023·全国·高三专题练习)如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则BM =( )A .1122a b c -+B .1122a b c ++C .1122a b c --+D .1122-++a b c例2. (2022·全国·高三专题练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++ D .1OG =111888OA OB OC ++例3.(安徽·高考真题(理))在正四面体O -ABC 中,,,OA a OB b OC c ===,D 为BC 的中点,E 为AD 的中点,则OE =______________(用,,a b c 表示). 【方法技巧】用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来. 题型二:共线(共面)向量定理的应用例4.(2023·全国·高三专题练习)以下四组向量在同一平面的是( ) A .()1,1,0、()0,1,1、()1,0,1 B .()3,0,0、()1,1,2、()2,2,4 C .()1,2,3、()1,3,2、()2,3,1D .()1,0,0、()0,0,2、()0,3,0例5.(2022·广西桂林·模拟预测(文))如图,已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则下列结论中①OA +OD 与OA 1+OD 1是一对相反向量;②OB -OC 1与OC -OB 1是一对相反向量;③OA 1+OB 1+OC 1+OD 1与OD +OC +OB +OA 是一对相反向量; ④OC -OA 与OC 1-OA 1是一对相反向量. 正确结论的个数为( ) A .1B .2C .3D .4例6.(2020·全国·高三专题练习)已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点(如图所示),并且OE kOA =,OF kOB =,OH kOD =,AC AD mAB =+,EG EH mEF =+.求证:(1)A 、B 、C 、D 四点共面,E 、F 、G 、H 四点共面; (2)//AC EG . 【总结提升】证明三点共线和空间四点共面的方法比较题型三:空间向量数量积及其应用例7.(广东·高考真题(理))已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A .()1,1,0-B .()1,1,0-C .()0,1,1-D .()1,0,1-例8.(2022·全国·高三专题练习)如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB a =,AD b =,c AP =.(1)试用a ,b ,c 表示向量BM ;(2)求BM 的长.例9. (2020·全国·高三专题练习)已知向量(2,1,2)a =-,(1,0,1)c =-,若向量b 同时满足下列三个条件:①1a b ⋅=-;①3b =;①b 与c 垂直.(1)求2a c +的模; (2)求向量b 的坐标. 【总结提升】空间向量数量积的应用题型四:利用空间向量证明平行例10.(2021·全国·高三专题练习)如图,在四面体ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证://BD 平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任意一点O ,有()14OM OA OB OC OD =+++. 例11.(2020·全国·高三专题练习(理))如图所示,平面P AD ①平面ABCD ,ABCD 为正方形,①P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB //平面EFG ; (2)平面EFG //平面PBC . 【规律方法】利用空间向量证明平行的方法 1.线线平行:证明两直线的方向向量共线2.线面平行:①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线的方向向量平行3.面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题 题型五:利用空间向量证明垂直例12.(2022·河南·宝丰县第一高级中学模拟预测(文))如图,O ,1O 是圆柱底面的圆心,1AA ,1BB ,1CC均为圆柱的母线,AB 是底面直径,E 为1AA 的中点.已知4AB =,BC =(1)证明:1AC BC ⊥;(2)若1AC BE ⊥,求该圆柱的体积.例13.(2022·全国·高三专题练习)已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.例14.(2020·全国·高三专题练习)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AAC C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由. 【规律方法】利用空间向量证明垂直的方法1.线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零2.线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示3.面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示专题8.6 空间向量及其运算和空间位置关系(知识点讲解)【知识框架】【核心素养】1.考查空间向量的概念及运算,凸显数学抽象、逻辑推理、数学运算、直观想象的核心素养.2.考查空间向量的应用,凸显逻辑推理、数学运算、直观想象的核心素养.【知识点展示】1.平行(共线)向量与共面向量2①a∥b时,θ=__0或π__,θ=__0__时,a与b同向;θ=__π__时,a与b反向.②a ⊥b ⇔θ=__π2__⇔a ·b =0.③θ为锐角时,a ·b __>__0,但a ·b >0时,θ可能为__0__;θ为钝角时,a ·b __<__0,但a ·b <0时,θ可能为__π__.④|a ·b |≤|a |·|b |,特别地,当θ=__0__时,a ·b =|a |·|b |,当θ=__π__时,a ·b =-|a |·|b |.⑤对于实数a 、b 、c ,若ab =ac ,a ≠0,则b =c ;对于向量a 、b 、c ,若a ·b =a ·c ,a ≠0,却推不出b =c ,只能得出__a ⊥(b -c )__.⑥a ·b =0⇒/ a =0或b =0,a =0时,一定有a ·b =__0__.⑦不为零的三个实数a 、b 、c ,有(ab )c =a (bc )成立,但对于三个向量a 、b 、c ,(a ·b )c __≠__a (b ·c ),因为a ·b 是一个实数,(a ·b )c 是与c 共线的向量,而a (b ·c )是与a 共线的向量,a 与c 却不一定共线. 3.空间向量基本定理(1)如果三个向量a 、b 、c 不共面,那么对空间任一向量p ,存在有序实数组{x ,y ,z },使得p =__x a +y b +z c __.(2)如果三个向量a 、b 、c 不共面,那么所有空间向量组成的集合就是{p|p =x a +y b +z c ,x ,y ,z ∈R },这个集合可看作是由向量a 、b 、c 生成的,我们把{__a ,b ,c __}叫做空间的一个基底,a 、b 、c 都叫做__基向量__,空间任何三个__不共面__的向量都可构成空间的一个基底,同一(相等)向量在不同基底下的坐标__不同__,在同一基底下的坐标__相同__. 4.空间向量的正交分解及其坐标表示设e 1、e 2、e 3为有公共起点O 的三个两两垂直的单位向量(我们称它们为单位正交基底).以e 1、e 2、e 3的公共起点O 为原点,分别以__e 1,e 2,e 3__的方向为x 轴、y 轴、z 轴的正方向建立空间直角坐标系O -xyz .对于空间任意一个向量p 一定可以把它平移,使它的__起点__与原点O 重合,得到向量OP →=p ,由空间向量基本定理可知,存在有序实数组{x ,y ,z },使得p =x e 1+y e 2+z e 3.我们把x 、y 、z 称作向量p 在单位正交基底e 1、e 2、e 3下的坐标,记作p = (x ,y ,z ). 5.用向量描述空间平行关系设空间两条直线l 、m 的方向向量分别为a =(a 1,a 2,a 3)、b =(b 1,b 2,b 3),两个平面α,β的法向量分别为u =(u 1,u 2,u 3),v =(v 1,v 2,v 3),则有如下结论:6. 用向量证明空间中的垂直关系①设直线l 1和l 2的方向向量分别为v 1和v 2,则l 1⊥l 2⇔v 1⊥v 2⇔v 1·v 2=0.②设直线l 的方向向量为v ,平面α的法向量为u ,则l ⊥α⇔v∥u . ③设平面α和β的法向量分别为u 1和u 2,则α⊥β⇔u 1⊥u 2⇔u 1·u 2=0. 7.共线与垂直的坐标表示设a =(a 1,a 2,a 3),b =(b 1,b 2,b 3),则a ∥b ⇔a =λb ⇔a 1=λb 1,a 2=λb 2,a 3=λb 3(λ∈R),a ⊥b ⇔a·b =0⇔a 1b 1+a 2b 2+a 3b 3=0(a ,b 均为非零向量).【常考题型剖析】题型一:空间向量的运算例1.(2023·全国·高三专题练习)如图所示,在平行六面体1111ABCD A B C D -中,M 为11A C 与11B D 的交点,若AB a =,AD b =,1AA c =,则BM =( )A .1122a b c -+B .1122a b c ++C .1122a b c --+D .1122-++a b c【答案】D 【解析】 【分析】根据空间向量的运算法则和空间向量基本定理相关知识求解即可. 【详解】由题意得,()()1111111111121222112BM BB B D AA A D A B AA AD A b c B a =+=+--+=+-=+.故选:D例2. (2022·全国·高三专题练习)如图,OABC 是四面体,G 是ABC 的重心,1G 是OG 上一点,且14OG OG =,则( )A .1111666OG OA OB OC =++B .1OG =111121212OA OB OC ++ C .1OG =111181818OA OB OC ++ D .1OG =111888OA OB OC ++【答案】B 【解析】 【分析】利用向量加法减法的几何意义并依据空间向量基本定理去求向量1OG 【详解】连接AG 并延长交BC 于N ,连接ON ,由G 是ABC 的重心,可得23AG AN =,()12ON OB OC =+ 则()()2221112=3332333AG AN ON OA OB OC OA OB OC OA ⎡⎤=-=+-=+-⎢⎥⎣⎦ 则()1111112444333OG OG OA AG OA OB OC OA ⎛⎫==+=++- ⎪⎝⎭111121212OA OB OC =++故选:B例3.(安徽·高考真题(理))在正四面体O -ABC 中,,,OA a OB b OC c ===,D 为BC 的中点,E 为AD 的中点,则OE =______________(用,,a b c 表示).【答案】111244a b c ++【解析】 【详解】因为在四面体O ABC -中,,,,OA a OB b OC c D ===为BC 的中点,E 为AD 的中点,()1222OA OD O OE A OD ∴=+=+()111222a OB OC =+⨯+()1111124244a b c a b c =++=++ ,故答案为111244a b c ++. 【方法技巧】用基向量表示指定向量的方法(1)结合已知向量和所求向量观察图形.(2)将已知向量和所求向量转化到三角形或平行四边形中.(3)利用三角形法则或平行四边形法则把所求向量用已知基向量表示出来. 题型二:共线(共面)向量定理的应用例4.(2023·全国·高三专题练习)以下四组向量在同一平面的是( ) A .()1,1,0、()0,1,1、()1,0,1 B .()3,0,0、()1,1,2、()2,2,4 C .()1,2,3、()1,3,2、()2,3,1 D .()1,0,0、()0,0,2、()0,3,0【答案】B 【解析】 【分析】利用共面向量的基本定理逐项判断可得出合适的选项. 【详解】对于A 选项,设()()()1,1,00,1,11,0,1m n =+,所以,110n m m n =⎧⎪=⎨⎪+=⎩,无解;对于B 选项,因为()()()2,2,403,0,021,1,2=⋅+,故B 选项中的三个向量共面;对于C 选项,设()()()1,2,31,3,22,3,1x y =+,所以,2133223x y x y x y +=⎧⎪+=⎨⎪+=⎩,无解;对于D 选项,设()()()1,0,00,0,20,3,0a b =+,所以,013020b a =⎧⎪=⎨⎪=⎩,矛盾.故选:B.例5.(2022·广西桂林·模拟预测(文))如图,已知正方体ABCD -A 1B 1C 1D 1的中心为O ,则下列结论中①OA +OD 与OA 1+OD 1是一对相反向量;②OB -OC 1与OC -OB 1是一对相反向量;③OA 1+OB 1+OC 1+OD 1与OD +OC +OB +OA 是一对相反向量; ④OC -OA 与OC 1-OA 1是一对相反向量. 正确结论的个数为( ) A .1 B .2C .3D .4【答案】A 【解析】 【分析】由向量的加减运算对各个选项进行检验即可. 【详解】设E,F 分别为AD 和A 1D 1的中点,①OA +2OD OE =与1OA +12OD OF =不是一对相反向量,错误; ②OB -11OC C B =与OC -11OB B C =不是一对相反向量,错误;③OA 1+OB 1+OC 1+()1OD OC OD OA OB OC OD OA OB =----=-+++是一对相反向量,正确; ④OC -OA AC =与OC 1-111OA AC =不是一对相反向量,是相等向量,错误. 即正确结论的个数为1个故选:A例6.(2020·全国·高三专题练习)已知O 、A 、B 、C 、D 、E 、F 、G 、H 为空间的9个点(如图所示),并且OE kOA =,OF kOB =,OH kOD =,AC AD mAB =+,EG EH mEF =+.