第五章振动光谱ppt课件

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

共振拉曼效应 (Shorygin)
激光出现
共振拉曼选择性的研究血色素 和肌球素中亚铁血红素的发色团 (T. C. Strekas and T.G. Spiro)
1953 1960
1972
.
4.2 方法原理
3.2.1 瑞利散射与拉曼散射
光线通过试样,透射仍为主体 波长远小于粒径,小部分散射 瑞散利射散:射仅λ改不变变方向,拉波曼长不散变射。 λ变
例:VC=O 吸收强度大于 VC=C 。 对称烯、炔等无吸收 峰或吸收峰很弱。
吸收强度的表示:
vs (偶极矩变化ε> 200)、s(ε= 75~200)、 m(ε=
25~75)、 w(ε= 5~25)、vw(ε< 5)。
2
E2
2
Eo
2
o
.
wenku.baidu.com
• 第三节 红外光谱仪
红外光谱仪也叫红外分光光度计
第一代:用棱镜作色散元件
绝大多数有机化合物和无机离子的基频吸收带出现 在该光区。由于基频振动是红外光谱中吸收最强的振动, 所以该区最适于进行红外光谱的定性和定量分析。同时, 由于中红外光谱仪最为成熟、简单,而且目前已积累了 该区大量的数据资料,因此它是应用极为广泛的光谱区。
通常,中红外光谱法又简称为红外光谱法。
远红外光区 (25 ~ 1000µm ) 该区的吸收带主要是由气体分子中的纯转动跃迁、
• 分子中两原子距离最大时,α也最大
• 拉曼散射强度与极化率成正比例关系
.
4.3 拉曼光谱与红外光谱的关系

同属分子振(转)动光谱
异 红:外红:外适用于分研子究对不同红原外子光的极的性吸键收振动 -O强H,度-由C分=子O,偶-极C距-决X定
异 拉:曼拉:曼适用于分研子究对同原激子光的的非极散性射键振动
• 振动形式:

振动相同,简并状态
• Vs振动为非活性振动,振动波数1388cm-1,但不吸收红外 光。
• 注: + 表示垂直屛面向内移动,- 表示垂直屛面向外移动。 .
• 三、红外光谱图

红外吸收光谱图:不同频率IR光辐射于物质上,导致
不同透射比,以纵座标为透过率,横座标为频率,形成该
物质透过率随频率的变化曲线,即红外吸收光谱图。红外
紫外、可见吸收光谱常用于研究不饱和有机物,特 别是具有共轭体系的有机化合物,而红外光谱法主要研 究在振动中伴随有偶极矩变化的化合物(没有偶极矩变 化的振动在拉曼光谱中出现)。因此,除了单原子和同 核分子如Ne、He、O2、H2等之外,几乎所有的有机化合 物在红外光谱区均有吸收。除光学异构体,某些高分子
.
• 即:
• 3n = 振动自由度 + 平动自由度 + 转动自 由度

振动自由度 = 3n - 平动自由度 - 转动自
由度

对于非线性分子,振动自由度 = 3n - 6

对于线性分子,振动自由度 = 3n - 5
.
• H2O(非极性分子)
振动自由度=3*3-6=3 振动形式:
吸收峰波数:
.
• CO2(极性分子) • 振动自由度=3*3-5=4
-N-强N度-由, 分-子C-极C化-率决定
互补
.
O=C=O
O=C=O
对称伸缩
反对称伸缩
偶极距不变无红外活性 偶极距变有红外活性
极化率变有拉曼活性. 极化率不变无拉曼活性
互排法则:有对称中心的分子其分子振动
对红外和拉曼之一有活性,则另一非活性
互允法则:无对称中心的分子其分子振动
对红外和拉曼都是活性的。
.
4.4 仪器结构与原理
.
.
• 二、简正振动的基本类型
.
• 简正振动的数目

简正振动的数目称为振动自由度。每个振动
自由度对应于IR谱图上的一个基频吸收带。 分子
的总自由度取决于构成分子的原子在空间中的位
置。每个原子空间位置可以用直角坐 标系中x、y、 z三个坐标表示,即有三个自由度。显然,由n个 原子组成的分子,具有3n个总 自由度,即有3n种 运动状态,而3n种运动状态包括了分子的振动、 平动和转动。
0.5cm-1左右,傅立叶红外光谱仪可达0.005cm-1。 4 测定光谱范围宽,可研究整个红外区的光谱。
.
第四节 激光拉曼光谱
4.1 概述 4.2 原理 4.3 与红外光谱的关系 4.4 仪器 4.5 应用
.
4.1 概 述
拉曼光谱的发展简史
拉曼散射现象的发现 (C. V. Raman ) 1928 Nobel Prize in Physics 1930
第二代:用光栅作色散元件
第三代:干涉型傅立叶变换红外光谱仪
第四代:激光红外光谱仪 红外光谱仪与紫外-可见分光光度计的组成基本相同,由 光源、样品室、单色器以及检测器等部分组成。两种仪器 在各元件的具体材料上有较大差别。色散型红外光谱仪的 单色器一般在样品池之后。

.
色散型红外光谱仪
.
红外光谱仪的主要部件
体样品都可测定,并具有用量少,分析速度快,不破坏 样品的特点。因此,红外光谱法不仅与其它许多分析方 法一样,能进行定性和定量分析,而且该法是鉴定化合 物和测定分子结构的最有用方法之一。
.
第二节 基本原理
一、产生红外吸收的条件
1 辐射光子具有的能量与发生振动跃迁所需的跃迁能量相等 2辐射与物质之间有耦合作用
弹性碰撞无能量交换
垂直方向观测,原波长两侧还有散射光 非弹性碰撞,有能量交换,波长有变化
.
λ
λ


