ASTM G31——金属的实验室浸泡腐蚀标准
耐碱试验标准(一)
耐碱试验标准(一)耐碱试验标准什么是耐碱试验标准?•耐碱试验是一种常见的测试方法,用于评估物质在碱性环境中的耐受能力。
•耐碱试验标准是规定了测试和评估耐碱性能的一系列准则和要求。
耐碱试验标准的重要性•碱性环境是许多应用中常见的条件,例如建筑材料、化妆品等。
•知道物质在碱性环境中的耐受能力,有助于选择合适的材料和产品。
•耐碱试验标准提供了一种客观、标准化的方法来评估物质的性能。
常用的耐碱试验标准1.ASTM标准•ASTM G31:用于评估金属和非金属材料在碱性环境中的耐受性能。
•ASTM C289:评估水泥和混凝土等建筑材料的碱性耐受性。
2.ISO标准•ISO 695:用于评估非金属材料在饱和氢氧化钠溶液中的耐受性。
•ISO 2812-2:评估涂料和涂层在碱性环境中的耐受性。
3.国家标准•GB/T 2589:用于评估铅酸蓄电池在碱性条件下的耐受性。
•GB/T 17649:评估建筑材料在浓氢氧化钠溶液中的碱性耐受性。
如何进行耐碱试验1.准备样品•根据标准要求,制备符合规定的样品。
•样品的形态、尺寸和数量等应符合要求。
2.浸泡试验•将样品置于碱性溶液中浸泡一定时间。
•碱性溶液的浓度和温度应符合标准要求。
3.观察和评估•根据标准规定的方法和标准参考图表,观察样品的外观和性能变化。
•根据评估准则,对样品进行评分和评估。
耐碱试验标准的应用领域•建筑材料:评估砖块、水泥、玻璃等在碱性环境中的性能。
•化妆品:评估化妆品在碱性环境中的稳定性和耐受性。
•电子产品:评估电池、电路板等在碱性条件下的耐受性。
结论•耐碱试验标准是评估物质在碱性环境中耐受性能的重要参考。
•合适的耐碱试验标准可以提供可靠的数据,帮助选择适用的材料和产品。
以上是关于耐碱试验标准的简要介绍,通过遵循相关的标准和流程,我们可以更好地评估物质的耐受能力和适用性。
对于不同领域的应用,选择合适的耐碱试验标准是十分重要的。
astm g31 金属的实验室浸泡腐蚀标准
astm g31 金属的实验室浸泡腐蚀标准
ASTM G31是一组用于测试金属抗腐蚀性的标准试验方法。
这些测试方法可以用于评估材料的抗腐蚀能力,以确定其是否符合特定的使用要求。
ASTM G31标准分为以下两个部分:
第一部分是ASTM G31-72标准试验方法,用于测定锌铸件在腐蚀环境下的耐久性。
这项测试可用于评估锌铸件的使用寿命,并确定其是否符合特定的性能要求。
测试方法包括将锌铸件浸入腐蚀环境中,并根据时间和重量变化监测其耐久性。
第二部分是ASTM G31-72(2010)标准试验方法,用于测定镀层钢丝在腐蚀环境下的耐久性。
测试方法涉及在腐蚀环境中浸泡测试样品,并根据时间和重量变化监测其性能表现。
ASTM G31标准的实验室浸泡腐蚀试验可用于各种金属材料的测试。
结果可以帮助工程师和设计师了解材料的性能,并评估其在特定环境中的适用性。
它还可以为材料选择提供有用的数据,以确保选定的材料符合特定应用的要求。
总之,ASTM G31标准是测试金属抗腐蚀性能的重要标准。
使用这些测试方法,可以获取有用的数据,以帮助工程师和设计师选择符合特定应用要求的材料。
钛材耐腐蚀数据
钛材耐腐蚀数据钛材是一种具有优异耐腐蚀性能的金属材料,广泛应用于航空航天、化工、海洋工程等领域。
本文将详细介绍钛材的耐腐蚀数据,包括耐腐蚀性能测试方法、常见腐蚀介质下的腐蚀速率以及耐腐蚀性能评估标准等内容。
一、耐腐蚀性能测试方法1. 电化学测试法:电化学测试是评估钛材耐腐蚀性能的常用方法之一。
常见的电化学测试方法包括极化曲线法、交流阻抗法和电化学噪声法等。
通过测量钛材在不同电位下的电流密度和电化学参数,可以评估其耐腐蚀性能。
2. 加速腐蚀试验法:加速腐蚀试验是通过摹拟实际使用条件下的腐蚀环境,加快腐蚀速率以评估钛材的耐腐蚀性能。
常见的加速腐蚀试验方法包括盐雾试验、腐蚀热循环试验和腐蚀电流噪声法等。
二、常见腐蚀介质下的腐蚀速率1. 酸性介质下的腐蚀速率:钛材在酸性介质中具有较好的耐腐蚀性能。
以硫酸为例,钛材的腐蚀速率通常在0.1~0.5 mm/a范围内。
而在浓硝酸和盐酸等强酸介质中,钛材的腐蚀速率会进一步增加。
2. 碱性介质下的腐蚀速率:钛材在碱性介质中也具有一定的耐腐蚀性能。
以氢氧化钠为例,钛材的腐蚀速率通常在0.1~0.3 mm/a范围内。
但在浓氢氧化钠溶液中,钛材的腐蚀速率会显著增加。
3. 氯化物介质下的腐蚀速率:钛材对氯化物介质具有较好的耐腐蚀性能。
以氯化钠为例,钛材的腐蚀速率通常在0.1~0.3 mm/a范围内。
但在浓度较高的氯化钠溶液中,钛材的腐蚀速率会明显增加。
三、耐腐蚀性能评估标准1. ASTM标准:美国材料与试验协会(ASTM)制定了多个与钛材耐腐蚀性能评估相关的标准,如ASTM G31、ASTM G48和ASTM G61等。
这些标准包含了钛材的耐腐蚀性能测试方法、腐蚀速率评估和腐蚀性能等级划分等内容。
2. ISO标准:国际标准化组织(ISO)也制定了一些与钛材耐腐蚀性能评估相关的标准,如ISO 15510和ISO 18069等。
这些标准主要涵盖了钛材的化学成份要求、耐腐蚀性能测试方法和腐蚀性能等级划分等内容。
国外石化腐蚀标准与资料介绍
国外石化腐蚀标准与资料介绍国外石化腐蚀标准与资料介绍随着石化工业的快速发展,石化设备的腐蚀问题也日益突出。
为了保证石化设备的安全运行,国外制定了一系列的腐蚀标准和资料,下面就为大家介绍一下。
1. NACE标准NACE是美国腐蚀工程师协会的缩写,是世界上最具权威性的腐蚀标准制定机构之一。
NACE制定了一系列的腐蚀标准,如NACE MR0175、NACE SP0296、NACE SP0472等。
其中,NACE MR0175是针对石油和天然气工业的材料选择标准,主要是为了防止硫化物应力腐蚀开裂问题。
NACE SP0296是关于外部防腐涂层系统的标准,NACE SP0472是关于内部涂层系统的标准。
2. API标准API是美国石油学会的缩写,是一个专门从事石油和天然气工业标准制定的机构。
API制定了一系列的标准,如API RP 571、API RP 578、API RP 939-C等。
其中,API RP 571是关于损伤机理的标准,主要是讲述各种损伤形式的形成原因和特点;API RP 578是关于焊接人员资格认证的标准;API RP 939-C是关于材料选择和耐蚀性评估的标准。
3. ASTM标准ASTM是美国材料与试验协会的缩写,是一个从事材料和产品标准制定的机构。
ASTM制定了一系列的标准,如ASTM G1、ASTM G31、ASTM G48等。
其中,ASTM G1是关于化学分析和金相检查的标准;ASTM G31是关于电化学腐蚀测试方法的标准;ASTM G48是关于晶间腐蚀测试方法的标准。
4. ISO标准ISO是国际标准化组织的缩写,是一个从事国际标准制定的机构。
ISO制定了一系列的标准,如ISO 8501-1、ISO 8502-3、ISO 12944-5等。
其中,ISO 8501-1是关于表面清洁度等级的标准;ISO 8502-3是关于表面粗糙度测量方法的标准;ISO 12944-5是关于涂层系统设计和表面处理的标准。
astm g31 金属的实验室浸泡腐蚀标准
ASTM G31金属的实验室浸泡腐蚀标准引言ASTM G31是一项用于金属材料浸泡腐蚀实验的标准测试方法。
该方法可以评估金属在特定环境下的耐腐蚀性能,为金属材料的选型和工程设计提供参考。
本文将对ASTM G31标准进行全面、详细、完整且深入的探讨。