求证:(1)A、B、C、D四点共面,E、F、G、H四点共面;AC EG.(2)//【答案】(1)证明见解析;(2)证明见解析.【解析】【分析】(1)证明出AC、AB、AD为共面向量,结合AC、AB、AD有公共点可证得A、B、C、D四点共面,同理可证得E、F、G、H四点共面;AC EG.(2)证得EG k AC=,再由EG和AC无公共点可证得//【详解】(1)因为AC AD mAB=+,所以,AC、AB、AD为共面向量,因为AC、AB、AD有公共点A,故A、B、C、D四点共面,因为EG EH mEF=+,则EG、EH、EF为共面向量,因为EG、EH、EF有公共点E,故E、F、G、H四点共面;(2)OE kOA=,=,OF kOB=,OH kOD()EG EH mEF OH OE m OF OE=+=-+-()()()=-+-=+=+=,//k OD OA km OB OA k AD kmAB k AD mAB k AC∴,AC EGAC EG.因为AC、EG无公共点,故//【总结提升】证明三点共线和空间四点共面的方法比较题型三:空间向量数量积及其应用例7.(广东·高考真题(理))已知向量()1,0,1a =-,则下列向量中与a 成60的是( ) A .()1,1,0- B .()1,1,0- C .()0,1,1- D .()1,0,1-【答案】B 【解析】 【详解】试题分析:对于A 选项中的向量()11,0,1a =-,11111cos ,22a a a a a a ⋅-〈〉===-⋅⋅,则1,120a a 〈〉=;对于B 选项中的向量()21,1,0a =-,22211cos ,22a a a a a a ⋅〈〉===⋅,则2,60a a 〈〉=;对于C 选项中的向量()30,1,1a =-,2321cos ,22a a a a a a ⋅-〈〉===-⋅,则2,120a a 〈〉=;对于D 选项中的向量()41,0,1a =-,此时4a a =-,两向量的夹角为180.故选B.例8.(2022·全国·高三专题练习)如图,在四棱锥P ABCD -中,底面ABCD 是边长为1的正方形,侧棱P A 的长为2,且P A 与AB 、AD 的夹角都等于60°,M 是PC 的中点,设AB a =,AD b =,c AP=.(1)试用a ,b ,c 表示向量BM ; (2)求BM 的长.【答案】(1)111222a b c -++;(2)2【解析】 【分析】(1)将AD BC =,BP AP AB =-代入1()2BM BC BP =+中化简即可得到答案;(2)利用22||BM BM =,结合向量数量积运算律计算即可. 【详解】(1)M 是PC 的中点,1()2BM BC BP ∴=+.AD BC =,BP AP AB =-,1[()]2BM AD AP AB ∴=+-,结合AB a =,AD b =,c AP =,得1111[()]2222BM b c a a b c =+-=-++.(2)1AB AD ==,2PA =, ||||1a b ∴==,||2c =.AB AD ⊥,60PAB PAD ∠=∠=︒, 0a b ∴⋅=,21cos601a c b c ⋅=⋅=⨯⨯︒=.由(1)知111222BM a b c =-++,()2222211112222224BM a b c a b c a b a c b c ⎛⎫∴=-++=++-⋅-⋅+⋅⎪⎝⎭13(114022)42=⨯++--+=,6||2BM ∴=即BM 例9. (2020·全国·高三专题练习)已知向量(2,1,2)a =-,(1,0,1)c =-,若向量b 同时满足下列三个条件:①1a b ⋅=-;①3b =;①b 与c 垂直. (1)求2a c +的模;(2)求向量b 的坐标. 【答案】(1)1;(2)(2,1,2)b =-或(2,1,2)b =---. 【解析】 【分析】(1)求出2a c +的坐标,即可求出2a c +的模;(2)设(,,)b x y z =,则由题可知22222190x y z x y z x z +-=-⎧⎪++=⎨⎪-+=⎩,解出即可得出.【详解】解:(1)∵()2,1,2a =-,()1,0,1c =-, ∴()20,1,0a c +=, 所以21a c += ;(2)设(),,b x y z =,则由题可知222221,9,0,x y z x y z x z +-=-⎧⎪++=⎨⎪-+=⎩解得2,1,2,x y z =⎧⎪=-⎨⎪=⎩或2,1,2,x y z =-⎧⎪=-⎨⎪=-⎩ 所以()2,1,2b =-或()2,1,2b =---. 【总结提升】空间向量数量积的应用题型四:利用空间向量证明平行例10.(2021·全国·高三专题练习)如图,在四面体ABCD 中,E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点.(1)求证:E ,F ,G ,H 四点共面;(2)求证://BD 平面EFGH ;(3)设M 是EG 和FH 的交点,求证:对空间任意一点O ,有()14OM OA OB OC OD =+++. 【答案】(1)证明见解析;(2)证明见解析;(3)证明见解析 【解析】 【分析】(1)根据题意得出EF HG =可证;(2)通过证明//HE BD 可得;(3)可得四边形EFGH 为平行四边形,M 为EG 中点,即可证明. 【详解】(1)E ,F ,G ,H 分别是AB ,BC ,CD ,DA 的中点, 12EF AC ∴=,12HG AC =,EF HG ∴=,又E ,F ,G ,H 四点不共线,故E ,F ,G ,H 四点共面; (2)E ,H 分别是AB ,AD 的中点, 12HE DB ∴=,//HE DB ∴,//HE BD ∴, HE ⊂平面EFGH ,BD ⊄平面EFGH ,∴//BD 平面EFGH ;(3)由(1)知四边形EFGH 为平行四边形,M ∴为EG 中点, E ,G 分别是AB ,CD 的中点, 11111()()()()22224OM OE OG OA OB OC OD OA OB OC OD ⎡⎤∴=+=+++=+++⎢⎥⎣⎦. 例11.(2020·全国·高三专题练习(理))如图所示,平面P AD ①平面ABCD ,ABCD 为正方形,①P AD 是直角三角形,且P A =AD =2,E ,F ,G 分别是线段P A ,PD ,CD 的中点.求证:(1)PB //平面EFG ;(2)平面EFG //平面PBC .【答案】(1)证明见解析;(2)证明见解析. 【解析】(1)平面P AD ⊥平面ABCD ,且ABCD 为正方形,构建空间直角坐标系A -xyz ,并确定A ,B ,C ,D ,P ,E ,F ,G 的坐标,法一:求得(0,1,0),(1,2,1)EF EG ==-,即可确定平面EFG 的一个法向量n ,又0PB n ⋅=有n PB ⊥,则 PB //平面EFG 得证; 法二:由(2,0,2)PB =-,(0,1,0)FE =-,(1,1,1)FG =-,可知22PB FE FG =+,根据向量共面定理即有PB ,FE 与FG 共面,进而可证PB //平面EFG ;(2)由(1)有(0,1,0),(0,2,0)EF BC ==即2BC EF =,可得BC //EF ,根据线面平行的判定有EF //平面PBC ,GF //平面PBC ,结合面面平行的判定即可证平面EFG //平面PBC .【详解】(1)因为平面P AD ⊥平面ABCD ,且ABCD 为正方形,所以AB ,AP ,AD 两两垂直.以A 为坐标原点,建立如图所示的空间直角坐标系A -xyz ,则A (0,0,0),B (2,0,0),C (2,2,0),D (0,2,0),P (0,0,2),E (0,0,1),F (0,1,1),G (1,2,0). 法一:(0,1,0),(1,2,1)EF EG ==- 设平面EFG 的法向量为(,,)n x y z =,则00n EF n EG ⎧⋅=⎨⋅=⎩,即020y x y z =⎧⎨+-=⎩,令z =1,则(1,0,1)n =为平面EFG 的一个法向量, ∵(2,0,2)PB =-,∴0PB n ⋅=,所以n PB ⊥, ∵PB ⊄平面EFG , ∴PB //平面EFG .法二:(2,0,2)PB =-,(0,1,0)FE =-,(1,1,1)FG =-. 设PB sFE tFG =+,即(2,0,-2)=s (0,-1,0)+t (1,1,-1),所以202t t s t =⎧⎪-=⎨⎪-=-⎩解得s =t =2.∴22PB FE FG =+,又FE 与FG 不共线,所以PB ,FE 与FG 共面.∵PB ⊄平面EFG ,∴PB ∥平面EFG .(2)由(1)知:(0,1,0),(0,2,0)EF BC ==,∴2BC EF =,所以BC //EF .又EF ⊄平面PBC ,BC ⊂平面PBC ,所以EF //平面PBC ,同理可证GF //PC ,从而得出GF //平面PBC .又EF ∩GF =F ,EF ⊂平面EFG ,GF ⊂平面EFG ,∴平面EFG //平面PBC .【规律方法】利用空间向量证明平行的方法1.线线平行:证明两直线的方向向量共线2.线面平行:①证明该直线的方向向量与平面的某一法向量垂直;②证明直线的方向向量与平面内某直线的方向向量平行3.面面平行:①证明两平面的法向量为共线向量;②转化为线面平行、线线平行问题题型五:利用空间向量证明垂直例12.(2022·河南·宝丰县第一高级中学模拟预测(文))如图,O ,1O 是圆柱底面的圆心,1AA ,1BB ,1CC均为圆柱的母线,AB 是底面直径,E 为1AA 的中点.已知4AB =,BC =(1)证明:1AC BC ⊥;(2)若1AC BE ⊥,求该圆柱的体积.【答案】(1)见解析(2)【解析】【分析】(1)通过线面垂直证明线线垂直(2)建立空间直角坐标系,根据垂直条件解出圆柱的高(1)连结AC ,可知AC BC ⊥1CC ⊥平面ABC 1CC BC ∴⊥1CC AC C =BC ∴⊥平面1ACC1BC AC ∴⊥(2)如图,以C 为原点,1,,CA CB CC 所在直线分别为,,x y z 轴建立空间直角坐标系设圆柱的高为h可得1(2,0,0),(0,0,),(2,0,)2h A B C h E1(2,0,),(2,)2h AC h BE =-=-由题意得21402h AC BE ⋅=-+=,解得h =故圆柱的体积2V πr h ==例13.(2022·全国·高三专题练习)已知正方体ABCD -A 1B 1C 1D 1中,E 为棱CC 1上的动点.(1)求证:A 1E ⊥BD ;(2)若平面A 1BD ⊥平面EBD ,试确定E 点的位置.【答案】(1)证明见解析;(2)E 为CC 1的中点.【解析】【分析】以D 为原点,DA 、DC 、DD 1为x ,y ,z 轴,建立空间直角坐标系.(1)计算10A E BD →→⋅=即可证明;(2)求出面A 1BD 与面EBD 的法向量,根据法向量垂直计算即可.【详解】以D 为坐标原点,以DA ,DC ,DD 1所在直线分别为x 轴,y 轴,z 轴,建立空间直角坐标系,如图,设正方体的棱长为a ,则A (a ,0,0),B (a ,a ,0),C (0,a ,0),A 1(a ,0,a ),C 1(0,a ,a ).设E (0,a ,e )(0≤e ≤a ).(1)1A E →=(-a ,a ,e -a ),BD →=(-a ,-a ,0),1A E BD →→⋅=a 2-a 2+(e -a )·0=0, ∴1A E BD →→⊥,即A 1E ⊥BD ;(2)设平面A 1BD ,平面EBD 的法向量分别为1n →=(x 1,y 1,z 1),2n →=(x 2,y 2,z 2).∵DB →=(a ,a ,0),1DA →=(a ,0,a ),DE →=(0,a ,e )∴10n DB →→⋅=, 110n DA →→⋅=, 20n DB →→⋅=,10n DE →→⋅=. ∴11110,0,ax ay ax az +=⎧⎨+=⎩, 22220,0.ax ay ay ez +=⎧⎨+=⎩ 取x 1=x 2=1,得1n →=(1,-1,-1),2n →=(1,-1,a e).由平面A 1BD ⊥平面EBD 得1n →⊥2n →. ∴2-a e=0,即e =2a . ∴当E 为CC 1的中点时,平面A 1BD ⊥平面EBD .例14.(2020·全国·高三专题练习)直四棱柱1111ABCD A B C D -中,2AB BC ==,90ABC ∠=︒,E 、F 分别为棱AB 、11B C 上的点,2AE EB =,112C F FB =.求证:(1)//EF 平面11AAC C ;(2)线段AC 上是否存在一点G ,使面EFG ⊥面11AAC C .若存在,求出AG 的长;若不存在,请说明理由.【答案】(1)证明见解析(2)存在,AG =【解析】【分析】(1)以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:根据向量的坐标可得11113EF A A AC =-+,由此可证//EF 平面11AAC C ; (2)将问题转化为线段AC 上是否存在一点G ,使EG AC ⊥,则问题不难求解.【详解】(1)如图所示:以1A 为原点,11A D ,11A B ,1A A 分别为,,x y z 轴建立空间直角坐标系:则1(0,0,0)A ,1(0,2,0)B ,1(2,2,0)C ,设(0,0,)A a ,则4(0,,)3E a ,2(,2,0)3F , 所以22(,,)33EF a =-,1(0,0,)A A a =,11(2,2,0)AC =, 因为11113EF A A AC =-+,所以EF ,1A A ,11AC 共面,又EF 不在平面11AAC C 内, 所以//EF 平面11AAC C(2)线段AC 上存在一点G ,使面EFG ⊥面11AAC C ,且3AG =,证明如下:在三角形AGE 中,由余弦定理得EG ===, 所以222AG EG AE +=,即EG AG ⊥,又1A A ⊥平面ABCD ,EG ⊂平面ABCD ,、所以1A A EG ⊥,而1AG A A A ⋂=,所以EG ⊥平面11AAC C ,因为EG ⊂平面EFG ,所以EFG ⊥面11AAC C ,【规律方法】利用空间向量证明垂直的方法1.线线垂直:证明两直线所在的方向向量互相垂直,即证它们的数量积为零2.线面垂直:证明直线的方向向量与平面的法向量共线,或将线面垂直的判定定理用向量表示3.面面垂直:证明两个平面的法向量垂直,或将面面垂直的判定定理用向量表示。