增减散 大小射
λ


透过光λ不变






λ
.不
Anti-Stocks线
Stocks线
e
e
e
e
温度升高 概率大!
3振 电
2动 子
1 0


级态
e e
Rayleigh 散. 射
Raman 散射
4.2.2 拉曼位移(Raman shift)
红外吸收光谱一般用T~曲线或T~ 波数曲线表示。 纵坐标为百分透射比T%,因而吸收峰向下,向上则为谷; 横坐标是波长(单位为µm ),或波数(单位为cm-1)。
.
波长与波数之间的关系为: 波数/ cm-1 =104 /( / µm )
中红外区的波数范围是4000 ~ 400 cm-1 。
二、红外光谱法的特点
.
量的高聚物以及在分子量上只有微小差异的化合物外, 凡是具有结构不同的两个化合物,一定不会有相同的红 外光谱。通常红外吸收带的波长位置与吸收谱带的强度, 反映了分子结构上的特点,可以用来鉴定未知物的结构
组成或确定其化学基团;而吸收谱带的吸收强度与分子 组成或化学基团的含量有关,可用以进行定量分析和纯 度鉴定。由于红外光谱分析特征性强,气体、液体、固
.
振动-转动跃迁、液体和固体中重原子的伸缩振动、某些
变角振动、骨架振动以及晶体中的晶格振动所引起的。 由于低频骨架振动能很灵敏地反映出结构变化,所以对 异构体的研究特别方便。此外,还能用于金属有机化合 物(包括络合物)、氢键、吸附现象的研究。但由于该 光区能量弱,除非其它波长区间内没有合适的分析谱带, 一般不在此范围内进行分析。
谱便 图中,横坐标:吸收波长()或波数()。吸收峰位置。
纵坐标:透过率(T%)或吸光度(A)。吸收峰强度。

.
❖红外光谱图的特征:
❖(1)谱带的数目:即振动数目。它与物质的种类、基 团存在与否有关,与对称有关,与成分复杂程度有关。
❖(2)谱带的位置:与元素种类及元素价态有关:元素 轻则高波数,元素重则低波数;高价则高波数,低价则 低波数。(回忆v~ 与M 、K的关系) ❖(3)谱带的强度:与样品的厚度、种类及其含量有关, 与偶极矩变化有关。IR可对某一基团定量分析。
1 光源 (1)能斯特灯 (2)硅碳棒 (3)氧化铝棒 2 单色器 核心部件,主要由狭缝、准直镜、色散元件组成 3 滤光器 4 检测器 (1)真空热电偶 (2)热电量热计 (3)光电管 5 放大器和记录系统
.
傅立叶变换红外光谱仪
.
傅立叶变换红外光谱仪的特点: 1 测试速度快,质量好。 2 没有狭缝限制,能量输出大,可测试透射比很低的样品 3 分辨能力高,波数精确度高,普通红外光谱仪分辨能力约
第五章 振动光谱
Vibrational Spectroscopy (IR & Raman Spectra)
.
第一节
概述
分子的振动能量比转动能量大,当发生振动能级 跃迁时,不可避免地伴随有转动能级的跃迁,所以无法 测量纯粹的振动光谱,而只能得到 分子的振动-转动光 谱,这种光谱称为红外吸收光谱。
红外吸收光谱也是一种分子吸收光谱。
当样品受到频率连续变化的红外光照射时,分子 吸收了某些频率的辐射,并由其振动或转动运动引起偶 极矩的净变化,产生分子振动和转动能级从基态到激发 态的跃迁,使相应于这些吸收区域的透射光强度减弱。记 录红外光的百分透射比与波数或波长关系曲线,就得到 红外光谱。
.
一、红外光区的划分
红外光谱在可见光区和微波光区之间,波长范围约 为 0.75 ~ 1000µm,根据仪器技术和应用不同,习惯上又 将红外光区分为三个区:近红外光区(0.75 ~ 2.5µm ), 中红外光区(2.5 ~ 25µm ),远红外光区(25 ~ 1000µm )。
❖(4)谱带的形状:与结晶程度及相对含量有关。结晶 差说明晶体结构中键长与键角有差别,引起振动频率有 一定变化范围,每一谱带形状就不稳定。可用半高宽表 示(width at half full maximum, WHFM)。
.
4 红外吸收峰的强度
强度决定于振动时吸偶收极强矩度变的化大小。偶极矩变化愈 大,吸收强度愈大;偶极矩变化愈小,吸收强度愈 小;没有偶极矩变化, 则不产生红外吸收。
Δν=| ν0 – νs |
即散射光频率与激发光频之差 Δv取决于分子振动能级的改变 因此是特征的
与入射光波长无关
适用于分子结构分析 .
4.2.3 拉曼光谱与分子极化率的关

分子在静电场E中,如光波交变电磁场

负 分子中产生了

极 感应偶极距p
电子 核
p = αE
α为极化率
.
• 感应偶极矩与外电场的强度之比为 分子极化率
近红外光区(0.75 ~ 2.5µm )
近红外光区的吸收带主要是由低能电子跃迁、含氢
原子团(如O—H、N—H、C—H)伸缩振动的倍频吸收
等产生的。该区的光谱可用来研究稀土和其它过渡金属
离子的化合物,并适用于水、醇、某些高分子化合物以

.
含氢原子团化合物的定量分析。 中红外光区(2.5 ~ 25µm )
相关文档
最新文档