浸泡腐蚀实验概述浸泡腐蚀实验的目的•评估金属材料的耐腐蚀性能•确定金属在特定环境中的寿命•验证金属材料的性能是否符合设计要求实验参数浸泡腐蚀实验的参数包括: 1. 环境条件: - 温度 - 盐度 - pH值 - 氧化还原条件2.实验时间:–根据需求确定实验时间,通常为几天到几个月不等3.试样处理:–清洗–表面处理(去除氧化物、油污等)ASTM G31标准实验步骤实验装置设置合适的实验装置,包括: 1. 容器:用于装载试样和腐蚀介质 2. 温度控制装置:用于控制实验温度 3. 搅拌器:用于保持腐蚀介质的均匀性试样准备1.清洗试样:去除表面的污垢和油污2.表面处理:去除氧化物,保证试样表面光洁实验操作1.设置实验条件:包括温度、盐度、pH值等2.将试样放入容器中,并加入腐蚀介质3.开始实验计时4.定期观察试样的腐蚀情况,并记录数据5.根据实验要求确定实验终点6.取出试样,清洗并评估腐蚀情况7.分析实验数据,得出试样的腐蚀速率和寿命预估ASTM G31标准的参数和限制实验参数ASTM G31标准中对于实验参数的一些要求: 1. 温度范围:通常在常温至高温环境下进行实验 2. 盐度范围:根据特定应用需求设置 3. pH值范围:一般为酸性或碱性环境 4. 氧化还原条件:根据材料与介质的耦合效应设置实验结果ASTM G31标准对于实验结果的一些要求: 1. 腐蚀速率:根据实验数据计算得出,通常以mm/year作为单位 2. 寿命预估:根据腐蚀速率和实验时间推算材料的寿命3. 腐蚀形貌:通过观察试样表面得出,比如晶粒腐蚀、点蚀等实验限制ASTM G31标准的一些限制和注意事项: 1. 实验条件的选择应考虑实际工程和应用环境 2. 实验结果只能作为评估材料耐腐蚀性能的参考,并不代表实际使用寿命3. 对于复杂环境和特殊材料,可能需要进行额外的测试和分析 4. 实验过程需要严格控制,以避免意外或人为因素对实验结果的影响实验应用和意义ASTM G31标准适用于各种金属材料的腐蚀性能评估,具有以下应用和意义: 1. 材料选型:通过对不同金属材料的腐蚀性能测试,帮助工程师选择合适的材料 2. 制定工程设计规范:根据实验结果,制定相应的腐蚀防护措施 3. 增强产品质量控制:通过定期进行ASTM G31测试,保证产品的一致性和质量 4. 向用户提供技术支持:基于测试结果,提供金属材料的寿命预估和使用指导结论ASTM G31是一项用于金属材料浸泡腐蚀实验的标准测试方法。
astm 铜腐蚀率
astm 铜腐蚀率
ASTM(美国材料与试验协会)通常不提供特定的铜腐蚀率标准,但ASTM会发布一系列涉及金属和合金腐蚀测试的标准,这些标准可以用于评估不同材料的腐蚀性能。
铜腐蚀率通常用于测试液体或环境对金属的腐蚀程度。
一种常用的铜腐蚀率测试是ASTM G31标准,标题为"Standard Practice for Laboratory Immersion Corrosion Testing of Metals",通常用于评估金属在不同液体环境中的腐蚀性能。
ASTM G31标准提供了测试程序,可用于测量金属在特定液体中的腐蚀速率。
测试中通常会使用铜试片,将其与待测试材料暴露在一定的液体环境中,并测量一段时间后铜试片的腐蚀程度,以评估环境的腐蚀性。
另一个与铜腐蚀相关的ASTM标准是ASTM G1,标题为"Standard Practice for Preparing, Cleaning, and Evaluating Corrosion Test Specimens"。
该标准涵盖了制备和清洁腐蚀试样的程序,其中包括使用铜试片作为评估腐蚀性能的一部分。
请注意,ASTM标准通常需要购买或获取,因此如果需要详细的测试程序和规格,建议查阅相关ASTM标准文件或咨询ASTM的官方网站。
对于特定应用或要测试的具体情况,可能需要根据ASTM标准来设计和执行腐蚀测试。
化学液体对金属腐蚀的检测指标
化学液体对金属腐蚀的检测指标1、硫化氢应力腐蚀测试依据检测标准主要有:GB/T4157-2006《金属在硫化氢环境中抗特殊形式环境开裂实验室试验》SY/T 0599-2006《天然气地面设施抗硫化物应力开裂和抗应力腐蚀开裂的金属材料要求》NACE TM 0177-2016《金属在H2S环境中抗硫化物应力开裂和应力腐蚀》NACE MR 0175-2009《石油和天然气工业油、气生产中含硫化氢(H2S)环境下使用的材料耐裂化材料选择的一般原则》ISO 15156-1-2009《石油和天然气工业油、气生产中含硫化氢(H2S)环境下使用的材料耐裂化材料选择的一般原则》2、氢致开裂腐蚀试验依据检测标准主要有:GB/T 8650-2006管线钢和压力容器钢抗氢致开裂评定方法NACE TM 0284-2016管线钢和压力容器抗氢致开裂评定方法3、晶间腐蚀试验依据检测标准主要有:ASTM A763-93(R2009)不锈钢晶间腐蚀试验ASTM G28-02(2008) 煅制高镍铬轴承合金晶间腐蚀敏感性的检查用测试方法方法AGB/T21433-2008不锈钢压力容器晶间腐蚀敏感性检验GB/T 15260-1994镍基合金晶间腐蚀A法GB/T 26491-20115XXX系铝合金晶间腐蚀试验方法质量损失法GB/T 7998-2005铝合金晶间腐蚀测定方法ASTM G110-1992(2009)用浸入氯化钠+过氧化氢溶液的方法评定可热处理铝合金的晶间腐蚀ASTM G123-2000(2011)评定沸腾酸化氯化钠溶液中镍含量不同的不锈合金应力晶间腐蚀开裂4、盐雾腐蚀试验依据检测标准主要有:GB/T 10125人造气氛腐蚀试验盐雾试验GB/T 12967.3铝及铝合金阳极氧化膜检测方法第3部分:铜加速乙酸盐雾试验(CASS试验)GB/T 2423.18环境试验第2部分:试验方法试验Kb:盐雾,交变(氯化钠溶液)GB/T 1771色漆和清漆耐中性盐雾性能的测定GB/T 2423.17电工电子产品环境试验第2部分: 试验方法试验Ka:盐雾5、气体腐蚀试验依据检测标准主要有:GB/T 5170.11-2008 电工电子产品环境试验设备检验方法腐蚀气体试验设备GB/T2423.51-2000 电工电子产品(试验Ke)流动混合气体腐蚀试验方法IEC 60068-2-60-1995环境试验第2-60部分:试验试验Ke:流动混合气体腐蚀试验ISO 16750-4-2006电气和电子装备的环境条件和试验-气候环境EIA-364-65A-1997电连器进行混合气体腐蚀试验GB2423.51-2000电工电子产品环境试验ASTM B845-97(2008)混合流动气体腐蚀测试6、模拟工矿腐蚀依据检测标准主要有:GB/T 25147-2010 工业设备化学清洗中金属腐蚀率及腐蚀总量的测试方法重量法JB/T 7901-2001 金属材料实验室均匀腐蚀全浸试验方法ASTM G111-1997(2013)标准导则腐蚀试验在高温和高压环境,或者两者7、点腐蚀试验依据检测标准主要有:GB/T 17897-2016 金属和合金的腐蚀不锈钢三氯化铁点腐蚀试验方法JIS G 0578-2000不锈钢的氯化铁腐蚀试验方法点腐蚀预防MH/T 6102-2014 化学处理致飞机金属晶间腐蚀和端面晶粒点蚀的试验方法ASTM G48 method A 不锈钢点蚀电位测量方法8、氢剥离试验依据检测标准主要有:ASTM G146-2001(2013)高压高温精炼氢设备用双金属不锈合金/钢板剥离性评定规程9、沸腾氯化镁应力腐蚀开裂试验依据检测标准主要有:ASTM G 36-2006不锈钢在沸腾氯化镁溶液中应力腐蚀试验方法GB/T 17898-1999 不锈钢在沸腾氯化镁溶液中应力腐蚀试验方法YB/T 5362-2006 不锈钢在沸腾氯化镁溶液中应力腐蚀试验方法GB/T 15970.5-1995 金属和合金的腐蚀应力腐蚀试验第5部分:C型环试样的制备和应用GB/T 15970.3-1995金属和合金的腐蚀应力腐蚀试验第3部分:U型弯曲试样的制备和应用10、黄铜耐脱锌腐蚀试验依据检测标准主要有:GB/T 10119黄铜耐脱锌腐蚀性能的测定ISO 6509 铜合金锌脱锌性的测定 - 金属和合金的腐蚀第1部分:试验方法AS 2345 澳大利亚铜合金脱锌性11、醋酸盐雾腐蚀试验依据检测标准主要有:GB/T 10125-2012 人造气氛腐蚀试验盐雾试验ISO 9227-2012 人造气氛腐蚀试验盐雾试验JIS Z2371-2015 盐雾试验方法ASTM G85-2011 改性盐雾(雾)测试规程AS 2331.3.2-2001 金属及其相关镀层的试验方法第3.2部分:腐蚀性及其相关属性试验 .醋酸盐喷雾试验12、涂层浸渍腐蚀试验依据检测标准主要有:ASTM D 870-2009 水浸渍法测试涂层的耐水性能的标准实施规程ISO 21809-3-2016 石油和天然气工业--管道输送系统中使用的地下或水下管道的外部涂层--第3部分:安装接头涂层SY/T 0315-2013 钢质管道单层熔结环氧粉末外涂层技术规范13、全浸腐蚀试验依据检测标准主要有:JB/T 6073-1992 金属覆盖层实验室全浸腐蚀试验ASTM G31-2012a 金属的实验室浸渍腐蚀试验HB 5194-1981 周期浸润腐蚀试验方法GB 10124-1988 金属材料实验室均匀腐蚀全浸试验方法JB/T 7901-1999 金属材料实验室均匀腐蚀全浸试验方法14、电腐蚀试验依据检测标准主要有:GB/T 15748-2013 船用金属材料电偶腐蚀试验方法NACE TM0175-2009附录B 油田设备用抗硫化应力裂纹的金属材料。