高中数学新教材选择性必修第一册第一章《1.4空间向量

高中数学新教材选择性必修第一册第一章《1.4空间向量

第一章 1.4.1空间向量的应用1.掌握空点、、面的向量表示间线.线与义会数2.理解直的方向向量平面的法向量的意;用待定系法求平面的法向量.证线与线线与与问3.能用向量法明直直、直平面、平面平面的平行题.知识点一 直线的方向向量与平面的法向量怎样来线间思考 用向量表示点、直、平面在空中的位置?(2)直:线①直的方向向量:和直平行或共的非零向量线这条线线.②于直对线l 上的任一点P ,存在实数t ,使得AP ―→=t AB ―→,此方程直称为线的向量方程参数.答案 (1)点:在空中,我取一定点间们O 作基点,那空中任意一点为么间P 的位置就可以用向量OP ―→表示来.我把向量们OP ―→点称为P 的位置向量.(3)平面:①空中平面间α的位置可以由α不共向量确定内两个线.于平面对α上的任一点P ,a ,b 是平面α不共向量内两个线,存在有序则实数对(x ,y ),使得OP ―→=x a +y b .②空中平面间α的位置可以用垂直于平面的直的方向向量表示还线.梳理 (1)直的方向向量和平面的法向量线直的方线向向量能平移到直上的线_____向量,叫做直的一方向向线个量平面的法向量直线l ⊥α,取直线l 的____________,叫做平面α的法向量非零方向向量n(2)空中平行系的向量表示间关直设线l ,m 的方向向量分别为a ,b ,平面α,β的法向量分别为μ,v ,则平行线线l ∥m ⇔_____⇔a =k b (k ∈R )面平行线l ∥α⇔a ⊥μ⇔_____=0面面平行α∥β⇔μ∥v ⇔____________垂直线线l ⊥m ⇔a ⊥b ⇔_______面垂直线l ⊥α⇔a ∥μ⇔___________面面垂直α⊥β⇔μ⊥v ⇔________a ∥b a ·μμ=k v (k ∈R )a ·b =0a =k μ(k ∈R )μ·v =0知识点二 利用空间向量处理平行问题思考 (1)设v1=(a1,b1,c1),v2=(a2,b2,c2)分是直别线l1,l2的方向向量.若直线l1∥l2,向量则v1,v2足什系应满么关.答案 由直方向向量的定知若直线义线l1∥l2,直则线l1,l2的方向向量共,即线l1∥l2⇔v1∥v2⇔v1=λv2(λ∈R).(2)若已知平面外一直的方向向量和平面的法向量,向量足线则这两满哪条说线与些件可明直平面平行?线与进线答案 可探究直的方向向量平面的法向量是否垂直,而确定面是否平行.处间两关键么(3)用向量法理空中平面平行的是什?关键两个来说两.答案 是找到平面的法向量,利用法向量平行明平面平行类型一 利用方向向量和法向量判定线面的位置关系例1 (1)设a,b分是不重合的直别线l1,l2的方向向量,根据下列件判条断l1,l2的位置系:关①a=(4,6,-2),b=(-2,-3,1);②a=(5,0,2),b=(0,1,0);解 ①∵a=(4,6,-2),b=(-2,-3,1),∴a=-2b,∴a∥b,∴l1∥l2.②∵a=(5,0,2),b=(0,1,0),∴a·b=0,∴a⊥b,∴l1⊥l2.∴μ·v =-3+2+1=0,∴μ⊥v ,∴α⊥β.②∵μ=(3,0,0),v =(-2,0,0),∴μ=-32v ,∴μ∥v ,∴α∥β.(2)设μ,v 分是不同的平面别α,β的法向量,根据下列件判条断α,β的位置系:关①μ=(-1,1,-2),v =(3,2,-12); ②μ=(3,0,0),v =(-2,0,0);解①∵μ=(-1,1,-2),v =⎝ ⎛⎭⎪⎪⎫3,2,-12,(3)设μ是平面α的法向量,a 是直线l 的方向向量,根据下列件判平条断面α与l 的位置系:关①μ=(2,2,-1),a =(-6,8,4);②μ=(2,-3,0),a =(8,-12,0).解 ①∵μ=(2,2,-1),a =(-6,8,4),∴μ·a =-12+16-4=0,∴μ⊥a ,∴l ⊂α或l ∥α.②∵μ=(2,-3,0),a =(8,-∴μ=14a ,∴μ∥a ,∴l ⊥α.跟踪训练1 根据下列件,判相的、面位置系:条断应线关(1)直线l 1与l 2的方向向量分是别a =(2,3,-1),b =(-6,-9,3);解 ∵a =(2,3,-1),b =(-6,-9,3)∴a =-13b ,∴a ∥b ,∴l 1∥l 2.(2)直线l1与l2的方向向量分是别a=(-2,1,4),b=(6,3,3);解 ∵a=(-2,1,4),b=(6,3,3),∴a·b≠0且a≠k b(k∈R),∴a,b不共也不垂直,既线即l1与l2相交或面,但不垂直异.别μ=(2,-3,4),v=(4,-2,1);(3)平面α与β的法向量分是解 ∵μ=(2,-3,4),v=(4,-2,1),∴μ·v≠0且μ≠k v(k∈R),既线α和β相交但不垂直.∴μ与v不共也不垂直,即(4)直线l 的方向向量,平面α的法向量分是别a =(0,-8,12),μ=(0,2,-3).解 ∵a =(0,-8,12),μ=(0,2,-3), ∴μ=-14a ,∴μ∥a ,即l ⊥α.类型二 求平面的法向量例2 如,图ABCD 是直角梯形,∠ABC =90°,SA ⊥平面ABCD ,SA =AB =BC =1,AD =12,求平面SCD 平面与SBA 的法向量.平面设SCD 的法向量n =(1,λ,u ),解 ∵AD 、AB 、AS 是三垂直的段,条两两线∴以A 原点,以为AD ―→、AB ―→、AS ―→的方向分别为x ,轴y ,轴z 轴的正方向建立坐系,标则A (0,0,0),D ⎝ ⎛⎭⎪⎪⎫12,0,0,C (1,1,0),S (0,0,1),AD ―→=⎝ ⎛⎭⎪⎪⎫12,0,0是平面SAB 的法向量,则n ·DC ―→=(1,λ,u )·⎝ ⎛⎭⎪⎪⎫12,1,0=12+λ=0,∴λ=-12. n ·DS ―→=(1,λ,u )·⎝ ⎛⎭⎪⎪⎫-12,0,1=-12+u =0, ∴u =12,∴n =⎝ ⎛⎭⎪⎪⎫1,-12,12. 上,综平面SCD 的方向量为n =(1,-12,12),平面SBA 的法向量为AD ―→=(12,0,0).跟踪训练2 在正方体ABCD -A 1B 1C 1D 1中,求证DB 1―→是平面ACD 1的一法向量个.证明 正方体的设棱长为1,同理DB 1⊥AD 1,又AC ∩AD 1=A ,所以DB 1⊥平面ACD 1, 分以别DA ―→,DC ―→,DD 1―→位正交基底建立如所示的空直角坐系,为单图间标 则DB 1―→=(1,1,1),AC ―→=(-1,1,0),AD 1―→=(-1,0,1),于是有DB 1―→·AC ―→=0, 所以DB 1―→⊥AC ―→,即DB 1⊥AC ,而从DB ―→是平面ACD 的一法向量个.类型三 利用空间向量证明平行关系例3 已知正方体ABCD-A1B1C1D1的棱长为2,E、F分是别BB1、DD1的中点,求:证(1)FC1∥平面ADE;证明 建立如所示空直角坐系图间标Dxyz ,有则D (0,0,0),A (2,0,0),C (0,2,0),C 1(0,2,2),E (2,2,1),F (0,0,1),B 1(2,2,2),所以FC ―→1=(0,2,1),DA ―→=(2,0,0),AE ―→=(0,2,1).设n 1=(x 1,y 1,z 1)是平面ADE 的法向量,则n 1⊥DA ―→,n 1⊥AE ―→,即⎩⎪⎨⎪⎧n 1·DA ―→=2x 1=0,n 1·AE ―→=2y 1+z 1=0,得⎩⎪⎨⎪⎧x 1=0,z 1=-2y 1,令z 1=2,则y 1=-1,所以n 1=(0,-1,2).因为FC ―→1·n 1=-2+2=0,所以FC ―→1⊥n 1.又因为FC 1⊄平面ADE ,所以FC 1∥平面ADE .(2)平面ADE ∥平面B 1C 1F .令z 2=2,得y 2=-1,所以n 2=(0,-1,2),因为n 1=n 2,证明 因为C 1B ―→1=(2,0,0),设n 2=(x 2,y 2,z 2)是平面B 1C 1F 的一法向量个.由n 2⊥FC ―→1,n 2⊥C 1B ―→1,得⎩⎪⎨⎪⎧n 2·FC ―→1=2y 2+z 2=0,n 2·C1B ―→1=2x 2=0,得⎩⎪⎨⎪⎧x 2=0,z 2=-2y 2.跟踪训练3 如,四图棱锥P -ABCD 中,P A ⊥平面ABCD ,PB 底与面成的角为45°,底面ABCD 直角梯形,为∠ABC =∠BAD =90°,P A =BC = AD =1,在问棱PD 上是否存在一点E ,使CE ∥平面P AB ?若存在,求出E 点的位置;若不存在,明理由说.12解 分以别AB ,AD ,AP 为x ,轴y ,轴z 建立空直角坐系,轴间标∴P (0,0,1),C (1,1,0),D (0,2,0),∴存在E 点,点当E 为PD 中点,时CE ∥平面设E (0,y ,z ),则PE ―→=(0,y ,z -1),PD ―→=(0,2,-1),∵PE ―→∥PD ―→,∴y (-1)-2(z -1)=0, ①∵AD ―→=(0,2,0)是平面P AB 的法向量,又CE ―→=(-1,y -1,z ),CE ∥平面P AB , ∴CE ―→⊥AD ―→,∴(-1,y -1,z )·(0,2,0)=0.∴y =1,代入①得z =12,∴E 是PD 的中点,1.若A (-1,0,1),B (1,4,7)在直线l 上,直则线l 的一方向向量个为( )A.(1,2,3)B.(1,3,2)C.(2,1,3)D.(3,2,1)A 解析 因为AB ―→=(2,4,6),所以与AB ―→共的非零向量都可以作直线为线l 的方向向量.2.已知直线l 1的方向向量a =(2,-3,5),直线l 2的方向向量b =(-4,x ,y ),若直两线l 1∥l 2,则x ,y 的分是值别( )A.6和-10B.-6和10C.-6和-10D.6和10解析 由直两线l 1∥l 2,得向量两a ,b 平行,A 即2-4=-3x =5y ,所以x ,y 的值分是别6和-10.解析 能作平面为α的法向量的向量与μ=(2,-3,1)共,线(-2,3,-1)=-μ.D 3.若μ=(2,-3,1)是平面α的一法向量,下列向量中能作平面个则为α的法向量的是( )A.(0,-3,1) B.(2,0,1)C.(-2,-3,1)D.(-2,3,-1)C 4.若直线l ∥α,且l 的方向向量为(2,m,1),平面α的法向量为⎝ ⎛⎭⎪⎪⎫1,12,2,则m 为( )A.-4B.-6C.-8D.8解析 ∵l ∥α,平面α的法向量为⎝ ⎛⎭⎪⎪⎫1,12,2,∴(2,m,1)·⎝ ⎛⎭⎪⎪⎫1,12,2=0.∴2+12m +2=0.∴m =-8.解析 不妨正方体的设棱长为1,建立空直角坐系,间标各点坐:则标为A (1,0,0),C (0,1,0),D 1(0,0,1),平面设ACD 1的一法向量个a =(x ,y ,z ),5.在正方体ABCD-A 1B 1C 1D 1中,平面ACD 1的一法向量个为________.则a ·AC ―→=0, a ·AD ―→1=0.因为AC ―→=(-1,1,0),AD ―→1=(-1,0,1),所以 ⎩⎪⎨⎪⎧ (-1)·x +1·y +0·z =0,(-1)·x +0·y +1·z =0,所以⎩⎪⎨⎪⎧x -y =0,x -z =0,所以⎩⎪⎨⎪⎧x =y ,x =z ,不妨取x =1,a =(1,1,1).(注:答案不唯一,只要与所给答案共线都对)规律与方法(1)空中一直的方向向量有无间条线数个.(2)方向向量在判、面位置系起到重要的作用断线线线关时.(4)利用待定系法求平面的法向量,求出向量的、、坐是具有数横纵竖标某系的,而不是具体的,可定某坐常,再表示其他坐种关值设个标为数标.(3)段中点的向量表式:于线达对AP ―→=t AB ―→,当t =12,我就得到段中时们线点的向量表式达.点设M 是段线AB 的中点,则OM ―→=12(OA ―→+OB ―→),就是这段线AB 中点的向量表式达.(5)明面平行的方法证线个v是直线l的方向向量,则v⊥n且l上①设n是平面α的一法向量,至少有一点A∉α,则l∥α.线与内条线线“如果平面外直平面的一直平行,②根据面平行的判定定理:么这条线这个”,要明一直和一平面平行,也可证条线个那直和平面平行内个与线线.以在平面找一向量已知直的方向向量是共向量个两个线③根据共面向量定理可知,如果一向量和不共的向量是共面向么这个与这两个线证量,那向量不共向量确定的平面必定平行,因此要明平面外一直和一平面平行,只要明直的方向向量能条线个证这条线够内两个线线.用平面不共向量性表示即可(6)明面面平行的方法证证转为线证个内两条①面面平行的明可化面平行的明,即如果一平面的线别么这两个.相交直分平行于另一平面,那平面平行②利用平面的法向量,明面面平行,即如果证a⊥平面α,b⊥平面β,且a∥b,那么α∥β.第一章 1.4.2空间向量的应用断简单线线线关.1.能用向量法判一些、面、面面垂直系语线与线线与与2.能用向量言表述直直、直平面、平面平面的垂直关.系证间线关关.3.能用向量方法明空面垂直系的有定理知识点一 向量法判断线线垂直思考 若直线l 1的方向向量为μ1=(1,3,2),直线l 2的方向向量为μ2=(1,-1,1),那直是否垂直?用向量法判直垂直的一般方法么两线断两条线是什?么答案 l 1与l 2垂直,因为μ1·μ2=1-3+2=0,所以μ1⊥μ2,又μ1,μ2是直的方向向量,所以两线l 1与l 2垂直.(2)判直的方向向量的量是否零,若量零,直垂断两线数积为数积为则两线直,否不垂直则.判直是否垂直的方法:断两条线(1)在直上分取点两线别两A 、B 与C 、D ,计算向量AB ―→与CD ―→的坐,若标AB ―→·CD ―→=0,直垂直,否不垂直则两线则.知识点二 向量法判断线面垂直梳理 直设线l 的方向向量为a =(a 1,a 2,a 3),直线m 的方向向量为b =(b 1,b 2,b 3),则l ⊥m ⇔____=0⇔__________________a·b a 1b 1+a 2b 2+a 3b 3=0思考 若直线l 的方向向量为μ1=⎝ ⎛⎭⎪⎪⎫2,43,1,平面α的法向量为μ2=⎝ ⎛⎭⎪⎪⎫3,2,32,直则线l 平面与α的位置系是的?如何用向量法判直平面的位置关怎样断线与系?关判直平面的位置系的方法:断线与关(1)直的方向向量平面的法向量共线与线⇒l ⊥α.(2)直的方向向量平面的法向量垂直线与⇒直平面平行或直在平面线与线内.(3)直的方向向量平面的相交直的方向向量垂直线与内两线⇒l ⊥α 答案 垂直,因为μ1=23μ2,所以μ1∥μ2,即直的方向向量平面的法向量线与平行,所以直线l 平面与α垂直.梳理 直设线l的方向向量a=(a1,b1,c1),平面α的法向量μ=(a2,b2,c2),则l⊥α⇔a∥μ⇔____________.a=kμ(k∈R)知识点三 向量法判断面面垂直思考 平面α,β的法向量分别为μ1=(x1,y1,z1),μ2=(x2,y2,z 2),用向量坐法表示平面标两α,β垂直的系式是什?关么答案 x1x2+y1y2+z1z2=0.梳理 若平面α的法向量为μ=(a1,b1,c1),平面β的法向量为ν=(a2,b2,c2),则α⊥β⇔μ⊥ν⇔μ·ν=0⇔__________________.a1a2+b1b2+c1c2=0类型一 证明线线垂直例1 已知正三柱棱ABC —A 1B 1C 1的各都棱长为1,M 是底面上BC 的边中点,N 是侧棱CC 1上的点,且CN =14CC 1.求:证AB 1⊥MN .证明 设AB 中点为O ,作OO 1∥AA 1.以O 坐原点,为标OB 为x ,轴OC 为y ,轴OO 1为z 建立如所示的空直角坐系轴图间标. ∵M 为BC 中点,由已知得A ⎝ ⎛⎭⎪⎪⎫-12,0,0,B ⎝ ⎛⎭⎪⎪⎫12,0,0,C ⎝ ⎛⎭⎪⎪⎫0,32,0, N ⎝ ⎛⎭⎪⎪⎫0,32,14,B 1⎝ ⎛⎭⎪⎪⎫12,0,1,∴M ⎝ ⎛⎭⎪⎪⎫14,34,0. ∴MN ―→=⎝ ⎛⎭⎪⎪⎫-14,34,14,AB ―→1=(1,0,1),∴MN ―→·AB ―→1=-14+0+14=0. ∴MN ―→⊥AB ―→1,∴AB 1⊥MN .跟踪训练1 已知如,在直三柱图棱ABC—A 1B 1C 1中,AC =3,BC =4,AB =5,AA 1=4,求:证AC ⊥BC 1.证明 ∵直三柱棱ABC -A 1B 1C 1底面三边长AC =3,BC =4,AB =5,∴AC 、BC 、C 1C 垂直两两.如,以图C 坐原点,为标CA 、CB 、CC 1所在直分线别为x 、轴y 、轴z 建立空直角坐系轴间标.则C (0,0,0),A (3,0,0),C 1(0,0,4),B (0,4,0),∵AC ―→=(-3,0,0),BC ―→1=(0,-4,4),∴AC ―→·BC ―→1=0.∴AC ⊥BC 1.类型二 证明线面垂直例2 如所示,在正方体图ABCD-A1B1C1D1中,O为AC与BD的交点,G为CC1的中点.求:证A1O⊥平面GBD.证明 方法一 如以图D 坐原点,为标DA 、DC 、DD 1所在的直分线别为x ,轴y ,轴z 建立空直角坐系轴间标.正方体设棱长为2,则O (1,1,0),A 1(2,0,2),G (0,2,1),B (2,2,0),D (0,0,0),∴OA 1⊥平面GBD . ∴OA ―→1=(1,-1,2),OB ―→=(1,1,0),BG ―→=(-2,0,1),而OA ―→1·OB ―→=1-1+0=0,OA ―→1·BG ―→=-2+0+2=0.∴OA ―→1⊥OB ―→,OA ―→1⊥BG ―→,即OA 1⊥OB ,OA 1⊥BG ,而OB ∩BG =B ,平面设GBD 的一法向量个为n =(x ,y ,z ),令x =1,得z =2,y =-1,∴平面GBD 的一法向量个为(1,-1,2), ∴A 1O ―→∥n ,∴A 1O ⊥平面GBD .方法二 同方法一建系后,BG ―→=(-2,0,1),BD ―→=(-2,-2,0),则⎩⎪⎨⎪⎧ BG ―→·n =0,BD ―→·n =0,∴⎩⎪⎨⎪⎧ -2x +z =0,-2x -2y =0,然显A 1O ―→=(-1,1,-2)=-n ,跟踪训练2 如,方体图长ABCD-A1B1C1D1中,AB=AD=1,AA1=2,点P为DD1的中点.求:直证线PB1⊥平面P AC.证明 如建系,图C (1,0,0),A (0,1,0),P (0,0,1),B 1(1,1,2),PC ―→=(1,0,-1),P A ―→=(0,1,-1),PB ―→1=(1,1,1),B 1C ―→=(0,-1,-2),B 1A ―→=(-1,0,-2).PB ―→1·PC ―→=(1,1,1)·(1,0,-1)=0,所以PB ―→1⊥PC ―→,即PB 1⊥PC .又PB ―→1·PA ―→=(1,1,1)·(0,1,-1)=0,所以PB ―→1⊥P A ―→,即PB 1⊥P A .又P A ∩PC =P ,所以PB 1⊥平面P AC .类型三 证明面面垂直例3 在四面体ABCD中,AB⊥平面BCD,BC=CD,∠BCD=证90°,∠ADB=30°,E、F分是别AC、AD的中点,求:平面BEF⊥平面ABC.证明 以B 原点建立如所示的空直角坐系,为图间标平面设ABC 的法向量为n 1=(x 1,y 1,z 1),设A (0,0,a ),易得则B (0,0,0),C ⎝ ⎛⎭⎪⎪⎫32a ,32a ,0,D (0,3a,0),E ⎝ ⎛⎭⎪⎪⎫34a ,34a ,a 2,F (0,32a ,a 2), 故AB ―→=(0,0,-a ),BC ―→=⎝ ⎛⎭⎪⎪⎫32a ,32a ,0.则⎩⎪⎨⎪⎧ n 1·AB ―→=0,n 1·BC ―→=0,即⎩⎪⎨⎪⎧ -az 1=0,x 1+y 1=0,设n2=(x2,y2,z2)平面为BEF的一法向量,个取x1=1,∴n1=(1,-1,0)平面为ABC的一法向量个.同理可得n2=(1,1,-3).∵n1·n2=(1,-1,0)·(1,1,-3)=0,∴平面BEF⊥平面ABC.。