周期性浸泡腐蚀试验标准及相关设备分析
周期性浸泡腐蚀试验标准及相关设备分析魏艳娟;陈利钦;顾佳伟【摘要】Based on the complexity of the product transportation and the use environment, the simulation of single environmental factors can’t meet the requirements of product testing. Solution immersion corrosion test is a common environmental test. At present, in addition to the single solution immersion, the periodic immersion corrosion test is gradually carried out. In this regard, GB, TB, ISO, PSA, ASTM and other related standards are given the requirements and test methods. On these basis, in order to meet the requirements, the corresponding test device has gradually begun to develop and application. In this paper, based on the different standards and present equipment, the periodic immersion corrosion test is analyzed and discussed, obtaining the applicable scope and test conditions of each standards and putting forward the prospect of developing universal equipment according to the generality of the principle, providing reference for the selection of immersion corrosion test standards and the development of test equipments.%基于产品运输、使用环境的复杂性,单一环境因素模拟已不能满足产品测试需求。
金属腐蚀实验室浸泡标准按照astm g31
金属腐蚀实验室浸泡标准按照astm g31金属腐蚀实验室浸泡标准按照ASTM G31一、引言金属腐蚀是工业界面临的一个重要问题。
为了了解金属在不同环境条件下的耐蚀性能,人们开展了一系列腐蚀实验。
而ASTM G31就是一种常用的金属腐蚀实验室浸泡标准,它提供了一种评估金属腐蚀行为的方法。
二、ASTM G31浸泡测试概述1. 概念和目的ASTM G31是由美国材料和试验协会(ASTM International)制定的标准,它的主要目的是评估金属在特定浸泡液中腐蚀的程度。
通过该标准,可以获得金属材料在实际使用环境中的腐蚀情况,从而指导工程设计和材料选择。
2. 实验步骤ASTM G31标准规定了一系列实验步骤,以确保实验的准确性和可重复性。
具体步骤如下:(1) 准备浸泡液:根据需要研究的环境条件,选择适当的浸泡液。
常用的浸泡液包括盐水溶液、酸性溶液和碱性溶液等。
(2) 准备测试样品:选择合适的金属材料作为测试样品,并按照标准要求进行样品的制备和处理。
(3) 浸泡试验:将样品放入浸泡液中,按照标准规定的时间进行浸泡。
(4) 测量腐蚀程度:浸泡结束后,对样品进行腐蚀程度的评估。
可以通过重量损失、腐蚀速率或者观察腐蚀产物来进行评估。
3. 实验参数在ASTM G31标准中,一些关键的实验参数被明确规定,以确保实验结果的可比性。
这些参数包括:(1) 浸泡液的温度和pH值:温度和pH值对腐蚀行为有重要影响,因此需要统一保持在特定范围内。
(2) 浸泡时间:根据实验目的和要求,选择合适的浸泡时间,常见的有24小时、48小时等。
(3) 样品的形状和尺寸:样品的形状和尺寸应符合标准要求,以保证实验数据的可靠性。
三、ASTM G31的应用和局限性1. 应用ASTM G31标准广泛应用于金属腐蚀领域,特别是在工业界和科研领域。
它为人们研究不同环境条件下金属腐蚀行为提供了一个标准化的方法。
2. 局限性ASTM G31标准虽然提供了一种评估金属腐蚀的方法,但其局限性也是需要注意的。
金属材料的腐蚀类型及其试验方法
金属材料的腐蚀类型及其试验方法1 .均匀腐蚀(uniformcorrosion)均匀腐蚀(又称全面腐蚀)是指在整个合金材料表面上以比较均匀的方式所发生的腐蚀现象。
其形貌特征是发生全面腐蚀时,材料的厚度逐渐变薄,甚至腐蚀穿透。
全面腐蚀是机械设备在实际使用中发生失效的基本形式。
全面腐蚀代表材料总的重量损失。
这种腐蚀可以通过简单的浸泡试验,或查阅腐蚀方面的文献资料,或凭生产经验加以预测,便于估计设备的寿命。
在选用耐蚀材料时,其全面腐蚀性能是耐蚀性的最基本要求。
均匀腐蚀试验最常用的是重量法,即将试样谿于试验介质中,经一定时间后测量其重量变化,求出其腐蚀速率,标准为GB/T10124—1998《金属材料实验室均匀腐蚀全浸试验方法》2 .点腐蚀(pittingcorrosion)钝化型金属之所以能抗腐蚀乃是由于其表面能形成一层具有保护性的钝化膜。
然而,一旦这层钝化膜遭到破坏,而又缺乏自钝化的条件或能力,金属就会发生腐蚀,如果腐蚀仅仅集中在设备的某些特定点域,并在这些点域形成向深处发展的腐蚀小坑,而金属的大部分表面仍保持钝性的腐蚀现象,称为点腐蚀。
点腐蚀的试验方法主要有电化学法和化学浸泡法。
电化学法主要是测量试样的不锈钢击穿电位。
其标准为GB/T17899-1999《不锈钢点蚀电位测量测量方法》化学浸泡法主要是采用三氯化铁溶液进行点腐蚀化学加速试验。
其标准为GB/T17899-1999《不锈钢三氯化铁点腐蚀试验方法》。
3 .晶间腐蚀(intergranularattack)晶粒间界是结晶方向不同的晶粒间紊乱错合的界域,因而,它们是金属中各溶质元素偏析或金属化合物(如碳化物和(4目等)沉淀析出的有利区域。
在某些腐蚀介质中,晶粒间界可能先行被腐蚀。
这种沿着材料晶粒间界先行发生的腐蚀,使晶粒之间丧失结合力的局部破坏现象,称为晶间腐蚀。
常用的不锈钢和合金钢的晶间腐蚀试验方法有:草酸电介浸蚀法GB/T4334.1—2000《不锈钢10%草酸浸蚀试验方法》,硫酸—硫酸铁法GB/T4334.2-2000《不锈钢硫酸—硫酸铁腐蚀试验方法》,沸腾硝酸法GB/T4334.3—2000《不锈钢65%硝酸腐蚀试验方法》,硝酸—氢氟酸法GB/T4334.4—2000《不锈钢硝酸—氢氟酸腐蚀试验方法》,硫酸—硫酸铜法GB/T4334.5—2000《不锈钢硫酸一硫酸铜腐蚀试验方法》。
腐蚀评价
单一的方法不会提供镁合金在 SBF 里全面的腐蚀信 PH检测法
电化学法 结 论 息。每种方法都有优势和不足,可根据试验条件选 择合适的组合方法,来研究可降解镁植入物的体外 试验。为可降解镁合金体内试验提供选材和适应性 基础。
The end!
OCP高 PDP测试可以提供腐蚀电位( Ecorr) ,腐蚀
电流密度( Jcorr) , 阳极和阴极反应和动力学信息 腐蚀速率 ( C R, mm/a) 可根据 Jorr 来进行计算,见 式( 4)
概
述
失 重 法
析 氢 法
PH检测法
电化学法 结 论
概
述
失 重 法
析 氢 法
PH检测法
电化学法 结 论
差别可能很大。
概
述
五、电化学法
1 动电位极化 动电位极化( PDP) 是研究镁
失 重 法
析 氢 法 合金体外腐蚀最常用的电化学技术通常,为保证获得 稳定的腐蚀电位,PDP试验前应将被测试样浸泡在腐 PH检测法 蚀介质里一段时间进行开路电位( OCP) 测试 OCP稳 电化学法 结 论 定后,通过调节工作( Mg) 电极和反( 惰性) 电极之间 的电流,以一定的扫描速率( 如0.5mV/s) 在预设电 位范围内扫描初始电压选择比 OCP 低,终止电压比
概
述 根据 ASTMG31 ,浸泡试样的腐蚀速率 ( CR ,
失 重 法 mm/a),也可用式( 2) 计算:
析 氢 法
PH检测法
电化学法 结 论
失重试验是研究镁体外腐蚀最简单的方法,为确保 结果的准确性,失重法需多次重复试验 可采用失重法
与电化学腐蚀试验同时进行。
概
述
三、 析氢测量法
失 重 法 镁及其合金在水溶液里的反应过程可由式( 3) 表示,
金属材料耐腐蚀等级
金属材料耐腐蚀等级
金属材料耐腐蚀等级是指在特定环境中,金属材料对腐蚀的抵抗能力。
一般使用的评级标准包括ASTM G31-72、ASTM G46-94、ASTM G48-03等。
常见的耐腐蚀等级包括以下几种:
1. 无腐蚀等级:在特定环境中,金属材料不产生任何腐蚀。
例如,黄铜在干燥环境中不发生腐蚀。
2. 轻微腐蚀等级:在特定环境中,金属材料只发生轻微的表面腐蚀。
例如,不锈钢在酸性环境中可能会发生轻微的点蚀。
3. 中度腐蚀等级:在特定环境中,金属材料发生中度的表面腐蚀。
例如,铜在强酸环境中可能会发生中度的腐蚀。
4. 重度腐蚀等级:在特定环境中,金属材料发生严重的表面腐蚀,并可能会影响材料的性能。
例如,铁在盐水中可能会发生重度的腐蚀。
了解金属材料的耐腐蚀等级对于选择适合特定环境的材料非常
重要。
在购买金属制品时,应了解其适用的环境条件和耐腐蚀等级,并根据实际情况做出正确选择。
- 1 -。
间隙腐蚀
间隙腐蚀间隙腐蚀是发生于间隙及有停滞溶液之遮蔽表面处的局部电化学腐蚀。
若要产生间隙腐蚀,必须有一个间隙其宽度足够让液体进入,但却也可使液体停滞不流出。
因此,间隙腐蚀通常发生于开口处有百万分之几公尺或更小宽度的间隙。
粒间腐蚀粒间腐蚀是发生在合金晶界及晶界附近的局部腐蚀现象。
在正常情况下,若金属均匀腐蚀时,晶界的反应只会稍快于基质的反应。
但在某些情况下,晶界区域会变得很容易起反应而导致粒间腐蚀,如此会使合金的强度下降,甚至导致晶界分裂。
应力腐蚀金属的应力腐蚀破裂(SCC)是指由拉伸应力及腐蚀环境结合效应所导致的破裂。
在SCC期间,金属表面通常只受到很轻微的侵蚀,但局部裂缝却很快沿着金属横断面传播。
产生SCC所需的应力可以是残留应力或施加应力。
裂缝会开始于金属表面上的蚀孔或其他不连续处。
在裂缝开始成长时,其尖端会开始向前,此时作用在金属上的拉伸应力会在裂缝尖端处形成高应力,当裂缝尖端向前传播时,在裂缝尖端处也会产生电化学腐蚀而使阳极金属溶解。
裂缝会沿着垂直于拉伸应力的方向成长,直到金属破坏为止。
若应力或腐蚀其中任一停止,则裂缝将停止成长。
冲蚀腐蚀冲蚀腐蚀可被定义为由于腐蚀性流体与金属表面相对运动而导致金属腐蚀速率加速的现象。
当腐蚀性流体的相对运动速率相当快时,机械磨擦效应将会相当严重。
冲蚀腐蚀的特征为金属表面具有与腐蚀性流体流动方向相同的凹槽、蚀孔与圆孔等。
涡穴损伤此类型的冲蚀腐蚀是由接近金属表面之液体中的气泡及充气孔穴破灭所造成的。
涡穴损伤通常发生在具有高速液体流动及压力改变的金属表面。
移擦腐蚀移擦腐蚀发生在材料承受振动及滑动负荷的界面处,它会形成具有腐蚀生成物的凹槽或蚀孔。
当金属发生移擦腐蚀时,磨擦表面间的金属碎片会被氧化且某些氧化膜会因磨擦动作而剥落,因此摩擦表面间会累积可当研磨剂用的氧化物颗粒。
选择性腐蚀选择性腐蚀是指固体合金内某一特定金属被优先去除的腐蚀过程。
此类型腐蚀最常见的例子是黄铜内之脱锌作用。
scc腐蚀试验标准
scc腐蚀试验标准
3. ASTM G39-99(2015) Standard Practice for Preparation and Use of Bent-Beam Stress-Corrosion Test Specimens
4. ASTM G44-99(2015) Standard Practice for Exposure of Metals and Alloys by Alternate Immersion in Neutral 3.5% Sodium Chloride Solution
sБайду номын сангаасc腐蚀试验标准
SCC(应力腐蚀开裂)腐蚀试验是一种用于评估材料在应力和腐蚀环境共同作用下的开裂 倾向性的试验方法。以下是一些常见的SCC腐蚀试验标准:
1. ASTM G36-94(2018) Standard Practice for Evaluating Stress-CorrosionCracking Resistance of Metals and Alloys in a Boiling Magnesium Chloride Solution
这些标准根据不同的材料和腐蚀环境,提供了相应的试验方法和条件,用于评估材料的 SCC腐蚀倾向性。在进行SCC腐蚀试验时,应根据具体的应用需求和材料特性选择适当的标 准,并按照标准规定的试验方法和条件进行试验。这些标准通常包括试样制备、试验环境、 应力施加和开裂检测等方面的要求,以确保试验结果的准确性和可比性。
可降解镁合金心血管支架
可降解镁合金心血管支架的性能研究作者:黄卓指导老师:刘雪摘要:镁是人体必需的常量元素,具有与人骨相近的密度、弹性模量,比强度高及良好的生物相容性和可降解等特点,在骨科植入物、心血管支架、骨组织工程支架等生物医用领域具有广阔的应用前景,成为材料、生物、医学科研工作者研究的热点。
本文探讨了针对Mg-Nd-Zn-Zr镁合金(以下简称JDBM)应用于心血管支架时对人体细胞的毒性、径向支撑力、耐腐蚀性以及腐蚀方式。
关键词:生物可降解镁合金;心血管支架;径向支撑力;细胞毒性;耐腐蚀性一、前言镁合金作为心血管支架材料,具有以下突出优点[1]:(1)镁是人体必须的元素,是人体内第4位金属元素、细胞内仅次于K+的第2位阳离子。
它催化或激活机体300多种酶系,参与体内所有能量代谢。
在体内三大代谢中通过调节核糖体DNA及RNA的结构而对蛋白质的合成起关键作用。
对肌肉收缩、神经运动机能、生理机能及预防循环系统疾病和缺血性心脏病有重要作用。
镁的排泄主要通过泌尿系统,镁在人体内吸收不会导致血清镁含量的明显升高。
(2)良好的组织相容性、低致栓性和低炎性反应。
(3)镁合金生物材料具有价格优势。
镁是包括海洋在内地球表层最为丰富的金属元素,价格低廉。
(4)镁的标准平衡电位低,具有可降解性,作为可降解材料具有天然优势。
(5)镁合金支架完全降解后被原支架部位的血管所吸收,在相应部位形成钙磷复合物,当支架完全降解后依然可以被IVUS和CT等影像手段所识别发现,有利于临床随访检查。
在设计生物镁合金时,必须考虑镁合金的生物相容性、力学性能和耐蚀性能。
Nd是轻稀土元素,Mg-Nd二元合金显示出良好的强化效果,已有研究表明Nd的加入可提高镁合金的耐蚀性能,并且Nd元素无细胞毒性。
Zn是人体必需的营养元素,微量Zn的加入,可提高镁合金的塑性和变形能力。
Zr的加入可明显细化镁合金晶粒,起到强化材料和提高耐蚀性能的作用,并且微量Zr在镁合金中的生物相容性已经得到证实。
乙酸环境中不锈钢及合金的腐蚀行为与选材研究
引用格式:王 宁,包振宇,于凤昌.乙酸环境中不锈钢及合金的腐蚀行为与选材研究[J].石油化工腐蚀与防护,2022,39(2):7 11. WANGNing,BAOZhenyu,YUFengchang.Studyoncorrosionbehaviorandmaterialselectionofstainlesssteelandalloyinaceticacidenviron ment[J].Corrosion&ProtectioninPetrochemicalIndustry,2022,39(2):7 11.乙酸环境中不锈钢及合金的腐蚀行为与选材研究王 宁1,2,包振宇1,2,于凤昌1,2(1.中石化炼化工程集团洛阳技术研发中心,河南洛阳 471003;2.中国石化石油化工设备防腐蚀研究中心,河南洛阳 471003)摘要:基于热解液制备生物柴油工业试验装置的工艺流程,通过模拟热解液加氢脱氧单元的乙酸腐蚀环境,研究了不同温度及浓度下的乙酸溶液中几种不锈钢及合金材料的腐蚀行为。
研究结果表明:乙酸水溶液对试验材料的腐蚀性随其温度和浓度的升高而加剧;当温度低于乙酸沸点时,气相腐蚀速率小于液相腐蚀速率;而温度高于乙酸沸点时,气相腐蚀速率大于液相腐蚀速率。
乙酸水溶液中几种试验材料耐蚀性能由高到低依次为合金625>254SMO>904L>317L>316L>304L。
针对热解液加氢进料设备和管道,推荐选用304L及以上材质;针对加氢脱氧反应器及相关管道,如含有游离水,推荐选用254SMO及以上材质。
关键词:热解液;乙酸;合金;不锈钢;腐蚀行为;选材收稿日期:2022 01 07;修回日期:2022 02 24。
作者简介:王宁,硕士,高级工程师,2010年毕业于中国石油大学(北京),主要从事腐蚀与防护工作。
E mail:wangning02.segr@sinopec.com基金项目:国家重点研发计划课题(2019YFC1906702) 热解液是非食用的生物质原料通过快速热解技术所产生的液体生物油。
均匀腐蚀标准(一)
均匀腐蚀标准(一)均匀腐蚀标准什么是均匀腐蚀?均匀腐蚀,又称为广谱腐蚀,是一种金属表面腐蚀的一种形式,其特点是腐蚀速度比较均匀,形成的腐蚀坑一般比较浅,常见于金属表面长时间处于某一介质中的情况。
均匀腐蚀的标准在材料实际应用时,有必要建立均匀腐蚀的标准,用于检测材料的耐腐蚀性能。
通常采用的方法是将相同材料的试样暴露在同一条件下,观察其在一定时间内的腐蚀程度,并加以比较,得出相应的标准。
常见的均匀腐蚀标准常见的均匀腐蚀标准有以下几种:•ASTM G31 标准:用于评估笼式蒸汽发生器管材的耐蚀性。
•ASTM G48 标准:用于评估奥氏体不锈钢的耐蚀性。
•NACE TM0172 标准:用于评估奥氏体不锈钢的耐蚀性。
•ISO 9227 标准:用于评估金属材料的耐蚀性。
均匀腐蚀标准的应用均匀腐蚀标准不仅可以用于材料性能的评估,还可以用于材料的选择和设计。
在工业生产中,均匀腐蚀是一种常见的腐蚀形式,如果不将其考虑在内,就可能会对材料的可靠性产生不良影响。
结语均匀腐蚀标准是材料领域中一个非常重要的标准,具有广泛的应用价值。
在使用时,需要结合实际情况灵活运用,得出更为科学合理的结论。
•均匀腐蚀的影响因素均匀腐蚀的发生与很多因素有关,以下是主要的影响因素:1.介质成分:介质中的物质会与材料发生化学反应,形成腐蚀产物,影响材料的腐蚀程度。
2.温度:温度升高会加快腐蚀的速度。
3.氧化还原电位:材料周围环境的氧化还原电位也会影响材料的腐蚀程度。
4.材料的化学成分:不同的材料在相同的介质下会表现出不同的腐蚀行为。
•如何预防均匀腐蚀?要预防均匀腐蚀,可以采取以下措施:1.选择合适的材料,例如使用具有较好耐蚀性能的不锈钢材料来替代普通钢材。
2.采用防腐涂层等措施来增强材料的耐蚀性能。
3.控制介质的pH值和温度,避免过高的温度和酸碱度对材料表面的腐蚀。
4.定期检测设备的腐蚀情况,及时采取维修和更换措施。
•结语均匀腐蚀作为一种普遍存在的腐蚀形式,需要引起我们的高度重视。
金属盐雾测试标准
金属盐雾测试标准的相关标准和规范1. 引言金属盐雾测试是一种常用的环境试验方法,用于评估金属材料的耐腐蚀性能。
该测试通过模拟海洋等恶劣环境中的腐蚀情况,检测金属材料的耐候性、防护涂层的质量以及产品在实际使用中的耐久性。
本文将详细介绍金属盐雾测试标准的相关标准和规范,包括标准的制定、执行和效果等。
2. 标准制定2.1 国际标准化组织(ISO)国际标准化组织(International Organization for Standardization,ISO)是一个全球性的非政府组织,负责制定各类国际标准。
ISO在金属盐雾测试领域制定了多个相关标准,其中最为重要和广泛应用的是ISO 9227《连续暴露于盐雾环境下试验方法》。
该标准规定了金属材料在盐雾环境中暴露时间、试验条件、评价方法等方面的要求。
2.2 美国材料与试验协会(ASTM)美国材料与试验协会(American Society for Testing and Materials,ASTM)是一个专门制定测试方法和标准的组织。
ASTM在金属盐雾测试领域制定了多个标准,其中最为常用的是ASTM B117《用盐雾进行加速腐蚀试验的标准实施规程》。
该标准详细描述了金属盐雾测试的设备、试样制备、试验条件、评价方法等方面的要求。
3. 标准执行3.1 实验室条件金属盐雾测试需要在专门的实验室条件下进行。
实验室应具备良好的通风系统,以确保排除气体和蒸汽产生的影响;还应具备恒温恒湿控制系统,以保持稳定的试验环境。
3.2 设备和试样准备金属盐雾测试所需设备包括盐雾测试箱、喷雾装置、恒温恒湿控制装置等。
试样应根据标准要求进行制备,如去除油污、锈蚀等表面处理。
3.3 试验过程金属盐雾测试通常分为预处理期和暴露期两个阶段。
预处理期的主要目的是去除试样表面的污染物,以保证试验结果的准确性。
暴露期则是将试样置于盐雾环境中进行一定时间的暴露。