法向量的算法与举例

法向量的算法与举例

法向量的算法与举例摘要高中数学中的向量作为沟通代数与几何的桥梁,大大简化了几何问题的运算量。

然而在高中数学体系中,几何占有很重要的地位,有些几何问题用常规的方法去解决往往比较繁杂,而运用向量能使过程得到大大的简化。

[1]用向量法解决几何问题有着思路清晰、过程简洁的优点。

[2]在立体几何中常用法向量来解决距离问题,夹角问题,于是求法向量又是一个新问题。

如果能够掌握平面法向量的快速求法,那么在解决立体几何问题中一定会有事半功倍之效。

关键词:法向量;矩阵;行列式;速算一、法向量的定义如果向量平面,那么向量叫做平面的法向量。

由定义可知,法向量并不是唯一的,以致只要是与平面互相垂直的向量都可以作为平面的法向量。

二、法向量的算法1、待定系数法求法向量与举例在给定的空间直角坐标系中,设平面的法向量 [或,或 ],在平面内任找两个不共线的向量。

由,得且,由此得到关于的方程组,解此方程组即可得到 .具体步骤如下:①联立方程②消元求解③得出结论举例:如果,那么与的法向量为?解:设,因为,,则,,得,①-②得,,取,,(注意:给其中一个字母取一个不为零的值)。

例1 如图,在四棱锥S-ABCD中,S A⊥平面ABCD,底面ABCD是菱形,S A =AB=2,∠BAD=60°,E是PA的中点.(1)求证:直线S C∥平面BDE;证明设AC∩BD=O.因为∠BAD=60°,AB=2,底面ABCD为菱形,s所以BO=1,AO=CO=,AC⊥BD.如图,以O为坐标原点,以OB,OC所在直线分别为x轴,y 轴,过点O且平行于S A的直线为z轴,建立空间直角坐标系O-xyz,则S(0,-,2),A(0,-,0),B(1,0,0),C(0,,0),D(-1,0,0),E(0,-,1).(1)设平面BDE的法向量为n1=(x1,y1,z1),因为BE=(-1,-,1),BD=(-2,0,0),由得令z1=,得y1=1,所以n1=(0,1,).又=(0,2,-2),所以·n1=0+2-2=0,即⊥n1,又,所以S C∥平面BDE.例 2 如图,在直三棱柱ADE—BCF中,面ABFE和面ABCD都是正方形且互相垂直,M为AB的中点,O为DF的中点.运用向量方法证明:(1)OM∥平面BCF;(2)平面MDF⊥平面EFCD.解:(1)略( 2)建系如右图,设平面MDF与平面EFCD的一个法向量分别为n1=(x1,y1,z1),n2=(x2,y2,z2).∵DF=(1,-1,1),DM=,DC=(1,0,0),由n1·DF=n1·DM=0,得解得令x1=1,则n1=.同理可得n2=(0,1,1).∵n1·n2=0,∴平面MDF⊥平面EFCD.1.行列式法求法向量与举例向量=(x,y,z ),=(x,y,z )是平面内的两个不共线向量,则向量=(y z-y z,-(x z-x z ),x y-x y )是平面的一个法向量.如果用二阶行列式表示,则=(,-, ) ,这更便于记忆和计算.(注:1、行列式:;2、纵坐标前边要加一个负号).具体步骤:①竖着列出平面内的两个不共线向量②算出法向量的三个坐标(要算横坐标,就把已知两个向量的横坐标那一列遮起来用纵坐标和竖坐标求,其它坐标相同的求法)③得到平面的法向量。

空间向量及应用课件-2023届高三数学一轮复习

空间向量及应用课件-2023届高三数学一轮复习
2.空间向量基本定理
如果三个向量a,b,c不共面,那么对任意一个空间向量p,存在唯
p=xa+yb+zc
一的有序实数组(x,y,z),使得____________.
3.空间向量的数量积
(1)两向量的夹角
①已知两个非零向量a,b,在空间任取一点O,作OA=a,OB=b,
则________叫做向量a,b的夹角,记作〈a,b〉.
第五节 空间向量及应用
【课标标准】 1.了解空间直角坐标系,会用空间直角坐标系刻画
点的位置,会简单应用空间两点间的距离公式.2.了解空间向量的概念,
了解空间向量基本定理及其意义,掌握空间向量的正交分解及其坐标
表示.3.掌握空间向量的线性运算、数量积及其坐标表示.能用向量的
数量积判断向量的共线和垂直.4.理解直线的方向向量与平面的法向
7 = 2m − n
∴ 6 = m + 2n ,
λ = −3m + 3n
解得λ=-9.
5.(易错)在正方体ABCD -
1
A1B1C1D1中,1 = 1 1 ,AE=xAA1 +
4
1
1
y(AB + AD),则x=______,y=________.
4
解析:由向量加法的三角形法则得AE=AA1 +1 ,由平行四边形法则得:
(1)求证:PA⊥平面ABCD;
(2)在侧棱PC上是否存在一点F,使得BF∥平面AEC?若存在,指出
F点的位置,并证明;若不存在,说明理由.
专题突破❼
与球有关的切、接问题
[常用结论]
1.长方体的外接球
(1)球心:体对角线的交点;
a2 +b2 +c2
(a,b,c为长方体的长、宽、高).