3.4 评价方法金属盐雾测试的评价方法主要包括外观评估和腐蚀产物分析。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Designation:G31–72(Reapproved2004)Standard Practice forLaboratory Immersion Corrosion Testing of Metals1This standard is issued under thefixed designation G31;the number immediately following the designation indicates the year of original adoption or,in the case of revision,the year of last revision.A number in parentheses indicates the year of last reapproval.A superscript epsilon(e)indicates an editorial change since the last revision or reapproval.1.Scope1.1This practice2describes accepted procedures for and factors that influence laboratory immersion corrosion tests, particularly mass loss tests.These factors include specimen preparation,apparatus,test conditions,methods of cleaning specimens,evaluation of results,and calculation and reporting of corrosion rates.This practice also emphasizes the impor-tance of recording all pertinent data and provides a checklist for reporting test data.Other ASTM procedures for laboratory corrosion tests are tabulated in the Appendix.(Warning—In many cases the corrosion product on the reactive metals titanium and zirconium is a hard and tightly bonded oxide that defies removal by chemical or ordinary mechanical means.In many such cases,corrosion rates are established by mass gain rather than mass loss.)1.2The values stated in SI units are to be regarded as the standard.The values given in parentheses are for information only.1.3This standard does not purport to address all of the safety concerns,if any,associated with its use.It is the responsibility of the user of this standard to establish appro-priate safety and health practices and determine the applica-bility of regulatory limitations prior to use.2.Referenced Documents2.1ASTM Standards:3A262Practices for Detecting Susceptibility to Intergranu-lar Attack in Austenitic Stainless SteelsE8Test Methods for Tension Testing of Metallic Materials G1Practice for Preparing,Cleaning,and Evaluating Cor-rosion Test SpecimensG4Guide for Conducting Corrosion Coupon Tests in Field ApplicationsG16Guide for Applying Statistics to Analysis of Corrosion DataG46Guide for Examination and Evaluation of Pitting Corrosion3.Significance and Use3.1Corrosion testing by its very nature precludes complete standardization.This practice,rather than a standardized pro-cedure,is presented as a guide so that some of the pitfalls of such testing may be avoided.3.2Experience has shown that all metals and alloys do not respond alike to the many factors that affect corrosion and that “accelerated”corrosion tests give indicative results only,or may even be entirely misleading.It is impractical to propose an inflexible standard laboratory corrosion testing procedure for general use,except for material qualification tests where standardization is obviously required.3.3In designing any corrosion test,consideration must be given to the various factors discussed in this practice,because these factors have been found to affect greatly the results obtained.4.Interferences4.1The methods and procedures described herein represent the best current practices for conducting laboratory corrosion tests as developed by corrosion specialists in the process industries.For proper interpretation of the results obtained,the specific influence of certain variables must be considered. These include:4.1.1Metal specimens immersed in a specific hot liquid may not corrode at the same rate or in the same manner as in equipment where the metal acts as a heat transfer medium in heating or cooling the liquid.If the influence of heat transfer effects is specifically of interest,specialized procedures(in which the corrosion specimen serves as a heat transfer agent) must be employed(1).44.1.2In laboratory tests,the velocity of the environment relative to the specimens will normally be determined by convection currents or the effects induced by aeration or boiling or both.If the specific effects of high velocity are to be studied,special techniques must be employed to transfer the1This practice is under the jurisdiction of ASTM Committee G01on Corrosion of Metals and is the direct responsibility of Subcommittee G01.05on Laboratory Corrosion Tests.Current edition approved May1,2004.Published May2004.Originally approved st previous edition approved in1998as G31–72(1998).2This practice is based upon NACE Standard TM-01-69,“Test Method-Laboratory Corrosion Testing of Metals for the Process Industries,”with modifica-tions to relate more directly to Practices G1and G31and Guide G4.3For referenced ASTM standards,visit the ASTM website,,or contact ASTM Customer Service at service@.For Annual Book of ASTMStandards volume information,refer to the standard’s Document Summary page on the ASTM website.4The boldface numbers in parentheses refer to the list of references at the end of this practice.1Copyright©ASTM International,100Barr Harbor Drive,PO Box C700,West Conshohocken,PA19428-2959,United States.environment through tubular specimens or to move it rapidly past the plane face of a corrosion coupon(2).Alternatively,the coupon may be rotated through the environment,although it is then difficult to evaluate the velocity quantitatively because of the stirring effects incurred.4.1.3The behavior of certain metals and alloys may be profoundly influenced by the presence of dissolved oxygen.If this is a factor to be considered in a specific test,the solution should be completely aerated or deaerated in accordance with 8.7.4.1.4In some cases,the rate of corrosion may be governed by other minor constituents in the solution,in which case they will have to be continually or intermittently replenished by changing the solution in the test.4.1.5Corrosion products may have undesirable effects on a chemical product.The amount of possible contamination can be estimated from the loss in mass of the specimen,with proper application of the expected relationships among(1)the area of corroding surface,(2)the mass of the chemical product handled,and(3)the duration of contact of a unit of mass of the chemical product with the corroding surface.4.1.6Corrosion products from the coupon may influence the corrosion rate of the metal itself or of different metals exposed at the same time.For example,the accumulation of cupric ions in the testing of copper alloys in intermediate strengths of sulfuric acid will accelerate the corrosion of copper alloys,as compared to the rates that would be obtained if the corrosion products were continually removed.Cupric ions may also exhibit a passivating effect upon stainless steel coupons ex-posed at the same time.In practice,only alloys of the same general type should be exposed in the testing apparatus.4.1.7Coupon corrosion testing is predominantly designed to investigate general corrosion.There are a number of other special types of phenomena of which one must be aware in the design and interpretation of corrosion tests.4.1.7.1Galvanic corrosion may be investigated by special devices which couple one coupon to another in electrical contact.The behavior of the specimens in this galvanic couple are compared with that of insulated specimens exposed on the same holder and the galvanic effects noted.It should be observed,however,that galvanic corrosion can be greatly affected by the area ratios of the respective metals,the distance between the metals and the resistivity of the electrolyte.The coupling of corrosion coupons then yields only qualitative results,as a particular coupon reflects only the relationship between these two metals at the particular area ratio involved.4.1.7.2Crevice corrosion or concentration