高中 空间向量的应用 知识点+例题 分类全面

高中 空间向量的应用 知识点+例题 分类全面

[例1] 若直线1l 与2l 的方向向量分别为)4,4,2(-=a 与)6,9,6(-=b ,则两条直线的位置关系是_________.垂直[巩固1] 已知直线l 的一个方向向量为)2,1,1(--=a ,平面α的一个法向量为)4,2,2(--=b ,则直线l 与平面α的位置关系是____________.垂直[巩固2]两个不重合平面的法向量分别为)1,0,1(1-=v 与)2,0,2(2-=v ,则这两个平面的位置关系是___________.平行[巩固3]已知直线l 的方向向量是e ,平面α,β的法向量分别是1n 与2n ,若a =βα ,且1n e ⊥,2n e ⊥,则l 与a 的关系是_______.平行或重合[例2] 已知平面α,β的法向量分别是(-2,3,m ),(4,λ,0),若α∥β,则λ+m 的值_________.-6[巩固1] 已知平面α的法向量是(2,3,-1),平面β的法向量是(4,λ,-2),若α//β,则λ的值为_______.6[巩固2] 若平面α,β的法向量分别是(-1,2,4),(x ,-1,-2)并且α⊥β,则x 的值为_________.-10[例3] 已知正方体ABCD-A 1B 1C 1D 1的棱长为2,E ,F 分别是BB 1,DD 1的中点,求证: (1)FC 1∥平面ADE ; (2)平面ADE ∥平面B 1C 1F .精典例题透析[巩固]在边长是2的正方体ABCD-A 1B 1C 1D 1中,E ,F 分别为AB ,A 1C 的中点.应用空间向量方法求解下列问题. (1)求EF 的长(2)证明:EF ∥平面AA 1D 1D ; (3)证明:EF ⊥平面A 1CD.1.求异面直线所成角设异面直线l 1,l 2的方向向量分别为m 1,m 2,则l 1与l 2所成的角θ满足cos θ=><21,cos m m .(]2,0(πθ∈)[例]已知直三棱柱ABC —A 1B 1C 1,∠ACB =90°,CA =CB =CC 1,D 为B 1C 1的中点,求异面直线BD 和A 1C 所成角的余弦值.如图所示,以C 为原点,直线CA 、CB 、CC 1分别为x 轴、y 轴、z 轴建立空间直角坐标系. 设CA =CB =CC 1=2,则A 1(2,0,2),C (0,0,0),B (0,2,0),D (0,1,2), ∴BD →=(0,-1,2),A 1C →=(-2,0,-2),知识模块3空间向量的应用∴cos 〈BD →,A 1C →〉=BD →·A 1C →|BD →||A 1C →|=-105.∴异面直线BD 与A 1C 所成角的余弦值为105.[巩固]如图所示,在棱长为a 的正方体ABCD —A 1B 1C 1D 1中,求异面直线BA 1和AC 所成的角.解 ∵BA 1→=BA →+BB 1→,AC →=AB →+BC →,∴BA 1→·AC →=(BA →+BB 1→)·(AB →+BC →) =BA →·AB →+BA →·BC →+BB 1→·AB →+BB 1→·BC →. ∵AB ⊥BC ,BB 1⊥AB ,BB 1⊥BC , ∴BA →·BC →=0,BB 1→·AB →=0, BB 1→·BC →=0,BA →·AB →=-a 2, ∴BA 1→·AC →=-a 2. 又BA 1→·AC →=|BA 1→|·|AC →|·cos 〈BA 1→,AC →〉,∴cos 〈BA 1→,AC →〉=-a 22a ×2a=-12.∴〈BA 1→,AC →〉=120°.∴异面直线BA 1与AC 所成的角为60°.2.求线面所成角设直线l 的方向向量和平面α的法向量分别为m ,n ,则直线l 与平面α所成角θ满足sin θ=><n m ,cos .(]2,0[πθ∈)[例]如图,已知两个正方形ABCD 和DCEF 不在同一平面内,M ,N 分别为AB ,DF 的中点.若平面ABCD ⊥平面DCEF ,求直线MN 与平面DCEF 所成角的正弦值.设正方形ABCD ,DCEF 的边长为2,以D 为坐标原点,分别以射线DC ,DF ,DA 为x ,y ,z 轴正半轴建立空间直角坐标系如图.则M (1,0,2),N (0,1,0),可得MN →=(-1,1,-2). 又DA →=(0,0,2)为平面DCEF 的法向量,可得cos 〈MN →,DA →〉=MN →·DA →|MN →||DA →|=-63.所以MN 与平面DCEF 所成角的正弦值为|cos 〈MN →,DA →〉|=63.[巩固]如图所示,在几何体ABCDE 中,△ABC 是等腰直角三角形,∠ABC =90°,BE 和CD 都垂直于平面ABC ,且nmαlnmαlBE =AB =2,CD =1,点F 是AE 的中点.求AB 与平面BDF 所成角的正弦值. 解 以点B 为原点,BA 、BC 、BE 所在的直线分别为x ,y ,z 轴, 建立如图所示的空间直角坐标系,则B (0,0,0),A (2,0,0),C (0,2,0),D (0,2,1),E (0,0,2),F (1,0,1). ∴BD →=(0,2,1),DF →=(1,-2,0). 设平面BDF 的一个法向量为 n =(2,a ,b ),∵n ⊥DF →,n ⊥BD →,∴⎩⎪⎨⎪⎧n ·DF →=0,n ·BD →=0.即⎩⎪⎨⎪⎧(2,a ,b )·(1,-2,0)=0,(2,a ,b )·(0,2,1)=0. 解得a =1,b =-2.∴n =(2,1,-2). 设AB 与平面BDF 所成的角为θ,则法向量n 与BA →的夹角为π2-θ,∴cos ⎝⎛⎭⎫π2-θ=BA →·n |BA →||n |=(2,0,0)·(2,1,-2)2×3=23,即sin θ=23,故AB 与平面BDF 所成角的正弦值为23.3.求二面角(],0[πθ∈)如图①,AB 、CD 是二面角α—l —β的两个面内与棱l 垂直的直线,则二面角的大小θ=><CD AB ,.如图②③,n 1,n 2分别是二面角α—l —β的两个半平面α,β的法向量,则二面角的大小θ满足cos θ=><21,cos n n 或><-21,cos n n .[例]如图,ABCD 是直角梯形,∠BAD =90°,SA ⊥平面ABCD ,SA =BC =BA =1,AD =12,求面SCD 与面SBA 所成角的余弦值大小.建系如图,则A (0,0,0), D ⎝⎛⎭⎫12,0,0,C (1,1,0), B (0,1,0),S (0,0,1), ∴AS →=(0,0,1),SC →=(1,1,-1),SD →=⎝⎛⎭⎫12,0,-1,AB →=(0,1,0),AD →=⎝⎛⎭⎫12,0,0. ∴AD →·AS →=0,AD →·AB →=0. ∴AD →是面SAB 的法向量,设平面SCD 的法向量为n =(x ,y ,z ),则有n ·SC →=0且n ·SD →=0.即⎩⎪⎨⎪⎧x +y -z =0,12x -z =0.令z =1,则x =2,y =-1.∴n =(2,-1,1).∴cos 〈n ,AD →〉=n ·AD →|n ||AD →|=2×126×12=63.故面SCD 与面SBA 所成的二面角的余弦值为63.[巩固]如图,在三棱锥S —ABC 中,侧面SAB 与侧面SAC 均为等边三角形,∠BAC =90°,O 为BC 中点.(1)证明:SO ⊥平面ABC ;(2)求二面角A —SC —B 的余弦值.(1)证明 由题设AB =AC =SB =SC =SA .连接OA ,△ABC 为等腰直角三角形,所以OA =OB =OC =22SA ,且AO ⊥BC .又△SBC 为等腰三角形,故SO ⊥BC ,且SO =22SA .从而OA 2+SO 2=SA 2,所以△SOA 为直角三角形,SO ⊥AO . 又AO ∩BC =O ,所以SO ⊥平面ABC .(2)解 以O 为坐标原点,射线OB 、OA 、OS 分别为x 轴、y 轴、z 轴的正半轴,建立如图的空间直角坐标系Oxyz ,如右图. 设B (1,0,0),则C (-1,0,0), A (0,1,0),S (0,0,1).SC 的中点M ⎝⎛⎭⎫-12,0,12, MO →=⎝⎛⎭⎫12,0,-12,MA →=⎝⎛⎭⎫12,1,-12, SC →=(-1,0,-1), ∴MO →·SC →=0,MA →·SC →=0.故MO ⊥SC ,MA ⊥SC ,〈MO →,MA →〉等于二面角A —SC —B 的平面角.cos 〈MO →,MA →〉=MO →·MA →|MO →||MA →|=33,所以二面角A —SC —B 的余弦值为33.4.异面直线间距离的求法与两条异面直线均垂直、相交的直线叫两条异面直线的公垂线,两条异面直线的公垂线有且只有一条. 两条异面直线的公垂线段的长度,叫两条异面直线的距离.设l 1,l 2是两条异面直线,n 是l 1,l 2的公垂线段AB 的方向向量,又C 、D 分别是l 1,l 2上的任意两点,则nn DC AB ⋅=[例]正四面体ABCD ,棱长均为a 求异面直线AD 、BC 的距离。

高中数学第一章空间向量与立体几何1.4空间向量的应用1.4.1用空间向量研究直线平面的位置关系第1课

高中数学第一章空间向量与立体几何1.4空间向量的应用1.4.1用空间向量研究直线平面的位置关系第1课
SA⊥平面ABCD,SA=AB=BC=1,AD=
(1)求平面ABCD的一个法向量;
(2)求平面SAB的一个法向量;
(3)求平面SCD的一个法向量.
1
2
,试建立适当的坐标系.
解 以点A为原点,AD,AB,AS所在的直线分别为x轴、y轴、z轴,建立如图所
示的空间直角坐标系,

1
A(0,0,0),B(0,1,0),C(1,1,0),D( ,0,0),S(0,0,1).
设 Q(0,1,m).
(方法 1)因为 =
=
1
-1,0, 2
1 1 1
- ,- ,
2 2 2
, 1 =(-1,-1,1),所以 ∥ 1 ,于是 OP∥BD1.
1
, =(-1,0,m),当 m=2时,
= ,即 AP∥BQ,有平面 PAO∥平
面 D1BQ,故当 Q 为 CC1 的中点时,平面 D1BQ∥平面 PAO.
是共面向量,即满足p=xa+yb(x,y∈R),则p,a,b共面,从而可证直线与平面平
行.
(2)利用共线向量法:证明直线的方向向量p与该平面内的某一向量共线,再
结合线面平行的判定定理即可证明线面平行.
(3)利用法向量法:求出直线的方向向量与平面的法向量,证明方向向量与
法向量垂直,从而证明直线与平面平行.




01
基础落实•必备知识全过关
02
重难探究•能力素养全提升
03
学以致用•随堂检测全达标
基础落实•必备知识全过关
知识点1 空间中点、直线和平面的向量表示
1.点的位置向量
在空间中,我们取一定点O作为基点,那么空间中任意一点P就可以用向量

高中数学第一章空间向量与立体几何1.2空间向量在立体几何中的应用1.2.2空间中的平面与空间向量课件

高中数学第一章空间向量与立体几何1.2空间向量在立体几何中的应用1.2.2空间中的平面与空间向量课件

【例1】如图,四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,E为PD
的中点.AB=AP=1,AD= √3 ,试建立恰当的空间直角坐标系,求平面ACE的
一个法向量.
解因为PA⊥平面ABCD,底面ABCD为矩形,所以AB,AD,AP两两垂直.
如图,以 A 为坐标原点, , , 的方向为 x 轴,y 轴,z 轴的正方向,建立空间
· = 0,


- = 0,
· = 0,
= 3,
解得
令 z=1,则 x=y=3,
= .
故平面 ABC 的一个法向量为 n=(3,3,1).
探究点二 有关空间向量的证明问题
角度1利用空间向量证明平行问题
【例2】 已知正方体ABCD-A1B1C1D1的棱长为2,E,F分别是BB1,DD1的中点,
第一章
1.2.2 空间中的平面与空间向量
课标要求
1.理解平面的法向量的定义并能在空间直角坐标系中正确地求出某一平
面的法向量;
2.能用向量语言表达线面、面面的垂直、平行关系;
3.理解三垂线定理及其逆定理.