cell corrosion may occur where the metal surface is partially blocked from the corroding liquid as under a spacer or supporting hook.It is necessary to evaluate this localized corrosion separately from the overall mass loss.4.1.7.3Selective corrosion at the grain boundaries(for example,intergranular corrosion of sensitized austenitic stain-less steels)will not be readily observable in mass loss measurements unless the attack is severe enough to cause grain dropping,and often requires microscopic examination of the coupons after exposure.4.1.7.4Dealloying or“parting”corrosion is a condition in which one constituent is selectively removed from an alloy,as in the dezincification of brass or the graphitization of cast iron. Close attention and a more sophisticated evaluation than a simple mass loss measurement are required to detect this phenomenon.4.1.7.5Certain metals and alloys are subject to a highly localized type of attack called pitting corrosion.This cannot be evaluated by mass loss alone.The reporting of nonuniform corrosion is discussed below.It should be appreciated that pitting is a statistical phenomenon and that the incidence of pitting may be directly related to the area of metal exposed.For example,a small coupon is not as prone to exhibit pitting as a large one and it is possible to miss the phenomenon altogether in the corrosion testing of certain alloys,such as the AISI Type 300series stainless steels in chloride contaminated environ-ments.4.1.7.6All metals and alloys are subject to stress-corrosion cracking under some circumstances.This cracking occurs under conditions of applied or residual tensile stress,and it may or may not be visible to the unaided eye or upon casual inspection.A metallographic examination may confirm the presence of stress-corrosion cracking.It is imperative to note that this usually occurs with no significant loss in mass of the test coupon,although certain refractory metals are an exception to these observations.Generally,if cracking is observed on the coupon,it can be taken as positive indication of susceptibility, whereas failure to effect this phenomenon simply means that it did not occur under the duration and specific conditions of the test.Separate and special techniques are employed for the specific evaluation of the susceptibility of metals and alloys to stress corrosion cracking(see Ref.(3)).5.Apparatus5.1A versatile and convenient apparatus should be used, consisting of a kettle orflask of suitable size(usually500to 5000mL),a reflux condenser with atmospheric seal,a sparger for controlling atmosphere or aeration,a thermowell and temperature-regulating device,a heating device(mantle,hot plate,or bath),and a specimen support system.If agitation is required,the apparatus can be modified to accept a suitable stirring mechanism,such as a magnetic stirrer.A typical resin flask setup for this type test is shown in Fig.1.5.2The suggested components can be modified,simplified, or made more sophisticated tofit the needs of a particular investigation.The suggested apparatus is basic and the appa-ratus is limited only by the judgment and ingenuity of the investigator.5.2.1A glass reaction kettle can be used where the configu-ration and size of the specimen will permit entry through the narrow kettle neck(for example,45/50ground-glass joint).For solutions corrosive to glass,suitable metallic or plastic kettles may be employed.5.2.2In some cases a wide-mouth jar with a suitable closure is sufficient when simple immersion tests at ambient tempera-tures are to be investigated.5.2.3Open-beaker tests should not be used because of evaporation andcontamination.5.2.4In more complex tests,provisions might be needed for continuous flow or replenishment of the corrosive liquid,while simultaneously maintaining a controlled atmosphere.6.Sampling6.1The bulk sampling of products is outside the scope of this practice.7.Test Specimen7.1In laboratory tests,uniform corrosion rates of duplicate specimens are usually within 610%under the same test conditions.Occasional exceptions,in which a large difference is observed,can occur under conditions of borderline passivityof metals or alloys that depend on a passive film for their resistance to corrosion.Therefore,at least duplicate specimens should normally be exposed in each test.7.2If the effects of corrosion are to be determined by changes in mechanical properties,untested duplicate speci-mens should be preserved in a noncorrosive environment at the same temperature as the test environment for comparison with the corroded specimens.The mechanical property commonly used for comparison is the tensile strength.Measurement of percent elongation is a useful index of embrittlement.The procedures for determining these values are shown in detail in Test Methods E 8.7.3The size and shape of specimens will vary with the purpose of the test,nature of the materials,and apparatus used.A large surface-to-mass ratio and a small ratio of edge area to total area are desirable.These ratios can be achieved through the use of square or circular specimens of minimum thickness.Masking may also be used to achieve the desired area ratios but may cause crevice corrosion problems.Circular specimens should preferably be cut from sheet and not bar stock,to minimize the exposed end grain.Special coupons (for example,sections of welded tubing)may be employed for specific purposes.7.3.1A circular specimen of about 38-mm (1.5-in.)diam-eter is a convenient shape for laboratory corrosion tests.With a thickness of approximately 3mm (0.125-in.)and an 8-mm (5⁄16-in.)or 11-mm (7⁄16-in.)diameter hole for mounting,these specimens will readily pass through a 45/50ground-glass joint of a distillation kettle.The total surface area of a circular specimen is given by the following equation:A 5p /2~D 22d 2!1t p D 1t p d(1)where:t =thickness,D =diameter of the specimen,and d =diameter of the mounting hole.7.3.1.1If the hole is completely covered by the mounting support,the last term (t p d )in the equation is omitted.7.3.2Strip coupons 50by 25by 1.6or 3mm (2by 1by 1⁄16or 1⁄8in.)may be preferred as corrosion specimens,particularly if interface or liquid line effects are to be studied by the laboratory tests (see Fig.1),but the evaluation of such specific effects are beyond the scope of this practice.7.3.3All specimens should be measured carefully to permit accurate calculation of the exposed areas.A geometric area calculation accurate to 61%is usually adequate.7.4More uniform results may be expected if a substantial layer of metal is removed from the specimens to eliminate variations in condition of the original metallic surface.This can be done by chemical treatment (pickling),electrolytic removal,or by grinding with a coarse abrasive paper or cloth such as No.50,using care not to work harden the surface (see section 5.7).At least 0.0025mm (0.0001in.)or 0.0155to 0.0233mg/mm 2(10to 15mg/in.2)should be removed.(If clad alloy specimens are to be used,special attention must be given to ensure that excessive metal is not removed.)After final preparation of the specimen surface,the specimens should be stored in a desic-cator until exposure,if they are not used immediately.In special cases (for example,for aluminum and certain copper alloys),a minimum of 24h storage in a desiccator is recom-mended.The choice of a specific treatment must be considered on the basis of the alloy to be tested and the reasons for testing.A commercial surface may sometimes yield the most signifi-cant results.Too much surface preparation may remove segre-gated elements,surface contamination,and so forth,and therefore not be representative.7.5Exposure of sheared edges should be avoided unless the purpose of the test is to study effects of the shearing operation.It may be desirable to test a surface representative of the material and metallurgical conditions used in practice.N OTE 1—The flask can be used as a versatile and convenient apparatus to conduct simple immersion tests.Configuration of top to flask is such that more sophisticated apparatus can be added as required by the specific test being conducted.A =thermowell,B =resin flask,C =specimens hung on supporting device,D =air inlet,E =heating mantle,F =liquid inter-face,G =opening in flask for additional apparatus that may be required,and H =reflux condenser.FIG.1Typical Resin Flask7.6The specimen can be stamped with an appropriate identifying mark.If metallic contamination of the stamped area may influence the corrosion behavior,chemical cleaning must be employed to remove any traces of foreign particles from the surface of the coupon(for example,by immersion of stainless steel coupons in dilute nitric acid following stamping with steel dies).7.6.1The stamp,besides identifying the specimen,intro-duces stresses and cold work in the specimen that could be responsible for localized corrosion or stress-corrosion crack-ing,or both.7.6.2Stress-corrosion cracking at the identifying mark is a positive indication of susceptibility to such corrosion.How-ever,the absence of cracking should not be interpreted as indicating resistance(see4.1.7.6).7.7Final surface treatment of the specimens should include finishing with No.120abrasive paper or cloth or the equiva-lent,unless the surface is to be used in the millfinished condition.This resurfacing may cause some surface work hardening,to an extent which will be determined by the vigor of the surfacing operation,but is not ordinarily significant.The surfacefinish to be encountered in service may be more appropriate for some testing.7.7.1Coupons of different alloy compositions should never be ground on the same cloth.7.7.2Wet grinding should be used on alloys which work harden quickly,such as the austenitic stainless steels.7.8The specimens should befinally degreased by scrubbing with bleach-free scouring powder,followed by thorough rins-ing in water and in a suitable solvent(such as acetone, methanol,or a mixture of50%methanol and50%ether),and air dried.For relatively soft metals(such as aluminum, magnesium,and copper),scrubbing with abrasive powder is not always needed and can mar the surface of the specimen. Proper ultrasonic procedures are an acceptable alternate.The use of towels for drying may introduce an error through contamination of the specimens with grease or lint.7.9The dried specimens should be weighed on an analytical balance to an accuracy of at least60.5mg.If cleaning deposits (for example,scouring powder)remain or lack of complete dryness is suspected,then recleaning and drying is performed until a constant mass is attained.7.10The method of specimen preparation should be de-scribed when reporting test results,to facilitate interpretation of data by other persons.7.11The use of welded specimens is sometimes desirable, because some welds may be cathodic or anodic to the parent metal and may affect the corrosion rate.7.11.1The heat-affected zone is also of importance but should be studied separately,because welds on coupons do not faithfully reproduce heat input or size effects of full-size weldments.7.11.2Corrosion of a welded coupon is best reported by description and thickness measurements rather than a millime-tre per year(mils per year)rate,because the attack is normally localized and not representative of the entire surface.7.11.3A complete discussion of corrosion testing of welded coupons or the effect of heat treatment on the corrosion resistance of a metal is not within the scope of this practice.8.Test Conditions8.1Selection of the conditions for a laboratory corrosion test will be determined by the purpose of the test.8.1.1If the test is to be a guide for the selection of a material for a particular purpose,the limits of the controlling factors in service must be determined.These factors include oxygen concentration,temperature,rate offlow,pH value,composi-tion,and other important characteristics of the solution.8.2An effort should be made to duplicate all pertinent service conditions in the corrosion test.8.3It is important that test conditions be controlled through-out the test in order to ensure reproducible results.8.4The spread in corrosion rate values for duplicate speci-mens in a given test probably should not exceed610%of the average when the attack is uniform.8.5Composition of Solution:8.5.1Test solutions should be prepared accurately from chemicals conforming to the Specifications of the Committee on Analytical Reagents of the American Chemical Society5and distilled water,except in those cases where naturally occurring solutions or those taken directly from some plant process are used.8.5.2The composition of the test solutions should be controlled to the fullest extent possible and should be described as completely and as accurately as possible when the results are reported.8.5.2.1Minor constituents should not be overlooked be-cause they often affect corrosion rates.8.5.2.2Chemical content should be reported as percentage by weight of the solutions.Molarity and normality are also helpful in defining the concentration of chemicals in some test solutions.8.5.3If problems are suspected,the composition of the test solutions should be checked by analysis at the end of the test to determine the extent of change in composition,such as might result from evaporation or depletion.8.5.4Evaporation losses may be controlled by a constant level device or by frequent addition of appropriate solution to maintain the original volume within61%.Preferably,the use of a reflux condenser ordinarily precludes the necessity of adding to the original kettle charge.8.5.5In some cases,composition of the test solution may change as a result of catalytic decomposition or by reaction with the test coupons.These changes should be determined if possible.Where required,the exhausted constituents should be added or a fresh solution provided during the course of the test.8.5.6When possible,only one type of metal should be exposed in a given test(see4.1.6).5Reagent Chemicals,American Chemical Society Specifications,American Chemical Society,Washington,DC.For suggestions on the testing of reagents not listed by the American Chemical Society,see Analar Standards for Laboratory Chemicals,BDH Ltd.,Poole,Dorset,U.K.,and the United States Pharmacopeia and National Formulary,U.S.Pharmacopeial Convention,Inc.