01
基础落实•必备知识全过关
02
重难探究•能力素养全提升
03
学以致用•随堂检测全达标
基础落实•必备知识全过关
共线向量表示且直线不在平面内;③证明直线的方向向量与平面的法向量
垂直且直线不在平面内,如例2(1)中,FC1⊄平面ADE一定不能漏掉.
(2)利用空间向量证明面面平行,通常是证明两平面的法向量平行.当然要
注意当法向量坐标中有0时,要使用n1=λn2这一形式.
变式训练2
如图,在四棱锥P-ABCD中,PA⊥平面ABCD,PB与底面所成的角为45°,底面

2023-2024学年高二数学单元速记——空间向量与立体几何(知识归纳+题型突破)(解析版)

2023-2024学年高二数学单元速记——空间向量与立体几何(知识归纳+题型突破)(解析版)

第一章空间向量与立体几何(知识归纳+题型突破)1.能够理解空间向量的概念,运算、背景和作用;2.能够依托空间向量建立空间图形及图形关系的想象力;3.能够掌握空间向量基本定理,体会其作用,并能简单应用;4.能够运用空间向量解决一些简单的实际问题,体会用向量解决一类问题的思路.一、空间向量的有关概念1、概念:在空间,我们把具有大小和方向的量叫做空间向量,空间向量的大小叫做空间向量的长度或模;如空间中的位移速度、力等.2、几类特殊的空间向量名称定义及表示零向量长度为0的向量叫做零向量,记为0单位向量模为1的向量称为单位向量相反向量与向量a 长度相等而方向相反的向量,称为a 的相反向量,记为a- 共线向量表示空间向量的有向线段所在的直线互相平行或重合的向量共面向量平行于同一个平面的向量二、空间向量的有关定理1、共线向量定理:对空间任意两个向量,(0)a b b ≠ ,a b 的充要条件是存在实数λ,使a b λ=.(1)共线向量定理推论:如果l 为经过点A 平行于已知非零向量a的直线,那么对于空间任一点O ,点P 在直线l 上的充要条件是存在实数t ,使OP OA ta =+ ①,若在l 上取AB a = ,则①可以化作:OP OA t AB=+(2)拓展(高频考点):对于直线外任意点O ,空间中三点,,P A B 共线的充要条件是OP OA AB λμ=+,其中1λμ+=2、共面向量定理如果两个向量,a b 不共线,那么向量p 与向量,a b共面的充要条件是存在唯一的有序实数对(,)x y ,使p xa yb=+ (1)空间共面向量的表示如图空间一点P 位于平面ABC 内的充要条件是存在有序实数对(,)x y ,使AP xAB yAC =+.或者等价于:对空间任意一点O ,空间一点P 位于平面ABC 内(,,,P A B C 四点共面)的充要条件是存在有序实数对(,)x y ,使OP OA xAB y AC =++,该式称为空间平面ABC 的向量表示式,由此可知,空间中任意平面由空间一点及两个不共线向量唯一确定.(2)拓展对于空间任意一点O ,四点,,,P C A B 共面(其中,,C A B 不共线)的充要条件是OP xOC yOA zOB =++(其中1x y z ++=).3、空间向量基本定理如果向量三个向量,,,a b c 不共面,那么对空间任意向量,p 存在有序实数组{},,,x y z 使得.p xa yb zc =++三、空间向量的数量积1、空间两个向量的夹角(1)定义:已知两个非零向量,a b ,在空间任取一点O ,作 OA a = ,OB b =,则么AOB ∠叫做向量,a b的夹角,记,a b <>.(2)范围:[],0,a b π<>∈r r.特别地,(1)如果,2a b π<>= ,那么向量,a b 互相垂直,记作a b ⊥ .(2)由概念知两个非零向量才有夹角,当两非零向量同向时,夹角为0;反向时,夹角为π,故a,b 0<>=(或a,b π<>= )//a b ⇔ (,a b为非零向量).(3)零向量与其他向量之间不定义夹角,并约定0 与任何向量a都是共线的,即0a .两非零向量的夹角是唯一确定的.(3)拓展(异面直线所成角与向量夹角联系与区别)若两个向量,a b所在直线为异面直线,两异面直线所成的角为θ,(1)向量夹角的范围是0<<,a b ><π,异面直线的夹角θ的范围是0<θ<2π,(2)当两向量的夹角为锐角时,,a b θ=<>;当两向量的夹角为2π时,两异面直线垂直;当两向量的夹角为钝角时,,a b θπ=-<>.2、空间向量的数量积定义:已知两个非零向量a ,b ,则||||cos ,a b a b <> 叫做a ,b 的数量积,记作a b ⋅;即||||cos ,a b a b a b ⋅=<>.规定:零向量与任何向量的数量积都为0.3、向量a的投影3.1.如图(1),在空间,向量a 向向量b投影,由于它们是自由向量,因此可以先将它们平移到同一个平面α内,进而利用平面上向量的投影,得到与向量b 共线的向量c ,||cos ,||bc a a b b =<>向量c 称为向量a 在向量b 上的投影向量.类似地,可以将向量a向直线l 投影(如图(2)).3.2.如图(3),向量a 向平面β投影,就是分别由向量a的起点A 和终点B 作平面β的垂线,垂足分别为A ',B ',得到A B '' ,向量A B '' 称为向量a 在平面β上的投影向量.这时,向量a ,A B ''的夹角就是向量a 所在直线与平面β所成的角.4、空间向量数量积的几何意义:向量a ,b 的数量积等于a 的长度||a 与b 在a方向上的投影||cos ,b a b <> 的乘积或等于b的长度||b 与a 在b方向上的投影||cos ,a a b <> 的乘积.5、数量积的运算:(1)()()a b a b λλ⋅=⋅,R λ∈.(2)a b b a ⋅=⋅(交换律).(3)()a b c a b a c ⋅+=⋅+⋅(分配律).四、空间向量的坐标表示及其应用设123(,,)a a a a = ,123(,,)b b b b =,空间向量的坐标运算法则如下表所示:数量积a b a b a b a b ⋅=112233++共线(平行)(0)a b b ≠ ()112233a b a b a b R a bλλλλλ=⎧⎪⇔=⇔=∈⎨⎪=⎩ 垂直a b ⊥⇔11223300a b a b a b a b ⋅=⇔++= (,a b 均为非零向量)模22222||||a a a a a a ===++123,即222||a a a a =++123 夹角cos ,a b <>=112233222222123123a b |a ||b |a b a b a b a a a b b b ++⋅=++++五、直线的方向向量和平面的法向量1、直线的方向向量如图①,a 是直线l 的方向向量,在直线l 上取AB a =,设P 是直线l 上的任意一点,则点P 在直线l 上的充要条件是存在实数t ,使得AP ta = ,即AP t AB=2、平面法向量的概念如图,若直线l α⊥,取直线l 的方向向量a ,我们称a 为平面α的法向量;过点A 且以a为法向量的平面完全确定,可以表示为集合{|0}P a AP ⋅=.3、平面的法向量的求法求一个平面的法向量时,通常采用待定系数法,其一般步骤如下:设向量:设平面α的法向量为(,,)n x y z =选向量:选取两不共线向量,AB AC列方程组:由00n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩列出方程组解方程组:解方程组0n AB n AC ⎧⋅=⎪⎨⋅=⎪⎩赋非零值:取其中一个为非零值(常取±1)得结论:得到平面的一个法向量.六、空间位置关系的向量表示七、向量法求空间角1、异面直线所成角设异面直线1l 和2l 所成角为θ,其方向向量分别为u ,v;则异面直线所成角向量求法:①cos ,||||u vu v u v ⋅<>=;②cos |cos ,|u v θ=<> 2、直线和平面所成角设直线l 的方向向量为a ,平面α的一个法向量为n,直线l 与平面α所成的角为θ,则①cos ,||||a na n a n ⋅<>=;②sin |cos ,|a n θ=<> .3、平面与平面所成角(二面角)(1)如图①,AB ,CD 是二面角l αβ--的两个面内与棱l 垂直的直线,则二面角的大小,AB CD θ=<>.(2)如图②③,1n ,2n分别是二面角l αβ--的两个半平面,αβ的法向量,则二面角的大小θ满足:①121212cos ,||||n n n n n n ⋅<>=;②12cos cos ,n n θ=±<>若二面角为锐二面角(取正),则12cos |cos ,|n n θ=<>;若二面角为顿二面角(取负),则12cos |cos ,|n n θ=-<>;(特别说明,有些题目会提醒求锐二面角;有些题目没有明显提示,需考生自己看图判定为锐二面角还是钝二面角.)八、向量法求距离(2)两条平行直线之间的距离求两条平行直线l ,m 之间的距离,直线m 的距离.(3)求点面距,(4)线面距、面面距均可转化为点面距离,用求点面距的方法进行求解直线a与平面α之间的距离:两平行平面,αβ之间的距离:d题型一空间关系的证明BM平面ADEF;(1)求证://(2)求证:BC⊥平面BDE.【答案】(1)证明见解析(2)证明见解析【分析】(1)通过中位线得到线线平行,利用判定定理可证或利用法向量证明线面平行;(2)利用面面垂直的性质得到线面垂直,结合线面垂直的判定可证或利用直线的方向向量与平面的法向量平行可证.【详解】(1)解法一:证明:取DE 中点N ,连结AN ,MN ,由三角形中位线性质可得//MN CD 且12MN CD =,又因为//AB CD 且12AB CD =,所以//MN AB 且MN AB =,所以ABMN 是平行四边形,所以//BM AN ,又AN ⊂平面ADEF ,BM ⊄平面ADEF ,所以//BM 平面ADEF .解法二:证明:因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,DE AD ⊥,所以DE ⊥平面ABCD ,又DC ⊂平面ABCD ,所以DE DC ⊥.如图,以D 为原点,以DA,DC ,DE 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,则()()()()()2,2,00,4,00,0,00,0,20,2,1B C D E M ,,,,.因为(2,0,1)BM =-,易知(0,1,0)n =' 为平面ADEF 的一个法向量.因此0BM n '⋅=,所以BM n '⊥ .又BM ⊄平面ADEF ,所以//BM 平面ADEF .(2)解法一:证明:因为BD =,BC =4CD =,所以222BD BC CD +=,所以BD BC ⊥.因为平面ADEF ⊥平面ABCD ,平面ADEF 平面ABCD AD =,DE AD ⊥,所以DE ⊥平面ABCD ,又BC ⊂平面ABCD ,所以DE BC ⊥.又BD DE D ⋂=,,BD DE ⊂平面BDE ,所以BC ⊥平面BDE .解法二:由(1)可得(2,2,0)DB = ,(0,0,2)DE = ,(2,2,0)BC =-.设平面BDE 的一个法向量(,,)n x y z = ,则22020n DB x y n DE z ⎧⋅=+=⎪⎨⋅==⎪⎩,取1x =,得10y z =-=,,所以(1,1,0)=-n 是平面BDE 的一个法向量.因此2BC n =-,所以BC ⊥平面BDE .反思总结证明平行、垂直关系的方法可以运用传统方法也可以运用空间向量。

高中数学课件-第9讲 向量法求空间距离、折叠及探索性问题

高中数学课件-第9讲 向量法求空间距离、折叠及探索性问题

第9讲 向量法求空间距离、折叠及探索性问题1.会求空间中点到直线、点到平面的距离.2.会用向量法探考试要求究空间几何体中线、面的位置关系、角的存在条件与折叠问题.01聚焦必备知识知识梳理3.线面距离、面面距离都可以转化为点到平面的距离.1.思考辨析(在括号内打“ √”或“×”)(1)平面α上不共线的三点到平面β的距离相等,则α∥β.( )(2)点到直线的距离也就是该点到直线上任一点连线的长度.( )(3)直线l 平行于平面α,则直线l 上各点到平面α的距离相等.( )(4)直线l 上两点到平面α的距离相等,则l 平行于平面α.( )夯基诊断××√×2.回源教材(1)已知平面ABC的一个法向量为n=(1,2,1),向量=(0,,0),则点F到平面ABC的距离为________.(3)已知棱长为1的正方体ABCD -A1B1C1D1,则平面AB1C与平面A1C1D 之间的距离为________.02突破核心命题考 点 一利用空间向量求距离考向 1点到直线的距离例1 如图,在棱长为1的正方体ABCD -A1B1C1D1中,O为平面A1ABB1的中心,E为BC的中点,求点O 到直线A1E的距离.用向量法求点到直线的距离的一般步骤(1)求直线的方向向量.(2)计算所求点与直线上某一点所构成的向量在直线的方向向量上的投影向量的长度.(3)利用勾股定理求解.另外,要注意平行直线间的距离与点到直线的距离之间的转化.反思感悟例2 如图,已知四边形ABCD 是边长为4的正方形,E ,F 分别是AB ,AD 的中点,CG 垂直于正方形ABCD 所在的平面,且CG =2,则点B 到平面EFG的距离为________.2点到平面的距离用向量法求点面距离的步骤(1)建系:建立恰当的空间直角坐标系.(2)求点坐标:写出(求出)相关点的坐标.反思感悟训练1 如图,在正三棱柱ABC -A1B1C1中,各棱长均为4,N是CC1的中点.(1)求点N到直线AB的距离;(2)求点C1到平面ABN的距离.考 点 二折叠问题(1)当AB∥平面PCD时,求PD的长;(2)当三棱锥P -COD的体积最大时,求平面OPD与平面CPD夹角的余弦值.反思感悟翻折问题中的解题关键是要结合图形弄清翻折前后变与不变的关系,尤其是隐含的垂直关系.一般地翻折后还在同一个平面上的性质不发生变化,不在同一平面上的性质发生变化.训练2 (2024·泉州模拟)如图①,在等腰直角三角形ABC中,CD是斜边AB上的高,以CD为折痕把△ACD折起,使点A到达点P的位置,且∠PBD=60°,E,F,H分别为PB,BC,PD的中点,G为CF的中点(如图②).图① 图②(1)求证:GH∥平面DEF;(2)求直线GH与平面PBC所成角的正弦值.(2)因为CD⊥DB,CD⊥DP,DB∩DP=D,所以CD⊥平面DBP.如图,过点D作直线垂直平面BDC,作空间直角坐标系,设PD=DB=DC=2,例4 (2024·山东省实验中学月考)如图,在三棱柱ABC -A 1B 1C 1中,△AB 1C 为等边三角形,四边形AA 1B 1B 为菱形,AC ⊥BC ,AC =4,BC=3.考 点 三探索性问题图①解:(1)证明:连接A 1B 与AB 1相交于点F ,连接CF ,如图①所示.∵四边形AA 1B 1B 为菱形,∴F 为AB 1的中点,BF ⊥AB 1.∵△AB 1C 为等边三角形,∴CF ⊥AB 1,又BF ,CF ⊂平面BFC ,BF ∩CF =F ,∴AB 1⊥平面BFC .又A 1C ⊂平面BFC ,∴AB 1⊥A 1C .(2)设O,G分别为AC,AB的中点,连接B1O,OG,由(1)可知AB1⊥BC,又AC⊥BC,AB1,AC⊂平面AB1C,AB1∩AC=A,∴BC⊥平面AB1C.又OG∥BC,∴OG⊥平面AB1C.∵△AB1C为等边三角形,∴B1O⊥AC,故OG,OC,OB1两两垂直.图②1.对于存在判断型问题的求解,应先假设存在,把要成立的结论当作条件,据此列方程或方程组,把“是否存在”问题转化为“点的坐标是否有解,是否有规定范围内的解”等.2.对于位置探究型问题,通常借助向量,引进参数,综合已知和结论列出等式,解出参数.反思感悟又AC⊥PB,PB∩AB=B,且PB,AB⊂平面PAB,所以AC⊥平面PAB.又AC⊂平面ABCD,所以平面PAB⊥平面ABCD.(2)假设存在Q,使得平面BEQF⊥平面PAD.取AB的中点为H,连接PH,则PH⊥AB,因为平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,所以PH⊥以A为坐标原点,AB,AC所在直线分别为x,y轴,建立如图所示的空间直角坐标系.03限时规范训练(五十五)(1)求PD的长;(2)求点C到平面PEB的距离.解:(1)由题意知DP,DA,DC三线两两垂直.如图所示,以D为坐标原点,DA,DC,DP分别为x轴、y轴、z轴建立空间直角坐标系,则D(0,0,0),B(2,2,0),E(1,0,0).。

法向量求法及应用方法

法向量求法及应用方法

法向量求法及应用方法平面法向量的求法及其应用一、平面的法向量1、定义:如果al:,那么向量a叫做平面:的法向量。

平面:-的法向量共有两大类(从方向上分),无数条。

2、平面法向量的求法方法一(内积法):在给定的空间直角坐标系中,设平面:的法向量;=(X, y,1)[或*=(x,1,z),或: = (1,y,z)],在平面:内任找两个不共线的向量a,b。

由二,,得n a=o 且nb=o,由此得到关于x,y的方程组,解此方程组即可得到n。

方法二:任何一个X,y,z的一次次方程的图形是平面;反之,任何一个平面的方程是x,y,z的一次方程。

Ax By Cz 0 (A,B,C不同时为0),称为平面的一般方程。

其法向量n> = (AB,C);若平面与3个坐标轴的交点为R(a,0,0),P2(0,b,0),P3(0,0,c),如图所示,则平面方程为:{ b 亍1,称此方程为平面的截距式方程,把它化为一般式即可求出它的法向量。

方法三(外积法):设必&为空间中两个不平行的非零向量,其外积a b为一长度等于|a||b|si n =,(9为.,两者交角,且0":::二),而与, 皆垂直的向量。

通常我们采取「右手定则」,也就是右手四指由…的方向转为■的方向时,大拇指所指的方向规定为a b的方向,a b a。

、J -1 |tT TJX 1 乙 X 1 y 1设a ugyszjb 二凶卩乙),则 a 汉 b = |y 2 Z2J —X 2 Z 2 JX 2 y 2(注:1、二阶行列式:M=a: =ad_cb ; 2、适合右c d‘手定则。

)例 1、 已知,a'(21,0),bl( — 1,2,1), 试求(i ): ( 2): b 爲.Key:⑴ a 汉 b=(1,—2,5) ; (2)b3=(-1,2,5)例2、如图1-1,在棱长为2的正方体ABCD —ABCP 中, 求平面 AEF 的一y 个法量向二AF AE =(1,2,2) 量n 。

高三第一轮复习空间向量初步与法向量的求法

高三第一轮复习空间向量初步与法向量的求法

空间向量初步与法向量的求法主干知识归纳1.空间向量的有关概念、定理(1)空间向量:在空间中,具有大小和方向的量叫做空间向量,其大小叫做向量的长度或模.(2)相等向量:方向相同且模相等的向量.(3)共线向量:如果表示空间向量的有向线段所在的直线平行或重合,则这些向量叫做共线向量或平行向量,a平行于b记作a∥b.(4)共面向量:平行于同一平面的向量叫做共面向量.(5)共线向量定理:对空间任意两个向量a,b(b≠0),a∥b⇔存在λ∈R,使a=λb.(6)共面向量定理:若两个向量a、b不共线,则向量p与向量a,b共面⇔存在唯一的有序实数对(x,y),使p=x a+y b.(7)空间向量基本定理:如果三个向量a、b、c不共面,那么对空间任一向量p,存在一个唯一的有序实数组{x,y,z}使得p=x a+y b+z c.3.两个向量的数量积(1)非零向量a,b的数量积a·b=|a||b|cos〈a,b〉.(2)空间向量数量积的运算律①结合律:(λa)·b=λ(a·b);②交换律:a·b=b·a;③分配律:a·(b+c)=a·b+a·c.4.直线的方向向量和平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.方法规律总结1.利用空间向量解决立体几何问题,要选择不共面的三个向量作为基底,也可能通过建立适当的空间直角坐标系来进行向量运算;2、利用用向量判断位置关系命题真假的方法 (1)条件中的线面关系翻译成向量关系 (2)确定由条件能否得到结论(3)将结论翻译成线面关系,即可判断命题的真假 3.空间法向量的求法:(先设再求)设平面α的法向量为(),,nx y z =,若平面上所选两条直线的方向向量分别为()()111222,,,,,a x y z b x y z ==,则可列出方程组:1112220x y z x y x y z x y z z ++=⎧⎨++=⎩ 解出,,x y z 的比值即可【指点迷津】【类型一】空间向量的线性运算【例1】:已知a =(2,-1,3),b =(-1,4,-2),c =(7,5,λ),若a ,b ,c 三个向量共面,则实数λ等于( )A.627B.637C.647D.657【解析】存在实数x ,y 使得c =xa +yb ,即(7,5,λ)=x(2,-1,3)+y(-1,4,-2),由此得方程组⎩⎪⎨⎪⎧7=2x -y ,5=-x +4y ,λ=3x -2y ,解得⎩⎪⎨⎪⎧x =337,y =177,λ=657.答案:D【例2】:对于空间内任意一点O 和不共线的三点A ,B ,C ,有OP →=xOA →+yOB →+zOC →(x ,y ,z ∈R ),则x =2,y =-3,z =2是P ,A ,B ,C 四点共面的( )A .必要不充分条件B .充分不必要条件C .充要条件D .既不充分也不必要条件【解析】:当x =2,y =-3,z =2时,有OP →=2OA →-3OB →+2OC →,则AP →-AO →=2OA →-3(AB →-AO →)+2(AC →-AO →),即AP →=-3AB →+2AC →,根据共面向量定理,知P ,A ,B ,C 四点共面;反之,当P ,A ,B ,C 四点共面时,根据共面向量定理,有AP →=mAB →+nAC →,即OP →-OA →=m(OB →-OA →)+n(OC →-OA →),即OP →=(1-m -n)OA →+mOB →+nOC →,即x =1-m -n ,y =m ,z =n ,这组数显然不只2,-3,2. 答案:B.【例3】:如图所示,在平行六面体ABCD —A 1B 1C 1D 1中,设AA 1→=a ,AB →=b ,AD →=c ,M ,N ,P 分别是AA 1,BC ,C 1D 1的中点,试用a ,b ,c 表示以下各向量: (1)AP →;(2)A 1N →;(3)MP →+NC 1→.【解析】 (1)∵P 是C 1D 1的中点, ∴AP →=AA 1→+A 1D 1→+D 1P → =a +AD →+12D 1C 1→=a +c +12AB →=a +c +12b.(2)∵N 是BC 的中点,∴A 1N →=A 1A →+AB →+BN →=-a +b +12BC →=-a +b +12AD →=-a +b +12c.(3)∵M 是AA 1的中点, ∴MP →=MA →+AP →=12A 1A →+AP →=-12a +(a +c +12b)=12a +12b +c ,又NC 1→=NC →+CC 1→=12BC →+AA 1→=12AD →+AA 1→=12c +a , ∴MP →+NC 1→=(12a +12b +c)+(a +12c)=32a +12b +32c.【类型二】空间向量的简单应用【例1】:如图7-6-8所示,在45°的二面角α-l -β的棱上有两点A 、B ,点C 、D 分别在α、β内,且AC ⊥AB ,∠ABD =45°,AC =BD =AB =1,则CD 的长度为________. 【解析】 由CD →=CA →+AB →+BD →,cos 〈AC →,BD →〉=cos 45°cos 45°=12,∴〈AC →,BD →〉=60°,∴|CD →|2=CA →2+AB →2+BD →2+2(CA →·AB →+AB →·BD →+CA →·BD →)=3+2×(0+1×1×cos 135°+1×1×cos 120°) =2-2, ∴|CD →|=2- 2. 答案:2- 2【例2】:如图所示,已知平行六面体ABCD —A 1B 1C 1D 1中,底面ABCD 是边长为1的正方形,AA 1=2,∠A 1AB =∠A 1AD =120°. (1)求线段AC 1的长;(2)求异面直线AC 1与A 1D 所成角的余弦值; (3)求证:AA 1⊥BD.【解析】 (1)设AB →=a ,AD →=b ,AA 1→=c ,则|a|=|b|=1,|c|=2,a·b=0,c·a=c·b=2×1×cos 120°=-1.∵AC 1→=AC →+CC 1→=AB →+AD →+AA 1→=a +b +c , ∴|AC 1→|=|a +b +c|=a +b +c2=|a|2+|b|2+|c|2+2a·b+b·c+c·a=12+12+22+20-1-1= 2.∴线段AC 1的长为 2.(2)设异面直线AC 1与A 1D 所成的角为θ. 则cos θ=|cos 〈AC 1→,A 1D →〉|=|AC 1→·A 1D→|AC 1→||A 1D →||.∵AC 1→=a +b +c ,A 1D →=b -c ,∴AC 1→·A 1D →=(a +b +c)·(b-c)=a·b-a·c+b 2-c 2=0+1+12-22=-2, |A 1D →|=b -c 2=|b|2-2b·c+|c|2=12-2×-1+22=7.∴cos θ=|AC 1→·A 1D →|AC 1→||A 1D →||=|-22×7|=147.故异面直线AC 1与A 1D 所成角的余弦值为147. (3)证明 ∵AA 1→=c ,BD →=b -a ,∴AA 1→·BD →=c·(b-a)=c·b-c·a=(-1)-(-1)=0. ∴AA 1→⊥BD →.∴AA 1⊥BD.【例3】:已知正方体ABCD­A 1B 1C 1D 1的棱长为3,点E 在AA 1上,点F 在CC 1上,且AE =FC 1=1.(1)求证:E ,B ,F ,D 1四点共面;(2)若点G 在BC 上,BG =23,点M 在BB 1上,GM ⊥BF ,垂足为H ,求证:EM ⊥平面BCC 1B 1.【解析】 (1)建立如图所示的空间直角坐标系,则B(0,0,0),E(3,0,1),F(0,3,2),D 1(3,3,3),则BE →=(3,0,1),BF →=(0,3,2),BD 1→=(3,3,3). 所以BD 1→=BE →+BF →. 故BD 1→,BE →,BF →共面.又它们有公共点B ,所以E ,B ,F ,D 1四点共面. (2)设M(0,0,z 0),G ⎝⎛⎭⎫0,23,0,则GM →=⎝⎛⎭⎫0,-23,z 0,而BF →=(0,3,2), 由题设得GM →·BF →=-23×3+z 0·2=0,得z 0=1.故M(0,0,1),有ME →=(3,0,0). 又BB 1→=(0,0,3),BC →=(0,3,0), 所以ME →·BB 1→=0,ME →·BC →=0, 从而ME ⊥BB 1,ME ⊥BC. 又BB 1∩BC=B , 故ME ⊥平面BCC 1B 1.【类型三】法向量的求法【例1】:在三角形ABC 中,A (1,﹣2,﹣1),B (0,﹣3,1),C (2,﹣2,1),若向量与平面ABC 垂直,且||=,则的坐标为 .答案:(2,﹣4,﹣1)或(﹣2,4,1)【例2】:如图,四棱柱ABCD ﹣A 1B 1C 1D 1的底面ABCD 是正方形,O 为底面中心,A 1O ⊥平面ABCD ,AB=AA 1=.平面OCB 1的法向量=(x ,y ,z )为( ) A .(0,1,1)B .(1,﹣1,1)C .(0,1,﹣1)D .(﹣1,﹣1,1) 【解析】:∵ABCD 是正方形,且AB=,∴AO=OC=1, ∴=(1,0,0),∵A (﹣1,0,0),B (0,1,0), ∴=(1,1,0),∴=(1,1,0),∵OA=1,AA1=,∴OA1==1,故=(0,0,1),故=+=(1,1,1),∵向量=(x,y,z)是平面OCB1的法向量,∴•=x=0,•=x+y+z=0,故x=0,y=﹣z,结合选项可知,当y=1时,z=﹣1,答案:C.【例3】:已知正三棱柱ABC﹣A1B1C1的各棱长均为1,D是BC上一点,AD⊥C1D,以A为坐标原点,平面ABC 内AC的垂线,AC,AA1所在直线分别为x轴、y轴、z轴,建立如图所示的空间直角坐标系,则点D的坐标为,平面ADC1的一个法向量为.【解析】:在空间直角坐标系A﹣xyz中,A(0,0,0),C(0,1,0),A1(0,0,1),C1(0,1,1);由AD⊥C1D,得出AD⊥侧面BCC1B1,∴AD⊥BC,D为BC的中点,∴点D的坐标为(cos60°,sin60°,0),即(,,0);设平面ADC1的一个法向量为=(x,y,z),则=(0,1,1),=(,,0),∴,即,令y=﹣1,得z=1,x=,∴法向量=(,﹣1,1).答案:(,,0),(,﹣1,1).【同步训练】【一级目标】基础巩固组一、选择题1.已知空间四边形OABC 中,OA →=a ,OB →=b ,OC →=c ,点M 在OA 上,且OM =2MA ,N 为BC 中点,则MN →=( ) A.12a -23b +12c B .-23a +12b +12c C.12a +12b -12c D.23a +23b -12c 【解析】 如图所示, MN →=MA →+AB →+BN → =13OA →+(OB →-OA →)+12BC → =OB →-23OA →+12(OC →-OB →)=12OB →-23OA →+12OC → =-23a +12b +12c.答案: B2.已知a =(-2,1,3),b =(-1,2,1),若a ⊥(a -λb ),则实数λ的值为( ) A .-2B .-143C.145D .2【解析】 由题意知a·(a-λb)=0,即a 2-λa·b=0, ∴14-7λ=0,∴λ=2. 答案:D 3.有四个命题:①若p =x a +y b ,则p 与a 、b 共面; ②若p 与a 、b 共面,则p =x a +y b ; ③若MP →=xMA →+yMB →,则P 、M 、A 、B 共面; ④若P 、M 、A 、B 共面,则MP →=xMA →+yMB →. 其中真命题的个数是( ) A .1 B .2 C .3 D .4【解析】 ①正确,②中若a 、b 共线,p 与a 不共线,则p =xa +yb 就不成立;③正确,④中若M 、A 、B 共线,点P 不在此直线上,则MP →=xMA →+yMB →不正确,故选B. 答案: B4.已知空间四边形ABCD 的每条边和对角线的长都等于a ,点E 、F 分别是BC 、AD 的中点,则AE →·AF →的值为( )A .a 2B.12a 2C.14a 2D.34a 2【解析】 设AB →=a ,AC →=b ,AD →=c ,则|a|=|b|=|c|=a ,且a ,b ,c 三向量两两夹角为60°. AE →=12(a +b),AF →=12c ,∴AE →·AF →=12(a +b)·12c=14(a·c+b·c)=14(a 2cos 60°+a 2cos 60°)=14a 2. 答案: C5.已知点A (0,0,0),B (1,0,1),C (0,1,1),则平面ABC 的一个法向量是( ) A .(1,1,1) B .(1,1,﹣1) C .(﹣1,1,1)D .(1,﹣1,1)【解析】:=(1,0,1),=(0,1,1).设平面ABC 的一个法向量为=(x ,y ,z ).则,.∴,令z=1,解得x=﹣1,y=﹣1.∴=(﹣1.﹣1,1).∴﹣=(1,1,﹣1). 答案:B . 二、填空题6.平行六面体ABCD­A 1B 1C 1D 1中,向量AB →、AD →、AA 1→两两的夹角均为60°,且|AB →|=1,|AD →|=2,|AA 1→|=3,则|AC 1→|等于______【解析】:设AB →=a ,AD →=b ,AA 1→=c ,则AC 1→=a +b +c ,AC 1→2=a 2+b 2+c 2+2a·b+2b·c+2c·a=25,因此|AC 1→|=5。