(USPC),Rockville,MD.8.6Temperature of Solution :8.6.1Temperature of the corroding solution should be controlled within 61°C (61.8°F)and must be stated in the report of test results.8.6.2If no specific temperature,such as boiling point,is required or if a temperature range is to be investigated,the selected temperatures used in the test,and their respective duration,must be reported.8.6.3For tests at ambient temperature,the tests should be conducted at the highest temperature anticipated for stagnant storage in summer months.This temperature may be as high as from 40to 45°C (104to 113°F)in some areas.The variation in temperature should be reported also (for example,4062°C).8.7Aeration of Solution :8.7.1Unless specified,the solution should not be aerated.Most tests related to process equipment should be run with the natural atmosphere inherent in the process,such as the vapors of the boiling liquid.8.7.2If aeration is employed,the specimen should not be located in the direct air stream from the sparger.Extraneous effects can be encountered if the air stream impinges on the specimens.8.7.3If exclusion of dissolved oxygen is necessary,specific techniques are required,such as prior heating of the solution and sparging with an inert gas (usually nitrogen).A liquid atmospheric seal is required on the test vessel to prevent further contamination.8.7.4If oxygen saturation of the test solution is desired,this can best be achieved by sparging with oxygen.For other degrees of aeration,the solution should be sparaged with air or synthetic mixtures of air or oxygen with an inert gas.Oxygen saturation is a function of the partial pressure of oxygen in the gas.8.8Solution Velocity :8.8.1The effect of velocity is not usually determined in normal laboratory tests,although specific tests have been designed for this purpose.8.8.2Tests at the boiling point should be conducted with the minimum possible heat input,and boiling chips should be used to avoid excessive turbulence and bubble impingement.8.8.3In tests below the boiling point,thermal convection generally is the only source of liquid velocity.8.8.4In test solutions with high viscosity,supplemental controlled stirring with a magnetic stirrer is recommended.8.9Volume of Test Solution :8.9.1The volume of the test solution should be large enough to avoid any appreciable change in its corrosivity during the test,either through exhaustion of corrosive constituents or by accumulation of corrosion products that might affect further corrosion.8.9.2Two examplesof a minimum “solution volume-tospecimen area”ratio are 0.20mL/mm 2(125mL/in.2)of specimen surface (Practice A 262),and 0.40mL/mm 2(250mL/in.2).8.9.3When the test objective is to determine the effect of a metal or alloy on the characteristics of the test solution (for example,to determine the effects of metals on dyes),it is desirable to reproduce the ratio of solution volume to exposedmetal surface that exists in practice.The actual time of contact of the metal with the solution must also be taken into account.Any necessary distortion of the test conditions must be considered when interpreting the results.8.10Method of Supporting Specimens :8.10.1The supporting device and container should not be affected by or cause contamination of the test solution.8.10.2The method of supporting specimens will vary with the apparatus used for conducting the test,but should be designed to insulate the specimens from each other physically and electrically and to insulate the specimens from any metallic container or supporting device used within the apparatus.8.10.3Shape and form of the specimen support should assure free contact of the specimen with the corroding solution,the liquid line,or the vapor phase as shown in Fig.1.If clad alloys are exposed,special procedures will be required to ensure that only the cladding is exposed,unless the purpose is to test the ability of the cladding to protect cut edges in the test solution.8.10.4Some common supports are glass or ceramic rods,glass saddles,glass hooks,fluorocarbon plastic strings,and various insulated or coated metallic supports.8.11Duration of Test :8.11.1Although duration of any test will be determined by the nature and purpose of the test,an excellent procedure for evaluating the effect of time on corrosion of the metal and also on the corrosiveness of the environment in laboratory tests has been presented by Wachter and Treseder (4).This technique is called the “planned interval test,”and the procedure and evaluation of results are given in Table 1.Other procedures that require the removal of solid corrosion products between exposure periods will not measure accurately the normal changes of corrosion with time.8.11.2Materials that experience severe corrosion generally do not ordinarily need lengthy tests to obtain accurate corro-sion rates.However,there are cases where this assumption is not valid.For example,lead exposed to sulfuric acid corrodes at an extremely high rate at first,while building a protective film;then the rates decrease considerably so that further corrosion is negligible.The phenomenon of forming a protec-tive film is observed with many corrosion-resistant materials.Therefore,short tests on such materials would indicate a high corrosion rate and be completely misleading.8.11.3Short-time tests also can give misleading results on alloys that form passive films,such as stainless steels.With borderline conditions,a prolonged test may be needed to permit breakdown of the passive film and subsequent more rapid attack.Consequently,tests run for long periods are considerably more realistic than those conducted for short durations.This statement must be qualified by stating that corrosion should not proceed to the point where the original specimen size or the exposed area is drastically reduced or where the metal is perforated.8.11.4If anticipated corrosion rates are moderate or low,the following equation gives the suggested test duration:Hours 52000/~corrosion rate in mpy !(2)。