高中数学各考点解题技巧带你走进法向量(法向量的理解与运用)

高中数学各考点解题技巧带你走进法向量(法向量的理解与运用)

带你走进法向量江苏省东海高级中学一、法向量概念理解如果表示非零向量的有向线段所在的直线垂直于平面,那么称向量垂直于平面,记作,此时,我们把向量叫做平面的法向量.特别提醒:(1)法向量一定是非零向量,平面的法向量是不唯一的;(2)一个平面的所有法向量一定是平行向量;(3)向量是平面的一个法向量,向量与平面平行或在平面内,则;(4)因为过一点有且只有一个平面与已知直线垂直,所以,已知平面内一点和平面的法向量,则这个平面是唯一确定的.二、法向量求解步骤若要求出一个平面的法向量的坐标,一般要建立空间直角坐标系,然后用待定系数法求解.一般步骤:(1)设出平面的法向量为;(2)找出(求出)平面内的两个不共线的向量的坐标,;(3)根据法向量的定义建立关于、、的方程组;(4)解方程组,取其中的一个解,即得法向量(通常取其中一个未知数为或).三、用法向量可以解决的问题1.直线与平面成角直线与平面所成的角为,是直线的方向向量与平面的法向量的夹角(锐角)的余角,故有.注意:求出直线的方向向量与平面的法向量的夹角(锐角)并不是直线与平面所成角,应取其余角.2.平面与平面成角设,分别是二面角的面的法向量,则就是所求二面角的平面角或其补角的大小.且有.注意:通过平面的法向量求二面角时,若二面角的两个面的法向量、方向相反时,则二面角的大小等于,若两个面的法向量、方向相同时,则二面角大小为.3.求点面距离点面距离的具体求解步骤是:(1)求出该平面的一个法向量;(2)求出从该点出发的平面的任一条斜线段对应的向量;(3)求出法向量与斜线段向量的数量积的绝对值再除以法向量的模,即得要求的点面距离.其中设是直线上的一个单位方向向量,线段在上的投影是,则有,是求点到线,点到面的距离问题重要公式.四、法向量的具体应用例1如图,四边形是直角梯形,∥,,又,,直线与直线所成的角为.(1)求证:平面平面;(2)求二面角余弦值的大小.解:(1)∵∴,又∵∴平面平面.(2)在平面内,过作,建立空间直角坐标系由题意有,设,则,由直线与直线所成的解为,得,即,解得∴,设平面的一个法向量为,则,取,得(正方向),平面的法向量取为(正方向),设与所成的角为,则,∴二面角的大小为的补角,故二面角的余弦值的大小为.评注:设,分别是二面角的面的法向量,则就是所求二面角的平面角或其补角的大小.何时就是二面角的平面角?何时又是其补角?资料上(包括高考试题的答案上)如是说:由图形不难(显然)得出就是所求二面角的平面角或其补角的大小,说的含糊其辞,毫无判断依据,让同学们辨别不清,对结果的处理困惑不解,往往导致错误的结果,走入了解题的一个个误区.为了让同学们思维走入清淅化,能得到一个正确的结果.在此介绍“穿入法”确定法向量的方向求解二面角.所谓“穿入法”就是穿入二面角内部的平面的法向量(如右图所示)方向为正方向,穿出二面角的平面的法向量方向为负方向.根据二面角的定义,只要取二面角两个平面的法向量中的一个正方向,一个负方向,则两法向量所夹角即为二面角的平面角,由公式便可轻松求出.如果两个法向量都取正方向(或负方向),则即为所求二面角的补角.例2如图,是一个直三棱柱(以为底面)被一平面所截得到的几何体,截面为.已知,,,,.(1)设点是的中点,证明:平面;(2)求二面角的大小;解:(1)以为原点建立空间直角坐标系,则,,,因为是的中点,所以,.易知,是平面的一个法向量.因为,平面,所以平面.(2),,设是平面的一个法向量,则则,得:取,(负方向).显然,为平面的一个法向量(正方向).所以大小即为二面角的大小,而,所以二面角的大小是.评注:用“穿入法”确定法向量方向求解二面角,体现了“数”与“形”的结合,淡化了传统立体中的“形”到“形”的推理方法,也避免了处理结果中对所求角为二面角还是其补角的判断,从而降低了思维难度,使解题变得程序化,易于接受,是用向量法求二面角的独到之处.。

高中数学第一章空间向量与立体几何1.4空间向量的应用1.4.2用空间向量研究距离夹角问题第2课时空间

高中数学第一章空间向量与立体几何1.4空间向量的应用1.4.2用空间向量研究距离夹角问题第2课时空间
第一章 空间向量与立体几何
空间向量的应用 用空间向量研究距离、夹角问题
第2课时 空间中的夹角问题
学习目标
素养要求
1.理解异面直线所成角、直线与平面所成角、二 直观想象、抽象数学
面角的定义
2.能够用向量法解决线线、线面、二面角的计算 直观想象、数学运算 问题
|自学导引|
空间三种角的向量求法
角的分类
利用向量法求直线与平面夹角的基本步骤 (1)建立空间直角坐标系. (2)求直线的方向向量. (3)求平面的法向量 n.
(4)计算:设线面角为 θ,则 sin θ=|cos〈n,m〉|=|nn11|·|nn22|.
2.如图,在梯形 ABCD 中,AB∥CD,AD= CD=CB=2,∠ABC=60°,在矩形 ACFE 中,AE =2,BF=2 2.
(1)求证:BC⊥平面 ACFE; (2)求直线 BD 与平面 BEF 所成角的正弦值.
(1)证明:在梯形 ABCD 中 AB∥CD,AD=CD=CB=2,∠ABC=60°, ∴四边形 ABCD 是等腰梯形,∠ADC=120°. ∴∠DCA=∠DAC=30°,∠DCB=120°. ∴∠ACB=∠DCB-∠DCA=90°. ∴AC⊥BC. 又∵在矩形 ACFE 中,CF=AE=2, BF=2 2,CB=2,∴CB⊥CF. 又∵AC∩CF=C,∴BC⊥平面 ACFE.
则 B(0,0,0),C(0,6,0),A(0,0,6),D(-2 7,6,0),
E(- 7,3,3),B→E=(- 7,3,3),C→D=(-2 7,0,0),
∴cos〈B→E,C→D〉=
→→ BE·CD →→

57.
|BE||CD|
∴异面直线 BE 与 CD 所成角的余弦值为 57.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

精心整理
高中数学空间向量之--平面法向量的求法及其应用
一、 平面的法向量
1、定义:如果α⊥→
a ,那么向量→
a 叫做平面α的法向量。

平面α的法向量共有两大类(从方向上分),无数条。

2、平面法向量的求法
方法一(内积法):在给定的空间直角坐标系中,设平面α的法向量(,,1)n x y =[或(,1,)n x z =,或
(1,,
n y z =,得0n a ⋅=且0n b ⋅=,由此得到关
于,x y 的一次次方程的图形是平面;反之,任何一个平面的方程是z y ,的一次方程。

Ax ),C B ;若平面与31=c
z
,称此方法三(
为空间中两个不平行的非零向量,其外积θsin |||→
b ,(θ为皆垂直的向量。

通常我们采取「右手定则」,也就是右手四指由的方向转为的方向时,大拇指所指的方向规定为→
→⨯-a b 。

(1设x a =→
(注:1例1、 已知,)1,2,1(),0,1,2(-==→

b a , 试求(1):;→

⨯b a (2):.→
→⨯a b Key:(1))5,2,1(-=⨯→

b a ;)5,2,1()2(-=⨯→

a b
例2、如图1-1,在棱长为2的正方体1111ABCD A B C D -求平面AEF 的一个法向量n 。

)
2,2,1(:=⨯=→


AE AF n key 法向量
二、
1、 (1)、AB 图图(2),→=<m θ,→=<m θ的方向对平面α而言向外,→
n 的方向对平面β而言向内;在图2-3中,→
m 的方向对平面α而言向内,

n 的方向对平面β而言向内。

我们只要用两个向量的向量积(简称“外积”,满足“右手定则”)
使得两个半平面的法向量一个向内一个向外,则这两个半平面的法向量的夹角即为二面角βα--l 的平面角。

2、 求空间距离
(1)、异面直线之间距离:
方法指导:如图2-4,①作直线a 、b 的方向向量→
a 、→
b ,
求a 、b 的法向量→
n ,即此异面直线a 、b 的公垂线的方向向量; ②在直线a 、b 上各取一点A 、B ,作向量→
AB ;
③求向量→
AB 在→n 上的射影d ,则异面直线a 、b 间的距离为
=
d (2(3AB n d ⋅=
,其中(4)、平面与平面间的距离方法指导:如图=
d 。

n 是平面α3、(1(2线(3面
(4)、证明面面平行:在图2-11中,→m 向是平面α的法向量,→
n 是平面β的法向量,证明两平面的法向量共线(→
→=n m λ)。

三、高考真题新解
1、(
已知如图=∠DAB 中点
(Ⅱ)求解:以A .
).(→
AP I →
DC 又=∙∴→→n m ).(II →
).(III 又=→CB ,∴<→
→n m ∴面AMC 与面BMC 所成二面角的大小为)3arccos(-.]3
arccos [-π或
2、(2006年云南省第一次统测19题)(本题满分12分) 如图3-2,在长方体ABCD -A 1B 1C 1D 1中, 已知AB =AA 1=a ,B C a ,M 是AD 的中点。

(Ⅰ)求证:AD ∥平面A 1BC ; (Ⅱ)求证:平面A 1MC ⊥平面A 1BD 1; (Ⅲ)求点A 到平面A 1MC 的距离。

解:以D 点为原点,分别以DA,DC,DD 1为x 轴,y 轴,z 轴,建立空间直角坐标系D-xyz 如图所示.

3-2
).(I )0,0,2(a BC -=→
,),,0(1a a BA -=→
,设平面A 1BC 的法向量为)2,2,0(221a a BA BC n =⨯=→


又)0,0,2(a AD -=→ ,0=∙∴→→AD n ,→
→⊥∴n AD ,即AD//平面A 1BC.
).(II ),0,22(a a MC =→
,)0,,2
2
(1a a MA -=→,设平面A 1MC 的法向量为:)2
2,22,
(2
221a a a MA MC m -=⨯=→
→→, 又),,2(1a a a BD --=→
,),,0(1a a BA -=→
,设平面A 1BD 1的法向量为:)2,2,0(2211a a BA BD n =⨯=→


,
=∙∴→→n m ).(III m =→

又MA =→ 四、 (1)(2)、(进(3。

相关文档
最新文档